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Abstract 

 
Surrogate and Iterative Machine Learning Methods for Modelling Chemical Phenomena 

 
by 

 
Karl Bernard Schaettle 

 
Doctor of Philosophy in Chemical Engineering 

 
University of California, Berkeley 

 
Professor Kranthi K. Mandadapu, Chair 

 
 

Modelling soil properties has important implications both for soil remediation and preventing 
misapplication of fertilizer in large-scale farming settings. By better understanding the dynamics 
of radioactive cesium infiltration and binding in clays, remediation strategies can be designed to 
lessen the long-term impact of radioactive particles on the environment and society. Similarly, 
adverse environmental effects associated with fertilizer runoff such as toxic algal blooms can be 
mitigated by precisely modelling soil nutrient concentrations and quantitatively predicting the 
economic effect of fertilizer application. Roadblocks to modelling microscale ion diffusion in bulk 
clay include the relatively long timescale of cesium-potassium ion exchange as well as the 
excessive computational cost associated with modelling all-atom systems; in particular, explicitly 
modelling hydrogen atoms drastically reduces the minimum simulation timestep. Modelling crop 
yield as a function of the spatial distribution of soil nutrients is complicated by an inability to take 
a dense set of soil samples in large-scale farms. There is also a relative lack of traditional 
agronomic literature quantitatively describing crop yield as a function of the high-dimensional soil 
nutrient feature space. 

Machine learning and surrogate modelling methods are becoming increasingly common in 
engineering and science. While “black box” methods such as random forest regression and neural 
network modelling have been very successful at fitting physical phenomena, there is an increasing 
need to qualitatively and quantitively improve model interpretability and computational efficiency. 
In addition, machine learning models can be quite computationally expensive to use in 
optimization and may not have a well-defined methodology for doing so. Methods for improving 
computational efficiency of a model include coarse-graining (in the case of all-atom simulations) 
or approximating a “black box” model with another model designed to have tractable optimization 
properties. In order to retain fidelity to the initial model while increasing interpretability, in both 
cases the dimensionality of the model is reduced either by introducing multi-atom coarse-grain 
centers or approximating the target function as a linear combination of low-dimensional 
components. To ensure that the coarse-grain or reduced order surrogate models accurately capture 
properties of the original model, information from the model being approximated is used in their 
construction. In the case of reduced order surrogate modelling of random forest regression, low-
dimensional components are chosen on the basis of ranked feature interaction importance. Using 
iterative Boltzmann inversion (IBI) to coarse-grain an all-atom simulation, the radial distribution 
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functions of only a subset of atoms are used to reproduce structural and thermodynamic properties 
of the original system.  

The goal of the study performed in Chapter 2 was twofold: to use a data-driven methodology to 
model soybean yield (Glycine max L. Merr.) as a function of soil nutrients in well-irrigated soil 
and to develop a reduced order surrogate model capable of gradient ascent optimization. Several 
datasets were used to approximate soil nutrient concentrations using a random forest model: 
discrete soil samples, dense multispectral images of the plants near midseason from an unmanned 
arial vehicle (UAV), and a dense map of soil electrical conductivity. An iterative random forest 
(iRF) model was then fitted to a dense set of soil features, and important feature interactions of 
dimension 2 to 4 were extracted. Each feature interaction was used to generate a Highly Adaptive 
Lasso (HAL) pseudo-response surface corresponding to a low-dimensional projection of the 
feature space. We used the HAL surfaces to develop a reduced order surrogate model (ROSM) of 
the random forest; this ROSM is a linear combination of HAL surfaces derived from the feature 
interactions identified by the random forest. The resulting ROSM essentially has low local 
dimension because each component has maximum dimension 4. In practice, order 5 and 6 
interactions were identified, but retaining them greatly decreased the computational efficiency of 
the HAL modelling and did not improve the model fidelity. Because the ROSM is a linear 
combination of low-dimensional surfaces, its gradient can also be described as a linear 
combination of the gradients of each surface. The ROSM can therefore be used in gradient ascent 
optimization at the same computational cost of evaluating the ROSM itself and is well-defined 
over the entire feature space. Maps of fertilizer application are derived for optimizing the soil 
concentrations of phosphorus and potassium. 

Chapter 3 is a study using iterative Boltzmann inversion to generate a coarse-grain model of an 
all-atom simulation of ion interstratification in illite clay. Experimental results indicate that cesium 
ions can exchange with potassium ions in bulk layered silicates, indicating that there is a 
mechanical or thermodynamic compensation for the incorporation of the larger cesium ion. 
Iterative Boltzmann inversion was used to incrementally update coarse-grain simulations of four 
clay layers by adjusting bonded and non-bonded interaction strength between coarse-grain centers, 
representing oxygen atoms in the clay layers and the ions themselves. The model was able to 
reproduce results from smaller all-atom simulations indicating that the barrier to ion exchange is 
a function of interlayer spacing, which in turn depends on the identity of the ion in the interlayer. 
By randomizing the position of ions in the interlayer between each coarse-grain simulation, the 
coarse-grain model was better able to sample the phase space and subsequently was not subjugated 
to overfitting based on the configuration of the ions. Most importantly, the coarse-grain model is 
able to run approximately 70 times faster than an all-atom simulation due to a roughly 2:1 reduction 
in the number of modelled particles. By eliminating explicit hydrogen atoms in the coarse-grain 
model, the time step could be increased by a factor of roughly 10. 
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1 Introduction 

1.1 Surrogate Modeling to Learn Ecosystem Control Points in Agriculture 

In addition to the requirement of increased crop production to sustain population growth, global 
farming is subject to a variety of unpredictable socioeconomic and environmental pressures.1 
Weather uncertainty, crop diseases and pests, and market volatility are particularly important 
sources of risk. Managing risk through precision agriculture is especially important given the 
continuing increase in the number of hectares per farmer on modern large-scale farming 
operations.2 By managing the risk associated with production in particular through the use of 
sustainable and high-precision farming techniques, growers can aim to boost yields and therefore 
counter market uncertainty.3 

Both soil organic matter accumulation and soil microbe diversity are essential measures of soil 
health.4 Sustainable farming practices are needed to maintain soil health, prevent depletion of 
mineral fertilizer sources, and prevent environmental consequences associated with overuse of 
fertilizers. These sustainable techniques include limited soil tillage to prevent soil erosion and 
nutrient runoff, using cover crops to naturally replenish minerals depleted by single species 
farming, and the use of organic amendments in lieu of mineral fertilizers.5 However, the increased 
cost associated with using some of these sustainable techniques must be quantitatively weighed 
against their long-term advantages to facilitate widespread adoption. 

Remote sensing technology includes not only direct measurements of properties such as soil 
electrical conductivity and pH level, but also the use of vegetation indices (VIs) computed from 
unmanned aerial vehicle (UAV) or satellite images of crops.6 These computed indices such as the 
normalized difference vegetation index (NDVI), the soil adjusted vegetation index (SAVI), and 
various leaf area measurements7 are typically used as an indicator of overall crop health, and 
together with other precision measurements can provide a wealth of data for determining the state 
of the crop.  

 

1.1.1 Spatial Statistics and Interpolation: Kriging 

Kriging8,9 is a common method of creating a dense map of a feature from discrete or sparse 
measurements in agricultural and geospatial applications. For example, soil pH and 
micronutrient10,11 concentrations are much more difficult to assess than quantities that can be 
measured continuously or on a dense grid such as electrical conductivity or crop yield. In ordinary 
kriging, a continuous function is generated from the discrete measurement data points in two or 
three dimensions by assigning weights to each of the known measurements. The weights are found 
by minimizing the variance of the error residual, which results in a system of linear equations with 
one additional Lagrange condition.12 Generalizations of ordinary kriging include a variety of 
methods that do not assume the mean of the continuous function being generated stays constant in 
space. 

In its original formulation, kriging does not account for the behavior of other variables that are 
correlated to the set of sparse measurements, for example the behavior of soil electrical 
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conductivity as it relates to concentrations of individual micronutrient ions. Kriging has been 
extended to include information from other explanatory variables (usually continuous) in a 
formulation known as regression kriging.13 In regression kriging, the ordinary kriging model of 
the sparse measurement of interest is paired with an arbitrarily chosen regression model of the 
additional explanatory variables. In many applications, multiple linear regression is a popular 
choice, but the formulation of regression kriging places no explicit functional limit on the paired 
regression model. A regression model of the sparse measurement of interest is fit using additional 
explanatory variables, and a kriging model with mean zero is subsequently applied to the residual 
values of the regression model. The sum of the regression model and the kriging model is called a 
regression kriging model. Regression kriging models tend to perform much better than ordinary 
kriging models when the covariates are strongly correlated to the sparse measurement of interest 
but can suffer from overfitting if they are weakly correlated or an inappropriate regression model 
is chosen.13 

In precision agriculture, ordinary and regression kriging models are used to generate maps from 
sparse soil measurements of relevant quantities. Soil organic carbon content, total nitrogen, and 
pH maps were generated over a large area using multiple linear regression kriging and compared 
to the same maps generated through ordinary kriging in Pham et al.14 They used three computed 
vegetation and topographic indices as regressor variables to compute a model of their target 
quantities. Their results indicated that the regression kriging model had significantly improved 
accuracy as compared to ordinary kriging alone, providing evidence that using a simple regression 
or regression kriging model for sparse measurements is appropriate if the covariates are 
mechanistically or otherwise strongly correlated. 

 

1.1.2 Review of Machine Learning in Precision Ag 

Machine learning and machine vision are currently used in a variety of settings in precision 
agriculture. The majority of industrial applications fall into the category of machine vision, 
including implementations for visual detection and discrimination of plants, sorting of fruits and 
other foodstuffs, and identification of diseased crops.15,16 Automated detection of weeds is useful 
for precision targeting of herbicide, reducing the need for excessive, uniform application. In one 
study, the authors developed an algorithm to detect the difficult to identify Bidens pilosa L., a 
common agricultural weed similar in color to wheat. By assessing images using color segmentation 
and shape analysis, they were able to detect Bidens at a rate of approximately 80%.17  

Machine vision has important applications in monitoring crop health. Hyperspectral imaging has 
been used to estimate density of vegetation from satellite imaging and UAV imaging. Doing so 
allows for a much larger number of observables and precise, localized estimation (sub field-scale) 
of crop health and yield.18 Different crop coverage indices can be computed from reflectance in 
several wavelengths, especially in near infrared and red wavelengths due to high crop reflectivity. 
However, satellite images (as compared to UAV images) are especially prone to weather-related 
obfuscation due to their height above the atmosphere.19 Incorporating information from the entire 
electromagnetic spectrum between near infrared and ultraviolet wavelengths has been associated 
with increases in yield predictive accuracy on the order of 20%.20,21 

Hyperspectral imaging of crops with UAVs is becoming much more commonplace, despite the 
significantly higher cost compared to satellite imaging.18 While satellite images have a resolution 
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on the order of meters, high quality UAV images can distinguish features as small as a few 
centimeters. This higher resolution is essential for precisely estimating the development of 
individual plants during different stages of the growing season. In particular, UAV images can be 
used in the time series estimation of the leaf area index (LAI), which is critical in determining 
meter-scale fertilizer requirements.22 Despite the successes of this technology, UAV imaging 
remains cost prohibitive compared to other analytical techniques, so correlating satellite imagery 
to UAV snapshots and/or improving prediction using other measurables is desirable. 

Other important post-harvest applications of machine learning and machine vision include product 
quality assessment and sorting. Using a variety of machine learning techniques, grains can be 
efficiently graded according to industry specifications.23 This extremely cost-effective evaluation 
is necessary to efficiently price products and deliver properly graded grains for different consumer 
applications, resulting in less industrial waste overall. Classification systems can also be coupled 
with automatic sorters, with applications especially in fruit to greatly increase efficiency and 
reduce the need for manual sorting.24 Use cases also include the efficient identification of infested 
grains and/or otherwise defective products.25 Different machine learning techniques such as 
artificial neural networks (ANN), support vector machines (SVM), and others have been used to 
classify varietals with accuracy exceeding 90%.23 

Machine vision has applications in automated tractor guidance for precision harvesting, planting, 
and fertilizer application. In one study, a machine vision system was used to keep a tractor on the 
correct path to within 1 cm down a crop row by continuously monitoring position of plants in 
adjacent rows and adjusting steering accordingly.26 Machine learning guidance systems allow for 
greater precision than GPS-based guidance at relatively little additional cost to the consumer. 

Despite great advancements in machine vision, machine learning using high precision data is 
currently underapplied to yield prediction and variable rate application of fertilizer outside of 
small-scale studies. While neural network, gaussian process, random forest, and other machine 
learning methods have been applied to yield prediction,27 most studies have focused on existing, 
readily-available low-precision measurements such as satellite multispectral imaging and GPS-
based topographical analysis. Many of these studies found that certain computed vegetation indices 
(VIs) were significantly more important than others in predicting yield, indicating the need for a 
machine learning framework capable of discriminating between variable importances. It is 
predicted that growing adoption of higher precision measurements such as UAV image acquisition 
and meter-scale soil electrical conductivity measurements will be heavily incorporated into large-
scale planting decisions and fertilizer management in the near future.27  

 

1.1.3 Crop Nutrient Interactions 

Several groups have used a variety of machine learning and statistical methods to capture higher 
order responses to macro- and micronutrients in staple crops such as soybeans and rice. One 
common technique is to create a polynomial yield response model of variables of interest in lieu 
of attempting to derive interactions from agronomic first principles, which naturally provides a 
framework for investigating interactions in a reduced view of the entire nutrient feature space.28–

30 These studies require optimized factorial design of differential fertilizer application or soil 
nutrient concentrations to create a model that spans the feature space in lieu of generating a dense 
map of nutrients across the field and partitioning after the fact. To generate a polynomial model of 
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rice yield in response to nitrogen and phosphorus fertilizer application, Shen et al.30 carried out 41 
individual field trials using factorial design. They were able to use their model to estimate the 
optimal economic fertilizer rates for nitrogen and phosphorus application as a function of the soil 
cation exchange capacity. Their estimate implicitly accounted for the higher order interaction of 
the effect of nitrogen and phosphorus fertilizers by using a fully second-order polynomial model. 

In two separate studies, a polynomial model was used to generate a yield response and herbivory 
model in soybeans as an implicit function of higher order between nutrients.28,29 The authors 
generated Fe-B-Zn and S-N-P macronutrient interaction response surfaces by designing small-
scale laboratory growing experiments using explicitly chosen nutrient ion solutions and using 
factorial design to optimally cover the designed feature space. In each of the studies, the authors 
indicated that the polynomial response surfaces (which are inherently smoothed due to the low 
order of the polynomial) were insufficient to capture the behavior of all of the observed datapoints, 
with some experimental observations lying far outside the generated surfaces of best fit. The results 
from both studies indicate that quantifying the effects of micro- and macro-nutrients individually 
on herbivory and soybean yield without investigating simultaneous, higher-order nutrient feature 
interactions may be a reason for contradictory predictions of plant response in the agronomic 
literature. 

In another study, the feature response interactions between phosphorus, potassium, and sulfur were 
investigated in soybean plants.31 The response interaction between phosphorus and potassium in 
particular has been understudied, with conventional agronomic wisdom indicating that the two 
nutrients can be applied and optimized separately without significant interaction in healthy soil 
regimes. Plant yield was modelled in greenhouse conditions in 27 separate experiments using 
3x3x3 factorial design to span the feature space of healthy soil conditions for these three nutrients. 
The authors found that, at high concentrations of sulfur in the soil, the yield response peaked at 
high values of potassium and intermediate values of phosphorus, similar to a result that we report. 
This result indicates that under these sulfur concentrations there is a penalty associated with 
banking phosphorus (applying phosphorus in excess of the minimum necessary concentrations for 
optimal yield), a result which is not typically reported for healthy soil. Averaged over all sulfur 
concentration values considered in this study, the authors predict that the soybean yield response 
peaks at the maximum studied phosphorus value over the range of potassium values, not an 
intermediate concentration of phosphorus. That is, the two-dimensional response surface 
associated only with phosphorus and potassium generated from this study does not indicate the 
same banking penalty when considering soil with high concentrations of sulfur. This suggests that 
important macronutrient interactions are dependent on other explanatory variables and that feature 
interactions of order greater than two may provide additional information that would otherwise be 
overlooked. 

It should be noted that although polynomial models are capable of providing some explanatory 
power in investigating higher order interactions between nutrient response, the higher order 
variables themselves (products and powers of nutrient concentrations and fertilizer application 
rates) are not physically meaningful quantities. Many data-driven, machine learning-based 
approaches do not require explicitly controlling soil ion concentrations, but instead creating a 
dense map of nutrients allows for partitioning the feature space into hundreds or thousands of 
individual “experiments” per field to generate a continuous response surface of physically 
meaningful variables. In this way, machine learning methods including ours are capable of 
identifying hard to detect or context-dependent (i.e., soil pH or texture) nutrient interactions. 
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Moreover, although factorial design experiments do attempt to cover the feature space in an 
optimal way, they can be fundamentally more difficult to perform due to issues with controlling 
soil ion concentrations, and they suffer from requiring a fundamentally smaller number of chosen 
features than post-experimental partitioning of the measured feature space. However, it should be 
noted that for investigating interactions one at a time for a small number of features, factorial 
design of laboratory-controlled experiments can be very useful. In addition, due to the parametric 
nature of their design, linear and polynomial regression models are capable of producing 
predictions on regions of the feature space outside of their training domain, unlike random 
forests,32 although this property of parametric learning algorithms can produce spurious results if 
extrapolated far outside the training domain. 

Some groups have used first principles from agronomy and plant biology as a starting point for 
investigating higher order interactions between micronutrients and macronutrients. In some cases, 
trace minerals such as molybdenum are mechanistically involved with enzymes required for 
oxidation reactions of different macronutrients.33 Despite being generally understudied in the 
literature, and despite being important in high-order models of crop health and yield, 
macronutrient-macronutrient interactions oftentimes have mechanistic underpinnings. For 
example, in one hydroponic experiment modelling the effect of cadmium poisoning on soybeans,34 
it was observed that increasing the concentration of potassium in the soil led to an increase in 
overall plant growth, photosynthesis, and the uptake of other macronutrients, likely due to the 
effect of potassium-assisted enzyme activation during nodulation. Nitrate acts as a “signal 
molecule” to modulate plant uptake response of phosphate, and it has been shown mechanistically 
that phosphate starvation in plants is attenuated by nitrogen starvation.35 Similarly, phosphorus 
starvation mechanistically modulates sulfur transport and uptake. 

However, most studies that investigate the underlying biological mechanisms behind macro- and 
micro-nutrient interactions are not able to rigorously quantify the effects of nutrient starvation or 
overabundance, and to an even greater degree they are not able to predict fine changes to the yield 
response due to small changes in macronutrient concentration near optimal conditions. Most 
traditional agronomic studies consider the yield and other response variables such as plant overall 
height or leaf weight to be roughly constant over a range of so-called ideal conditions. Without a 
more precise formulation of plant response in healthy soils, it is difficult to precisely quantify 
optimal fertilizer application rates or the most economically effective way of modulating the soil 
for a given real-world field. In contrast, our study and other machine learning methods attempt to 
find insights non-mechanistically. By creating detailed maps of soil conditions across many fields, 
it is possible to find interactions that would otherwise have been overlooked, thus creating an 
opportunity for investigating the mechanistic underpinnings of discovered higher-order 
interactions from first biological principles. 

 

1.1.4 Machine Learning Models of Yield 

In recent years, many machine learning methods have been applied to crop yield prediction. 
Methods used to model crops include neural networks and deep learning, linear and polynomial 
regression, gaussian process methods, random forest, and support vector machines.36 Deep 
learning techniques are by far the most popular current method of modelling crop yield. These 
models provide very high fidelity on large datasets and are capable of learning highly complex 
nonlinear functional forms with little oversight. Authors of various studies include a variety of 
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soil, weather, and other features in their models to create a temporal model of yield throughout the 
growing season or at the time of harvest. Some studies have used regression models to generate 
dense soil maps (10 meter grids) from sparse soil measurements by correlating the sparse soil 
samples with dense observed measurables, thus allowing the machine learning model to be trained 
on a feature space without missing values.37 Computing soil maps in this way can be more accurate 
than ordinary kriging because the feature maps of densely collected variables can contain far more 
information than just the position information derived from sparse soil samples. Of course, 
ensuring that these generated dense maps from sparse features are meaningful requires only using 
regression variables that would be physically expected to correlate to soil features such as soil 
texture, conductivity, and multi- or hyper-spectral data indicating overall plant health. 

Unfortunately, many of these types of machine learning models can be considered “black boxes” 
in that interpreting the functional form between inputs and outputs is very difficult. The results of 
the learning algorithm may also depend heavily on the hyperparameters used to tune in the model 
instead of robust trends in the underlying dataset. Another drawback associated with gaussian 
process methods is that computing the inverse of the covariance matrix is difficult or infeasible for 
high dimensional feature spaces.38 While random forests provide insight by allowing the user to 
generate a ranked list of feature importances, it can still be difficult to interpret the response of 
several features simultaneously or to accurately decide the meaning of the model response on a 
reduced version of the input space. Moreover, many of these models are unwieldy or inappropriate 
to use for optimization due to their complex or fundamentally nonparametric functional form. 
Therefore, one important goal of machine learning methods for crop modelling, and indeed 
modelling of any regression problem with a high dimensional feature space, should be to increase 
interpretability on an effectively reduced basis of observed variables. 

Several machine learning methods have been employed to reduce the effective dimension of the 
feature space or increase the local interpretability of a machine learning model. Building a model 
directly as a function of feature interactions to probe low-dimensional behavior is one such 
technique. In one study, Ansarifar et al.39 develop an interaction regression model to identify 
globally explanatory features for corn and soybean yield in several states. Their study compares 
the use of several kernel functions to define higher-order feature interactions which are 
automatically selected by minimizing the residual values for a model composed of a linear 
combination of these interactions. Although their model is able to outperform many traditional 
machine learning algorithms in modelling yield, the interaction regression model does not 
explicitly attempt to control the dimensionality of the interactions. The interaction regression 
model also requires first eliminating features from different partitions of the test set and 
subsequently identifying overlaps in the set of features in each partition. In doing so this method 
is likely to eliminate variables with high local importance but reduced global importance that may 
be vital to accurately modelling outliers or regions with sharp response boundaries in the feature 
space, which can be as important as capturing the overall structure of the response variable. 

 

1.1.5 Dimensionality Reduction and Surrogate Modeling 

Reducing the effective dimension of the feature space is an important goal of interpretable machine 
learning. Reducing the dimension allows for increases in computational speed and interpretability 
of the regression model while hopefully maintaining accuracy. While this can be accomplished by 
fitting a model that naturally considers only low-order subsets of the entire feature space in each 
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component, such as in polynomial regression or interaction modelling, it can also be done by using 
methods that rank the importance of global variables such as random forest. Of course, all of these 
machine learning methods require fitting a regression model to the entire feature space to 
effectively reduce the dimension or eliminate features, which can be computationally expensive 
for methods that scale poorly with the number of model parameters or feature space dimension. In 
particular, random forest classification and regression models avoid linear computational cost 
scaling with dimension by optimizing over a reduced number of features at each split. 

Another common approach is to reduce the feature space dimension before applying a regression 
model. One such approach is to use principal component analysis (PCA) to eliminate combinations 
of features that do not strongly correlate to the variance of the target variable.40,41 In precision 
agriculture, PCA can be used to effectively reduce the dimensionality of highly correlated data 
with a large number of features, as is often the case with certain soil texture variables.42 PCA 
decomposes the feature space into uncorrelated linear combinations of the features and thereby 
naturally lumps together variables that are strongly correlated with one another. Processed feature 
spaces with reduced dimension can subsequently be used to generate more interpretable regression 
models of the target variable. Alternatively, because PCA is an unsupervised learning technique, 
it can be used to discriminate between clusters of data that are distant from one another in the 
feature space or that have different sets of explanatory components, thus making it an effective 
tool for generating more localized or context-dependent models. In one study, authors used 
principal component analysis and a genetic algorithm to find a feature subset that can best be used 
for crop classification.43 They found that for different genetic classifiers they were able to 
dramatically reduce the dimensionality of the feature space, with over 50% reduction in two 
classification tasks using decision trees. 

