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A B S T R A C T

For optimal water and fertilizer management under furrow irrigation, it is important to understand the water
and solute dynamics on the land surface and in the subsurface. An efficient mathematical tool is required to
describe these dynamic processes. We propose a coupled model in which surface water flow and solute transport
are described using the zero-inertia equation and the average cross-sectional convection-dispersion equation,
respectively, while the two-dimensional Richards equation and the convection-dispersion equation are used to
simulate water flow and solute transport in soils, respectively. Solutions are computed numerically using finite
differences for surface water flow and finite volumes for solute transports in furrow. Subsurface water flow and
solute transport equations are solved using the CHAIN_2D code. An iterative method is used to couple com-
putations of surface and subsurface processes. Both surface and subsurface water flow and solute transport
modules are coded in program subroutines and functions in the Intel FORTRAN environment. The coupled model
was validated by comparing its simulation results with measured data. Results showed that simulated water front
advances in the furrow and water contents in the soil agreed with the observations reasonably well. Good
simulations can be achieved with a relatively fine temporal resolution. Numerical oscillations can be eliminated
by adopting appropriate time steps. As compared with the traditional furrow irrigation model, the proposed
model can better quantify soil water and solute dynamics by considering interactions between surface and
subsurface water flow and solute transport processes. The proposed model can be used as a decision tool to
design and manage furrow irrigation.

1. Introduction

Furrow irrigation has been widely adopted for wide-spaced crops
such as corn, cotton, and sunflower all over the world because of its low
investment and low energy requirements (Chen and Feng, 2013). The
application of fertilizers with irrigation water is a common practice in
furrow irrigation (Ebrahimian et al., 2014). To evaluate the efficiency
of fertilizer applications, a knowledge of the distribution of the fertilizer
in the soil along the furrow is required. Additionally, poor quality
waters, such as saline waters, have been extensively used for irrigation
in arid and semi-arid areas, e.g., in the northwest of China, the Negev
region of Israel, and northwest India (e.g., Oster, 1994; Chen et al.,
2015; Mantell et al., 1985; Rajinder, 2004). Improper use of saline
waters for irrigation may cause secondary salinization problems. To
study environmental impacts of irrigation with saline waters, an accu-
rate estimate of water flow and salt fluxes into the soil profile is also

required (Crevoisier et al., 2008).
Many field experiments have been conducted to provide manage-

ment recommendations for increasing the uniformity of fertilizer ap-
plications (Mailhol et al., 2001; Halvorson et al., 2002; Abbasi et al.,
2003a; Adamsen et al., 2005) and controlling salinity (Evans et al.,
1990; Moreno et al., 1995; Malash et al., 2008; Nagaz et al., 2013; Chen
and Feng, 2013). However, field experiments are time-consuming and
expensive and cannot include all relevant factors. Also, it is quite dif-
ficult to obtain general conclusions from field experiments due to the
variability of soil properties, soil infiltration rates, field gradients, soil
roughness, etc. (Ebrahimian et al., 2014). Mathematical models can
provide an alternative approach to overcome these limitations.

In recent years, many models have been developed for quantifying
water flow and solute transport both at the soil surface and in the
subsurface under furrow irrigation. These models can be divided into
three categories. The first group of models describes water flow in
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furrows using either zero-inertia, kinematic-wave, or fully hydro-
dynamic equations and characterizes solute transport in furrows using
either advection or advection-dispersion equations, while simple em-
pirical functions are used to represent water and solute infiltration.
Based on this modeling concept, many software packages such as
SIRMOD (Walker, 2003) and WinSRFR (Bautista et al., 2009) have been
developed for the design and management of surface irrigation. Fur-
thermore, the software package SIFUM (Boldt et al., 1994) was devel-
oped for fertilization management under surge irrigation. However, the
above-discussed models cannot describe distributions of water and so-
lutes in soils in detail, which is important for the evaluation of the
uniformity of water and fertilizer applications under furrow irrigation
and the quantification of deep percolation and leaching. Also, para-
meters of empirical infiltration functions are event specific and cannot
account, for example, for the effects of the antecedent soil moisture on
infiltration (Zerihun et al., 2005). Thus, the use of empirical infiltration
functions may result in an inaccurate estimation of infiltration.

