
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Surrogate and Iterative Machine Learning Methods for Modelling Chemical Phenomena

Permalink
https://escholarship.org/uc/item/6bw2b4jp

Author
Schaettle, Karl Bernard

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6bw2b4jp
https://escholarship.org
http://www.cdlib.org/

Surrogate and Iterative Machine Learning Methods for Modelling Chemical Phenomena

By

Karl Bernard Schaettle

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Chemical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Kranthi K. Mandadapu, Chair

Professor Alexis T. Bell

Professor Alexander Katz

Professor Haruko M. Wainwright

Fall 2022

Surrogate and Iterative Machine Learning Methods for Modelling Chemical Phenomena

© Copyright 2022
Karl Bernard Schaettle

All rights reserved

1

Abstract

Surrogate and Iterative Machine Learning Methods for Modelling Chemical Phenomena

by

Karl Bernard Schaettle

Doctor of Philosophy in Chemical Engineering

University of California, Berkeley

Professor Kranthi K. Mandadapu, Chair

Modelling soil properties has important implications both for soil remediation and preventing
misapplication of fertilizer in large-scale farming settings. By better understanding the dynamics
of radioactive cesium infiltration and binding in clays, remediation strategies can be designed to
lessen the long-term impact of radioactive particles on the environment and society. Similarly,
adverse environmental effects associated with fertilizer runoff such as toxic algal blooms can be
mitigated by precisely modelling soil nutrient concentrations and quantitatively predicting the
economic effect of fertilizer application. Roadblocks to modelling microscale ion diffusion in bulk
clay include the relatively long timescale of cesium-potassium ion exchange as well as the
excessive computational cost associated with modelling all-atom systems; in particular, explicitly
modelling hydrogen atoms drastically reduces the minimum simulation timestep. Modelling crop
yield as a function of the spatial distribution of soil nutrients is complicated by an inability to take
a dense set of soil samples in large-scale farms. There is also a relative lack of traditional
agronomic literature quantitatively describing crop yield as a function of the high-dimensional soil
nutrient feature space.

Machine learning and surrogate modelling methods are becoming increasingly common in
engineering and science. While “black box” methods such as random forest regression and neural
network modelling have been very successful at fitting physical phenomena, there is an increasing
need to qualitatively and quantitively improve model interpretability and computational efficiency.
In addition, machine learning models can be quite computationally expensive to use in
optimization and may not have a well-defined methodology for doing so. Methods for improving
computational efficiency of a model include coarse-graining (in the case of all-atom simulations)
or approximating a “black box” model with another model designed to have tractable optimization
properties. In order to retain fidelity to the initial model while increasing interpretability, in both
cases the dimensionality of the model is reduced either by introducing multi-atom coarse-grain
centers or approximating the target function as a linear combination of low-dimensional
components. To ensure that the coarse-grain or reduced order surrogate models accurately capture
properties of the original model, information from the model being approximated is used in their
construction. In the case of reduced order surrogate modelling of random forest regression, low-
dimensional components are chosen on the basis of ranked feature interaction importance. Using
iterative Boltzmann inversion (IBI) to coarse-grain an all-atom simulation, the radial distribution

2

functions of only a subset of atoms are used to reproduce structural and thermodynamic properties
of the original system.

The goal of the study performed in Chapter 2 was twofold: to use a data-driven methodology to
model soybean yield (Glycine max L. Merr.) as a function of soil nutrients in well-irrigated soil
and to develop a reduced order surrogate model capable of gradient ascent optimization. Several
datasets were used to approximate soil nutrient concentrations using a random forest model:
discrete soil samples, dense multispectral images of the plants near midseason from an unmanned
arial vehicle (UAV), and a dense map of soil electrical conductivity. An iterative random forest
(iRF) model was then fitted to a dense set of soil features, and important feature interactions of
dimension 2 to 4 were extracted. Each feature interaction was used to generate a Highly Adaptive
Lasso (HAL) pseudo-response surface corresponding to a low-dimensional projection of the
feature space. We used the HAL surfaces to develop a reduced order surrogate model (ROSM) of
the random forest; this ROSM is a linear combination of HAL surfaces derived from the feature
interactions identified by the random forest. The resulting ROSM essentially has low local
dimension because each component has maximum dimension 4. In practice, order 5 and 6
interactions were identified, but retaining them greatly decreased the computational efficiency of
the HAL modelling and did not improve the model fidelity. Because the ROSM is a linear
combination of low-dimensional surfaces, its gradient can also be described as a linear
combination of the gradients of each surface. The ROSM can therefore be used in gradient ascent
optimization at the same computational cost of evaluating the ROSM itself and is well-defined
over the entire feature space. Maps of fertilizer application are derived for optimizing the soil
concentrations of phosphorus and potassium.

Chapter 3 is a study using iterative Boltzmann inversion to generate a coarse-grain model of an
all-atom simulation of ion interstratification in illite clay. Experimental results indicate that cesium
ions can exchange with potassium ions in bulk layered silicates, indicating that there is a
mechanical or thermodynamic compensation for the incorporation of the larger cesium ion.
Iterative Boltzmann inversion was used to incrementally update coarse-grain simulations of four
clay layers by adjusting bonded and non-bonded interaction strength between coarse-grain centers,
representing oxygen atoms in the clay layers and the ions themselves. The model was able to
reproduce results from smaller all-atom simulations indicating that the barrier to ion exchange is
a function of interlayer spacing, which in turn depends on the identity of the ion in the interlayer.
By randomizing the position of ions in the interlayer between each coarse-grain simulation, the
coarse-grain model was better able to sample the phase space and subsequently was not subjugated
to overfitting based on the configuration of the ions. Most importantly, the coarse-grain model is
able to run approximately 70 times faster than an all-atom simulation due to a roughly 2:1 reduction
in the number of modelled particles. By eliminating explicit hydrogen atoms in the coarse-grain
model, the time step could be increased by a factor of roughly 10.

i

Table of Contents

Abstract ... 1

Table of Contents ... i

List of Figures .. iii

List of Tables ... iii

Dedication .. iv

1 Introduction ... 1

1.1 Surrogate Modeling to Learn Ecosystem Control Points in Agriculture 1

1.1.1 Spatial Statistics and Interpolation: Kriging ... 1

1.1.2 Review of Machine Learning in Precision Ag .. 2

1.1.3 Crop Nutrient Interactions .. 3

1.1.4 Machine Learning Models of Yield .. 5

1.1.5 Dimensionality Reduction and Surrogate Modeling... 6

1.1.6 Review of Soil Ecology in Ag .. 8

1.2 Structural Coarse-Graining .. 9

1.2.1 Iterative Boltzmann Inversion... 9

1.2.2 Force Matching ... 11

1.2.3 Relative Entropy Minimization ... 11

1.3 Statement of Innovation ... 13

2 A Surrogate Modeling Strategy to Learn Ecosystem Control Points in Agriculture 15

2.1 Introduction .. 15

2.2 Results and Methods .. 18

2.2.1 Field Site Description ... 18

2.2.2 Data Pre-Processing and Co-Registration ... 18

2.2.3 The Yield Model ... 20

2.2.4 An Interpretable Yield Model ... 20

2.2.5 The SMiRF Model as a Composition of Ecosystem Control Points 24

2.3 Discussion .. 28

2.4 Supplement ... 29

2.4.1 Results From Model with UAV Multispectral Bands Included as Parameters 29

2.4.2 NDVI... 34

2.4.3 Yield Response Curves for Observed Variables ... 39

ii

2.5 Code ... 53

2.5.1 Python Script to Match Soil Data to Measured Field-Scale Data
(Randomly_Bin.Py) .. 53

2.5.2 R Script to Run Regression Generating Imputed Field-Scale Soil Data
(iRF_on_data_UAV_soil.R) ... 56

2.5.3 Code for Local Importance Regression .. 59

2.5.4 Code for Response Surface Generation. ... 61

2.5.5 Code for ROSM Generation. .. 64

3 A Structural Coarse-Grained Model for Clays Using Simple Iterative Boltzmann Inversion 85

3.1 Introduction .. 85

3.2 Methods .. 88

3.2.1 Simulation Cell Setup ... 88

3.2.2 CINEB Calculations.. 88

3.2.3 CG Model Parametrization ... 89

3.3 Results .. 90

3.3.1 Clay CG Performance ... 90

3.3.2 Energy Barriers to Ion Migration in Pure Phases ... 92

3.3.3 Interlayer Energetics and Ion Migration Barriers in Interstratified and
Homostructured Illite .. 94

3.3.4 Impact of the Exchange Front on Barriers .. 99

3.3.5 Thermodynamic Compensation for Ordered Interstratification 100

3.4 Conclusions .. 100

3.5 Acknowledgements .. 100

3.6 Supplement ... 101

4 Summary ... 106

5 References ... 107

iii

List of Figures
Figure 2.1. Field-scale data imputation... 19
Figure 2.2. Comparison of random forest and reduced order surrogate model. 22
Figure 2.3. Example response surfaces from the iterative random forest 23
Figure 2.4. Optimal amendment application maps for maximizing ROI 26
Figure 3.1. Comparison of the probability distribution of bond distances and bond angles 91
Figure 3.2. Comparison of the radial distribution function (RDF) ... 91
Figure 3.3. Energy barrier distribution for potassium ion diffusion ... 93
Figure 3.4. Visualization of a periodic four layer homostructured clay particle in VMD 94
Figure 3.5. Visualization of a non-periodic five layer interstratified clay system in VMD 95
Figure 3.6. Reduction in K+ diffusion barrier in a four layer interstratified particle 98
Figure 3.7. Migration barriers to counterion diffusion ... 99

Supplementary Figure 2.1. Parity plot of ROSM and random forest model. 29
Supplementary Figure 2.2. Response surfaces highlighting the effect of organic matter on yield ... 32
Supplementary Figure 2.3. NDVI vs. yield. ... 34
Supplementary Figure 2.4. Comparison of soil electrical conductivity in 2018 and 2017 35
Supplementary Figure 2.5. Random forest prediction residual versus measured yield. 36
Supplementary Figure 2.6. Select local feature importances in the North field 37
Supplementary Figure 2.7. Response surfaces and deviation surfaces ... 46
Supplementary Figure 2.8. Yield residual distribution for various machine learning models. 47
Supplementary Figure 2.9. Model accuracy versus number of training points. 52
Supplementary Figure 3.1. Comparison of distribution of bond distances and bond angles 102
Supplementary Figure 3.2. Comparison of the radial distribution function (RDF) 103
Supplementary Figure 3.3. Migration barrier distributions for K+ diffusion in K+-illite............ 105

List of Tables
Table 2.1. List of sparse and dense datatypes collected at our field site for analysis. 18
Table 3.1. Average Energy Barrier for K+ ion diffusion in periodic K-illite 93
Table 3.2. Average energy barrier for Cs+ and K+ ion diffusion in a 4-layer periodic clay system ... 95
Table 3.3. Trends in interlayer spacing, ion diffusion energy barrier, z-axial stress, and excess
mixing enthalpy versus interstratification. .. 97

Supplementary Table 2.1. Variance explained for each feature using a random forest model. ... 29
Supplementary Table 2.2. Summary for SMiRFs with UAV bands included as features. 30
Supplementary Table 2.3. Summary for SMiRFs without UAV bands included as features. 31
Supplementary Table 2.4. Random Forest feature interaction prevalences. 48

iv

Dedication

This dissertation is dedicated to my wife Jessica, my advisor Dr. J. Ben Brown, and all my

friends, family, and colleagues that have made it possible.

1

1 Introduction

1.1 Surrogate Modeling to Learn Ecosystem Control Points in Agriculture

In addition to the requirement of increased crop production to sustain population growth, global
farming is subject to a variety of unpredictable socioeconomic and environmental pressures.1
Weather uncertainty, crop diseases and pests, and market volatility are particularly important
sources of risk. Managing risk through precision agriculture is especially important given the
continuing increase in the number of hectares per farmer on modern large-scale farming
operations.2 By managing the risk associated with production in particular through the use of
sustainable and high-precision farming techniques, growers can aim to boost yields and therefore
counter market uncertainty.3

Both soil organic matter accumulation and soil microbe diversity are essential measures of soil
health.4 Sustainable farming practices are needed to maintain soil health, prevent depletion of
mineral fertilizer sources, and prevent environmental consequences associated with overuse of
fertilizers. These sustainable techniques include limited soil tillage to prevent soil erosion and
nutrient runoff, using cover crops to naturally replenish minerals depleted by single species
farming, and the use of organic amendments in lieu of mineral fertilizers.5 However, the increased
cost associated with using some of these sustainable techniques must be quantitatively weighed
against their long-term advantages to facilitate widespread adoption.

Remote sensing technology includes not only direct measurements of properties such as soil
electrical conductivity and pH level, but also the use of vegetation indices (VIs) computed from
unmanned aerial vehicle (UAV) or satellite images of crops.6 These computed indices such as the
normalized difference vegetation index (NDVI), the soil adjusted vegetation index (SAVI), and
various leaf area measurements7 are typically used as an indicator of overall crop health, and
together with other precision measurements can provide a wealth of data for determining the state
of the crop.

1.1.1 Spatial Statistics and Interpolation: Kriging

Kriging8,9 is a common method of creating a dense map of a feature from discrete or sparse
measurements in agricultural and geospatial applications. For example, soil pH and
micronutrient10,11 concentrations are much more difficult to assess than quantities that can be
measured continuously or on a dense grid such as electrical conductivity or crop yield. In ordinary
kriging, a continuous function is generated from the discrete measurement data points in two or
three dimensions by assigning weights to each of the known measurements. The weights are found
by minimizing the variance of the error residual, which results in a system of linear equations with
one additional Lagrange condition.12 Generalizations of ordinary kriging include a variety of
methods that do not assume the mean of the continuous function being generated stays constant in
space.

In its original formulation, kriging does not account for the behavior of other variables that are
correlated to the set of sparse measurements, for example the behavior of soil electrical

2

conductivity as it relates to concentrations of individual micronutrient ions. Kriging has been
extended to include information from other explanatory variables (usually continuous) in a
formulation known as regression kriging.13 In regression kriging, the ordinary kriging model of
the sparse measurement of interest is paired with an arbitrarily chosen regression model of the
additional explanatory variables. In many applications, multiple linear regression is a popular
choice, but the formulation of regression kriging places no explicit functional limit on the paired
regression model. A regression model of the sparse measurement of interest is fit using additional
explanatory variables, and a kriging model with mean zero is subsequently applied to the residual
values of the regression model. The sum of the regression model and the kriging model is called a
regression kriging model. Regression kriging models tend to perform much better than ordinary
kriging models when the covariates are strongly correlated to the sparse measurement of interest
but can suffer from overfitting if they are weakly correlated or an inappropriate regression model
is chosen.13

In precision agriculture, ordinary and regression kriging models are used to generate maps from
sparse soil measurements of relevant quantities. Soil organic carbon content, total nitrogen, and
pH maps were generated over a large area using multiple linear regression kriging and compared
to the same maps generated through ordinary kriging in Pham et al.14 They used three computed
vegetation and topographic indices as regressor variables to compute a model of their target
quantities. Their results indicated that the regression kriging model had significantly improved
accuracy as compared to ordinary kriging alone, providing evidence that using a simple regression
or regression kriging model for sparse measurements is appropriate if the covariates are
mechanistically or otherwise strongly correlated.

1.1.2 Review of Machine Learning in Precision Ag

Machine learning and machine vision are currently used in a variety of settings in precision
agriculture. The majority of industrial applications fall into the category of machine vision,
including implementations for visual detection and discrimination of plants, sorting of fruits and
other foodstuffs, and identification of diseased crops.15,16 Automated detection of weeds is useful
for precision targeting of herbicide, reducing the need for excessive, uniform application. In one
study, the authors developed an algorithm to detect the difficult to identify Bidens pilosa L., a
common agricultural weed similar in color to wheat. By assessing images using color segmentation
and shape analysis, they were able to detect Bidens at a rate of approximately 80%.17

Machine vision has important applications in monitoring crop health. Hyperspectral imaging has
been used to estimate density of vegetation from satellite imaging and UAV imaging. Doing so
allows for a much larger number of observables and precise, localized estimation (sub field-scale)
of crop health and yield.18 Different crop coverage indices can be computed from reflectance in
several wavelengths, especially in near infrared and red wavelengths due to high crop reflectivity.
However, satellite images (as compared to UAV images) are especially prone to weather-related
obfuscation due to their height above the atmosphere.19 Incorporating information from the entire
electromagnetic spectrum between near infrared and ultraviolet wavelengths has been associated
with increases in yield predictive accuracy on the order of 20%.20,21

Hyperspectral imaging of crops with UAVs is becoming much more commonplace, despite the
significantly higher cost compared to satellite imaging.18 While satellite images have a resolution

3

on the order of meters, high quality UAV images can distinguish features as small as a few
centimeters. This higher resolution is essential for precisely estimating the development of
individual plants during different stages of the growing season. In particular, UAV images can be
used in the time series estimation of the leaf area index (LAI), which is critical in determining
meter-scale fertilizer requirements.22 Despite the successes of this technology, UAV imaging
remains cost prohibitive compared to other analytical techniques, so correlating satellite imagery
to UAV snapshots and/or improving prediction using other measurables is desirable.

Other important post-harvest applications of machine learning and machine vision include product
quality assessment and sorting. Using a variety of machine learning techniques, grains can be
efficiently graded according to industry specifications.23 This extremely cost-effective evaluation
is necessary to efficiently price products and deliver properly graded grains for different consumer
applications, resulting in less industrial waste overall. Classification systems can also be coupled
with automatic sorters, with applications especially in fruit to greatly increase efficiency and
reduce the need for manual sorting.24 Use cases also include the efficient identification of infested
grains and/or otherwise defective products.25 Different machine learning techniques such as
artificial neural networks (ANN), support vector machines (SVM), and others have been used to
classify varietals with accuracy exceeding 90%.23

Machine vision has applications in automated tractor guidance for precision harvesting, planting,
and fertilizer application. In one study, a machine vision system was used to keep a tractor on the
correct path to within 1 cm down a crop row by continuously monitoring position of plants in
adjacent rows and adjusting steering accordingly.26 Machine learning guidance systems allow for
greater precision than GPS-based guidance at relatively little additional cost to the consumer.

Despite great advancements in machine vision, machine learning using high precision data is
currently underapplied to yield prediction and variable rate application of fertilizer outside of
small-scale studies. While neural network, gaussian process, random forest, and other machine
learning methods have been applied to yield prediction,27 most studies have focused on existing,
readily-available low-precision measurements such as satellite multispectral imaging and GPS-
based topographical analysis. Many of these studies found that certain computed vegetation indices
(VIs) were significantly more important than others in predicting yield, indicating the need for a
machine learning framework capable of discriminating between variable importances. It is
predicted that growing adoption of higher precision measurements such as UAV image acquisition
and meter-scale soil electrical conductivity measurements will be heavily incorporated into large-
scale planting decisions and fertilizer management in the near future.27

1.1.3 Crop Nutrient Interactions

Several groups have used a variety of machine learning and statistical methods to capture higher
order responses to macro- and micronutrients in staple crops such as soybeans and rice. One
common technique is to create a polynomial yield response model of variables of interest in lieu
of attempting to derive interactions from agronomic first principles, which naturally provides a
framework for investigating interactions in a reduced view of the entire nutrient feature space.28–

30 These studies require optimized factorial design of differential fertilizer application or soil
nutrient concentrations to create a model that spans the feature space in lieu of generating a dense
map of nutrients across the field and partitioning after the fact. To generate a polynomial model of

4

rice yield in response to nitrogen and phosphorus fertilizer application, Shen et al.30 carried out 41
individual field trials using factorial design. They were able to use their model to estimate the
optimal economic fertilizer rates for nitrogen and phosphorus application as a function of the soil
cation exchange capacity. Their estimate implicitly accounted for the higher order interaction of
the effect of nitrogen and phosphorus fertilizers by using a fully second-order polynomial model.

In two separate studies, a polynomial model was used to generate a yield response and herbivory
model in soybeans as an implicit function of higher order between nutrients.28,29 The authors
generated Fe-B-Zn and S-N-P macronutrient interaction response surfaces by designing small-
scale laboratory growing experiments using explicitly chosen nutrient ion solutions and using
factorial design to optimally cover the designed feature space. In each of the studies, the authors
indicated that the polynomial response surfaces (which are inherently smoothed due to the low
order of the polynomial) were insufficient to capture the behavior of all of the observed datapoints,
with some experimental observations lying far outside the generated surfaces of best fit. The results
from both studies indicate that quantifying the effects of micro- and macro-nutrients individually
on herbivory and soybean yield without investigating simultaneous, higher-order nutrient feature
interactions may be a reason for contradictory predictions of plant response in the agronomic
literature.

In another study, the feature response interactions between phosphorus, potassium, and sulfur were
investigated in soybean plants.31 The response interaction between phosphorus and potassium in
particular has been understudied, with conventional agronomic wisdom indicating that the two
nutrients can be applied and optimized separately without significant interaction in healthy soil
regimes. Plant yield was modelled in greenhouse conditions in 27 separate experiments using
3x3x3 factorial design to span the feature space of healthy soil conditions for these three nutrients.
The authors found that, at high concentrations of sulfur in the soil, the yield response peaked at
high values of potassium and intermediate values of phosphorus, similar to a result that we report.
This result indicates that under these sulfur concentrations there is a penalty associated with
banking phosphorus (applying phosphorus in excess of the minimum necessary concentrations for
optimal yield), a result which is not typically reported for healthy soil. Averaged over all sulfur
concentration values considered in this study, the authors predict that the soybean yield response
peaks at the maximum studied phosphorus value over the range of potassium values, not an
intermediate concentration of phosphorus. That is, the two-dimensional response surface
associated only with phosphorus and potassium generated from this study does not indicate the
same banking penalty when considering soil with high concentrations of sulfur. This suggests that
important macronutrient interactions are dependent on other explanatory variables and that feature
interactions of order greater than two may provide additional information that would otherwise be
overlooked.

It should be noted that although polynomial models are capable of providing some explanatory
power in investigating higher order interactions between nutrient response, the higher order
variables themselves (products and powers of nutrient concentrations and fertilizer application
rates) are not physically meaningful quantities. Many data-driven, machine learning-based
approaches do not require explicitly controlling soil ion concentrations, but instead creating a
dense map of nutrients allows for partitioning the feature space into hundreds or thousands of
individual “experiments” per field to generate a continuous response surface of physically
meaningful variables. In this way, machine learning methods including ours are capable of
identifying hard to detect or context-dependent (i.e., soil pH or texture) nutrient interactions.

5

Moreover, although factorial design experiments do attempt to cover the feature space in an
optimal way, they can be fundamentally more difficult to perform due to issues with controlling
soil ion concentrations, and they suffer from requiring a fundamentally smaller number of chosen
features than post-experimental partitioning of the measured feature space. However, it should be
noted that for investigating interactions one at a time for a small number of features, factorial
design of laboratory-controlled experiments can be very useful. In addition, due to the parametric
nature of their design, linear and polynomial regression models are capable of producing
predictions on regions of the feature space outside of their training domain, unlike random
forests,32 although this property of parametric learning algorithms can produce spurious results if
extrapolated far outside the training domain.

Some groups have used first principles from agronomy and plant biology as a starting point for
investigating higher order interactions between micronutrients and macronutrients. In some cases,
trace minerals such as molybdenum are mechanistically involved with enzymes required for
oxidation reactions of different macronutrients.33 Despite being generally understudied in the
literature, and despite being important in high-order models of crop health and yield,
macronutrient-macronutrient interactions oftentimes have mechanistic underpinnings. For
example, in one hydroponic experiment modelling the effect of cadmium poisoning on soybeans,34
it was observed that increasing the concentration of potassium in the soil led to an increase in
overall plant growth, photosynthesis, and the uptake of other macronutrients, likely due to the
effect of potassium-assisted enzyme activation during nodulation. Nitrate acts as a “signal
molecule” to modulate plant uptake response of phosphate, and it has been shown mechanistically
that phosphate starvation in plants is attenuated by nitrogen starvation.35 Similarly, phosphorus
starvation mechanistically modulates sulfur transport and uptake.

However, most studies that investigate the underlying biological mechanisms behind macro- and
micro-nutrient interactions are not able to rigorously quantify the effects of nutrient starvation or
overabundance, and to an even greater degree they are not able to predict fine changes to the yield
response due to small changes in macronutrient concentration near optimal conditions. Most
traditional agronomic studies consider the yield and other response variables such as plant overall
height or leaf weight to be roughly constant over a range of so-called ideal conditions. Without a
more precise formulation of plant response in healthy soils, it is difficult to precisely quantify
optimal fertilizer application rates or the most economically effective way of modulating the soil
for a given real-world field. In contrast, our study and other machine learning methods attempt to
find insights non-mechanistically. By creating detailed maps of soil conditions across many fields,
it is possible to find interactions that would otherwise have been overlooked, thus creating an
opportunity for investigating the mechanistic underpinnings of discovered higher-order
interactions from first biological principles.

1.1.4 Machine Learning Models of Yield

In recent years, many machine learning methods have been applied to crop yield prediction.
Methods used to model crops include neural networks and deep learning, linear and polynomial
regression, gaussian process methods, random forest, and support vector machines.36 Deep
learning techniques are by far the most popular current method of modelling crop yield. These
models provide very high fidelity on large datasets and are capable of learning highly complex
nonlinear functional forms with little oversight. Authors of various studies include a variety of

6

soil, weather, and other features in their models to create a temporal model of yield throughout the
growing season or at the time of harvest. Some studies have used regression models to generate
dense soil maps (10 meter grids) from sparse soil measurements by correlating the sparse soil
samples with dense observed measurables, thus allowing the machine learning model to be trained
on a feature space without missing values.37 Computing soil maps in this way can be more accurate
than ordinary kriging because the feature maps of densely collected variables can contain far more
information than just the position information derived from sparse soil samples. Of course,
ensuring that these generated dense maps from sparse features are meaningful requires only using
regression variables that would be physically expected to correlate to soil features such as soil
texture, conductivity, and multi- or hyper-spectral data indicating overall plant health.

Unfortunately, many of these types of machine learning models can be considered “black boxes”
in that interpreting the functional form between inputs and outputs is very difficult. The results of
the learning algorithm may also depend heavily on the hyperparameters used to tune in the model
instead of robust trends in the underlying dataset. Another drawback associated with gaussian
process methods is that computing the inverse of the covariance matrix is difficult or infeasible for
high dimensional feature spaces.38 While random forests provide insight by allowing the user to
generate a ranked list of feature importances, it can still be difficult to interpret the response of
several features simultaneously or to accurately decide the meaning of the model response on a
reduced version of the input space. Moreover, many of these models are unwieldy or inappropriate
to use for optimization due to their complex or fundamentally nonparametric functional form.
Therefore, one important goal of machine learning methods for crop modelling, and indeed
modelling of any regression problem with a high dimensional feature space, should be to increase
interpretability on an effectively reduced basis of observed variables.

Several machine learning methods have been employed to reduce the effective dimension of the
feature space or increase the local interpretability of a machine learning model. Building a model
directly as a function of feature interactions to probe low-dimensional behavior is one such
technique. In one study, Ansarifar et al.39 develop an interaction regression model to identify
globally explanatory features for corn and soybean yield in several states. Their study compares
the use of several kernel functions to define higher-order feature interactions which are
automatically selected by minimizing the residual values for a model composed of a linear
combination of these interactions. Although their model is able to outperform many traditional
machine learning algorithms in modelling yield, the interaction regression model does not
explicitly attempt to control the dimensionality of the interactions. The interaction regression
model also requires first eliminating features from different partitions of the test set and
subsequently identifying overlaps in the set of features in each partition. In doing so this method
is likely to eliminate variables with high local importance but reduced global importance that may
be vital to accurately modelling outliers or regions with sharp response boundaries in the feature
space, which can be as important as capturing the overall structure of the response variable.

1.1.5 Dimensionality Reduction and Surrogate Modeling

Reducing the effective dimension of the feature space is an important goal of interpretable machine
learning. Reducing the dimension allows for increases in computational speed and interpretability
of the regression model while hopefully maintaining accuracy. While this can be accomplished by
fitting a model that naturally considers only low-order subsets of the entire feature space in each

7

component, such as in polynomial regression or interaction modelling, it can also be done by using
methods that rank the importance of global variables such as random forest. Of course, all of these
machine learning methods require fitting a regression model to the entire feature space to
effectively reduce the dimension or eliminate features, which can be computationally expensive
for methods that scale poorly with the number of model parameters or feature space dimension. In
particular, random forest classification and regression models avoid linear computational cost
scaling with dimension by optimizing over a reduced number of features at each split.