In general, random forest regression model performance is not typically affected by PCA 
transformation of the feature space (without dimensionality reduction) because it is capable of 
learning complex decision boundaries.44 While PCA transformation can make these decision 
boundaries more easily interpretable for humans, forests that are sufficiently deep will not suffer 
degradation in precision from training on untransformed data. Nevertheless, random forest 
regression models have been studied using PCA-transformed feature spaces.45 Indeed, applying 
PCA or other variable transformation methods before fitting a random forest can oftentimes simply 
result in a less interpretable model because the forest is fit to a set of transformed variables without 
physical meaning. Because random forests do not suffer from computational complexity concerns 
from training on high dimensional feature spaces, and because they offer a natural structure for 
reducing the dataset dimension after fitting, it is natural to use them to develop a framework for 
increasing model interpretability by globally eliminating features or using them as a basis for 
creating an interaction regression model. 

Another method of increasing machine learning model interpretability is to construct a simpler, 
surrogate model that recapitulates the behavior of the more complex model. Local Interpretable 
Model-agnostic Explanations (LIME) is a general surrogate modelling strategy that approximates 
a more complex, global machine learning model with a local kernel.46 The authors investigate 
several applications using a locally linear formulation with a gaussian kernel for interpolation. 
They are able to extract subimages used in identifying discrete objects by a neural network in an 
image, thus providing an interpretable explanation of how the neural network discriminates 
between classes. Although this method does not explicitly reduce the dimension of the feature 
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space, it is able to capture behavior of black box models such as neural networks using simple 
parametrized models whose coefficients or projections are easily interpretable. 

 

1.1.6 Review of Soil Ecology in Ag 

The soil microbiome is extremely sensitive to and can be negatively impacted by overapplication 
of mineral and organic fertilizers. The purpose of fertilizer application is to maximize crop 
productivity, but consistent overapplication in the United States and globally has resulted in soil 
acidification, unnecessary runoff, and other changes to soil conditions that damage the long-term 
health of the microbial community.47 Applying organic fertilizers at industry recommended rates 
has been associated with elevated soil nitrogen levels after the growing season, potentially 
resulting in environmental leaching and reduced crop yields on the order of 20%.48,49 

The soil organisms that interact with agricultural crops can be roughly divided into microflora 
(bacteria, fungi) and microfauna (protozoa, mites, nematodes, etc.).47 These organisms perform 
important duties such as breaking down plant matter, fixing organic nitrogen, and recycling 
minerals. Since the microflora are essential for degradation of plant and other organic matter, they 
therefore serve mainly as a repository for plant nutrients. 

Soil acidification is generally associated with poor soil health, while large concentrations of soil 
organic matter are typically associated with improved agricultural yields.50 These two easily 
measurable observables are therefore important proxies for the overall health of the soil. However, 
fertilizers, when over-applied over long periods of time, have been shown to both acidify soil and 
reduce retention of organic matter on average. Mineral fertilizers show conflicting, context-
dependent effects on overall microfauna counts and carbon and nitrogen concentrations depending 
on soil conditions.47,51,52 In addition, typical surface fertilizer application can lead to extreme 
stratification of phosphorus in the soil due to low incorporation rates, potentially leading to 
overapplication, increased runoff rates and poisoning the deep soil. This excessive phosphorus 
runoff can lead to severe downstream negative impacts, including algal blooms.53  

In contrast, organic fertilizers such as manure have a more complex interaction with the soil 
microbiome due to high concentrations of a variety of organic compounds. While higher levels of 
organic matter are generally important for soil health,47 overapplication of certain organic 
molecules such as humins can hinder plant growth.54 Therefore it is important to have a model that 
incorporates mineral composition and organic matter content of soil to accurately prescribe 
fertilizer application in different soil regimes within a field. 

A variety of pest control compounds are used in modern agriculture including fungicides, 
insecticides, herbicides, and pesticides.47 Their impact on the soil microbiome and organic matter 
content is generally considered to be understudied, partially because large effects may not be 
observed for several years after their initial application. Fungicides are particularly impactful due 
to the important role of beneficial fungi in the soil, which can be negatively affected by broadly 
targeted fungicides.55 Therefore it is important to grow crops in soil regimes hostile to pathological 
fungi while promoting plant growth.  
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1.2 Structural Coarse-Graining 

 

A “bottom-up” CG model is defined as a model of a target system by using an explicit modelling 
or mapping technique.56 The so-called fine grain model may be itself an atomistic approximation 
of a first principles molecular model of a system of interest. Different iterative coarse graining 
techniques can be shown to exactly reproduce the structural (in the case of iterative Boltzmann 
inversion) or thermodynamic (in the case of force-matching and relative entropy minimization) 
properties of the given detailed model. However, this convergence is only exact in the limit that 
the finite size effects of real simulations are negligible and that a tabulated many-body potential is 
used instead of pairwise or parametrized interactions.57 Bottom-up CG models are ideal for 
studying relatively large systems or the temporal dynamics of such systems due to the inherent 
reduction in computational cost associated with mapping several atoms or molecules to a single 
coarse grain particle. Since this type of CG model can be developed independently of experimental 
observations of thermodynamic properties, they are ideally suited for studying kinetic phenomena 
under conditions that would be difficult to replicate in a laboratory setting. 

 

1.2.1 Iterative Boltzmann Inversion 

Iterative Boltzmann inversion (IBI) is a popular methodology for structural coarse graining and 
reducing the degrees of freedom in biomolecules and polymers, especially in fluid phases.58 The 
IBI algorithm creates coarse grain models in an attempt to recreate structural features of the all-
atom molecular dynamics model as opposed to explicitly capturing all of the equilibrium 
thermodynamic properties of the system. Whereas force matching is often employed to coarse 
grain one interaction potential at a time (often by restraining certain degrees of freedom), IBI has 
been shown to effectively reproduce radial distribution functions of several interactions 
simultaneously. Moreover, because bonded interactions in a solid system are modelled with 
harmonic oscillators between only two particles, the coarse grain potential converges extremely 
quickly when fitting the inverted potential with a parabola near the equilibrium bond length. In 
practice, we found that the CG bond length and angle pairwise potentials for intrasheet interactions 
are very well approximated in our solid system after using only the initial inverted all-atom radial 
distribution function, implying that these modes are nearly independent of their linked neighboring 
interactions. However, modifying the force constants of these bending and stretching modes 
simultaneously with tabulated pairwise potentials between distant atoms using IBI was found to 
be necessary to achieve high fidelity in the radial distribution functions both in our study and in 
others.59 

Although IBI does not rigorously reproduce the average statistical properties of the all-atom model 
like the force matching methodology, CG models produced by IBI do more faithfully model the 
local energy landscape and structural properties of a material. IBI coarse graining has been shown 
to reproduce physical properties such as the density of polymer systems,58 which strongly suggests 
that it is an appropriate technique for reproducing measurable structural properties such as average 
clay interlayer spacing and kinetic transition barriers in our system. IBI has also been used to 
generate CG models to study phase transitions in phospholipid bilayers.60,61 This model in 
particular is capable of self-assembly into a lipid bilayer from a random configuration at 
biologically relevant temperatures. Although the model was developed in the amorphous phase 
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using a coarse graining method which is not guaranteed to reproduce thermodynamic properties,60 
the model is capable of reproducing temperature-induced phase transformation to a semi-solid gel 
phase at similar temperatures and pressures to all-atom simulations (after accounting for the finite 
size effect).61 Importantly, the phase transition temperatures correspond closely to experimental 
values of similar systems. These results indicate that the iterative Boltzmann inversion algorithm 
is capable of producing a model that is kinetically relevant outside of its initial window of 
convergence. 

Extensions have been proposed to IBI to extend the applicability of the coarse grained model to a 
range of states or physical environments including solid or crystalline structures.59,62 These studies 
relied on a damping factor in the iterative equation for updating the coarse grain potential using 
the IBI algorithm, and also noted that it therefore required more iterations to converge to the all 
atom radial distribution function as compared to a non-solid phase. However, in this study we 
found it sufficient to smooth the CG potential after every update step using a moving average 
window. In addition, ion positions in our model were randomly permuted and perturbed within the 
binding sites in initial configurations, further preventing the CG model from adopting unphysical 
crystalline configurations or simply oscillating between distributions. Both of these techniques 
allowed us to use the standard IBI algorithm without damping, drastically reducing the total 
number of simulations needed to achieve convergence. These modifications to the standard IBI 
coarse graining methodology allowed us to extend the success of the algorithm in the fluid and 
crystalline phases to a bulk rigid system without fluid properties and thermodynamically far away 
from a phase transition. 

In solid or crystalline systems, force constants for bonds and angle distributions have been found 
to be significantly larger in the coarse grained model compared to the corresponding values in all 
atom simulations.59 Therefore it is expected that the coarse grain representation in the solid phase 
derived from iterative Boltzmann inversion may have higher energy barriers to particle transition 
(for nonbonded particles) despite an overall reduction in the number of bending and stretching 
modes. To create a CG model of lipid molecules in the crystalline phase, bond and angle force 
constants between coarse grain centers were first found using IBI in the amorphous fluid phase 
and subsequently used to derive tabulated pairwise potentials between distant CG centers. It was 
found that the force constants derived from the fluid phase were insufficient to retain the crystalline 
structure of the solid phase, indicating that isolating individual interactions for coarse graining 
may not be successful in solid phase systems.59 

Damped IBI has also been used to study other crystalline biomolecules such as cellulose fibrils.63 
In Srinivas et al., entire glucose monomers are mapped to a single coarse grain center to form 
sheets of bonded CG fibrils. Because of the homogenous nature of the sheets, they were able to 
establish very close agreement between the all atom and coarse grain radial distribution functions. 
This study represents an improvement on previous CG simulations of cellulose fibrils, which suffer 
from stability issues. By using an iterative approach to faithfully reproduce the structure of the 
crystalline sheets, stability problems and phase transitions can be prevented by capturing 
discontinuities in the RDF. These discontinuities tend to correspond to large barriers in the 
potential energy surface of a tabulated potential, preventing the dissociation of the structure on the 
timescale of simulation without explicit constraints or the addition of extra nonphysical 
interactions. 
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1.2.2 Force Matching 

Force matching is another coarse graining technique which is widely applied to a variety of 
physical systems.64 In the force matching technique, pairwise or density-based potential 
parameters are fitted to a database of forces derived from ab initio or all-atom simulations. 
Formally, force matching is a least squares minimization of an objective function which is a 
difference of ab initio forces and predicted forces from the potential function. See Izvekov et al. 
for more details.65 Force matching has been extended to develop a method of coarse graining.65,66 
This method uses force matching to define a potential of mean force between CG centers based on 
simulation results from a corresponding all atom model. Coarse graining using the force matching 
methodology is also referred to in the literature as the multiscale coarse-graining (MS-CG) 
method. 

For large simulations, MS-CG and iterative MS-CG methodologies can be considered “consistent” 
in that the equilibrium distribution of the coarse grain configuration space is equal to that of an all 
atom model.67 The authors derive the sufficient condition that a coarse grain simulation that maps 
sets of atoms to CG centers is thermodynamically consistent if the force on the CG centers is equal 
to the configuration-averaged atomistic force. For this reason, force matching is frequently used 
in coarse graining applications where statistical and thermodynamical properties must be 
reproduced at the expense of precise structural detail and kinetic insights. 

Force matching is typically used to model solvated individual biomolecules and other systems in 
a non-rigid phase, but has been used in some applications to study phase transitions between solid 
and fluid phases.68 Multi-scale coarse-graining in solid metals in this fashion can essentially be 
thought of as a 1:1 mapping of an ab initio simulation to a molecular dynamics simulation. Because 
force matching reproduces the thermodynamic properties of a fine system in the limit of an 
unconstrained CG potential, it is well suited to studying systems where phase transitions are to be 
investigated. However, like all CG systems trained on all atom or other fine systems at a single 
reference state, there can be problems with transferability and generalization to other states. Unlike 
CG systems developed using iterative Boltzmann inversion, systems created using force matching 
are more likely to locally smooth the energy landscape and therefore underestimate the size of 
kinetic barriers, especially in cases where a large number of atomic centers are mapped to a single 
CG bead. 

 

1.2.3 Relative Entropy Minimization 

The relative entropy of two systems, also known in certain fields as the Kullback–Leibler 
divergence,69 has been applied as a measure of how faithfully the coarse grained model reproduces 
the features of an atomistic model.70 The relative entropy is an information-theoretic measure of 
the loss induced by mapping one model to another and is essentially a metric for the fidelity of a 
CG model at equilibrium. Like other bottom-up coarse graining approaches, this methodology 
requires the construction of an explicit map of a fine model to CG centers. By minimizing the 
relative entropy, the CG model reproduces the same distribution of microstates as the fine model 
it approximates despite incurring an unavoidable increase in relative entropy due to the mapping 
operation itself.57 It should be noted that this property is not strictly realizable if specific 
parametrized functional forms are imposed on all the pairwise interaction potentials between CG 
centers. Instead, tabulated potentials are often used for long-range interactions. However, using 
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parametrized potentials provides a natural way to minimize the relative entropy in coarse grain 
systems by gradient descent of the parametric variables. If the CG potential does not have a 
functional form imposed on it, then it can be shown that the techniques of force matching and 
relative entropy minimization result in the same potential energy landscape in the limit of an 
infinite system. When the potential is constrained to be pairwise additive or otherwise restricted to 
subsets of the CG centers, the two approaches are not formally guaranteed to return the same 
results or strictly reproduce the equilibrium thermodynamic properties of the all-atom system, but 
oftentimes they produce similar models when using pairwise tabulated potentials.57 

Relative entropy minimization coarse graining has been employed in a wide variety of liquid and 
fluid systems, and to a lesser degree in bulk semi-rigid system modelling. In one study, Carmichael 
and Shell use relative entropy coarse graining to parameterize a model of polyalanine and 
subsequently simulate several dozen of these molecules to investigate peptide self-assembly under 
physiologically relevant conditions.71 They parametrized the model on an all atom system with 
helical secondary structures and observed that under crowded conditions that polyalanine 
molecules quickly formed into β-sheet-like structures, indicating that their model successfully 
replicated the potential energy landscape of the hydrogen bonding network. This work has been 
extended to study the structure of arbitrary globular proteins, which like clays feature strong non-
bonded interactions between neighboring sheet-like structures.72 Using a four-site coarse grained 
model of leucine and valine, the authors were able to predict the structure of globular proteins 
containing on the order of 250 residues to within 2.5 angstroms. These results indicate that despite 
not being an explicitly structure-based approach, and despite developing a pairwise, parametrized 
CG model, relative entropy coarse graining is capable of reproducing precise structural details. 
The converse has been observed for structural coarse graining as well; even though iterative 
Boltzmann inversion on pairwise potentials in finite systems often drastically changes the energy 
landscape in an attempt to preserve kinetic details, structural CG models are often capable of 
producing meaningful thermodynamic insights outside of their initial training conditions. 
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1.3 Statement of Innovation 

Machine learning methods and coarse-grained models are broadly applicable to data-driven 
disciplines where an underlying mechanistic model is either not known or is too complex to be 
extrapolated from the microscopic level. Optimization of fertilizer application is important in 
preventing excess runoff and can potentially result in less destructive mining practices. Modelling 
crops such as soybeans as a function of soil minerals and other environmental variables allows 
data-driven identification of interactions and soil regimes that are beneficial for crop production. 
To better understand soil uptake of radioactive cesium, it is necessary to model the displacement 
of potassium ions in bulk clay systems. All-atom models are generally too small or 
computationally expensive to properly model bulk behavior, so coarse-grained models that 
reproduce their statistical or mechanical properties are useful for simulating bulk systems. By 
better understanding the microscopic incorporation of cesium into bulk clay, the environmental 
impact of radioactive materials can be more precisely modelled. Moreover, remediation strategies 
can be more precisely engineered to account for the exact behavior of cesium in clay soils. 

Strong second-order interaction between soil potassium and phosphorus was identified by the 
SMiRF procedure. The effect of increased organic matter is dependent on soil pH and does not 
have a uniform effect on crop production in all soil regimes. Although soil pH is very important 
independent of other soil variables, significant economic optimization of farming practices is 
possible by addressing only the application rate of phosphorus and potassium fertilizers. The 
coarse-grained model of clay reproduced results of interlayer spacing in systems with mixtures of 
cesium and potassium ions. The coarse-grained modelling results indicate that the size of the 
energetic barrier to ion diffusion for each type of ion is purely a function of the local interlayer 
spacing, and therefore the rate of exchange in systems with a mixture of cesium and potassium can 
be effectively determined with a detailed mechanical model of the ion binding site. 

We have developed a general surrogate model for random forest machine learning methods that 
retains the global importance of feature space variables without sacrificing context-dependent 
interactions or effects. Our surrogate model is a linear combination of HAL surfaces, which are 
themselves minimum loss estimators of the effect of the interactions separately. By using a 
combination of machine learning methods to identify and model interactions, we are able to retain 
the effects of independent interactions and quantitatively rank their importance in the overall 
model. Taking a linear combination of interaction surfaces results in a robust, potentially 
lightweight model that is far more human-interpretable than a black-box random forest. The 
reduced order surrogate models are capable of fast optimization by fitting smoothed gradient 
surfaces whose cost is not greater than evaluating the model itself. The ROSM represents an 
improvement over random intersection trees for general modelling in that the model linear 
coefficients more precisely represent a ranking of feature interaction importance because the linear 
combination of HAL surfaces is fitted to the original output values of the random forest. We have 
shown that the ROSM response values are tightly correlated with the original random forest, 
indicating that the surrogate model retains the random forest quantitative behavior while 
recapitulating the model in the context of higher order interactions that are not directly accounted 
for by the random forest. Thus, the reduced order surrogate model is able to provide a more 
accurate quantitative evaluation of the response of feature interactions than by simply considering 
either the response surface from a random forest model or the feature interaction importance alone. 
Although the model was applied in this work to a somewhat low-dimensional example, the SMiRF 
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procedure is well suited to high dimensional problems such as quantifying the higher-order 
response of interactions within a genome. 

We developed a coarse-grained model that allows for bulk modelling of dozens of layers while 
retaining a detailed mechanical model of the ion binding sites. In addition, we identified a linear 
relationship between the interlayer spacing and the energetic penalty to ion diffusion without 
directly training the coarse-grained model on heterogeneous systems. In this work we used 
iterative Boltzmann inversion in a purely bulk solid system which has been previously 
underreported in the literature. IBI was used in the solid phase without the use of a damping factor 
by randomizing the position of ions and smoothing the tabulated potentials to prevent unphysical 
conformations. Typically damping factors are needed for convergence when using iterative 
Boltzmann inversion in semirigid phases due to local minima in the energy landscape in non-
physical conformations, but by randomizing the position of ions and slightly perturbing them 
within the active sites between each iteration we effectively increased the sampling of the phase 
space. This method should be broadly applicable to other bulk rigid systems with high symmetry 
or repeated interaction sites. Although IBI is based on approximations of systems in the gas phase, 
we have shown that it is possible to effectively reduce the number of iterations by eliminating the 
damping factor, thus allowing us to run the algorithm on larger systems for the same computational 
cost. We have demonstrated that the mechanical properties of the active site are retained in mixed 
ion configurations after converging the coarse-grained model in purely homogenous systems, 
indicating that using IBI coarse graining is a robust method for generating general mechanical 
models for bulk systems in the solid phase.  



15 
  

2 A Surrogate Modeling Strategy to Learn Ecosystem Control 
Points in Agriculture 

Schaettle K, Falco N, Ulrich C, Dafflon B, Brodie E, McEntire J, Wainwright H, Brown JB  

 

ABSTRACT 

 

Ecosystem control points are localized processes that contribute substantially to 
particular ecosystem functions – e.g., biomass productivity, carbon cycling, water 
quality. Learning control points directly from data is a central pursuit in molecular 
ecosystems biology. Agricultural lands constitute exceptional “reduced order” 
model ecosystems – consisting of only a single plant species and its microbiome – 
and hence useful testbeds for new data science tools. Here, we take advantage of 
an extensive dataset compiled at the AR1K.org field site in Humphrey, Arkansas 
in 2017 for monoculture irrigated soybeans (Glycine max L. Merr.). We developed 
a three-stage machine learning algorithm for the discovery of control points for 
target ecosystem services – and here we focus on agricultural yield. In the first 
stage, an iterative Random Forest (iRF) is used to extract important interactions and 
processes that are predictive of soybean yield. In the second stage, we use Highly 
Adaptive Lasso (HAL) to model interactions using functions that are differentiable 
almost everywhere. Finally, we fit a Reduced Order Surrogate Model (ROSM) by 
performing forward-backward regression under an L2 loss where each term in the 
model is itself a HAL response surface. The resulting hybrid learning machine 
achieves comparable performance to the iRF from which it is derived and captures 
explicit relationships suitable for human exploration. We call our technique 
Surrogate Models through iRF (SMiRF), and here we describe its utility in 
obtaining a predictive understanding of agricultural yield in terms of ecosystem 
control points at the AR1K.org field lab. In future work, we will pursue the use of 
SMiRFs to construct mechanistic process models from data, and we describe some 
of these directions. 

2.1 Introduction 

The importance of ecosystem services – yield, water quality maintenance, soil health – are the 
principal drivers of value and sustainability in agriculture. The study of monoculture crop systems 
provides a unique opportunity for foundational ecosystems science: to discover ecosystem control 
points73 in a highly simplified setting – a single strain of a single plant species in relation to its 
microbiome replicated thousands of times across soil contexts in each hectare. Toward this end, in 
2017, we established the Arkansas 400-hectare field laboratory (AR1K), a highly instrumented 
site near Stuttgart in the river delta region. Here, we use over 300 layers of data to discover the 
emergent parameters that constitute the primary drivers – the control points – of soybean yield at 
AR1K. 

Further, by the year 2050, the world’s population is projected to hit 9.8 billion people.74,75 If current 
trends in global economic development and urbanization hold, agricultural production will have 



16 
  

to increase by up to 70% to meet demand.76 To minimize the amount of land used for agriculture, 
crop yields must continue to grow at a steady pace over the next several decades. Sustainable 
agricultural practices such as crop rotation and general soil management will be necessary to reach 
production thresholds.77 Although chemical fertilizers have been successful at increasing the yield 
of soybean and corn (Zea mays), there is a growing necessity to reduce fertilizer application to 
prevent degradation of soil health48,49 and to prevent the down-stream ecological impacts of 
nutrient loading in surface waters.78,79 Indeed, the chronic overuse of fertilizers can result in soil 
acidification and depletion of micronutrients vital to plant growth over time.80 

Prior to the advent of precision agriculture methods and GPS-based advancements in fertilizer 
application and tractor guidance, fertilizers were either applied uniformly on individual fields or 
on a very coarse grid. By using GPS guided machinery and prescribing semi-localized fertilizer 
treatments, it has been estimated that crop yields can be improved between 15-30% dependent on 
local soil heterogeneity.81 Soil tillage has been widely practiced in industrial and large-scale 
farming for decades to increase water penetration and nutrient uptake.80 However, this practice has 
been associated with the long-term loss of soil organic matter and an overall increase in the rate of 
soil erosion, reducing organic matter content by approximately 50% compared to naturally 
occurring levels in commodity crop systems in North America.82 The widespread adoption of 
sustainable and higher-precision farming practices is needed for the long-term viability of our 
croplands.83  

Precision agriculture methods have been in widespread use for roughly 30 years.84 Advances in 
and more widespread adoption of global positioning system (GPS) and remote sensing 
technologies in particular have enabled precise, localized application of fertilizer and soil 
treatments on the sub-hectare scale.81 This increase in precision is motivated by highly 
heterogeneous soil characteristics including water availability, soil electrical conductivity, and 
other soil properties that can vary drastically on the order of tens of meters.85 Measurements of 
soil electrical conductivity have been widely used in precision agriculture because they are closely 
tied to soil texture.86,87 Precision agriculture technologies include remote sensing, equipment 
guidance systems, and variable rate technology (VRT) for the application of fertilizer and 
amendments.88 Technological adoption rates are growing steadily, with over 40% of large-scale 
farms using VRT applications for farming corn as of 2010, while virtually all farms in the United 
States use some sort of GPS-based soil, yield, or weather mapping. These practices have already 
paid dividends for both farmers and the environment: studies have shown both a reduction in soil 
nitrogen leaching and overall improvement in crop yield by using a variable application rate of 
fertilizer compared to a uniform rate.89,90  

Our approach to VRT, and, more generally, crop modeling, involves the fusion of high-precision 
datasets with localized crop yield measurements and fertilizer treatment information in a statistical 
machine learning framework. In this analysis, we use our iterative Random Forest (iRF)91 to 
predict crop yield at high spatial resolution (1/10 hectare), using a diverse set of measurements at 
spatial resolutions that span five orders of magnitude. We use the iRF package implemented in the 
R92 statistical programming language. In contrast to neural networks and many other machine 
learning techniques, random forests and iterative Random Forest provide a natural framework for 
isolating variable importances. The iRF algorithm uses random intersection trees (RIT)93 to extract 
stable, multi-feature interactions of arbitrary order in a computationally efficient way. This 
methodology enables feature space decomposition into highly interpretable sub-components. 
Importantly, random forests and algorithmic extensions of random forest provide a natural 
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framework for feature space dimensionality reduction,94 which is critical for incorporating 
extremely high-dimensional –omics data sources. Our iRF approach enables feature space 
decomposition into agronomically interpretable, low-dimensional components – for each (1/10 ha) 
of the field, we aim to learn the set of covariates that drive or limit yield. While iRF is, in principle, 
capable of learning interactions of any form or order, we find that interactions with at most 4 
factors constitute principal drivers.  