The second group of models describes subsurface processes, i.e.,
water flow and solute transport in soils, using two-dimensional vari-
ably-saturated flow and advection-dispersion equations, respectively,
while surface processes are simplified and treated as an upper boundary
condition. Among these models, the HYDRUS (2D/3D) software
package (mainly its two-dimensional version denoted as HYDRUS-2D
(Šimůnek et al., 2008, 2016b) with appropriate boundary conditions
has been widely used to evaluate water and solute dynamics in soils
under furrow irrigation. Šimůnek et al. (2016b) identified some 25
papers in which HYDRUS-2D and its predecessors, such as SWMS_2D
and CHAIN_2D, have been used to simulate water flow and solute
transport in furrow irrigation systems. For instance, Crevoisier et al.
(2008) used HYDRUS-2D to simulate water and nitrogen dynamics
under alternate and conventional furrow irrigation. Siyal et al. (2012)
and Šimůnek et al. (2016a) developed a new furrow boundary condi-
tion to better account for flow and transport processes in furrows.
Šimůnek et al. (2016a) evaluated the effects of different fertigation
strategies and furrow surface treatments on plant water and nitrogen
use. Wang et al. (2014) coupled HYDRUS-2D with the EPIC crop growth
module to evaluate soil water dynamics and melon growth under
furrow irrigation. However, these types of models, cannot fully describe
the dynamic processes of water advancement, storage, and recession
during a furrow irrigation event. Additionally, interactions between
surface and subsurface processes have not been fully considered in as-
sessing model performance. These simplifications may produce in-
accurate simulation results.

The third group of models, which couples two models fully de-
scribing the surface and subsurface processes and their interactions,
represent an alternative way to simulate furrow irrigation systems.
Some efforts to couple surface and subsurface models for furrow irri-
gation have been reported in the literature. For example, Wöhling and
Schmitz (2007) coupled the zero-inertia model, HYDRUS-2D, and the
crop model to simulate water flow and crop growth under furrow ir-
rigation. However, they did not consider solute transport (e.g., fertili-
zers and salts) and their effects on crop growth. Ebrahimian et al.
(2013) loosely coupled the surface model of Abbasi et al. (2003b) with
HYDRUS-2D to simulate water and solute dynamics under furrow irri-
gation. However, their coupling procedure was not very accurate since
it did not consider the mutual feedback between surface and subsurface
systems. Therefore, more accurate coupling methods, i.e., the iterative
coupling and full coupling methods, are required to develop more re-
liable furrow irrigation models (e.g., Furman, 2008).

The objectives of this study are (1) to develop a coupled model for
numerically simulating water and solute dynamics under furrow irri-
gation by an iterative coupling of physically-based surface and sub-
surface models, (2) to validate the coupled model by comparing its si-
mulation results with available experimental data, and (3) to conduct
numerical tests evaluating the accuracy and efficiency of the coupled
model.

2. Theory and method

2.1. Model description

2.1.1. Surface flow
Water flow in a furrow can be described using the zero-inertia

equation, which is a simplified form of the full hydrodynamic equation
obtained by neglecting the inertial and acceleration terms (Elliott et al.,
1982). The mathematical expression of the zero-inertia equation is:
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where A is the cross-sectional flow area (m2), Q is the flow rate (m3s−1),
Z is the infiltration volume per unit length of furrow (m2), h is the flow
depth (m), S0 is the bottom slope of the furrow (-), Sf is the friction slope
(-), x is the horizontal distance (m), and t is time (s). The friction slope is
defined using the Manning equation:
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where N is the Manning’s roughness (m1/6), R is the hydraulic radius
(m), and cu is a dimensional constant equal to 1 when units (m1/2 s−1)
are used.