Another common approach is to reduce the feature space dimension before applying a regression
model. One such approach is to use principal component analysis (PCA) to eliminate combinations
of features that do not strongly correlate to the variance of the target variable.40,41 In precision
agriculture, PCA can be used to effectively reduce the dimensionality of highly correlated data
with a large number of features, as is often the case with certain soil texture variables.42 PCA
decomposes the feature space into uncorrelated linear combinations of the features and thereby
naturally lumps together variables that are strongly correlated with one another. Processed feature
spaces with reduced dimension can subsequently be used to generate more interpretable regression
models of the target variable. Alternatively, because PCA is an unsupervised learning technique,
it can be used to discriminate between clusters of data that are distant from one another in the
feature space or that have different sets of explanatory components, thus making it an effective
tool for generating more localized or context-dependent models. In one study, authors used
principal component analysis and a genetic algorithm to find a feature subset that can best be used
for crop classification.43 They found that for different genetic classifiers they were able to
dramatically reduce the dimensionality of the feature space, with over 50% reduction in two
classification tasks using decision trees.

In general, random forest regression model performance is not typically affected by PCA
transformation of the feature space (without dimensionality reduction) because it is capable of
learning complex decision boundaries.44 While PCA transformation can make these decision
boundaries more easily interpretable for humans, forests that are sufficiently deep will not suffer
degradation in precision from training on untransformed data. Nevertheless, random forest
regression models have been studied using PCA-transformed feature spaces.45 Indeed, applying
PCA or other variable transformation methods before fitting a random forest can oftentimes simply
result in a less interpretable model because the forest is fit to a set of transformed variables without
physical meaning. Because random forests do not suffer from computational complexity concerns
from training on high dimensional feature spaces, and because they offer a natural structure for
reducing the dataset dimension after fitting, it is natural to use them to develop a framework for
increasing model interpretability by globally eliminating features or using them as a basis for
creating an interaction regression model.

Another method of increasing machine learning model interpretability is to construct a simpler,
surrogate model that recapitulates the behavior of the more complex model. Local Interpretable
Model-agnostic Explanations (LIME) is a general surrogate modelling strategy that approximates
a more complex, global machine learning model with a local kernel.46 The authors investigate
several applications using a locally linear formulation with a gaussian kernel for interpolation.
They are able to extract subimages used in identifying discrete objects by a neural network in an
image, thus providing an interpretable explanation of how the neural network discriminates
between classes. Although this method does not explicitly reduce the dimension of the feature

8

space, it is able to capture behavior of black box models such as neural networks using simple
parametrized models whose coefficients or projections are easily interpretable.

1.1.6 Review of Soil Ecology in Ag

The soil microbiome is extremely sensitive to and can be negatively impacted by overapplication
of mineral and organic fertilizers. The purpose of fertilizer application is to maximize crop
productivity, but consistent overapplication in the United States and globally has resulted in soil
acidification, unnecessary runoff, and other changes to soil conditions that damage the long-term
health of the microbial community.47 Applying organic fertilizers at industry recommended rates
has been associated with elevated soil nitrogen levels after the growing season, potentially
resulting in environmental leaching and reduced crop yields on the order of 20%.48,49

The soil organisms that interact with agricultural crops can be roughly divided into microflora
(bacteria, fungi) and microfauna (protozoa, mites, nematodes, etc.).47 These organisms perform
important duties such as breaking down plant matter, fixing organic nitrogen, and recycling
minerals. Since the microflora are essential for degradation of plant and other organic matter, they
therefore serve mainly as a repository for plant nutrients.

Soil acidification is generally associated with poor soil health, while large concentrations of soil
organic matter are typically associated with improved agricultural yields.50 These two easily
measurable observables are therefore important proxies for the overall health of the soil. However,
fertilizers, when over-applied over long periods of time, have been shown to both acidify soil and
reduce retention of organic matter on average. Mineral fertilizers show conflicting, context-
dependent effects on overall microfauna counts and carbon and nitrogen concentrations depending
on soil conditions.47,51,52 In addition, typical surface fertilizer application can lead to extreme
stratification of phosphorus in the soil due to low incorporation rates, potentially leading to
overapplication, increased runoff rates and poisoning the deep soil. This excessive phosphorus
runoff can lead to severe downstream negative impacts, including algal blooms.53

In contrast, organic fertilizers such as manure have a more complex interaction with the soil
microbiome due to high concentrations of a variety of organic compounds. While higher levels of
organic matter are generally important for soil health,47 overapplication of certain organic
molecules such as humins can hinder plant growth.54 Therefore it is important to have a model that
incorporates mineral composition and organic matter content of soil to accurately prescribe
fertilizer application in different soil regimes within a field.

A variety of pest control compounds are used in modern agriculture including fungicides,
insecticides, herbicides, and pesticides.47 Their impact on the soil microbiome and organic matter
content is generally considered to be understudied, partially because large effects may not be
observed for several years after their initial application. Fungicides are particularly impactful due
to the important role of beneficial fungi in the soil, which can be negatively affected by broadly
targeted fungicides.55 Therefore it is important to grow crops in soil regimes hostile to pathological
fungi while promoting plant growth.

9

1.2 Structural Coarse-Graining

A “bottom-up” CG model is defined as a model of a target system by using an explicit modelling
or mapping technique.56 The so-called fine grain model may be itself an atomistic approximation
of a first principles molecular model of a system of interest. Different iterative coarse graining
techniques can be shown to exactly reproduce the structural (in the case of iterative Boltzmann
inversion) or thermodynamic (in the case of force-matching and relative entropy minimization)
properties of the given detailed model. However, this convergence is only exact in the limit that
the finite size effects of real simulations are negligible and that a tabulated many-body potential is
used instead of pairwise or parametrized interactions.57 Bottom-up CG models are ideal for
studying relatively large systems or the temporal dynamics of such systems due to the inherent
reduction in computational cost associated with mapping several atoms or molecules to a single
coarse grain particle. Since this type of CG model can be developed independently of experimental
observations of thermodynamic properties, they are ideally suited for studying kinetic phenomena
under conditions that would be difficult to replicate in a laboratory setting.

1.2.1 Iterative Boltzmann Inversion

Iterative Boltzmann inversion (IBI) is a popular methodology for structural coarse graining and
reducing the degrees of freedom in biomolecules and polymers, especially in fluid phases.58 The
IBI algorithm creates coarse grain models in an attempt to recreate structural features of the all-
atom molecular dynamics model as opposed to explicitly capturing all of the equilibrium
thermodynamic properties of the system. Whereas force matching is often employed to coarse
grain one interaction potential at a time (often by restraining certain degrees of freedom), IBI has
been shown to effectively reproduce radial distribution functions of several interactions
simultaneously. Moreover, because bonded interactions in a solid system are modelled with
harmonic oscillators between only two particles, the coarse grain potential converges extremely
quickly when fitting the inverted potential with a parabola near the equilibrium bond length. In
practice, we found that the CG bond length and angle pairwise potentials for intrasheet interactions
are very well approximated in our solid system after using only the initial inverted all-atom radial
distribution function, implying that these modes are nearly independent of their linked neighboring
interactions. However, modifying the force constants of these bending and stretching modes
simultaneously with tabulated pairwise potentials between distant atoms using IBI was found to
be necessary to achieve high fidelity in the radial distribution functions both in our study and in
others.59

Although IBI does not rigorously reproduce the average statistical properties of the all-atom model
like the force matching methodology, CG models produced by IBI do more faithfully model the
local energy landscape and structural properties of a material. IBI coarse graining has been shown
to reproduce physical properties such as the density of polymer systems,58 which strongly suggests
that it is an appropriate technique for reproducing measurable structural properties such as average
clay interlayer spacing and kinetic transition barriers in our system. IBI has also been used to
generate CG models to study phase transitions in phospholipid bilayers.60,61 This model in
particular is capable of self-assembly into a lipid bilayer from a random configuration at
biologically relevant temperatures. Although the model was developed in the amorphous phase

10

using a coarse graining method which is not guaranteed to reproduce thermodynamic properties,60
the model is capable of reproducing temperature-induced phase transformation to a semi-solid gel
phase at similar temperatures and pressures to all-atom simulations (after accounting for the finite
size effect).61 Importantly, the phase transition temperatures correspond closely to experimental
values of similar systems. These results indicate that the iterative Boltzmann inversion algorithm
is capable of producing a model that is kinetically relevant outside of its initial window of
convergence.

Extensions have been proposed to IBI to extend the applicability of the coarse grained model to a
range of states or physical environments including solid or crystalline structures.59,62 These studies
relied on a damping factor in the iterative equation for updating the coarse grain potential using
the IBI algorithm, and also noted that it therefore required more iterations to converge to the all
atom radial distribution function as compared to a non-solid phase. However, in this study we
found it sufficient to smooth the CG potential after every update step using a moving average
window. In addition, ion positions in our model were randomly permuted and perturbed within the
binding sites in initial configurations, further preventing the CG model from adopting unphysical
crystalline configurations or simply oscillating between distributions. Both of these techniques
allowed us to use the standard IBI algorithm without damping, drastically reducing the total
number of simulations needed to achieve convergence. These modifications to the standard IBI
coarse graining methodology allowed us to extend the success of the algorithm in the fluid and
crystalline phases to a bulk rigid system without fluid properties and thermodynamically far away
from a phase transition.

In solid or crystalline systems, force constants for bonds and angle distributions have been found
to be significantly larger in the coarse grained model compared to the corresponding values in all
atom simulations.59 Therefore it is expected that the coarse grain representation in the solid phase
derived from iterative Boltzmann inversion may have higher energy barriers to particle transition
(for nonbonded particles) despite an overall reduction in the number of bending and stretching
modes. To create a CG model of lipid molecules in the crystalline phase, bond and angle force
constants between coarse grain centers were first found using IBI in the amorphous fluid phase
and subsequently used to derive tabulated pairwise potentials between distant CG centers. It was
found that the force constants derived from the fluid phase were insufficient to retain the crystalline
structure of the solid phase, indicating that isolating individual interactions for coarse graining
may not be successful in solid phase systems.59

Damped IBI has also been used to study other crystalline biomolecules such as cellulose fibrils.63
In Srinivas et al., entire glucose monomers are mapped to a single coarse grain center to form
sheets of bonded CG fibrils. Because of the homogenous nature of the sheets, they were able to
establish very close agreement between the all atom and coarse grain radial distribution functions.
This study represents an improvement on previous CG simulations of cellulose fibrils, which suffer
from stability issues. By using an iterative approach to faithfully reproduce the structure of the
crystalline sheets, stability problems and phase transitions can be prevented by capturing
discontinuities in the RDF. These discontinuities tend to correspond to large barriers in the
potential energy surface of a tabulated potential, preventing the dissociation of the structure on the
timescale of simulation without explicit constraints or the addition of extra nonphysical
interactions.

11

1.2.2 Force Matching

Force matching is another coarse graining technique which is widely applied to a variety of
physical systems.64 In the force matching technique, pairwise or density-based potential
parameters are fitted to a database of forces derived from ab initio or all-atom simulations.
Formally, force matching is a least squares minimization of an objective function which is a
difference of ab initio forces and predicted forces from the potential function. See Izvekov et al.
for more details.65 Force matching has been extended to develop a method of coarse graining.65,66
This method uses force matching to define a potential of mean force between CG centers based on
simulation results from a corresponding all atom model. Coarse graining using the force matching
methodology is also referred to in the literature as the multiscale coarse-graining (MS-CG)
method.

For large simulations, MS-CG and iterative MS-CG methodologies can be considered “consistent”
in that the equilibrium distribution of the coarse grain configuration space is equal to that of an all
atom model.67 The authors derive the sufficient condition that a coarse grain simulation that maps
sets of atoms to CG centers is thermodynamically consistent if the force on the CG centers is equal
to the configuration-averaged atomistic force. For this reason, force matching is frequently used
in coarse graining applications where statistical and thermodynamical properties must be
reproduced at the expense of precise structural detail and kinetic insights.

Force matching is typically used to model solvated individual biomolecules and other systems in
a non-rigid phase, but has been used in some applications to study phase transitions between solid
and fluid phases.68 Multi-scale coarse-graining in solid metals in this fashion can essentially be
thought of as a 1:1 mapping of an ab initio simulation to a molecular dynamics simulation. Because
force matching reproduces the thermodynamic properties of a fine system in the limit of an
unconstrained CG potential, it is well suited to studying systems where phase transitions are to be
investigated. However, like all CG systems trained on all atom or other fine systems at a single
reference state, there can be problems with transferability and generalization to other states. Unlike
CG systems developed using iterative Boltzmann inversion, systems created using force matching
are more likely to locally smooth the energy landscape and therefore underestimate the size of
kinetic barriers, especially in cases where a large number of atomic centers are mapped to a single
CG bead.

1.2.3 Relative Entropy Minimization

The relative entropy of two systems, also known in certain fields as the Kullback–Leibler
divergence,69 has been applied as a measure of how faithfully the coarse grained model reproduces
the features of an atomistic model.70 The relative entropy is an information-theoretic measure of
the loss induced by mapping one model to another and is essentially a metric for the fidelity of a
CG model at equilibrium. Like other bottom-up coarse graining approaches, this methodology
requires the construction of an explicit map of a fine model to CG centers. By minimizing the
relative entropy, the CG model reproduces the same distribution of microstates as the fine model
it approximates despite incurring an unavoidable increase in relative entropy due to the mapping
operation itself.57 It should be noted that this property is not strictly realizable if specific
parametrized functional forms are imposed on all the pairwise interaction potentials between CG
centers. Instead, tabulated potentials are often used for long-range interactions. However, using

12

parametrized potentials provides a natural way to minimize the relative entropy in coarse grain
systems by gradient descent of the parametric variables. If the CG potential does not have a
functional form imposed on it, then it can be shown that the techniques of force matching and
relative entropy minimization result in the same potential energy landscape in the limit of an
infinite system. When the potential is constrained to be pairwise additive or otherwise restricted to
subsets of the CG centers, the two approaches are not formally guaranteed to return the same
results or strictly reproduce the equilibrium thermodynamic properties of the all-atom system, but
oftentimes they produce similar models when using pairwise tabulated potentials.57

Relative entropy minimization coarse graining has been employed in a wide variety of liquid and
fluid systems, and to a lesser degree in bulk semi-rigid system modelling. In one study, Carmichael
and Shell use relative entropy coarse graining to parameterize a model of polyalanine and
subsequently simulate several dozen of these molecules to investigate peptide self-assembly under
physiologically relevant conditions.71 They parametrized the model on an all atom system with
helical secondary structures and observed that under crowded conditions that polyalanine
molecules quickly formed into β-sheet-like structures, indicating that their model successfully
replicated the potential energy landscape of the hydrogen bonding network. This work has been
extended to study the structure of arbitrary globular proteins, which like clays feature strong non-
bonded interactions between neighboring sheet-like structures.72 Using a four-site coarse grained
model of leucine and valine, the authors were able to predict the structure of globular proteins
containing on the order of 250 residues to within 2.5 angstroms. These results indicate that despite
not being an explicitly structure-based approach, and despite developing a pairwise, parametrized
CG model, relative entropy coarse graining is capable of reproducing precise structural details.
The converse has been observed for structural coarse graining as well; even though iterative
Boltzmann inversion on pairwise potentials in finite systems often drastically changes the energy
landscape in an attempt to preserve kinetic details, structural CG models are often capable of
producing meaningful thermodynamic insights outside of their initial training conditions.

13

1.3 Statement of Innovation

Machine learning methods and coarse-grained models are broadly applicable to data-driven
disciplines where an underlying mechanistic model is either not known or is too complex to be
extrapolated from the microscopic level. Optimization of fertilizer application is important in
preventing excess runoff and can potentially result in less destructive mining practices. Modelling
crops such as soybeans as a function of soil minerals and other environmental variables allows
data-driven identification of interactions and soil regimes that are beneficial for crop production.
To better understand soil uptake of radioactive cesium, it is necessary to model the displacement
of potassium ions in bulk clay systems. All-atom models are generally too small or
computationally expensive to properly model bulk behavior, so coarse-grained models that
reproduce their statistical or mechanical properties are useful for simulating bulk systems. By
better understanding the microscopic incorporation of cesium into bulk clay, the environmental
impact of radioactive materials can be more precisely modelled. Moreover, remediation strategies
can be more precisely engineered to account for the exact behavior of cesium in clay soils.

Strong second-order interaction between soil potassium and phosphorus was identified by the
SMiRF procedure. The effect of increased organic matter is dependent on soil pH and does not
have a uniform effect on crop production in all soil regimes. Although soil pH is very important
independent of other soil variables, significant economic optimization of farming practices is
possible by addressing only the application rate of phosphorus and potassium fertilizers. The
coarse-grained model of clay reproduced results of interlayer spacing in systems with mixtures of
cesium and potassium ions. The coarse-grained modelling results indicate that the size of the
energetic barrier to ion diffusion for each type of ion is purely a function of the local interlayer
spacing, and therefore the rate of exchange in systems with a mixture of cesium and potassium can
be effectively determined with a detailed mechanical model of the ion binding site.

We have developed a general surrogate model for random forest machine learning methods that
retains the global importance of feature space variables without sacrificing context-dependent
interactions or effects. Our surrogate model is a linear combination of HAL surfaces, which are
themselves minimum loss estimators of the effect of the interactions separately. By using a
combination of machine learning methods to identify and model interactions, we are able to retain
the effects of independent interactions and quantitatively rank their importance in the overall
model. Taking a linear combination of interaction surfaces results in a robust, potentially
lightweight model that is far more human-interpretable than a black-box random forest. The
reduced order surrogate models are capable of fast optimization by fitting smoothed gradient
surfaces whose cost is not greater than evaluating the model itself. The ROSM represents an
improvement over random intersection trees for general modelling in that the model linear
coefficients more precisely represent a ranking of feature interaction importance because the linear
combination of HAL surfaces is fitted to the original output values of the random forest. We have
shown that the ROSM response values are tightly correlated with the original random forest,
indicating that the surrogate model retains the random forest quantitative behavior while
recapitulating the model in the context of higher order interactions that are not directly accounted
for by the random forest. Thus, the reduced order surrogate model is able to provide a more
accurate quantitative evaluation of the response of feature interactions than by simply considering
either the response surface from a random forest model or the feature interaction importance alone.
Although the model was applied in this work to a somewhat low-dimensional example, the SMiRF

14

procedure is well suited to high dimensional problems such as quantifying the higher-order
response of interactions within a genome.

We developed a coarse-grained model that allows for bulk modelling of dozens of layers while
retaining a detailed mechanical model of the ion binding sites. In addition, we identified a linear
relationship between the interlayer spacing and the energetic penalty to ion diffusion without
directly training the coarse-grained model on heterogeneous systems. In this work we used
iterative Boltzmann inversion in a purely bulk solid system which has been previously
underreported in the literature. IBI was used in the solid phase without the use of a damping factor
by randomizing the position of ions and smoothing the tabulated potentials to prevent unphysical
conformations. Typically damping factors are needed for convergence when using iterative
Boltzmann inversion in semirigid phases due to local minima in the energy landscape in non-
physical conformations, but by randomizing the position of ions and slightly perturbing them
within the active sites between each iteration we effectively increased the sampling of the phase
space. This method should be broadly applicable to other bulk rigid systems with high symmetry
or repeated interaction sites. Although IBI is based on approximations of systems in the gas phase,
we have shown that it is possible to effectively reduce the number of iterations by eliminating the
damping factor, thus allowing us to run the algorithm on larger systems for the same computational
cost. We have demonstrated that the mechanical properties of the active site are retained in mixed
ion configurations after converging the coarse-grained model in purely homogenous systems,
indicating that using IBI coarse graining is a robust method for generating general mechanical
models for bulk systems in the solid phase.

15

2 A Surrogate Modeling Strategy to Learn Ecosystem Control
Points in Agriculture

Schaettle K, Falco N, Ulrich C, Dafflon B, Brodie E, McEntire J, Wainwright H, Brown JB

ABSTRACT

Ecosystem control points are localized processes that contribute substantially to
particular ecosystem functions – e.g., biomass productivity, carbon cycling, water
quality. Learning control points directly from data is a central pursuit in molecular
ecosystems biology. Agricultural lands constitute exceptional “reduced order”
model ecosystems – consisting of only a single plant species and its microbiome –
and hence useful testbeds for new data science tools. Here, we take advantage of
an extensive dataset compiled at the AR1K.org field site in Humphrey, Arkansas
in 2017 for monoculture irrigated soybeans (Glycine max L. Merr.). We developed
a three-stage machine learning algorithm for the discovery of control points for
target ecosystem services – and here we focus on agricultural yield. In the first
stage, an iterative Random Forest (iRF) is used to extract important interactions and
processes that are predictive of soybean yield. In the second stage, we use Highly
Adaptive Lasso (HAL) to model interactions using functions that are differentiable
almost everywhere. Finally, we fit a Reduced Order Surrogate Model (ROSM) by
performing forward-backward regression under an L2 loss where each term in the
model is itself a HAL response surface. The resulting hybrid learning machine
achieves comparable performance to the iRF from which it is derived and captures
explicit relationships suitable for human exploration. We call our technique
Surrogate Models through iRF (SMiRF), and here we describe its utility in
obtaining a predictive understanding of agricultural yield in terms of ecosystem
control points at the AR1K.org field lab. In future work, we will pursue the use of
SMiRFs to construct mechanistic process models from data, and we describe some
of these directions.

2.1 Introduction

The importance of ecosystem services – yield, water quality maintenance, soil health – are the
principal drivers of value and sustainability in agriculture. The study of monoculture crop systems
provides a unique opportunity for foundational ecosystems science: to discover ecosystem control
points73 in a highly simplified setting – a single strain of a single plant species in relation to its
microbiome replicated thousands of times across soil contexts in each hectare. Toward this end, in
2017, we established the Arkansas 400-hectare field laboratory (AR1K), a highly instrumented
site near Stuttgart in the river delta region. Here, we use over 300 layers of data to discover the
emergent parameters that constitute the primary drivers – the control points – of soybean yield at
AR1K.

Further, by the year 2050, the world’s population is projected to hit 9.8 billion people.74,75 If current
trends in global economic development and urbanization hold, agricultural production will have

16

to increase by up to 70% to meet demand.76 To minimize the amount of land used for agriculture,
crop yields must continue to grow at a steady pace over the next several decades. Sustainable
agricultural practices such as crop rotation and general soil management will be necessary to reach
production thresholds.77 Although chemical fertilizers have been successful at increasing the yield
of soybean and corn (Zea mays), there is a growing necessity to reduce fertilizer application to
prevent degradation of soil health48,49 and to prevent the down-stream ecological impacts of
nutrient loading in surface waters.78,79 Indeed, the chronic overuse of fertilizers can result in soil
acidification and depletion of micronutrients vital to plant growth over time.80

Prior to the advent of precision agriculture methods and GPS-based advancements in fertilizer
application and tractor guidance, fertilizers were either applied uniformly on individual fields or
on a very coarse grid. By using GPS guided machinery and prescribing semi-localized fertilizer
treatments, it has been estimated that crop yields can be improved between 15-30% dependent on
local soil heterogeneity.81 Soil tillage has been widely practiced in industrial and large-scale
farming for decades to increase water penetration and nutrient uptake.80 However, this practice has
been associated with the long-term loss of soil organic matter and an overall increase in the rate of
soil erosion, reducing organic matter content by approximately 50% compared to naturally
occurring levels in commodity crop systems in North America.82 The widespread adoption of
sustainable and higher-precision farming practices is needed for the long-term viability of our
croplands.83

Precision agriculture methods have been in widespread use for roughly 30 years.84 Advances in
and more widespread adoption of global positioning system (GPS) and remote sensing
technologies in particular have enabled precise, localized application of fertilizer and soil
treatments on the sub-hectare scale.81 This increase in precision is motivated by highly
heterogeneous soil characteristics including water availability, soil electrical conductivity, and
other soil properties that can vary drastically on the order of tens of meters.85 Measurements of
soil electrical conductivity have been widely used in precision agriculture because they are closely
tied to soil texture.86,87 Precision agriculture technologies include remote sensing, equipment
guidance systems, and variable rate technology (VRT) for the application of fertilizer and
amendments.88 Technological adoption rates are growing steadily, with over 40% of large-scale
farms using VRT applications for farming corn as of 2010, while virtually all farms in the United
States use some sort of GPS-based soil, yield, or weather mapping. These practices have already
paid dividends for both farmers and the environment: studies have shown both a reduction in soil
nitrogen leaching and overall improvement in crop yield by using a variable application rate of
fertilizer compared to a uniform rate.89,90

Our approach to VRT, and, more generally, crop modeling, involves the fusion of high-precision
datasets with localized crop yield measurements and fertilizer treatment information in a statistical
machine learning framework. In this analysis, we use our iterative Random Forest (iRF)91 to
predict crop yield at high spatial resolution (1/10 hectare), using a diverse set of measurements at
spatial resolutions that span five orders of magnitude. We use the iRF package implemented in the
R92 statistical programming language. In contrast to neural networks and many other machine
learning techniques, random forests and iterative Random Forest provide a natural framework for
isolating variable importances. The iRF algorithm uses random intersection trees (RIT)93 to extract
stable, multi-feature interactions of arbitrary order in a computationally efficient way. This
methodology enables feature space decomposition into highly interpretable sub-components.
Importantly, random forests and algorithmic extensions of random forest provide a natural

17

framework for feature space dimensionality reduction,94 which is critical for incorporating
extremely high-dimensional –omics data sources. Our iRF approach enables feature space
decomposition into agronomically interpretable, low-dimensional components – for each (1/10 ha)
of the field, we aim to learn the set of covariates that drive or limit yield. While iRF is, in principle,
capable of learning interactions of any form or order, we find that interactions with at most 4
factors constitute principal drivers.

We package our approach in a pipeline for the automated discovery of surrogate models of
agricultural systems – surrogate models from iRF, or SMiRFs. The literature on surrogate models
in agriculture is largely focused on the derivation of polynomial or generalized linear models.95,96
A disadvantage of these approaches is that they generate, by design, smooth response surfaces
relating predictors and their interactions to the dependent variable. Hence, sharp, ridge-like or
multi-peaked responses are difficult to learn in this fashion. In addition, high dimensional data
necessarily requires dimensionality reduction before attempting to fit second- or higher-order
model coefficients to avoid exponential computational scaling with the number of predictors.
Using iRF to generate important response surfaces at the same computational cost as the discovery
of main effects provides a tractable method of solving both of these problems simultaneously.91
Further, in this study, our SMiRFs are nearly lossless in terms of predictive accuracy in comparison
to the iRF models they approximate.

We identify soil organic matter content as a key driver of soybean productivity and find
unanticipated interactions between macro- and micro-nutrients that are rarely taken into account
in fertilizer prescriptions. Trials of selectively reduced fertilizer application rates at high spatial
resolution enabled the reduction of phosphate and potash application while simultaneously
increasing soybean yield. Hence, the discovery of control points and the use of models to guide
agricultural decisions benefit both growers and the environments for which they are stewards.

18

2.2 Results and Methods

Table 2.1. List of sparse and dense datatypes collected at our field site for analysis.

Measurement Location Collection Method Density Resolution

UAV wavelengths (NIR,
RedEdge, Red, Green, Blue) Surface UAV97 Dense

4cm x 4cm

Yield (response) Surface
Combine
harvester Dense

10m x 3m

Slope Surface Veris rig Dense 1m x 1m

Soil electrical conductivity Subsurface Veris rig Dense 1m x 1m

Boron Subsurface Soil sample Sparse ~20 samples

Cation exchange capacity Subsurface Soil sample Sparse ~20 samples

Copper Subsurface Soil sample Sparse ~20 samples

Magnesium Subsurface Soil sample Sparse ~20 samples

Manganese Subsurface Soil sample Sparse ~20 samples

Organic matter content Subsurface Soil sample Sparse ~20 samples

pH Subsurface Soil sample Sparse ~20 samples

Phosphorus Subsurface Soil sample Sparse ~20 samples

Potassium Subsurface Soil sample Sparse ~20 samples

Sulfur Subsurface Soil sample Sparse ~20 samples

Zinc Subsurface Soil sample Sparse ~20 samples

2.2.1 Field Site Description

Soybeans were harvested from two fields (North and South fields) comprising approximately 20
hectares located in Humphrey, Arkansas (34° 24.458′ N, 91° 40.462′ W).85 Fertilizer amendments
triple superphosphate, muriate of potash, and lime were applied using an amendment map
according to optimal prescription for soybeans. Two experimental biological amendments, AgPro
and Nano, were applied in contiguous regions of the South field, but were not shown to influence
soybean yield. Additional details of the site were previously reported in Falco et al.85

2.2.2 Data Pre-Processing and Co-Registration

Data was collected from two soybean fields on a farm in Humphrey, Arkansas.85 Data points near
field boundaries were removed to prevent the incorporation of data artifacts due to poor collection
near the field edges. Furthermore, a small region in the South field that had undergone recent

19

precision land leveling was excluded due to poor plant growth and yield that often results from
exposing subsurface soil horizons.