We package our approach in a pipeline for the automated discovery of surrogate models of 
agricultural systems – surrogate models from iRF, or SMiRFs. The literature on surrogate models 
in agriculture is largely focused on the derivation of polynomial or generalized linear models.95,96 
A disadvantage of these approaches is that they generate, by design, smooth response surfaces 
relating predictors and their interactions to the dependent variable. Hence, sharp, ridge-like or 
multi-peaked responses are difficult to learn in this fashion. In addition, high dimensional data 
necessarily requires dimensionality reduction before attempting to fit second- or higher-order 
model coefficients to avoid exponential computational scaling with the number of predictors. 
Using iRF to generate important response surfaces at the same computational cost as the discovery 
of main effects provides a tractable method of solving both of these problems simultaneously.91 
Further, in this study, our SMiRFs are nearly lossless in terms of predictive accuracy in comparison 
to the iRF models they approximate.  

We identify soil organic matter content as a key driver of soybean productivity and find 
unanticipated interactions between macro- and micro-nutrients that are rarely taken into account 
in fertilizer prescriptions. Trials of selectively reduced fertilizer application rates at high spatial 
resolution enabled the reduction of phosphate and potash application while simultaneously 
increasing soybean yield. Hence, the discovery of control points and the use of models to guide 
agricultural decisions benefit both growers and the environments for which they are stewards. 
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2.2 Results and Methods 

Table 2.1. List of sparse and dense datatypes collected at our field site for analysis. 

Measurement Location Collection Method Density Resolution 

UAV wavelengths (NIR, 
RedEdge, Red, Green, Blue) Surface UAV97 Dense 

4cm x 4cm 

Yield (response) Surface 
Combine 
harvester Dense 

10m x 3m 

Slope Surface Veris rig Dense 1m x 1m 

Soil electrical conductivity Subsurface Veris rig Dense 1m x 1m 

Boron Subsurface Soil sample Sparse ~20 samples 

Cation exchange capacity Subsurface Soil sample Sparse ~20 samples 

Copper Subsurface Soil sample Sparse ~20 samples 

Magnesium Subsurface Soil sample Sparse ~20 samples 

Manganese Subsurface Soil sample Sparse ~20 samples 

Organic matter content Subsurface Soil sample Sparse ~20 samples 

pH Subsurface Soil sample Sparse ~20 samples 

Phosphorus Subsurface Soil sample Sparse ~20 samples 

Potassium Subsurface Soil sample Sparse ~20 samples 

Sulfur Subsurface Soil sample Sparse ~20 samples 

Zinc Subsurface Soil sample Sparse ~20 samples 

 

2.2.1 Field Site Description 

Soybeans were harvested from two fields (North and South fields) comprising approximately 20 
hectares located in Humphrey, Arkansas (34° 24.458′ N, 91° 40.462′ W).85 Fertilizer amendments 
triple superphosphate, muriate of potash, and lime were applied using an amendment map 
according to optimal prescription for soybeans. Two experimental biological amendments, AgPro 
and Nano, were applied in contiguous regions of the South field, but were not shown to influence 
soybean yield. Additional details of the site were previously reported in Falco et al.85 

 

2.2.2 Data Pre-Processing and Co-Registration 

Data was collected from two soybean fields on a farm in Humphrey, Arkansas.85 Data points near 
field boundaries were removed to prevent the incorporation of data artifacts due to poor collection 
near the field edges. Furthermore, a small region in the South field that had undergone recent 
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precision land leveling was excluded due to poor plant growth and yield that often results from 
exposing subsurface soil horizons.  

Some data types exhibit incompatible spatial resolutions; yield is collected with a combine 
harvester with a 10m wide header – hence, yield data points form pixels that are approximately 
10m by 3m. Soil electrical conductivity was recorded using a Veris rig, which is smaller and has 
1m2 resolution. Since yield is our response variable, we mapped all data points for each other 
datatype to the nearest yield voxel. We refer to this as the “yield grid”. We then averaged multiple 
entries of each data-type when more than one entry mapped to a single 10x3m pixel – e.g., for 
Veris data, each pixel on the yield-grid is the average of approximately 21 measurements.  

 

 

Figure 2.1. Field-scale data imputation. a) Individual measurements of yield data point collection. 
b) Data imputed to a 1 m by 1 m grid using bilinear interpolation. c) Collected conductivity data 
points. d) Data imputed to a 1 m by 1 m grid. Amendment was not found to have significant 
importance. 
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After co-registration, data were bilinearly interpolated across the fields with a 1 m by 1 m grid, 
yielding a total of roughly ~28,000 individual data points at the AR1K field site. Subsequently, all 
features other than slope were smoothed using a gaussian kernel98 at a radius of 10 m, and the seed 
yield was smoothed with the same kernel at a radius of 20 m due to the large size of the yield 
collection grid. After smoothing the densely collected data, we processed sparse data features, 
including 11 soil features measured at ~20 locations in the two fields. The features included eight 
ion concentrations, soil pH, organic matter content, and cation exchange capacity. These sparse 
measurements include concentrations of macro and micronutrients (organic matter, P, K, and 
others), and hence are of particular value for modeling yield. However, their sparsity makes 
machine learning approaches intractable due to small sample sizes. To overcome this challenge, 
we imputed sparse features at field scale, at 1m resolution, using a random forest99 regression 
model. Specifically, for each soil feature, field-scale features were sampled from a 50-m radius 
around each soil sample. Twenty points were selected randomly from around each soil sample, 
and a random forest regression was run to associate the two datasets using 500 trees. Subsequently, 
the entire dataset of field-scale observations was run through the random forest99 regression model 
to generate field-scale predictions of the soil variables. This procedure was repeated 100 times and 
the predicted soil features were averaged together. The resulting model explained between 44% 
and 96% of variance for each soil feature (Supplementary Table 2.1). These procedures resulted 
in the generation of a dense map of 11 features at ~28k individual pixels across our field site. We 
used this dense feature map to develop an interpretable and explorable model of seed yield.  

 

2.2.3 The Yield Model 

We used an iterative Random Forest to model yield as a function of 13 subsurface variables (Table 
2.1). We developed several models, some including multispectral images composed by red, blue, 
green and near-infrared  spectral bands acquired by a UAV platform,97 and some excluding these 
less interpretable spectral features. Here we focus on the model that includes only “controllable” 
parameters. See Supplementary Table 2.2 for results from the full model.  

We used iRF with cross validation to assess model fidelity. Ensuring that training and testing sets 
are independent is a challenge with geospatial data due to spatial autocorrelation. We assessed 
spatial autocorrelation in our data by computing the variogram and observed a sharp drop-off near 
20m. Hence, in each cross-validation fold, we excluded a 20m strip on either side of our test set, 
which was itself a 40m North-South strip in each CV fold. Test errors were on the order of 3% to 
20% for different geospatially isolated test regions, with a median absolute error in seed yield of 
75 kg/ha. This predictive accuracy is far greater than we would expect by chance (275 kg/ha) at a 
p-value of  < 10-1572, or with a linear model.  

 

2.2.4 An Interpretable Yield Model  

The iRF algorithm identifies nonlinear interactions between features and ranks these along with 
statistical main effects on the same scale using the weighted prevalence metric.100 We develop a 
strategy for composing generalized additive models (GAMs) using individual interactions as 
individual terms. This procedure is similar in character to “locally interpretable model 
explanations” (LIME46) – however, our aim is to obtain a global predictor that is both locally and 
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globally sparse. When interactions are composed of non-overlapping features, there is some 
theoretical justification for this framework.101 However, there are many hyperparameters in this 
analysis that have yet to be optimized, which would benefit from future studies and larger datasets. 
Hence, the following models and analyses should be taken as proof of principle that simple 
surrogates can be developed to mimic the behavior and predictive power of a Random Forest in 
the setting of agricultural data. The full formulation of the reduced order surrogate model for a 
feature vector v⃗ can be expressed as: 

 

f(v⃗) = β + ∑ β σ (v⃗)    (1) 

 

where σ (v⃗) is the evaluation of the i-th interaction and the β are global coefficients derived from 
ordinary least squares (OLS) regression. The iRF model provides interactions, but not the σ (v⃗) 
values. To obtain these, we used the Highly Adaptive Lasso102,103 to model yield as a function of 
the features in each interaction. While partial dependence plots could be used to more faithfully 
extract response surfaces from the Random Forest, these are optimized for fidelity, rather than 
predictive power. Some examples of fitted response surfaces are given in Figure 2.3. As expected, 
fitted response surfaces exhibit nonlinear behavior and complex dependencies between modeled 
features. In Figure 2.3a, the interaction between P and K is particularly interesting. We see that 
seed yield decreases with soil-test P over 30 mg kg-1 (ppm), consistent with reports in a number of 
agricultural systems,104 and that optimal benefit from P requires sufficient K. While these findings 
have been previously reported elsewhere, we note that here they are recovered entirely from data-
driven machine learning.  

We fitted the reduced-order surrogate model in eq. 1 using OLS and forward-backward 
regression105 (see Supplementary Table 2.3 for an exploration of different fitting strategies). 
Comparison of predicted values between the iRF model and the ROSM shown in Figure 2.2 reveal 
significant correlation between the two predictors (R2 ~ 0.78), and overall predictive accuracies 
within 5% (77 kg/ha mean absolute error ROSM compared to 73 kg/ha iRF). We refer to the 
resulting ROSM as a “Surrogate Model through iRF”, or “SMiRF”.   
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Figure 2.2. Comparison of random forest and reduced order surrogate model to predict soybean 
yield. a) Plot of ROSM yield residuals vs. random forest yield residuals. The two distinct clusters 
are due to a difference in mean yield between the North and South field. b) and c): Model residuals 
plotted over a held-out test strip. 20 meters of data was excluded from the training set on either 
side of the test strip. 
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Figure 2.3. Example response surfaces from the iterative random forest. a) Sharply peaked and-
like surface. b) Broad or-like surface. c) Complex multi-peaked surface.  
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2.2.5 The SMiRF Model as a Composition of Ecosystem Control Points 

We view individual terms in the SMiRF model as detailing quantitative relationships between soil 
parameters and target ecosystem services – in this case soybean yield. Interrogation of individual 
response surfaces provides human insight into primary service drivers at each pixel on the field. 
One way of looking at the specific drivers of yield on a local, pixel-by-pixel basis is provided by 
local feature importance, or saliency maps (Supplementary Figure 2.4). These measures have the 
advantage that they can be computed on the parent iRF model, and do not require the surrogate. 
Another way to study the drivers of yield at a given pixel is to use the SMiRF model for decision 
support. In this setting, we posit that the SMiRF model is capturing causal information relating 
soybean yield to soil properties. Of course, establishing causality requires validation experiments; 
here we are interested in using the decision support framework as a tool for model exploration. 
Specifically, we optimize soil chemistry at each pixel, given the mapping between soil chemistry 
and soybean yield provided by the SMiRF. We can then study these optimal “policies” to ascertain 
the primary drivers of yield at each pixel in the field. These primary drivers correspond to 
ecosystem control points for soybean yield.   

The following procedure is similar to feature importance measures that rely on the gradient, or 
smoothed versions thereof. The SMiRF model is of course amenable to gradient ascent 
optimization. To provide a realistic application of this procedure, we attempt to maximize Return 
on Investment (ROI) instead of raw yield data, which can (and does) lead to unrealistic or non-
actionable policies. To optimize the ROI as a function of fertilizer amendment prescriptions, we 
begin with the formulation: 

 

ROI =   
profit

investment
=  

crop price ∗ (yield increase) − investment

investment
 

 

For a given initial feature vector v⃗ ∈ V, yield model function f defined in equation 1, and linear 
price function given by p: V → ℝ = α⃗ ⋅  v⃗   where α⃗ is the per-unit price vector, maximizing the 
ROI is equivalent to finding: 

max
v⃗ ∈ V

crop price ∗  [f(v⃗ +  v⃗ ) − f(v⃗ )] − p(v⃗)

p(v⃗)
 

= crop price ∗
max

v⃗ ∈ V

 [f(v⃗ +  v⃗ ) − f(v⃗ )] 

p(v⃗)
 − 1 

 

Climbing the ROI function is thus equivalent to climbing the function: 

 

R(v⃗,  v⃗ ) =  
[f(v⃗ +  v⃗ ) − f(v⃗ )]

p(v⃗)
 

which has gradient 

 



25 
  

∇R(v⃗,  v⃗ ) =  
p(v⃗) * ∇f(v⃗ + v⃗ ) − [f(v⃗ +  v⃗ ) − f(v⃗ )]* ∇p(v⃗)

p(v⃗)
 

 

where both gradients are straightforward to compute based on the definitions of f and p.  
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Figure 2.4. Optimal amendment application maps for maximizing ROI.  a) and b) show the mg 
kg-1 (ppm) increase in soil test P and K (respectively) for optimal ROI in the North field using 
the SMiRF. c) and d) show the same for the South field. 

 
Triple superphosphate (TSP) and and muriate of potash (respectively) application on the North 
and South fields were simultaneously optimized to maximize ROI using a ROSM developed from 
2017 yield data. Using gradient ascent to climb the ROI function, the iRF ROSM was used to 
construct maps of additional TSP and potash to be applied or removed from the field. The predicted 
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increase in yield was from 4750 kg/ha to 4850 kg/ha using the optimized soil nutrient profile. The 
reduced order surrogate model offers the advantage of having an easily computable gradient 
everywhere in the feature space, making it a useful recapitulation of the original random forest. 
Although sharp boundaries in and- and or-like surfaces result in large gradients, the total 
differential fertilizer application in each step of the gradient ascent can be held to a maximum 
value to prevent numerical instability. Sharp boundaries in the ROI optimization are clearly 
preserved with only nominal memory overhead to store the response surfaces. This effect is due 
to the representation of sharper boundaries in the response in the SMiRF, thus allowing for 
convergence to closer local optima. In addition, the SMiRF-suggested application is relatively 
conservative for the increase in yield, in part due to relatively flat regions on the response surfaces 
corresponding to no additional optimization.   

TSP and potash are predicted by our model to need to be applied or allowed to decrease due to 
runoff in relatively compact spatial regions in the North field; our ROSM is capable of using 
higher-order interactions to preserve simultaneous variable effects into both application and 
prediction. In order to both maximize ROI and limit potential runoff, it is important to accurately 
moderate fertilizer applications and avoid over-application. Further, our models indicate that over 
application of P, when soil-test P is above the optimal value of around 27 ppm, reduces soybean 
yields. Most of the south field requires no additional fertilizer K to maximize ROI. The regions 
where both nutrients appear over-applied in the North field correspond to very high soil-test 
concentrations of both P and K.  
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2.3 Discussion 

Strong interactions between features have been identified using a spatially resolved dataset, 
specifically those related to soil electrical conductivity, pH, and macro nutrients. Although soil 
electrical conductivity is difficult to change without significant tillage or extreme application of 
fertilizer, this result strongly indicates the need for context-dependent amendment 
application.106,107 Some of the response surfaces indicate significant and-like or or-like higher 
order interactions, neither of which can be neatly decomposed into single feature rules for fertilizer 
application or projected to polynomial-like responses. While typical farming practices seek to 
improve yields by adjusting several soil features including nutrient availability simultaneously, 
this approach is in stark contrast to true higher-order feature optimization.  

Although machine learning is commonly applied to many problems related to food production, 
decisions related to fertilizer application and planting still rely on low-precision methods. 
Currently, fertilizers and amendments are generally applied to fields on the basis of sparse or non-
representative soil sample analysis in an unsustainable fashion. However, recently there has been 
a growth in interest towards improving crop yields by applying predictive analytics in addition to 
using genetically modified crops. Agricultural machinery companies such as John Deere have 
projected a doubling of their revenue within a decade largely due to increasing demand for high 
precision equipment.108  

The growing requirement for sustainable farming practices provides yet another economic driver 
for high-dimensional data analysis and prescription. Targeted farming techniques such as precise 
pesticide application have been shown to significantly reduce pesticide runoff,109 but there is still 
room for optimization in the methodology of fertilizer application. Sustainability goals for 
fertilizer usage can only be met simultaneously with ever-increasing yield requirements by highly 
localized application. By identifying specific regions and multidimensional soil feature regimes 
most susceptible to fine tuning, the fertilizer requirements for a given field can be minimized by 
adjusting several features simultaneously. Ultimately, this means that the nonlinear effects of soil 
organic matter and nutrient concentrations can be maximally exploited without the need for costly 
grid soil sampling. The random forest regression model presented in this analysis provides a 
natural framework for partitioning the soil feature space on the basis of their suitability for 
improvement and is therefore ideal for economically optimizing inputs under sustainability and 
other constraints. 

Reduced order surrogate models provide interpretable frameworks for exploring and 
understanding ecosystems and the control points that drive their productivity. Using response 
surfaces as the basis for the model allows for low-dimensional views of the data that show 
weighted interactions. In particular, extracted and- and or-like rules from the response surfaces 
demonstrate the importance of considering amendments simultaneously. The ROSM procedure 
provides a path to building a mechanistic understanding. Our models predict specific optima in 
nutrient profiles – future work is needed to test these models prospectively as decision support 
utilities. Toward this end, developing geospatial bootstrap and model perturbation strategies to 
develop confidence regions around learned response surfaces, and prediction intervals around 
SMiRFs presents an exciting frontier.   
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2.4 Supplement 

 
Supplementary Table 2.1. Variance explained for each feature using a random forest model. 

Feature 
Proportion variance 
explained 

Phosphorus 0.44 
Potassium 0.54 
pH 0.96 
Zinc 0.53 
Sulfur 0.61 
Boron 0.62 
Magnesium 0.63 
Manganese 0.68 
Copper 0.50 
CEC 0.59 
OrganicMatter 0.67 

 

2.4.1 Results From Model with UAV Multispectral Bands Included as Parameters 

 
Supplementary Figure 2.1. Parity plot of ROSM and random forest model using multispectral 
bands as parameters. The two clusters correspond to the North field (lower left) and South field 
(upper right). 
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Supplementary Table 2.2. Summary for SMiRFs with UAV bands included as features. 

Model Number of surfaces Model mean absolute error 
(kg/ha) 

Linear 36 94 

Ridge 36 94 

Lasso 6 77 

Forward-backward 28 94 
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Supplementary Table 2.3. Summary for SMiRFs without UAV bands included as features. 

Model Number of surfaces Model mean absolute error 
(kg/ha) 

Linear 90 77 

Ridge 90 77 

Lasso 9 86 

Forward-backward 40 77 

 

The table above shows a comparison of four linear iRF ROSMs that recapitulate a random forest 
regression over the North and South fields referenced throughout this study. The mean absolute 
error for the iRF model is 73 kilograms/hectare. The lasso regression ROSM is certainly less 
accurate than the other proposed surrogate models, but reproduces the random forest with a highly 
explainable, low-dimensional model. On the other hand, the forward-backward model has similar 
accuracy to both the linear and ridge regression models while eliminating a substantial fraction of 
the total number of response surfaces. The choice of linear coefficient model can be used as a 
tradeoff between complexity (and therefore computational efficiency) and accuracy. 
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Supplementary Figure 2.2. Response surfaces highlighting the effect of organic matter on 
yield. b) and c) show the Conductivity-Organic Matter-pH response surface, with b) showing 
low pH and c) showing high pH. 
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Our results indicate that soil organic matter content plays an important role in determining the 
soybean yield, as highlighted in Supplementary Figure 2.2, with significant higher-order 
dependence on both the soil pH and slope. Both response surfaces indicate that high soil organic 
matter (in non-clay regions) is associated with higher yield in moderate pH regimes, consistent 
with known agronomic science. Since tillage significantly reduces soil organic matter content, it 
is essential to adopt non- or low-tillage techniques to retain soil organic matter and therefore reduce 
the application of excess fertilizer.  
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2.4.2 NDVI 

The test error for predicting NDVI with the 16 predictors was slightly lower than the test error for 
yield (4% vs. 12% testing error, respectively). In this study the NDVI was used implicitly to 
generate the field-scale soil variable maps, so this result is not surprising. While early-season 
NDVI assessment has been shown to be tightly coupled to yield,110,111 our study used late-season 
NDVI that had essentially no correlation with the measured yield. NDVI measured in late season 
is generally more tightly correlated to total dry biomass, which has a noisy relationship with yield, 
partially explaining the lack of correlation observed in this study. In Supplementary Figure 2.3, 
the two clusters correspond to the North field (lower left cluster) and South field (upper right 
cluster). 

 

Supplementary Figure 2.3. NDVI vs. yield. 
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Supplementary Figure 2.4. Comparison of soil electrical conductivity in 2018 and 2017. 
Conductivity is largely stable over relevant timescales. 
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Supplementary Figure 2.5. Random forest prediction residual versus measured yield. 

 

The yield data used to train the machine learning model was obtained from the 2017 season 
harvest, while high-precision soil electrical conductivity feature data used to predict it was 
gathered in early 2018. Soil electrical conductivity correlates strongly with soil features important 
to plant growth including clay content and soil water content and compared to other soil features 
is relatively easy to measure.112,113 Soil electrical conductivity in the shallow subsurface (less than 
0.5 meters) can vary drastically from year to year due to changes in soil moisture or topsoil ion 
concentrations between seasons as a consequence of runoff. However, deep soil (1.0 meter and 
below) measurements of soil electrical conductivity have been found to be very stable over the 
course of several years, indicating that these measurements provide an important context for plant 
growth potential in different soil regimes. 

Supplementary Figure 2.4 shows a parity plot of deep (1.0 meter) soil electrical conductivity 
measured in 2017 and 2018, each smoothed with a Gaussian kernel at a characteristic distance of 
10 meters. The nearest 90% of values to parity are shown. The data follow a linear trend with an 
intercept at -1.2 mS/m and an R2 value of 0.82. In Supplementary Figure 2.5, the residual value is 
plotted against the measured yield for the iterative random forest regression model. The vast 
majority (nearly 90%) of the smoothed yield measurements are correctly predicted to within 275 
kilograms per hectare. Considered together, these results indicate that the deep soil properties in 
these two fields are relatively stable across seasons, reducing the amount of data that must be 
gathered each year to accurately predict crop yield. Finally, when incorporated into the full random 
forest regression model with other field-scale observables, the conductivity features and higher 
order interactions ranked among the highest in overall importance, indicating that the predictive 
power of soil electrical conductivity is retained across seasons.  
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Supplementary Figure 2.6. Select local feature importances in the North field. a) Organic Matter. 
b) pH. Local importance is highly spatially correlated with regions of high and low spatial 
importance. 