For a furrow of an arbitrary cross-section, the flow depth can be
expressed as a power function of the flow area (Elliott et al., 1982):

=h bAp (4)

where b and p are furrow geometry parameters in units of (m1/2p) and
(-), respectively. Similarly, the wetted perimeter can be written as a
power function of the flow area. Hence, the denominator of Eq. (3)
becomes a function of A:

=A R dAf2 4 3 (5)

where d and f are hydraulic section parameters in units of (m5.33−2f)
and (-), respectively. Substituting Eqs. (4) and (5) into Eq. (2), one
obtains
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Eqs. (1) and (6) are the basis of the surface flow model. The initial
and boundary conditions are as follows:
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where L is the furrow length (m), Q0 is the inflow rate (m3 s−1), tco is
the cutoff time (s), xr is the distance of the receding tip from the up-
stream end (m), tro is the recession time at the upstream end (s), trL is
the recession time at the downstream end (s), xa is the advance distance
(m), and taL is the advance time (s).

2.1.2. Solute transport in the furrow
Solute transport in a furrow can be described using a one-dimen-

sional cross-sectional average dispersion equation (Cunge et al., 1980):
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where C is the solute concentration (kg m−3) and Dx is the dispersion
coefficient (m2 s-1). The dispersion coefficient accounts for the disper-
sion due to differential advection and turbulent diffusion (Cunge et al.,
1980). Dx can be written as (Abbasi et al., 2003b):

= +D v Dx x d (11)

where αx is the longitudinal dispersivity (m), v is the mean cross-sec-
tional velocity (m s−1), and Dd is the molecular diffusion in free water
(m2 s−1). The initial and boundary conditions are as follows:

=C x x LInitial condition: ( , 0) 0 0 (12)

=C t C t t tUpstream boundary condition: (0, ) ( )o co (13)

= x L t tDownstream boundary condition: 0 0 andC
x a rL (14)

2.1.3. Subsurface flow
Subsurface flow in any cross-section perpendicular to the direction

of surface flow can be described by using the two-dimensional Richards
equation:
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where θ is the volumetric moisture content (-), h is the pressure head
(m), K is the unsaturated hydraulic conductivity (m s−1), Kij

A are
components of a dimensionless anisotropy tensor KA, xi and xj are the
spatial coordinates (m), and S is the sink term accounting for root water
uptake.

The unsaturated hydraulic conductivity function is determined
using the van Genuchten-Mualem model (Mualem, 1976; van
Genuchten, 1980):
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where Ks is the saturated hydraulic conductivity (m s−1), Se is the ef-
fective water saturation (-), θr and θs are the residual and saturated
water contents, respectively (-), α is the inverse of the air-entry value
(m-1), and n is the pore-size distribution index (-).

The initial conditions are given in terms of pressure heads, which
can be either constant or vary with the depth and distance along the
furrow. The time-variable pressure head representing the flow depth in
the furrow is considered as the upper boundary condition in the furrow,
while an atmospheric boundary condition can be considered on the rest
of the soil surface, including in the furrow when it is empty. A free
drainage is considered as the bottom boundary condition in cases when
the groundwater table is below the domain of interest. Otherwise, the
Dirichlet boundary condition with a prescribed pressure head can be
considered as the bottom boundary condition.

2.1.4. Solute transport in subsurface
Solute transport in any subsurface cross-section perpendicular to the

direction of surface flow can be described by using the two-dimensional
convection-dispersion equation:
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where c is the solute concentration in the soil (kg m−3), qi is the i-th

component of the volumetric flux (m s-1), Dij is the dispersion
coefficient tensor (m2 s-1), and cs is the concentration of the sink term
(kg m−3).

The initial conditions for concentrations can either be constant or
vary with the depth and distance along the furrow. The first-type
boundary condition reflecting the solute concentration in the furrow is
considered as the upper boundary condition. The third-type boundary
condition with the spatial derivative of the concentration equal to zero
is considered as the bottom boundary condition.

2.2. Numerical solution

2.2.1. Numerical solutions for the surface and subsurface models
The zero-inertia equations, i.e., Eqs. (1) and (6), are solved using the

implicit finite difference method. The discretization of the computa-
tional domain for Eqs. (1) and (6) is shown in Fig. 1. The implicit finite
difference equations can be found in Appendix A. Whereas the cross-
sectional average dispersion Eq. (10) is solved using the finite volume
method, and the resulting linear equations can also be found in
Appendix A.