Some data types exhibit incompatible spatial resolutions; yield is collected with a combine
harvester with a 10m wide header – hence, yield data points form pixels that are approximately
10m by 3m. Soil electrical conductivity was recorded using a Veris rig, which is smaller and has
1m2 resolution. Since yield is our response variable, we mapped all data points for each other
datatype to the nearest yield voxel. We refer to this as the “yield grid”. We then averaged multiple
entries of each data-type when more than one entry mapped to a single 10x3m pixel – e.g., for
Veris data, each pixel on the yield-grid is the average of approximately 21 measurements.

Figure 2.1. Field-scale data imputation. a) Individual measurements of yield data point collection.
b) Data imputed to a 1 m by 1 m grid using bilinear interpolation. c) Collected conductivity data
points. d) Data imputed to a 1 m by 1 m grid. Amendment was not found to have significant
importance.

20

After co-registration, data were bilinearly interpolated across the fields with a 1 m by 1 m grid,
yielding a total of roughly ~28,000 individual data points at the AR1K field site. Subsequently, all
features other than slope were smoothed using a gaussian kernel98 at a radius of 10 m, and the seed
yield was smoothed with the same kernel at a radius of 20 m due to the large size of the yield
collection grid. After smoothing the densely collected data, we processed sparse data features,
including 11 soil features measured at ~20 locations in the two fields. The features included eight
ion concentrations, soil pH, organic matter content, and cation exchange capacity. These sparse
measurements include concentrations of macro and micronutrients (organic matter, P, K, and
others), and hence are of particular value for modeling yield. However, their sparsity makes
machine learning approaches intractable due to small sample sizes. To overcome this challenge,
we imputed sparse features at field scale, at 1m resolution, using a random forest99 regression
model. Specifically, for each soil feature, field-scale features were sampled from a 50-m radius
around each soil sample. Twenty points were selected randomly from around each soil sample,
and a random forest regression was run to associate the two datasets using 500 trees. Subsequently,
the entire dataset of field-scale observations was run through the random forest99 regression model
to generate field-scale predictions of the soil variables. This procedure was repeated 100 times and
the predicted soil features were averaged together. The resulting model explained between 44%
and 96% of variance for each soil feature (Supplementary Table 2.1). These procedures resulted
in the generation of a dense map of 11 features at ~28k individual pixels across our field site. We
used this dense feature map to develop an interpretable and explorable model of seed yield.

2.2.3 The Yield Model

We used an iterative Random Forest to model yield as a function of 13 subsurface variables (Table
2.1). We developed several models, some including multispectral images composed by red, blue,
green and near-infrared spectral bands acquired by a UAV platform,97 and some excluding these
less interpretable spectral features. Here we focus on the model that includes only “controllable”
parameters. See Supplementary Table 2.2 for results from the full model.

We used iRF with cross validation to assess model fidelity. Ensuring that training and testing sets
are independent is a challenge with geospatial data due to spatial autocorrelation. We assessed
spatial autocorrelation in our data by computing the variogram and observed a sharp drop-off near
20m. Hence, in each cross-validation fold, we excluded a 20m strip on either side of our test set,
which was itself a 40m North-South strip in each CV fold. Test errors were on the order of 3% to
20% for different geospatially isolated test regions, with a median absolute error in seed yield of
75 kg/ha. This predictive accuracy is far greater than we would expect by chance (275 kg/ha) at a
p-value of < 10-1572, or with a linear model.

2.2.4 An Interpretable Yield Model

The iRF algorithm identifies nonlinear interactions between features and ranks these along with
statistical main effects on the same scale using the weighted prevalence metric.100 We develop a
strategy for composing generalized additive models (GAMs) using individual interactions as
individual terms. This procedure is similar in character to “locally interpretable model
explanations” (LIME46) – however, our aim is to obtain a global predictor that is both locally and

21

globally sparse. When interactions are composed of non-overlapping features, there is some
theoretical justification for this framework.101 However, there are many hyperparameters in this
analysis that have yet to be optimized, which would benefit from future studies and larger datasets.
Hence, the following models and analyses should be taken as proof of principle that simple
surrogates can be developed to mimic the behavior and predictive power of a Random Forest in
the setting of agricultural data. The full formulation of the reduced order surrogate model for a
feature vector v⃗ can be expressed as:

f(v⃗) = β + ∑ β σ (v⃗) (1)

where σ (v⃗) is the evaluation of the i-th interaction and the β are global coefficients derived from
ordinary least squares (OLS) regression. The iRF model provides interactions, but not the σ (v⃗)
values. To obtain these, we used the Highly Adaptive Lasso102,103 to model yield as a function of
the features in each interaction. While partial dependence plots could be used to more faithfully
extract response surfaces from the Random Forest, these are optimized for fidelity, rather than
predictive power. Some examples of fitted response surfaces are given in Figure 2.3. As expected,
fitted response surfaces exhibit nonlinear behavior and complex dependencies between modeled
features. In Figure 2.3a, the interaction between P and K is particularly interesting. We see that
seed yield decreases with soil-test P over 30 mg kg-1 (ppm), consistent with reports in a number of
agricultural systems,104 and that optimal benefit from P requires sufficient K. While these findings
have been previously reported elsewhere, we note that here they are recovered entirely from data-
driven machine learning.

We fitted the reduced-order surrogate model in eq. 1 using OLS and forward-backward
regression105 (see Supplementary Table 2.3 for an exploration of different fitting strategies).
Comparison of predicted values between the iRF model and the ROSM shown in Figure 2.2 reveal
significant correlation between the two predictors (R2 ~ 0.78), and overall predictive accuracies
within 5% (77 kg/ha mean absolute error ROSM compared to 73 kg/ha iRF). We refer to the
resulting ROSM as a “Surrogate Model through iRF”, or “SMiRF”.

22

Figure 2.2. Comparison of random forest and reduced order surrogate model to predict soybean
yield. a) Plot of ROSM yield residuals vs. random forest yield residuals. The two distinct clusters
are due to a difference in mean yield between the North and South field. b) and c): Model residuals
plotted over a held-out test strip. 20 meters of data was excluded from the training set on either
side of the test strip.

23

Figure 2.3. Example response surfaces from the iterative random forest. a) Sharply peaked and-
like surface. b) Broad or-like surface. c) Complex multi-peaked surface.

24

2.2.5 The SMiRF Model as a Composition of Ecosystem Control Points

We view individual terms in the SMiRF model as detailing quantitative relationships between soil
parameters and target ecosystem services – in this case soybean yield. Interrogation of individual
response surfaces provides human insight into primary service drivers at each pixel on the field.
One way of looking at the specific drivers of yield on a local, pixel-by-pixel basis is provided by
local feature importance, or saliency maps (Supplementary Figure 2.4). These measures have the
advantage that they can be computed on the parent iRF model, and do not require the surrogate.
Another way to study the drivers of yield at a given pixel is to use the SMiRF model for decision
support. In this setting, we posit that the SMiRF model is capturing causal information relating
soybean yield to soil properties. Of course, establishing causality requires validation experiments;
here we are interested in using the decision support framework as a tool for model exploration.
Specifically, we optimize soil chemistry at each pixel, given the mapping between soil chemistry
and soybean yield provided by the SMiRF. We can then study these optimal “policies” to ascertain
the primary drivers of yield at each pixel in the field. These primary drivers correspond to
ecosystem control points for soybean yield.

The following procedure is similar to feature importance measures that rely on the gradient, or
smoothed versions thereof. The SMiRF model is of course amenable to gradient ascent
optimization. To provide a realistic application of this procedure, we attempt to maximize Return
on Investment (ROI) instead of raw yield data, which can (and does) lead to unrealistic or non-
actionable policies. To optimize the ROI as a function of fertilizer amendment prescriptions, we
begin with the formulation:

ROI =
profit

investment
=

crop price ∗ (yield increase) − investment

investment

For a given initial feature vector v⃗ ∈ V, yield model function f defined in equation 1, and linear
price function given by p: V → ℝ = α⃗ ⋅ v⃗ where α⃗ is the per-unit price vector, maximizing the
ROI is equivalent to finding:

max
v⃗ ∈ V

crop price ∗ [f(v⃗ + v⃗) − f(v⃗)] − p(v⃗)

p(v⃗)

= crop price ∗
max

v⃗ ∈ V

 [f(v⃗ + v⃗) − f(v⃗)]

p(v⃗)
 − 1

Climbing the ROI function is thus equivalent to climbing the function:

R(v⃗, v⃗) =
[f(v⃗ + v⃗) − f(v⃗)]

p(v⃗)

which has gradient

25

∇R(v⃗, v⃗) =
p(v⃗) * ∇f(v⃗ + v⃗) − [f(v⃗ + v⃗) − f(v⃗)]* ∇p(v⃗)

p(v⃗)

where both gradients are straightforward to compute based on the definitions of f and p.

26

Figure 2.4. Optimal amendment application maps for maximizing ROI. a) and b) show the mg
kg-1 (ppm) increase in soil test P and K (respectively) for optimal ROI in the North field using
the SMiRF. c) and d) show the same for the South field.

Triple superphosphate (TSP) and and muriate of potash (respectively) application on the North
and South fields were simultaneously optimized to maximize ROI using a ROSM developed from
2017 yield data. Using gradient ascent to climb the ROI function, the iRF ROSM was used to
construct maps of additional TSP and potash to be applied or removed from the field. The predicted

27

increase in yield was from 4750 kg/ha to 4850 kg/ha using the optimized soil nutrient profile. The
reduced order surrogate model offers the advantage of having an easily computable gradient
everywhere in the feature space, making it a useful recapitulation of the original random forest.
Although sharp boundaries in and- and or-like surfaces result in large gradients, the total
differential fertilizer application in each step of the gradient ascent can be held to a maximum
value to prevent numerical instability. Sharp boundaries in the ROI optimization are clearly
preserved with only nominal memory overhead to store the response surfaces. This effect is due
to the representation of sharper boundaries in the response in the SMiRF, thus allowing for
convergence to closer local optima. In addition, the SMiRF-suggested application is relatively
conservative for the increase in yield, in part due to relatively flat regions on the response surfaces
corresponding to no additional optimization.

TSP and potash are predicted by our model to need to be applied or allowed to decrease due to
runoff in relatively compact spatial regions in the North field; our ROSM is capable of using
higher-order interactions to preserve simultaneous variable effects into both application and
prediction. In order to both maximize ROI and limit potential runoff, it is important to accurately
moderate fertilizer applications and avoid over-application. Further, our models indicate that over
application of P, when soil-test P is above the optimal value of around 27 ppm, reduces soybean
yields. Most of the south field requires no additional fertilizer K to maximize ROI. The regions
where both nutrients appear over-applied in the North field correspond to very high soil-test
concentrations of both P and K.

28

2.3 Discussion

Strong interactions between features have been identified using a spatially resolved dataset,
specifically those related to soil electrical conductivity, pH, and macro nutrients. Although soil
electrical conductivity is difficult to change without significant tillage or extreme application of
fertilizer, this result strongly indicates the need for context-dependent amendment
application.106,107 Some of the response surfaces indicate significant and-like or or-like higher
order interactions, neither of which can be neatly decomposed into single feature rules for fertilizer
application or projected to polynomial-like responses. While typical farming practices seek to
improve yields by adjusting several soil features including nutrient availability simultaneously,
this approach is in stark contrast to true higher-order feature optimization.

Although machine learning is commonly applied to many problems related to food production,
decisions related to fertilizer application and planting still rely on low-precision methods.
Currently, fertilizers and amendments are generally applied to fields on the basis of sparse or non-
representative soil sample analysis in an unsustainable fashion. However, recently there has been
a growth in interest towards improving crop yields by applying predictive analytics in addition to
using genetically modified crops. Agricultural machinery companies such as John Deere have
projected a doubling of their revenue within a decade largely due to increasing demand for high
precision equipment.108

The growing requirement for sustainable farming practices provides yet another economic driver
for high-dimensional data analysis and prescription. Targeted farming techniques such as precise
pesticide application have been shown to significantly reduce pesticide runoff,109 but there is still
room for optimization in the methodology of fertilizer application. Sustainability goals for
fertilizer usage can only be met simultaneously with ever-increasing yield requirements by highly
localized application. By identifying specific regions and multidimensional soil feature regimes
most susceptible to fine tuning, the fertilizer requirements for a given field can be minimized by
adjusting several features simultaneously. Ultimately, this means that the nonlinear effects of soil
organic matter and nutrient concentrations can be maximally exploited without the need for costly
grid soil sampling. The random forest regression model presented in this analysis provides a
natural framework for partitioning the soil feature space on the basis of their suitability for
improvement and is therefore ideal for economically optimizing inputs under sustainability and
other constraints.

Reduced order surrogate models provide interpretable frameworks for exploring and
understanding ecosystems and the control points that drive their productivity. Using response
surfaces as the basis for the model allows for low-dimensional views of the data that show
weighted interactions. In particular, extracted and- and or-like rules from the response surfaces
demonstrate the importance of considering amendments simultaneously. The ROSM procedure
provides a path to building a mechanistic understanding. Our models predict specific optima in
nutrient profiles – future work is needed to test these models prospectively as decision support
utilities. Toward this end, developing geospatial bootstrap and model perturbation strategies to
develop confidence regions around learned response surfaces, and prediction intervals around
SMiRFs presents an exciting frontier.

29

2.4 Supplement

Supplementary Table 2.1. Variance explained for each feature using a random forest model.

Feature
Proportion variance
explained

Phosphorus 0.44
Potassium 0.54
pH 0.96
Zinc 0.53
Sulfur 0.61
Boron 0.62
Magnesium 0.63
Manganese 0.68
Copper 0.50
CEC 0.59
OrganicMatter 0.67

2.4.1 Results From Model with UAV Multispectral Bands Included as Parameters

Supplementary Figure 2.1. Parity plot of ROSM and random forest model using multispectral
bands as parameters. The two clusters correspond to the North field (lower left) and South field
(upper right).

4200

4400

4600

4800

5000

5200

5400

4200 4400 4600 4800 5000 5200 5400

Pr
ed

ic
te

d
Va

lu
e

(F
or

w
ar

d-
Ba

ck
w

ar
d

RO
SM

,
kg

/h
a)

Predicted Value (Random Forest, kg/ha)

30

Supplementary Table 2.2. Summary for SMiRFs with UAV bands included as features.

Model Number of surfaces Model mean absolute error
(kg/ha)

Linear 36 94

Ridge 36 94

Lasso 6 77

Forward-backward 28 94

31

Supplementary Table 2.3. Summary for SMiRFs without UAV bands included as features.

Model Number of surfaces Model mean absolute error
(kg/ha)

Linear 90 77

Ridge 90 77

Lasso 9 86

Forward-backward 40 77

The table above shows a comparison of four linear iRF ROSMs that recapitulate a random forest
regression over the North and South fields referenced throughout this study. The mean absolute
error for the iRF model is 73 kilograms/hectare. The lasso regression ROSM is certainly less
accurate than the other proposed surrogate models, but reproduces the random forest with a highly
explainable, low-dimensional model. On the other hand, the forward-backward model has similar
accuracy to both the linear and ridge regression models while eliminating a substantial fraction of
the total number of response surfaces. The choice of linear coefficient model can be used as a
tradeoff between complexity (and therefore computational efficiency) and accuracy.

32

Supplementary Figure 2.2. Response surfaces highlighting the effect of organic matter on
yield. b) and c) show the Conductivity-Organic Matter-pH response surface, with b) showing
low pH and c) showing high pH.

33

Our results indicate that soil organic matter content plays an important role in determining the
soybean yield, as highlighted in Supplementary Figure 2.2, with significant higher-order
dependence on both the soil pH and slope. Both response surfaces indicate that high soil organic
matter (in non-clay regions) is associated with higher yield in moderate pH regimes, consistent
with known agronomic science. Since tillage significantly reduces soil organic matter content, it
is essential to adopt non- or low-tillage techniques to retain soil organic matter and therefore reduce
the application of excess fertilizer.

34

2.4.2 NDVI

The test error for predicting NDVI with the 16 predictors was slightly lower than the test error for
yield (4% vs. 12% testing error, respectively). In this study the NDVI was used implicitly to
generate the field-scale soil variable maps, so this result is not surprising. While early-season
NDVI assessment has been shown to be tightly coupled to yield,110,111 our study used late-season
NDVI that had essentially no correlation with the measured yield. NDVI measured in late season
is generally more tightly correlated to total dry biomass, which has a noisy relationship with yield,
partially explaining the lack of correlation observed in this study. In Supplementary Figure 2.3,
the two clusters correspond to the North field (lower left cluster) and South field (upper right
cluster).

Supplementary Figure 2.3. NDVI vs. yield.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4000 4200 4400 4600 4800 5000 5200 5400

N
D

VI

2017 Yield (kg/ha)

35

Supplementary Figure 2.4. Comparison of soil electrical conductivity in 2018 and 2017.
Conductivity is largely stable over relevant timescales.

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

So
il

el
ec

tr
ic

al
 c

on
du

ct
iv

ity
 (m

S/
m

),
20

18

Soil electrical conductivity (mS/m), 2017

Parity plot of soil electrical
conductivity (1.0 m) data

36

Supplementary Figure 2.5. Random forest prediction residual versus measured yield.

The yield data used to train the machine learning model was obtained from the 2017 season
harvest, while high-precision soil electrical conductivity feature data used to predict it was
gathered in early 2018. Soil electrical conductivity correlates strongly with soil features important
to plant growth including clay content and soil water content and compared to other soil features
is relatively easy to measure.112,113 Soil electrical conductivity in the shallow subsurface (less than
0.5 meters) can vary drastically from year to year due to changes in soil moisture or topsoil ion
concentrations between seasons as a consequence of runoff. However, deep soil (1.0 meter and
below) measurements of soil electrical conductivity have been found to be very stable over the
course of several years, indicating that these measurements provide an important context for plant
growth potential in different soil regimes.

Supplementary Figure 2.4 shows a parity plot of deep (1.0 meter) soil electrical conductivity
measured in 2017 and 2018, each smoothed with a Gaussian kernel at a characteristic distance of
10 meters. The nearest 90% of values to parity are shown. The data follow a linear trend with an
intercept at -1.2 mS/m and an R2 value of 0.82. In Supplementary Figure 2.5, the residual value is
plotted against the measured yield for the iterative random forest regression model. The vast
majority (nearly 90%) of the smoothed yield measurements are correctly predicted to within 275
kilograms per hectare. Considered together, these results indicate that the deep soil properties in
these two fields are relatively stable across seasons, reducing the amount of data that must be
gathered each year to accurately predict crop yield. Finally, when incorporated into the full random
forest regression model with other field-scale observables, the conductivity features and higher
order interactions ranked among the highest in overall importance, indicating that the predictive
power of soil electrical conductivity is retained across seasons.

-400

-300

-200

-100

0

100

200

300

400

4200 4400 4600 4800 5000 5200 5400

Ra
nd

om
 F

or
es

t R
es

id
ua

l V
al

ue
 (k

g/
ha

)

Measured Yield (kg/ha)

37

Supplementary Figure 2.6. Select local feature importances in the North field. a) Organic Matter.
b) pH. Local importance is highly spatially correlated with regions of high and low spatial
importance.

Feature local (or case) importance for regression is the average amount that the square of the
residual value increases when that feature is permuted when it is out-of-bag.99,114 The local
importance was extracted from the iterative random forest regression model for each feature.
Supplementary Figure 2.6 (a) and (b) shows examples of the local importance of two of the model
features, the organic matter content and the pH, in one of the fields we investigated. In our analysis,
pH was assigned a much higher global feature importance by the RF regression model than organic
matter content, which is clear by inspection of the local importance map. Regions with large
positive local importance correspond to a higher predictive power, while regions with large
negative or nearly zero local importance indicate that that feature has essentially no predictive
power on the observation and can safely be locally excluded from the model.

In Supplementary Figure 2.6 (a), there are distinct regions where organic matter has very high or
very low local importance. Despite having a relatively low average global importance, it is clear
that the model benefits from the consideration of the feature organic matter in certain locations.
This is one important advantage that random forest regression has over continuous parametric
models; because the random forest is constructed by repeatedly partitioning the data, even small
feature space regimes where a globally unimportant feature is predictive of the observation are not
lost to smoothing. As opposed to randomized or strip trial designs, the random forest is able to
learn non-contiguous soil regimes well below the hectare scale that exhibit statistically different
yield production. Additionally, treating the field as a continuum has the advantage of greatly
increasing the effective number of observations without introducing significantly more complex
methods of data collection.

By identifying regions where features have very little importance, we can potentially simplify the
model of feature interactions in certain soil regimes and locally reduce the dimensionality of the
model without sacrificing predictive power. Unsupervised learning techniques could be used to
identify distinct soil regimes based on local importance, and separate reduced order surrogate
models could be built from the most important interactions in each regime. This procedure has the

38

potential to enable a more computationally feasible estimation of the globally optimum
amendment application to most efficiently increase crop yield, which is essential both to maximize
the return on investment and to sustainably minimize total environmental impact.

39

2.4.3 Yield Response Curves for Observed Variables

4550

4600

4650

4700

4750

4800

4850

4900

4950

5000

50 60 70 80 90 100

Yi
el

d
(k

g/
ha

)

Potassium (ppm)

HAL_K

K_observed

4550

4600

4650

4700

4750

4800

4850

10 20 30 40

Yi
el

d
(k

g/
ha

)

Phosphorus (ppm)

HAL_P

P_observed

40

4550

4600

4650

4700

4750

4800

4850

4900

4950

1.2 1.4 1.6 1.8

Yi
el

d
(k

g/
ha

)

Organic Matter (percent)

HAL_OM

OM_observed

4500

4600

4700

4800

4900

5000

5100

5200

5300

5.6 5.8 6 6.2 6.4 6.6

Yi
el

d
(k

g/
ha

)

pH

HAL_pH

pH_observed

41

4500

4600

4700

4800

4900

5000

5100

5200

5300

0 1 2 3 4 5

Yi
el

d
(k

g/
ha

)

Slope (percent)

HAL_slope

Slope_observed

4680

4700

4720

4740

4760

4780

4800

4820

0.5 0.6 0.7 0.8 0.9

Yi
el

d
(k

g/
ha

)

Copper (ppm)

HAL_copper

Copper_observed

42

4550

4600

4650

4700

4750

4800

4850

4900

4950

0.2 0.25 0.3 0.35 0.4 0.45 0.5

Yi
el

d
(k

g/
ha

)

Boron (ppm)

HAL_Boron

Boron_observed

4600

4700

4800

4900

5000

5100

5200

5300

4.5 5.5 6.5 7.5 8.5 9.5

Yi
el

d
(k

g/
ha

)

CEC (cmol/kg)

HAL_CEC

CEC_observed

43

4680

4700

4720

4740

4760

4780

4800

4820

4840

4860

5 25 45 65

Yi
el

d
(k

g/
ha

)

Conductivity (mS/m)

HAL_Conductivity

Conductivity_observed

4600

4700

4800

4900

5000

5100

5200

5300

100 150 200 250

Yi
el

d
(k

g/
ha

)

Magnesium (ppm)

HAL_Magnesium

Magnesium_observed

44

4500

4600

4700

4800

4900

5000

5100

5200

5300

100 150 200 250 300

Yi
el

d
(k

g/
ha

)

Manganese (ppm)

HAL_Manganese

Maganese_observed

4600

4650

4700

4750

4800

4850

4900

4950

4 5 6 7 8 9 10

Yi
el

d
(k

g/
ha

)

Sulfur (ppm)

HAL_Sulfur

Sulfur_observed

45

Our data indicate that the response curve for both phosphorus exhibits a noticeable drop-off at high
concentration. This result indicates that part of the field had a higher than optimal amount of soil
nutrient availability (since the support for each follows a roughly bell-shaped distribution centered
near the median of the observed concentrations). Our overall estimated effect of fertilizer
application is quite small, in part due to including both the soil concentration variables and
application rates as observations to the model. It is also important to note that risk associated with
using fertilizer conservatively is vastly outweighed due to risk associated with weather and market
volatility. For example, significant confounding irrigation conditions such as flooding caused the
mean yield to decrease in these two fields from 4750 to 4100 kg/ha in 2018, which is far outside
of the predicted variability due to changes in soil chemistry alone.

Approximately 120 response surfaces were generated for each two- and three-feature interaction
by training a HAL model102,103 on random samples of 5% of the data. Examples of averaged
surfaces and the pointwise standard deviation are presented in Supplementary Figure 2.7. Less
important features had extremely tight uncertainty envelopes around the response surface. In
contrast, some of the most significant interactions had local response uncertainties around 100
kg/ha.

4500

4600

4700

4800

4900

5000

5100

5200

1 1.2 1.4 1.6 1.8 2

Yi
el

d
(k

g/
ha

)

Zinc (ppm)

HAL_Zinc

Zinc_observed

46

Supplementary Figure 2.7. Response surfaces and deviation surfaces. a) and c) are response
surfaces, with corresponding pointwise deviation surfaces shown in b) and d).

47

Supplementary Figure 2.8. Yield residual distribution for various machine learning models.

The random forest model has a much more narrow yield residual distribution compared to the OLS
model, but is centered further from zero due to soil regimes found in the test data that are not
present in the training dataset. This is largely an artifact of the relatively large, geospatially
correlated region chosen as the test set. The FB, OLS, and Ridge ROSM residuals have very similar
distributions centered much closer to 0, while the Lasso ROSM distribution is more broad and
exhibits systematic bias. However, the Lasso model uses far fewer surfaces, and can be very useful
as a low-order parametric approximation of the random forest.

48

Supplementary Table 2.4. Random Forest feature interaction prevalences.