  

Feature local (or case) importance for regression is the average amount that the square of the 
residual value increases when that feature is permuted when it is out-of-bag.99,114 The local 
importance was extracted from the iterative random forest regression model for each feature. 
Supplementary Figure 2.6 (a) and (b) shows examples of the local importance of two of the model 
features, the organic matter content and the pH, in one of the fields we investigated. In our analysis, 
pH was assigned a much higher global feature importance by the RF regression model than organic 
matter content, which is clear by inspection of the local importance map. Regions with large 
positive local importance correspond to a higher predictive power, while regions with large 
negative or nearly zero local importance indicate that that feature has essentially no predictive 
power on the observation and can safely be locally excluded from the model. 

In Supplementary Figure 2.6 (a), there are distinct regions where organic matter has very high or 
very low local importance. Despite having a relatively low average global importance, it is clear 
that the model benefits from the consideration of the feature organic matter in certain locations. 
This is one important advantage that random forest regression has over continuous parametric 
models; because the random forest is constructed by repeatedly partitioning the data, even small 
feature space regimes where a globally unimportant feature is predictive of the observation are not 
lost to smoothing. As opposed to randomized or strip trial designs, the random forest is able to 
learn non-contiguous soil regimes well below the hectare scale that exhibit statistically different 
yield production. Additionally, treating the field as a continuum has the advantage of greatly 
increasing the effective number of observations without introducing significantly more complex 
methods of data collection. 

By identifying regions where features have very little importance, we can potentially simplify the 
model of feature interactions in certain soil regimes and locally reduce the dimensionality of the 
model without sacrificing predictive power. Unsupervised learning techniques could be used to 
identify distinct soil regimes based on local importance, and separate reduced order surrogate 
models could be built from the most important interactions in each regime. This procedure has the 
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potential to enable a more computationally feasible estimation of the globally optimum 
amendment application to most efficiently increase crop yield, which is essential both to maximize 
the return on investment and to sustainably minimize total environmental impact.   
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2.4.3 Yield Response Curves for Observed Variables 
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Our data indicate that the response curve for both phosphorus exhibits a noticeable drop-off at high 
concentration. This result indicates that part of the field had a higher than optimal amount of soil 
nutrient availability (since the support for each follows a roughly bell-shaped distribution centered 
near the median of the observed concentrations). Our overall estimated effect of fertilizer 
application is quite small, in part due to including both the soil concentration variables and 
application rates as observations to the model. It is also important to note that risk associated with 
using fertilizer conservatively is vastly outweighed due to risk associated with weather and market 
volatility. For example, significant confounding irrigation conditions such as flooding caused the 
mean yield to decrease in these two fields from 4750 to 4100 kg/ha in 2018, which is far outside 
of the predicted variability due to changes in soil chemistry alone. 

Approximately 120 response surfaces were generated for each two- and three-feature interaction 
by training a HAL model102,103 on random samples of 5% of the data. Examples of averaged 
surfaces and the pointwise standard deviation are presented in Supplementary Figure 2.7. Less 
important features had extremely tight uncertainty envelopes around the response surface. In 
contrast, some of the most significant interactions had local response uncertainties around 100 
kg/ha.
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Supplementary Figure 2.7. Response surfaces and deviation surfaces. a) and c) are response 
surfaces, with corresponding pointwise deviation surfaces shown in b) and d).  
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Supplementary Figure 2.8. Yield residual distribution for various machine learning models. 

 

 

The random forest model has a much more narrow yield residual distribution compared to the OLS 
model, but is centered further from zero due to soil regimes found in the test data that are not 
present in the training dataset. This is largely an artifact of the relatively large, geospatially 
correlated region chosen as the test set. The FB, OLS, and Ridge ROSM residuals have very similar 
distributions centered much closer to 0, while the Lasso ROSM distribution is more broad and 
exhibits systematic bias. However, the Lasso model uses far fewer surfaces, and can be very useful 
as a low-order parametric approximation of the random forest.  
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Supplementary Table 2.4. Random Forest feature interaction prevalences. 

Interaction  Prevalence               
0.93Conductivity_pH 0.93 

Slope_pH 0.91 
Slope_Conductivity_pH 0.85 
pH_OrganicMatter 0.76 
pH_Manganese 0.74 
Conductivity_pH_OrganicMatter 0.71 
Slope_pH_OrganicMatter 0.70 
Conductivity_pH_Manganese 0.69 
Slope_pH_Manganese 0.67 
Slope_Conductivity_pH_OrganicMatter 0.66 
Slope_Conductivity_pH_Manganese 0.62 
pH_CEC 0.59 
pH_Manganese_OrganicMatter 0.56 
Phosphorus_pH 0.56 
Conductivity_pH_CEC 0.55 
pH_Boron 0.55 
Slope_pH_CEC 0.54 
Conductivity_pH_Manganese_OrganicMatter 0.53 
Conductivity_Phosphorus_pH 0.52 
Conductivity_pH_Boron 0.51 
Slope_pH_Manganese_OrganicMatter 0.51 
Slope_Conductivity_pH_CEC 0.51 
Slope_Phosphorus_pH 0.51 
Slope_pH_Boron 0.50 
pH_Magnesium 0.49 
Slope_Conductivity_pH_Manganese_OrganicMatter 0.48 
Slope_Conductivity_Phosphorus_pH 0.48 
pH_Copper 0.48 
Slope_Conductivity_pH_Boron 0.47 
Conductivity_pH_Magnesium 0.47 
pH_CEC_OrganicMatter 0.46 
Slope_pH_Magnesium 0.46 
Conductivity_pH_Copper 0.45 
Slope_pH_Copper 0.44 
Conductivity_pH_CEC_OrganicMatter 0.43 
Slope_Conductivity_pH_Magnesium 0.43 
Phosphorus_pH_OrganicMatter 0.43 
pH_Manganese_CEC 0.43 
Slope_pH_CEC_OrganicMatter 0.42  
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Slope_Conductivity_pH_Copper 0.42 
Phosphorus_pH_Manganese 0.41 
Conductivity_Phosphorus_pH_OrganicMatter 0.41 
pH_Boron_OrganicMatter 0.41 
pH_Boron_Manganese 0.41 
Slope_Conductivity_pH_CEC_OrganicMatter 0.40 
Conductivity_pH_Manganese_CEC 0.40 
Slope_Phosphorus_pH_OrganicMatter 0.40 
Slope_pH_Manganese_CEC 0.39 
Conductivity_pH_Boron_OrganicMatter 0.39 
Conductivity_Phosphorus_pH_Manganese 0.38 
pH_Magnesium_OrganicMatter 0.38 
Conductivity_pH_Boron_Manganese 0.38 
Slope_Conductivity_Phosphorus_pH_OrganicMatter 0.38 
Slope_Phosphorus_pH_Manganese 0.37 
Slope_pH_Boron_OrganicMatter 0.37 
Slope_Conductivity_pH_Manganese_CEC 0.37 
Slope_pH_Boron_Manganese 0.37 
Conductivity_pH_Magnesium_OrganicMatter 0.37 
pH_Magnesium_Manganese 0.36 
Slope_pH_Magnesium_OrganicMatter 0.36 
Slope_Conductivity_pH_Boron_OrganicMatter 0.35 
Slope_Conductivity_Phosphorus_pH_Manganese 0.35 
pH_Zinc 0.35 
Slope_pH_Copper_OrganicMatter 0.35 
Slope_Conductivity_pH_Boron_Manganese 0.34 
Conductivity_pH_Magnesium_Manganese 0.34 
Slope_Conductivity_pH_Magnesium_OrganicMatter 0.34 
Slope_pH_Magnesium_Manganese 0.33 
pH_Manganese_CEC_OrganicMatter 0.33 
Conductivity_pH_Manganese_Copper 0.33 
pH_Boron_CEC 0.33 
Slope_pH_Manganese_Copper 0.33 
Conductivity_pH_Zinc 0.33 
Slope_Conductivity_pH_Copper_OrganicMatter 0.33 
Slope_pH_Zinc 0.32 
Slope_Conductivity_pH_Magnesium_Manganese 0.32 
Phosphorus_pH_Manganese_OrganicMatter 0.32 
Conductivity_pH_Boron_CEC 0.31 
Conductivity_Phosphorus_pH_CEC 0.31 
Conductivity_pH_Manganese_CEC_OrganicMatter 0.31 
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Phosphorus_pH_Boron 0.31 
Slope_Conductivity_pH_Manganese_Copper 0.31 
Slope_pH_Manganese_CEC_OrganicMatter 0.31 
Slope_Phosphorus_pH_CEC 0.31 
Slope_pH_Boron_CEC 0.31 
Slope_Conductivity_pH_Zinc 0.30 
pH_Boron_Manganese_OrganicMatter 0.30 
Conductivity_Phosphorus_pH_Manganese_OrganicMatter 0.30 
Conductivity_Phosphorus_pH_Boron 0.29 
Slope_Conductivity_Phosphorus_pH_CEC 0.29 
Slope_Conductivity_pH_Manganese_CEC_OrganicMatter 0.29 
Slope_Conductivity_pH_Boron_CEC 0.29 
Slope_Phosphorus_pH_Manganese_OrganicMatter 0.29 
Conductivity_pH_Boron_Manganese_OrganicMatter 0.28 
Slope_Phosphorus_pH_Boron 0.28 
pH_Magnesium_Manganese_OrganicMatter 0.28 
Conductivity_pH_Magnesium_CEC 0.28 
Conductivity_Phosphorus_pH_Magnesium 0.28 
Slope_pH_Copper_CEC 0.27 
Slope_Conductivity_Phosphorus_pH_Manganese_OrganicMatter 0.27 
Slope_pH_Boron_Manganese_OrganicMatter 0.27 
Slope_Conductivity_Phosphorus_pH_Boron 0.27 
Conductivity_pH_Magnesium_Manganese_OrganicMatter 0.27 
pH_Zinc_OrganicMatter 0.27 
Slope_Conductivity_pH_Magnesium_CEC 0.26 
Conductivity_pH_Boron_Magnesium 0.26 
Phosphorus_pH_CEC_OrganicMatter 0.26 
Slope_Conductivity_pH_Copper_CEC 0.26 
Slope_pH_Magnesium_Manganese_OrganicMatter 0.26 
Slope_Conductivity_Phosphorus_pH_Magnesium 0.26 
Conductivity_pH_Manganese_Copper_OrganicMatter 0.26 
Slope_Conductivity_pH_Boron_Manganese_OrganicMatter 0.26 
Slope_pH_Manganese_Copper_OrganicMatter 0.26 
pH_Zinc_Manganese 0.26 
Slope_Phosphorus_pH_Copper 0.25 
Slope_Conductivity_pH_Magnesium_Manganese_OrganicMatter 0.25 
Slope_Conductivity_pH_Boron_Magnesium 0.24 
Slope_pH_Zinc_OrganicMatter 0.24 
Slope_Phosphorus_pH_CEC_OrganicMatter 0.24 
Slope_Conductivity_pH_Manganese_Copper_OrganicMatter 0.24 
Slope_Conductivity_Phosphorus_pH_CEC_OrganicMatter 0.23 
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Slope_pH_Zinc_Manganese 0.23 
pH_Copper_CEC_OrganicMatter 0.23 
Conductivity_pH_Boron_Manganese_CEC 0.23 
Conductivity_Phosphorus_pH_Manganese_CEC 0.23 
Slope_Conductivity_pH_Boron_CEC_OrganicMatter 0.22 
Slope_pH_Boron_Manganese_CEC 0.22 
Conductivity_Phosphorus_pH_Magnesium_OrganicMatter 0.22 
Slope_Conductivity_pH_Zinc_Manganese 0.22 
Slope_Conductivity_pH_Copper_CEC_OrganicMatter 0.21 
Slope_Conductivity_Phosphorus_pH_Magnesium_OrganicMatter 0.21 
Slope_Conductivity_Phosphorus_pH_Boron_OrganicMatter 0.21 
Slope_Conductivity_Potassium_pH 0.21 
Conductivity_Phosphorus_pH_Magnesium_Manganese 0.20 
Conductivity_pH_Boron_Magnesium_OrganicMatter 0.20 
Slope_Phosphorus_pH_Magnesium_Manganese 0.20 
Slope_Conductivity_Phosphorus_pH_Copper_OrganicMatter 0.19 
Slope_Conductivity_pH_Zinc_CEC 0.19 
pH_Boron_Manganese_CEC_OrganicMatter 0.18 
Slope_Conductivity_pH_Boron_Copper_OrganicMatter 0.18 
Slope_Conductivity_pH_Magnesium_Copper_OrganicMatter 0.18 
Conductivity_Phosphorus_pH_Manganese_CEC_OrganicMatter 0.18 
Slope_Conductivity_Phosphorus_pH_Manganese_Copper 0.18 
Slope_pH_Boron_Manganese_CEC_OrganicMatter 0.17 
Slope_Conductivity_pH_Zinc_Manganese_OrganicMatter 0.17 
Slope_Conductivity_pH_Magnesium_Manganese_Copper 0.16 
Slope_Conductivity_pH_Boron_Manganese_CEC_OrganicMatter 0.16 
Conductivity_pH_Magnesium_Manganese_CEC_OrganicMatter 0.16 
Slope_Conductivity_Phosphorus_pH_Magnesium_Copper 0.14 
Conductivity_pH_Zinc_Magnesium_OrganicMatter 0.14 
Slope_Conductivity_Phosphorus_pH_Boron_CEC_OrganicMatter 0.13 
Conductivity_Phosphorus_Potassium_pH 0.13 
Slope_Conductivity_pH_Zinc_Manganese_CEC_OrganicMatter 0.11 

 

  



52 
  

Supplementary Figure 2.9. Model accuracy versus number of training points. 
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2.5 Code 

 

2.5.1 Python Script to Match Soil Data to Measured Field-Scale Data (Randomly_Bin.Py) 

 

import os 
import random 
import numpy as np 
import sys 
 
soil_pos_indices = [4,5] 
 
def get_lines(num): 
#simply reads the lines of a file name 
    infile = open(sys.argv[num], 'r') 
    inlines = infile.readlines() 
    infile.close() 
    return inlines 
 
def get_point_lines(soil_lines, x_col, y_col): 
#get positions 
    point_lines = [line[:-1] for line in soil_lines if not line[:1] == '#']  #cuts out comments and 
newlines 
    point_lines = [line for line in point_lines if not line == ''] 
    point_lines = [line.split(',')[x_col:y_col+1] for line in point_lines  ] 
    point_lines = [ np.array([float(entry[0]), float(entry[1]) ])  for entry in point_lines] 
#    print(point_lines) 
    return point_lines 
 
 
def get_dist_mat(soil_lines, x_col, y_col): 
#returns a distance matrix from points 
    point_lines = get_point_lines(soil_lines, x_col, y_col) 
    outmat = [[0 for y in range(len(point_lines))] for x in range(len(point_lines))] 
    for x in range(len(point_lines)): 
        for y in range(len(point_lines)): 
            delta = point_lines[x] - point_lines[y] 
            delta2 = delta**2 
            dist = sum(delta2)**0.5 
            outmat[x][y] = dist 
    return outmat 
 
 
def get_closest_points(soil_lines, field_lines, x_col, y_col, x_col2, y_col2): 
#get an index array of the closest soil point for each non-soil point 
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#matches field-scale observable points to non-field scale (soil sample) points 
    soil_point_lines = get_point_lines(soil_lines, x_col, y_col) 
    field_point_lines = get_point_lines(field_lines, x_col2, y_col2) 
    outarray = [] 
 
#    print(field_point_lines[:10]) 
#    print(soil_poin00t_lines[0]) 
 
    for fpi in range(len(field_point_lines)): 
    #field point index 
        field_point = field_point_lines[fpi] 
        mindex = -1 
        minval = 20         #minimum distance between the soil values and field-scale values 
        #minval should be less than the distance between soil samples 
        for spi in range(len(soil_point_lines)): 
        #soil point index 
            soil_point = soil_point_lines[spi] 
            delt = soil_point - field_point 
            delt2 = delt**2 
            dist = sum(delt2)**0.5 
 
            if dist < minval: 
                minval = dist 
                mindex = spi 
        outarray.append(mindex)         #append the index of the field point value 
#        print(mindex) 
    return outarray 
 
def get_dict(soil_lines, mapping_array): 
#returns a dictionary assigning soil indices to field indices 
    soil_point_lines = get_point_lines(soil_lines, soil_pos_indices[0], soil_pos_indices[1])  
    outdict = {} 
    for x in range(len(soil_point_lines)): 
        outdict[x] = [] 
    outdict[-1] = []      #initialize as empty; need unassigned one for observables not near soil 
samples 
 
    for y in range(len(mapping_array)): 
        index = mapping_array[y] 
        outdict[index].append(y) 
    return outdict 
 
 
soil_lines = get_lines(1) 
soil_lines = [line for line in soil_lines if len(line.split()) > 0] 
soil_lines = [line for line in soil_lines if not line[:1] == '#'] 
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yield_lines = get_lines(2) 
random.shuffle(yield_lines) 
#print('Shuffling complete') 
#yield_lines = yield_lines[:10000] 
 
random_points = int(sys.argv[3])        #number of points near each soil sample to take 
yield_smoothing_index = sys.argv[4] 
 
 
dist_mat = get_dist_mat(soil_lines, soil_pos_indices[0], soil_pos_indices[1])    #distance matrix 
of points in soil lines 
minmat = [min([subentry for subentry in entry if subentry > 0]) for entry in dist_mat] 
 
mapping_array = get_closest_points(soil_lines, yield_lines, soil_pos_indices[0], 
soil_pos_indices[1], 0, 1) 
reduced_mapping_array = [entry for entry in mapping_array if not entry == -1] 
#eliminates those points that are not near soil samples 
 
soil_to_field_dict = get_dict(soil_lines, mapping_array) 
 
 
outfile = open('randomly_matched_{0}.csv'.format(yield_smoothing_index), 'w') 
for soil_index in soil_to_field_dict.keys(): 
#now we retain only soil sample matches with enough field-scale observations 
    if len(soil_to_field_dict[soil_index]) > random_points and not (soil_index == -1): 
        temp_array = soil_to_field_dict[soil_index] 
        random.shuffle(temp_array) 
        subarray = temp_array[:random_points]     #uncomment this line for NON fullscale... 
#        subarray = temp_array[:] 
        for subarray_index in subarray: 
            outfile.write(yield_lines[subarray_index][:-1] + ',' + ','.join([entry for entry in 
soil_lines[soil_index][:-1].split(',') if entry]) + ',' + str(soil_index+1) + '\n' ) 
outfile.close() 
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2.5.2 R Script to Run Regression Generating Imputed Field-Scale Soil Data 
(iRF_on_data_UAV_soil.R) 

 
###This program runs regression of soil variables against UAV data locally, then uses field-scale 
UAV to extrapolate 
###regression on both the UAV AND the EC data 
args = commandArgs() 
args 
 
 
library(httr) 
httr::set_config(config(ssl_verifypeer = 0L)) 
set.seed(57) 
 
field_1_mapped_reduced <- read.csv(args[3], header=FALSE)       #matched soil and yield file 
argument 
field_1_mapped_reduced <- field_1_mapped_reduced[sample(nrow(field_1_mapped_reduced)),]  
#shuffle 
 
EM_data <- read.csv(args[4], header=FALSE)     #yield data file argument 
EM_data <- EM_data[1:( length(EM_data[,1]) ), ] 
lemd <- length(EM_data[1,])   #number of cols 
EM_mat_X <- data.matrix(EM_data[,3:(lemd-1)])    #yield data is last column 
EM_mat_Y <- data.matrix(EM_data[,lemd])  #just a dummy; not the real test value... 
 
#column 11 is the yield data 
 
lf1mr <- length(field_1_mapped_reduced[1,]) 
X <- field_1_mapped_reduced[,3:(lemd-1)]    #use same value lemd because soil data is added on 
end 
X <- data.matrix(X, rownames.force=NA) 
 
EM_mat_X[1,] 
#X[1:10,] 
 
tot_col_num <- length(field_1_mapped_reduced[1,]) 
 
Y_list <- list() 
for (iter2 in (tot_col_num-11):(tot_col_num-1)){ 
#create vector for Y output 
Y_list[[iter2]] <- data.matrix(field_1_mapped_reduced[,iter2]) 
} 
 
library(devtools) 
library(iRF) 
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sel_list <- list() 
pred_list <- list() 
test_error_list <- list() 
for (iter1 in (tot_col_num-11):(tot_col_num-1)){ 
#do the following for each soil variable 
Y <- Y_list[[iter1]] 
n <- length(Y) 
p <- length(X[1,]) 
 
train.id <- 1:(n*0.7) 
test.id <- setdiff(1:n, train.id)  #train on this fraction of the data 
 
rf <- list() 
sel.prob <- rep(1/p, p) 
rf_maxiter <- 10 
for (iter in 1:rf_maxiter){ 
  cat(paste('iter = ', iter, ':: ')) 
  if (iter < rf_maxiter){ 
  rf[[iter]] <- randomForest(x=X[train.id,], y=Y[train.id],  
                             xtest=X[test.id,], ytest=Y[test.id],  
                             mtry.select.prob=sel.prob, ntree=500) 
  } 
  if (iter == rf_maxiter){ 
  #in last iteration, test with all data for field-scale imputation 
  rf[[iter]] <- randomForest(x=X[train.id,], y=Y[train.id], 
                             xtest=EM_mat_X, ytest=EM_mat_Y, 
                             mtry.select.prob=sel.prob, ntree=500) 
  } 
 
  # performance on test set 
  if (iter < rf_maxiter){ 
  test.error = mean((rf[[iter]]$test$predicted - Y[test.id]) ^ 2) / var(Y[test.id]) 
  cat(paste('test error: ', round(100*test.error, 2), '%\n', sep='')) 
  sel.prob <- rf[[iter]]$importance/sum(rf[[iter]]$importance) 
  } 
}  #iter loop 
test_error_list[[iter1]] <- test.error    #last testing error 
sel_list[[iter1]] <- sel.prob 
#pred_list[[iter1]] <- rf[[iter]]$test$predicted     #predicted soil data value 
writeframe <- cbind(EM_data[,1:2], data.frame(rf[[iter]]$test$predicted)) 
write.csv(writeframe, file=sprintf("EM_soilpred_%d.csv", iter1))   #field-scale soil prediction is 
written 
 
}  #iter1 loop 
 
###Now we write out the selection probabilities and testing errors for each variable 
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sel_list_outframe <- data.frame(sel_list[[(tot_col_num-11)]]) 
test_list_outframe <- data.frame(test_error_list[[(tot_col_num-11)]]) 
for (iter in (tot_col_num-10):(tot_col_num-1)){ 
    sel_list_outframe <- cbind(sel_list_outframe, data.frame(sel_list[[iter]])) 
    test_list_outframe <- cbind(test_list_outframe, data.frame(test_error_list[[iter]])) 
} 
 
write.csv(data.frame(test_list_outframe), file=sprintf('testing_errors_%s_%s.csv'  , args[4], 
args[5] )) 
write.csv(data.frame(sel_list_outframe), file=sprintf('selection_probabilities_%s_%s.csv', 
args[4], args[5])) 
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2.5.3 Code for Local Importance Regression 

 
args = commandArgs() 
 
library(httr) 
httr::set_config(config(ssl_verifypeer = 0L)) 
 
infile <- read.csv(args[3], header=TRUE) 
infile <- infile[sample(nrow(infile)), ]   #shuffle 
infile_copy <- infile[,]   #copy for later 
 
infile <- infile[1:(nrow(infile)*as.numeric(args[5])) , ]  #subfraction 
column_names <- colnames(infile) 
 
keep_cols <- 
c('Slope','Lime','Potash','TSP','Conductivity','Phosphorus','Potassium','pH','Zinc','Sulfur','Boron','
Magnesium','Manganese','Copper','CEC','OrganicMatter')   #features for regression 
yield_name <- c('Yield2018') 
 
 
X <- data.matrix(infile[, keep_cols]) 
Y <- data.matrix(infile[, yield_name]) 
 
