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Abstract

Machine learning has been ubiquitously used in our daily lives. On the one hand, the

success of machine learning depends on the availability of a large amount of data. On the

other hand, the diverse data sources make a machine learning system harder to get very

high quality data. What makes it worse is that there might be a malicious adversary who

can deliberately modify the data or add poisoning data to corrupt the learning system. This

imposes a great threat to the applications that are safety and security critical, for example,

drug discovery, medical image analysis, and self-driving cars. Hence, it is necessary and

urgent to investigate the behavior of machine learning under adversarial attacks. In this

dissertation, we examine the adversarial robustness of three commonly used machine learn-

ing algorithms: linear regression, LASSO based feature selection, and principal component

analysis (PCA).

In the first part, we study the adversarial robustness of linear regression. We assume there

is an adversary in the linear regression system. The adversary tries to suppress or promote

one of the regression coefficients. To obtain this goal, the adversary adds poisoning data

samples or directly modifies the feature matrix of the original data. In the first scenario that

the adversary intends to manipulate one of the regression coefficients by adding one carefully

designed poisoning data, we derive the optimal form of the poisoning data. We also introduce

a semidefinite relaxation method to design the poisoning data when the adversary tries to

modify one of the regression coefficients while minimizing the changes of other regression

coefficients. Finally, we propose an alternating optimization method to design the rank-one

modification of the feature matrix.

In the second part, we extend the linear regression to LASSO based feature selection

and study the best strategy to modify the feature matrix or response values to mislead

the learning system to select the wrong features. We formulate this problem as a bi-level
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optimization problem. As the ℓ1 regularizer is not continuously differentiable, we use a

smooth approximation of the ℓ1 norm function and employ the interior point method to

solve the LASSO problem and find the gradient information. Finally, we utilize the projected

gradient descent method to design the modification strategy.

In the last part, we consider the adversarial robustness of the subspace learning problem.

We examine the optimal modification strategy under the energy constraints to delude the

PCA based subspace learning algorithm. Firstly, we derive the optimal rank-one attack

strategy to modify the original data in order to maximize the subspace distance between the

original one and the one after modification. Further, we do not constrict the rank of the

modification and find the optimal modification strategy.
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Chapter 1

Introduction

In this chapter, we will first give an introduction to adversarial machine learning in Chap-

ter 1.1. Then, we will introduce our motivation, the related works, and our contribution

to linear regression, LASSO based feature selection and PCA based subspace learning in

Chapters 1.2, 1.3 and 1.4, respectively.

1.1 Adversarial Machine Learning

Machine learning is being used in various applications. Most of the existing machine learning

systems make the basic assumption that the data are from normal users and are generated

independently from the same distribution. Even though there are algorithms designed to deal

with small dense noises and large sparse outliers, few consider the adversarial noises. These

noises are intentionally created by an adversary who has some knowledge of the machine

learning system and the data. Then, the adversary will deliberately add some carefully

designed noises or directly modify the data set in order to corrupt the learning system or

mislead the learning system to make a wrong decision. This attack is especially dangerous

for some security and safety critical applications such as medical image analysis [1] and

autonomous driving [2].

Depending on the goal of the adversary, the adversarial attacks can be divided into
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Figure 1.1: Demonstration of adversarial attack.

three categories: evasion, poisoning, model stealing. In the evasion attack, an adversary

adds some imperceptible noises onto the original data and makes the learning system give

a wrong prediction [3–5]. Fig. 1.1 demonstrates a typical evasion attack [3]. The original

picture is a panda. The adversary adds some carefully designed noises onto it. Although it

looks the same as the original panda, the classifier will miscategorize it as a gibbon. In the

poisoning attack, the adversary attacks the learning systems by contaminating the training

data. When the learning system train the model using the poisoned data, the model is then

corrupted [6–11]. The adversary can also do model stealing by repeatedly sending requests to

the server and then reconstruct the learning system or original training data. Model stealing

also imposes great thread to the learning system that is sensitive and confidential [12,13].

Depending on the adversary’s knowledge about the data samples, the learning algorithm,

and the defense strategy of the learning system, the adversary can carry out white-box, grey-

box, and black-box attacks. In the white-box attack, the adversary has the full knowledge

of the machine learning system and has the ability to observe the whole data points. After

seeing the data points, the adversary can add some carefully designed poisoning data points

or directly modify the data points so as to corrupt the learning system or leave a backdoor in

this system [14]. If the adversary knows nothing about the data samples, learning algorithms,

and defense strategies, the adversary can also carry out black-box attacks, where it gains

information of the system by repeatedly sending queries to the system [15]. If the adversary

only has partial knowledge of the data samples, learning algorithms, and defense strategies,
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the adversary can perform grey-box attacks, in which it uses surrogate data samples or

classifiers to mimic the original ones [16].

In this dissertation, we will focus on the white-box poisoning attack. Currently, most

of the existing works concentrate on the deep learning based machine learning systems and

propose some effective attack strategies upon that. However, due to the complexity of

the deep learning system, we can only observe its effectiveness through their numerical

demonstrations. We do not know whether their attacks are optimal. Besides, there is no

theoretical performance guarantee for most of the attacks against the deep learning systems.

Because of the lack of theory of deep learning, it is better to start from traditional machine

learning algorithms and gain intuitions from their behavior under adversarial attacks. Hence,

in this dissertation, we will study the adversarial robustness of three commonly used machine

learning algorithms, i.e., linear regression, LASSO, and PCA.

1.2 Adversarial Attack Against Linear Regression

Linear regression plays a fundamental role in machine learning and is used in a wide spec-

trum of applications [17–21]. In linear regression, one assumes that there is a simple linear

relationship between the explanatory variables and the response variable. The goal of linear

regression is to find out the regression coefficients through the methods of ordinary least

square (OLS):

argmin
β

: ∥y −Xβ∥2, (1.1)

where y = [y1, y2, . . . , yn]
⊤ is the response values, X = [x1,x2, . . . ,xn]

⊤ ∈ Rn×m is the fea-

ture matrix, β is the regression coefficient, m is the number of explanatory variables, n is the

number of data points, and {(xi, yi)}ni=1 is the original data points. Having the regression

coefficients learned from the data points, one can predict the response values given the values

of the explanatory variables. The regression coefficients also help us explain the variation in
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the response variable that can be attributed to the variation in the explanatory variables.

They can quantify the strength of the relationship between certain explanatory variables

and the response variable. A large magnitude of the regression coefficient usually indicates

a strong relationship, while a small valued regression coefficient means a weak relationship.

This is especially true when linear regression is accomplished by the parameter regularized

method such as ridge regression and LASSO. In addition, the sign of the regression coeffi-

cients indicates whether the value of the response variable increases or decreases when the

value of an explanatory variable changes, which is very important in biologic science [22],

financial analysis [23], and environmental science [24].

Since the regression coefficient is very important, our work is to investigate the adversarial

robustness of linear regression. In the considered linear regression system, there exists an

adversary who can observe the whole dataset and then inject carefully designed poisoning

data points or directly modify the original dataset in order to manipulate the regression

coefficients. The manipulated regression coefficients can later be used by the adversary as a

backdoor of this learning system or mislead our interpretation of the linear regression model.

For example, by changing the magnitude of a regression coefficient to be small, it makes us

believe that its corresponding explanatory variable is irrelevant. Similarly, the adversary can

change the magnitude of a regression coefficient to a larger value to increase its importance.

Furthermore, changing the sign of a regression coefficient can also lead us to misinterpret

the correlation between its explanatory variable and the response variable.

We have several contributions to the adversarial attacks against linear regression in this

dissertation. Depending on the objective of the adversary and the way the adversary changes

the regression coefficients, we have different problem formulations. We first consider a sce-

nario where the adversary tries to manipulate one specific regression coefficient by adding

one carefully designed poisoning data point that has a limited energy budget to the dataset.

We show that finding the optimal attack data point is equivalent to solve an optimization

problem where the objective function is a ratio of two quadratic functions with a quadratic
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inequality constraint. Even though this type of problem is non-convex in general, our par-

ticular problem has a hidden convex structure. With the help of this convex structure, we

further convert the optimization problem into a quadratic constrained quadratic program

(QCQP). Since strong duality exists in this problem [25], we manage to identify its closed-

form optimal solutions from its Karush-Kuhn-Tucker (KKT) conditions.

We next consider a more sophisticated objective where the attacker aims to change one

particular regression coefficient while making others be changed as small as possible. We

show that the problem of finding the optimal attack data point is equivalent to solving an

optimization problem where the objective function is a ratio of two fourth order multivariate

polynomials with a quadratic inequality constraint. This optimization problem is much more

complicated than the optimization above. We introduce a semidefinite relaxation method

to solve this problem. The numerical examples show that we can find the globally optimal

solutions with a very low relaxation order. Hence, the complexity of this method is low in

practical problems.

Finally, we consider a more powerful adversary who can directly modify the feature

matrix. Particularly, we consider a rank-one modification attack [26], where the attacker

carefully designs a rank-one matrix and adds it to the existing data matrix. A rank-one

modification attack is general enough to capture most of the common modifications, such

as modifying one feature, deleting or adding one data point, changing one entry of the

data matrix, etc. Hence, studying the rank-one modification provides us universal bounds

on these kinds of attacks. By leveraging the rank-one structure, we develop an alternating

optimization method to find the optimal modification matrix. We also prove that the solution

obtained by the proposed optimization method is one of the critical points of the optimization

problem.

Our study is related to several recent works on adversarial machine learning. For example,

Pimentel-Alarcón et al. studied how to add one adversarial data point in order to maximize

the error of the subspace estimated by principal component [27] and Li et al. derived a closed-
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form optimal modification to the original dataset in order to maximize the subspace distance

between the original one the one after modification [26]. These two works focused on the

robustness of subspace learning algorithms that are based on PCA. PCA is an unsupervised

learning method. By contrast, we study the robustness of linear regression, which is a

supervised learning method. Alfeld et al. studied how to manipulate the training data so

as to increase the validation or test error for the linear regression task [8, 9] and Biggio

et al. used a gradient based algorithm to design one poisoning data point with the aim of

worsening the testing error in a support vector machine (SVM) learning system and they also

proposed a heuristic approach to flip parts of the training labels in order to achieve a similar

goal [6,28]. These works aimed to deteriorate the performance of the machine learning system

on a specific data set. However, we concentrate on the explanation of the linear regression

model. By manipulating the regression coefficient, we can mislead the interpretation of the

dependency between the features and response value. Furthermore, a series of works focused

on the adversarial robustness of deep learning networks. Kurakin et al. proposed a gradient

based method to design adversarial noise [3, 4, 29]. By adding this noise on the test data, it

makes the machine learning system make the wrong prediction. By contrast, we focus on

adding or modifying training data samples to maneuver the regression coefficient. Biggio

et al. corrupted the deep learning system by inserting delicately designed poisoning data

samples into the training data [11, 14, 30]. Due to the complexity of deep neural networks,

it is hard to know whether the designed poisoning data samples are optimal. Nevertheless,

our method is proven to be optimal with respect to certain specific goals discussed.

In addition, there are recent work that focus on the adversarial robustness of machine

learning in various other applications. For example, Kwon et al. proposed a gradient based

method to generate adversarial audio examples [31], Li et al. presented an ensemble method

to enhance the robustness of the malware detection system against adversarial attacks [32],

and Flowers et al. demonstrated the vulnerability of communication systems against adver-

sarial noises [33]. These works are limited to their specific applications. Instead, we target
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maneuvering the interpretation of a general linear regression model by adding poisoning data

points or modifying the original data.

The most relevant work to ours is [34], where the authors develop a bi-level optimization

framework to design the attack matrix. [34] used the projected gradient descent method

to solve the bi-level optimization problem. However, a general bi-level problem is known

to be NP hard and solving it depends on the convexity of the lower level problem. In

addition, the convergence of projected gradient descent for a non-convex problem is not

clear. Compared with [34], we obtain the globally optimal solution to the case for adding

one poisoning data point, and we also prove that the proposed alternating optimization

method converges to one of the critical points for the case where the attacker can perform

a rank-one modification attack. Furthermore, for the projected gradient descent method,

different datasets need different parameters, which means we must do parameter tuning

before applying this algorithm. By contrast, we provide a closed-form solution to the case

for adding one poisoning data point to attack one of the regression coefficients, and the

designed alternating optimization method for the case of rank-one attack does not need

parameter tuning. Furthermore, compared with the projected gradient descent method, our

alternating optimization method provides smaller objective values, faster convergence rate,

and more stable behavior.

The study of adversarial robustness of linear regression problem in our dissertation is

based on our published and submitted papers [35,36].