Interaction Prevalence
0.93Conductivity_pH 0.93

Slope_pH 0.91
Slope_Conductivity_pH 0.85
pH_OrganicMatter 0.76
pH_Manganese 0.74
Conductivity_pH_OrganicMatter 0.71
Slope_pH_OrganicMatter 0.70
Conductivity_pH_Manganese 0.69
Slope_pH_Manganese 0.67
Slope_Conductivity_pH_OrganicMatter 0.66
Slope_Conductivity_pH_Manganese 0.62
pH_CEC 0.59
pH_Manganese_OrganicMatter 0.56
Phosphorus_pH 0.56
Conductivity_pH_CEC 0.55
pH_Boron 0.55
Slope_pH_CEC 0.54
Conductivity_pH_Manganese_OrganicMatter 0.53
Conductivity_Phosphorus_pH 0.52
Conductivity_pH_Boron 0.51
Slope_pH_Manganese_OrganicMatter 0.51
Slope_Conductivity_pH_CEC 0.51
Slope_Phosphorus_pH 0.51
Slope_pH_Boron 0.50
pH_Magnesium 0.49
Slope_Conductivity_pH_Manganese_OrganicMatter 0.48
Slope_Conductivity_Phosphorus_pH 0.48
pH_Copper 0.48
Slope_Conductivity_pH_Boron 0.47
Conductivity_pH_Magnesium 0.47
pH_CEC_OrganicMatter 0.46
Slope_pH_Magnesium 0.46
Conductivity_pH_Copper 0.45
Slope_pH_Copper 0.44
Conductivity_pH_CEC_OrganicMatter 0.43
Slope_Conductivity_pH_Magnesium 0.43
Phosphorus_pH_OrganicMatter 0.43
pH_Manganese_CEC 0.43
Slope_pH_CEC_OrganicMatter 0.42

49

Slope_Conductivity_pH_Copper 0.42
Phosphorus_pH_Manganese 0.41
Conductivity_Phosphorus_pH_OrganicMatter 0.41
pH_Boron_OrganicMatter 0.41
pH_Boron_Manganese 0.41
Slope_Conductivity_pH_CEC_OrganicMatter 0.40
Conductivity_pH_Manganese_CEC 0.40
Slope_Phosphorus_pH_OrganicMatter 0.40
Slope_pH_Manganese_CEC 0.39
Conductivity_pH_Boron_OrganicMatter 0.39
Conductivity_Phosphorus_pH_Manganese 0.38
pH_Magnesium_OrganicMatter 0.38
Conductivity_pH_Boron_Manganese 0.38
Slope_Conductivity_Phosphorus_pH_OrganicMatter 0.38
Slope_Phosphorus_pH_Manganese 0.37
Slope_pH_Boron_OrganicMatter 0.37
Slope_Conductivity_pH_Manganese_CEC 0.37
Slope_pH_Boron_Manganese 0.37
Conductivity_pH_Magnesium_OrganicMatter 0.37
pH_Magnesium_Manganese 0.36
Slope_pH_Magnesium_OrganicMatter 0.36
Slope_Conductivity_pH_Boron_OrganicMatter 0.35
Slope_Conductivity_Phosphorus_pH_Manganese 0.35
pH_Zinc 0.35
Slope_pH_Copper_OrganicMatter 0.35
Slope_Conductivity_pH_Boron_Manganese 0.34
Conductivity_pH_Magnesium_Manganese 0.34
Slope_Conductivity_pH_Magnesium_OrganicMatter 0.34
Slope_pH_Magnesium_Manganese 0.33
pH_Manganese_CEC_OrganicMatter 0.33
Conductivity_pH_Manganese_Copper 0.33
pH_Boron_CEC 0.33
Slope_pH_Manganese_Copper 0.33
Conductivity_pH_Zinc 0.33
Slope_Conductivity_pH_Copper_OrganicMatter 0.33
Slope_pH_Zinc 0.32
Slope_Conductivity_pH_Magnesium_Manganese 0.32
Phosphorus_pH_Manganese_OrganicMatter 0.32
Conductivity_pH_Boron_CEC 0.31
Conductivity_Phosphorus_pH_CEC 0.31
Conductivity_pH_Manganese_CEC_OrganicMatter 0.31

50

Phosphorus_pH_Boron 0.31
Slope_Conductivity_pH_Manganese_Copper 0.31
Slope_pH_Manganese_CEC_OrganicMatter 0.31
Slope_Phosphorus_pH_CEC 0.31
Slope_pH_Boron_CEC 0.31
Slope_Conductivity_pH_Zinc 0.30
pH_Boron_Manganese_OrganicMatter 0.30
Conductivity_Phosphorus_pH_Manganese_OrganicMatter 0.30
Conductivity_Phosphorus_pH_Boron 0.29
Slope_Conductivity_Phosphorus_pH_CEC 0.29
Slope_Conductivity_pH_Manganese_CEC_OrganicMatter 0.29
Slope_Conductivity_pH_Boron_CEC 0.29
Slope_Phosphorus_pH_Manganese_OrganicMatter 0.29
Conductivity_pH_Boron_Manganese_OrganicMatter 0.28
Slope_Phosphorus_pH_Boron 0.28
pH_Magnesium_Manganese_OrganicMatter 0.28
Conductivity_pH_Magnesium_CEC 0.28
Conductivity_Phosphorus_pH_Magnesium 0.28
Slope_pH_Copper_CEC 0.27
Slope_Conductivity_Phosphorus_pH_Manganese_OrganicMatter 0.27
Slope_pH_Boron_Manganese_OrganicMatter 0.27
Slope_Conductivity_Phosphorus_pH_Boron 0.27
Conductivity_pH_Magnesium_Manganese_OrganicMatter 0.27
pH_Zinc_OrganicMatter 0.27
Slope_Conductivity_pH_Magnesium_CEC 0.26
Conductivity_pH_Boron_Magnesium 0.26
Phosphorus_pH_CEC_OrganicMatter 0.26
Slope_Conductivity_pH_Copper_CEC 0.26
Slope_pH_Magnesium_Manganese_OrganicMatter 0.26
Slope_Conductivity_Phosphorus_pH_Magnesium 0.26
Conductivity_pH_Manganese_Copper_OrganicMatter 0.26
Slope_Conductivity_pH_Boron_Manganese_OrganicMatter 0.26
Slope_pH_Manganese_Copper_OrganicMatter 0.26
pH_Zinc_Manganese 0.26
Slope_Phosphorus_pH_Copper 0.25
Slope_Conductivity_pH_Magnesium_Manganese_OrganicMatter 0.25
Slope_Conductivity_pH_Boron_Magnesium 0.24
Slope_pH_Zinc_OrganicMatter 0.24
Slope_Phosphorus_pH_CEC_OrganicMatter 0.24
Slope_Conductivity_pH_Manganese_Copper_OrganicMatter 0.24
Slope_Conductivity_Phosphorus_pH_CEC_OrganicMatter 0.23

51

Slope_pH_Zinc_Manganese 0.23
pH_Copper_CEC_OrganicMatter 0.23
Conductivity_pH_Boron_Manganese_CEC 0.23
Conductivity_Phosphorus_pH_Manganese_CEC 0.23
Slope_Conductivity_pH_Boron_CEC_OrganicMatter 0.22
Slope_pH_Boron_Manganese_CEC 0.22
Conductivity_Phosphorus_pH_Magnesium_OrganicMatter 0.22
Slope_Conductivity_pH_Zinc_Manganese 0.22
Slope_Conductivity_pH_Copper_CEC_OrganicMatter 0.21
Slope_Conductivity_Phosphorus_pH_Magnesium_OrganicMatter 0.21
Slope_Conductivity_Phosphorus_pH_Boron_OrganicMatter 0.21
Slope_Conductivity_Potassium_pH 0.21
Conductivity_Phosphorus_pH_Magnesium_Manganese 0.20
Conductivity_pH_Boron_Magnesium_OrganicMatter 0.20
Slope_Phosphorus_pH_Magnesium_Manganese 0.20
Slope_Conductivity_Phosphorus_pH_Copper_OrganicMatter 0.19
Slope_Conductivity_pH_Zinc_CEC 0.19
pH_Boron_Manganese_CEC_OrganicMatter 0.18
Slope_Conductivity_pH_Boron_Copper_OrganicMatter 0.18
Slope_Conductivity_pH_Magnesium_Copper_OrganicMatter 0.18
Conductivity_Phosphorus_pH_Manganese_CEC_OrganicMatter 0.18
Slope_Conductivity_Phosphorus_pH_Manganese_Copper 0.18
Slope_pH_Boron_Manganese_CEC_OrganicMatter 0.17
Slope_Conductivity_pH_Zinc_Manganese_OrganicMatter 0.17
Slope_Conductivity_pH_Magnesium_Manganese_Copper 0.16
Slope_Conductivity_pH_Boron_Manganese_CEC_OrganicMatter 0.16
Conductivity_pH_Magnesium_Manganese_CEC_OrganicMatter 0.16
Slope_Conductivity_Phosphorus_pH_Magnesium_Copper 0.14
Conductivity_pH_Zinc_Magnesium_OrganicMatter 0.14
Slope_Conductivity_Phosphorus_pH_Boron_CEC_OrganicMatter 0.13
Conductivity_Phosphorus_Potassium_pH 0.13
Slope_Conductivity_pH_Zinc_Manganese_CEC_OrganicMatter 0.11

52

Supplementary Figure 2.9. Model accuracy versus number of training points.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

100 1000 10000 100000

Ra
nd

om
 F

or
es

t R
2

Number of training datapoints

53

2.5 Code

2.5.1 Python Script to Match Soil Data to Measured Field-Scale Data (Randomly_Bin.Py)

import os
import random
import numpy as np
import sys

soil_pos_indices = [4,5]

def get_lines(num):
#simply reads the lines of a file name
 infile = open(sys.argv[num], 'r')
 inlines = infile.readlines()
 infile.close()
 return inlines

def get_point_lines(soil_lines, x_col, y_col):
#get positions
 point_lines = [line[:-1] for line in soil_lines if not line[:1] == '#'] #cuts out comments and
newlines
 point_lines = [line for line in point_lines if not line == '']
 point_lines = [line.split(',')[x_col:y_col+1] for line in point_lines]
 point_lines = [np.array([float(entry[0]), float(entry[1])]) for entry in point_lines]
print(point_lines)
 return point_lines

def get_dist_mat(soil_lines, x_col, y_col):
#returns a distance matrix from points
 point_lines = get_point_lines(soil_lines, x_col, y_col)
 outmat = [[0 for y in range(len(point_lines))] for x in range(len(point_lines))]
 for x in range(len(point_lines)):
 for y in range(len(point_lines)):
 delta = point_lines[x] - point_lines[y]
 delta2 = delta**2
 dist = sum(delta2)**0.5
 outmat[x][y] = dist
 return outmat

def get_closest_points(soil_lines, field_lines, x_col, y_col, x_col2, y_col2):
#get an index array of the closest soil point for each non-soil point

54

#matches field-scale observable points to non-field scale (soil sample) points
 soil_point_lines = get_point_lines(soil_lines, x_col, y_col)
 field_point_lines = get_point_lines(field_lines, x_col2, y_col2)
 outarray = []

print(field_point_lines[:10])
print(soil_poin00t_lines[0])

 for fpi in range(len(field_point_lines)):
 #field point index
 field_point = field_point_lines[fpi]
 mindex = -1
 minval = 20 #minimum distance between the soil values and field-scale values
 #minval should be less than the distance between soil samples
 for spi in range(len(soil_point_lines)):
 #soil point index
 soil_point = soil_point_lines[spi]
 delt = soil_point - field_point
 delt2 = delt**2
 dist = sum(delt2)**0.5

 if dist < minval:
 minval = dist
 mindex = spi
 outarray.append(mindex) #append the index of the field point value
print(mindex)
 return outarray

def get_dict(soil_lines, mapping_array):
#returns a dictionary assigning soil indices to field indices
 soil_point_lines = get_point_lines(soil_lines, soil_pos_indices[0], soil_pos_indices[1])
 outdict = {}
 for x in range(len(soil_point_lines)):
 outdict[x] = []
 outdict[-1] = [] #initialize as empty; need unassigned one for observables not near soil
samples

 for y in range(len(mapping_array)):
 index = mapping_array[y]
 outdict[index].append(y)
 return outdict

soil_lines = get_lines(1)
soil_lines = [line for line in soil_lines if len(line.split()) > 0]
soil_lines = [line for line in soil_lines if not line[:1] == '#']

55

yield_lines = get_lines(2)
random.shuffle(yield_lines)
#print('Shuffling complete')
#yield_lines = yield_lines[:10000]

random_points = int(sys.argv[3]) #number of points near each soil sample to take
yield_smoothing_index = sys.argv[4]

dist_mat = get_dist_mat(soil_lines, soil_pos_indices[0], soil_pos_indices[1]) #distance matrix
of points in soil lines
minmat = [min([subentry for subentry in entry if subentry > 0]) for entry in dist_mat]

mapping_array = get_closest_points(soil_lines, yield_lines, soil_pos_indices[0],
soil_pos_indices[1], 0, 1)
reduced_mapping_array = [entry for entry in mapping_array if not entry == -1]
#eliminates those points that are not near soil samples

soil_to_field_dict = get_dict(soil_lines, mapping_array)

outfile = open('randomly_matched_{0}.csv'.format(yield_smoothing_index), 'w')
for soil_index in soil_to_field_dict.keys():
#now we retain only soil sample matches with enough field-scale observations
 if len(soil_to_field_dict[soil_index]) > random_points and not (soil_index == -1):
 temp_array = soil_to_field_dict[soil_index]
 random.shuffle(temp_array)
 subarray = temp_array[:random_points] #uncomment this line for NON fullscale...
subarray = temp_array[:]
 for subarray_index in subarray:
 outfile.write(yield_lines[subarray_index][:-1] + ',' + ','.join([entry for entry in
soil_lines[soil_index][:-1].split(',') if entry]) + ',' + str(soil_index+1) + '\n')
outfile.close()

56

2.5.2 R Script to Run Regression Generating Imputed Field-Scale Soil Data
(iRF_on_data_UAV_soil.R)

###This program runs regression of soil variables against UAV data locally, then uses field-scale
UAV to extrapolate
###regression on both the UAV AND the EC data
args = commandArgs()
args

library(httr)
httr::set_config(config(ssl_verifypeer = 0L))
set.seed(57)

field_1_mapped_reduced <- read.csv(args[3], header=FALSE) #matched soil and yield file
argument
field_1_mapped_reduced <- field_1_mapped_reduced[sample(nrow(field_1_mapped_reduced)),]
#shuffle

EM_data <- read.csv(args[4], header=FALSE) #yield data file argument
EM_data <- EM_data[1:(length(EM_data[,1])),]
lemd <- length(EM_data[1,]) #number of cols
EM_mat_X <- data.matrix(EM_data[,3:(lemd-1)]) #yield data is last column
EM_mat_Y <- data.matrix(EM_data[,lemd]) #just a dummy; not the real test value...

#column 11 is the yield data

lf1mr <- length(field_1_mapped_reduced[1,])
X <- field_1_mapped_reduced[,3:(lemd-1)] #use same value lemd because soil data is added on
end
X <- data.matrix(X, rownames.force=NA)

EM_mat_X[1,]
#X[1:10,]

tot_col_num <- length(field_1_mapped_reduced[1,])

Y_list <- list()
for (iter2 in (tot_col_num-11):(tot_col_num-1)){
#create vector for Y output
Y_list[[iter2]] <- data.matrix(field_1_mapped_reduced[,iter2])
}

library(devtools)
library(iRF)

57

sel_list <- list()
pred_list <- list()
test_error_list <- list()
for (iter1 in (tot_col_num-11):(tot_col_num-1)){
#do the following for each soil variable
Y <- Y_list[[iter1]]
n <- length(Y)
p <- length(X[1,])

train.id <- 1:(n*0.7)
test.id <- setdiff(1:n, train.id) #train on this fraction of the data

rf <- list()
sel.prob <- rep(1/p, p)
rf_maxiter <- 10
for (iter in 1:rf_maxiter){
 cat(paste('iter = ', iter, ':: '))
 if (iter < rf_maxiter){
 rf[[iter]] <- randomForest(x=X[train.id,], y=Y[train.id],
 xtest=X[test.id,], ytest=Y[test.id],
 mtry.select.prob=sel.prob, ntree=500)
 }
 if (iter == rf_maxiter){
 #in last iteration, test with all data for field-scale imputation
 rf[[iter]] <- randomForest(x=X[train.id,], y=Y[train.id],
 xtest=EM_mat_X, ytest=EM_mat_Y,
 mtry.select.prob=sel.prob, ntree=500)
 }

 # performance on test set
 if (iter < rf_maxiter){
 test.error = mean((rf[[iter]]$test$predicted - Y[test.id]) ^ 2) / var(Y[test.id])
 cat(paste('test error: ', round(100*test.error, 2), '%\n', sep=''))
 sel.prob <- rf[[iter]]$importance/sum(rf[[iter]]$importance)
 }
} #iter loop
test_error_list[[iter1]] <- test.error #last testing error
sel_list[[iter1]] <- sel.prob
#pred_list[[iter1]] <- rf[[iter]]$test$predicted #predicted soil data value
writeframe <- cbind(EM_data[,1:2], data.frame(rf[[iter]]$test$predicted))
write.csv(writeframe, file=sprintf("EM_soilpred_%d.csv", iter1)) #field-scale soil prediction is
written

} #iter1 loop

###Now we write out the selection probabilities and testing errors for each variable

58

sel_list_outframe <- data.frame(sel_list[[(tot_col_num-11)]])
test_list_outframe <- data.frame(test_error_list[[(tot_col_num-11)]])
for (iter in (tot_col_num-10):(tot_col_num-1)){
 sel_list_outframe <- cbind(sel_list_outframe, data.frame(sel_list[[iter]]))
 test_list_outframe <- cbind(test_list_outframe, data.frame(test_error_list[[iter]]))
}

write.csv(data.frame(test_list_outframe), file=sprintf('testing_errors_%s_%s.csv' , args[4],
args[5]))
write.csv(data.frame(sel_list_outframe), file=sprintf('selection_probabilities_%s_%s.csv',
args[4], args[5]))

59

2.5.3 Code for Local Importance Regression

args = commandArgs()

library(httr)
httr::set_config(config(ssl_verifypeer = 0L))

infile <- read.csv(args[3], header=TRUE)
infile <- infile[sample(nrow(infile)),] #shuffle
infile_copy <- infile[,] #copy for later

infile <- infile[1:(nrow(infile)*as.numeric(args[5])) ,] #subfraction
column_names <- colnames(infile)

keep_cols <-
c('Slope','Lime','Potash','TSP','Conductivity','Phosphorus','Potassium','pH','Zinc','Sulfur','Boron','
Magnesium','Manganese','Copper','CEC','OrganicMatter') #features for regression
yield_name <- c('Yield2018')

X <- data.matrix(infile[, keep_cols])
Y <- data.matrix(infile[, yield_name])

X_new <- data.matrix(infile_copy[, keep_cols])
Y_new <- data.matrix(infile_copy[, yield_name])

library(iRF) #libraries needed to run iRF
library(AUC)
attach(mtcars)
library(ggplot2)

n.cores <- 4
n <- length(Y)
p <- length(X[1,])

train_fraction <- 0.7
itermax <- 10 #number of random forest iterations

train_rows <- 1:(train_fraction*nrow(infile))
test_rows <- setdiff(1:nrow(infile), train_rows)
train.id <- train_rows
test.id <- test_rows

rf <- list()
sel.prob <- rep(1/p, p) #begin with equally weighted features

60

Y_test <- infile[test.id, yield_name]
Y_train <- infile[train.id, yield_name]

###In the next section, we run random forest
for (iter in 1:itermax){
 cat(paste('iter = ', iter, ':: '))
 if (iter < itermax){
 rf[[iter]] <- randomForest(x=X[train.id,], y=Y_train,
 xtest=X[test.id,], ytest=Y_test,
 mtry.select.prob=sel.prob, ntree=500)
 }
 if (iter == itermax){
 rf[[iter]] <- randomForest(x=X[train.id,], y=Y_train,
 xtest=X_new, ytest=Y_new,
 mtry.select.prob=sel.prob, ntree=500, localImp=TRUE)
 }
 # update selection probabilities for next iteration

 if (iter < itermax){
 sel.prob <- rf[[iter]]$importance/sum(rf[[iter]]$importance) #update selection probability

 # performance on test set
 test.error = mean((rf[[iter]]$test$predicted - Y[test.id]) ^ 2) / var(Y[test.id])
 print(test.error)
 #UE dissimilarity matrix
 }
}
###Now we write the local importances, observation locations, and global importances
write.csv(data.frame(rf[[itermax]]$localImp), file="local_importance_2018.csv")
write.csv(infile_copy[,1:2], file="local_locations_2018.csv")
write.csv(data.frame(sel.prob), file="global_importance_2018.csv")

61

2.5.4 Code for Response Surface Generation.

args = commandArgs()
'%ni%' <- Negate('%in%')

library(magrittr)
library(httr)
library(dplyr)
library(data.table)
httr::set_config(config(ssl_verifypeer = 0L)) # only need this if you're getting ssl errors from R
set.seed(58) #for consistency

all_data <- read.csv(args[3], header=TRUE)
all_data <- all_data[sample(nrow(all_data)),] #shuffle
all_data <- all_data[1:(nrow(all_data)*as.numeric(args[5])),] #sub fraction of observations

ncols <- length(all_data[1,])

yield_col_id <- c('Yield') #this is the target column for regression
library(ggplot2)
library(iRF)
source('surfacePlot.R') #from iRF package; must be in same directory

all_data_backup <- all_data

holdout_limits <- c(621880, 621920) #longitudinal limits of test data
buffer_size <- 20 #buffer around strip to exclude from training data
holdout_limits2 <- c(holdout_limits[1]-buffer_size, holdout_limits[2]+buffer_size)

infile <- all_data
tr1 <- rownames(infile)[(infile[,1] > holdout_limits[1])]
all_temp <- data.frame(infile[tr1,])
test_rows <- rownames(all_temp)[(all_temp[,1] < holdout_limits[2])]

tr2 <- rownames(infile)[(infile[,1] < holdout_limits2[1])]
tr3 <- rownames(infile)[(infile[,1] > holdout_limits2[2])]
train_rows <- c(tr2, tr3)

#set up training matrix and testing matrix
train_mat <- all_data[train_rows,]
test_mat <- all_data[test_rows,]
all_data <- rbind(train_mat, test_mat)
colnames(all_data) <- colnames(all_data_backup)
all_data[1,]

62

keep_columns <-
c('Slope','Lime','Potash','TSP','Conductivity','Phosphorus','Potassium','pH','Zinc','Sulfur','Boron','
Magnesium','Manganese','Copper','CEC','OrganicMatter')
X_train <- all_data[train_rows, keep_columns]
X_train <- data.matrix(X_train)

X_test <- all_data[test_rows, keep_columns]
X_test <- data.matrix(X_test)
Y_train <- data.matrix(all_data[train_rows, yield_col_id])
Y_test <- data.matrix(all_data[test_rows , yield_col_id])

num_train <- length(X_train[,1]) #number of training points

x <- data.matrix(rbind(X_train, X_test))
y <- data.matrix(rbind(Y_train, Y_test))
y <- as.numeric(y)

varnames <- colnames(x)

n <- nrow(x)
p <- ncol(x)
train.id <- 1:num_train #since we re-organized all_data
total_iterations <- 10

t1 <- Sys.time()
f <- iRF(x=x[train.id,], y=y[train.id], n.iter=total_iterations,
interactions.return=total_iterations,n.bootstrap=1, n.core=1, get.prevalence=TRUE,
int.sign=TRUE)
options(tibble.print_max=Inf)

f

write.csv(data.frame(f$prevalence[[total_iterations]]), file= sprintf("Prevalences_iRF_%s.csv",
args[5]))

###take interactions of order 2 and put them into a vector
interact_dict <- data.frame(f$prevalence[[total_iterations]])$int
interact_dict <- as.character(interact_dict)
length_dict <- lengths(strsplit(interact_dict, '_')) #breaks interaction names
keep_indices <- which(length_dict %in% c(2)) #only keeps those with length 2
interact_dict <- interact_dict[keep_indices]

read RF paths and track selected thresholds
t2 <- Sys.time()

63

rd.forest <- readForest(f$rf.list[[total_iterations]], x=x[train.id,], n.core=16, get.split=TRUE,
varnames.grp=varnames)

interact_dict <- sample(interact_dict) #shuffle

for (interact_iter in 1:length(interact_dict)){
interact <- interact_dict[interact_iter]
print(interact)
int.id <- int2Id(interact, varnames, directed=TRUE)
print(int.id)

grid <- quantileGrid(x, 100, int.id)

xrange <- c(grid$g1[1], grid$g1[length(grid$g1)])
yrange <- c(grid$g2[1], grid$g2[length(grid$g2)])
rectangles <- forestHyperrectangle(rd.forest$tree.info, rd.forest$node.feature,
 x=x[-train.id,], y=y[-train.id] ,
 interact=interact, varnames.grp=varnames) #node.obs=rd.forest$node.obs)

library(rgl)

print.code<- paste(interact, args[4], sep="_")
plotInt2(rectangles, interact, x=x, y=y,
 varnames.grp=varnames, grids=grid, pred.prob=FALSE,
 xlab=interact[1], ylab=interact[2], zlab='Yield (bushel/acre)', print.code=print.code)

}

64

2.5.5 Code for ROSM Generation.

import os
import numpy as np
import scipy
import sys
from sklearn.decomposition import PCA
from sklearn.linear_model import Ridge
from sklearn import linear_model
from sklearn.linear_model import Lasso
import statsmodels.api as sm
import pandas
import math as m
import pandas as pd
import random

from scipy.interpolate import griddata
from numpy import ma
import copy

want_minmax = True #converts percentile to minmax format for gradient climbing
want_yieldpenalty = False #uses arctan penalty against the desired yield min; balances ROI - yield
tradeoff
want_uncertainty = False

want_covariance = False #use covariance mat
downsampling_factor = 101 #reduce ALL mats by this factor to work with cov. array dimensions

if want_yieldpenalty:
 yield_setpoint = 71.2 #in bushels/acre
 yield_charscale = 0.0001 #characteristic scale of arctan change; should be < 1 bushel/acre

def get_covariances(percentile_mat, column_titles, cov_array, interact_list, beta_hat,
cov_downsample=1):
#covariance downsample is essentially fraction of points in list to look at to reduce size
#need to evaluate covariance based on the surfaces
 beta_hat_noconst = beta_hat.tolist()[1:]
 beta_mat = np.array([[beta_hat_noconst[x] * beta_hat_noconst[y] for x in
range(len(beta_hat_noconst))] for y in range(len(beta_hat_noconst))])
 #this is the scaling between the surface covariance and model covariance
 num_downsampled_points = int(percentile_mat.shape[0]/cov_downsample)
 print(num_downsampled_points)

 length_limit = cov_array.shape[-1] #this is the length of the matrix

65

 outmat = [[0 for x in range(num_downsampled_points)] for y in
range(num_downsampled_points)]
 for p1_index in range(num_downsampled_points):
 print(p1_index)
 true_p1_index = p1_index * cov_downsample
 for p2_index in range(p1_index, num_downsampled_points):
 true_p2_index = p2_index * cov_downsample
 covariance_grid = np.zeros(np.array(beta_mat).shape) #store covariance values between
surfaces
 for interact_index_1 in range(len(interact_list)):
 interact_1_name = interact_list[interact_index_1]
 interact_1_split = ''.join(''.join(interact_1_name.split('-')).split('+')) #cuts out signs
 interact_1_split = interact_1_split.split('_') #
 interact_1_cols = [column_titles.index(entry) for entry in interact_1_split] #indices of
cols
 interact_1_indices = [min(int(percentile_mat[true_p1_index][entry]*length_limit),
length_limit-1) for entry in interact_1_cols] #indices to use on surface-surface covmati
 for interact_index_2 in range(interact_index_1, len(interact_list)):
 interact_2_name = interact_list[interact_index_2] #names of interactions
 interact_2_split = ''.join(''.join(interact_2_name.split('-')).split('+'))
 interact_2_split = interact_2_split.split('_') #
 interact_2_cols = [column_titles.index(entry) for entry in interact_2_split]
 interact_2_indices = [min(int(percentile_mat[true_p2_index][entry]*length_limit),
length_limit-1) for entry in interact_2_cols]
 covariance_grid[interact_index_1][interact_index_2] =
cov_array[interact_index_1][interact_index_2][interact_1_indices[0]][interact_1_indices[1]][inte
ract_2_indices[0]][interact_2_indices[1]]
 covariance_grid[interact_index_2][interact_index_1] =
covariance_grid[interact_index_1][interact_index_2] #repeat by symmetry...
 total_covariance = np.sum(np.array(covariance_grid) * np.array(beta_mat)) #by linearity
 outmat[p1_index][p2_index] = total_covariance
 outmat[p2_index][p1_index] = total_covariance
 return outmat

def shrink(data, shrink_array):
#shrinks each dimension according to array
 data = np.array(data)
 shrink_nparray = np.array(shrink_array)
 datashape = np.array(list(data.shape)) #need to subtract
 overages = np.mod(datashape, shrink_nparray) #amount of extra entries in each dim.
 limits = (datashape - overages).tolist()
 for dimindex in range(len(data.shape)):
 data = np.take(data, [x for x in range(limits[dimindex])] , dimindex) #truncates on each dim.

 rows, cols = shrink_array[0], shrink_array[1]

66

 return data.reshape(rows, int(data.shape[0]/rows), cols,
int(data.shape[1]/cols)).sum(axis=1).sum(axis=2)

def reshape(array, interact_list, sample_mat):
#reshapes array to be len(interact_list)^2 x length^4 for covariance tensor
#unwrap from 2D back to 6D; this will be MUCH easier to work with in numpy later on
 num_interactions = len(interact_list)
 side_length = np.array(sample_mat).shape[0] #assumes same in each dim.
 newmat = np.zeros((num_interactions, num_interactions, side_length, side_length, side_length,
side_length))

 s_l_2 = side_length ** 2 #this will get used a few times

 for x in range(num_interactions):
 print('On interaction {0} out of {1}'.format(x+1, num_interactions))
 first_index_x = x * s_l_2 #first index of matrix
 for y in range(num_interactions):
 surface_surface_array = np.zeros((side_length, side_length, side_length, side_length))
 first_index_y = y * s_l_2 #use this + s_l**2 to get cutoffs
 submat = array[first_index_x:(first_index_x+s_l_2), first_index_y:(first_index_y+s_l_2)]
#this is the (still unwrapped) surface-surface interaction
 for x2 in range(side_length):
 x2sl = x2 * side_length #need this for coordinate
 for y2 in range(side_length):
 #Take subpart of matrix, then upwrap AGAIN
 surface_2_vec = submat[x2sl + y2][:] #now we unwrap down to 2d
 surface_2_vec = np.reshape(surface_2_vec, surface_2_vec.size) #make sure this is
row
 inner_mat = np.zeros((side_length, side_length))
 for inner_index in range(surface_2_vec.size): #get innermost mat
 inner_mat[int(inner_index/side_length)][inner_index % side_length] =
surface_2_vec[inner_index] #innermost index
 newmat[x][y][x2][y2][:][:] = copy.deepcopy(inner_mat)

 print(newmat.shape)
 return newmat

def dumpout(array, filename='zzzDumped_array.csv'):
#creates textfile from a 2D array
 listarray = array.tolist()
 listarray = [[str(subentry) for subentry in entry] for entry in listarray]
 listarray = [','.join(entry) + '\n' for entry in listarray]
 outfile = open(filename, 'w')
 for entry in listarray:
 outfile.write(entry)