X_new <- data.matrix(infile_copy[, keep_cols]) 
Y_new <- data.matrix(infile_copy[, yield_name]) 
 
library(iRF)    #libraries needed to run iRF 
library(AUC) 
attach(mtcars) 
library(ggplot2) 
 
n.cores <- 4 
n <- length(Y) 
p <- length(X[1,]) 
 
train_fraction <- 0.7 
itermax <- 10             #number of random forest iterations 
 
train_rows <- 1:(train_fraction*nrow(infile)) 
test_rows  <- setdiff(1:nrow( infile ), train_rows) 
train.id <- train_rows 
test.id <-  test_rows 
 
rf <- list() 
sel.prob <- rep(1/p, p)   #begin with equally weighted features 
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Y_test <- infile[test.id, yield_name] 
Y_train <- infile[train.id, yield_name] 
 
###In the next section, we run random forest 
for (iter in 1:itermax){ 
  cat(paste('iter = ', iter, ':: ')) 
  if (iter < itermax){ 
  rf[[iter]] <- randomForest(x=X[train.id,], y=Y_train, 
                             xtest=X[test.id,], ytest=Y_test, 
                             mtry.select.prob=sel.prob, ntree=500) 
  } 
  if (iter == itermax){ 
    rf[[iter]] <- randomForest(x=X[train.id,], y=Y_train, 
                             xtest=X_new, ytest=Y_new, 
                             mtry.select.prob=sel.prob, ntree=500, localImp=TRUE) 
  } 
  # update selection probabilities for next iteration 
 
  if (iter < itermax){ 
  sel.prob <- rf[[iter]]$importance/sum(rf[[iter]]$importance)   #update selection probability 
 
  # performance on test set 
  test.error = mean((rf[[iter]]$test$predicted - Y[test.id]) ^ 2) / var(Y[test.id]) 
  print(test.error) 
  #UE dissimilarity matrix 
  } 
} 
###Now we write the local importances, observation locations, and global importances 
write.csv(data.frame(rf[[itermax]]$localImp), file="local_importance_2018.csv") 
write.csv(infile_copy[,1:2], file="local_locations_2018.csv") 
write.csv(data.frame(sel.prob), file="global_importance_2018.csv") 
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2.5.4 Code for Response Surface Generation. 

 
args = commandArgs() 
'%ni%' <- Negate('%in%') 
 
library(magrittr) 
library(httr) 
library(dplyr) 
library(data.table) 
httr::set_config(config(ssl_verifypeer = 0L))  # only need this if you're getting ssl errors from R 
set.seed(58)        #for consistency 
 
all_data <- read.csv(args[3], header=TRUE) 
all_data <- all_data[sample(nrow(all_data)),]  #shuffle 
all_data <- all_data[1:(nrow(all_data)*as.numeric(args[5])),]   #sub fraction of observations   
 
ncols <- length(all_data[1, ]) 
 
yield_col_id <- c('Yield')    #this is the target column for regression 
library(ggplot2) 
library(iRF) 
source('surfacePlot.R')        #from iRF package; must be in same directory 
 
all_data_backup <- all_data 
 
holdout_limits <- c(621880, 621920)  #longitudinal limits of test data 
buffer_size <- 20    #buffer around strip to exclude from training data 
holdout_limits2 <- c(holdout_limits[1]-buffer_size, holdout_limits[2]+buffer_size) 
 
infile <- all_data 
tr1 <- rownames(infile)[(infile[,1] > holdout_limits[1])] 
all_temp <- data.frame(infile[tr1,]) 
test_rows <- rownames(all_temp)[(all_temp[,1] < holdout_limits[2])] 
 
tr2 <- rownames(infile)[(infile[,1] < holdout_limits2[1])] 
tr3 <- rownames(infile)[(infile[,1] > holdout_limits2[2])] 
train_rows <- c(tr2, tr3) 
 
#set up training matrix and testing matrix 
train_mat  <- all_data[train_rows,] 
test_mat   <- all_data[test_rows,] 
all_data   <- rbind(train_mat, test_mat) 
colnames(all_data) <- colnames(all_data_backup) 
all_data[1,] 
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keep_columns <- 
c('Slope','Lime','Potash','TSP','Conductivity','Phosphorus','Potassium','pH','Zinc','Sulfur','Boron','
Magnesium','Manganese','Copper','CEC','OrganicMatter') 
X_train <- all_data[train_rows, keep_columns]  
X_train <- data.matrix(X_train) 
 
X_test  <- all_data[test_rows, keep_columns] 
X_test  <- data.matrix(X_test) 
Y_train <- data.matrix(all_data[train_rows, yield_col_id]) 
Y_test  <- data.matrix(all_data[test_rows , yield_col_id]) 
 
num_train <- length(X_train[,1])      #number of training points 
 
x <- data.matrix(rbind(X_train, X_test)) 
y <- data.matrix(rbind(Y_train, Y_test)) 
y <- as.numeric(y) 
 
varnames <- colnames(x) 
 
n <- nrow(x) 
p <- ncol(x) 
train.id <- 1:num_train   #since we re-organized all_data 
total_iterations <- 10 
 
t1 <- Sys.time() 
f <- iRF(x=x[train.id,], y=y[train.id], n.iter=total_iterations, 
interactions.return=total_iterations,n.bootstrap=1, n.core=1, get.prevalence=TRUE, 
int.sign=TRUE) 
options(tibble.print_max=Inf) 
 
f 
 
write.csv(data.frame(f$prevalence[[total_iterations]]), file= sprintf("Prevalences_iRF_%s.csv", 
args[5])) 
 
###take interactions of order 2 and put them into a vector 
interact_dict <- data.frame(f$prevalence[[total_iterations]])$int 
interact_dict <- as.character(interact_dict) 
length_dict   <- lengths(strsplit(interact_dict, '_'))  #breaks interaction names 
keep_indices <- which(length_dict %in% c(2))    #only keeps those with length 2 
interact_dict <- interact_dict[keep_indices] 
 
 
# read RF paths and track selected thresholds 
t2 <- Sys.time() 
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rd.forest <- readForest(f$rf.list[[total_iterations]], x=x[train.id,], n.core=16, get.split=TRUE, 
varnames.grp=varnames) 
 
interact_dict <- sample(interact_dict)   #shuffle 
 
for (interact_iter in 1:length(interact_dict)){ 
interact <- interact_dict[interact_iter] 
print(interact) 
int.id <- int2Id(interact, varnames, directed=TRUE) 
print(int.id) 
 
grid <- quantileGrid(x, 100, int.id) 
 
 
xrange <- c(grid$g1[1], grid$g1[length(grid$g1)]) 
yrange <- c(grid$g2[1], grid$g2[length(grid$g2)]) 
rectangles <- forestHyperrectangle(rd.forest$tree.info, rd.forest$node.feature, 
                                    x=x[-train.id,], y=y[-train.id] , 
                                    interact=interact, varnames.grp=varnames) #node.obs=rd.forest$node.obs) 
 
library(rgl) 
 
print.code<- paste(interact, args[4], sep="_") 
plotInt2(rectangles, interact, x=x, y=y, 
         varnames.grp=varnames, grids=grid, pred.prob=FALSE, 
         xlab=interact[1], ylab=interact[2], zlab='Yield (bushel/acre)', print.code=print.code) 
 
}  
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2.5.5 Code for ROSM Generation. 

 
import os 
import numpy as np 
import scipy 
import sys 
from sklearn.decomposition import PCA 
from sklearn.linear_model import Ridge 
from sklearn import linear_model 
from sklearn.linear_model import Lasso 
import statsmodels.api as sm 
import pandas 
import math as m 
import pandas as pd 
import random 
 
from scipy.interpolate import griddata 
from numpy import ma 
import copy 
 
want_minmax =  True   #converts percentile to minmax format for gradient climbing 
want_yieldpenalty = False  #uses arctan penalty against the desired yield min; balances ROI - yield 
tradeoff 
want_uncertainty = False 
 
want_covariance = False     #use covariance mat 
downsampling_factor = 101    #reduce ALL mats by this factor to work with cov. array dimensions 
 
if want_yieldpenalty: 
    yield_setpoint = 71.2  #in bushels/acre 
    yield_charscale = 0.0001   #characteristic scale of arctan change; should be < 1 bushel/acre 
 
def get_covariances(percentile_mat, column_titles, cov_array, interact_list, beta_hat, 
cov_downsample=1): 
#covariance downsample is essentially fraction of points in list to look at to reduce size 
#need to evaluate covariance based on the surfaces 
    beta_hat_noconst = beta_hat.tolist()[1:] 
    beta_mat = np.array([[beta_hat_noconst[x] * beta_hat_noconst[y] for x in 
range(len(beta_hat_noconst))] for y in range(len(beta_hat_noconst))]) 
    #this is the scaling between the surface covariance and model covariance 
    num_downsampled_points = int(percentile_mat.shape[0]/cov_downsample) 
    print(num_downsampled_points) 
 
 
    length_limit = cov_array.shape[-1]   #this is the length of the matrix 
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    outmat = [[0 for x in range(num_downsampled_points)] for y in 
range(num_downsampled_points)] 
    for p1_index in range(num_downsampled_points): 
        print(p1_index) 
        true_p1_index = p1_index * cov_downsample 
        for p2_index in range(p1_index, num_downsampled_points): 
            true_p2_index = p2_index * cov_downsample 
            covariance_grid = np.zeros(np.array(beta_mat).shape)   #store covariance values between 
surfaces 
            for interact_index_1 in range(len(interact_list)): 
                interact_1_name = interact_list[interact_index_1] 
                interact_1_split = ''.join(''.join(interact_1_name.split('-')).split('+'))  #cuts out signs 
                interact_1_split = interact_1_split.split('_')   # 
                interact_1_cols = [column_titles.index(entry) for entry in interact_1_split]  #indices of 
cols 
                interact_1_indices = [ min(int(percentile_mat[true_p1_index][entry]*length_limit), 
length_limit-1)   for entry in interact_1_cols]  #indices to use on surface-surface covmati 
                for interact_index_2 in range(interact_index_1, len(interact_list)): 
                    interact_2_name = interact_list[interact_index_2]   #names of interactions 
                    interact_2_split = ''.join(''.join(interact_2_name.split('-')).split('+')) 
                    interact_2_split = interact_2_split.split('_')   # 
                    interact_2_cols = [column_titles.index(entry) for entry in interact_2_split] 
                    interact_2_indices = [ min(int(percentile_mat[true_p2_index][entry]*length_limit), 
length_limit-1)   for entry in interact_2_cols] 
                    covariance_grid[interact_index_1][interact_index_2] = 
cov_array[interact_index_1][interact_index_2][interact_1_indices[0]][interact_1_indices[1]][inte
ract_2_indices[0]][interact_2_indices[1]] 
                    covariance_grid[interact_index_2][interact_index_1] = 
covariance_grid[interact_index_1][interact_index_2]   #repeat by symmetry... 
            total_covariance = np.sum(np.array(covariance_grid) * np.array(beta_mat))  #by linearity 
            outmat[p1_index][p2_index] = total_covariance 
            outmat[p2_index][p1_index] = total_covariance 
    return outmat 
 
def shrink(data, shrink_array): 
#shrinks each dimension according to array  
    data = np.array(data) 
    shrink_nparray = np.array(shrink_array) 
    datashape = np.array(list(data.shape))    #need to subtract 
    overages = np.mod(datashape, shrink_nparray)   #amount of extra entries in each dim. 
    limits = (datashape - overages).tolist() 
    for dimindex in range(len(data.shape)): 
        data = np.take(data, [x for x in range(limits[dimindex])] , dimindex)   #truncates on each dim. 
 
    rows, cols = shrink_array[0], shrink_array[1] 
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    return data.reshape(rows, int(data.shape[0]/rows), cols, 
int(data.shape[1]/cols)).sum(axis=1).sum(axis=2) 
 
def reshape(array, interact_list, sample_mat): 
#reshapes array to be len(interact_list)^2 x length^4 for covariance tensor 
#unwrap from 2D back to 6D; this will be MUCH easier to work with in numpy later on 
    num_interactions = len(interact_list) 
    side_length = np.array(sample_mat).shape[0]    #assumes same in each dim. 
    newmat = np.zeros((num_interactions, num_interactions, side_length, side_length, side_length, 
side_length)) 
 
    s_l_2 = side_length ** 2   #this will get used a few times 
 
    for x in range(num_interactions): 
        print('On interaction {0} out of {1}'.format(x+1, num_interactions)) 
        first_index_x = x * s_l_2    #first index of matrix 
        for y in range(num_interactions): 
            surface_surface_array = np.zeros((side_length, side_length, side_length, side_length)) 
            first_index_y = y * s_l_2   #use this + s_l**2 to get cutoffs 
            submat = array[first_index_x:(first_index_x+s_l_2), first_index_y:(first_index_y+s_l_2)]          
#this is the (still unwrapped) surface-surface interaction 
            for x2 in range(side_length): 
                x2sl = x2 * side_length        #need this for coordinate 
                for y2 in range(side_length): 
                #Take subpart of matrix, then upwrap AGAIN 
                    surface_2_vec = submat[x2sl + y2][:]    #now we unwrap down to 2d 
                    surface_2_vec = np.reshape(surface_2_vec, surface_2_vec.size)   #make sure this is 
row 
                    inner_mat = np.zeros((side_length, side_length)) 
                    for inner_index in range(surface_2_vec.size):   #get innermost mat 
                        inner_mat[int(inner_index/side_length)][inner_index % side_length] = 
surface_2_vec[inner_index]   #innermost index 
                    newmat[x][y][x2][y2][:][:] = copy.deepcopy(inner_mat) 
 
    print(newmat.shape) 
    return newmat 
 
 
def dumpout(array, filename='zzzDumped_array.csv'): 
#creates textfile from a 2D array 
    listarray = array.tolist() 
    listarray = [[str(subentry) for subentry in entry] for entry in listarray] 
    listarray = [','.join(entry) + '\n' for entry in listarray] 
    outfile = open(filename, 'w') 
    for entry in listarray: 
        outfile.write(entry) 
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    outfile.close() 
 
def array_print(nparray, filename): 
#similar to function above; creates textfile from np array 
    outfile = open(filename, 'w') 
    outarray = nparray.tolist() 
    for x in range(len(outarray)): 
        entry = outarray[x]   #should ALSO be a list... 
        entry = [str(subentry) for subentry in entry] 
        outfile.write(','.join(entry)  + '\n') 
    outfile.close() 
 
def sort_fb_beta(val_array, new_name_array, old_name_array): 
#sort the values between the old and new name arrays 
    out_val_array = [] 
    for x in range(len(old_name_array)): 
        old_name = old_name_array[x] 
        try: 
            new_index = new_name_array.index(old_name) 
            value = val_array[new_index] 
            out_val_array.append(value) 
        except: 
            out_val_array.append(0) 
    return np.array(out_val_array) 
 
def stepwise_selection(X, y,  
                       initial_list=[],  
                       threshold_in=0.01,  
                       threshold_out = 0.05,  
                       verbose=True): 
    """ Perform a forward-backward feature selection  
    based on p-value from statsmodels.api.OLS 
    Arguments: 
        X - pandas.DataFrame with candidate features 
        y - list-like with the target 
        initial_list - list of features to start with (column names of X) 
        threshold_in - include a feature if its p-value < threshold_in 
        threshold_out - exclude a feature if its p-value > threshold_out 
        verbose - whether to print the sequence of inclusions and exclusions 
    Returns: list of selected features  
    Always set threshold_in < threshold_out to avoid infinite looping. 
    See https://en.wikipedia.org/wiki/Stepwise_regression for the details 
    """ 
    included = list(initial_list) 
    while True: 
        changed=False 
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        # forward step 
        excluded = list(set(X.columns)-set(included)) 
        new_pval = pd.Series(index=excluded) 
        for new_column in excluded: 
            model = sm.OLS(y, sm.add_constant(pd.DataFrame(X[included+[new_column]]))).fit() 
            new_pval[new_column] = model.pvalues[new_column] 
        best_pval = new_pval.min() 
        if best_pval < threshold_in: 
            best_feature = new_pval.argmin() 
            included.append(best_feature) 
            changed=True 
            if verbose: 
                print('Add  {:30} with p-value {:.6}'.format(best_feature, best_pval)) 
 
        # backward step 
        model = sm.OLS(y, sm.add_constant(pd.DataFrame(X[included]))).fit() 
        # use all coefs except intercept 
        pvalues = model.pvalues.iloc[1:] 
        worst_pval = pvalues.max() # null if pvalues is empty 
        if worst_pval > threshold_out: 
            changed=True 
            worst_feature = pvalues.argmax() 
            included.remove(worst_feature) 
            if verbose: 
                print('Drop {:30} with p-value {:.6}'.format(worst_feature, worst_pval)) 
        if not changed: 
            break 
    return included, model 
 
 
def datprint(X, Y, colnames): 
#creates a textfile from a matrix X and a vector Y 
    outfile = open('zzzXARRAY.dat', 'w') 
    Xlist = X.tolist() 
    Ylist = Y.tolist() 
    outfile.write('\t'.join(colnames) + '\t' + 'yield' + '\n') 
    for x in range(len(X)): 
        outstring = '' 
        for y in range(len(X[0])): 
            outstring = outstring + str(Xlist[x][y]) + '\t' 
        outstring = outstring + str(Ylist[x]) + '\n' 
        outfile.write(outstring) 
    outfile.close() 
 
 
def sort_print(valarray, namearray, outname): 
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    #sorts value array & name array, assuming they correspond, and then puts into textfile 
    tuple_array = [tuple([abs(valarray[x]), namearray[x], valarray[x]]) for x in range(len(valarray))] 
    tuple_array.sort() 
    tuple_array = tuple_array[::-1] 
    outfile = open(outname, 'w') 
    for entry in tuple_array: 
        outstring = str(entry[1]) + '\t' + str(entry[2]) + '\n' 
        outfile.write(outstring) 
    outfile.close() 
 
def pad(data): 
#interpolates over convex hull of data in a matrix despite the presence of nan... useful for spotty 
data 
    bad_indexes = np.isnan(data) 
    good_indexes = np.logical_not(bad_indexes) 
    good_data = data[good_indexes] 
    interpolated = np.interp(bad_indexes.nonzero()[0], good_indexes.nonzero()[0], good_data) 
    data[bad_indexes] = interpolated 
    return data 
 
 
def get_lines(string, sample_fraction=1.0): 
#returns column titles and floated, split inlines from a csv 
    infile = open(string, 'r') 
    inlines = infile.readlines() 
    infile.close() 
 
 
    splitlines = [line[:-1].split('#')[-1] for line in inlines]   #for first line 
    splitlines = [line.split(',') for line in splitlines] 
 
    column_titles, splitlines = splitlines[0], splitlines[1:]   #separates 
    splitlines = [[float(subentry) for subentry in entry] for entry in splitlines] 
    random.shuffle(splitlines) 
    splitlines = splitlines[:int(sample_fraction*len(splitlines))] 
    return column_titles, splitlines   #returns these portions separately 
 
def get_yield_vec(lines, column): 
#just returns a vector of the yield values given a column ID 
    return np.array([entry[column] for entry in lines]) 
 
def remove_columns(titles, lines, cols=False): 
#columns to remove from the data after storing elsewhere 
#should NOT be negative or otherwise outside the limits 
    if not cols: 
        return titles, lines   #just returns original input 
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    cols = [entry % len(titles) for entry in cols]   #modulo the length 
    titles = [titles[x] for x in range(len(titles)) if not x in cols] 
    lines = [[entry[x] for x in range(len(entry)) if not x in cols] for entry in lines] 
    return titles, lines 
 
def percentile_format(Xmat, Y): 
#uses percentile format from R output for X; sorts Y on same basis 
#can use MINMAX version instead of percentile version... linear interpolation between points 
 
    xy_mat = np.zeros((Xmat.shape[0], Xmat.shape[1]+1)) 
    percentile_vec = np.array([x/(Xmat.shape[0]-1) for x in range(Xmat.shape[0])]) 
    for col in range(xy_mat.shape[1]-1 ):   #for each col except last 
        xy_mat[:, col] = Xmat[:, col] 
    xy_mat[:,-1] = Y[:]    #last col is Y 
    for col in range(xy_mat.shape[1]-1 ):   #now we sort on these cols and then reassess vals 
        xy_mat = xy_mat[xy_mat[:, col].argsort()]   #sorts on this column 
        xy_mat[:, col] = percentile_vec[:]          #dumps these vals into the column... 
    out_Y = xy_mat[:,-1] 
    out_X = xy_mat[:, [dummyvar for dummyvar in range(xy_mat.shape[-1]-1)]] 
    if not want_minmax: 
        return out_Y, out_X     
 
    xy_mat = np.zeros((Xmat.shape[0], Xmat.shape[1]+1))   #don't sort values 
    for col in range(xy_mat.shape[1]-1): 
        xy_mat[:, col] = Xmat[:, col]   #dummy values  
    xy_mat[:, -1] = Y[:]    #last col is Y 
    for col in range(xy_mat.shape[1]-1): 
        minval = np.min(xy_mat[:, col]) 
        maxval = np.max(xy_mat[:, col]) 
        coldelta = maxval - minval 
        xy_mat[:, col] = (xy_mat[:, col] - minval)/coldelta    #puts between zero and 1; can't be 
constant 
    out_Y = xy_mat[:, -1] 
    out_X = xy_mat[:, [dummyvar for dummyvar in range(xy_mat.shape[-1]-1)]] 
    return out_Y, out_X     #these are unshuffled 
      
 
def get_interpolated_mat(string, substring='average'):   
#opens the file from the string... right now version is for two features 
#This function returns an interpolated matrix 
    #downsmaple by global variable 
    def cast_to_n_dims(array, newdims, charlen): 
    #turns array of one dimension into MORE dimensions 
        zeros_array = np.zeros(tuple(charlen for x in range(newdims))) #zero array of right size 
        for index in range(len(array)):   #need to unwrap 
            index_backup = index 
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            pos_tuple = [] 
            pos_tuple = tuple(int(index/charlen**(newdims-dim_index-1)) % charlen for dim_index 
in range(newdims)) 
            zeros_array[pos_tuple] = array[index]   #add this entry here...   ###karl 
        return zeros_array.tolist() 
             
             
    ###Get floated, split lines 
    print(string) 
    inname = [f for f in os.listdir('.') if string in f and substring in f and ((string+'_' + substring) in f) 
and not (('_' + string) in f)][0] 
    infile = open(inname, 'r') 
    inlines = infile.readlines() 
    infile.close() 
    splitlines = [line.split() for line in inlines] 
    splitlines = [[float(subentry) for subentry in entry] for entry in splitlines] 
 
    total_dims = len(string.split('_'))   #need special protocol for unwrapping 
    char_len = len(splitlines)      #lenght of each dimension... 
    splitlines = [cast_to_n_dims(entry, total_dims-1, char_len) for entry in splitlines] 
    return_array = np.array(splitlines) 
    ###DOWNsample the return array by downsampling_factor 
    return_array = shrink(return_array, [downsampling_factor, downsampling_factor]) 
    return_array = np.array(return_array) 
 
    print(return_array.shape) 
    return return_array 
 
 
def get_responses(submat, interact_mat): 
#interpolates between responses of interaction given an array of values (submat) 
    lower_ints = [[int(subentry) for subentry in entry] for entry in submat] 
    upper_ints = [[int(np.ceil(subentry))  for subentry in entry] for entry in submat] 
    li_np = np.array(lower_ints) 
    ui_np = np.array(upper_ints) 
    lambdas = (ui_np - np.array(submat))    #this is fraction of lower to take...  
    om_lambdas = 1-lambdas                 #one minus lambda... for interpolation 
 
    super_int_mat = [[ [lower_ints[x][y], upper_ints[x][y]] for y in range(len(lower_ints[0]))] for x 
in range(len(lower_ints))]     #for interpolation 
    super_lambda_mat = [[ [lambdas[x][y], om_lambdas[x][y]] for y in range(len(lambdas[0]))] for 
x in range(len(lambdas))] 
 
###Find corners given the dimension of the array 
    out_array = np.zeros(lambdas.shape[0])   #to be added to for sum 
    for corner_index in range(2**lambdas.shape[-1]):   #num of cols... 
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        corner_tuple = tuple(int(corner_index/2**(lambdas.shape[-1]-1-dim_index) )  % 2 for 
dim_index in range(lambdas.shape[-1]))   #just binarizes 
      #  res_corner = np.array([interact_mat 
        corner_indices = [[super_int_mat[x][y][corner_tuple[y]] for y in 
range(len(super_int_mat[x]))] for x in range(len(submat))]  
        corner_indices = [tuple(entry) for entry in corner_indices] 
        res_corner = np.array([interact_mat[entry] for entry in corner_indices]) 
        lambda_list = [[super_lambda_mat[x][y][corner_tuple[y]] for y in 
range(len(super_lambda_mat[x]))] for x in range(len(submat))]    #list of lambdas 
        lambda_list = np.array([np.prod(np.array(entry)) for entry in lambda_list])   #product for 
weighting 
        weighted_response = res_corner * lambda_list 
        out_array += weighted_response    #add weighed response using array... 
 