1.3 Adversarial Attack Against LASSO Based Feature

Selection

Feature selection is one of the most important preprocessing steps in the vast majority of

machine learning and signal processing problems [37–39]. By performing feature selection, we

can discard irrelevant and redundant features while keeping the most informative features.
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With the features of a smaller dimension, we can overcome the curse of dimensionality,

better interpret our model, and speed up training and testing processes. Among a variety

of feature selection methods, LASSO is one of the most widely used [40, 41]. LASSO can

perform feature selection and regression simultaneously by solving the following ℓ1 norm

regularized least square problem:

argmin
β
∥y −Xβ∥22 + λ∥β∥1, (1.2)

where y and X are the response values and feature matrix respectively defined similarly

to that in (1.1). Due to the sparse promotion ℓ1 norm regularizer, most of the regression

coefficients obtained by (1.2) will be zeros. The zero-valued coefficients correspondes to

the features that are not chosen, while the non-zero valued coefficients indicate the selected

features. Owing to its simplicity and efficiency, LASSO is widely applied to bio-science [42],

financial analysis [43], image processing [44], etc. Furthermore, by exploring the additional

structures of the regression coefficients, various extensions such as group LASSO [45,46] and

sparse group LASSO [47,48] are proposed in the literature.

Since feature selection serves as the first stage of many of the machine learning algorithms,

it is necessary and urgent to investigate its adversarial robustness. Though some existing

works examined the robustness of feature selection against dense noise and outliers [49, 50],

its behavior under the adversary attacks is unknown. By analyzing the attack strategy of the

adversary, our goal is to provide a better understanding of the sensitivity of feature selection

methods against this kind of attack.

In the considered feature selection model, we assume that there is an adversary who has

the full knowledge of the model and can observe the whole dataset. After inspecting the

dataset, it will carefully modify the response values or the feature matrix so as to manipulate

the regression coefficients. By modifying the regression coefficients, it will maneuver the

selected features. It can select the features which will not be selected originally by enlarging
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the magnitude of the corresponding regression coefficients. Also, it can make us wrongly

discard important features by suppressing the magnitude of the corresponding regression

coefficients. Moreover, it will try to make other regression coefficients unchanged so as to

minimize the possibility of being detected by the feature selection system. In this paper, we

intend to find the best modification strategy of the adversary with the energy constraints on

the modification. By doing so, we can better understand how the response values and feature

matrix influence the selected features and the robustness of the feature selection algorithm.

We formulate this problem as a bi-level optimization problem. The upper-level objective

is to minimize the difference between the targeted regression coefficients and that learned

from the modified dataset. The lower-level problem is just a LASSO based feature selection

problem with the modified dataset. To solve this bi-level optimization problem, we first

solve the lower-level problem. Since the LASSO problem is a convex optimization problem,

it is equivalent to its first order optimality condition. By applying the implicit function

theorem on the first order optimality condition, we may learn the relationship between the

dataset and the regression coefficients if the first order condition is continuously differentiable

around its optimum. However, the ℓ1 norm is not continuous at point zero. This prevents us

from directly employing the implicit function theorem on the KKT conditions. To resolve

the issue, we reformulate the LASSO problem as a linear inequality constrained quadratic

programming problem and use the interior-point method to solve it. By utilizing the first

order optimality condition from the reformulated problem, we are able to find the gradients

of our objective with respect to the response values and feature matrix. With the gradients

information, we employ the projected gradient descent to solve this bi-level optimization

problem. Similar methods can be applied to design the attack strategy based on the group

LASSO and the sparse group LASSO.

Our work of adversarial attack against LASSO based feature selection is based on our

published and submitted papers [51,52].
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1.4 Adversarial Attack Against Subspace Learning

Subspace learning has a wide range of applications, such as surveillance video analysis, rec-

ommendation systems, anomaly detection, etc[53–60]. Among a large variety of subspace

learning algorithms, principal component analysis is one of the most widely used ones. We

will assume PCA the subspace learning algorithm. PCA computes a small number of prin-

cipal components, which are orthogonal to each other and represent the majority of the

variability of the data samples, and treats the span of these principal components as the

desired low-dimensional subspace. Furthermore, many works have proposed robust PCA

that can mitigate the impact of certain percentages of outliers and small dense random

noise[61–64].

In Chapter 4 of our dissertation, we investigate the adversarial robustness of subspace

learning algorithms. Particularly, we examine the robustness of subspace learning algorithms

against not only random noise or unintentional corrupted data as considered in existing works

but also malicious data produced by powerful adversaries who can modify the whole data set.

Our study is motivated by the fact that subspace learning and many other machine learning

algorithms are increasingly being used in safety critical and security related applications,

such as autonomous vehicle system [65], voice recognition [66], medical image processing [1],

etc. In these applications, there might exist powerful adversaries who can modify the data

with the goal of maneuvering the machine learning algorithms to make the wrong decision or

leave a backdoor in the system [14]. To ensure the security and safety of these systems, it is

crucial to understand the impact of these adversarial attacks on the performance of machine

learning algorithms.

In our problem, given the original data matrix, we learn a low-dimensional subspace

via PCA. However, there is an adversary who can observe the whole data matrix and then

carefully design a modification matrix to change the original data. The goal of the adversary

is to modify the original data so as to maximize the subspace distance between the subspace

learned from the original data and that learned from the modified data. In our dissertation,
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we use Asimov distance[67], defined as the largest principal angle between two subspaces, to

measure the subspace distance. Asimov distance has a close relationship with the chordal

2-norm distance and the Finsler distance, which are used in the analysis of optimization

on manifolds [68, 69]. It is also related to the gap distance, which is used in the control

theory to describe the stability and robustness of a system [70–72]. Additionally, it is closely

connected to the projection 2-norm that is widely used in various applications[67,73,74]. The

projection 2-norm provides a way to measure the discrepancy of the projections of a vector

on two distinct subspaces. It is useful in the robustness analysis of the principal component

regression (PCR), as one is actually projecting the response value vector onto the selected

feature subspace in PCR. We will provide an example to illustrate it in Chapter 4.5 using

real data. As the Asimov distance depends on the modification matrix in a complex manner,

to characterize the optimal attack strategy that maximizes the Asimov distance, we need to

solve a complicated non-convex optimization problem.

Towards this goal, we first solve the optimization problem with an additional rank-one

constraint on the modification matrix. We note that a rank-one modification is already

powerful enough to capture many common modifications such as changing one data sample,

inserting one adversarial data point, deleting one feature, etc. Furthermore, the techniques

and insights obtained from this special case are useful for the general case without the rank-

one constraint. In the rank-one attack case, we study two different scenarios depending on

whether the dimension of the selected subspace is equal to the rank of the data matrix or

not. Our study reveals that the optimal attack strategy depends on the energy budget and

the singular values of the data matrix. Specifically, in the scenario where the dimension of

the selected subspace is the same as the rank of the data matrix, we show that the optimal

rank-one strategy depends solely on the energy budget and the smallest singular value of

the data matrix. In the scenario where the dimension of the selected subspace is less than

the rank of the original data matrix, the optimal strategy depends not only on the energy

budget but also on the kth and (k + 1)th singular values, where k is the dimension of the
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selected subspace.

Relying on the insights gained from the rank-one case, we then extend our study to

the more general case where no rank constraint is imposed. Compared with the case with

the rank-one constraint, the attacker now has a higher degree of freedom to modify the

data, which makes the characterization of the optimal attack strategy significantly more

challenging. To solve this optimization problem, we first prove that, under the basis of the

principal components of the original data matrix, the optimal attack matrix only has a few

non-zero entries at particular locations. This result greatly reduces the complexity of our

problem. With the help of this result, we then simplify our problem to an optimization

problem with the objective function being a ratio of two quadratic functions. To solve this

non-convex problem, we further convert our optimization problem to a feasibility problem

and find the closed-form solution to this problem. Our result shows that the optimal strategy

depends on the energy budget and the kth and (k+1)th singular values of the data matrix.

Our analysis shows that, compared with the optimal rank-one strategy, this strategy leads

to a larger subspace distance.

Our study is related to the recent works on adversarial machine learning. For example,

Jagielski et al. study how to change the data to manipulate the result of the regression

learning system [9]. Lai et al. investigate the optimal modification strategy to maximize

the inference errors in a multivariate estimation system [75]. In an interesting related work

[27], Pimentel-Alarcón et al. study how to design an adversarial data sample and add it to

the data matrix in order to maximize the Asimov distance between the subspace estimated

by PCA from the contaminated data matrix and that from the original data matrix. [27]

focuses on the case where the original data matrix is low-rank and the dimension of the

selected subspace is equal to the rank of the data matrix. By contrast, we consider a more

powerful adversarial setting, where the data matrix is not constrained to being low-rank, the

dimension of the selected subspace does not necessarily equal the rank of the data matrix,

and the adversary can modify the whole data matrix instead of only adding one data sample.
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The work of adversarial attack against subspace learning is based on our published pa-

pers [26, 76,77].
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Chapter 2

Optimal Feature Manipulation

Attacks Against Linear Regression

2.1 Introduction

In this chapter, we study the optimal feature manipulation attacks against linear regression.

In particular, we study how to design poisoning data points and modify the feature matrix

in order to manipulate the regression coefficient. This chapter is organized as follows. In

Chapter 2.2, we consider the scenario where the attacker adds one carefully designed poison-

ing data point to the dataset. In Chapter 2.3, we investigate the rank-one attack strategy.

Numerical examples are provided in Chapter 2.4 to illustrate the results we obtained in this

paper. Finally, we provide concluding remarks in Chapter 2.5.

2.2 Attacking with One Adversarial Data Point

In this section, we consider the scenario where the attacker can add one carefully crafted data

point to the existing dataset. We will extend the analysis to the case with more sophisticated

attacks in Chapter 2.3.
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2.2.1 Problem Formulation

Consider a dataset with n data samples, {yi,xi}ni=1, where yi is the response variable, xi ∈ Rm

is the feature vector, where each component of xi represents an explanatory variable. In

this section, we consider an adversarial setup in which the adversary first observes the whole

dataset {y,X}, in which y := [y1, y2, . . . , yn]
⊤ andX := [x1, x2, . . . ,xn]

⊤, and then carefully

designs an adversarial data point, {y0,x0}, and adds it into the existing data samples.

After inserting this adversarial data point, we have the poisoned dataset {ŷ, X̂}, where

ŷ := [y0, y1, y2, . . . , yn]
⊤, X̂ := [x0, x1,x2, . . . ,xn]

⊤.

From the dataset, we intend to learn a linear regression model. From the poisoned

dataset, the learned model is obtained by solving

argmin
β

: ∥ŷ − X̂β∥2, (2.1)

where ∥ · ∥ denotes the ℓ2 norm for a vector and the induced 2-norm for a matrix throughout

this chapter. Let β̂ be the optimal solution to problem (2.1). The goal of the adversary is to

minimize some objective function, f(β̂), by carefully designing the adversarial data point.

The form of f(β̂) depends on the specific goal of the attacker. For example, the attacker

can try to reduce the importance of feature i by setting f(β̂) = |β̂i|, in which β̂i is the ith

component of β̂. Or the attacker can try to increase the importance of feature i by setting

f(β̂) = −|β̂i|. To make the problem meaningful, in this chapter, we impose the energy

constraint on the adversarial data point. Since one data point contains a feature vector and

a response value, we put ℓ2 norm constraint on the concatenated vector [x⊤
0 , y0]

⊤. With the

objective f(β̂) and the energy constraint of the adversary data point, our problem can be
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formulated as

min
∥[x⊤

0 ,y0]∥≤η
: f(β̂) (2.2)

s.t. β̂ = argmin
β

: ∥ŷ − X̂β∥2,

where η is the energy budget. The objective function, f(β̂), depends on the poisoning data

point, {x0, y0}, not in a direct way, but through a lower level optimization problem. What

makes this problem even harder is the complication of the objective function. Depending

on the goal of the adversary, the objective can be in various forms. In the following two

subsections, we will discuss two important objectives and their solutions, respectively. The

methods and insights obtained from these two cases could then be extended to cases with

other objectives.

2.2.2 Attacking One Regression Coefficient

In this subsection, the goal of the adversary is to design the adversarial data point {y0,x0} to

decrease (or increase) the importance of a certain explanatory variable. If the goal is to de-

crease the importance of explanatory variable i, we can set f(β̂) = |β̂i|, and the optimization

problem can be written as

min
∥[x⊤

0 , y0]∥2≤η
: |β̂i| (2.3)

s.t. β̂ = argmin
β

: ∥ŷ − X̂β∥2.

Similarly, if the goal of the adversary is to increase the importance of the explanatory

variable i, we can set our objective as

min : −|β̂i| (2.4)
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withe the same constraints as in problem (2.3).

To solve the optimization problems (2.3) and (2.4), we first solve the following two opti-

mization problems

min
∥[x⊤

0 , y0]∥≤η
: β̂i (2.5)

s.t. β̂ = min
β

: ∥ŷ − X̂β∥2, (2.6)

and

max
∥[x⊤

0 , y0]∥≤η
: β̂i (2.7)

s.t. β̂ = min
β

: ∥ŷ − X̂β∥2. (2.8)

It is easy to check that the solutions to problems (2.3) and (2.4) can be obtained from the so-

lutions to problem (2.5) and (2.7). In particular, let (β̂∗
i )min and (β̂∗

i )max be optimal values of

problem (2.5) and (2.7) respectively. Then, if β̂i ≥ 0, we can check that max{0, (β̂∗
i )min} and

max{|(β̂∗
i )min|, |(β̂∗

i )max|} are the solutions to problem (2.3) and (2.4) respectively. Similar

arguments can be made if β̂i < 0.