The subsurface flow and transport module is based on the
CHAIN_2D code (Šimůnek et al., 2008), i.e., an open source version of
HYDRUS-2D. Both the two-dimensional subsurface water flow and so-
lute transport equations subject to appropriate initial and boundary
conditions were solved using the Galerkin finite element method.

2.2.2. Calculation procedures for the coupled model
The coupled model is coded in program subroutines and functions,

which integrate water flow and solute transport in the furrow and
CHAIN_2D (Fig. 2). The model is written in FORTRAN 90. As shown in
Fig. 2, the calculation procedures are as follows:

1.First, the parameters of the surface water flow and solute trans-
port modules are initialized and the initial input files of CHAIN_2D are
read.

2.In each time step, the surface flow module is iteratively coupled
with the CHAIN_2D water flow module. First, the flow water depth in
each discrete node along the furrow is calculated using an estimate of
the infiltration amount. The infiltration amount is assumed to be equal
to that at the preceding time. Second, CHAIN_2D calculates the dis-
tribution of pressure heads in the soil profile and the cumulative in-
filtration amount during one time step for each node using the flow
depth as the upper boundary condition. Third, the simulated cumula-
tive infiltration amount is transferred back to the surface flow module
to update the flow depth. These last two steps are repeated until the

Fig. 1. Discretization of the computational domain for the numerical solution of
the zero-inertia equation.
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convergence criterion is fulfilled. The convergence criterion (0.001m2)
is given as the difference in the cumulative infiltration volumes along
the furrow between two adjacent iterations.

3.After the convergence criterion is satisfied, the flow modules pass
selected variables (i.e., flow rates, areas, infiltrations, soil water contents,
and soil water fluxes) to the solute modules to calculate solute transport
processes. Unlike in water flow calculations, the interaction between the
surface and subsurface solute modules is unidirectional. The surface so-
lute module first calculates solute concentrations for each discrete node
along the furrow. The CHAIN_2D solute module then calculates the dis-
tribution of solute concentrations in the soil profiles using solute con-
centrations in the furrow as the upper boundary conditions.

4.The results, including flow rates and areas and solute concentra-
tions in the furrow as well as the distribution of pressure heads and
concentrations in the soil profiles, are printed after the completion of
solute calculations.

5.Steps (2) to (4) are repeated until the entire irrigation process is
simulated.

2.3. Model validation

2.3.1. Validation of the surface flow and solute transport models
The numerical solution of the zero-inertia equation was validated

against the field experimental data of Abbasi et al. (2003b) for the
water advance and recession phases using the parameters given in
Table 1. The numerical solution of the solute transport in the furrow
was also validated by comparing simulation results with the field ex-
perimental data of Abbasi et al. (2003b). The inflow rate of 1.29 L s−1

and the applied solute concentration of 2.36 g L−1 were considered in
the simulation.

The numerical solution for the solute transport model in the furrow
was also evaluated using the analytical solution. For a steady uniform
flow condition and given the initial condition (C(x,0)= 0, for 0 ≤ x≤
L) and boundary conditions (C(0, t) = C0, C(L, t)= 0, for 0 ≤ t ≤ T),
the analytical solution can be expressed as (Warrick, 2003):

= + +C x t C erfc x vt
D t

e erfc x vt
D t

( , )
2 2 2x

vx D

x

0 x

(20)

where C0 is the inlet concentration, L is the length of the computation
domain, and T is the total time (Warrick, 2003). A hypothetical

Fig. 2. Flow chart of the calculation procedure of the coupled model.

Table 1
Parameters of the field experiment of Abbasi et al. (2003b).

Parameter Value

Field length (m) 115
Field slope (m m−1) 0.0001
Furrow geometry parameters
d (m5.33−2f) 0.326
f (-) 2.789
b (m1/2p) 0.871
p (-) 0.635
Infiltration parameters
a (-) 0.75
k (m3 min−am-1) 0.00209
c (m3m−1) 0.006
Manning roughness (m1/6) 0.066
Cutoff time (min) 140
Solute application time (min) 140
Dispersivity (cm) 10

Note: adapted from Abbasi et al. (2003b).
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example with the parameter values C0= 1, L=1, T=1, v=1, and
Dx=0.1 was set up for this evaluation.