67

 outfile.close()

def array_print(nparray, filename):
#similar to function above; creates textfile from np array
 outfile = open(filename, 'w')
 outarray = nparray.tolist()
 for x in range(len(outarray)):
 entry = outarray[x] #should ALSO be a list...
 entry = [str(subentry) for subentry in entry]
 outfile.write(','.join(entry) + '\n')
 outfile.close()

def sort_fb_beta(val_array, new_name_array, old_name_array):
#sort the values between the old and new name arrays
 out_val_array = []
 for x in range(len(old_name_array)):
 old_name = old_name_array[x]
 try:
 new_index = new_name_array.index(old_name)
 value = val_array[new_index]
 out_val_array.append(value)
 except:
 out_val_array.append(0)
 return np.array(out_val_array)

def stepwise_selection(X, y,
 initial_list=[],
 threshold_in=0.01,
 threshold_out = 0.05,
 verbose=True):
 """ Perform a forward-backward feature selection
 based on p-value from statsmodels.api.OLS
 Arguments:
 X - pandas.DataFrame with candidate features
 y - list-like with the target
 initial_list - list of features to start with (column names of X)
 threshold_in - include a feature if its p-value < threshold_in
 threshold_out - exclude a feature if its p-value > threshold_out
 verbose - whether to print the sequence of inclusions and exclusions
 Returns: list of selected features
 Always set threshold_in < threshold_out to avoid infinite looping.
 See https://en.wikipedia.org/wiki/Stepwise_regression for the details
 """
 included = list(initial_list)
 while True:
 changed=False

68

 # forward step
 excluded = list(set(X.columns)-set(included))
 new_pval = pd.Series(index=excluded)
 for new_column in excluded:
 model = sm.OLS(y, sm.add_constant(pd.DataFrame(X[included+[new_column]]))).fit()
 new_pval[new_column] = model.pvalues[new_column]
 best_pval = new_pval.min()
 if best_pval < threshold_in:
 best_feature = new_pval.argmin()
 included.append(best_feature)
 changed=True
 if verbose:
 print('Add {:30} with p-value {:.6}'.format(best_feature, best_pval))

 # backward step
 model = sm.OLS(y, sm.add_constant(pd.DataFrame(X[included]))).fit()
 # use all coefs except intercept
 pvalues = model.pvalues.iloc[1:]
 worst_pval = pvalues.max() # null if pvalues is empty
 if worst_pval > threshold_out:
 changed=True
 worst_feature = pvalues.argmax()
 included.remove(worst_feature)
 if verbose:
 print('Drop {:30} with p-value {:.6}'.format(worst_feature, worst_pval))
 if not changed:
 break
 return included, model

def datprint(X, Y, colnames):
#creates a textfile from a matrix X and a vector Y
 outfile = open('zzzXARRAY.dat', 'w')
 Xlist = X.tolist()
 Ylist = Y.tolist()
 outfile.write('\t'.join(colnames) + '\t' + 'yield' + '\n')
 for x in range(len(X)):
 outstring = ''
 for y in range(len(X[0])):
 outstring = outstring + str(Xlist[x][y]) + '\t'
 outstring = outstring + str(Ylist[x]) + '\n'
 outfile.write(outstring)
 outfile.close()

def sort_print(valarray, namearray, outname):

69

 #sorts value array & name array, assuming they correspond, and then puts into textfile
 tuple_array = [tuple([abs(valarray[x]), namearray[x], valarray[x]]) for x in range(len(valarray))]
 tuple_array.sort()
 tuple_array = tuple_array[::-1]
 outfile = open(outname, 'w')
 for entry in tuple_array:
 outstring = str(entry[1]) + '\t' + str(entry[2]) + '\n'
 outfile.write(outstring)
 outfile.close()

def pad(data):
#interpolates over convex hull of data in a matrix despite the presence of nan... useful for spotty
data
 bad_indexes = np.isnan(data)
 good_indexes = np.logical_not(bad_indexes)
 good_data = data[good_indexes]
 interpolated = np.interp(bad_indexes.nonzero()[0], good_indexes.nonzero()[0], good_data)
 data[bad_indexes] = interpolated
 return data

def get_lines(string, sample_fraction=1.0):
#returns column titles and floated, split inlines from a csv
 infile = open(string, 'r')
 inlines = infile.readlines()
 infile.close()

 splitlines = [line[:-1].split('#')[-1] for line in inlines] #for first line
 splitlines = [line.split(',') for line in splitlines]

 column_titles, splitlines = splitlines[0], splitlines[1:] #separates
 splitlines = [[float(subentry) for subentry in entry] for entry in splitlines]
 random.shuffle(splitlines)
 splitlines = splitlines[:int(sample_fraction*len(splitlines))]
 return column_titles, splitlines #returns these portions separately

def get_yield_vec(lines, column):
#just returns a vector of the yield values given a column ID
 return np.array([entry[column] for entry in lines])

def remove_columns(titles, lines, cols=False):
#columns to remove from the data after storing elsewhere
#should NOT be negative or otherwise outside the limits
 if not cols:
 return titles, lines #just returns original input

70

 cols = [entry % len(titles) for entry in cols] #modulo the length
 titles = [titles[x] for x in range(len(titles)) if not x in cols]
 lines = [[entry[x] for x in range(len(entry)) if not x in cols] for entry in lines]
 return titles, lines

def percentile_format(Xmat, Y):
#uses percentile format from R output for X; sorts Y on same basis
#can use MINMAX version instead of percentile version... linear interpolation between points

 xy_mat = np.zeros((Xmat.shape[0], Xmat.shape[1]+1))
 percentile_vec = np.array([x/(Xmat.shape[0]-1) for x in range(Xmat.shape[0])])
 for col in range(xy_mat.shape[1]-1): #for each col except last
 xy_mat[:, col] = Xmat[:, col]
 xy_mat[:,-1] = Y[:] #last col is Y
 for col in range(xy_mat.shape[1]-1): #now we sort on these cols and then reassess vals
 xy_mat = xy_mat[xy_mat[:, col].argsort()] #sorts on this column
 xy_mat[:, col] = percentile_vec[:] #dumps these vals into the column...
 out_Y = xy_mat[:,-1]
 out_X = xy_mat[:, [dummyvar for dummyvar in range(xy_mat.shape[-1]-1)]]
 if not want_minmax:
 return out_Y, out_X

 xy_mat = np.zeros((Xmat.shape[0], Xmat.shape[1]+1)) #don't sort values
 for col in range(xy_mat.shape[1]-1):
 xy_mat[:, col] = Xmat[:, col] #dummy values
 xy_mat[:, -1] = Y[:] #last col is Y
 for col in range(xy_mat.shape[1]-1):
 minval = np.min(xy_mat[:, col])
 maxval = np.max(xy_mat[:, col])
 coldelta = maxval - minval
 xy_mat[:, col] = (xy_mat[:, col] - minval)/coldelta #puts between zero and 1; can't be
constant
 out_Y = xy_mat[:, -1]
 out_X = xy_mat[:, [dummyvar for dummyvar in range(xy_mat.shape[-1]-1)]]
 return out_Y, out_X #these are unshuffled

def get_interpolated_mat(string, substring='average'):
#opens the file from the string... right now version is for two features
#This function returns an interpolated matrix
 #downsmaple by global variable
 def cast_to_n_dims(array, newdims, charlen):
 #turns array of one dimension into MORE dimensions
 zeros_array = np.zeros(tuple(charlen for x in range(newdims))) #zero array of right size
 for index in range(len(array)): #need to unwrap
 index_backup = index

71

 pos_tuple = []
 pos_tuple = tuple(int(index/charlen**(newdims-dim_index-1)) % charlen for dim_index
in range(newdims))
 zeros_array[pos_tuple] = array[index] #add this entry here... ###karl
 return zeros_array.tolist()

 ###Get floated, split lines
 print(string)
 inname = [f for f in os.listdir('.') if string in f and substring in f and ((string+'_' + substring) in f)
and not (('_' + string) in f)][0]
 infile = open(inname, 'r')
 inlines = infile.readlines()
 infile.close()
 splitlines = [line.split() for line in inlines]
 splitlines = [[float(subentry) for subentry in entry] for entry in splitlines]

 total_dims = len(string.split('_')) #need special protocol for unwrapping
 char_len = len(splitlines) #lenght of each dimension...
 splitlines = [cast_to_n_dims(entry, total_dims-1, char_len) for entry in splitlines]
 return_array = np.array(splitlines)
 ###DOWNsample the return array by downsampling_factor
 return_array = shrink(return_array, [downsampling_factor, downsampling_factor])
 return_array = np.array(return_array)

 print(return_array.shape)
 return return_array

def get_responses(submat, interact_mat):
#interpolates between responses of interaction given an array of values (submat)
 lower_ints = [[int(subentry) for subentry in entry] for entry in submat]
 upper_ints = [[int(np.ceil(subentry)) for subentry in entry] for entry in submat]
 li_np = np.array(lower_ints)
 ui_np = np.array(upper_ints)
 lambdas = (ui_np - np.array(submat)) #this is fraction of lower to take...
 om_lambdas = 1-lambdas #one minus lambda... for interpolation

 super_int_mat = [[[lower_ints[x][y], upper_ints[x][y]] for y in range(len(lower_ints[0]))] for x
in range(len(lower_ints))] #for interpolation
 super_lambda_mat = [[[lambdas[x][y], om_lambdas[x][y]] for y in range(len(lambdas[0]))] for
x in range(len(lambdas))]

###Find corners given the dimension of the array
 out_array = np.zeros(lambdas.shape[0]) #to be added to for sum
 for corner_index in range(2**lambdas.shape[-1]): #num of cols...

72

 corner_tuple = tuple(int(corner_index/2**(lambdas.shape[-1]-1-dim_index)) % 2 for
dim_index in range(lambdas.shape[-1])) #just binarizes
 # res_corner = np.array([interact_mat
 corner_indices = [[super_int_mat[x][y][corner_tuple[y]] for y in
range(len(super_int_mat[x]))] for x in range(len(submat))]
 corner_indices = [tuple(entry) for entry in corner_indices]
 res_corner = np.array([interact_mat[entry] for entry in corner_indices])
 lambda_list = [[super_lambda_mat[x][y][corner_tuple[y]] for y in
range(len(super_lambda_mat[x]))] for x in range(len(submat))] #list of lambdas
 lambda_list = np.array([np.prod(np.array(entry)) for entry in lambda_list]) #product for
weighting
 weighted_response = res_corner * lambda_list
 out_array += weighted_response #add weighed response using array...

 # print(out_array)

 return out_array #linear interpolation

def get_row_subset(array, rows):
#index of rows to choose
 list_array = array.tolist()
 list_array = np.array([list_array[x] for x in range(len(list_array)) if x in rows])
 return list_array

def get_colvec(array):
#turns 1D numpy array in to true colvec
#This could be done in one line but cuts down on syntax later on
 listvec = array.tolist()
 return np.array([[entry] for entry in listvec])

def get_overall_derivative(beta, pd_name, varnames, interaction_mat_dict, X_percentile,
column_names_signed, uncertainty_switch=False):
 #beta is the set of global coefficients, pd_name is the name of the variable
 #vector is the vector of values where we are evaluating the derivative
 #this is one of the main functions for calculating the gradient
 #vector should be scaled from 0 to 1...
 pd_index = varnames.index(pd_name) #index where we evaluate the derivative
 outsum = 0

 uncertainty_power = 1
 if uncertainty_switch:
 uncertainty_power = 2 #for form of variance calculation

###Collect the partial derivative matrices and multiply by the global coefficients
 for key in interaction_mat_dict.keys():
 if pd_name in key: #then it will also be in the lower directories

73

 #print(key)
 deriv_mats = interaction_mat_dict[key][-1]
 if pd_name in deriv_mats.keys():
 deriv_mat = deriv_mats[pd_name]
 #now get the value of the derivative..
 interaction_name = key
 interaction_name_split = [entry[:-1] for entry in interaction_name.split('_')]
 colnames = interaction_name_split #names of columns that belong in interaction
 col_indices = [varnames.index(entry) for entry in colnames] #col indices for each
variable
 submatrix = X_percentile[:, col_indices] #list form
 submatrix = submatrix * (interaction_mat.shape[0]-1)
 responses = get_responses(submatrix, deriv_mat) #derivative mat...
 outsum += responses *
beta[column_names_signed.index(interaction_name)]**uncertainty_power #multiplied by linear
factor for interaction
 #go over the interactions
 return outsum

def evaluate_response(interaction_lines, X_array, Y_vec, column_names_signed,
interaction_mat_dict, column_titles):
#record the response of the ROSM over a percentile matrix
 X_signed = np.ones((X_array.shape[0],1+len(interaction_lines)))
 column_names_signed = ['CONSTANT'] + interaction_lines #this will be the order we use...

 Y_vec, X_percentile = Y_vec, X_array #re-assigns names
 Y_average = np.mean(Y_vec)

 for x in range(1, X_signed.shape[1]):
 interaction_name = column_names_signed[x]
 interaction_mat = interaction_mat_dict[interaction_name][0]

 interaction_name_split = [entry[:-1] for entry in interaction_name.split('_')] #take out sign
 colnames = interaction_name_split #names of columns that belong in interaction
 col_indices = [column_titles.index(entry) for entry in colnames] #col indices
 submatrix = X_percentile[:, col_indices] #list form
 submatrix = submatrix * (interaction_mat.shape[0]-1)

 responses = get_responses(submatrix, interaction_mat)
 X_signed[:, x] = responses[:] #adds the response...
 return X_signed

def get_minmax_version(interaction_mat, interaction_name, X_array, column_titles):
#returns a minmax version of the array instead of percentile-based version

74

 def get_percentile_from_minmax(minmax_val, X_array, col_index):
 #get percentile... of each entry based on the minmax value
 colvals = X_array
 true_val = colvals[0] + (colvals[-1] - colvals[0]) * minmax_val #convert from 0 to 1 back
to ordinary units

 index_below = 0
 while colvals[index_below] < true_val:
 index_below = index_below + 1
 if colvals[index_below] == true_val:
 return index_below/(colvals.shape[0] - 1) #goes between 0 and 1 (if exact)

 index_below = index_below - 1
 overage = true_val - colvals[index_below]
 delta = colvals[index_below+1] - colvals[index_below]
 if delta == 0:
 return index_below

 return (index_below + overage/delta)/(colvals.shape[0] - 1) #between 0 and 1...

 #remove signs from names
 interaction_name_unsigned = ''.join(interaction_name.split('+'))
 interaction_name_unsigned = ''.join(interaction_name_unsigned.split('-'))
 interaction_name_split = interaction_name_unsigned.split('_') #split with no signs
 col_indices = [column_titles.index(entry) for entry in interaction_name_split] #indices of cols

 #need to convert minmax limits to a percentile format first
 col_mins = [np.min(X_array[entry]) for entry in col_indices]
 col_maxes = [np.max(X_array[entry]) for entry in col_indices]
 col_deltas = (np.array(col_maxes) - np.array(col_mins)).tolist() #

 numdims = len(col_mins) #number of dimensions
 dim_size = interaction_mat.shape[0] #number of entries (observations)
 out_mat = np.zeros(interaction_mat.shape) #copy but with zeros

 #sort the X_array columns in the copy X_array_sorted2
 X_array_sorted = [X_array[:, col_indices[x]].tolist() for x in range(numdims)]
 X_array_sorted2 = []
 for entry in X_array_sorted:
 entry2 = copy.deepcopy(entry)
 entry2.sort()
 X_array_sorted2.append(np.array(entry2))
 X_array_sorted = X_array_sorted2

75

 for num_index in range(out_mat.size): #total entries in the numpy mat...
 minmax_tuple = []
 num_index_copy = num_index #backup
 for dim_index in range(numdims): #go over the dims
 new_num = (num_index_copy % (dim_size-1))/(dim_size-1) #between 0 and 1
 num_index_copy = num_index_copy - (num_index_copy % (dim_size-1))
 num_index_copy = num_index_copy/dim_size #(dimension size)
 minmax_tuple.append(new_num)
 minmax_tuple = tuple(minmax_tuple) #tuple converting to minmax format; has proper
dimensions for array shape
 percentile_format = tuple([get_percentile_from_minmax(minmax_tuple[x],
X_array_sorted[x], col_indices[x]) for x in range(len(minmax_tuple))])

###evaluate the percentile formatted values
 percentile_format = list(percentile_format)
 submat = [[entry*(dim_size-1) for entry in percentile_format]]
 matrix_response = get_responses(submat, interaction_mat) #evaluate using the old format
 minmax_list = [int(entry*(dim_size)) for entry in minmax_tuple]
 out_mat[minmax_list] = matrix_response
 print(out_mat)
 return out_mat

def get_unique_sign_names(inlist):
#returns a list w/ unique elements ONLY, ignoring signs in names
 unsigned_list = [(''.join((''.join(entry.split('-'))).split('+')) , entry) for entry in inlist]
 unsigned_list.sort()
print(unsigned_list)
 outlist = [inlist[0]]
 for x in range(1, len(inlist)):
 if not unsigned_list[x][0] == unsigned_list[x-1][0]:
 outlist.append(unsigned_list[x][1]) #original entry
 return outlist

###FUNCTIONS###############
###############
holdout_limits = [621880, 621920] #lower and upper longitude values for strip trial

remove_cols = [3,4,5,6,7,8, 25] #removes lat, lon, and UAV columns from textfile
target_col = 13 #BEFORE removing remove_cols; this is the column id of the yield
sample_fraction = 1.0 #fraction of rows to keep (global)
sample_fraction2 = 0.3 #fraction of observations to keep for training

inname = sys.argv[1]
column_titles, splitlines = get_lines(inname, sample_fraction)

76

train_rows = [x for x in range(len(splitlines)) if splitlines[x][0] < holdout_limits[0] or
splitlines[x][0] > holdout_limits[1]]
train_rows = random.sample(train_rows, int(sample_fraction2 * len(train_rows))) #subsample
for speed
test_rows = [x for x in range(len(splitlines)) if splitlines[x][0] >= holdout_limits[0] and
splitlines[x][0] <= holdout_limits[1]]
print(len(train_rows))
print(len(test_rows))

###get yield vector and testing lines for model fitting
Y_vec = get_yield_vec(splitlines, target_col) #get yield vector
yield_mean = np.mean(Y_vec)
test_lines = get_row_subset(np.array(splitlines), test_rows)
test_positions = np.array([entry[:2] for entry in test_lines.tolist()])
print(test_positions[0])

column_titles, splitlines = remove_columns(column_titles, splitlines, remove_cols + [target_col])
X_array = np.array(splitlines)

###covariance must be pre-computed between surfaces
if want_covariance:
 cov_name = sys.argv[2]
 cov_file = open(cov_name, 'r')
 cov_lines = cov_file.readlines()
 cov_file.close()
 cov_array = [line[:-1].split(',') for line in cov_lines]
 cov_array = [[float(subentry) for subentry in entry] for entry in cov_array]
 cov_array = np.array(cov_array) #covariance point-point array #this needs to be reshaped

###This is all pre-processing; now we add MORE dimensions to the array for the linear nth order
models
####Model 1: ALL 2nd order interactions are fitted and evaluated...
num_vars = X_array.shape[-1] #number of variables...
ones_array = np.ones((X_array.shape[0], 1)) #constant value for constant in "linear" model
second_order_array = np.ones((X_array.shape[0], int(num_vars*(num_vars+1)/2))) #second
order var
second_order_titles = ['CONSTANT'] + column_titles
new_titles = []
col_counter = 0
for x in range(len(column_titles)):
 for y in range(x , len(column_titles)):
 new_title = column_titles[x] + '_' + column_titles[y]
 new_titles.append(new_title)

77

 second_order_array[:,col_counter] = X_array[:,x] * X_array[:,y] #duplicates data in col
 col_counter += 1

second_order_titles = second_order_titles + new_titles
X2_array = np.concatenate((ones_array, X_array, second_order_array), axis=1)

 #training and testing rows
X2_train = get_row_subset(X2_array, train_rows)
Y_train = get_row_subset(Y_vec, train_rows)
X2_test = get_row_subset(X2_array, test_rows)
Y_test = get_row_subset(Y_vec, test_rows)

beta_hat = np.linalg.lstsq(X2_train, Y_train)[0] #train on train rows...
predicted = np.dot(X2_test, beta_hat)
residuals = Y_test - predicted
ave_residual = np.mean(np.abs(residuals))
print(X2_array.shape)
print(ave_residual)
print(beta_hat)
residuals = get_colvec(residuals)
 #This is the second-order model.

####Model 2: similar to above, but ONLY use interactions that are IMPORTANT from RF
interaction_files = [f for f in os.listdir('.') if 'average.txt' in f]
interaction_files = [f for f in interaction_files if len(f.split('_')) == 3]
interaction_files.sort()
interaction_files = get_unique_sign_names(interaction_files)
interaction_files = interaction_files[:]
interaction_lines = ['_'.join(f.split('_')[:-1]) for f in interaction_files]
interaction_lines.sort() #sorts alphabetically

###Get standard deviation surfaces
uncertainty_files = [f for f in os.listdir('.') if 'deviations.txt' in f] #undo this later
uncertainty_files = [f for f in uncertainty_files if len(f.split('_')) == 3]
uncertainty_files.sort()
#uncertainty_files = get_unique_sign_names(uncertainty_files)
uncertainty_files = uncertainty_files[:] #check for truncation
uncertainty_lines = ['_'.join(f.split('_')[:-1]) for f in uncertainty_files]
print(interaction_lines)
print(uncertainty_lines)

X_signed = np.ones((X_array.shape[0],1+len(interaction_lines)))

78

column_names_signed = ['CONSTANT'] + interaction_lines #this will be the order we use...

Y_vec, X_percentile = percentile_format(X_array, Y_vec) #re-casts values as from 0 to 1; easiest
if Y goes along too...
Y_average = np.mean(Y_vec)

#X_signed[:,0] = yield_mean

###uncertainty and derivative matrix lookup dictionaries are set up here
interaction_mat_dict = {} #{name:[interaction_mat, derivs], ...}; derivs == {name:object, ...}
uncertainty_mat_dict = {} #these dictionaries store the derivatives of the interactions
X_signed_uncertainty = copy.deepcopy(X_signed)
for x in range(1, X_signed.shape[1]):
 interaction_name = column_names_signed[x]
 interaction_mat = get_interpolated_mat(interaction_name) #gets matrix version of the
feature...

 print(np.array(interaction_mat).shape) # test

 if want_minmax:
 interaction_mat = get_minmax_version(interaction_mat, interaction_name, X_array,
column_titles)
 uncertainty_mat = get_minmax_version(uncertainty_mat, interaction_name, X_array,
column_titles)
 interaction_name_split = [entry[:-1] for entry in interaction_name.split('_')] #take out sign
 colnames = interaction_name_split #names of columns that belong in interaction
 colnames = [''.join(''.join(subentry.split('-')).split('+')) for subentry in colnames]
 print(colnames)
 print(column_titles)
 col_indices = [column_titles.index(entry) for entry in colnames] #col indices
 submatrix = X_percentile[:, col_indices] #list form
 submatrix = submatrix * (interaction_mat.shape[0]-1)

 #Now we will compute and organize the derivative matrices...
 interaction_mat_dict[interaction_name] = [interaction_mat, {}]

 gradient_mat_array = np.gradient(interaction_mat)
 gradient_mat_array = [np.array(entry) for entry in gradient_mat_array] #list of 1D gradients
 print([entry.shape for entry in gradient_mat_array])

 for y in range(len(colnames)):
 colname = colnames[y] #name and index
 interaction_mat_dict[interaction_name][-1][colname] = gradient_mat_array[y] #set up the
structure first...

79

 responses = get_responses(submatrix, interaction_mat)
 X_signed[:, x] = responses[:] #adds the response...