In the following, we will focus on solving the minimization problem (2.5). The solution to

the maximization problem (2.7) can be obtained by using a similar approach. To solve this

bi-level optimization problem, we can first solve the optimization problem in the subjective.

Assume X is full column rank. Problem (2.6) is just an ordinary least squares problem,

which has a simple closed-form solution: β̂ = (X̂⊤X̂)−1X̂⊤ŷ. Substitute in X̂ = [x0,X
⊤]⊤

and ŷ = [y0,y
⊤]⊤, and we have

β̂ = (X⊤X+ x0x
⊤
0 )

−1[x0,X
⊤][y0,y

⊤]⊤.
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According to the Sherman-Morrison formula [78], we have

(X⊤X+ x0x
⊤
0 )

−1 = A− Ax0x
⊤
0 A

1 + x⊤
0 Ax0

, (2.9)

where

A = (X⊤X)−1. (2.10)

The inverse of X⊤X+x0x
⊤
0 always exists because 1+x⊤

0 Ax0 ̸= 0 and X⊤X is invertible.

Plug this inverse in the expression of β̂, we get

β̂ = β0 +
Ax0(y0 − x⊤

0 β0)

1 + x⊤
0 Ax0

, (2.11)

where

β0 = AX⊤y. (2.12)

We can observe that β0 is the coefficient that is obtained from the clean data. Problem (2.5)

is equivalent to

min
x0,y0

:
a⊤x0(y0 − x⊤

0 β0)

1 + x⊤
0 Ax0

(2.13)

s.t. ∥[x⊤
0 , y0]∥ ≤ η,

where a is the ith column ofA. The optimization problem (2.13) is the ratio of two quadratic

functions with a quadratic constraint. To further simplify this optimization problem, we can

write our objective and subjective in a more compact form by performing variable change:

u = [x⊤
0 , y0]

⊤. Using this compact representation, the optimization problem (2.13) can be
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written as

min
u

:
1
2
u⊤Hu

1 + u⊤[ A 0
0 0 ]u

(2.14)

s.t. u⊤u ≤ η2,

in which

H =

−aβ⊤
0 − β0a

⊤ a

a⊤ 0

 . (2.15)

(2.14) is a non-convex optimization problem. To solve this problem, we employ the

technique introduced in [79]. We first perform variable change u = z
s
by introducing variable

z and scalar s. Inserting this into problem (2.14), adding constraint 1 to the denominator

of the objective and moving it to the subjective, we have a new optimization problem

min
z,s

:
1

2
z⊤Hz (2.16)

s.t. s2 + z⊤[ A 0
0 0 ]z = 1, (2.17)

z⊤z ≤ s2η2. (2.18)

To validate the equivalence between problem (2.14) and (2.16), we only need to check if

the optimal value of problem (2.14) is less than the optimal value of problem (2.16) when

s = 0 [79]. Firstly, since H is not positive semi-definite (which will be shown later), the

optimal value of problem (2.14) is less than zero. Secondly, when s = 0, the optimal value of

problem (2.16) is zero, which is apparently larger than the optimal value of problem (2.14).

Therefore, the two problems are equivalent.

To solve problem (2.16), we substitute s2 in equation (2.17) for that in equation (2.18)
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and obtain

min
z

:
1

2
z⊤Hz (2.19)

s.t.
1

2
z⊤Dz ≤ η2, (2.20)

where

D = 2

I+ η2

A 0

0 0


 . (2.21)

Notice that H is not positive semi-definite; hence problem (2.19) is not a standard convex

QCQP problem [25]. However, it is proved that strong duality holds for this type of prob-

lem [80–82]. Hence, to solve this problem, we can start by investigating its KKT necessary

conditions. The Lagrangian of problem (2.19) is

L(z, λ) = 1

2
z⊤Hz+ λ

(
1

2
z⊤Dz− η2

)
,

where λ is the dual variable. According to the KKT conditions, we have

(H+ λD) z = 0, (2.22)

1

2
z⊤Dz ≤ η2, (2.23)

λ

(
1

2
z⊤Dz− η2

)
= 0, (2.24)

λ ≥ 0. (2.25)

By inspecting the complementary slackness condition (2.24), we consider two cases based

on the value of λ.

Case 1: λ = 0. In this case, we must have Hz = 0 according to (2.22). As a result, the

objective value of (2.19) is zero, which contradicts the fact that the optimal value should be
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negative. Hence, this case is not possible.

Case 2: λ > 0. In this case, equality in (2.23) must hold based on (2.24). According to the

stationary condition (2.22), if the matrix H+λD is full rank, we must have z = 0, for which

equality in (2.23) cannot hold. Hence, H+λD is not full-rank and we have det(H+λD) = 0.

As D is positive definite, we also have det(D−1/2HD−1/2+λI) = 0. Since λ > 0, this equality

tells us that −λ belongs to one of the negative eigenvalues of D−1/2HD−1/2. In the following,

we will show that D−1/2HD−1/2 has one and only one negative eigenvalue.

By definition, D is a block diagonal matrix. Hence, its inverse is also block diagonal. Let

us define D−1/2 = diag{G, g}, where G = 1/
√
2(I+ η2A)−1/2 and g = 1/

√
2. Thus, we have

D−1/2HD−1/2 =

 −ch⊤ − hc⊤ gc

gc⊤ 0

 ,

where c = Ga and h = Gβ0. Define ξ as one eigenvalue of D−1/2HD−1/2, and compute its

eigenvalues by computing the characteristic polynomial:

det
(
ξI−D−1/2HD−1/2

)
= ξm−1

(
ξ2 + 2ξc⊤h+ c⊤hh⊤c− g2c⊤c− c⊤ch⊤h

)
.

Thus, the eigenvalues of D−1/2HD−1/2 are ξ = 0 ((m − 1) multiplicities) and ξ = −c⊤h ±

∥c∥
√

g2 + h⊤h. Since ∥c∥
√

g2 + h⊤h > |c⊤h|, the eigenvalues of D−1/2HD−1/2 satisfy:

ξm+1 < 0, ξm = ξm−1 = · · · = ξ2 = 0, ξ1 > 0. Now, it is clear that D−1/2HD−1/2 has one

and only one negative eigenvalue and one positive eigenvalue, respectively. Thus, we have

λ = −ξm+1. Assume ν1 and νm+1 are two eigenvectors corresponding to eigenvalues ξ1 and

ξm+1. Through simple calculation, we have

νi = ki

[
−c⊤h+ ξi

c⊤c
c⊤ + h⊤,

gc⊤

ξi

(
−c⊤h+ ξi

c⊤c
c+ h

)]⊤
, (2.26)
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where i = 1, m+1 and scalar ki is the normalization constant to guarantee the eigenvectors

to be of unit length. According to (2.22), we have

(H+ λD) z = D1/2
(
D−1/2HD−1/2 + λI

)
D1/2z = 0;

thus the solution to problem (2.19) is

z∗ = k ·D−1/2νm+1. (2.27)

Since 1
2
z⊤Dz = η2, we have k =

√
2η. Having the expression of the optimal z∗, we can then

compute s according to equation (2.17):

s = ±
√

1− (z∗1:m)
⊤Az∗1:m, (2.28)

where z∗1:m is the vector that comprises the first m elements of z∗. Hence, the corresponding

solution to problem (2.13) is

x∗
0 = z∗1:m/s, y∗0 = z∗m+1/s. (2.29)

We now compute the optimal value of problem (2.16). Since our objective function is

1
2
(z∗)⊤Hz∗, substituting z∗ in (2.27) leads to the objective value: η2ν⊤

m+1D
−1/2HD−1/2νm+1.

Since ν⊤
m+1D

−1/2HD−1/2νm+1 = ξm+1, our optimal objective value is η2ξm+1.

Following similar analysis as above, we can find the optimal z∗ for problem (2.7), which is

z∗ =
√
2ηD−1/2ν1. Also, we can compute the optimal x∗

0 and y∗0 according to equation (2.29)

and its optimal objective value, which is η2ξ1.

In summary, the optimal values for problems (2.5) and (2.7) are η2ξm+1 + (β0)i and

η2ξ1+(β0)i respectively. We have summarized the process to design the optimal adversarial

data point in Algorithm 1 with respect to objective (2.5) and the process with respect to
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Algorithm 1 Optimal Adversarial Data Point Design

1: Input: the data set, {yi,xi}ni=1, energy budget η, and the index of feature to be attacked.
2: Steps:
3: compute A according to equation (2.10), compute β0 according to (2.12).
4: compute H and D according to (2.15) and (2.21), respectively.
5: compute the smallest eigenvalue, ξm+1, of D

−1/2HD−1/2 and its corresponding eigenvec-
tor according to (2.26).

6: design the adversarial data point, {x0, y0}, according to equations (2.27), (2.28), and
(2.29).

7: Output: return the optimal adversarial data point {x0, y0} and the optimal value
η2ξm+1 + (β0)i.

objective (2.7) can be obtained accordingly. Based on our optimal values of problems (2.5)

and (2.7), we can further decide the optimal values of problems (2.3) and (2.4) as discussed

at the beginning of this section. From our analysis we can see that the main computation is

to compute A in (2.10). Hence, the complexity of our algorithm is O(m3).

Moreover, if we use the ridge regression method in linear regression, there is only a slight

difference in the matrix A in problem (2.13) and the whole analysis remains the same.

One may concern that the proposed adversarial data point may behave as an outlier and

can be easily detected by the learning system. We can mitigate this by a simple repeating

strategy, in which we repeat the proposed adversarial data point K times and shrink the

magnitude of these poisoning data by
√
K. This can be simply verified by

β̂ = (X̂⊤X̂)−1X̂ŷ

=
(
X⊤X+ x0x

⊤
0

)−1
(X⊤y + x0y0)

=

(
X⊤X+

k∑
i=1

1√
K

x0
1√
K

x⊤
0

)−1 (
X⊤y

+
K∑
i=1

1√
K

x0
1√
K

y0

)
= (X̃⊤X̃)−1X̃⊤ỹ,
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where X̃ = [X⊤,
1√
K

x0, . . . ,
1√
K

x0︸ ︷︷ ︸
K times

]⊤ and ỹ = [y⊤,
1√
K

y0, . . . ,
1√
Ky0︸ ︷︷ ︸

K times

]⊤. By shrinking the

poisoning data points, it will make the detection of these points more difficult, especially

when the dataset is standardized.

We now analyze the impact of parameters, such as η, on the objective value. Even

though we have a closed-form solution to the optimal adversarial data point, the objec-

tive is a complex function of the original dataset. Hence, it will be difficult to analyze

this for the general case. Instead, we will focus on some special cases. In particular, we

analyze how the energy budget affects the value of objective function in the large data

sample scenario. As our analysis shows, our optimal values are η2ξ, where ξ = −c⊤h ±

∥c∥
√

g2 + h⊤h, c = Ga, h = Gβ0, G = 1/
√
2(I + η2A)−1/2, g = 1/

√
2, A = (X⊤X)−1,

and β0 is the original regression coefficient. In the large data sample limit and the as-

sumption that the features are independent and standardized, we have the approximation

A = I. Recall that a is the ith column of A, a = ei. As the result, the objective

value is η2ξ = 1
2

η2

1+η2

[
−βi

0 ±
√

η2 + 1 + ||β0||2
]
. For objective (2.5) with optimal value

1
2

η2

1+η2

[
−βi

0 −
√

η2 + 1 + ||β0||2
]
, this function is monotonically decreasing with η. For the

objective (2.7) with optimal value 1
2

η2

1+η2

[
−βi

0 +
√
η2 + 1 + ||β0||2

]
, it is a monotonically

increasing function of η.

2.2.3 Attacking with Small Changes of Other Regression Coeffi-

cients

In Chapter 2.2.2, we have discussed how to design the adversarial data points to attack

one specific regression coefficient. However, as we only focus on one particular regression

coefficient, other regression coefficients may also be changed. In this subsection, we consider

a more complex objective function, where we aim to make the changes to other regression

coefficients to be as small as possible while attacking one of the regression coefficients.

Suppose our objective is to minimize the ith regression coefficient (the scenario of max-
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imize the ith regression coefficient can be solved using similar approach), i.e., to minimize

∥β̂i∥2. At the same time, we would also like to minimize the changes to the rest of the regres-

sion coefficients, i.e., to minimize ∥β−i
0 − β̂−i∥2, where β−i

0 = [β1
0 , . . . , β

i−1
0 , 0, βi+1

0 , . . . , βm
0 ]⊤

and β̂−i = [β̂1, . . . , β̂i−1, 0, β̂i+1, β̂m]
⊤. Combine the two objectives, we have our new objective

function

f(β̂) =
1

2

∥∥∥β−i
0 − β̂−i

∥∥∥2 + λ

2

∥∥∥β̂i

∥∥∥2 ,
where λ is the trade-off parameter. The larger the λ is, the more effort will be made to keep

the ith regression coefficient small. A negative λ means the adversary attempts to make the

magnitude of the ith regression coefficient large. Again, we assume that the attack energy

budget is η. As the result, we have the following optimization problem

min
∥[x⊤

0 ,y0]∥≤η
:

1

2

∥∥∥β−i
0 − β̂−i

∥∥∥2 + λ

2

∥∥∥β̂i

∥∥∥2 (2.30)

s.t. β̂ = argmin
β

: ∥ŷ − X̂β∥2.