2.3.2. Validation of the coupled model
The coupled model was validated using the experimental data of

Wöhling et al. (2004), who carried out laboratory experiments to in-
vestigate surface and subsurface flow patterns during the advance
phase of furrow irrigation. A parabolic furrow, with a top width of
0.35m and a depth of 0.184m, was formed in an experimental tank.
Fifty tensiometer probes were placed at five cross sections (x=1.5, 6.3,
12.3, 18.3, and 24.3m) to measure pressure heads. The soil hydraulic
parameters were optimized by a MATLAB routine using the pressure
head measurements at the cross section x =12.3m. The resulting
optimized parameters of the van Genuchten-Mualem model were
α=1.4m−1, n=1.25, Ks=1.95×10-5m s-1, θs=0.41, and
θr=0.14. More details about the experiments can be found in Wöhling
et al. (2004). Three irrigation experiments were conducted with dif-
ferent inflow rates and bottom slopes. The detailed experimental in-
formation is shown in Table 2. The initial conditions for the subsurface
flow model were determined by averaging measured pressure heads at
five cross sections, which are shown in Table 3. The simulated water
advance by the coupled model was compared with the measured data
and with that simulated by the Wöhling’s model (Wöhling et al., 2004),
in which the analytical solution of the zero-inertia equation was used to
describe surface water flow. Simulated pressure heads in different cross
sections (i.e., x= 6.3m and x= 18.3m) were also compared with the
measurements.

The coefficient of determination (R2) and the root mean square
error (RMSE) were used as indicators to evaluate the performance of
the model validation.

2.4. Numerical tests

In the proposed coupled model, all governing equations were solved
using a numerical solution. Numerical solutions can generally handle
more complex initial and boundary conditions, as well as hetero-
geneities in soil properties, than analytical solutions. However, nu-
merical solutions often encounter numerical problems and are stable

only when they fulfill certain stability criteria, often involving limits on
the spatial and temporal discretization, i.e., spatial and time steps.
Generally, the accuracy of simulation results depends greatly on the
time and space resolution. In our proposed model, a constant time step
is used in the numerical solution of the zero-inertia equation. The space
increment is determined by the difference of the calculated water front
positions at two adjacent times. It should be noted that the space in-
crement is not constant during the simulations because the velocity of
the water advance decreases during the advance phase (see Fig. 1). In
order to analyze the impact of the time resolution, numerical tests were
conducted for time steps Δt = 30 s, 60 s, and 120 s A hypothetical case
was set up for these numerical tests with its parameters given in
Table 4. In this case, the sandy soil was considered and its hydraulic
parameters were adopted from Vogel and Hopmans (1992). Initial soil
pressure heads and solute concentrations were assumed to be uniformly
distributed with values of -2.5m and 0 g m−3, respectively. The simu-
lation results for different time steps were compared with each other.
The total volume balance errors, δ, were also computed for different
time steps:

= ×V V
V

| | 100%in total

in (21)

where Vtotal is the sum of the surface water and infiltration volumes
(m3) and Vin is the water volume applied into the furrow (m3).

3. Results and discussion

3.1. Simulation results of the surface flow and solute transport models

Fig. 3 shows the comparison of the water advance and recession
measured and simulated using the numerical zero-inertia model. It can

Table 2
Parameters of three irrigation laboratory experiments of Wöhling et al. (2004).

Parameters 1st irrigation 2nd irrigation 3rd irrigation

Average inflow rate (L s−1) 1.20 2.14 2.58
Cutoff time (h) 2.55 5.37 3.62
Furrow length (m) 26.4 26.4 26.4
Furrow slope (m m−1) 0.0025 0.0014 0.0015

Note: adapted from Wöhling et al. (2004).

Table 3
Average initial pressure heads at different locations used in the subsurface flow
model.