 #we must compute the gradient of the uncertainty for each response surface as well
 if want_uncertainty:
 uncertainty_mat = get_interpolated_mat(interaction_name, 'deviations')
 uncertainty_mat = uncertainty_mat**2 #squares the read-in plot
 if want_minmax:
 uncertainty_mat = get_minmax_version(uncertainty_mat, interaction_name, X_array,
column_titles)
 print(uncertainty_mat)
 uncertainty_mat_dict[interaction_name] = [uncertainty_mat, {}]
 gradient_var_array = np.gradient(uncertainty_mat)
 gradient_var_array = [np.array(entry) for entry in gradient_var_array]
 ###store the gradients in the dictionary uncertainty_mat_dict
 for y in range(len(colnames)):
 uncertainty_mat_dict[interaction_name][-1][colname] = gradient_var_array[y]
 var_responses = get_responses(submatrix, uncertainty_mat)
 X_signed_uncertainty[:, x] = var_responses[:] #variance responses
 X_signed_uncertainty[:, 0] = 0 #constant column uncertainty set to 0

if want_covariance:
#now we reshape the array in this case...
 cov_array = reshape(cov_array, column_names_signed[1:], interaction_mat) #cuts out constant

#use variance mats

X_signed_train = get_row_subset(X_signed, train_rows)
Y_train = get_row_subset(Y_vec, train_rows)
X_signed_test = get_row_subset(X_signed, test_rows)
Y_test = get_row_subset(Y_vec, test_rows)

###Compute the Linear ROSM
beta_hat = np.linalg.lstsq(X_signed_train, Y_train)[0]
signed_predicted = np.dot(X_signed_test, beta_hat)
signed_residuals = Y_test - signed_predicted
print(np.mean(np.abs(signed_residuals)))
print(X_signed.shape)
print(beta_hat)
sort_print(beta_hat, column_names_signed, 'linear_ROSM.dat')
signed_residuals = get_colvec(signed_residuals)
array_print(np.concatenate((test_positions ,signed_residuals), axis=1), 'Linear_important.txt')

80

print('Above: linear regression over interactions')

###Ridge and Lasso regression for building ROSMs
yield_mean = np.mean(Y_vec) #mean of the yield; put in place of constant for penalized regr.

alpha_value = 0.5

clf = Ridge(alpha=alpha_value)

clf.fit(X_signed_train, Y_train)
Y_pred = clf.predict(X_signed_test)
print(np.mean(np.abs(Y_pred-Y_test)))
print(clf.coef_)
sort_print(clf.coef_, column_names_signed, 'Ridge_ROSM_{0}.dat'.format(alpha_value))
array_print(np.concatenate((test_positions, get_colvec(Y_test - Y_pred)), axis=1),
'Ridge_residuals.txt')
print('Above: Ridge regression')

clf2 = Lasso(alpha=alpha_value)
clf2.fit(X_signed_train, Y_train)
Y_pred2 = clf2.predict(X_signed_test)
print(np.mean(np.abs(Y_pred2-Y_test)))
print(clf2.coef_)
sort_print(clf2.coef_, column_names_signed, 'Lasso_ROSM_{0}.dat'.format(alpha_value))
print('Above: Lasso regression')
array_print(np.concatenate((test_positions, get_colvec(Y_test - Y_pred2)), axis=1) ,
'Lasso_residuals.txt')

X_signed_pd = pandas.DataFrame(data=X_signed_train, columns=column_names_signed)
y_pd = pandas.DataFrame(data=Y_train, columns = ['yield'])
datprint(X_signed, Y_vec, column_names_signed)

result, stepwise_model = stepwise_selection(X_signed_pd, y_pd)
print(stepwise_model.params.tolist())
fb_beta_hat = sort_fb_beta(stepwise_model.params.tolist(), result, column_names_signed)
predicted = np.dot(X_signed_test, fb_beta_hat)
residual = Y_test - predicted
print('forward-backward residual:')
print(np.mean(np.abs(residual)))

print('resulting features:')
result.sort()

81

print(result)
print(len(result))

sort_print(stepwise_model.params.tolist(), result, 'ForwardBackward.txt')
array_print(np.concatenate((test_positions, get_colvec(residual)), axis=1),
'stepwise_residuals.txt')

##################This next section is the gradient solver for maximizing ROI###########
beta_hat = fb_beta_hat
beta_hat_squared = (np.array(beta_hat)**2).tolist()
tolerance = 0.00000000001 #hill climbing tolerance...
integrating_factor = 1000 #another hyperparameter for the inner gradient loop; optimizing ROI
analogue
current_delta = tolerance * 10000
old_ROI = 0.0
portfolio_lambda = 0 #lambda for effective utility function
new_X_percentile = X_percentile.tolist()
new_X_percentile = [[min(subentry*1.0000001, 1.0) for subentry in entry] for entry in
new_X_percentile]
new_X_percentile = np.array(new_X_percentile)
dumpout(new_X_percentile, 'orig_values.csv')

unadjustables = [0, 1] #columns to not change; alternatively only optimization columns will be
changed
old_model_eval = np.dot(X_signed, beta_hat) #clf.predict(X_signed) #this is f(v0)
print(np.mean(old_model_eval))
prices = [1/X_signed.shape[0] for entry in column_titles] #this will have to be adjusted... price
per unit per area will be important. just use 1 as price "per unit" for now
#for entry in unadjustables:
prices[entry] = 1

###prices must be in standardized units, for example $/lb
###Use hard-coded column ids for now
prices[3] = 30/X_signed.shape[0] * (np.max(X_array[3]) - np.min(X_array[3])) * 0.00001
prices[4] = 318/X_signed.shape[0] * (np.max(X_array[4]) - np.min(X_array[4])) * 0.00001
prices[5] = 425/X_signed.shape[0] * (np.max(X_array[5]) - np.min(X_array[5])) * 0.00001

ones_mat = np.ones(new_X_percentile.shape)
zeros_mat = np.zeros(new_X_percentile.shape)
optimization_columns = [3,4,5] #just these columns; adjust by 1 for the constant
print(column_titles)

##establish lower and upper bounds

82

lower_bounds = np.array([0 for x in range(ones_mat.shape[-1])])
upper_bounds = np.array([100000000 for x in range(ones_mat.shape[-1])]) #these must be
converted to 0 - 1 range format
if want_minmax:
 mins = np.min(X_array, axis=0)
 maxs = np.max(X_array, axis=0)
 deltas = maxs - mins
 lower_bounds = (lower_bounds - mins)/deltas
 upper_bounds = (upper_bounds - mins)/deltas #set to min and max
new_lower_bounds = np.zeros(ones_mat.shape)
new_upper_bounds = np.zeros(ones_mat.shape)
for column_index in range(ones_mat.shape[-1]): #set these new matrix col vals to old ones...
 new_lower_bounds[:, column_index] = lower_bounds[column_index]
 new_upper_bounds[:, column_index] = upper_bounds[column_index]

loop_counter = 0
while current_delta > tolerance and loop_counter < 30000:
 if want_covariance:
#we will use this to calculate field-scale uncertainty, and other features...
 all_covariances = get_covariances(new_X_percentile, column_titles, cov_array,
column_names_signed[1:], beta_hat, cov_downsample=50)
 all_covariances = np.array(all_covariances)
 all_covariances = all_covariances.tolist()
 all_covariances = [[str(subentry) for subentry in entry] for entry in all_covariances]
 all_covariances = [','.join(entry)+'\n' for entry in all_covariances]

 loop_counter += 1
 partial_derivs = [get_overall_derivative(beta_hat, entry, column_titles, interaction_mat_dict,
new_X_percentile, column_names_signed)
 for entry in column_titles] #derivative for each adjustable variable... might need to
change which columns to use

 #print(partial_derivs)

 response_vector = evaluate_response(interaction_lines, new_X_percentile, Y_vec,
column_names_signed, interaction_mat_dict, column_titles)
 new_model_eval = np.dot(response_vector, beta_hat) #This is f(v+v0)

 if want_uncertainty:
 for x in range(1, len(column_names_signed)):
 ###get uncertainty at each location
 interaction_name = column_names_signed[x]
 uncertainty_mat = uncertainty_mat_dict[interaction_name][0]

83

 interaction_name_split = [entry[:-1] for entry in interaction_name.split('_')] #
 colnames = interaction_name_split #names of columns that belong in interaction
 col_indices = [column_titles.index(entry) for entry in colnames] #col indices
 submatrix = new_X_percentile[:, col_indices] #list form
 submatrix = submatrix * (uncertainty_mat.shape[0]-1)
 X_signed_uncertainty[:, x] = get_responses(submatrix, uncertainty_mat)
 new_model_variance = np.dot(X_signed_uncertainty, beta_hat_squared)

 print('Current yield: '+str(np.mean(new_model_eval))+' Orig.:
'+str(np.mean(old_model_eval)))
 model_delta = new_model_eval - old_model_eval #this is mean f(v0+v) - f(v0)
 price_change = np.sum(np.dot((new_X_percentile - X_percentile), np.array(prices))) #total
price of new treatment
 gradient = [0 for x in range(len(partial_derivs))]
 for x in optimization_columns: #these are the ONLY ones we change
 if not want_yieldpenalty or np.mean(new_model_eval) > yield_setpoint:
 #prevent model from getting “stuck” at very low changes in yield; yield_setpoint should be
slightly greater than original yield for proper performance
 gradient[x] = (partial_derivs[x]*price_change -
model_delta*prices[x])/(price_change**2+0.0000001)
 else:
 gradient[x] = partial_derivs[x]*1/(abs(price_change)+0.00000001) #just use the yield
itself as the target funciton in this case... make sure derivatives are scaled accordingly

 for x in range(len(gradient)):
 if not x in optimization_columns:
 gradient[x] = np.zeros(gradient[optimization_columns[0]].shape) #not all columns will
be adjusted.
 gradient = np.array([entry.tolist() for entry in gradient])
 gradient = np.transpose(gradient) #transposition

 if want_uncertainty: #portfolio optimization; first compute uncertainty, then apply lambda
 partial_derivs = [get_overall_derivative(beta_hat, entry, column_titles,
uncertainty_mat_dict, new_X_percentile, column_names_signed, want_uncertainty) for entry in
column_titles]
 print(partial_derivs)
 gradient2 = [0 for x in range(len(partial_derivs))]
 for x in optimization_columns:
 gradient2[x] = partial_derivs[x]
 for x in range(len(gradient2)):
 if not x in optimization_columns:
 gradient2[x] = np.zeros(gradient2[optimization_columns[0]].shape)
 for x in range(len(gradient2)):
 if np.sum(np.abs(np.array(gradient2[x]))) == 0:
 gradient2[x] = np.zeros(gradient2[optimization_columns[0]].shape)

84

 gradient2 = np.array([gradient2]) #see above
 gradient2 = np.transpose(gradient2)
 #print(gradient2)
 print('Gradients1 and 2: ' + str(np.sum(gradient)) + ' ' + str(np.sum(gradient2)))
 gradient2 = np.squeeze(gradient2)
 print('Portfolio lambda: ' + str(portfolio_lambda))
 gradient = gradient - portfolio_lambda * gradient2 #climbs combined optimization function

 current_delta = np.mean(np.abs(gradient))

 dumpout(new_X_percentile)

 #update the observations using the newly computed gradient
 new_X_percentile = new_X_percentile + integrating_factor*gradient
 new_X_percentile = np.minimum(new_X_percentile, ones_mat)
 new_X_percentile = np.maximum(new_X_percentile, zeros_mat) #keep between 0 and 1
 new_X_percentile = np.maximum(new_X_percentile, X_percentile) #positive prescription
 new_X_percentile = np.minimum(new_X_percentile, new_upper_bounds)
 new_X_percentile = np.maximum(new_X_percentile, new_lower_bounds) #upper and lower
bounds
 ROI = np.mean(model_delta)/(price_change+0.00000000001)
 current_delta = abs(ROI - old_ROI)
 old_ROI = ROI

new_X_percentile = apply_physical_equations(new_X_percentile, X_percentile)

 print('ROI: ' + str(ROI))
 print('Avg. of gradient: ' + str(current_delta))
 print('Total price: ' + str(price_change/model_delta.shape[0]))
 if want_uncertainty:
 print('Average yield variance: {0} (bushel/acre)^2'.format(np.mean(new_model_variance)))
 print()

85

3 A Structural Coarse-Grained Model for Clays Using Simple
Iterative Boltzmann Inversion115

Karl Schaettle, Luis Ruiz Pestana, Laura Nielsen Lammers, Teresa Head-Gordon

ABSTRACT

Cesium-137 is a major byproduct of nuclear energy generation and is
environmentally threatening due to its long half-life and affinity for naturally
occurring micaceous clays. Prolonged exposure to low levels of Cs-137 in the
environment can increase the risk for certain cancers due to gamma radiation.
Recent experimental observations of illite and phlogopite mica indicate that Cs+ is
capable of exchanging with K+ bound in the anhydrous interlayers of layered
silicates, forming sharp exchange fronts leading to interstratification of Cs- and K-
illite. We present here a coarse-grain (CG) model of the anhydrous illite interlayer
developed using iterative Boltzmann inversion (IBI) that qualitatively and
quantitatively reproduces features of a previously proposed feedback mechanism
of ion exchange.116 The CG model represents a 70-fold speedup over all-atom (AA)
models of clay systems and predicts interlayer expansion for K-illite near ion
exchange fronts. Contrary to the longstanding theory that ion exchange in a
neighboring layer increases the binding of K in lattice counterion sites leading to
interstratification,117 we find that the presence of neighboring exchanged layers
leads to short-range structural relaxations that increase basal spacing and decrease
cohesion of the neighboring K-illite layers. We also provide evidence that the
formation of alternating Cs- and K-illite interlayers (i.e. ordered interstratification)
is both thermodynamically and mechanically favorable compared to exchange in
adjacent interlayers.

3.1 Introduction

The environmental impact of cesium adsorption and diffusion into various types of naturally
occurring layered silicates has received renewed interest in recent years, especially in the aftermath
of the Fukushima Daiichi Nuclear disaster.118–120 One of the most environmentally threatening
products of nuclear fission is Cesium-137, both because of its relatively long half-life (30.2 years)
and its affinity for mineral surfaces, which prevents it from leaching from surface soils.121,122
Cesium is strongly and irreversibly adsorbed to various clay surfaces in the presence of other ions,
and can slowly diffuse into the bulk volume of both anhydrous and hydrated layered silicates.123–

125 Due to its intermediate half-life and its relative abundance as a nuclear decay product, Cesium-
137 can contaminate environmental sites with dangerous levels of radiation for decades, while
most other fallout isotopes may only present a threat on the order of several months or years.126

Cesium diffuses deep into naturally occurring clays and displaces other types of ions normally
found in the interlayer, such as potassium, sodium, and calcium. Because of its ability to selectively
exchange radiocesium, illite and similar clays have been investigated for the possibility of
remediating radioactive plumes of cesium.127 Despite extensive experimental study of ion

86

adsorption at the frayed clay edge and exchange of ions in the clay interlayer,124,125,128–130 the exact
mechanism of cesium uptake remains elusive.131 It is especially unclear how cesium displaces
potassium within the interlayer far from the edge in anhydrous interlayers for clays such as
illite,128,132–134 despite very large barriers to ion diffusion. Specifically, these large energy barriers
make explicit all-atom simulation of exchange difficult for bulk clays. Some groups have
suggested that only hydrated ions within the interlayer or near a clay edge should be capable of
exchange;135 however, this exchange mechanism is very thermodynamically unfavorable in bulk
illite, since both potassium and cesium strongly favor anhydrous interlayers.136 Moreover, cesium
is found to have a strong affinity for the weathered clay edge, further suggesting that interlayer
hydration is likely not a necessary step either for cesium binding or penetration into the
interlayer.131,137–141

Recent experimental124,125 and computational work116 supports the direct exchange by diffusion
for large ions in the interlayer of several clay types without repeated hydration and dehydration at
the edge sites. Instead, cesium has been hypothesized to first bind to frayed clay edges, and then
more slowly exchange with the potassium naturally found in the interlayer through a simple
diffusive mechanism.134,142 Once potassium begins exchanging for cesium at the weathered edge,
it has been proposed that there is a thermodynamic and kinetic driving force to displace additional
potassium ions, resulting in an accelerated replacement of potassium ions for cesium.143 Despite
this proposed feed-forward mechanism, it has been observed that the rates of ion exchange over
moderate timescales in neighboring interlayers can vary drastically.124,125 Although some
thermodynamic arguments have been proposed to explain the stability of interstratified clay
particles in other clay types,144–146 the physical reason for the disparity in neighboring interlayer
exchange rates in illite is still not entirely clear.

In order to adequately predict the ability of micaceous minerals both to uptake radioactive cesium
and its susceptibility to remobilization, it is necessary to understand and model the mechanisms
that drive the adsorption and exchange of various ionic species in, for example, anhydrous illite.
Recent computational work from our group using the classical ClayFF force field and density
functional theory (DFT) has indicated that the presence of cesium ions within potassium interlayers
creates mechanical forces that significantly increase the interlayer spacing.116 This expansion in
turn results in lower rate coefficients for ion exchange by 6 to 10 orders of magnitude which
accelerates the diffusion of potassium ions.116 However, the problem of characterizing
interstratified particles by definition requires the evaluation of diffusion barriers involving multiple
interlayers. Probing the energy landscape of large atomistic simulations of this type is
computationally expensive. Therefore it motivates the development of a coarse-grain (CG) model
that is capable of reproducing the energy barriers to ion diffusion near an exchange front and in
interstratified clay particles.

Previous CG simulations of clay include both continuous and discrete models of the clay
interlayer.147–150 In one study, Marry et al.147 investigated a montmorillonite system with a
hydrated interlayer. Their CG model consisted of two uniformly charged plates representing the
clay layers held a fixed distance apart. Water was modeled implicitly, and both cations and anions
in solution were modeled continuously as an effective density that was allowed to vary over space.
This model accounted for the excluded volume of the ions using the mean spherical approximation,
an advance on previous continuous models of hydrated clay systems. Using DFT, the grand
potential was minimized to derive the density of ions as a function of distance from the clay surface
for sodium ions. These types of CG models can be highly accurate for the calculation of continuous

87

properties such as tensile strength or average interlayer spacing. Several groups have also
successfully modelled clay and clay-polymer systems by coarse-graining entire clay layers into
one single particle.151–153 However, continuous, ultra coarse-grained models are fundamentally
incapable of capturing site-specific effects such as ion binding, and due to mean-field
approximations would not be expected to precisely reproduce the observed variation in the ion
binding energy landscape in anhydrous clay.116

Other groups have developed more detailed coarse-grain clay models that map multiple
neighboring atoms to single pseudo-atoms, a common coarse-graining technique.154 In the model
of clay-polymer composites developed by the Coveney group, each montmorillonite clay layer is
represented by bonded pseudo-atoms corresponding to ion binding sites.155,156 The pseudo-atoms
in the Suter et al. model are bonded with harmonic potentials derived from an iterative Boltzmann
inversion (IBI) of the corresponding all-atom RDFs, and represents the three sheets of the clay
layer as a single layer of coarse-grain sites.28 Many of the coarse-grain potentials of ion-sheet
interactions in this model were derived using PMF157 matching with fixed sheets, and the various
coarse-grain potentials were converged sequentially.28 When deriving the potential between free
ions and the bulk sites on the clay sheet, Suter and co-workers used the layer-averaged z-
coordinate. This method faithfully reproduced the behavior of ions in the fluidized system, but
would likely not be sufficiently accurate for reproducing the behavior of confined ions, which is
strongly influenced by charge localization.

Simulations with both DFT and ClayFF indicate that ions in the anhydrous illite interlayer
approach interlayer-facing oxygen atoms extremely closely, suggesting that compensatory
compression of the neighboring sheets could play an important role in determining the energy
landscape.116 In addition, potassium and cesium ions at equilibrium within the interlayer are tightly
confined within ditrigonal coordination cavities with oxygen, with interatomic distances of
roughly 3.0 – 3.4 Å.125,136 Due to this extreme confinement and the detailed structure of ion binding
sites, representing an anhydrous clay layer by a single sheet of coarse-grain sites would likely
eliminate important stiff stretching and bending degrees of freedom for determining the energetics
of ion diffusion.

We present a coarse-grain model of an anhydrous illite clay system with different coarse grain
types for representing both the tetrahedral and octahedral sheets. This model runs approximately
70 times faster than the all-atom implementation in ClayFF within the LAMMPS158 simulation
environment due to both reduced number of particles as well as permitting much larger timesteps
of up to 10 fs for molecular dynamics simulations. While ClayFF is typically used to study only a
few layers, our CG model can easily simulate dozens of relatively large clay layers in the same
amount of simulation time. We show that studying large systems is necessary to completely
eliminate finite size effects in the determination of converged diffusion barriers and provide
evidence of a thermodynamic compensation for the interstratification of potassium and cesium ion
distributions in anhydrous illite clay interlayers. Our CG model is capable of investigating
relatively large systems (10-6 m) on simulation timescales of microseconds and the model is
available to others through the LAMMPS simulation package.

88

3.2 Methods

3.2.1 Simulation Cell Setup

Classical molecular dynamics (MD) simulations of an atomistic 2-layer illite clay under periodic
boundary conditions were used as a reference for generating a coarse-grain (CG) model using
iterative Boltzmann inversion. The all-atom MD simulations were performed using the ClayFF159
forcefield within the LAMMPS158 simulation package. The ClayFF forcefield is a generalized,
nonbonded model for hydrated clays, and consists mainly of Lennard-Jones and electrostatic
interactions between atomic centers for bulk clay. It has been fitted to multiple multi-sheet,
aluminosilicate clay types including kaolinite (Al2Si2O5(OH)4) and pyrophyllite (AlSi2O5(OH)),
and has been shown to reproduce the swelling behavior of montmorillonite
(Na3(Si31Al)(Al14Mg2)O80(OH)16) very accurately.159 In addition, ClayFF has been used
extensively to study the dynamics of ion adsorption in hydrated interlayers.160–162 Because of its
ability to model multi-layered clay systems under a variety of physical conditions, ClayFF was
chosen as the reference atomistic forcefield for our coarse-grain model.

All-atom molecular dynamics simulations were run at 300 Kelvin for 100 picoseconds with a
timestep of 1 fs after an initial equilibration period of 120 picoseconds. Coordinates of all atoms
were sampled every 250 fs to build an ensemble for using the IBI algorithm. Each coarse-grain
simulation was sampled in the NVT ensemble for 40 picoseconds after an equilibration of 100
picoseconds with a timestep of 3 fs to compromise between fast turnaround time and sufficient
sampling for IBI. To ensure faithful reproduction of the all-atom data, the coarse-grained systems
used during the IBI procedure were mapped directly from the corresponding all-atom systems.

3.2.2 CINEB Calculations

Climbing-Image Nudged Elastic Band (CINEB) calculations were performed using the “neb”
command within LAMMPS163–166 to obtain energy barriers for interlayer counterion (K+ and Cs+)
migration, using 25 images integrated with a 5 femtosecond timestep. Before beginning each NEB
calculation, both ion position and substitution sites were randomized. The first image for each
NEB calculation was generated by equilibrating the randomized structure, and the final image had
one ion from the first image displaced to an empty binding site. The remaining images were
generated by linear interpolation of the ion position, so that the ion’s initial trajectory was a linear
path between an occupied and unoccupied site. Oxygen atoms surrounding the initial and final ion
binding sites were included in the reaction coordinate due to their displacement during ion
diffusion. By including these atoms in the reaction coordinate, the distribution of energy barriers
was reduced by around 30% without significantly altering the mean diffusion barrier value,
indicating that this accurately captures important physical effects.

To determine system enthalpies, five-interlayer clay systems with different patterns of ion
interstratification, periodic in the x- and y-directions with dimensions of 93 Å and 60 Å,
respectively, were relaxed in the non-periodic z-direction over a period of 150 ps using a 3 fs
timestep. The z-direction was non-periodic, and was initialized at 50 Å. The simulations were
integrated using the multilevel summation method (MSM) real-space electrostatics.167,168 This
electrostatic integration method computes short-range interactions exactly and computes long-
range interactions by decomposing the potential into a sum of smooth potentials which are
integrated with a series of progressively coarser meshes. MSM has a competitive level of accuracy

89

as PME for calculating long-range electrostatic interactions, and unlike PME can be used for non-
periodic systems. Using the “shrink-wrap” feature in LAMMPS, the z-dimension of the simulation
box was allowed to dynamically change over the course of each simulation until convergence. This
procedure resulted in the system reaching the interlayer spacing that minimized the system
enthalpy.

3.2.3 CG Model Parametrization

The iterative Boltzmann inversion (IBI) algorithm for coarse-graining attempts to reproduce all-
atom pair correlation functions by constructing a pairwise interaction potential, a consequence of
Henderson’s uniqueness theorem.169,170 Although Henderson’s uniqueness theorem cannot be
shown to rigorously hold for multiple pairwise interactions, in practice coarse graining strategies
built on the methodology of reproducing the radial pair correlation function have been successful.
CG simulations are run iteratively, and the new pair correlation function g (r) is used to update
the old interaction potential. Assuming only pairwise effects, the all-atom pair correlation function
g (r) of gases can be roughly approximated:

g (r) ≈ Ae () (2)

where A is an arbitrary constant, β is the thermodynamic beta, and u(r) is the potential as a
function of the radial separation. The iterative Boltzmann inversion algorithm updates the coarse-
grain potential based on the all-atom and CG pair correlation functions:

u , (r) = u , (r) + ln
()

()
 (3)

Henderson’s uniqueness theorem is only precisely true for a homogenous fluid, but IBI is a robust
method of coarse-graining that works for heterogeneous fluids and other phases as well. In
particular, good performance of the IBI algorithm can be expected if run simultaneously for
“orthogonal” degrees of freedom, such as the inter- and intra-sheet forces in our CG model of illite.
The iterative Boltzmann inversion procedure was interfaced with LAMMPS by updating non-
bonded and bonded coefficients as well as tabulated potentials after each iteration.

The CG model of anhydrous clay consists of 5 different coarse-grain centers. This mapping
reduces the number of tracked centers in ClayFF by approximately 2:1 for the bulk clay. The five
clay CG centers are as follows: 1 CG type for the octahedral sheet (Type Al) corresponding to the
structural Al3+ cations; 2 CG types for the tetrahedral sheet, representing O2- anions directly
adjacent to the interlayer, but are separated into CG types corresponding to oxygen anions near
sites with and without isomorphic substitutions of Al3+ for Si4+ (Type Os and O), so that their
interactions with other CG centers are computed separately in order to capture differences in the
binding site characteristics. In addition, there are two types of ions (Type K and Cs). Silicon and
aluminum are not explicitly tracked in the tetrahedral sheet.

The CG sites experience five types of forces based on the following interaction potential:
harmonic bonds and angles between neighboring centers in the octahedral and tetrahedral sheets,
Lennard-Jones interactions between CG centers, electrostatics between ion and substituted-oxygen
CG centers, and finally tabulated forces (Eq. (4)).

U = ∑ k (r − r) + ∑ k (θ − θ) + ∑ 4ϵ − + ∑ U , .(r) + U (4)

90

The Lennard-Jones interactions are defined between each pair of CG centers and are not based on
mixing rules; this approach was chosen because the CG centers represent different numbers of
atoms from the all-atom model, and therefore the pairwise interactions are unlikely to be
characterized by effective radii. Lennard-Jones interactions are slightly less computationally
expensive than tabulated forces and are sufficient for the purposes of this study for characterizing
the forces between sheets. Tabulated potentials are used between the ion and tetrahedral CG
centers to more accurately capture the nature of the binding sites. Lennard-Jones interactions and
electrostatics are excluded for 2nd, 3rd, and 4th neighbors based on the bond and angle topology.
After each round of IBI, the updated CG potential is fitted to either a harmonic or Lennard-Jones
function for most of the degrees of freedom, and this fit is used in the next round of MD simulation.

In some cases, the same parameters were used to characterize multiple interactions due to the
corresponding all-atom model centers having very similar pair correlation functions. For example,
one single Lennard-Jones potential was used to govern the nonbonded interaction between the
octahedral and tetrahedral CG sites. This approach further simplifies the model, although it does
not affect its computational cost. To run our CG clay model, all that is needed is a properly
configured input script and data file with the clay system coordinates, charges, and topology. No
modification to the LAMMPS software itself is needed to run the model, and the software used to
run the IBI algorithm is entirely separate from the core codebase of any simulation software. The
CG model is highly portable, and should be able to run on any other molecular simulation package
that allows for the implementation of tabulated potentials.

3.3 Results

3.3.1 Clay CG Performance

Figure 3.1 and Supplementary Figure 3.1 show the distribution of bond distances and angles for
the all-atom and CG models for the degrees of freedom fit with harmonic bonds, in which we
observe overall excellent agreement. For the non-bonded degrees of freedom, Figure 3.2 and
Supplementary Figure 3.2 present the radial distribution function (RDF) of the all-atom model in
comparison to the most converged iteration for the CG model. Since the fit for the nonbonded
degrees of freedom to the Lennard-Jones functions used only the first peak of each rdf, there is a
relatively good agreement for all pair correlations with the exception of the O-O and O-Al CG
types. However, even in these cases there is relatively good reproduction of the positions of
secondary peaks in the RDFs, indicating that the geometry of the all-atom and CG systems are
quite similar. The model is well converged based on the similarity of the oxygen-ion CG center
RDFs to the corresponding distribution in the all-atom model, since these degrees of freedom are
the most important for fully characterizing the ion binding site.

91

Figure 3.1. Comparison of the probability distribution of bond distances and bond angles for the
all-atom (solid) and coarse-grained model (dotted). (a) Distribution of bond distances for the O-O
CG bond; (b) Distribution of bond angles for the O-O-O 60 degree angle type bond.

Figure 3.2. Comparison of the radial distribution function (RDF) for the all-atom (solid) and
coarse-grained model (dotted). RDFs for (a) O-Cs CG types and (b) Os-Cs CG types. RDFs were
sampled every 250 fs over a time period of 40 ps in equilibrated systems.

In order to quantify the increase in speed for our coarse-grain model, an all-atom model and its
corresponding coarse-grain model were run for 3 nanoseconds on 32 cores, and the real time
needed to simulate each 100 fs was recorded. The all-atom system consisted of 2 clay layers with
periodic boundary conditions and a total of 9099 atoms and was simulated using the ClayFF force
field. The coarse-grain model was simulated using the force field developed in this paper. The
coarse-grain model ran roughly 6.9 times faster than the corresponding all-atom model with the
same timestep. The shortest vibrational period in the all-atom model is on the order of 10 fs due to

92

the explicit modelling of hydrogen, and in contrast the fastest vibrational mode in the coarse-grain
model presented here is between bonded oxygen-oxygen centers, which is on the order of 100
fs.171 Because of this, the coarse-grain model is stable with a timestep of up to 10 fs, while ClayFF
must use an integration timestep on the order of 1 fs. Thus our coarse-grain model represents a
roughly 70-fold speedup compared to the corresponding all-atom forcefield, which is comparable
to the speedup obtained by other groups using similar coarse-graining techniques.155,156

As shown by Johnson et al., the Henderson uniqueness proof implies that there is always a
representability problem as a general feature of a CG potential, i.e. a CG procedure cannot
simultaneously resolve all the properties at a given state point.172 For example, reproducing the
energetics of a system when the coarse-graining approach is based on reproducing structural or
geometric features of the more complex reference system is not formally guaranteed.137,173
However, the structural coarse-graining approach is likely to reproduce qualitative trends in
properties such as energetic barriers for ion diffusion in anhydrous clays, since these barriers will
be primarily determined by mechanical forces.