As the objective function is a quadratic function with respect to β̂, we can write it in a more

compact form: 1
2
(β̂ − β−i

0 )⊤Λ(β̂ − β−i
0 ), where Λ = diag(1, 1, . . . , λ, . . . , 1) and λ is at the

ith coordinate. With this compact form, our optimization problem can be written as

min
∥[x⊤

0 ,y0]∥≤η
:

1

2
(β̂ − β−i

0 )⊤Λ(β̂ − β−i
0 ) (2.31)

s.t. β̂ = argmin
β

: ∥ŷ − X̂β∥2.

To solve this problem, same as in the previous subsection, we start by solving the lower level

optimization problem. Since we have the same lower level problem as in (2.5), substitute β̂
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Algorithm 2 Optimal Adversarial Data Point Design while Making Small Changes to Other
Regression Coefficients

1: Input: the data set, {yi,xi}ni=1, energy budget η, and the index of feature to be attacked,
the trade-off parameter λ.

2: Steps:
3: compute A according to equation (2.10), compute β0 according to (2.12), compute A2

according to (2.32).
4: follow the steps (2.30), (2.31), (2.33), and (2.34), and formulate our problem as a poly-

nomial optimization problem (2.37).
5: use Lasserre’s relaxation method to solve problem (2.37) and get the optimal solution

x∗ and optimal value p∗.
6: compute w∗ = U⊤x∗, where I+ η2A2 = UU⊤.
7: compute s∗ = ±

√
1− (w∗)⊤A2w∗.

8: calculate the optimal solution x∗
0 = w∗

1:m/s
∗, y∗0 = w∗

m+1/s
∗.

9: Output: return the optimal adversarial data point {y∗0,x∗
0} and the optimal value p∗.

in the objective with the expression (2.11), and we have the one level optimization problem

min
x0,y0

:
1

2
g⊤Λg

s.t.
∥∥[x⊤

0 , y0]
∥∥ ≤ η,

where g =
Ax0(y0−x⊤

0 β0)

1+x⊤
0 Ax0

− b with A and β0 defined in (2.10) and (2.12) respectively and

b = β−i
0 − β0. To further simplify our problem, let us define

A1 = [A,0], A2 =

A 0

0 0

 , c =

−β0

1

 , z =

x0

y0

 , (2.32)

where A1 ∈ Rm×(m+1) and A2 ∈ R(m+1)×(m+1). With the new defined variables, we can write

our problem more compactly as:

min
z

:
1

2

(
A1zc

⊤z

1 + z⊤A2z
− b

)⊤

Λ

(
A1zc

⊤z

1 + z⊤A2z
− b

)
(2.33)

s.t. ∥z∥ ≤ η.

26



Since the objective is a ratio of two quartic functions, similar to the process we carried

out from (2.14) to (2.16), we perform variable change z = w
s
by introducing the new variable

w and scalar s. Insert it into problem (2.33) and follow the same argument we have made

to transform problem (2.14) to problem (2.16), problem (2.33) is equivalent to the following

problem

min
w,s

:
1

2

(
A1wc⊤w − b

)⊤
Λ
(
A1wc⊤w − b

)
(2.34)

s.t. (s2 +w⊤A2w)2 = 1, (2.35)

w⊤w ≤ s2η2. (2.36)

According to the definition ofA2, it is positive semidefinite. Hence, we have s2 = 1−w⊤A2w.

Plug in the expression of s2 into (2.36), the constraints in problem (2.34) can be simplified

to w⊤(I+ η2A2)w ≤ η2. Let U⊤U = I+ η2A2 be the Cholesky decomposition of I+ η2A2.

Define H = A1U
−1, e = U−⊤c, and x = Uw, we can simplify problem (2.34) further as:

min
x

:
1

2

(
Hxe⊤x− b

)⊤
Λ
(
Hxe⊤x− b

)
(2.37)

s.t. x⊤x ≤ η2.

This is an optimization problem with a quartic objective function and with a quadratic

constraint. Recent progress in multivariate polynomial optimization has made it possible

to solve this problem using the sum of squares technology [83–86]. This method finds the

globally optimal solutions by solving a sequence of convex linear matrix inequality prob-

lems. Even though this sequence might be infinitely long, in practice, a very short sequence

is enough to guarantee its global optimality. Hence, in this subsection, we will resort to

Lasserre’s relaxation method [83]. Algorithm 2 summarizes the process to design the adver-

sarial data point. The complexity of Algorithm 2 is dominant by the solving of the relaxation

semidefinite problem. Hence, the computational complexity of Algorithm 2 is O(s(N)4.5),
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Table 2.1: Configurations of c and d and their corresponding modifications.
Modification Configurations of c and d

delete the ith data sample c = −ei, b = Xi,:

delete feature i c = X⊤
:,i, d = −ei

add one adversarial data sample X← [X,0], c = en+1,
d = x⊤

n+1

modify one entry c = η · ei, d = ej

where N is the relaxation order and s(N) =
(
N+m
N

)
[87]. Numerical examples using this

method to solve our problem with real data will be provided in Chapter 2.4.

In this subsection, we put an ℓ2 norm constraint on the adversarial data point. It is

possible to extend our work to other kinds of norm constraints, such as ℓ1 and ℓ∞ norm

constraints. Suppose we put ℓp (p = 1 or p = ∞) norm constraint on the adversarial

data sample with objective (2.30), following similar steps in this subsection, we can obtain

objective (2.34) with constraint (2.35) and the norm cone constraint ||w||p ≤ sη. When p =

1, the norm cone constraint can be transformed to the inequalities constraints
∑m+1

i=1 ai ≤ sη

and −ai ≤ wi ≤ ai for i = 1, . . . ,m+ 1, where ai is the auxiliary variable. When p =∞, we

can transform the norm cone constraint to b ≤ sη and −b1 ≼ w ≼ b1, where b is a auxiliary

variable. Both cases lead to linear inequality constraints, which are special polynomial

inequalities. Hence, we can still use the Lasserre’s relaxation method to obtain the optimal

solution.

2.3 Rank-one Attack Analysis

In Chapter 2.2, we have discussed how to design one adversarial data point to attack the

regression coefficients. In this section, we consider a more powerful adversary who can modify

the whole dataset in order to attack the regression coefficients. In particular, we will consider

a rank-one attack on the feature matrix [26]. This type of attack covers many practical

scenarios, for example, modifying one entry of the feature matrix, deleting one feature,

changing one feature, replacing one feature, etc. We summarize the these modifications
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and their corresponding configurations of c and d in Table 2.1, where cd⊤ is the rank

one modification matrix, Xi,: denotes the ith row of the feature matrix X, X:,i represents

the ith column of the feature matrix, ei is the standard basis vector, and η is the scalar

which denotes the modification energy budget. Hence, the analysis of the rank-one attack

provides a universal bound for all of these kinds of modifications. Specifically, we will

consider the objective in problem (2.3) and (2.4) where the adversary attacks one particular

regression coefficient. In the following, we will first formulate our problem and then provide

our alternating optimization method to solve this problem.

In the considered rank-one attack model, the attacker will carefully design a rank-one

feature modification matrix ∆ and add it to the original feature matrix X. As the result, the

modified feature matrix is X̂ = X +∆. As ∆ has rank one, we can write ∆ = cd⊤, where

c ∈ Rn and d ∈ Rm. Similar to the previous section, we restrict the adversary to having

a limited energy budget, η. Here, we use the Frobenius norm to measure the energy of the

modification matrix. Hence, we have ∥∆∥F ≤ η, where ∥ · ∥F denotes the Frobenius norm of

a matrix. If the attacker’s goal is to increase the importance of feature i, our problem can

be written as

max
∥cd⊤∥F≤η

: |β̂i| (2.38)

s.t. β̂ = argmin
β
∥y − X̂β∥2,

X̂ = X+ cd⊤.

If the adversary is trying to minimize the magnitude of the ith regression coefficient, our
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problem is

min
∥cd⊤∥F≤η

: |βi| (2.39)

s.t. β̂ = argmin
β

: ∥y − X̂β∥2,

X̂ = X+ cd⊤.

Similar as in Chapter 2.2.2, the solutions to problems (2.38) and (2.39) can be obtained by

the solutions to the following two problems:

max
∥cd⊤∥F≤η

: β̂i (2.40)

and

min
∥cd⊤∥F≤η

: β̂i (2.41)

with the same constraints as in (2.38) and (2.39).

We can further write the above two problems in a more unified form:

min
∥cd⊤∥F≤η

: e⊤β̂ (2.42)

s.t. β̂ = argmin
β

: ∥y − X̂β∥2,

X̂ = X+ cd⊤.

If e = ei, in which ei is a vector with the ith entry being 1 and all other entries being

zero, problem (2.42) is equivalent to problem (2.41). If e = −ei, problem (2.42) is equiv-

alent to problem (2.40). Hence, in the following part, we will focus on solving this unified

problem (2.42).

To solve problem (2.42), we can first solve the lower level optimization problem in the
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constraints. It admits a simple solution that β̂ = X̂†y and X̂† is the pseudo-inverse of X̂.

This pseudo-inverse can be written as X̂† = X† +G [88], where

G =
1

γ
X†nw⊤ − γ

∥n∥2∥w∥2 + γ2
·
(
∥w∥2

γ
X†n+ v

)(
∥n∥2

γ
w + n

)⊤

, (2.43)

γ = 1 + d⊤X†c, v = X†c, n = (X†)⊤d, and w = (I−XX†)c.

Since β̂ = X̂†y = (X† + G)y and X† does not depend on c and d, our problem is

equivalent to

min
c,d

: e⊤Gy (2.44)

s.t. ∥c · d⊤∥F ≤ η.

Suppose (c∗,d∗) is the optimal solution of (2.44), it is easy to see that for nonzero k,

(kc∗,d∗/k) is also a valid optimal solution. To avoid the ambiguity, it is necessary and

possible to reduce the feasible region further. Hence, we put an extra constraint on c, where

we restrict the norm of c to be less than or equal to 1. As a result, our problem can be

further written as

min
c,d

: e⊤Gy (2.45)

s.t. ∥c∥ ≤ 1, ∥d∥ ≤ η,

in which we use the identity ∥cd⊤∥F = ∥c∥∥d∥. It is clear that problem (2.44) and prob-

lem (2.45) have the same optimal objective value.

Since G is determined by c, d, and X, different values of c and d may result in different

objective functions. Before further discussion, let us assume the singular value decomposition

of the original feature matrix is X = UΣV⊤, where Σ = [diag(σ1, σ2, · · · , σm),0]
⊤ and

σ1 ≥ σ2 ≥ · · · ≥ σm > 0. With this decomposition, we have X† = VΣ†U⊤, where Σ† =

[diag(σ−1
1 , σ−1

2 , · · · , σ−1
m ),0]. In (2.43), if η ≥ σm, by letting γ → 0, we have our objective
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being minus infinity by setting (c,d) = (um,−σmvm) or (c,d) = (−um, σmvm), where

um and vm are the mth column of matrices U and V, respectively. Hence, we conclude

that, when η ≥ σm, the optimal value of problem (2.45) is unbounded from below. As the

result, throughout this section, we assume η < σm. Thus, we also have γ = 1 + d⊤X†c ≥

1− ∥c · d⊤∥∥X†∥ ≥ 1− η
σm

> 0. We note that when η approaches σm, it does not mean to

kill all of the signals in the feature matrix but only some signals with the energy equal to

the smallest singular value of the feature matrix.

Let h denote our objective h(c,d) = e⊤Gy, plug in the expression of G, and we have

h(c,d) =
1

∥n∥2∥w∥2 + γ2

(
γe⊤X†nw⊤y − γe⊤vn⊤y

− ∥w∥2e⊤X†nn⊤y − ∥n∥2e⊤vw⊤y
)
. (2.46)

We need to optimize h(c,d) over c and d with the constraint ∥c∥ ≤ 1 and ∥d∥ ≤ η. However,

h(c,d) is a ratio of two quartic functions, which is known to be a hard non-convex problem

in general. To solve this problem, similar to [34], we can use the projected gradient descent

method. However, it is hard to choose a proper step-size and its convergence is not clear

when the projected gradient descent is applied to a non-convex problem. In the following,

we provide an alternating optimization algorithm with provable convergence.

The enabling observation of our approach is that even though the optimization problem

is a complex non-convex problem, for a fixed c, h is a ratio of two quadratic functions with

respect to d. Similarly, for a fixed d, h is a ratio of two quadratic functions with respect

to c. A ratio of two quadratic functions admits a hidden convex structure [89]. Inspired

by this, we decompose our optimization variables into c and d, and then use alternating

optimization algorithm described in Algorithm 3 to sequentially optimize c and d.