   # print(out_array) 
 
    return out_array   #linear interpolation 
    
def get_row_subset(array, rows): 
#index of rows to choose 
    list_array = array.tolist() 
    list_array = np.array([list_array[x] for x in range(len(list_array)) if x in rows]) 
    return list_array  
 
def get_colvec(array): 
#turns 1D numpy array in to true colvec 
#This could be done in one line but cuts down on syntax later on 
    listvec = array.tolist() 
    return np.array([[entry] for entry in listvec]) 
 
def get_overall_derivative(beta, pd_name, varnames, interaction_mat_dict, X_percentile, 
column_names_signed, uncertainty_switch=False): 
    #beta is the set of global coefficients, pd_name is the name of the variable 
    #vector is the vector of values where we are evaluating the derivative 
    #this is one of the main functions for calculating the gradient 
    #vector should be scaled from 0 to 1... 
    pd_index = varnames.index(pd_name)    #index where we evaluate the derivative 
    outsum = 0 
 
    uncertainty_power = 1 
    if uncertainty_switch: 
        uncertainty_power = 2    #for form of variance calculation 
 
###Collect the partial derivative matrices and multiply by the global coefficients 
    for key in interaction_mat_dict.keys(): 
        if pd_name in key:      #then it will also be in the lower directories 
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            #print(key) 
            deriv_mats = interaction_mat_dict[key][-1] 
            if pd_name in deriv_mats.keys(): 
                deriv_mat = deriv_mats[pd_name]  
                #now get the value of the derivative.. 
                interaction_name = key 
                interaction_name_split = [entry[:-1] for entry in interaction_name.split('_')] 
                colnames = interaction_name_split      #names of columns that belong in interaction 
                col_indices = [varnames.index(entry) for entry in colnames]    #col indices for each 
variable 
                submatrix = X_percentile[:, col_indices]   #list form 
                submatrix = submatrix * (interaction_mat.shape[0]-1) 
                responses = get_responses(submatrix, deriv_mat)     #derivative mat... 
                outsum += responses * 
beta[column_names_signed.index(interaction_name)]**uncertainty_power  #multiplied by linear 
factor for interaction 
                #go over the interactions 
    return outsum 
 
 
def evaluate_response(interaction_lines, X_array, Y_vec, column_names_signed, 
interaction_mat_dict, column_titles): 
#record the response of the ROSM over a percentile matrix 
    X_signed = np.ones((X_array.shape[0],1+len(interaction_lines) )) 
    column_names_signed = ['CONSTANT'] + interaction_lines     #this will be the order we use... 
 
    Y_vec, X_percentile =  Y_vec, X_array    #re-assigns names 
    Y_average = np.mean(Y_vec) 
 
    for x in range(1, X_signed.shape[1]): 
        interaction_name = column_names_signed[x] 
        interaction_mat = interaction_mat_dict[interaction_name][0] 
 
        interaction_name_split = [entry[:-1] for entry in interaction_name.split('_')]  #take out sign 
        colnames = interaction_name_split      #names of columns that belong in interaction 
        col_indices = [column_titles.index(entry) for entry in colnames]    #col indices 
        submatrix = X_percentile[:, col_indices]   #list form 
        submatrix = submatrix * (interaction_mat.shape[0]-1) 
         
        responses = get_responses(submatrix, interaction_mat) 
        X_signed[:, x] = responses[:]   #adds the response... 
    return X_signed          
 
 
def get_minmax_version(interaction_mat, interaction_name, X_array, column_titles): 
#returns a minmax version of the array instead of percentile-based version  
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    def get_percentile_from_minmax(minmax_val, X_array, col_index): 
    #get percentile... of each entry based on the minmax value 
        colvals = X_array 
        true_val = colvals[0] + (colvals[-1] - colvals[0]) * minmax_val    #convert from 0 to 1 back 
to ordinary units 
         
        index_below = 0 
        while colvals[index_below] < true_val: 
            index_below = index_below + 1 
        if colvals[index_below] == true_val: 
            return index_below/(colvals.shape[0] - 1)    #goes between 0 and 1 (if exact) 
 
        index_below = index_below - 1 
        overage = true_val - colvals[index_below] 
        delta = colvals[index_below+1] - colvals[index_below] 
        if delta == 0: 
            return index_below 
 
        return  (index_below + overage/delta)/(colvals.shape[0] - 1)    #between 0 and 1... 
         
    #remove signs from names 
    interaction_name_unsigned = ''.join(interaction_name.split('+')) 
    interaction_name_unsigned = ''.join(interaction_name_unsigned.split('-')) 
    interaction_name_split = interaction_name_unsigned.split('_')     #split with no signs 
    col_indices = [column_titles.index(entry) for entry in interaction_name_split]  #indices of cols 
 
    #need to convert minmax limits to a percentile format first 
    col_mins  = [np.min(X_array[entry]) for entry in col_indices] 
    col_maxes = [np.max(X_array[entry]) for entry in col_indices] 
    col_deltas = (np.array(col_maxes) - np.array(col_mins)).tolist()    # 
 
    numdims = len(col_mins)   #number of dimensions 
    dim_size = interaction_mat.shape[0]   #number of entries (observations) 
    out_mat = np.zeros(interaction_mat.shape)    #copy but with zeros 
 
    #sort the X_array columns in the copy X_array_sorted2 
    X_array_sorted = [X_array[:, col_indices[x]].tolist() for x in range(numdims)] 
    X_array_sorted2 = [] 
    for entry in X_array_sorted: 
        entry2 = copy.deepcopy(entry) 
        entry2.sort() 
        X_array_sorted2.append(np.array(entry2)) 
    X_array_sorted = X_array_sorted2 
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    for num_index in range(out_mat.size):    #total entries in the numpy mat...   
        minmax_tuple = [] 
        num_index_copy = num_index    #backup 
        for dim_index in range(numdims):    #go over the dims 
            new_num = (num_index_copy % (dim_size-1))/(dim_size-1)   #between 0 and 1 
            num_index_copy = num_index_copy - (num_index_copy % (dim_size-1)) 
            num_index_copy = num_index_copy/dim_size   #(dimension size) 
            minmax_tuple.append(new_num) 
        minmax_tuple = tuple(minmax_tuple)   #tuple converting to minmax format; has proper 
dimensions for array shape 
        percentile_format = tuple([get_percentile_from_minmax(minmax_tuple[x], 
X_array_sorted[x], col_indices[x]) for x in range(len(minmax_tuple)) ]) 
 
###evaluate the percentile formatted values 
        percentile_format = list(percentile_format) 
        submat = [[entry*(dim_size-1) for entry in percentile_format]] 
        matrix_response = get_responses(submat, interaction_mat)  #evaluate using the old format  
        minmax_list = [int(entry*(dim_size)) for entry in minmax_tuple] 
        out_mat[minmax_list] = matrix_response 
    print(out_mat) 
    return out_mat 
          
def get_unique_sign_names(inlist): 
#returns a list w/ unique elements ONLY, ignoring signs in names 
    unsigned_list = [ ( ''.join( (''.join(entry.split('-'))).split('+')) , entry) for entry in inlist] 
    unsigned_list.sort() 
#    print(unsigned_list) 
    outlist = [inlist[0]] 
    for x in range(1, len(inlist)):   
        if not unsigned_list[x][0] == unsigned_list[x-1][0]: 
            outlist.append(unsigned_list[x][1])    #original entry 
    return outlist 
 
 
 
###################################################FUNCTIONS###############
############### 
holdout_limits = [621880, 621920]   #lower and upper longitude values for strip trial 
 
remove_cols = [3,4,5,6,7,8, 25]   #removes lat, lon, and UAV columns from textfile 
target_col = 13  #BEFORE removing remove_cols; this is the column id of the yield 
sample_fraction = 1.0   #fraction of rows to keep (global) 
sample_fraction2 = 0.3  #fraction of observations to keep for training 
 
inname = sys.argv[1] 
column_titles, splitlines = get_lines(inname, sample_fraction) 
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train_rows = [x for x in range(len(splitlines)) if splitlines[x][0] < holdout_limits[0] or 
splitlines[x][0] > holdout_limits[1]] 
train_rows = random.sample(train_rows, int(sample_fraction2 * len(train_rows)))    #subsample 
for speed 
test_rows  = [x for x in range(len(splitlines)) if splitlines[x][0] >= holdout_limits[0] and 
splitlines[x][0] <= holdout_limits[1]] 
print(len(train_rows)) 
print(len(test_rows)) 
 
 
###get yield vector and testing lines for model fitting 
Y_vec = get_yield_vec(splitlines, target_col)   #get yield vector 
yield_mean = np.mean(Y_vec) 
test_lines = get_row_subset(np.array(splitlines), test_rows) 
test_positions = np.array([entry[:2] for entry in test_lines.tolist()]) 
print(test_positions[0]) 
 
column_titles, splitlines = remove_columns(column_titles, splitlines, remove_cols + [target_col]) 
X_array = np.array(splitlines) 
 
###covariance must be pre-computed between surfaces 
if want_covariance: 
    cov_name = sys.argv[2] 
    cov_file = open(cov_name, 'r') 
    cov_lines = cov_file.readlines() 
    cov_file.close() 
    cov_array = [line[:-1].split(',') for line in cov_lines] 
    cov_array = [[float(subentry) for subentry in entry] for entry in cov_array] 
    cov_array = np.array(cov_array)    #covariance point-point array  #this needs to be reshaped 
 
 
 
###This is all pre-processing; now we add MORE dimensions to the array for the linear nth order 
models 
####Model 1: ALL 2nd order interactions are fitted and evaluated... 
num_vars = X_array.shape[-1]    #number of variables... 
ones_array = np.ones((X_array.shape[0], 1))  #constant value for constant in "linear" model 
second_order_array = np.ones((X_array.shape[0], int(num_vars*(num_vars+1)/2 ) )) #second 
order var 
second_order_titles = ['CONSTANT'] + column_titles 
new_titles = [] 
col_counter = 0 
for x in range(len(column_titles)): 
    for y in range(x , len(column_titles)): 
        new_title = column_titles[x] + '_' + column_titles[y] 
        new_titles.append(new_title) 
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        second_order_array[:,col_counter] = X_array[:,x] * X_array[:,y]   #duplicates data in col 
        col_counter += 1 
 
second_order_titles = second_order_titles + new_titles 
X2_array = np.concatenate((ones_array, X_array, second_order_array), axis=1) 
 
   #training and testing rows 
X2_train = get_row_subset(X2_array, train_rows) 
Y_train = get_row_subset(Y_vec, train_rows) 
X2_test = get_row_subset(X2_array, test_rows) 
Y_test = get_row_subset(Y_vec, test_rows) 
 
beta_hat = np.linalg.lstsq(X2_train, Y_train)[0]   #train on train rows... 
predicted = np.dot(X2_test, beta_hat) 
residuals = Y_test - predicted 
ave_residual = np.mean(np.abs(residuals)) 
print(X2_array.shape) 
print(ave_residual) 
print(beta_hat) 
residuals = get_colvec(residuals) 
 #This is the second-order model. 
 
 
 
####Model 2: similar to above, but ONLY use interactions that are IMPORTANT from RF 
interaction_files = [f for f in os.listdir('.') if 'average.txt' in f] 
interaction_files = [f for f in interaction_files if len(f.split('_')) == 3] 
interaction_files.sort() 
interaction_files = get_unique_sign_names(interaction_files) 
interaction_files = interaction_files[:] 
interaction_lines = ['_'.join(f.split('_')[:-1]) for f in interaction_files]  
interaction_lines.sort()   #sorts alphabetically 
 
###Get standard deviation surfaces 
uncertainty_files =  [f for f in os.listdir('.') if 'deviations.txt' in f]   #undo this later 
uncertainty_files = [f for f in uncertainty_files if len(f.split('_')) == 3] 
uncertainty_files.sort() 
#uncertainty_files = get_unique_sign_names(uncertainty_files) 
uncertainty_files = uncertainty_files[:]                                        #check for truncation 
uncertainty_lines = ['_'.join(f.split('_')[:-1]) for f in uncertainty_files] 
print(interaction_lines) 
print(uncertainty_lines) 
 
 
 
X_signed = np.ones((X_array.shape[0],1+len(interaction_lines) ))   
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column_names_signed = ['CONSTANT'] + interaction_lines     #this will be the order we use... 
 
 
Y_vec, X_percentile = percentile_format(X_array, Y_vec)    #re-casts values as from 0 to 1; easiest 
if Y goes along too... 
Y_average = np.mean(Y_vec) 
 
#X_signed[:,0] = yield_mean 
 
 
###uncertainty and derivative matrix lookup dictionaries are set up here 
interaction_mat_dict = {}   #{name:[interaction_mat, derivs], ...}; derivs == {name:object, ...} 
uncertainty_mat_dict = {}   #these dictionaries store the derivatives of the interactions 
X_signed_uncertainty = copy.deepcopy(X_signed) 
for x in range(1, X_signed.shape[1]): 
    interaction_name = column_names_signed[x] 
    interaction_mat = get_interpolated_mat(interaction_name)   #gets matrix version of the 
feature... 
 
    print(np.array(interaction_mat).shape)   # test 
     
    if want_minmax: 
        interaction_mat = get_minmax_version(interaction_mat, interaction_name, X_array, 
column_titles) 
        uncertainty_mat = get_minmax_version(uncertainty_mat, interaction_name, X_array, 
column_titles) 
    interaction_name_split = [entry[:-1] for entry in interaction_name.split('_')]  #take out sign 
    colnames = interaction_name_split      #names of columns that belong in interaction 
    colnames = [''.join( ''.join(subentry.split('-')).split('+')) for subentry in colnames] 
    print(colnames) 
    print(column_titles) 
    col_indices = [column_titles.index(entry) for entry in colnames]    #col indices 
    submatrix = X_percentile[:, col_indices]   #list form 
    submatrix = submatrix * (interaction_mat.shape[0]-1) 
 
    #Now we will compute and organize the derivative matrices... 
    interaction_mat_dict[interaction_name] = [interaction_mat, {}] 
 
    gradient_mat_array = np.gradient(interaction_mat) 
    gradient_mat_array = [np.array(entry) for entry in gradient_mat_array]  #list of 1D gradients 
    print([entry.shape for entry in gradient_mat_array]) 
 
    for y in range(len(colnames)): 
        colname = colnames[y]      #name and index 
        interaction_mat_dict[interaction_name][-1][colname] = gradient_mat_array[y]   #set up the 
structure first...  
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    responses = get_responses(submatrix, interaction_mat) 
    X_signed[:, x] = responses[:]   #adds the response... 
     
    #we must compute the gradient of the uncertainty for each response surface as well 
    if want_uncertainty: 
        uncertainty_mat = get_interpolated_mat(interaction_name, 'deviations') 
        uncertainty_mat = uncertainty_mat**2    #squares the read-in plot 
        if want_minmax: 
            uncertainty_mat = get_minmax_version(uncertainty_mat, interaction_name, X_array, 
column_titles)  
        print(uncertainty_mat) 
        uncertainty_mat_dict[interaction_name] = [uncertainty_mat, {}] 
        gradient_var_array = np.gradient(uncertainty_mat) 
        gradient_var_array = [np.array(entry) for entry in gradient_var_array] 
        ###store the gradients in the dictionary uncertainty_mat_dict 
        for y in range(len(colnames)): 
            uncertainty_mat_dict[interaction_name][-1][colname] = gradient_var_array[y] 
        var_responses = get_responses(submatrix, uncertainty_mat) 
        X_signed_uncertainty[:, x] = var_responses[:]   #variance responses 
        X_signed_uncertainty[:, 0] = 0      #constant column uncertainty set to 0  
 
 
if want_covariance: 
#now we reshape the array in this case... 
    cov_array = reshape(cov_array, column_names_signed[1:], interaction_mat)  #cuts out constant 
 
 
#use variance mats 
 
 
X_signed_train = get_row_subset(X_signed, train_rows) 
Y_train = get_row_subset(Y_vec, train_rows) 
X_signed_test = get_row_subset(X_signed, test_rows) 
Y_test = get_row_subset(Y_vec, test_rows) 
 
###Compute the Linear ROSM 
beta_hat = np.linalg.lstsq(X_signed_train, Y_train)[0] 
signed_predicted = np.dot(X_signed_test, beta_hat) 
signed_residuals = Y_test - signed_predicted 
print(np.mean(np.abs(signed_residuals) )) 
print(X_signed.shape) 
print(beta_hat) 
sort_print(beta_hat, column_names_signed, 'linear_ROSM.dat') 
signed_residuals = get_colvec(signed_residuals) 
array_print(np.concatenate((test_positions ,signed_residuals), axis=1), 'Linear_important.txt') 
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print('Above: linear regression over interactions') 
 
 
###Ridge and Lasso regression for building ROSMs 
yield_mean = np.mean(Y_vec)    #mean of the yield; put in place of constant for penalized regr. 
 
alpha_value = 0.5 
 
clf = Ridge(alpha=alpha_value) 
 
clf.fit(X_signed_train, Y_train) 
Y_pred = clf.predict(X_signed_test) 
print(np.mean(np.abs(Y_pred-Y_test))) 
print(clf.coef_) 
sort_print(clf.coef_, column_names_signed, 'Ridge_ROSM_{0}.dat'.format(alpha_value)) 
array_print(np.concatenate((test_positions, get_colvec(Y_test - Y_pred)), axis=1), 
'Ridge_residuals.txt') 
print('Above: Ridge regression') 
 
 
clf2 = Lasso(alpha=alpha_value) 
clf2.fit(X_signed_train, Y_train) 
Y_pred2 = clf2.predict(X_signed_test) 
print(np.mean(np.abs(Y_pred2-Y_test))) 
print(clf2.coef_) 
sort_print(clf2.coef_, column_names_signed, 'Lasso_ROSM_{0}.dat'.format(alpha_value)) 
print('Above: Lasso regression') 
array_print(np.concatenate((test_positions, get_colvec(Y_test - Y_pred2)), axis=1) , 
'Lasso_residuals.txt') 
 
 
X_signed_pd = pandas.DataFrame(data=X_signed_train, columns=column_names_signed) 
y_pd = pandas.DataFrame(data=Y_train, columns = ['yield']) 
datprint(X_signed, Y_vec, column_names_signed) 
 
 
result, stepwise_model = stepwise_selection(X_signed_pd, y_pd) 
print(stepwise_model.params.tolist()) 
fb_beta_hat = sort_fb_beta(stepwise_model.params.tolist(), result, column_names_signed) 
predicted = np.dot(X_signed_test, fb_beta_hat) 
residual = Y_test - predicted 
print('forward-backward residual:') 
print(np.mean(np.abs(residual))) 
 
print('resulting features:') 
result.sort() 
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print(result) 
print(len(result)) 
 
sort_print(stepwise_model.params.tolist(), result, 'ForwardBackward.txt') 
array_print(np.concatenate((test_positions, get_colvec(residual)), axis=1), 
'stepwise_residuals.txt') 
 
############################################################################# 
##################This next section is the gradient solver for maximizing ROI########### 
beta_hat = fb_beta_hat 
beta_hat_squared = (np.array(beta_hat)**2).tolist() 
tolerance = 0.00000000001     #hill climbing tolerance... 
integrating_factor = 1000    #another hyperparameter for the inner gradient loop; optimizing ROI 
analogue 
current_delta = tolerance * 10000 
old_ROI = 0.0 
portfolio_lambda = 0    #lambda for effective utility function 
new_X_percentile = X_percentile.tolist() 
new_X_percentile = [[min(subentry*1.0000001, 1.0) for subentry in entry] for entry in 
new_X_percentile] 
new_X_percentile = np.array(new_X_percentile) 
dumpout(new_X_percentile, 'orig_values.csv') 
 
unadjustables = [0, 1]    #columns to not change; alternatively only optimization columns will be 
changed 
old_model_eval = np.dot(X_signed, beta_hat)   #clf.predict(X_signed)    #this is f(v0) 
print(np.mean(old_model_eval)) 
prices = [1/X_signed.shape[0] for entry in column_titles]  #this will have to be adjusted... price 
per unit per area will be important. just use 1 as price "per unit" for now 
#for entry in unadjustables: 
#    prices[entry] = 1 
 
 
###prices must be in standardized units, for example $/lb 
###Use hard-coded column ids for now 
prices[3] = 30/X_signed.shape[0]  * (np.max(X_array[3]) - np.min(X_array[3])) * 0.00001 
prices[4] = 318/X_signed.shape[0] * (np.max(X_array[4]) - np.min(X_array[4])) * 0.00001 
prices[5] = 425/X_signed.shape[0] * (np.max(X_array[5]) - np.min(X_array[5])) * 0.00001 
 
 
ones_mat =  np.ones(new_X_percentile.shape) 
zeros_mat = np.zeros(new_X_percentile.shape) 
optimization_columns = [3,4,5]     #just these columns; adjust by 1 for the constant 
print(column_titles) 
 
##establish lower and upper bounds 
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lower_bounds = np.array([0 for x in range(ones_mat.shape[-1])]) 
upper_bounds = np.array([100000000 for x in range(ones_mat.shape[-1])])   #these must be 
converted to 0 - 1 range format 
if want_minmax: 
    mins = np.min(X_array, axis=0) 
    maxs = np.max(X_array, axis=0) 
    deltas = maxs - mins 
    lower_bounds = (lower_bounds - mins)/deltas 
    upper_bounds = (upper_bounds - mins)/deltas    #set to min and max 
new_lower_bounds = np.zeros(ones_mat.shape) 
new_upper_bounds = np.zeros(ones_mat.shape) 
for column_index in range(ones_mat.shape[-1]):  #set these new matrix col vals to old ones... 
    new_lower_bounds[:, column_index] = lower_bounds[column_index] 
    new_upper_bounds[:, column_index] = upper_bounds[column_index]  
 
 
loop_counter = 0 
while current_delta > tolerance and loop_counter < 30000: 
    if want_covariance:    
#we will use this to calculate field-scale uncertainty, and other features...                                                                                     
        all_covariances = get_covariances(new_X_percentile, column_titles, cov_array, 
column_names_signed[1:], beta_hat, cov_downsample=50)          
        all_covariances = np.array(all_covariances) 
        all_covariances = all_covariances.tolist() 
        all_covariances = [[str(subentry) for subentry in entry] for entry in all_covariances] 
        all_covariances = [','.join(entry)+'\n' for entry in all_covariances] 
 
 
 
    loop_counter += 1 
    partial_derivs = [get_overall_derivative(beta_hat, entry, column_titles, interaction_mat_dict, 
new_X_percentile, column_names_signed) 
                     for entry in column_titles]   #derivative for each adjustable variable... might need to 
change which columns to use 
 