Soil depth (m) h (m)
1st irrigation

h (m)
2nd irrigation

h (m)
3rd irrigation

0.2 −4.37 −6.65 −1.74
0.3 −3.33 −5.45 −1.45
0.35 −2.83 −6.02 −1.58
0.45 −2.41 −3.94 −1.16
0.5 −2.25 −4.09 −1.19
0.6 −2.02 −4.22 −1.06
0.7 −1.97 −3.61 −0.86
0.8 −2.07 −2.72 −0.64
1.05 −3.46 −3.43 −0.68

Note: adapted from Wöhling et al. (2004).

Table 4
Parameters for the time resolution tests.

Parameter Value

Field length (m) 100
Field slope (m m−1) 0.0015
Geometry parameters
d 0.382
f 2.767
b 1.150
p 0.564
Manning roughness (m1/6) 0.03
Inflow rate (L s−1) 2.0
Applied solute concentration (g L−1) 6.3
Cutoff time (min) 60
Solute application time (min) 60
Dispersivity (cm) 10

Fig. 3. Comparison of the measured (symbols) and simulated water advance
(solid line) and recession (dashed line) using the zero-inertia model.
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be seen that the recession time was approximately the same along the
furrow. This may be attributed to a small field slope and spatially re-
latively uniform infiltration. The simulated water advance and reces-
sion agree reasonably well with the measurements, indicating that the
numerical zero-inertia model has good accuracy. The differences be-
tween the simulations and measurements may be due to the spatial and
temporal variability of infiltration and roughness, and the non-
uniformity of the field slope along the furrow (Abbasi et al., 2003b).

The simulated solute concentrations at the distances of 10 and 60m
from the inlet were compared with the measurements in Fig. 4. The
solute concentration increased rapidly with the water advance and then
reached a constant value. In general, the simulated solute concentra-
tions were in good agreement with the measurements. Deviations be-
tween early simulated and measured values were mainly due to

variations in the inflow rate, resulting in unstable solute concentrations
in the irrigation water.

Fig. 5 presents the comparison between analytical and numerical
solutions for the cross-sectional average dispersion equation. The con-
centrations at different locations simulated using the numerical solution
were in very good agreement with those obtained using the analytical
solution. This indicates that the numerical solution has relatively high
accuracy.

3.2. Performance of the coupled model

A comparison of the water advance measured and simulated using
the coupled model is presented in Fig. 6. It can be seen that the

Fig. 4. Comparison of measured and simulated solute concentrations at a dis-
tance of 10 (top) and 60 (bottom) m from the furrow inlet.

Fig. 5. Comparison of concentrations obtained using either the analytical or
numerical solutions of the cross-sectional average dispersion equation.

Fig. 6. Comparison of the water advance measured and simulated using the
new coupled model and the Wöhling’s model (Wöhling et al., 2004) for three
furrow irrigation experiments.
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measured and simulated water advance values matched reasonably
well, as reflected by the coefficient of determination R2 of 0.99 and the
RMSE of 1.02–2.73m, implying that the coupled model has reasonable
accuracy. Differences between simulations and observations may be
due to the spatial variability of infiltration and roughness along the
furrow. While for the first irrigation, the coupled model predicted a
slightly slower water advance than measured, for the second irrigation,
it predicted a faster water advance. This may be attributed to a sig-
nificant increase in the initial infiltration rate caused by soil cracks that
developed between the first and second irrigations (Wöhling et al.,
2004).

Water advances simulated by both the coupled and Wöhling’s
models (Wöhling et al., 2004) are also presented in Fig. 6 for compar-
ison. The water advance simulated by the coupled model was slightly
slower than simulated by the Wöhling’s model for the first irrigation
and slightly faster for the second and third irrigations. This could be
explained by the fact that the Wöhling’s model used the analytical so-
lution of the zero-inertia equation, whereas the numerical solution was
used in the present work. The analytical solution of Wöhling assumed
that the momentum could be expressed as the momentum at the center
of gravity of the water body. This assumption was not needed in our
numerical solution. In addition, the iterative convergence criteria used
in our model was different from that of Wöhling’s model. This might
result in different simulation results.

Fig. 7 shows the simulated and measured pressure head distribu-
tions in soils at the cross-sections 6.3 and 18.3m from the furrow inlet
after 20min irrigation time. In general, the simulations were in good
agreement with the measurements. The discrepancy between the

Fig. 7. Measured and simulated distributions of the pressure head in the soil profiles at distances of 6.3 (left) and 18.3 (right) m from the furrow inlet after 20min
irrigation time.