The core of this algorithm is to solve the following two problems

ck = argmin
∥c∥≤1

: h(c,dk−1), (2.47)
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Algorithm 3 Optimal Rank-one Attack Matrix Design via the Alternating Optimization
Algorithm

1: Input: data set {yi,xi}ni=1 and energy budget η.
2: Initialize: randomly initialize c0 and d0, set number of iterations k = 0.
3: compute G according to (2.43).
4: plug in the expression of G into (2.45), and obtain our objective, h(c,d), as in (2.46).
5: Do
6: update ck by solving: ck = argmin

∥c∥≤1

: h(c,dk−1),

7: update dk by solving: dk = argmin
∥d∥≤η

: h(ck,d),

8: set k = k + 1,
9: While convergence conditions are not meet.
10: compute the modification matrix ∆ = ck(dk)⊤.
11: Output: return the modification matrix, ∆.

and

dk = argmin
∥d∥≤η

: h(ck,d). (2.48)

For a fixed d, the objective of problem (2.47) becomes h(c,d) = h1(c)/h2(c), where we omit

the superscript of d,

h1(c) = c⊤
[
e⊤X†nny⊤(I−XX†)− n⊤yne⊤X†

− e⊤X†nn⊤y(I−XX†)− ∥n∥2(X†)⊤ey⊤(I−XX†)
]
c

+
[
e⊤X†n(I−XX†)y − n⊤y(X†)⊤e

]⊤
c, (2.49)

and

h2(c) =c⊤
[
∥n∥2(I−XX†) + nn⊤]c+ 2n⊤c+ 1. (2.50)
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Hence, problem (2.47) can be written as:

min
c

:
h1(c)

h2(c)
(2.51)

s.t. ∥c∥ ≤ 1, (2.52)

where the forms of hi(c) = c⊤Aic + 2b⊤
i c + li, i = 1, 2 and Ai, bi and li can be derived

from (2.49) and (2.50). The objective of this problem is the ration of two quadratic functions.

Even though it is non-convex, it has certain hidden convex structures. The following theorem

characterizes its optimal solution by solving a semidefinite programming [89].

Theorem 2.1. ([89]) If there exists µ > 0 such that

A2 b2

b⊤
2 l2

+ µ

I 0

0 −1

 ≻ 0, (2.53)

the optimal value of problem (2.51) is equivalent to the following optimal value

max
α, ν≥0

: α (2.54)

s.t.

A1 b1

b⊤
1 l1

 ⪰ α

A2 b2

b⊤
2 l2

− ν

I 0

0 −1


Proof. Please see [89] for detail.

We now show that our problem (2.51) satisfies condition (2.53). As the result, we can

find the solution to problem (2.51) by solving problem (2.54).

To prove the left hand side of (2.53) is positive definite, we can show the following two
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inequalities are true according to Schur complement condition for positive definite matrix

l2 − µ > 0, (2.55)

A2 + µI− 1

1− µ
b2b

⊤
2 ≻ 0, (2.56)

where l2 = 1. Plug in the expression of A2, the left hand of inequality (2.56) can be written

as

A2 + µI− 1

1− µ
b2b

⊤
2

= ∥n∥2(I−XX†) + µI− µ

1− µ
nn⊤.

Since I−XX† is a projection matrix, it is positive semi-definite. So, we only need to prove

µI− µ

1− µ
nn⊤ ≻ 0. (2.57)

Since nn⊤ is rank-one and its non-zero eigenvalue is ∥n∥2, it equals to proving ∥n∥2/(1 −

µ) < 1. To guarantee this inequality, we only need to make sure µ < 1 − ∥n∥2. Since

∥X†∥ ≤ 1/σm and ∥d∥ ≤ η, we get ∥n∥2 = ∥(X†)⊤d∥2 ≤ ∥X†∥2∥d∥2 ≤ η2/σ2
m < 1. By

choosing 0 < µ < 1−∥n∥2 < 1, we can ensure (2.55) and (2.56) are both satisfied, and hence

inequality (2.53) is satisfied.

From Theorem 2.1, we know the optimal value of (2.51) is equivalent to the optimal value

of problem (2.54). Problem (2.54) is a semidefinite programming problem, which is convex

and can be easily solved by modern tools such as [90] and [91]. We now discuss how to find

the optimal c which achieves this value. Suppose the optimal solution of problem (2.54)

is (α∗, ν∗). Since, h2(c) > 0, we have h1(c) ≥ α∗h2(c) for any feasible c. Hence, we can
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compute the optimal solution of problem (2.51) by solving

argmin
c

: h1(c)− α∗h2(c) (2.58)

s.t. ∥c∥2 ≤ 1 (2.59)

This problem is just a trust region problem. There are several existing methods to solve it

efficiently. In this chapter, we employ the method described in [92].

Now, we turn to solve problem (2.48). Since (2.48) and (2.47) have similar structure, we

can employ the methods described in Theorem 2.1 and (2.58) to find its optimal value and

optimal solution for problem (2.48).

Until now, we have fully described how to solve the intermediate problems in the al-

ternating optimization method. The following theorem shows that the proposed alternat-

ing optimization algorithm will converge. Suppose the generated sequence of solution is

{ck, dk}, k = 0, 1, · · · , and we have the following corollary:

Corollary 1. The sequence {ck, dk} admits a limit point {c̄ , d̄} and we have

lim
k→∞

h(ck,dk) = h(c̄, d̄). (2.60)

Furthermore, every limit point is a critical point, which means

∇h(c̄, d̄)⊤

c− c̄

d− d̄

 ≥ 0, (2.61)

for any ∥c∥ ≤ 1 and ∥d∥ ≤ η.

Proof. We first give the proof of (2.60). Since the sequence {ck,dk} lies in the compact

set, {(c,d) | ∥c∥ ≤ 1, ∥d∥ ≤ η}, and according to the Bolzano-Weierstrass Theorem [93],

{ck,dk} must have limit points. Hence, there is a subsequence of {hk} which converges to

h(c̄, d̄). As the objective is a continuous function with respect to c and d, the compactness
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of the constraint also implies the sequence of the objective value, {hk}, is bounded from

below. In addition, {hk} is a non-increasing sequence, which indicates that the sequence of

the function value must converge. In summary, the sequence {hk} must converge to h(c̄, d̄).

For the rest of the proof, please refer to Corollary 2 of [94] for more details.

2.4 Numerical Examples

In this section, we test our adversarial attack strategies on practical regression problems.

In the first regression task, we use seven international indexes to predict the returns of the

Istanbul Stock Exchange [95]. The data set contains 536 data samples, which are the records

of the returns of Istanbul Stock Exchange with seven other international indexes starting

from Jun. 5, 2009 to Feb. 22, 2011. Also, we demonstrate how our attack impacts the

quality of a regression task using the wine dataset [96].

2.4.1 Attacking One Specific Regression Coefficient

In this experiment, we attack the fourth regression coefficient of the Istanbul Stock Exchange

dataset and try to make its magnitude large by solving problem (2.4). We use two strategies

to attack this coefficient with a fixed energy budget η = 0.2. The first strategy is the one

proposed in this chapter. As a comparison, we also use a random strategy to approximate the

exhaustive search algorithm. In the random strategy, we randomly generate the adversarial

data point with each entry being i.i.d. generated from a standard normal distribution. Then,

we normalize its energy to be η. We repeat this random attack 10000 times and select the

one with the smallest objective value. Hence, the random strategy is an approximation of

the exhaustive search algorithm.

Fig. 2.1 shows the regression coefficients before and after our attack. The x-axis denotes

the index of the regression coefficients and the y-axis indicates the value of the regression co-

efficients. In this figure, the ‘orig’ denotes the original regression coefficient, ‘opt’ represents
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Figure 2.1: The regression coefficients before and after attacking the fourth regression coef-
ficient with objective (2.5).
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Figure 2.2: The scatter plot of the original data, the designed poisoning data, and the
poisoning data after the repeating strategy.
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the regression coefficient after attacking by our proposed optimal attack strategy, and ‘rand’

indicates the regression coefficient after attacking by the random attack strategy. From the

figure we can see that our proposed adversarial attack strategy is much more efficient than

the random attack strategy. One can also observe that by only adding one adversarial ex-

ample, designed by the approach characterized in this chapter, one can dramatically change

the value of a regression coefficient and hence change the importance of that explanatory

variable.

Fig. 2.2 shows the original data points (in blue), the optimal adversarial data point (in

red), and the adversarial data points after the 16 times repeating strategy (in green) in

this experiment. In this figure, the x-axis and y-axis are two features that are specified by

their corresponding axes labels (including the response value). The blue circle represents the

original data, the solid red dot denotes the data point designed by our proposed method in

Algorithm 1, and the solid green circle indicates our proposed poisoning data after 16 times

of repeating. The figure demonstrates that the proposed adversarial data point may behave

as an outlier. However, after our simple repeating strategy, the adversarial data points act

just like normal data points. Hence, our repeating strategy can mitigate the adversarial data

point being detected by the regression system.

2.4.2 Attacking without Changing Untargeted Regression Coeffi-

cients

From the numerical examples in the previous subsection, we can see the untargeted regression

coefficients may change greatly while attacking one specific regression coefficient with an

adversarial data point. For example, as demonstrated in Fig. 2.1, the sixth and seventh

regression coefficients change significantly when we attack the fourth regression coefficient.

To mitigate the undesirable changes of untargeted regression coefficients, we need more

sophisticated attacking strategies. In this subsection, we will test different strategies with

a more general objective function as demonstrated in Chapter 2.2.3. We also use the same
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Figure 2.3: Attack the fourth regression coefficient with objective (2.30) and λ = −1 under
different energy budgets.

data set as described in the previous subsection. We first try to attack the fourth regression

coefficient to increase its importance while making only small changes to the rest of the

regression coefficients. To accomplish this task, we aim to solve problem (2.30) with λ = −1.

Given the energy budget, firstly, we use our semidefinite relaxation based algorithm to

solve problem (2.37), and then follow Algorithm 2 to find the adversarial data point. For

comparison, we also carry out the random attack strategy, in which we randomly generate

the data point with each entry being i.i.d. according to the standard normal distribution.

Then, we normalize its energy being η and added it to the original data points. We repeat

these random attacks 10000 times and select the one with the smallest objective value. The

third strategy is the projected gradient descent based strategy, where we use the projected

gradient descent algorithm to solve (2.37) and follow similar steps of Algorithm 2 to find

the adversarial data point. Projected gradient descent works much like the gradient descent

except with an additional operation that projects the result of each step onto the feasible set

after moving in the direction of negative gradient [97]. In our experiment, we use diminishing

step-size, 1/(t + 1). Since the projected gradient descent algorithm depends on the initial

points heavily, given the energy budget, we repeat it 100 times with different random initial

points and treat the average of its objective values as the objective value of this algorithm.

Also, among the 100 times attacks, we record the one with the smallest objective value.

Fig. 2.3 shows the objective values under different energy budgets with different attacking
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Figure 2.4: The regression coefficients before and after different kinds of strategies that
attack the fourth regression coefficient with energy budget η = 1.

strategies and Fig. 2.4 demonstrates the regression coefficients after one of the attacks of

different strategies with η = 1. In these figures, ‘orig’ is the original regression coefficient,

‘rand’ means the random strategy, ‘poly’ indicates our semidefinite relaxation strategy, ‘grad-

avg’ is the average objective value of the 100 times attacks based on the projected gradient

descent algorithm, and ‘grad-min’ is the one with the smallest objective value among the 100

times attacks based on the projected gradient descent algorithm. From these two figures,

we can see our semidefinite relaxation based strategy performs much better than the other

two strategies. Among the 100 times attacks based on the projected gradient descent, the

minimal one can achieve similar objective values as our proposed attacks based on the

semidefinite relaxation. In addition, in our experiment, our semidefinite relaxation method

with relaxation order 2 or 3 can always lead to globally optimal solutions. Hence, the

computational complexity of this method is still low. Fig. 2.4 also shows our relaxation based

method leads to the largest magnitude of the fourth regression coefficient while keeping other

regression coefficients almost unchanged.

In the second experiment, we attack the sixth regression coefficient and attempt to make
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Figure 2.5: Attack the sixth regression coefficient with objective (2.30) and λ = 1 under
different energy budgets.
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Figure 2.6: The regression coefficients after different kinds of strategies that attack the sixth
regression coefficient with energy budget η = 1.

its magnitude small while keeping the change of the rest of the coefficients to be small.

So, we set λ = 1 in problem (2.30) to achieve this goal. The settings of each strategy

are similar to the ones in the first experiment. Fig. 2.5 shows the objective values with

different strategies under different energy budgets and Fig. 2.6 demonstrates the regression

coefficients after one of the attacks of those strategies respectively with energy budget η = 1.