    #print(partial_derivs)     
 
    response_vector = evaluate_response(interaction_lines, new_X_percentile, Y_vec, 
column_names_signed, interaction_mat_dict, column_titles)  
    new_model_eval = np.dot(response_vector, beta_hat)  #This is f(v+v0) 
 
    if want_uncertainty: 
        for x in range(1, len(column_names_signed)): 
         ###get uncertainty at each location 
            interaction_name = column_names_signed[x] 
            uncertainty_mat = uncertainty_mat_dict[interaction_name][0] 
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            interaction_name_split = [entry[:-1] for entry in interaction_name.split('_')]  # 
            colnames = interaction_name_split      #names of columns that belong in interaction 
            col_indices = [column_titles.index(entry) for entry in colnames]    #col indices 
            submatrix = new_X_percentile[:, col_indices]   #list form 
            submatrix = submatrix * (uncertainty_mat.shape[0]-1)  
            X_signed_uncertainty[:, x] =  get_responses(submatrix, uncertainty_mat) 
        new_model_variance = np.dot(X_signed_uncertainty, beta_hat_squared)  
 
    print('Current yield: '+str(np.mean(new_model_eval))+' Orig.: 
'+str(np.mean(old_model_eval))) 
    model_delta = new_model_eval - old_model_eval  #this is mean f(v0+v) - f(v0) 
    price_change = np.sum(np.dot((new_X_percentile - X_percentile), np.array(prices)))   #total 
price of new treatment 
    gradient = [0 for x in range(len(partial_derivs))] 
    for x in optimization_columns:   #these are the ONLY ones we change 
        if not want_yieldpenalty or np.mean(new_model_eval) > yield_setpoint: 
         #prevent model from getting “stuck” at very low changes in yield; yield_setpoint should be 
slightly greater than original yield for proper performance 
            gradient[x] = (partial_derivs[x]*price_change - 
model_delta*prices[x])/(price_change**2+0.0000001)  
        else: 
            gradient[x] = partial_derivs[x]*1/(abs(price_change)+0.00000001)   #just use the yield 
itself as the target funciton in this case... make sure derivatives are scaled accordingly 
 
    for x in range(len(gradient)): 
        if not x in optimization_columns: 
            gradient[x] = np.zeros(gradient[optimization_columns[0]].shape)   #not all columns will 
be adjusted. 
    gradient = np.array([entry.tolist() for entry in gradient]) 
    gradient = np.transpose(gradient)    #transposition  
 
 
    if want_uncertainty:   #portfolio optimization; first compute uncertainty, then apply lambda 
        partial_derivs = [get_overall_derivative(beta_hat, entry, column_titles, 
uncertainty_mat_dict, new_X_percentile, column_names_signed, want_uncertainty) for entry in 
column_titles] 
        print(partial_derivs) 
        gradient2 = [0 for x in range(len(partial_derivs))] 
        for x in optimization_columns: 
            gradient2[x]  = partial_derivs[x] 
        for x in range(len(gradient2)): 
            if not x in optimization_columns: 
                gradient2[x] = np.zeros(gradient2[optimization_columns[0]].shape) 
        for x in range(len(gradient2)): 
            if np.sum(np.abs(np.array(gradient2[x]))) == 0: 
                gradient2[x] = np.zeros(gradient2[optimization_columns[0]].shape) 
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        gradient2 = np.array([gradient2])     #see above 
        gradient2 = np.transpose(gradient2) 
        #print(gradient2) 
        print('Gradients1 and 2: ' + str(np.sum(gradient)) + ' ' + str(np.sum(gradient2))) 
        gradient2 = np.squeeze(gradient2) 
        print('Portfolio lambda: ' + str(portfolio_lambda)) 
        gradient = gradient - portfolio_lambda * gradient2    #climbs combined optimization function 
 
 
    current_delta = np.mean(np.abs(gradient)) 
 
    dumpout(new_X_percentile) 
 
    #update the observations using the newly computed gradient 
    new_X_percentile = new_X_percentile + integrating_factor*gradient 
    new_X_percentile = np.minimum(new_X_percentile, ones_mat) 
    new_X_percentile = np.maximum(new_X_percentile, zeros_mat)     #keep between 0 and 1 
    new_X_percentile = np.maximum(new_X_percentile, X_percentile)  #positive prescription 
    new_X_percentile = np.minimum(new_X_percentile, new_upper_bounds) 
    new_X_percentile = np.maximum(new_X_percentile, new_lower_bounds)  #upper and lower 
bounds 
    ROI = np.mean(model_delta)/(price_change+0.00000000001) 
    current_delta = abs(ROI - old_ROI) 
    old_ROI = ROI 
 
#    new_X_percentile = apply_physical_equations(new_X_percentile, X_percentile) 
 
    print('ROI: ' + str(ROI)) 
    print('Avg. of gradient: ' + str(current_delta)) 
    print('Total price: ' + str(price_change/model_delta.shape[0])) 
    if want_uncertainty: 
        print('Average yield variance: {0} (bushel/acre)^2'.format(np.mean(new_model_variance))) 
    print()  
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3 A Structural Coarse-Grained Model for Clays Using Simple 
Iterative Boltzmann Inversion115 

Karl Schaettle, Luis Ruiz Pestana, Laura Nielsen Lammers, Teresa Head-Gordon 

 

ABSTRACT 

 

Cesium-137 is a major byproduct of nuclear energy generation and is 
environmentally threatening due to its long half-life and affinity for naturally 
occurring micaceous clays. Prolonged exposure to low levels of Cs-137 in the 
environment can increase the risk for certain cancers due to gamma radiation. 
Recent experimental observations of illite and phlogopite mica indicate that Cs+ is 
capable of exchanging with K+ bound in the anhydrous interlayers of layered 
silicates, forming sharp exchange fronts leading to interstratification of Cs- and K-
illite. We present here a coarse-grain (CG) model of the anhydrous illite interlayer 
developed using iterative Boltzmann inversion (IBI) that qualitatively and 
quantitatively reproduces features of a previously proposed feedback mechanism 
of ion exchange.116 The CG model represents a 70-fold speedup over all-atom (AA) 
models of clay systems and predicts interlayer expansion for K-illite near ion 
exchange fronts. Contrary to the longstanding theory that ion exchange in a 
neighboring layer increases the binding of K in lattice counterion sites leading to 
interstratification,117 we find that the presence of neighboring exchanged layers 
leads to short-range structural relaxations that increase basal spacing and decrease 
cohesion of the neighboring K-illite layers. We also provide evidence that the 
formation of alternating Cs- and K-illite interlayers (i.e. ordered interstratification) 
is both thermodynamically and mechanically favorable compared to exchange in 
adjacent interlayers.  

3.1 Introduction 

The environmental impact of cesium adsorption and diffusion into various types of naturally 
occurring layered silicates has received renewed interest in recent years, especially in the aftermath 
of the Fukushima Daiichi Nuclear disaster.118–120 One of the most environmentally threatening 
products of nuclear fission is Cesium-137, both because of its relatively long half-life (30.2 years) 
and its affinity for mineral surfaces, which prevents it from leaching from surface soils.121,122 
Cesium is strongly and irreversibly adsorbed to various clay surfaces in the presence of other ions, 
and can slowly diffuse into the bulk volume of both anhydrous and hydrated layered silicates.123–

125 Due to its intermediate half-life and its relative abundance as a nuclear decay product, Cesium-
137 can contaminate environmental sites with dangerous levels of radiation for decades, while 
most other fallout isotopes may only present a threat on the order of several months or years.126  

Cesium diffuses deep into naturally occurring clays and displaces other types of ions normally 
found in the interlayer, such as potassium, sodium, and calcium. Because of its ability to selectively 
exchange radiocesium, illite and similar clays have been investigated for the possibility of 
remediating radioactive plumes of cesium.127 Despite extensive experimental study of ion 
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adsorption at the frayed clay edge and exchange of ions in the clay interlayer,124,125,128–130 the exact 
mechanism of cesium uptake remains elusive.131 It is especially unclear how cesium displaces 
potassium within the interlayer far from the edge in anhydrous interlayers for clays such as 
illite,128,132–134 despite very large barriers to ion diffusion. Specifically, these large energy barriers 
make explicit all-atom simulation of exchange difficult for bulk clays. Some groups have 
suggested that only hydrated ions within the interlayer or near a clay edge should be capable of 
exchange;135 however, this exchange mechanism is very thermodynamically unfavorable in bulk 
illite, since both potassium and cesium strongly favor anhydrous interlayers.136 Moreover, cesium 
is found to have a strong affinity for the weathered clay edge, further suggesting that interlayer 
hydration is likely not a necessary step either for cesium binding or penetration into the 
interlayer.131,137–141   

Recent experimental124,125 and computational work116 supports the direct exchange by diffusion 
for large ions in the interlayer of several clay types without repeated hydration and dehydration at 
the edge sites. Instead, cesium has been hypothesized to first bind to frayed clay edges, and then 
more slowly exchange with the potassium naturally found in the interlayer through a simple 
diffusive mechanism.134,142 Once potassium begins exchanging for cesium at the weathered edge, 
it has been proposed that there is a thermodynamic and kinetic driving force to displace additional 
potassium ions, resulting in an accelerated replacement of potassium ions for cesium.143 Despite 
this proposed feed-forward mechanism, it has been observed that the rates of ion exchange over 
moderate timescales in neighboring interlayers can vary drastically.124,125 Although some 
thermodynamic arguments have been proposed to explain the stability of interstratified clay 
particles in other clay types,144–146 the physical reason for the disparity in neighboring interlayer 
exchange rates in illite is still not entirely clear. 

In order to adequately predict the ability of micaceous minerals both to uptake radioactive cesium 
and its susceptibility to remobilization, it is necessary to understand and model the mechanisms 
that drive the adsorption and exchange of various ionic species in, for example, anhydrous illite. 
Recent computational work from our group using the classical ClayFF force field and density 
functional theory (DFT) has indicated that the presence of cesium ions within potassium interlayers 
creates mechanical forces that significantly increase the interlayer spacing.116 This expansion in 
turn results in lower rate coefficients for ion exchange by 6 to 10 orders of magnitude which 
accelerates the diffusion of potassium ions.116 However, the problem of characterizing 
interstratified particles by definition requires the evaluation of diffusion barriers involving multiple 
interlayers. Probing the energy landscape of large atomistic simulations of this type is 
computationally expensive. Therefore it motivates the development of a coarse-grain (CG) model 
that is capable of reproducing the energy barriers to ion diffusion near an exchange front and in 
interstratified clay particles. 

Previous CG simulations of clay include both continuous and discrete models of the clay 
interlayer.147–150 In one study, Marry et al.147 investigated a montmorillonite system with a 
hydrated interlayer. Their CG model consisted of two uniformly charged plates representing the 
clay layers held a fixed distance apart. Water was modeled implicitly, and both cations and anions 
in solution were modeled continuously as an effective density that was allowed to vary over space. 
This model accounted for the excluded volume of the ions using the mean spherical approximation, 
an advance on previous continuous models of hydrated clay systems. Using DFT, the grand 
potential was minimized to derive the density of ions as a function of distance from the clay surface 
for sodium ions. These types of CG models can be highly accurate for the calculation of continuous 
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properties such as tensile strength or average interlayer spacing. Several groups have also 
successfully modelled clay and clay-polymer systems by coarse-graining entire clay layers into 
one single particle.151–153 However, continuous, ultra coarse-grained models are fundamentally 
incapable of capturing site-specific effects such as ion binding, and due to mean-field 
approximations would not be expected to precisely reproduce the observed variation in the ion 
binding energy landscape in anhydrous clay.116  

Other groups have developed more detailed coarse-grain clay models that map multiple 
neighboring atoms to single pseudo-atoms, a common coarse-graining technique.154 In the model 
of clay-polymer composites developed by the Coveney group, each montmorillonite clay layer is 
represented by bonded pseudo-atoms corresponding to ion binding sites.155,156 The pseudo-atoms 
in the Suter et al. model are bonded with harmonic potentials derived from an iterative Boltzmann 
inversion (IBI) of the corresponding all-atom RDFs, and represents the three sheets of the clay 
layer as a single layer of coarse-grain sites.28 Many of the coarse-grain potentials of ion-sheet 
interactions in this model were derived using PMF157 matching with fixed sheets, and the various 
coarse-grain potentials were converged sequentially.28 When deriving the potential between free 
ions and the bulk sites on the clay sheet, Suter and co-workers used the layer-averaged z-
coordinate. This method faithfully reproduced the behavior of ions in the fluidized system, but 
would likely not be sufficiently accurate for reproducing the behavior of confined ions, which is 
strongly influenced by charge localization.  

Simulations with both DFT and ClayFF indicate that ions in the anhydrous illite interlayer 
approach interlayer-facing oxygen atoms extremely closely, suggesting that compensatory 
compression of the neighboring sheets could play an important role in determining the energy 
landscape.116 In addition, potassium and cesium ions at equilibrium within the interlayer are tightly 
confined within ditrigonal coordination cavities with oxygen, with interatomic distances of 
roughly 3.0 – 3.4 Å.125,136 Due to this extreme confinement and the detailed structure of ion binding 
sites, representing an anhydrous clay layer by a single sheet of coarse-grain sites would likely 
eliminate important stiff stretching and bending degrees of freedom for determining the energetics 
of ion diffusion. 

We present a coarse-grain model of an anhydrous illite clay system with different coarse grain 
types for representing both the tetrahedral and octahedral sheets. This model runs approximately 
70 times faster than the all-atom implementation in ClayFF within the LAMMPS158 simulation 
environment due to both reduced number of particles as well as permitting much larger timesteps 
of up to 10 fs for molecular dynamics simulations. While ClayFF is typically used to study only a 
few layers, our CG model can easily simulate dozens of relatively large clay layers in the same 
amount of simulation time. We show that studying large systems is necessary to completely 
eliminate finite size effects in the determination of converged diffusion barriers and provide 
evidence of a thermodynamic compensation for the interstratification of potassium and cesium ion 
distributions in anhydrous illite clay interlayers. Our CG model is capable of investigating 
relatively large systems (10-6 m) on simulation timescales of microseconds and the model is 
available to others through the LAMMPS simulation package. 
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3.2 Methods 

3.2.1 Simulation Cell Setup 

Classical molecular dynamics (MD) simulations of an atomistic 2-layer illite clay under periodic 
boundary conditions were used as a reference for generating a coarse-grain (CG) model using 
iterative Boltzmann inversion. The all-atom MD simulations were performed using the ClayFF159 
forcefield within the LAMMPS158 simulation package. The ClayFF forcefield is a generalized, 
nonbonded model for hydrated clays, and consists mainly of Lennard-Jones and electrostatic 
interactions between atomic centers for bulk clay. It has been fitted to multiple multi-sheet, 
aluminosilicate clay types including kaolinite (Al2Si2O5(OH)4) and pyrophyllite (AlSi2O5(OH)), 
and has been shown to reproduce the swelling behavior of montmorillonite 
(Na3(Si31Al)(Al14Mg2)O80(OH)16) very accurately.159 In addition, ClayFF has been used 
extensively to study the dynamics of ion adsorption in hydrated interlayers.160–162 Because of its 
ability to model multi-layered clay systems under a variety of physical conditions, ClayFF was 
chosen as the reference atomistic forcefield for our coarse-grain model.  

All-atom molecular dynamics simulations were run at 300 Kelvin for 100 picoseconds with a 
timestep of 1 fs after an initial equilibration period of 120 picoseconds. Coordinates of all atoms 
were sampled every 250 fs to build an ensemble for using the IBI algorithm. Each coarse-grain 
simulation was sampled in the NVT ensemble for 40 picoseconds after an equilibration of 100 
picoseconds with a timestep of 3 fs to compromise between fast turnaround time and sufficient 
sampling for IBI. To ensure faithful reproduction of the all-atom data, the coarse-grained systems 
used during the IBI procedure were mapped directly from the corresponding all-atom systems. 

 

3.2.2 CINEB Calculations 

Climbing-Image Nudged Elastic Band (CINEB) calculations were performed using the “neb” 
command within LAMMPS163–166 to obtain energy barriers for interlayer counterion (K+ and Cs+) 
migration, using 25 images integrated with a 5 femtosecond timestep. Before beginning each NEB 
calculation, both ion position and substitution sites were randomized. The first image for each 
NEB calculation was generated by equilibrating the randomized structure, and the final image had 
one ion from the first image displaced to an empty binding site. The remaining images were 
generated by linear interpolation of the ion position, so that the ion’s initial trajectory was a linear 
path between an occupied and unoccupied site. Oxygen atoms surrounding the initial and final ion 
binding sites were included in the reaction coordinate due to their displacement during ion 
diffusion. By including these atoms in the reaction coordinate, the distribution of energy barriers 
was reduced by around 30% without significantly altering the mean diffusion barrier value, 
indicating that this accurately captures important physical effects. 

To determine system enthalpies, five-interlayer clay systems with different patterns of ion 
interstratification, periodic in the x- and y-directions with dimensions of 93 Å and 60 Å, 
respectively, were relaxed in the non-periodic z-direction over a period of 150 ps using a 3 fs 
timestep. The z-direction was non-periodic, and was initialized at 50 Å. The simulations were 
integrated using the multilevel summation method (MSM) real-space electrostatics.167,168 This 
electrostatic integration method computes short-range interactions exactly and computes long-
range interactions by decomposing the potential into a sum of smooth potentials which are 
integrated with a series of progressively coarser meshes. MSM has a competitive level of accuracy 
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as PME for calculating long-range electrostatic interactions, and unlike PME can be used for non-
periodic systems. Using the “shrink-wrap” feature in LAMMPS, the z-dimension of the simulation 
box was allowed to dynamically change over the course of each simulation until convergence. This 
procedure resulted in the system reaching the interlayer spacing that minimized the system 
enthalpy. 

 

3.2.3 CG Model Parametrization 

The iterative Boltzmann inversion (IBI) algorithm for coarse-graining attempts to reproduce all-
atom pair correlation functions by constructing a pairwise interaction potential, a consequence of 
Henderson’s uniqueness theorem.169,170 Although Henderson’s uniqueness theorem cannot be 
shown to rigorously hold for multiple pairwise interactions, in practice coarse graining strategies 
built on the methodology of reproducing the radial pair correlation function have been successful. 
CG simulations are run iteratively, and the new pair correlation function g (r) is used to update 
the old interaction potential. Assuming only pairwise effects, the all-atom pair correlation function 
g (r) of gases can be roughly approximated: 

g (r)  ≈  Ae ( )      (2) 

where A is an arbitrary constant, β is the thermodynamic beta, and u(r) is the potential as a 
function of the radial separation. The iterative Boltzmann inversion algorithm updates the coarse-
grain potential based on the all-atom and CG pair correlation functions: 

u , (r) = u , (r) + ln
( )

( )
    (3) 

Henderson’s uniqueness theorem is only precisely true for a homogenous fluid, but IBI is a robust 
method of coarse-graining that works for heterogeneous fluids and other phases as well. In 
particular, good performance of the IBI algorithm can be expected if run simultaneously for 
“orthogonal” degrees of freedom, such as the inter- and intra-sheet forces in our CG model of illite. 
The iterative Boltzmann inversion procedure was interfaced with LAMMPS by updating non-
bonded and bonded coefficients as well as tabulated potentials after each iteration.  

The CG model of anhydrous clay consists of 5 different coarse-grain centers. This mapping 
reduces the number of tracked centers in ClayFF by approximately 2:1 for the bulk clay. The five 
clay CG centers are as follows: 1 CG type for the octahedral sheet (Type Al) corresponding to the 
structural Al3+ cations; 2 CG types for the tetrahedral sheet, representing O2- anions directly 
adjacent to the interlayer, but are separated into CG types corresponding to oxygen anions near 
sites with and without isomorphic substitutions of Al3+ for Si4+ (Type Os and O), so that their 
interactions with other CG centers are computed separately in order to capture differences in the 
binding site characteristics. In addition, there are two types of ions (Type K and Cs). Silicon and 
aluminum are not explicitly tracked in the tetrahedral sheet. 

The CG sites experience five types of forces based on the following interaction potential:  
harmonic bonds and angles between neighboring centers in the octahedral and tetrahedral sheets, 
Lennard-Jones interactions between CG centers, electrostatics between ion and substituted-oxygen 
CG centers, and finally tabulated forces (Eq. (4)).  

U = ∑ k (r − r ) + ∑ k (θ − θ ) + ∑ 4ϵ − + ∑ U , .(r) + U  (4) 
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The Lennard-Jones interactions are defined between each pair of CG centers and are not based on 
mixing rules; this approach was chosen because the CG centers represent different numbers of 
atoms from the all-atom model, and therefore the pairwise interactions are unlikely to be 
characterized by effective radii. Lennard-Jones interactions are slightly less computationally 
expensive than tabulated forces and are sufficient for the purposes of this study for characterizing 
the forces between sheets. Tabulated potentials are used between the ion and tetrahedral CG 
centers to more accurately capture the nature of the binding sites. Lennard-Jones interactions and 
electrostatics are excluded for 2nd, 3rd, and 4th neighbors based on the bond and angle topology. 
After each round of IBI, the updated CG potential is fitted to either a harmonic or Lennard-Jones 
function for most of the degrees of freedom, and this fit is used in the next round of MD simulation.  

In some cases, the same parameters were used to characterize multiple interactions due to the 
corresponding all-atom model centers having very similar pair correlation functions. For example, 
one single Lennard-Jones potential was used to govern the nonbonded interaction between the 
octahedral and tetrahedral CG sites. This approach further simplifies the model, although it does 
not affect its computational cost. To run our CG clay model, all that is needed is a properly 
configured input script and data file with the clay system coordinates, charges, and topology. No 
modification to the LAMMPS software itself is needed to run the model, and the software used to 
run the IBI algorithm is entirely separate from the core codebase of any simulation software. The 
CG model is highly portable, and should be able to run on any other molecular simulation package 
that allows for the implementation of tabulated potentials. 

 

3.3 Results 

3.3.1 Clay CG Performance 

Figure 3.1 and Supplementary Figure 3.1 show the distribution of bond distances and angles for 
the all-atom and CG models for the degrees of freedom fit with harmonic bonds, in which we 
observe overall excellent agreement. For the non-bonded degrees of freedom, Figure 3.2 and 
Supplementary Figure 3.2 present the radial distribution function (RDF) of the all-atom model in 
comparison to the most converged iteration for the CG model. Since the fit for the nonbonded 
degrees of freedom to the Lennard-Jones functions used only the first peak of each rdf, there is a 
relatively good agreement for all pair correlations with the exception of the O-O and O-Al CG 
types. However, even in these cases there is relatively good reproduction of the positions of 
secondary peaks in the RDFs, indicating that the geometry of the all-atom and CG systems are 
quite similar. The model is well converged based on the similarity of the oxygen-ion CG center 
RDFs to the corresponding distribution in the all-atom model, since these degrees of freedom are 
the most important for fully characterizing the ion binding site. 
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Figure 3.1. Comparison of the probability distribution of bond distances and bond angles for the 
all-atom (solid) and coarse-grained model (dotted). (a) Distribution of bond distances for the O-O 
CG bond; (b) Distribution of bond angles for the O-O-O 60 degree angle type bond. 

 

 

 

Figure 3.2. Comparison of the radial distribution function (RDF) for the all-atom (solid) and 
coarse-grained model (dotted). RDFs for (a) O-Cs CG types and (b) Os-Cs CG types. RDFs were 
sampled every 250 fs over a time period of 40 ps in equilibrated systems. 

 

In order to quantify the increase in speed for our coarse-grain model, an all-atom model and its 
corresponding coarse-grain model were run for 3 nanoseconds on 32 cores, and the real time 
needed to simulate each 100 fs was recorded. The all-atom system consisted of 2 clay layers with 
periodic boundary conditions and a total of 9099 atoms and was simulated using the ClayFF force 
field. The coarse-grain model was simulated using the force field developed in this paper. The 
coarse-grain model ran roughly 6.9 times faster than the corresponding all-atom model with the 
same timestep. The shortest vibrational period in the all-atom model is on the order of 10 fs due to 
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the explicit modelling of hydrogen, and in contrast the fastest vibrational mode in the coarse-grain 
model presented here is between bonded oxygen-oxygen centers, which is on the order of 100 
fs.171 Because of this, the coarse-grain model is stable with a timestep of up to 10 fs, while ClayFF 
must use an integration timestep on the order of 1 fs. Thus our coarse-grain model represents a 
roughly 70-fold speedup compared to the corresponding all-atom forcefield, which is comparable 
to the speedup obtained by other groups using similar coarse-graining techniques.155,156  

As shown by Johnson et al., the Henderson uniqueness proof implies that there is always a 
representability problem as a general feature of a CG potential, i.e. a CG procedure cannot 
simultaneously resolve all the properties at a given state point.172 For example, reproducing the 
energetics of a system when the coarse-graining approach is based on reproducing structural or 
geometric features of the more complex reference system is not formally guaranteed.137,173 
However, the structural coarse-graining approach is likely to reproduce qualitative trends in 
properties such as energetic barriers for ion diffusion in anhydrous clays, since these barriers will 
be primarily determined by mechanical forces.  