Fig. 8. Simulated water advance for time steps Δt=30, 60, and 120 s.

Fig. 9. Simulated cumulative infiltration along the furrow during the advance
phase for time steps Δt= 30, 60, and 120 s.

Fig. 10. Simulated solute concentrations along the furrow after 30min for time
steps Δt= 30, 60, and 120 s.
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simulated and measured results may be attributed to the approximation
of the initial conditions for the simulation. Similarly to Wöhling et al.
(2004), the initial pressure heads over the simulation depth were ob-
tained by interpolating measured pressure heads at nine depths (see
Table 3).

3.3. Impact of the time resolution

The simulated water advances for different time step sizes Δt are
presented in Fig. 8, which shows that the water advance was similar for
time steps Δt = 30 and 60 s, whereas it was faster for Δt = 120 s.

Fig. 11. Simulated pressure heads (top) and solute concentrations (bottom) in the soil profile at a distance of 50m form the furrow inlet after 30min irrigation time
for time steps Δt=30 (up), 60 (middle), and 120 (down) s.
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Infiltration for Δt = 120 s was underestimated in comparison with
those for Δt = 30 and 60 s during the water advance process (see
Fig. 9), resulting in a faster water advance. The total volume balance
error (Eq. 26) showed a significant increase from 0.8% for Δt=30 s to
3.2% for Δt=120 s. This indicates that larger time steps and space sizes
(the space increment increases with the time step in the coupled model)
may cause an inaccurate evaluation of infiltration and the water ad-
vance time. These results are consistent with those of Wöhling et al.
(2004), who reported that the large space sizes could lead to the biased
estimation of infiltration and advance time. Banti et al. (2011) also
indicated that smaller space increments could result in lower volume
balance errors.

Fig. 10 presents simulated solute concentrations along the furrow
after 30min irrigation time for different time steps. Significant nu-
merical oscillations could be found in the simulation with Δt = 120 s,
whereas there were no visible numerical oscillations in the simulation
with Δt= 30 s. This may be attributed to the fact that larger time steps
resulted in larger Peclet and Courant numbers. In our numerical tests,
Peclet numbers were less than 8.0 for Δt = 30 s and less than 18.0 for
Δt =120 s. Corresponding Courant numbers were less than 1.5 for Δt
= 30 s and less than 1.7 for Δt =120 s. Similar results were also found
by Abbasi et al. (2003b), who reported that no significant numerical
oscillations could be found for simulations with Peclet numbers smaller
than 10 and Courant numbers not larger than 1. Although the Courant
number is larger than 1 in our simulations, a Courant number smaller
than 2 is acceptable as the average dispersion equation (Eq. 10) is
solved using an implicit scheme. It should be noted that Fig. 10 shows a
decrease of solute concentrations below c0 at the outflow end. This is
the result of the numerical dispersion and not a physical phenomenon
since there is no physical process in our hypothetical example that
could lower concentrations below c0.

The simulated pressure heads and solute concentrations in the soil
profile after 30min irrigation time for different time steps are shown in
Fig. 11. It can be seen that simulated pressure head distributions were
similar for Δt= 30 and 60 s. The wetted area for Δt= 120 s is slightly
smaller than for Δt= 30 and 60 s. This further demonstrates that using
the time step of 120 s may underestimate infiltration. Simulated solute
concentrations for Δt = 120 s are smaller than those for Δt = 30 and
60 s. This is also attributed to the fact that the infiltration volumes for
Δt = 120 s are smaller.

The required CPU time for different time steps is presented in
Fig. 12, which shows that the CPU time increased significantly with the
decrease of the time step. The CPU time for Δt = 30 s was 2.5 times
larger than for Δt= 60 s and 9.3 times larger than for Δt= 120 s. This
was mainly due to the numerical solution of the two-dimensional Ri-
chards equation and the convection-dispersion equation, i.e., for sub-
surface processes. Using smaller time steps resulted in having more
subsurface profiles perpendicular to the direction of surface flow, re-
quiring many more computations.