From Fig. 2.5 we know the projected gradient descent based strategy and the semidefinite

relaxation based strategy achieve much lower objective values compared to the random attack

strategy. Specifically, when the energy budget is smaller than 0.7, both of the two strategies
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behave similarly. However, when the energy budget is larger than 0.7, the projected gradient

descent based strategy leads to larger objective values as the energy budget grows. This is

because the projected gradient descent algorithm tends to find solutions at the boundary of

the feasible set. Only some attacks with good initialization can lead to the global minimum.

By contrast, our semidefinite relaxation based strategy can find the globally optimal solutions

with relaxation order 2 or 3. Thus, it gives the best performance among the three strategies.

Fig. 2.6 also demonstrates our relaxation based method achieves the global optimum when

η = 1 as it leads the sixth regression coefficient to zero and other regression coefficients to

be unchanged.

2.4.3 Rank-one Attack

In this subsection, we carry out different rank-one attack strategies. Our goal is to minimize

the magnitude of the fourth regression coefficient with objective (2.41). We compare two

strategies: the projected gradient descent based strategy discussed in Chapter 2.4.2 and our

proposed alternating optimization based strategy. For the projected gradient descent based

strategies, we use different step sizes: 1/(1 + t), 10/(1 + t), and 100/(1 + t). As our analysis

shows, when the energy budget is larger than the smallest singular value, our objective can

be minus infinity. Hence, in our experiment, we vary the energy budget from 0 to the smallest

singular value, which is 0.053. Given a certain energy budget, we set all the algorithms with

the same randomly initialized point and run these algorithms until they stop with the same

convergence condition: two consecutive function values change too small or it reaches the

maximal allowable iterations. We repeat this process 100 times and record their average

objective values.

Fig. 2.7 (a) shows the averaged run times and Fig. 2.7 (b) illustrates objective values of

the four algorithms, where ‘GD-1’, ‘GD-10’ and ‘GD-100’ stand for the projected gradient

descent with stepsizes 1/(1+t), 10/(1+t), and 100/(1+t), respectively, and ‘AO’ denotes the

proposed alternating optimization method. We carry out this experiment on a PC with four
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Figure 2.7: The averaged run times (Subfigure (a)) and the objective values (Subfigure (b))
of the projected gradient descent and the proposed alternating optimization method with
different stepsizes.
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Figure 2.8: The evolution of function values as the iteration increases with one typical run
of projected gradient descent and alternating optimization algorithm.

Intel E3 CPUs. All the four algorithms have the same convergence condition: the absolute

value of the difference of two consecutive objective values is less than 10−5. Fig. 2.7 (a)

shows that, as the energy budget increases, the run times of the alternating optimization,

GD-1, and GD-10 increase. However, as the energy budget increases, the run times of

GD-100 first decrease and then increase. This is due to the fact that a larger stepsize will

result in a faster convergence rate while it may cause oscillation. Fig. 2.7 (b) shows that

when the energy budget increases, the objectives decrease for both of these algorithms.

Furthermore, the proposed alternating optimization based algorithm provides much smaller

objective values, especially when the energy budget approaches the smallest singular value.

When the energy budget approaches the smallest singular value, the gradient descent based
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Figure 2.9: The regression coefficient of the original data set (subfig (a)) and the RMSE on
the training and test data set with different energy budgets (subfig (b)).

algorithm becomes very unstable. This is due to the fact that when the energy budget is

large, the objective is very sensitive to the energy budget. So, a small stepsize may result

in significant objective value change. This phenomena can be observed in Fig. 2.8, where it

depicts the evolution of the objective values of ‘AO’ and ‘GD-100’ with the energy budget

being η/σm = 0.5 (subfigure (a)), η/σm = 0.9 (subfigure (b)) and η/σm = 0.95 (subfigure

(c)), respectively, and σm is the smallest singular value of the original feature matrix. From

this figure we can see the alternating optimization based algorithm converges very fast while

the projected gradient descent based algorithm becomes unstable when the energy budget

is large. This is due to the fact that the objective of our alternating optimization based

algorithm is guaranteed to be monotonically decreasing.

In the second experiment, we test our rank-one attack strategy on the wine dataset[96],

which includes 11 chemical analysis of the red wine and its corresponding quality (ranging

from 3 to 8). In this dataset, we have 1599 data samples and we randomly choose 80 percent

of the data as the training set and the rest as the test data. We use linear regression to learn

the regression coefficients on the training data and then use these regression coefficients on

the test data to predict the quality of the test data. We use the root mean square error

(RMSE) to measure the goodness of predicting both on the training data and test data.
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We use the rank-one attack strategy proposed in this chapter on the training data with the

target of maximizing the eighth regression coefficient (corresponding to the density feature).

We carry out the attack with different energy budgets ranging from 0 to the smallest singular

value of the feature matrix of training data.

Fig. 2.9 (a) illustrates the original regression coefficients without attack. The magnitude

of the eighth regression coefficient is very small. It reveals that the eighth feature is not

important compared to other features. Fig. 2.9 (b) shows the RMSE on the training data

and test data using different energy budget with and without attacking the eighth regression

coefficient. ‘train-orig’ and ‘test-orig’ represent the RMSE on the training and test data

without attacking the training data. ‘train-modi’ and ‘test-modi’ denote the RMSE on the

training and test data when we conduct our rank-one attacking on the training dataset.

This figure demonstrates that, even though the RMSE on the attacked training data is low,

the model based on the attacked features performs extremely badly on the test data. It

illustrates that attacking the regression coefficient not only misleads the interpretation of

the model but also has significant impact on the performance of the model.

2.5 Summary

In this chapter, we have investigated the adversarial robustness of linear regression problems.

Particularly, we have given the closed-form solution when we attack one specific regression

coefficient with a limited energy budget. Furthermore, we have considered a more complex

objective where we attack one of the regression coefficients while trying to keep the rest of

the regression coefficients to be unchanged. We have formulated this problem as a multi-

variate polynomial optimization problem and introduced the semidefinite relaxation method

to solve it. Finally, we have studied a more powerful adversary who can make a rank-one

modification on the feature matrix. To take the advantage of the rank-one structure, we

have proposed an alternating optimization algorithm to solve this problem. The numerical
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examples demonstrated that our proposed closed-form solution and the semidefinite relax-

ation based strategies can find the globally optimal solutions and the alternating optimiza-

tion based strategy provides better solutions, faster convergence, and more stable behavior

compared to the projected gradient descent based strategy. We should also note that the

solutions are “optimal” under the specific objectives mentioned in the chapter. Clearly, if

the goal of the attacker is changed, then the optimal attack strategy will be different.
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Chapter 3

On the Adversarial Robustness of

LASSO Based Feature Selection

3.1 Introduction

In this chapter, we investigate the adversarial robustness of LASSO based feature selection

problem. We introduce a smooth approximation of the ℓ1 norm and use the projected gradi-

ent descent to design the modifications on the feature matrix and response values in order to

manipulate the regression coefficient. This chapter is organized as follows. In Chapter 3.2,

we describe the precise problem formulation based on the ordinary LASSO feature selection

method. In Chapter 3.3, we introduce our method to solve this problem. In Chapter 3.4, we

extend our method to attack the group LASSO and the sparse group LASSO based feature

selection methods. In Chapter 3.5, we provide comprehensive numerical experiments with

both synthetic data and real data to illustrate the results obtained in this paper. Finally,

we offer concluding remarks in Chapter 3.6.
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3.2 Problem Formulation

In this section we provide the problem formulation of adversarial attack against the ordinary

LASSO based feature selection.

Given the data set {(yk0 , xk
0)}nk=1, where n is the number of data samples, yk0 is the

response value of data sample k, xk
0 ∈ Rm denotes the feature vector of data sample k,

and each element of xk
0 is called a feature of the data sample. Through the data samples,

we attempt to learn a sparse representation of the response values from the features. The

LASSO algorithm learns a sparse regression coefficient, β0, by solving

β0 = argmin
β
∥y0 −X0β∥22 + λ∥β∥1, (3.1)

where the response vector y0 = [y10, y
2
0, . . . , y

n
0 ]

⊤, the feature matrix X0 = [x1
0, x

2
0, . . . ,x

n
0 ]

⊤,

∥·∥1 denotes the ℓ1 norm, and λ is the trade-off parameter to determine the relative goodness

of fitting and sparsity of β0 [40]. The locations of the non-zero elements of the sparse

regression coefficients indicate the corresponding selected features.

In this chapter, we assume that there is an adversary who is trying to manipulate the

learned regression coefficients and thus maneuver the selected features by carefully modifying

the response values or the feature matrix. We denote the modified response value vector as

y and denote the modified feature matrix as X. Further, we assume that the adversary’s

modification is constrained by the ℓp norm (p ≥ 1). This means we have ∥y−y0∥p ≤ ηy, and

∥X−X0∥p ≤ ηx, where ηy is the energy budget for the modification of the response values,

and ηx is the energy budget for the modification of the feature matrix. For a vector, ∥ · ∥p

denotes the ℓp norm of the vector; for a matrix, ∥·∥p denotes the ℓp norm of the vectorization

of the matrix. As a result, the manipulated regression coefficients, β̂, are learned from the

modified data set (y,X) by solving the following LASSO problem

β̂ = argmin
β
∥y −Xβ∥22 + λ∥β∥1. (3.2)
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The goal of the adversary is to suppress or promote some of the regression coefficients

while keeping the change of the remaining coefficients to be minimum. If it wants to suppress

the ith regression coefficient, we minimize si · β̂2
i , where si > 0 is the predefined weight

parameter. If it aims to promote the ith regression coefficient, we minimize ei · β̂2
i , where

ei < 0 is the weight parameter. To make the changes to the ith regression coefficient as

small as possible, we minimize µi · (β̂i − βi
0)

2, where µi > 0 is a user defined parameter to

measure how much effort we put on keeping the ith regression coefficients intact. Moreover,

we denote the set of indices of coefficients which are suppressed, promoted, and not changed

as S, E, and U , respectively. In summary, the objective of the adversary is:

min
β̂

1

2
(β̂ − ν)⊤H(β̂ − ν), (3.3)

where νi = βi
0 if i ∈ U , otherwise νi = 0, H = diag(h), diag(h) is the diagonal matrix with

its diagonal elements being h, and hi = µi for i ∈ U , hi = si for i ∈ S and hi = ei for i ∈ E.

Considering the energy constraints of the adversary and the fact that β̂ is a function of

y and X, we need to solve the following bi-level optimization problem to obtain the optimal

attack strategy.

min
y∈Cy ,X∈Cx

f(y,X) (3.4)

s.t. β̂ = argmin
β
∥y −Xβ∥22 + λ∥β∥1, (3.5)

where

Cy = {y | ∥y − y0∥p ≤ ηy} ,

Cx = {X | ∥X−X0∥p ≤ ηx} ,

and f(y,X) = 1
2
(β̂ − ν)⊤H(β̂ − ν).
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3.3 Algorithm

In this section, we investigate problem (3.4) and present our projected gradient descent

method to solve this problem.

In problem (3.4), the objective is a function of β̂. However, the relationship between

(y,X) and β̂ is determined by the lower-level optimization problem. This makes our objec-

tive a very complicated function of (y,X) and in general (3.4) is not convex. To illustrate

this, we consider a simplified version of this problem in which we have scalar y and x. In

this case, our problem can be written as

min
x∈Cx, y∈Cy

hβ̂,

s.t. β̂ = argmin
β

(y − xβ)2 + λ|β|.

The solution to the lower-level optimization problem is β̂ = sgn(y/x)(y/x − λ/(2x2))+,

where sgn(·) is the sign function and (·)+ takes the positive part of the argument. Hence,

our problem can be simplified as

min
x∈Cx, y∈Cy

h[(y/x− λ/(2x2))+]
2.

It is easy to verify that this problem is not convex. To solve this bi-level optimization prob-

lem, we need to first solve the lower-level optimization problem to determine the dependence

between (y,X) and β̂. Then, we can use the gradient descent method to solve this bi-level

optimization problem. Since the lower-level problem is convex [40], it can be represented by

its first order optimality condition. The corresponding first order optimality condition with

respect to the lower-level optimization problem is:

0 ∈ 2X⊤(Xβ − y) + λ∂∥β∥1, (3.6)
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when β = β̂, where ∂∥ · ∥1 is the subgradient of the ℓ1 norm. We denote the right hand

of (3.6) as q(β,y,X).

If q(β,y,X) is a continuously differentiable function and its Jacobian matrix with respect

to β is invertible, the first order condition defines a one-to-one mapping from (y,X) to β,

and by the implicit function theorem [98], we can calculate the gradient of β with respect

to y and X. Unfortunately, in our case, q(β,y,X) is not differentiable at the point with

βi = 0. Moreover, (3.5) does not always determine a single valued mapping from (y,X) to

β. For example, when λ ≥ ∥X⊤y∥∞, we always have β = 0.