3.3.2 Energy Barriers to Ion Migration in Pure Phases

We sought to further validate our CG model by performing NEB calculations to determine
diffusion barriers for different ions in the presence of the same or different ions in the clay
interlayers. While the energy barriers derived from the coarse-grain model were consistently
higher and had a broader distribution than the corresponding barriers in the all-atom model, Figure
3.3 confirms that the CG model qualitatively reproduces the difference in diffusion energy barriers
for K+ and Cs+ found previously in the all-atom clay model.116

The mean energy barrier for the migration of potassium in pure K-illite was found to be 300 ± 94
kJ/mol (Figure 3.3a) on average, compared to 226 ± 51 kJ/mol in the corresponding ClayFF model
(Figure 3.3b). We also found for both K+ and Cs+, the energy barrier for diffusion was found to be
much lower in systems with a higher fraction of Cs+ atoms in the interlayer. This result is in
agreement with the trend derived from the all-atom forcefield, which has led to our determination
of a mechanism for interlayer exchange116, whereby as more Cs+ enters an interlayer, both ion
species become much more mobile, effectively increasing the rate at which the exchange front will
advance into the interlayer.124,125,143

93

Figure 3.3. Energy barrier distribution for potassium ion diffusion in a 4-layer periodic clay
system with 100% potassium interlayers. (a) CG model and (b) all atom Clay-FF model116
(reproduced with permission). The distribution of energy barriers in the CG model was
consistently found to be about 70 kJ/mol higher and 30% more broad than the corresponding all
atom barriers. This effect is likely due to the inherent undersampling of high-energy paths during
the IBI algorithm.

Both the CG and all-atom energy barriers correspond to timescales that are inaccessible for direct
observation of diffusion events in MD simulations,116 but the ability of the CG model to
approximate the energy barriers and their trends with respect to all atom ClayFF is promising for
using this coarse-grain model as a probe for changes in diffusion barriers to infer the kinetics of
ion exchange. Properly modelling ion diffusion near and far from the exchange front necessarily
requires a model capable of simulating a large, heterogeneous interlayer, as well as overcoming
finite size effects by modeling many interlayers (i.e. greater than 2), which is extremely
computationally expensive in all-atom ClayFF.

For sufficiently small periodic systems, the finite size effect can dramatically impact the
compressibility, and would be expected to increase the calculated barrier to ion diffusion
artificially.174 Therefore, the magnitude of the NEB barriers was studied as a function of the
number of simulated layers using periodic 2-interlayer, 4-interlayer, and 12-interlayer systems.
Table 3.1 shows the average energy barrier for K+ diffusion in K-illite as a function of the number
of clay layers and the energy barrier distributions determined by NEB are presented in
Supplementary Figure 3.3. Since there was essentially no observed change in the average energy
barrier and variance between 4- and 12-interlayer systems, it was determined that simulating at
least 4 interlayers would be sufficient to approximate an effectively infinite clay for the purposes
of this study.

Table 3.1. Average Energy Barrier (and variance) for K+ ion diffusion in periodic K-illite as a
function of the number of interlayers. Very small systems greatly overestimate the barrier due to
finite size effects. Both the CG model and the all-atom model in ClayFF feature very broad energy
barrier distributions.

of Interlayers Average Energy Barrier and
variance (kJ/mol)

2 332 +/- 131

4 300 +/- 94

12 298 +/- 95

94

3.3.3 Interlayer Energetics and Ion Migration Barriers in Interstratified and
Homostructured Illite

Mixing of unlike ions in layered silicate interlayers can adopt different structures depending on
ion distributions in the final structure. When interlayer ions form random mixtures the phase is
homostructured, and when ions are separated into distinct phase-separated layers the phase is
interstratified (Figure 3.4 and Figure 3.5a, respectively). In the following section we analyze the
impact of structure on the barriers to ion migration, and consequently on the kinetics of ion
exchange.

Figure 3.4. Visualization of a periodic four layer homostructured clay particle in VMD.175
Orthographic representation showing bulk clay (gray), cesium (red), and potassium (blue) coarse-
grain types. The structure is periodic in all three dimensions, with ions at the top in contact with
the clay layer at the bottom of the image.

95

Figure 3.5. Visualization of a non-periodic five layer interstratified clay system in VMD.175 (a)
Orthographic representation showing bulk clay (gray), cesium (red), and potassium (blue) coarse-
grain types; (b) top-down visualization of the three sheets in each clay layer; (c) CG centers of the
tetrahedral sheet with substitutions shown in purple; (d) CG centers of the octahedral sheet.

The results in Table 3.2 summarize the energy barriers to ion migration as a function of layer Cs+
content for homostructured K/Cs-illites (Figure 3.4), in which each interlayer consisted of both
Cs+ and K+ ions positioned randomly at counterion binding sites. As expected, both ions experience
dramatically reduced energy barriers in Cs-illite compared to K-illite due to interlayer expansion,
and there is a nearly linear trend in the change in barrier height as a function of composition,
consistent with prior results using an all-atom forcefield.116 As a function of the change in
equilibrium interlayer spacing, these results correspond to a decrease in the average barrier energy
of approximately -71 kJ/mol per Å for Cs+ and -78 kJ/mol per Å for K+. This result is similar in
magnitude to the change in energy barrier found in the all-atom ClayFF model of -92 kJ/mol per
Å for K+.116 The information in Table 3.2 is presented graphically in Figure 3.7.

Table 3.2. Average energy barrier (and variance) for Cs+ and K+ ion diffusion in a 4-layer periodic
clay system as a function of interlayer composition. Each system featured a homogenous mixture
of bound Cs+ and K+ ions in all four interlayers. Interlayer expansion as a function of composition
was very nearly linear, with an interlayer expansion of 0.071 Å under complete exchange for Cs+.

Fraction Cs+ in

the interlayer

K+ NEB Barrier and

Variance (kJ/mol)

Cs+ NEB Barrier and

Variance (kJ/mol)

Interlayer
Spacing (nm)

0 300 ± 94 321 ± 83 0.984

0.25 286 ± 83 309 ± 75 0.997

0.5 279 ± 94 295 ± 68 1.015

0.75 262 ± 84 283 ± 88 1.032

1 243 ± 74 272 ± 83 1.055

96

One advantage of our ClayCG model is the ability to model numerous clay structures with
significantly reduced computational cost. Small clay systems were used to investigate the mixing
enthalpy of interstratification due to ion exchange. These systems consisted of four periodic
anhydrous interlayer regions between five illite clay layers stacked in a vertical configuration. The
outer layers lack counterions on the exterior basal surfaces, which is necessary to allow
convergence of the simulation cell size during the shrinkwrap procedure in LAMMPS. Although
redistributing these ions in the interlayers is not physically realistic, it is not expected to
significantly alter the equilibrium interlayer spacing or NEB energies presented in Table 3.3,
because basal spacing is controlled primarily by the counterion size. The excess mixing enthalpy
was computed as:

ΔH = H − f H − f H (5)

where ΔH is the excess enthalpy of mixing (i.e., the difference between the real and ideal
enthalpy values), H is the computed minimum enthalpy of the clay system being simulated, f is
the fraction of ion i in the clay system, and H and H are the enthalpies of five-layer clay
containing only cesium and potassium in their interlayers, respectively (see Methods). For all of
the five-layer systems investigated, each interlayer was occupied exclusively by one type of ion
and did not have an exchange front. In the following tables, each five-layer system is abbreviated
using the identity of the ions in its interlayers from the bottom to the top as a code. For example,
the system corresponding to “Cs Cs K K” had two adjacent interlayers filled by cesium ions below
two interlayers filled by potassium ions (see Figure 3.5).

Table 3.3 summarizes the trends in the layer basal spacing, energy barriers to migration, and
normal stress in the z-direction on both types of ions within different interstratification
arrangements. For both K+ and Cs+ ions, the overall trend is towards increasing normal stress (and
therefore cohesion) with decreasing interlayer spacing. The presence of Cs-illite decreases z-axial
stress on K-illite layers, while the presence of K+ in the structure tends to increase z-axial stress
on Cs+ interlayers. This finding suggests that the longstanding supposition117 that exchange on a
layer increases cohesive energy in neighboring K+ interlayers is incorrect, at least when the
adjacent layer also contains anhydrous counterions. Instead, we find that exchange on one layer,
regardless of its proximity to the clay interior, alters the basal spacing and cohesive energies of
ions in immediately adjacent layers. As shown in Figure 3.6, the magnitude of this effect decreases
rapidly as a function of distance from the exchanged layers and is nearly undetectable only a few
layers away from the Cs-illite/K-illite interface.

97

Table 3.3. Trends in interlayer spacing, ion diffusion energy barrier, z-axial stress, and excess
mixing enthalpy versus interstratification. In general, both z-axial stress and diffusion energy
barrier increase dramatically with increasing interlayer confinement. Adjacent Cs+ interlayers are
associated with a higher excess enthalpy of mixing, suggesting a thermodynamic compensation
for alternation of Cs-illite and K-illite interlayers interstratified particles. For interstratified
particles, NEB barriers are computed for interlayers adjacent to the Cs-illite/K-illite interface.

Interstratification
Type

Interlayer
spacing (nm)

NEB energy
(kJ/mol)

z-stress
(atm)

ΔΗmix
(kJ/mol)

Cs in Cs Cs Cs Cs 1.055 273 1.25

Cs in K Cs Cs Cs 1.046 284 1.27 3.33

Cs in Cs Cs K K 1.043 289 1.29 -5.89

Cs in Cs K Cs K 1.038 291 1.35 -9.93

Cs in Cs K K K 1.041 288 1.41 -7.09

Cs in K Cs K K 1.037 286 1.38 -7.32

Cs in Cs K Cs Cs 1.049 279 1.30 0.70

K in K K K K 0.984 299 1.64

K in Cs K K K 0.994 289 1.60 -7.09

K in Cs Cs K K 0.999 278 1.57 -5.89

K in Cs K Cs K 1.005 275 1.48 -9.93

K in K Cs Cs Cs 1.001 273 1.47 3.33

K in K Cs K K 0.990 294 1.60 -7.32

K in Cs K Cs Cs 1.001 274 1.50 0.70

98

Figure 3.6. Reduction in K+ diffusion barrier in a four layer interstratified particle. The barrier
reduction to K+ diffusion in a “Cs K K K” particle relative to bulk K-illite is shown as a function
of the distance from the Cs-illite/K-illite interface.

For both types of ions, there is a clear trend of increasing energy barrier under increased
confinement. In the case of only one Cs-illite layer present in bulk K-illite, it is clear from the
interlayer spacing and normal stress that the cesium interlayer experiences maximal compression.
To confirm this, NEB calculations were run on the displacement of a Cs+ ion in Cs-illite in the
middle of a 12-layer K-illite particle. The barrier in this case was found to be 288 kJ/mol, very
similar to the 286 kJ/mol barrier for Cs+ diffusion in the “K Cs K K” particle (Table 3.3),
supporting the conclusion that interlayer compression and expansion in interstratified particles is
a localized effect. Similarly, a K-illite layer isolated in bulk cesium relaxes to a much larger
spacing.

The compensatory expansion and compression of neighboring layers may explain why the change
in Cs+ and K+ diffusion barriers in interstratified particles is greater than the corresponding change
in homostructured particles for a given interlayer spacing (Figure 3.7). In homostructured clays,
the local interlayer spacing near a Cs+ counterion is greater than the average interlayer spacing due
to its larger atomic radius, resulting in a lower migration barrier for a given spacing. The opposite
is true for K+ counterions, which experience greater local confinement in homostructured clays
than would be expected from measuring the average interlayer spacing alone. In contrast, the
compression and expansion of interlayers in interstratified particles results in a more uniform
interlayer spacing, and therefore a more dramatic change in the diffusion barrier. This effect may
be an artifact of using ClayFF as the all-atom model, as ClayFF is known to overpredict flexibility
in large clay systems.

99

Figure 3.7. Migration barriers to counterion diffusion in homostructured and interstratified clay
particles. (a) Barriers for K+ migration; (b) barriers for Cs+ migration. These plots summarize the
NEB data from Table 3.2 and Table 3.3.

From the trends in the energy barriers to ion diffusion in K-illite interlayers adjacent to Cs-illite
interlayers (Table 3.3), one would assume that exchange would be enhanced near cesium-
dominated interlayers instead of being inhibited. That is, diffusion energy barriers in neighboring
K-illite interlayers are lowered in the immediate vicinity of a Cs-illite interlayer. Experimental
evidence for the Cs/K system is insufficient to confirm or refute this hypothesis, but there is some
visual evidence that Cs exchanged layers occur in clumps in a K-phlogopite and are not randomly
distributed, as expected from these results.124

3.3.4 Impact of the Exchange Front on Barriers

Exchange of ions of different size leads to bending deformation of the layer structure locally, which
may alter the coordination of K+ in the vicinity of the exchange front.176 In this case, the selectivity
for and mobility of K+ is expected to vary with the sharpness and uniformity of the front. In order
to capture the effects of the sharp exchange front in anhydrous illite clay systems,116,124,125 a series
of simulations were performed in which all ions on one half of the exchanging layer were assigned
to be Cs+ and all ions on the other half were assigned to be K+. The exchange front was modelled
in a periodic, four-layer clay system that featured one completely exchanged interlayer below the
exchange front and two fully unexchanged interlayers above the exchange front. Ions far from the
exchange front did not have significantly altered energy barriers to diffusion compared to barriers
in an interstratified particle, but K+ ions characterized at the interface showed a slightly reduced
average energy barrier compared to an interstratified clay with no exchange front barrier (273
kJ/mol vs. 278 kJ/mol). In comparison with the results of the energy barrier distribution presented
in Table 3.2, K+ ions near the exchange front experience approximately 20% additional barrier
lowering (27 kJ/mol) with respect to the barrier in pure K-illite as compared to ions far from the
front (22 kJ/mol), and ions more than approximately 2 to 3 nm from the exchange front are
essentially unaffected by it.

100

3.3.5 Thermodynamic Compensation for Ordered Interstratification

Amongst all of the non-periodic four interlayer systems studied, the system “K Cs K Cs” exhibited
the greatest thermodynamic compensation for interstratification. Overall, the ΔH trends
indicate that there is a thermodynamic driver during the exchange process to form alternating K-
illite and Cs-illite layers (i.e. ordered interstratified structures).128,144,177 Exchange will tend to
disrupt bulk K-illite, and thermodynamic feedback will favor exchange that leads to the formation
of ordered interstratification instead of regions of bulk Cs-illite. However, the thermodynamic
compensation for forming ordered interstratification is quite small (at most around 10 kJ/mol),
indicating that it is unlikely to be the primary cause of experimentally observed differences in the
exchange rate of adjacent interlayers.124,125

3.4 Conclusions

We have presented a coarse-grain model of anhydrous K- and Cs-illite that represents a 70-fold
speedup over the corresponding all-atom ClayFF forcefield. Although using tabulated potentials
between the oxygen coarse-grain centers may slightly improve the fidelity of modelling the ion
binding sites, there is a non-negligible computational cost savings associated with using Lennard-
Jones potentials as compared to splined tabulated potentials.178 While other CG clay models have
represented ion binding sites as single CG centers,155,156 the model presented here is capable of
capturing physical degrees of freedom important during ion diffusion in the confined
interlayer.125,136 By modelling all the atoms within and adjacent to the interlayer, we were able to
accurately reproduce the structure of ion binding sites without significant computational overhead.

The reduction in particle density due to the coarse-grain procedure is especially helpful for nudged
elastic band simulations, since the number of molecular dynamics steps necessary to reach
convergence of the energy pathway is heavily dependent on system size and the number of
particles surrounding the transition path. We were able to converge NEB pathways on relatively
large systems, which is promising for probing the energy barriers in physical scenarios that would
necessitate investigating bulk effects. Our CG model qualitatively reproduced the ion diffusion
energy trends as a function of interlayer separation found in ClayFF116 and demonstrates interlayer
expansion near sharp exchange fronts and near fully exchanged layers. Our model indicates a
significant enthalpy of mixing associated with adjacent K- and Cs-illite interlayers in interstratified
particles, which may impact exchange front propagation in adjacent interlayers. The coarse-
graining strategy used here is expected to generalize well to other anhydrous and swelling clay
types, and the intrasheet CG bond potentials will be directly portable to other clay systems.

3.5 Acknowledgements

The Laboratory Directed Research and Development Program of Lawrence Berkeley National
Laboratory supported KS and LNL under U.S. Department of Energy Contract No. DE-AC02-
05CH11231. THG and LRP acknowledge support by the Director, Office of Science, Office of
Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. This research used resources of the National Energy Research Scientific Computing
Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231.

101

3.6 Supplement

Coarse-grain and all-atom simulations were run in LAMMPS on the Edison and Cori
supercomputers at the National Energy Research Scientific Computing Center (NERSC) as well
as our own in-house supercomputing cluster, Armada. All-atom simulation data was generated
from 2-layer K-illite and Cs-illite clay systems with randomized substitution sites. For each ion X,
the composition of the simulated illite clay was X0.7[Si3.3Al0.7]-Al2O10(OH)2. All-atom systems
were equilibrated with a 1 fs timestep in the NVE ensemble for 120 picoseconds, and subsequently
sampled every 250 fs over a period of 40 ps. Coarse-grain simulations were run in the NVT
ensemble for 40 picoseconds after an equilibration time of 100 picoseconds with a timestep of 3
fs. The Coulombic interactions for the coarse-grain model were computed using a particle-particle
particle mesh with a cutoff of 10 Å. The cutoff distance was the same for both Lennard-Jones and
tabulated interactions between the coarse-grain centers. These simulations were run in the NVT
ensemble at 300 Kelvin using a Nosé-Hoover thermostat and barostat. The all-atom reference
model was simulated under the same conditions to ensure transferability.

The all-atom radial distribution functions in Supplementary Figure 2.1 were fitted with harmonic
potentials to derive an initial guess for the corresponding coarse-grain potentials. These initial
potentials were used along with non-bonded interaction potentials derived from the all-atom RDFs
in Supplementary Figure 2.2. However, this first guess very poorly represented the clay structure
and failed to reproduce flat clay sheets. Better initial parameters for the harmonic potentials were
found by running the iterative Boltzmann inversion (IBI) algorithm169,170 on isolated, uncharged
sheets, and then subsequently re-introducing non-bonded interactions. We then used IBI to
converge the potentials associated with each of the degrees of freedom in Supplementary Figure
2.1 and Supplementary Figure 2.2 simultaneously, which required around 100 iterations to achieve
high fidelity in reproducing the oxygen-ion RDFs. Although IBI is much more difficult to converge
by changing multiple potentials after each round, the final CG model was able to more accurately
reproduce the degrees of freedom near ions in the interlayer in the presence of the full force field.
The potentials in the coarse-grain model were derived by iteratively simulating an anhydrous two-
layer periodic clay system, with dimensions of 93 Å x 60 Å x 20 Å.

102

Supplementary Figure 3.1. Comparison of the probability distribution of bond distances and
bond angles for the all-atom (solid) and coarse-grained model (dotted). (a) Os-Os CG bond; (b)
Al-Al CG bond; (c) O-O-O CG type 120 degree angle; (d) Os-Os-Os CG type 60 degree angle; (e)
Al-Al-Al CG type 120 degree angle.

103

Supplementary Figure 3.2. Comparison of the radial distribution function (RDF) for the all-atom
(solid) and coarse-grained model (dotted). RDFs for (a) O-K CG types; (b) Os-K CG types; (c) O-
O CG types; (d) O-Al CG types.

104

The data in Supplementary Figure 3.3 was generated using the climbing image nudged elastic band
(CINEB) method implemented in LAMMPS. In CINEB, the highest-energy system replica is
driven to a true saddle point to better approximate the exact minimum energy path for a given
transition.163–166 Fictitious spring forces are introduced between images, which are initialized as a
linear interpolation between the equilibrium bound state and proposed final state. Since the initial
and final states are also driven to an energy minimum during CINEB, randomization of ion
positions can be implemented efficiently by displacing ions according to the underlying geometry
of the clay interlayer. Substitutions and ion configurations in the interlayer were randomized
during the simulation of both periodic and non-periodic clay particles for all CINEB results
presented in this work. 25 images of the clay system were run in parallel on 25 cores for each
energy barrier calculation. The simulations were run with a 5 fs timestep to enhance accurate
convergence of the diffusion pathway.

105

Supplementary Figure 3.3. Migration barrier distributions for K+ diffusion in K+-illite as a
function of the number of interlayers. Each system is periodic in all three dimensions. (a) 2
interlayers, (b) 4 interlayers, (c) 12 interlayers.

106

4 Summary

The goal of this dissertation is to present interpretable reduced order models of existing machine
learning methods and all-atom simulations that faithfully retain the properties of the original
model. A reduced order surrogate model was developed with the intention of being used in high-
dimensional optimization of return on investment or other target functions. We developed a coarse-
grain model of a clay system to better understand ion behavior near an exchange interface in the
bulk phase. By randomizing ion position, we were able to implement iterative Boltzmann inversion
in a crystalline system without a damping factor and better sample the entire phase space. Both of
these models are more computationally tractable than the models they replace, and in the case of
SMiRFs are much more quantitatively interpretable in low-dimensional representations of the
feature space.

Chapter 2 presents a methodology for dense imputation of discrete soil data derived from soil
samples using random forest regression against dense features such as multispectral images and
electrical conductivity. By generating a dense set of soil nutrient concentrations, we were able to
use them as features to build a quantitative model of crop yield as a function of soil properties.
Generating a fundamentally localized model of sparse data as a function of dense data results in a
model that is much more general than by using kriging alone, especially when the dense datasets
are expected to be correlated to the sparse soil data. We found that we were able to predict a map
of fertilizer application that would boost yield by approximately 100 kg/ha with essentially no
additional cost by optimizing the ROI of a reduced order surrogate model of a random forest model
of yield. The SMiRF methodology is particularly well suited to datasets with a high-dimensional
feature space, because the iterative random forest procedure extracts low-dimensional, high-
importance feature interactions in a way that scales very slowly with dimension. We were able to
reproduce and expand on existing agronomic trends in relatively healthy soil by using a purely
data-driven approach, attesting to the efficacy of treating each 100 m2 section of a field as a roughly
independent test sample, thereby drastically increasing the effective number of samples that can
be used in crop modelling.

Chapter 3 focuses on a coarse-grain representation of illite clay with cesium and potassium ions in
the interlayer. Through iterative Boltzmann inversion we were able to efficiently derive a roughly
2:1 model that in practice runs approximately 70 times faster than a corresponding all-atom
simulation. The CG model is also capable of simulating dozens of clay layers simultaneously.
Using CINEB simulations, we found that the barrier to ion site translocation depends significantly
on the interlayer spacing, and moreover that there is a thermodynamic compensation associated
with alternating layers filled with cesium and potassium ions, consistent with experimental results.
By simulating multiple arrangements of alternating interlayers, we were able to show that ions in
a layer far from an exchanged interlayer do not have a significant associated enthalpy of mixing,
while those in neighboring layers have a greatly altered thermodynamic landscape. By using
structural coarse-graining in a rigid phase, we were able to very accurately reproduce the
mechanical behavior of the binding sites as indicated by the extremely close match between the
radial distribution functions of the all-atom and coarse-grain centers.

107

5 References
1. Musser, W. N. & Patrick, G. F. How Much does Risk Really Matter to Farmers? in A

Comprehensive Assessment of the Role of Risk in U.S. Agriculture (2002).
doi:10.1007/978-1-4757-3583-3_24.

2. MacDonald, J. M., Korb, P. & Hoppe, R. A. Farm Size and the Organization of U.S. Crop
Farming, ERR-152. Economic Research Report (2013).

3. Finger, R., Swinton, S. M., El Benni, N. & Walter, A. Precision Farming at the Nexus of
Agricultural Production and the Environment. Annual Review of Resource Economics vol.
11 Preprint at https://doi.org/10.1146/annurev-resource-100518-093929 (2019).

4. Nascente, A. S., Li, Y. C. & Crusciol, C. A. C. Cover crops and no-till effects on physical
fractions of soil organic matter. Soil Tillage Res (2013) doi:10.1016/j.still.2013.02.008.

5. Ashworth, A. J., Allen, F. L., Saxton, A. M. & Tyler, D. D. Impact of crop rotations and
soil amendments on long-term no-tilled soybean yield. Agron J (2017)
doi:10.2134/agronj2016.04.0224.

6. Wojtowicz, M., Wojtowics, A. & Piekarczyk, J. Application of remote sensing methods in
Agriculture. Communication in Biometry and Crop Science (2015) doi:10.2478/gein-
2014-0007.

7. Das, J. et al. Devices, systems, and methods for automated monitoring enabling precision
agriculture. Automation Science and Engineering (CASE), 2015 IEEE International
Conference on (2015) doi:10.1109/CoASE.2015.7294123.

8. Krige, D. G. A statistical approach to some basic mine valuation problems on the
Witwatersrand. Journal of Southern African Institute of Mining and Metallurgy 52,
(1951).

9. Krige, D. G. A Statistical Analysis of Some of the Borehole Values in the Orange Free
State Goldfield. Journal of Chemical, Metallurgical and Mining Society of South Africa
47–64 (1952).

10. Shukla, G., Mishra, G. C. & Singh, S. K. Kriging Approach for Estimating Deficient
Micronutrients in the Soil: A Case Study. International Journal of Agriculture,
Environment and Biotechnology 8, (2015).

11. Dafonte, J. D., Guitián, M. U., Paz-Ferreiro, J., Siqueira, G. M. & Vázquez, E. V.
Mapping of soil micronutrients in an european atlantic agricultural landscape using
ordinary kriging and indicator approach. Bragantia 69, (2010).

12. Chilès, J. P. & Desassis, N. Fifty years of kriging. in Handbook of Mathematical
Geosciences: Fifty Years of IAMG (2018). doi:10.1007/978-3-319-78999-6_29.

13. Hengl, T., Heuvelink, G. B. M. & Rossiter, D. G. About regression-kriging: From
equations to case studies. Comput Geosci 33, (2007).

14. Pham, T. G., Kappas, M., Huynh, C. Van & Nguyen, L. H. K. Application of ordinary
kriging and regression kriging method for soil properties mapping in hilly region of
central Vietnam. ISPRS Int J Geoinf 8, (2019).

15. Chen, Y. R., Chao, K. & Kim, M. S. Machine vision technology for agricultural
applications. in Computers and Electronics in Agriculture (2002). doi:10.1016/S0168-
1699(02)00100-X.

16. Billingsley, J. Machine Vision in Agriculture. Encyclopedia of Agrophysics 433–436
(2011) doi:10.1007/978-90-481-3585-1.

108

17. Zhang, Z., Kodagoda, S., Ruiz, D., Katupitiya, J. & Dissanayake, G. Classification of
Bidens in wheat farms. in 15th International Conference on Mechatronics and Machine
Vision in Practice, M2VIP’08 (2008). doi:10.1109/MMVIP.2008.4749584.

18. Kasampalis, D. et al. Contribution of Remote Sensing on Crop Models: A Review. J
Imaging (2018) doi:10.3390/jimaging4040052.

19. Stafford, J. V. Implementing precision agriculture in the 21st century. Journal of
Agricultural and Engineering Research (2000) doi:10.1006/jaer.2000.0577.

20. Oppelt, N. M. Use of remote sensing data to assist crop modeling. J Appl Remote Sens
(2010) doi:10.1117/1.3491191.

21. Mariotto, I., Thenkabail, P. S., Huete, A., Slonecker, E. T. & Platonov, A. Hyperspectral
versus multispectral crop-productivity modeling and type discrimination for the HyspIRI
mission. Remote Sens Environ (2013) doi:10.1016/j.rse.2013.08.002.

22. Yao, X. et al. Estimation of wheat LAI at middle to high levels using unmanned aerial
vehicle narrowband multispectral imagery. Remote Sensing Preprint at
https://doi.org/10.3390/rs9121304 (2017).

23. Vithu, P. & Moses, J. A. Machine vision system for food grain quality evaluation: A
review. Trends Food Sci Technol (2016) doi:10.1016/j.tifs.2016.07.011.

24. Nandi, C. S., Tudu, B. & Koley, C. Machine vision based techniques for automatic mango
fruit sorting and grading based on maturity level and size. in Smart Sensors, Measurement
and Instrumentation (2014). doi:10.1007/978-3-319-02315-1_2.

25. Ebrahimi, E., Mollazade, K. & Babaei, S. Toward an automatic wheat purity measuring
device: A machine vision-based neural networks-assisted imperialist competitive
algorithm approach. Measurement (Lond) (2014) doi:10.1016/j.measurement.2014.05.003.

26. Gottschalk, R., Burgos-Artizzu, X. P., Ribeiro, Á., Pajares, G. & Sánchez-Miralles, Á.
Real-time image processing for the guidance of a small agricultural field inspection
vehicle. in 15th International Conference on Mechatronics and Machine Vision in
Practice, M2VIP’08 (2008). doi:10.1109/MMVIP.2008.4749582.