There are many ways to improve the computational efficiency. First,
the numerical code can be parallelized to significantly reduce the
computational time when the code is run on multiple-core processors or
multiple processors. Second, if one only needs to know the cumulative
infiltration amount rather than detailed water and solute distributions
in soils, a simple infiltration model can be used instead of the sophis-
ticated two-dimensional process model. For example, Bautista et al.
(2016) proposed an approximate furrow infiltration model by treating
the two-dimensional infiltration as a sum of a one-dimensional in-
filtration and edge effects. This model could obtain comparably accu-
rate estimations of cumulative infiltration as the numerical solution of
the two-dimensional Richards equation. Similarly, an empirical surface
flow function can be used instead of a physically based model.
Ghanbarian et al. (2018) provided theoretical insights into the ex-
ponent in the empirical power-law advance-time curve, which is widely
used in surface irrigation. However, improving the computational ef-
ficiency may not be a big concern in the current situation when sig-
nificant computational resources are often readily available.

It should be pointed out that the proposed model is highly compu-
tationally efficient. This is because the subsurface water flow and solute
transport modules in the coupled program are called directly from the
overland flow module, rather than passing various variables through
external HYDRUS files (as done in Wöhling et al., 2004; Zerihun et al.,
2005; Wöhling and Schmitz, 2007). In addition, the modular pro-
gramming method makes it easy to optimize each part of the model
separately. The proposed model can simulate the water and solute dy-
namics of all phases of a furrow irrigation event by considering inter-
actions between surface and subsurface water flow and solute transport
processes. It can also provide a more detailed distribution of both water
and solute in soils in comparison with traditional furrow irrigation
models. Hence the proposed model is a useful tool for water and fer-
tilizer management under furrow irrigation.

In this study, crop growth processes were not considered in the
coupled model. However, the effect of irrigation and fertigation on crop
growth using different irrigation techniques is always an important
factor for water management at different scales. Therefore, future re-
search should focus on incorporating the crop growth module into the
coupled model to allow simultaneous simulations of soil water and
solute dynamics, as well as crop growth during the entire growing
season.

4. Summary and conclusions

A coupled model for simulating water flow and solute transport
under furrow irrigation was developed. In the model, surface water
flow and solute transport were described using the zero-inertia equation
and the cross-sectional average dispersion equation, respectively. The
two-dimensional Richards and advection-dispersion equations, respec-
tively, were used to simulate water flow and solute transport in soils.
The surface and subsurface models were coupled using an iterative
coupling method and were coded in program subroutines and functions
in the Intel FORTRAN environment. The proposed model was validated
by comparing its simulation results with measured data from laboratory
and field experiments, as well as with other available models.
Numerical tests were conducted to analyze the accuracy and efficiency
of the coupled model. When smaller time steps were used, more robust
simulations without significant numerical oscillations and dispersion
were obtained, albeit at a higher computational cost. The proposed
model can simulate all phases of an irrigation event and provide de-
tailed quantification of both water and solute dynamics under furrow
irrigation by considering interactions between surface and subsurface
water flow and solute transport processes. The proposed model can
serve as a decision tool for the design and management of furrow ir-
rigation.

Fig. 12. CPU times for time steps Δt = 30, 60, and 120 s.
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Appendix A

The implicit finite difference schemes for Eqs. (1) and (6) can be expressed as (Elliott et al., 1982):
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in which j is the node index, k is the timeline index, and φ and ψ are the space and time weighting factors, respectively. In this study, φ and ψ were
considered with values of 0.5 and 0.6, respectively.

When the furrow is discretized into N cells, there are 2N linear algebraic equations and 2N unknowns. The linear Eqs. (A1) and (A2), combined
with the initial and boundary conditions, are solved using the Gaussian elimination method.

Using the finite volume method, the cross-sectional average dispersion Eq. (10) can be decretized as:
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in which j is the node index and k is the timeline index. Variables A, Z, and Q are obtained from the numerical solution of the zero-inertia equation.
For N cells, there are N linear algebraic equations and N unknowns. Similarly as for water flow, the linear Eq. (A4), combined with the initial and
boundary conditions, are solved using the Gaussian elimination method.
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