To circumvent these difficulties, we transform the lower-level optimization problem to

the following equivalent linear inequality constrained quadratic programming [99]:

argmin
β,u

∥y −Xβ∥22 + λ
m∑
i=1

ui (3.7)

s.t. − ui ≤ βi ≤ ui, i = 1, 2, . . . ,m, (3.8)

where u = [u1, u2, . . . , um]
⊤. Following [99], we can apply the interior-point method to

solve (3.7). In particular, we solve the penalized problem:

argmin
β,u

∥y −Xβ∥22 + λ
m∑
i=1

ui +
1

t
Φ(β,u), (3.9)

where Φ(β,u) = −
∑m

i=1 log(u
2
i − β2

i ) is the penalty function for the constraints of (3.7) and

t is the penalty parameter. Solution of problem (3.9) converges to (3.2) if we follow the

central path as t varies from 0 to ∞, where the central path is defined as the set of solution

to (3.9) for different t > 0 [25].

Instead of using the first order optimality condition of (3.6), we utilize the first order
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optimality condition of (3.9), which are

2X⊤(Xβ − y) +
1

t
∇βΦ = 0, (3.10)

λ1− 1

t
∇uΦ = 0, (3.11)

where

∇βΦ =


2β1/(u

2
1 − β2

1),

...

2βm/(u
2
m − β2

m)


and

∇uΦ =


2u1/(u

2
1 − β2

1)

...

2um/(u
2
m − β2

m)

 .

Let us denote the first order optimality condition as g(y,X,β,u) = 0. According to the

implicit function theorem, the derivative of β with respect to y can be computed as

∇yβ = −[J−1]1:m∇yg, (3.12)

where [J−1]1:m denotes the first m rows of J−1
1:m, J = [∇βg,∇ug] is the Jacobian matrix of

g(y,X,β,u) with respect to β and u,

∇yg =

−2X⊤

0

 , (3.13)

∇βg =

2X⊤X+D1

D2

 , (3.14)

∇ug =

D2

D1

 , (3.15)
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with

D1 =
1

t
diag

(
2(u2

1 + β2
1)/(u

2
1 − β2

1)
2, . . . , 2(u2

m + β2
m)/(u

2
m − β2

m)
2
)
,

D2 =
1

t
diag

(
− 4u1β1/(u

2
1 − β2

1)
2, . . . ,−4umβm/(u

2
m − β2

m)
2
)
.

Also, according to (3.10), (3.11), and the implicit function theorem, the derivative of β with

respect to X can be calculated as

∇Xβ = −[J−1]1:m∇Xg, (3.16)

where ∇Xg ∈ R2m×(mn) with

∂gi
∂Xkl

=


2δli(Xβ − y)k + 2Xkiβl, if i ≤ m

0, if i > m

(3.17)

with δli being the Kronecker delta function

δli =


1, if i = l,

0, if i ̸= l,

and (Xβ − y)k being the kth element of the vector (Xβ − y).

To calculate the gradient of β with respect to y and X, we first need to find the inverse

of the Jacobian matrix. The Jacobian matrix is a 2× 2 block matrix,

J =

2X⊤X+D1 D2

D2 D1

 .
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This block structure makes the inverse of J admit a simple form [100]:

J−1 =

J̃11 J̃12

J̃21 J̃22

 , (3.18)

where J̃11 = (2X⊤X + 2D)−1 with D = 1/t · diag
(
1/(u2

1 + β2
1), . . . , 1/(u

2
m + β2

m)
)
, J̃12 =

−J̃11D2D
−1
1 , J̃21 = −D−1

1 D2J̃11, and J̃22 = D−1
1 + D−1

1 D2J̃11D2D
−1
1 . With this explicit

expression of the Jacobian matrix and note that the elements from m + 1 to 2m are zero

both for ∇yg and ∇Xg, we have

∇yβ =
(
X⊤X+D

)−1
X⊤, (3.19)

and

∂β

∂Xkl

=

[
∂β1

∂Xkl

,
∂β2

∂Xkl

, . . . ,
∂βm

∂Xkl

]⊤
, (3.20)

with

∂βi

∂Xkl

=
∑
j

−(X⊤X+D)−1
ij

∂gj
∂Xkl

.

Using the chain rule, we have the gradient of f with respect to y and X:

∇yf(y,X) = ∇yβ
⊤H(β − ν)

∣∣∣
β=β̂

(3.21)

and

∂f(y,X)

∂Xkl

= (β − ν)⊤H
∂β

∂Xkl

∣∣∣
β=β̂

. (3.22)

Now, we know the gradients of our objective function (3.4). With the help of this gradient

information, we can use a variety of gradient based optimization methods. Since our problem

is a constrained optimization problem, we resort to the projected gradient descent method.
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Algorithm 4 The Projected Gradient Descent Algorithm

1: Input: data set {(yi0,xi
0)}ni=1, trade off parameter λ in (3.1), energy budget ηy, ηx, ℓp

norm, and step-size parameter γk.
2: solve β0 via (3.1), set up feature sets S, E, U and their corresponding parameters s, e,

µ; use those parameters to define the objective function f(y,X) in (3.4).
3: Initialize set the number of iterations k = 0 and randomly initialize yk = y0, Xk = X0.
4: Do
5: solve β̂ according to (3.9),
6: compute the gradients: ∇yf(yk,Xk) according to (3.21) and ∇Xf(yk,Xk) according

to (3.22),
7: update:
8: yk+1 = ProjCy

(
yk − γk∇yf(yk,Xk)

)
,

9: update:
10: Xk+1 = ProjCx

(
Xk − γk∇Xf(yk,Xk)

)
,

11: set k = k + 1,
12: While convergence conditions are not met.
13: Output: yk,Xk.

We have summarized it in Algorithm 4. The main concept of the projected gradient descent

algorithm is that we first take a gradient step, project it onto the feasible set, and then take

an αt step toward the projected point. In this algorithm, ProjCy(·) and ProjCx(·) represent

the projection operators that project a point onto the feasible set Cy and Cx, respectively. Cy

and Cx are ℓp balls with radius ηy and ηx respectively. In the following, we will discuss the

expressions of the projection onto three commonly used ℓp norm balls, where p = 1, 2,∞,

with unit radius and its center being the origin. We denote the projection onto the unit ℓp

norm ball as ProjBℓp
(·).

Case 1: Project onto the ℓ1 unit norm ball. ProjBℓ1
(x) = z∗, where z∗ is the solution to the

following convex problem

z∗ = argmin
z

∥z− x∥2

s.t. ∥z∥1 ≤ 1.

Here x is the point to be projected. It can be efficiently solved via its dual with complexity

O(m) [101].
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Case 2: Project onto the ℓ2 unit norm ball. In this case, we have a very simple closed-form

solution

ProjBℓ2
(x) = x/max{1, ∥x∥2}. (3.23)

Case 3: Project onto the ℓ∞ unit norm ball. In this case, we also have a very simple

closed-form solution:

ProjBℓ∞
(x) = z∗, (3.24)

where z∗ = [z∗1 , . . . , z
∗
m]

⊤ and

z∗i =


−1, if xi ≤ −1,

xi, if |xi| < 1,

1, if xi ≥ 1.

With these expressions of the projection, we can easily obtain the expressions of ProjCy(·)

and ProjCx(·) by simply performing a geometric translation.

3.4 Adversarial Attacks against Group LASSO and Sparse

Group LASSO

In this section, we will extend the method developed in Chapter 3.3 to design an optimal

attack strategy towards two other popular LASSO based feature selection methods: group

LASSO and sparse group LASSO. We also note that recent Bayesian based sparse learning

methods obtain superior performance by incorporating the sparse and group sparse proper-

ties [102–104]. However, in this chapter, we will focus on the LASSO based methods.
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3.4.1 Adversarial Attacks Against Group LASSO

Many of the sparse signals such as speech signal [105], frequency hopping spectrum [103], and

functional brain network [106, 107], possess additional group structures. Specifically, these

features are divided by groups and the features in the same group either contribute to the

target simultaneously or not. To select the most useful features, it is better to exploit these

additional structures [47]. The group LASSO imposes a group-wise sparsity structure, i.e.,

only a few groups have nonzero entries. This group-wise sparsity guides us to select better

features, such as in splice site detection [108] and hyperspectral image classification [44].

The group-wise sparsity structure can be promoted by solving the following group LASSO

problem:

min
β

∥∥∥∥∥y −
L∑
l=1

Xlβl

∥∥∥∥∥
2

2

+ λ
L∑
l=1

√
pl∥βl∥2. (3.25)

Here the feature matrix X is divided into L groups, each of which Xl ∈ Rn×pl ,
∑L

l=1 pl = m,

and β = [β⊤
1 ,β

⊤
2 , . . . ,β

⊤
L ]

⊤. The regularization term λ
∑L

l=1

√
pl∥βl∥2 is used to promote

the group-wise sparse structure, and λ is the penalty parameter to control the sparsity level

and goodness of fitting.

Considering our attack target and the energy budget constraints for modifying the re-

sponse values and the feature matrix, the design of optimal feature manipulation attacks for

the group LASSO can be cast as a bi-level optimization:

min
y∈Cy ,X∈Cx

1

2
(β̂ − ν)⊤H(β̂ − ν)

s.t. β̂ = argmin
β

∥∥∥∥∥y −
L∑
l=1

Xlβl

∥∥∥∥∥
2

2

+ λ
L∑
l=1

√
pl∥βl∥2, (3.26)

where ν and H are defined the same as in problem (3.3).

To solve this bi-level optimization problem, we also first consider the lower-level group
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LASSO problem. The group LASSO is a convex optimization problem, which is equivalent

to the following quadratic programming with conic constraints:

argmin
β,α

∥∥∥∥∥y −
L∑
l=1

Xlβl

∥∥∥∥∥
2

2

+
L∑
l=1

λlαl (3.27)

s.t. ∥βl∥2 ≤ αl, l = 1, 2, . . . , L,

where λl = λ
√
pl and α = [α1, α2, . . . , αL]

⊤. To solve this problem, we can utilize the similar

interior-point method we have employed for the ordinary LASSO problem in Chapter 3.3.

In particular, we solve a series of the minimization problems: min ft, as t gradually grows,

where

ft =

∥∥∥∥∥y −
L∑
l=1

Xlβl

∥∥∥∥∥
2

2

+
L∑
l=1

λlαl − 1/t
L∑
l=1

log(α2
l − ∥βl∥22).

Since this interior-point objective ft is a convex function, the minimization problem is equal

to its first order optimality condition:

∇βl
ft = X⊤

l

(
L∑
l=1

Xlβl − y

)
+

1

t

1

α2
l − ∥βl∥22

βl = 0,

∂ft
∂αl

= λl −
2

t

αl

α2
l − ∥βl∥22

= 0, for l = 1, 2, . . . , L.

To derive the gradients of β with respect to y and X, we can apply the implicit function

theorem on the first order optimality condition. First, we need to compute the Jacobian

matrix of the function on the left of the first order optimality condition. The derivative of
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∇βft with respect to β and α can be computed by

∇βj
∇βi

ft =


2X⊤

i Xj, for i ̸= j,

2X⊤
i Xj +

1
t

(α2
i−β⊤

i βi)I+2βiβ
⊤
i

(α2
i−β⊤

i βi)2
, for i = j,

∂

∂αj

∇βi
ft =


0, for i ̸= j,

−4
t

αiβi

(α2
i−∥βi∥22)2

, for i = j.

The derivative of ∇αft with respect to β and α can be computed as

∇βj
∇αi

ft =


0, for i ̸= j,

−4
t

αiβi

(α2
i−∥βi∥22)2

for i = j,

∂2ft
∂αi∂αj

=


0, for i ̸= j,

2
t

α2
i+β⊤

i βi

(α2
i−∥βi∥22)2

, for i = j.

Hence, the Jacobian matrix is

J =

 ∇β∇βft ∇α∇βft

∇β∇αft ∇α∇αft

 .

Let g = [∇βf
⊤
t ,∇αf

⊤
t ]

⊤. Then we have

∇yg = [−2X, 0]⊤,

and

∂gk
∂Xij

=


2 [δkj(Xβ − y)i +Xikyj] , for 1 ≤ k ≤ m,

0, otherwise.
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As a result, the derivatives of β with respect to y and X is the first m rows of −J−1∇yg and

−J−1∇Xg, respectively. With this gradient information and using the chain rule, we can

obtain the gradients of our objective with respect to the response values and feature matrix.

Then, we can use the projected gradient descent method described in Algorithm 4 to design

our attack strategy.

3.4.2 Adversarial Attacks Against Sparse Group LASSO

Sparse group LASSO combines the ordinary and the group LASSO and exploit the sparsity

and group sparsity jointly. It gives better performance when the features are formed in a

group manner and only few features contribute to the response value within a group. By

combining these two properties, sparse group LASSO promotes the group-wise sparsity as

well as the sparsity within each group. By taking advantage of these two kinds of sparsities,

sparse group LASSO helps us select more accurate features, and it has been used in climate

prediction [109], heterogeneous feature representations [110], change-points estimation [48],

etc. The sparse group LASSO problem tries to solve the following convex problem:

min
β

∥y −
L∑
l=1

Xlβl∥22 + λ1

L∑
l=1

√
pl∥βl∥2 + λ2∥β∥1. (3.28)

Similar to problem (3.25), we assume the regression coefficients are divided into L groups

and each group βl ∈ Rpl . In the above objective, the first term is the ordinary least square

to measure the goodness of fitting, the second term promotes the group-wise sparsity, and

the third term encourages the sparsity within each group.