 

3.3.2 Energy Barriers to Ion Migration in Pure Phases 

We sought to further validate our CG model by performing NEB calculations to determine 
diffusion barriers for different ions in the presence of the same or different ions in the clay 
interlayers. While the energy barriers derived from the coarse-grain model were consistently 
higher and had a broader distribution than the corresponding barriers in the all-atom model, Figure 
3.3 confirms that the CG model qualitatively reproduces the difference in diffusion energy barriers 
for K+ and Cs+ found previously in the all-atom clay model.116  

The mean energy barrier for the migration of potassium in pure K-illite was found to be 300 ± 94 
kJ/mol (Figure 3.3a) on average, compared to 226 ± 51 kJ/mol in the corresponding ClayFF model 
(Figure 3.3b). We also found for both K+ and Cs+, the energy barrier for diffusion was found to be 
much lower in systems with a higher fraction of Cs+ atoms in the interlayer. This result is in 
agreement with the trend derived from the all-atom forcefield, which has led to our determination 
of a mechanism for interlayer exchange116, whereby as more Cs+ enters an interlayer, both ion 
species become much more mobile, effectively increasing the rate at which the exchange front will 
advance into the interlayer.124,125,143 
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Figure 3.3. Energy barrier distribution for potassium ion diffusion in a 4-layer periodic clay 
system with 100% potassium interlayers. (a) CG model and (b) all atom Clay-FF model116 
(reproduced with permission). The distribution of energy barriers in the CG model was 
consistently found to be about 70 kJ/mol higher and 30% more broad than the corresponding all 
atom barriers. This effect is likely due to the inherent undersampling of high-energy paths during 
the IBI algorithm. 

 

Both the CG and all-atom energy barriers correspond to timescales that are inaccessible for direct 
observation of diffusion events in MD simulations,116 but the ability of the CG model to 
approximate the energy barriers and their trends with respect to all atom ClayFF is promising for 
using this coarse-grain model as a probe for changes in diffusion barriers to infer the kinetics of 
ion exchange. Properly modelling ion diffusion near and far from the exchange front necessarily 
requires a model capable of simulating a large, heterogeneous interlayer, as well as overcoming 
finite size effects by modeling many interlayers (i.e. greater than 2), which is extremely 
computationally expensive in all-atom ClayFF.  

For sufficiently small periodic systems, the finite size effect can dramatically impact the 
compressibility, and would be expected to increase the calculated barrier to ion diffusion 
artificially.174 Therefore, the magnitude of the NEB barriers was studied as a function of the 
number of simulated layers using periodic 2-interlayer, 4-interlayer, and 12-interlayer systems. 
Table 3.1 shows the average energy barrier for K+ diffusion in K-illite as a function of the number 
of clay layers and the energy barrier distributions determined by NEB are presented in 
Supplementary Figure 3.3. Since there was essentially no observed change in the average energy 
barrier and variance between 4- and 12-interlayer systems, it was determined that simulating at 
least 4 interlayers would be sufficient to approximate an effectively infinite clay for the purposes 
of this study.  

 

Table 3.1. Average Energy Barrier (and variance) for K+ ion diffusion in periodic K-illite as a 
function of the number of interlayers. Very small systems greatly overestimate the barrier due to 
finite size effects. Both the CG model and the all-atom model in ClayFF feature very broad energy 
barrier distributions. 

# of Interlayers Average Energy Barrier and 
variance (kJ/mol) 

2 332 +/- 131 

4 300 +/- 94 

12 298 +/- 95 
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3.3.3 Interlayer Energetics and Ion Migration Barriers in Interstratified and 
Homostructured Illite 

Mixing of unlike ions in layered silicate interlayers can adopt different structures depending on 
ion distributions in the final structure. When interlayer ions form random mixtures the phase is 
homostructured, and when ions are separated into distinct phase-separated layers the phase is 
interstratified (Figure 3.4 and Figure 3.5a, respectively).  In the following section we analyze the 
impact of structure on the barriers to ion migration, and consequently on the kinetics of ion 
exchange. 

 

Figure 3.4. Visualization of a periodic four layer homostructured clay particle in VMD.175 
Orthographic representation showing bulk clay (gray), cesium (red), and potassium (blue) coarse-
grain types. The structure is periodic in all three dimensions, with ions at the top in contact with 
the clay layer at the bottom of the image. 
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Figure 3.5. Visualization of a non-periodic five layer interstratified clay system in VMD.175 (a) 
Orthographic representation showing bulk clay (gray), cesium (red), and potassium (blue) coarse-
grain types; (b) top-down visualization of the three sheets in each clay layer; (c) CG centers of the 
tetrahedral sheet with substitutions shown in purple; (d) CG centers of the octahedral sheet. 

 

The results in Table 3.2 summarize the energy barriers to ion migration as a function of layer Cs+ 
content for homostructured K/Cs-illites (Figure 3.4), in which each interlayer consisted of both 
Cs+ and K+ ions positioned randomly at counterion binding sites. As expected, both ions experience 
dramatically reduced energy barriers in Cs-illite compared to K-illite due to interlayer expansion, 
and there is a nearly linear trend in the change in barrier height as a function of composition, 
consistent with prior results using an all-atom forcefield.116 As a function of the change in 
equilibrium interlayer spacing, these results correspond to a decrease in the average barrier energy 
of approximately -71 kJ/mol per Å for Cs+ and -78 kJ/mol per Å for K+. This result is similar in 
magnitude to the change in energy barrier found in the all-atom ClayFF model of -92 kJ/mol per 
Å for K+.116 The information in Table 3.2 is presented graphically in Figure 3.7. 

 

Table 3.2. Average energy barrier (and variance) for Cs+ and K+ ion diffusion in a 4-layer periodic 
clay system as a function of interlayer composition. Each system featured a homogenous mixture 
of bound Cs+ and K+ ions in all four interlayers. Interlayer expansion as a function of composition 
was very nearly linear, with an interlayer expansion of 0.071 Å under complete exchange for Cs+. 

Fraction Cs+ in  

the interlayer 

K+ NEB Barrier and  

Variance (kJ/mol) 

Cs+ NEB Barrier and  

Variance (kJ/mol) 

Interlayer 
Spacing (nm) 

0 300 ± 94 321 ± 83 0.984 

0.25 286 ± 83 309 ± 75 0.997 

0.5 279 ± 94 295 ± 68 1.015 

0.75 262 ± 84 283 ± 88 1.032 

1 243 ± 74 272 ± 83 1.055 
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One advantage of our ClayCG model is the ability to model numerous clay structures with 
significantly reduced computational cost. Small clay systems were used to investigate the mixing 
enthalpy of interstratification due to ion exchange. These systems consisted of four periodic 
anhydrous interlayer regions between five illite clay layers stacked in a vertical configuration. The 
outer layers lack counterions on the exterior basal surfaces, which is necessary to allow 
convergence of the simulation cell size during the shrinkwrap procedure in LAMMPS. Although 
redistributing these ions in the interlayers is not physically realistic, it is not expected to 
significantly alter the equilibrium interlayer spacing or NEB energies presented in Table 3.3, 
because basal spacing is controlled primarily by the counterion size. The excess mixing enthalpy 
was computed as: 

ΔH = H − f H − f H    (5) 

where ΔH  is the excess enthalpy of mixing (i.e., the difference between the real and ideal 
enthalpy values), H  is the computed minimum enthalpy of the clay system being simulated, f  is 
the fraction of ion i in the clay system, and H  and H  are the enthalpies of five-layer clay 
containing only cesium and potassium in their interlayers, respectively (see Methods). For all of 
the five-layer systems investigated, each interlayer was occupied exclusively by one type of ion 
and did not have an exchange front. In the following tables, each five-layer system is abbreviated 
using the identity of the ions in its interlayers from the bottom to the top as a code. For example, 
the system corresponding to “Cs Cs K K” had two adjacent interlayers filled by cesium ions below 
two interlayers filled by potassium ions (see Figure 3.5). 

Table 3.3 summarizes the trends in the layer basal spacing, energy barriers to migration, and 
normal stress in the z-direction on both types of ions within different interstratification 
arrangements. For both K+ and Cs+ ions, the overall trend is towards increasing normal stress (and 
therefore cohesion) with decreasing interlayer spacing. The presence of Cs-illite decreases z-axial 
stress on K-illite layers, while the presence of K+ in the structure tends to increase z-axial stress 
on Cs+ interlayers. This finding suggests that the longstanding supposition117 that exchange on a 
layer increases cohesive energy in neighboring K+ interlayers is incorrect, at least when the 
adjacent layer also contains anhydrous counterions. Instead, we find that exchange on one layer, 
regardless of its proximity to the clay interior, alters the basal spacing and cohesive energies of 
ions in immediately adjacent layers. As shown in Figure 3.6, the magnitude of this effect decreases 
rapidly as a function of distance from the exchanged layers and is nearly undetectable only a few 
layers away from the Cs-illite/K-illite interface.  
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Table 3.3. Trends in interlayer spacing, ion diffusion energy barrier, z-axial stress, and excess 
mixing enthalpy versus interstratification. In general, both z-axial stress and diffusion energy 
barrier increase dramatically with increasing interlayer confinement. Adjacent Cs+ interlayers are 
associated with a higher excess enthalpy of mixing, suggesting a thermodynamic compensation 
for alternation of Cs-illite and K-illite interlayers interstratified particles. For interstratified 
particles, NEB barriers are computed for interlayers adjacent to the Cs-illite/K-illite interface. 

 

Interstratification 
Type 

Interlayer 
spacing (nm) 

NEB energy 
(kJ/mol) 

z-stress  
(atm) 

ΔΗmix  
(kJ/mol) 

Cs in Cs Cs Cs Cs 1.055 273 1.25  

Cs in K  Cs Cs Cs 1.046 284 1.27 3.33 

Cs in Cs Cs K  K 1.043 289 1.29 -5.89 

Cs in Cs K  Cs K 1.038 291 1.35 -9.93 

Cs in Cs K  K  K 1.041 288 1.41 -7.09 

Cs in K  Cs K  K 1.037 286 1.38 -7.32 

Cs in Cs K Cs Cs 1.049 279 1.30 0.70 

     

K  in K  K   K  K 0.984 299 1.64  

K  in Cs K  K  K 0.994 289 1.60 -7.09 

K  in Cs Cs K  K 0.999 278 1.57 -5.89 

K  in Cs K  Cs K 1.005 275 1.48 -9.93 

K  in K  Cs Cs Cs 1.001 273 1.47 3.33 

K  in K  Cs K  K 0.990 294 1.60 -7.32 

K  in Cs K Cs Cs 1.001 274 1.50 0.70 
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Figure 3.6. Reduction in K+ diffusion barrier in a four layer interstratified particle. The barrier 
reduction to K+ diffusion in a “Cs K K K” particle relative to bulk K-illite is shown as a function 
of the distance from the Cs-illite/K-illite interface. 

 

For both types of ions, there is a clear trend of increasing energy barrier under increased 
confinement. In the case of only one Cs-illite layer present in bulk K-illite, it is clear from the 
interlayer spacing and normal stress that the cesium interlayer experiences maximal compression. 
To confirm this, NEB calculations were run on the displacement of a Cs+ ion in Cs-illite in the 
middle of a 12-layer K-illite particle.  The barrier in this case was found to be 288 kJ/mol, very 
similar to the 286 kJ/mol barrier for Cs+ diffusion in the “K Cs K K” particle (Table 3.3), 
supporting the conclusion that interlayer compression and expansion in interstratified particles is 
a localized effect. Similarly, a K-illite layer isolated in bulk cesium relaxes to a much larger 
spacing.  

The compensatory expansion and compression of neighboring layers may explain why the change 
in Cs+ and K+ diffusion barriers in interstratified particles is greater than the corresponding change 
in homostructured particles for a given interlayer spacing (Figure 3.7). In homostructured clays, 
the local interlayer spacing near a Cs+ counterion is greater than the average interlayer spacing due 
to its larger atomic radius, resulting in a lower migration barrier for a given spacing. The opposite 
is true for K+ counterions, which experience greater local confinement in homostructured clays 
than would be expected from measuring the average interlayer spacing alone. In contrast, the 
compression and expansion of interlayers in interstratified particles results in a more uniform 
interlayer spacing, and therefore a more dramatic change in the diffusion barrier. This effect may 
be an artifact of using ClayFF as the all-atom model, as ClayFF is known to overpredict flexibility 
in large clay systems.  
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Figure 3.7. Migration barriers to counterion diffusion in homostructured and interstratified clay 
particles. (a) Barriers for K+ migration; (b) barriers for Cs+ migration. These plots summarize the 
NEB data from Table 3.2 and Table 3.3. 

 

From the trends in the energy barriers to ion diffusion in K-illite interlayers adjacent to Cs-illite 
interlayers (Table 3.3), one would assume that exchange would be enhanced near cesium-
dominated interlayers instead of being inhibited. That is, diffusion energy barriers in neighboring 
K-illite interlayers are lowered in the immediate vicinity of a Cs-illite interlayer. Experimental 
evidence for the Cs/K system is insufficient to confirm or refute this hypothesis, but there is some 
visual evidence that Cs exchanged layers occur in clumps in a K-phlogopite and are not randomly 
distributed, as expected from these results.124  

 

3.3.4 Impact of the Exchange Front on Barriers 

Exchange of ions of different size leads to bending deformation of the layer structure locally, which 
may alter the coordination of K+ in the vicinity of the exchange front.176 In this case, the selectivity 
for and mobility of K+ is expected to vary with the sharpness and uniformity of the front. In order 
to capture the effects of the sharp exchange front in anhydrous illite clay systems,116,124,125 a series 
of simulations were performed in which all ions on one half of the exchanging layer were assigned 
to be Cs+ and all ions on the other half were assigned to be K+. The exchange front was modelled 
in a periodic, four-layer clay system that featured one completely exchanged interlayer below the 
exchange front and two fully unexchanged interlayers above the exchange front. Ions far from the 
exchange front did not have significantly altered energy barriers to diffusion compared to barriers 
in an interstratified particle, but K+ ions characterized at the interface showed a slightly reduced 
average energy barrier compared to an interstratified clay with no exchange front barrier (273 
kJ/mol vs. 278 kJ/mol). In comparison with the results of the energy barrier distribution presented 
in Table 3.2, K+ ions near the exchange front experience approximately 20% additional barrier 
lowering (27 kJ/mol) with respect to the barrier in pure K-illite as compared to ions far from the 
front (22 kJ/mol), and ions more than approximately 2 to 3 nm from the exchange front are 
essentially unaffected by it. 

 



100 
  

3.3.5 Thermodynamic Compensation for Ordered Interstratification 

Amongst all of the non-periodic four interlayer systems studied, the system “K Cs K Cs” exhibited 
the greatest thermodynamic compensation for interstratification. Overall, the ΔH  trends 
indicate that there is a thermodynamic driver during the exchange process to form alternating K-
illite and Cs-illite layers (i.e. ordered interstratified structures).128,144,177 Exchange will tend to 
disrupt bulk K-illite, and thermodynamic feedback will favor exchange that leads to the formation 
of ordered interstratification instead of regions of bulk Cs-illite. However, the thermodynamic 
compensation for forming ordered interstratification is quite small (at most around 10 kJ/mol), 
indicating that it is unlikely to be the primary cause of experimentally observed differences in the 
exchange rate of adjacent interlayers.124,125 

 

3.4 Conclusions 

We have presented a coarse-grain model of anhydrous K- and Cs-illite that represents a 70-fold 
speedup over the corresponding all-atom ClayFF forcefield. Although using tabulated potentials 
between the oxygen coarse-grain centers may slightly improve the fidelity of modelling the ion 
binding sites, there is a non-negligible computational cost savings associated with using Lennard-
Jones potentials as compared to splined tabulated potentials.178 While other CG clay models have 
represented ion binding sites as single CG centers,155,156 the model presented here is capable of 
capturing physical degrees of freedom important during ion diffusion in the confined 
interlayer.125,136 By modelling all the atoms within and adjacent to the interlayer, we were able to 
accurately reproduce the structure of ion binding sites without significant computational overhead.  

The reduction in particle density due to the coarse-grain procedure is especially helpful for nudged 
elastic band simulations, since the number of molecular dynamics steps necessary to reach 
convergence of the energy pathway is heavily dependent on system size and the number of 
particles surrounding the transition path. We were able to converge NEB pathways on relatively 
large systems, which is promising for probing the energy barriers in physical scenarios that would 
necessitate investigating bulk effects. Our CG model qualitatively reproduced the ion diffusion 
energy trends as a function of interlayer separation found in ClayFF116 and demonstrates interlayer 
expansion near sharp exchange fronts and near fully exchanged layers. Our model indicates a 
significant enthalpy of mixing associated with adjacent K- and Cs-illite interlayers in interstratified 
particles, which may impact exchange front propagation in adjacent interlayers. The coarse-
graining strategy used here is expected to generalize well to other anhydrous and swelling clay 
types, and the intrasheet CG bond potentials will be directly portable to other clay systems. 
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3.6 Supplement 

Coarse-grain and all-atom simulations were run in LAMMPS on the Edison and Cori 
supercomputers at the National Energy Research Scientific Computing Center (NERSC) as well 
as our own in-house supercomputing cluster, Armada. All-atom simulation data was generated 
from 2-layer K-illite and Cs-illite clay systems with randomized substitution sites. For each ion X, 
the composition of the simulated illite clay was X0.7[Si3.3Al0.7]-Al2O10(OH)2. All-atom systems 
were equilibrated with a 1 fs timestep in the NVE ensemble for 120 picoseconds, and subsequently 
sampled every 250 fs over a period of 40 ps. Coarse-grain simulations were run in the NVT 
ensemble for 40 picoseconds after an equilibration time of 100 picoseconds with a timestep of 3 
fs. The Coulombic interactions for the coarse-grain model were computed using a particle-particle 
particle mesh with a cutoff of 10 Å. The cutoff distance was the same for both Lennard-Jones and 
tabulated interactions between the coarse-grain centers. These simulations were run in the NVT 
ensemble at 300 Kelvin using a Nosé-Hoover thermostat and barostat. The all-atom reference 
model was simulated under the same conditions to ensure transferability. 

The all-atom radial distribution functions in Supplementary Figure 2.1 were fitted with harmonic 
potentials to derive an initial guess for the corresponding coarse-grain potentials. These initial 
potentials were used along with non-bonded interaction potentials derived from the all-atom RDFs 
in Supplementary Figure 2.2. However, this first guess very poorly represented the clay structure 
and failed to reproduce flat clay sheets. Better initial parameters for the harmonic potentials were 
found by running the iterative Boltzmann inversion (IBI) algorithm169,170 on isolated, uncharged 
sheets, and then subsequently re-introducing non-bonded interactions. We then used IBI to 
converge the potentials associated with each of the degrees of freedom in Supplementary Figure 
2.1 and Supplementary Figure 2.2 simultaneously, which required around 100 iterations to achieve 
high fidelity in reproducing the oxygen-ion RDFs. Although IBI is much more difficult to converge 
by changing multiple potentials after each round, the final CG model was able to more accurately 
reproduce the degrees of freedom near ions in the interlayer in the presence of the full force field. 
The potentials in the coarse-grain model were derived by iteratively simulating an anhydrous two-
layer periodic clay system, with dimensions of 93 Å x 60 Å x 20 Å. 
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Supplementary Figure 3.1. Comparison of the probability distribution of bond distances and 
bond angles for the all-atom (solid) and coarse-grained model (dotted). (a) Os-Os CG bond; (b) 
Al-Al CG bond; (c) O-O-O CG type 120 degree angle; (d) Os-Os-Os CG type 60 degree angle; (e) 
Al-Al-Al CG type 120 degree angle.  
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Supplementary Figure 3.2. Comparison of the radial distribution function (RDF) for the all-atom 
(solid) and coarse-grained model (dotted). RDFs for (a) O-K CG types; (b) Os-K CG types; (c) O-
O CG types; (d) O-Al CG types.  
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The data in Supplementary Figure 3.3 was generated using the climbing image nudged elastic band 
(CINEB) method implemented in LAMMPS. In CINEB, the highest-energy system replica is 
driven to a true saddle point to better approximate the exact minimum energy path for a given 
transition.163–166 Fictitious spring forces are introduced between images, which are initialized as a 
linear interpolation between the equilibrium bound state and proposed final state. Since the initial 
and final states are also driven to an energy minimum during CINEB, randomization of ion 
positions can be implemented efficiently by displacing ions according to the underlying geometry 
of the clay interlayer. Substitutions and ion configurations in the interlayer were randomized 
during the simulation of both periodic and non-periodic clay particles for all CINEB results 
presented in this work. 25 images of the clay system were run in parallel on 25 cores for each 
energy barrier calculation. The simulations were run with a 5 fs timestep to enhance accurate 
convergence of the diffusion pathway.  
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Supplementary Figure 3.3. Migration barrier distributions for K+ diffusion in K+-illite as a 
function of the number of interlayers. Each system is periodic in all three dimensions. (a) 2 
interlayers, (b) 4 interlayers, (c) 12 interlayers.  
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4 Summary 
 
The goal of this dissertation is to present interpretable reduced order models of existing machine 
learning methods and all-atom simulations that faithfully retain the properties of the original 
model. A reduced order surrogate model was developed with the intention of being used in high-
dimensional optimization of return on investment or other target functions. We developed a coarse-
grain model of a clay system to better understand ion behavior near an exchange interface in the 
bulk phase. By randomizing ion position, we were able to implement iterative Boltzmann inversion 
in a crystalline system without a damping factor and better sample the entire phase space. Both of 
these models are more computationally tractable than the models they replace, and in the case of 
SMiRFs are much more quantitatively interpretable in low-dimensional representations of the 
feature space. 
 
Chapter 2 presents a methodology for dense imputation of discrete soil data derived from soil 
samples using random forest regression against dense features such as multispectral images and 
electrical conductivity. By generating a dense set of soil nutrient concentrations, we were able to 
use them as features to build a quantitative model of crop yield as a function of soil properties. 
Generating a fundamentally localized model of sparse data as a function of dense data results in a 
model that is much more general than by using kriging alone, especially when the dense datasets 
are expected to be correlated to the sparse soil data. We found that we were able to predict a map 
of fertilizer application that would boost yield by approximately 100 kg/ha with essentially no 
additional cost by optimizing the ROI of a reduced order surrogate model of a random forest model 
of yield. The SMiRF methodology is particularly well suited to datasets with a high-dimensional 
feature space, because the iterative random forest procedure extracts low-dimensional, high-
importance feature interactions in a way that scales very slowly with dimension. We were able to 
reproduce and expand on existing agronomic trends in relatively healthy soil by using a purely 
data-driven approach, attesting to the efficacy of treating each 100 m2 section of a field as a roughly 
independent test sample, thereby drastically increasing the effective number of samples that can 
be used in crop modelling. 
 
Chapter 3 focuses on a coarse-grain representation of illite clay with cesium and potassium ions in 
the interlayer. Through iterative Boltzmann inversion we were able to efficiently derive a roughly 
2:1 model that in practice runs approximately 70 times faster than a corresponding all-atom 
simulation. The CG model is also capable of simulating dozens of clay layers simultaneously. 
Using CINEB simulations, we found that the barrier to ion site translocation depends significantly 
on the interlayer spacing, and moreover that there is a thermodynamic compensation associated 
with alternating layers filled with cesium and potassium ions, consistent with experimental results. 
By simulating multiple arrangements of alternating interlayers, we were able to show that ions in 
a layer far from an exchanged interlayer do not have a significant associated enthalpy of mixing, 
while those in neighboring layers have a greatly altered thermodynamic landscape. By using 
structural coarse-graining in a rigid phase, we were able to very accurately reproduce the 
mechanical behavior of the binding sites as indicated by the extremely close match between the 
radial distribution functions of the all-atom and coarse-grain centers.  
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