27. Chlingaryan, A., Sukkarieh, S. & Whelan, B. Machine learning approaches for crop yield
prediction and nitrogen status estimation in precision agriculture: A review. Comput
Electron Agric 151, 61–69 (2018).

28. Busch, J. W. & Phelan, P. L. Mixture models of soybean growth and herbivore
performance in response to nitrogen-sulphur-phosphorous nutrient interactions. Ecol
Entomol 24, (1999).

29. Beanland, L., Phelan, P. L. & Salminen, S. Micronutrient interactions on soybean growth
and the developmental performance of three insect herbivores. Environ Entomol 32,
(2003).

30. Shen, J., Li, R., Zhang, F., Rengel, Z. & Tang, C. Orthogonal polynomial models to
describe yield response of rice to nitrogen and phosphorus at different levels of soil
fertility. Nutr Cycl Agroecosyst 65, (2003).

31. Moreira, A., Moraes, L. A. C., Moretti, L. G. & Aquino, G. S. Phosphorus, Potassium and
Sulfur Interactions in Soybean Plants on a Typic Hapludox. Commun Soil Sci Plant Anal
49, (2018).

32. Jeong, J. H. et al. Random forests for global and regional crop yield predictions. PLoS
One 11, (2016).

33. Bagale, S. Nutrient Management for Soybean Crops. International Journal of Agronomy
vol. 2021 Preprint at https://doi.org/10.1155/2021/3304634 (2021).

109

34. Shamsi, I. H. et al. Alleviation of cadmium toxicity in soybean by potassium
supplementation. J Plant Nutr 33, (2010).

35. Kumar, S., Kumar, S. & Mohapatra, T. Interaction Between Macro‐ and Micro-Nutrients
in Plants. Frontiers in Plant Science vol. 12 Preprint at
https://doi.org/10.3389/fpls.2021.665583 (2021).

36. van Klompenburg, T., Kassahun, A. & Catal, C. Crop yield prediction using machine
learning: A systematic literature review. Computers and Electronics in Agriculture vol.
177 Preprint at https://doi.org/10.1016/j.compag.2020.105709 (2020).

37. Filippi, P. et al. An approach to forecast grain crop yield using multi-layered, multi-farm
data sets and machine learning. Precis Agric 20, 1015–1029 (2019).

38. Vohra, M., Nath, P., Mahadevan, S. & Tina Lee, Y. T. Fast surrogate modeling using
dimensionality reduction in model inputs and field output: Application to additive
manufacturing. Reliab Eng Syst Saf 201, (2020).

39. Ansarifar, J., Wang, L. & Archontoulis, S. V. An interaction regression model for crop
yield prediction. Sci Rep 11, (2021).

40. Pearson, K. LIII. On lines and planes of closest fit to systems of points in space . The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2,
(1901).

41. Jolliffe, I. T. Principal Component Analysis, Second Edition. Encyclopedia of Statistics in
Behavioral Science 30, (2002).

42. Zhang, T. & Yang, B. Big Data Dimension Reduction Using PCA. in Proceedings - 2016
IEEE International Conference on Smart Cloud, SmartCloud 2016 (2016).
doi:10.1109/SmartCloud.2016.33.

43. Dela Cruz, G. B., Gerardo, B. D. & T. Tanguilig III, B. Agricultural Crops Classification
Models Based on PCA-GA Implementation in Data Mining. International Journal of
Modeling and Optimization 4, (2014).

44. Reddy, G. T. et al. Analysis of Dimensionality Reduction Techniques on Big Data. IEEE
Access 8, (2020).

45. Geetha, R., Sivasubramanian, S., Kaliappan, M., Vimal, S. & Annamalai, S. Cervical
Cancer Identification with Synthetic Minority Oversampling Technique and PCA
Analysis using Random Forest Classifier. J Med Syst 43, (2019).

46. Ribeiro, M. T., Singh, S. & Guestrin, C. ‘Why should i trust you?’ Explaining the
predictions of any classifier. in Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining vols 13-17-August-2016 (2016).

47. Bunemann, E. K., Schwenke, G. D. & Van Zwieten, L. AUSTRALIAN JOURNAL OF
SOIL RESEARCH. Impact of agricultural inputs on soil organisms - a review Preprint at
(2006).

48. Sadeghpour, A., Ketterings, Q. M., Godwin, G. S. & Czymmek, K. J. Under- or over-
application of nitrogen impact corn yield, quality, soil, and environment. Agron J (2017)
doi:10.2134/agronj2016.06.0355.

49. Albornoz, F. Crop responses to nitrogen overfertilization: A review. Scientia
Horticulturae Preprint at https://doi.org/10.1016/j.scienta.2016.04.026 (2016).

50. Graham, M. H. & Haynes, R. J. Organic matter accumulation and fertilizer-induced
acidification interact to affect soil microbial and enzyme activity on a long-term sugarcane
management experiment. Biol Fertil Soils (2005) doi:10.1007/s00374-005-0830-2.

110

51. Moore, J. M., Klose, S. & Tabatabai, M. A. Soil microbial biomass carbon and nitrogen as
affected by cropping systems. Biol Fertil Soils 31, 200–210 (2000).

52. Sarathchandra, S. U., Ghani, A., Yeates, G. W., Burch, G. & Cox, N. R. Effect of nitrogen
and phosphate fertilisers on microbial and nematode diversity in pasture soils. Soil Biol
Biochem (2001) doi:10.1016/S0038-0717(00)00245-5.

53. Smith, D. R., Huang, C. & Haney, R. L. Phosphorus fertilization, soil stratification, and
potential water quality impacts. J Soil Water Conserv (2017) doi:10.2489/jswc.72.5.417.

54. Chen, Y., De Nobili, M. & Aviad, T. Stimulatory effect of humic substances on plant
growth. in Soil organic matter in sustainable agriculture (eds. Magdoff, F. & Weil, R. R.)
103–130 (2004).

55. Merrington, G., Rogers, S. L. & Van Zwieten, L. The potential impact of long-term
copper fungicide usage on soil microbial biomass and microbial activity in an avocado
orchard. Australian Journal of Soil Research (2002) doi:10.1071/SR01084.

56. Noid, W. G. Perspective: Coarse-grained models for biomolecular systems. Journal of
Chemical Physics vol. 139 Preprint at https://doi.org/10.1063/1.4818908 (2013).

57. Shell, M. S. Coarse-Graining With The Relative Entropy. in Advances in Chemical
Physics vol. 161 (2016).

58. Agrawal, V., Arya, G. & Oswald, J. Simultaneous iterative boltzmann inversion for
coarse-graining of polyurea. Macromolecules 47, (2014).

59. Hadley, K. R. & McCabe, C. A coarse-grained model for amorphous and crystalline fatty
acids. Journal of Chemical Physics 132, (2010).

60. Wang, Z. J. & Deserno, M. A systematically coarse-grained solvent-free model for
quantitative phospholipid bilayer simulations. Journal of Physical Chemistry B 114,
(2010).

61. Wang, Z. J. & Deserno, M. Systematic implicit solvent coarse-graining of bilayer
membranes: Lipid and phase transferability of the force field. New J Phys 12, (2010).

62. Moore, T. C., Iacovella, C. R. & McCabe, C. Derivation of coarse-grained potentials via
multistate iterative Boltzmann inversion. Journal of Chemical Physics 140, (2014).

63. Srinivas, G., Cheng, X. & Smith, J. C. A solvent-free coarse grain model for crystalline
and amorphous cellulose fibrils. J Chem Theory Comput 7, (2011).

64. Ercolesi, F. & Adams, J. B. Interatomic potentials from first-principles calculations: The
force-matching method. EPL 26, (1994).

65. Izvekov, S., Parrinello, M., Bumham, C. J. & Voth, G. A. Effective force fields for
condensed phase systems from ab initio molecular dynamics simulation: A new method
for force-matching. Journal of Chemical Physics 120, (2004).

66. Izvekov, S. & Voth, G. A. A multiscale coarse-graining method for biomolecular systems.
Journal of Physical Chemistry B 109, (2005).

67. Noid, W. G. et al. The multiscale coarse-graining method. I. A rigorous bridge between
atomistic and coarse-grained models. Journal of Chemical Physics 128, (2008).

68. Izvekov, S. & Rice, B. M. Free-energy based pair-additive potentials for bulk Ni-Al
systems: Application to study Ni-Al reactive alloying. Journal of Chemical Physics 137,
(2012).

69. Kullback, S. & Leibler, R. A. On Information and Sufficiency. The Annals of
Mathematical Statistics 22, (1951).

70. Shell, M. S. The relative entropy is fundamental to multiscale and inverse thermodynamic
problems. Journal of Chemical Physics 129, (2008).

111

71. Carmichael, S. P. & Shell, M. S. A new multiscale algorithm and its application to coarse-
grained peptide models for self-assembly. Journal of Physical Chemistry B 116, (2012).

72. Sanyal, T., Mittal, J. & Shell, M. S. A hybrid, bottom-up, structurally accurate, G o -like
coarse-grained protein model. Journal of Chemical Physics 151, (2019).

73. Bernhardt, E. S. et al. Control Points in Ecosystems: Moving Beyond the Hot Spot Hot
Moment Concept. Ecosystems 20, 665–682 (2017).

74. Michel, L. & Makowski, D. Comparison of statistical models for analyzing wheat yield
time series. PLoS One 8, (2013).

75. United Nations Department of Economic and Social Affairs Population Division. World
Population Prospects The 2017 Revision Key Findings and Advance Tables. World
Population Prospects The 2017 (2017) doi:10.1017/CBO9781107415324.004.

76. FAO. How to Feed the World in 2050. Insights from an expert meeting at FAO (2009)
doi:10.1111/j.1728-4457.2009.00312.x.

77. How to feed a hungry world. Nature (2010) doi:10.1038/466531a.
78. Beman, J. M., Arrigo, K. R. & Matson, P. A. Agricultural runoff fuels large phytoplankton

blooms in vulnerable areas of the ocean. Nature (2005) doi:10.1038/nature03370.
79. Leslie, J. E., Weersink, A., Yang, W. & Fox, G. Actual versus environmentally

recommended fertilizer application rates: Implications for water quality and policy. Agric
Ecosyst Environ (2017) doi:10.1016/j.agee.2017.02.009.

80. Baumhardt, R. L., Stewart, B. A. & Sainju, U. M. North American soil degradation:
Processes, practices, and mitigating strategies. Sustainability (Switzerland) (2015)
doi:10.3390/su7032936.

81. Hedley, C. The role of precision agriculture for improved nutrient management on farms.
Journal of the Science of Food and Agriculture Preprint at
https://doi.org/10.1002/jsfa.6734 (2015).

82. Peterson, G. A. et al. Reduced tillage and increasing cropping intensity in the Great Plains
conserves soil C. Soil Tillage Res (1998) doi:10.1016/S0167-1987(98)00107-X.

83. Heinemann, J. A., Massaro, M., Coray, D. S., Agapito-Tenfen, S. Z. & Wen, J. D.
Sustainability and innovation in staple crop production in the US Midwest. Int J Agric
Sustain 12, 71–88 (2014).

84. Gebbers, R. & Adamchuk, V. I. Precision agriculture and food security. Science (2010)
doi:10.1126/science.1183899.

85. Falco, N. et al. Influence of soil heterogeneity on soybean plant development and crop
yield evaluated using time-series of UAV and ground-based geophysical imagery. Sci Rep
11, (2021).

86. Anderson-Cook, C. M. et al. Differentiating Soil Types Using Electromagnetic
Conductivity and Crop Yield Maps. Soil Science Society of America Journal (2002)
doi:10.2136/sssaj2002.1562.

87. Hubbard, S. S. et al. Estimation of soil classes and their relationship to grapevine vigor in
a Bordeaux vineyard: advancing the practical joint use of electromagnetic induction (EMI)
and NDVI datasets for precision viticulture. Precis Agric (2021) doi:10.1007/s11119-021-
09788-w.

88. Schimmelpfennig, D. Farm Profits and Adoption of Precision Agriculture. (2016).
89. Yost, M. A. et al. Long-term impact of a precision agriculture system on grain crop

production. Precis Agric (2017) doi:10.1007/s11119-016-9490-5.

112

90. Bongiovanni, R. & Lowenberg-Deboer, J. Precision agriculture and sustainability.
Precision Agriculture Preprint at https://doi.org/10.1023/B:PRAG.0000040806.39604.aa
(2004).

91. Basu, S. & Kumbier, K. iRF: iterative Random Forests. Preprint at (2017).
92. R core team. R: A language and environment for statistical computing. R Foundation for

Statistical Computing, Vienna, Austria. (2017) doi:http://www.R-project.org/.
93. Shah, R. D. & Meinshausen, N. Random Intersection Trees. The Journal of Machine

Learning Research (2013).
94. Cano, G. et al. Automatic selection of molecular descriptors using random forest:

Application to drug discovery. Expert Syst Appl (2017) doi:10.1016/j.eswa.2016.12.008.
95. Borkowski, John. Response Surface Methodology: Process and Product Optimization

Using Designed Experiments (3rd ed.). by Raymond H. Myers, Douglas C. Montgomery,
and Christine M. Anderson-Cook. J Am Stat Assoc (2010).

96. Andre I. Khuri. Response Surface Methodology and Related Topics. World Scientific
Publishing Co. Pte. Ltd. (2006). doi:10.2139/ssrn.2395836.

97. Falco, N. et al. Remote sensing to UAV-based digital farmland. in International
Geoscience and Remote Sensing Symposium (IGARSS) vols 2018-July (2018).

98. Oliphant, T. E. SciPy: Open source scientific tools for Python. Comput Sci Eng (2007)
doi:10.1109/MCSE.2007.58.

99. Breiman, L. Random forests. Mach Learn (2001) doi:10.1023/A:1010933404324.
100. Kumbier, K., Basu, S., Brown, J. B., Celniker, S. & Yu, B. Refining interaction search

through signed iterative Random Forests. arxiv.org 1–26 (2018).
101. Wainwright, M. J. High-Dimensional Statistics. (2019).

doi:https://doi.org/10.1017/9781108627771.
102. Benkeser, D. & Van Der Laan, M. The highly adaptive lasso estimator. in Proceedings -

3rd IEEE International Conference on Data Science and Advanced Analytics, DSAA 2016
(2016). doi:10.1109/DSAA.2016.93.

103. Hejazi, N., Coyle, J. & van der Laan, M. hal9001: Scalable highly adaptive lasso
regression in R. J Open Source Softw 5, (2020).

104. Hopkins, B. G. & Hansen, N. C. Phosphorus Management in High‐Yield Systems. J
Environ Qual 48, (2019).

105. Efroymson, M. A. Multiple Regression Analysis. Mathematical Methods for Digital
Computers (1960).

106. Loper, S. et al. Organic soil amendment and tillage affect soil quality and plant
performance in simulated residential landscapes. HortScience (2010).

107. Anderson-Cook, C. M. et al. Differentiating Soil Types Using Electromagnetic
Conductivity and Crop Yield Maps. Soil Science Society of America Journal (2002)
doi:10.2136/sssaj2002.1562.

108. Pham, X. & Stack, M. How data analytics is transforming agriculture. Bus Horiz (2018)
doi:10.1016/j.bushor.2017.09.011.

109. Zilberman, D., Khanna, M. & Lipper, L. Economics of new technologies for sustainable
agriculture. Aust J Agric Resour Econ (1997) doi:10.1111/1467-8489.00004.

110. Gao, F., Anderson, M., Daughtry, C. & Johnson, D. Assessing the variability of corn and
soybean yields in central Iowa using high spatiotemporal resolution multi-satellite
imagery. Remote Sens (Basel) (2018) doi:10.3390/rs10091489.

113

111. Daughtry, C. S. T., Gallo, K. P., Goward, S. N., Prince, S. D. & Kustas, W. P. Spectral
estimates of absorbed radiation and phytomass production in corn and soybean canopies.
Remote Sens Environ (1992) doi:10.1016/0034-4257(92)90132-4.

112. Sheets, K. R. & Hendrickx, J. M. H. Noninvasive Soil Water Content Measurement Using
Electromagnetic Induction. Water Resour Res (1995) doi:10.1029/95WR01949.

113. Farahani, H. J. & Buchleiter, G. W. Temporal stability of soil electrical conductivity in
irrigated sandy fields in Colorado. Transactions of the American Society of Agricultural
Engineers (2004).

114. Breiman, L., Cutler, A., Liaw, A. & Wiener, M. The randomForest package. R Core Team
(2015).

115. Schaettle, K., Ruiz Pestana, L., Head-Gordon, T. & Lammers, L. N. A structural coarse-
grained model for clays using simple iterative Boltzmann inversion. Journal of Chemical
Physics 148, (2018).

116. Ruiz Pestana, L., Kolluri, K., Head-Gordon, T. & Lammers, L. N. Direct Exchange
Mechanism for Interlayer Ions in Non-Swelling Clays. Environ Sci Technol 51, 393–400
(2017).

117. Bassett, W. A. The origin of the vermiculite deposit at Libby, Montana. The American
Minerologist 44, 282–299 (1959).

118. Mukai, H. et al. Cesium adsorption/desorption behavior of clay minerals considering
actual contamination conditions in Fukushima. Sci Rep 6, 21543 (2016).

119. Endo, S. et al. Measurement of soil contamination by radionuclides due to the Fukushima
Dai-ichi Nuclear Power Plant accident and associated estimated cumulative external dose
estimation. J Environ Radioact 111, 18–27 (2012).

120. Koarashi, J. et al. Retention of potentially mobile radiocesium in forest surface soils
affected by the Fukushima nuclear accident. Sci Rep 2, 1005 (2012).

121. Shiozawa, S. Vertical migration of radiocesium fallout in soil in fukushima. in
Agricultural Implications of the Fukushima Nuclear Accident vol. 9784431543 49–60
(2013).

122. Hashimoto, S. et al. Predicted spatio-temporal dynamics of radiocesium deposited onto
forests following the Fukushima nuclear accident. Sci Rep 3, 2564 (2013).

123. Mukai, H., Motai, S., Yaita, T. & Kogure, T. Identification of the actual cesium-adsorbing
materials in the contaminated Fukushima soil. Appl Clay Sci 121–122, 188–193 (2016).

124. Okumura, T., Tamura, K., Fujii, E., Yamada, H. & Kogure, T. Direct observation of
cesium at the interlayer region in phlogopite mica. Microscopy 63, 65–72 (2014).

125. Fuller, A. J. et al. Caesium incorporation and retention in illite interlayers. Appl Clay Sci
108, 128–134 (2015).

126. Unterweger, M. P. Half-life measurements at the National Institute of Standards and
Technology. Applied Radiation and Isotopes 56, 125–130 (2002).

127. Ishidera, T., Kurosawa, S., Hayashi, M., Uchikoshi, K. & Beppu, H. Diffusion and
retention behaviour of Cs in illite-added compacted montmorillonite. Clay Miner 51, 161–
172 (2016).

128. Kogure, T., Morimoto, K., Tamura, K., Sato, H. & Yamagishi, A. XRD and HRTEM
Evidence for Fixation of Cesium Ions in Vermiculite Clay. Chem Lett 41, 380–382 (2012).

129. Tamura, K., Kogure, T., Watanabe, Y., Nagai, C. & Yamada, H. Uptake of cesium and
strontium ions by artificially altered phlogopite. Environ Sci Technol 48, 5808–5815
(2014).

114

130. KIKUCHI, R., MUKAI, H., KURAMATA, C. & KOGURE, T. Cs–sorption in weathered
biotite from Fukushima granitic soil. Journal of Mineralogical and Petrological Sciences
110, 126–134 (2015).

131. Okumura, M., Nakamura, H. & Machida, M. Mechanism of strong affinity of clay
minerals to radioactive cesium: First-principles calculation study for adsorption of cesium
at frayed edge sites in muscovite. J Physical Soc Japan 82, (2013).

132. Sawhney, B. L. Selective sorption and fixation of cations by clay minerals. A review.
Clays and Clay Minerals vol. 20 93–100 Preprint at
https://doi.org/10.1346/CCMN.1972.0200208 (1972).

133. Francis, C. W. & Brinkley, F. S. Preferential adsorption of cs-137 to micaceous minerals
in contaminated freshwater sediment. Nature 260, 511–513 (1976).

134. N.J. Comans, R., Haller, M. & De Preter, P. Sorption of cesium on illite: Non-equilibrium
behaviour and reversibility. Geochim Cosmochim Acta 55, 433–440 (1991).

135. Lai, T. & Mortland, M. Diffusion of ions in bentonite and vermiculite. Soil Science
Society of America 25, 353–357 (1961).

136. Liu, X. D. & Lu, X. C. A thermodynamic understanding of clay-swelling inhibition by
potassium ions. Angewandte Chemie - International Edition 45, 6300–6303 (2006).

137. Poinssot, C., Baeyens, B. & Bradbury, M. H. Experimental and modelling studies of
caesium sorption on illite. Geochim Cosmochim Acta 63, 3217–3227 (1999).

138. Tsai, S. C., Wang, T. H., Li, M. H., Wei, Y. Y. & Teng, S. P. Cesium adsorption and
distribution onto crushed granite under different physicochemical conditions. J Hazard
Mater 161, 854–861 (2009).

139. Zaunbrecher, L. K., Cygan, R. T. & Elliott, W. C. Molecular models of cesium and
rubidium adsorption on weathered micaceous minerals. Journal of Physical Chemistry A
119, 5691–5700 (2015).

140. Lee, J., Park, S. M., Jeon, E. K. & Baek, K. Selective and irreversible adsorption
mechanism of cesium on illite. Applied Geochemistry (2016)
doi:10.1016/j.apgeochem.2017.05.019.

141. Nakao, A., Thiry, Y., Funakawa, S. & Kosaki, T. Characterization of the frayed edge site
of micaceous minerals in soil clays influenced by different pedogenetic conditions in
Japan and northern Thailand. Soil Sci Plant Nutr 54, 479–489 (2008).

142. Comans, R. N. J. & Hockley, D. E. Kinetics of cesium sorption on illite. Geochim
Cosmochim Acta 56, 1157–1164 (1992).

143. Rosso, K. M., Rustad, J. R. & Bylaska, E. J. The Cs/K exchange in muscovite interlayers:
An AB initio treatment. Clays Clay Miner 49, 500–513 (2001).

144. Stixrude, L. & Peacor, D. R. First-principles study of illite – smectite and implications for
clay mineral systems. Nature 420, 165–168 (2002).

145. Inoue, A. Thermodynamic Study of Na-K-Ca Exchange Reactions in vermiculite. Clay
and Clay Minerals 32, 311–319 (1984).

146. Inoue, A. & Minato, H. Ca-K EXCHANGE REACTION AND
INTERSTRATIFICATION IN MONTMORILLONITE. Clays Clay Miner 27, 393–401
(1979).

147. Marry, V. et al. Salt exclusion in charged porous media: a coarse-graining strategy in the
case of montmorillonite clays. Physical Chemistry Chemical Physics 11, 1869 (2009).

148. Liu, C. An ion diffusion model in semi-permeable clay materials. Environ Sci Technol 41,
5403–5409 (2007).

115

149. Sheng, N. et al. Multiscale micromechanical modeling of polymer/clay nanocomposites
and the effective clay particle. Polymer (Guildf) 45, 487–506 (2004).

150. Gelineau, P., Stepień, M., Weigand, S., Cauvin, L. & Bédoui, F. Elastic properties
prediction of nano-clay reinforced polymer using multi-scale modeling based on a multi-
scale characterization. Mechanics of Materials 89, 12–22 (2015).

151. Ebrahimi, D., Pellenq, R. J. M. & Whittle, A. J. Mesoscale simulation of clay aggregate
formation and mechanical properties. Granul Matter 18, (2016).

152. Ebrahimi, D., Whittle, A. J. & Pellenq, R. J.-M. Mesoscale properties of clay aggregates
from potential of mean force representation of interactions between nanoplatelets. J.
Chem. Phys. 140, 154309 (2014).

153. Katti, D. R., Matar, M. I., Katti, K. S. & Amarasinghe, P. M. Multiscale modeling of
swelling clays: A computational and experimental approach. KSCE Journal of Civil
Engineering 13, 243–255 (2009).

154. Delhorme, M., Labbez, C., Caillet, C. & Thomas, F. Acid-base properties of 2:1 clays. I.
modeling the role of electrostatics. Langmuir 26, 9240–9249 (2010).

155. Suter, J. L., Groen, D. & Coveney, P. V. Mechanism of Exfoliation and Prediction of
Materials Properties of Clay-Polymer Nanocomposites from Multiscale Modeling. Nano
Lett 15, 8108–8113 (2015).

156. Suter, J. L., Groen, D. & Coveney, P. V. Chemically specifi C multiscale modeling of
clay-polymer nanocomposites reveals intercalation dynamics, tactoid self-assembly and
emergent materials properties. Advanced Materials 27, 966–984 (2015).

157. Kirkwood, J. G. Statistical mechanics of fluid mixtures. J Chem Phys 3, (1935).
158. Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of

Computational Physics vol. 117 1–19 Preprint at https://doi.org/10.1006/jcph.1995.1039
(1995).

159. Cygan, R. T., Liang, J.-J. & Kalinichev, A. G. Molecular Models of Hydroxide,
Oxyhydroxide, and Clay Phases and the Development of a General Force Field. J Phys
Chem B 108, 1255–1266 (2004).

160. Bourg, I. C. & Sposito, G. Connecting the molecular scale to the continuum scale for
diffusion processes in smectite-rich porous media. Environ Sci Technol 44, 2085–2091
(2010).

161. Ferrage, E. et al. Hydration properties and interlayer organization of water and ions in
synthetic na-smectite with tetrahedral layer charge. Part 2. Toward a precise coupling
between molecular simulations and diffraction data. Journal of Physical Chemistry C 115,
1867–1881 (2011).

162. Marry, V. et al. Water dynamics in hectorite clays: Infuence of temperature studied by
coupling neutron spin echo and molecular dynamics. Environ Sci Technol 45, 2850–2855
(2011).

163. Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band
method for finding minimum energy paths and saddle points. Journal of Chemical Physics
113, 9978–9985 (2000).

164. Henkelman, G., Uberuaga, B. P. & Jónsson, H. Climbing image nudged elastic band
method for finding saddle points and minimum energy paths. Journal of Chemical Physics
113, 9901–9904 (2000).

165. Nakano, A. A space-time-ensemble parallel nudged elastic band algorithm for molecular
kinetics simulation. Comput Phys Commun 178, 280–289 (2008).

116

166. Maras, E., Trushin, O., Stukowski, A., Ala-Nissila, T. & Jónsson, H. Global transition
path search for dislocation formation in Ge on Si(001). Comput Phys Commun 205, 13–21
(2016).

167. Hardy, D. J., Stone, J. E. & Schulten, K. Multilevel summation of electrostatic potentials
using graphics processing units. Parallel Comput 35, 164–177 (2009).

168. Hardy, D. J. et al. Multilevel summation method for electrostatic force evaluation. J Chem
Theory Comput 11, 766–779 (2015).

169. Henderson, R. L. A uniqueness theorem for fluid pair correlation functions. Phys Lett A
49, 197–198 (1974).

170. Schommers, W. A pair potential for liquid rubidium from the pair correlation function.
Phys Lett A 432, 157–158 (1973).

171. Perakis, F. et al. Vibrational Spectroscopy and Dynamics of Water. Chemical Reviews
vol. 116 7590–7607 Preprint at https://doi.org/10.1021/acs.chemrev.5b00640 (2016).

172. Johnson, M. E., Head-Gordon, T. & Louis, A. A. Representability problems for coarse-
grained water potentials. Journal of Chemical Physics 126, (2007).

173. Louis, A. A. Beware of density dependent pair potentials. Journal Of Physics-Condensed
Matter 14, 9187–9206 (2002).

174. Salacuse, J., Denton, a. & Egelstaff, P. Finite-size effects in molecular dynamics
simulations: Static structure factor and compressibility. I. Theoretical method. Phys Rev E
53, 2382–2389 (1996).

175. Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J Mol Graph
14, 33–38 (1996).

176. Von Reichenbach, H. G. & Rich, C. I. Potassium release from muscovite as influenced by
particle size. Clays Clay Miner 17, 23–29 (1969).

177. Nadeau, P. H., Wilson, M. J., McHardy, W. J. & Tait, J. M. Interstratified clays as
fundamental particles. Science 225, 923–925 (1984).

178. Wolff, D. & Rudd, W. G. Tabulated potentials in molecular dynamics simulations.
Comput Phys Commun 120, 20–32 (1999).