Taking objective (3.3) into account, the design of optimal attack strategy against sparse
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group LASSO can be formulated as solving a bi-level optimization problem:

min
y∈Cy ,X∈Cx

1

2
(β̂ − ν)⊤H(β̂ − ν) (3.29)

s.t. β̂ = argmin
β

∥y −
L∑
l=1

Xlβl∥22

+ λ1

L∑
l=1

√
pl∥βl∥2 + λ2∥β∥1.

To solve this bi-level optimization problem, as in the previous subsection, we can trans-

form the lower-level problem into a quadratic programming with conic and linear inequality

constraints by introducing the new variables αl for l = 1, 2, . . . , L and ui for i = 1, 2, . . . ,m

as follows:

argmin
β,α,u

∥y −
L∑
l=1

Xlβl∥22 +
L∑
l=1

λ̃lαl + λ2

m∑
i=1

ui (3.30)

s.t. ∥β∥2 ≤ αl, l = 1, 2, . . . , L, (3.31)

− ui ≤ βi ≤ ui, i = 1, 2, . . . ,m, (3.32)

where λ̃l = λ1
√
p
l
. We use the similar interior-point method to solve this optimization

problem. Thus, we use penalty functions for the constraints and have the new objective

with a certain penalty parameter t:

ht =∥y −
L∑
l=1

Xlβl∥22 +
L∑
l=1

λ̃lαl + λ2

m∑
i=1

ui

− 1/t
L∑
l=1

log(α2
l − ∥βl∥22)− 1/t

m∑
i=1

log(u2
i − β2

i ).
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The corresponding first order optimality condition is



∇βl
ht = 2X⊤

l (Xβ − y) + 1/t · 2βl

α2
l −∥βl∥22

+2βl

t
· diag

(
1/ ((u1

l )
2 − (β1

l )
2
,

. . . , 1/ ((upl
l )

2 − (βpl
l )

2)
)
= 0,

for l = 1, 2, . . . , L,

∂ht

∂αl
= λ̃l − 1/t · 2αl

α2
l −∥βl∥22

= 0, for l = 1, 2, . . . , L,

∂ht

∂ui
= λ2 − 1/t · 2ui

u2
i−β2

i
= 0, for i = 1, 2, · · · ,m,

where β = [β⊤
1 ,β

⊤
2 , . . . ,β

⊤
L ]

⊤, u = [u⊤
1 ,u

⊤
2 , . . . ,u

⊤
L ]

⊤, βl = [β1
l , β

2
l , . . . , β

pl
l ]

⊤, ul = [u1
l , u

2
l , . . . , u

pl
l ]

⊤.

To use the implicit function theorem to obtain the gradient information, we need to compute

the Jacobian matrix of the function on the left of the first order optimality condition. The

Jacobian matrix is

J =


∇β∇βht ∇α∇βht ∇u∇βht

∇β∇αht ∇α∇αht ∇u∇αht

∇β∇uht ∇α∇uht ∇u∇uht

 ,

where

∇β∇βht = 2X⊤X+ E1,1 +D1,1,

in which

E1,1 =
1

t
diag

(
(α2

1 − β⊤
1 β1)I+ 2β1β

⊤
1

(α2
1 − β⊤

1 β1)2
, . . . ,

(α2
L − β⊤

LβL)I+ 2βLβ
⊤
L

(α2
L − β⊤

LβL)2

)
,

D1,1 =2/t · diag
(
(u2

1 + β2
1)/(u

2
1 − β2

1)
2, . . . , (u2

m + β2
m)/(u

2
m − β2

m)
2
)
,
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∂

∂αj

∇βi
ht =


0, for i ̸= j,

−4
t

αiβi

(α2
i−∥βi∥22)2

, for i = j,

∇u∇βht = diag

(
− 4/t · β1u1

(u2
1 − β2

1)
2
, . . . ,−4/t · βmum

(u2
m − β2

m)
2

)
,

∂2ft
∂αi∂αj

=


0, for i ̸= j,

2
t

α2
i+β⊤

i βi

(α2
i−∥βi∥22)2

, for i = j,

∇u∇αht = 0,

and

∇u∇uht =diag
(
2(u2

1 + β2
1)/(u

2
1 − β2

1)
2, . . . , 2(u2

m + β2
m)/(u

2
m − β2

m)
2
)
.

Let q ≜ [∇βh
⊤
t ,∇αh

⊤
t ,∇uh

⊤
t ]

⊤, then we have

∇yq = [−2X,0]⊤

and

∂qk
∂Xij

=


2 [δkj(Xβ − y)i +Xikyj] , for 1 ≤ k ≤ m,

0, otherwise.
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Then we have the derivative of β with respect to y being

∇yβ = −[J−1]1:m∇yq.

and the partial derivative of βk with respect to Xi,j is

∂βk

∂Xi,j

=
m∑
l=1

−(J−1)k,l
∂ql
∂Xi,j

.

Having the gradients of β with respect to y and X, combining the gradients of our

objective with respect to β and using the chain rule, we can get the full gradients of our

objective with respect to y and X. With these gradients information, we can then employ

the projected gradient descent described in Algorithm 4 to find our modification strategy.

3.5 Numerical Examples

In this section, we carry out several experiments to demonstrate the results obtained in this

chapter.

3.5.1 Attack Against Ordinary LASSO

In the first numerical example, we test our algorithm on a synthetic data set. Firstly, we

generate a 30 × 50 feature matrix X0. Each entry of the feature matrix is i.i.d. generated

from a standard normal distribution. Then, we generate the response values, y0, through

the model y0 = X0v + n, where v is the sparse vector in which only ten randomly selected

positions are non-zero and each of the non-zero entry is i.i.d. drawn from the standard

normal distribution; n is the noise vector where each entry is i.i.d. generated according to a

normal distribution with zero mean and 0.1 variance. The generated dataset has Frobenius

norm 38.60 of the feature matrix and ℓ2 norm 19.26 of the response vector. Then, we set the

LASSO trade-off parameter λ = 2 and use (3.7) to estimate the regression coefficients β0.
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Figure 3.1: The objective value changes with the energy budget.

We randomly select one regression coefficient as the desired coefficient to be boosted and

another one as the coefficient to be suppressed. In addition, we set the suppressed parameter

si = 1 for i ∈ S, set boosted parameter ei = −1 for i ∈ E, and set the unchanged parameter

µi = 5 for i ∈ U . We set the step-size parameter γk = min(ρ, ρK0/k) in Algorithm 4, where

ρ = 1 and K0 = 100.

In the first experiment, we set ηx = 0, which means that we do not modify the feature

matrix and impose ℓ2 norm constraint on the modification of the response values. Then,

we vary the energy budget, ηy, to see how the energy budget influences our objective value.

Fig. 3.1 illustrates that the objective value decreases as the energy budget increases, which is

expected as a larger energy budget provides a larger feasible region, and thus lower objective

value. Fig. 3.2 demonstrates the recovered regression coefficients when ηy = 5 along with the

original regression coefficients. In the figure, ‘orig’ denotes the original regression coefficients,

‘modi’ represents the regression coefficients after our attack, ‘min’ is the regression coefficient

we want to suppress, and ‘max’ denotes the regression coefficient we want to promote. As

the figure demonstrates, we have successfully suppressed and promoted the corresponding

coefficients while keeping other regression coefficients almost unchanged.
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Figure 3.2: The original regression coefficients and the regression coefficients after our at-
tacks.
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Figure 3.3: The original response values and the modified response values with different
attack constraints.
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In the second experiment, we also attack the response values. We fix the energy budget

ηy = 5 and test different ℓp norm constraints on the modification of the response values as

p = 1, 2,∞. Fig. 3.3 shows the original and modified response values under different ℓp norm

constraints. The x-axis denotes the index of each response value and the y-axis denotes the

value of the response vector. The blue line demonstrates the original response values and

the red line is the modified response values with different attack constraints. From top to

bottom are the modified response values with ℓ1, ℓ2, and ℓ∞ norm constraints, respectively.

From the figure, we can see that the ℓ1 norm constraint provides the smallest modification on

the response values and the ℓ∞ norm constraint provides the most significant modification,

which results in objective value 0.0095 with the ℓ1 norm constraint, objective value −0.4199

with the ℓ2 norm constraint, and objective value −2.8813 with the ℓ∞ norm constraint. That

is because with the same radius, ℓ1 norm ball is contained in the ℓ2 norm ball and ℓ2 norm

ball belongs to the ℓ∞ norm ball.

In the third experiment, we compare the modifications on the response values and on the

feature matrix with the ℓ1 constraints. First, we only attack the response values with ηy = 5,

which results in objective value 0.0095. Second, we only attack the feature matrix with the

same energy budget ηx = 5, which results in objective value −0.0969. Finally, we attack

both the response values and the feature matrix with ηy = 5 and ηx = 5, which results in

objective value −0.2291. These results indicate that both the modifications of the response

values and feature matrix are effective.

In the fourth experiment, we explore the minimal energy required to suppress one regres-

sion coefficient. In this experiment, we try to make one of the non-zero coefficient to be zero

while keeping other regression coefficients unchanged. Hence, we set si = 1 for i ∈ S and

ui = 5 for i ∈ U . Firstly, we set ηx = 0 and only change the response values. The minimal

required ηy under the ℓ2 norm constraint to make the regression coefficient zero is recorded.

Secondly, we fix ηy = 0 and only modify the feature matrix to make one regression coeffi-

cient zero. We record the minimal energy budget required for the modification of the feature
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matrix in terms of the Frobenius norm. TABLE 3.1 presents the minimal energy budgets to

suppress one regression coefficient. The first row is the feature index that we want to sup-

press. The second row denotes the coefficients before modification. The third row shows the

minimal energy budget when we only modify the response values. The forth row indicates

the minimal energy budget when we only modify the feature matrix. We can see from the

table that the energy required to suppress the coefficient depends on the original magnitude

of the coefficient. When suppressing a coefficient with a larger magnitude it requires more

energy and vice versa. When we only modify the response vector, we need the energy that

is about 60 (ηy/∥y∥2 = 11.5/19.26 ≈ 0.60) and 9 (ηy/∥y∥2 = 1.8/19.26 ≈ 0.09) percent of

the ℓ2 norm of the response vector to successfully make the largest coefficient (the 11th co-

efficient) and the smallest coefficient (the 17th coefficient) be zero, respectively. When only

modifying the feature matrix, we need the energy that approximates to 12 (4.5/38.6 ≈ 0.12)

and 1 (0.5/38.6 ≈ 0.01) percent of the Frobenius norm of the feature matrix to successfully

make the largest and smallest coefficient be zero, respectively. This also indicates that a

small perturbation of the feature matrix can suppress one regression coefficient, while a rel-

atively larger modification of the response values is needed to suppress the same regression

coefficient.

In the fifth experiment, we explore the minimal energy needed to promote one of the

regression coefficients. We try different energy budgets to promote one of the regression

coefficients while keeping others unchanged. So, we set ui = 5 for i ∈ U and ei = −1 for i

∈ E. We record the minimal energy used to make the magnitude of one of the regression

coefficients at least 0.5. The regression coefficients that we want to promote are chosen

randomly among the 42 zero-valued coefficients. We randomly select 8 coefficients and

TABLE 3.2 records the minimal energy. The first row indicates the feature index that we

choose. The second row presents the minimal energy needed when we only modify the

response vector under the ℓ2 norm constraint. The third row shows the minimal energy

needed when we only modify the feature matrix under the Frobenius norm. This table
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Table 3.1: Minimal energy to suppress one regression coefficient

energy
index

4 11 17 26 27 33 34 47

β̂i 0.9 2.1 -0.3 1.5 0.6 0.5 -1.5 -1.1
ηy 5.7 11.5 1.8 7.5 2.8 2.6 7.5 6.2
ηx 1.5 4.5 0.5 2.3 1.0 1.0 2.4 1.8

Table 3.2: Minimal energy to promote one regression coefficient

energy
index

1 2 28 29 30 44 48 50

ηy 4.1 4.2 4.7 4.0 4.6 4.3 4.8 3.3
ηx 1.4 1.2 1.6 1.2 1.4 1.2 1.5 1.4

shows we need similar energy to promote different regression coefficients. The reason is that

the original regression coefficients that we try to promote are zero-valued and we set the

same magnitude, 0.5, for coefficients we try to promote. In summary, when we only modify

the response values, the average minimal energy is about 22 percent of the ℓ2 norm of the

response vector. When we only modify the feature matrix, the average minimal energy is

about 3 percent of the Frobenius norm of the feature matrix. This indicates that similar to

the fourth experiment, we can promote one of the regression coefficients easily by modifying

the feature matrix, and relatively more considerable energy is needed to modify the response

values to achieve the same goal.

We now test our attack strategy using real datasets. In this task, we use the spectral

intensity of the gasoline to predict its octane rating [111]. It consists of 60 samples of

gasoline at 401 wavelength and their octane ratings. Fig. 3.4 provides an overview of the

data samples. In this figure, the octane axis indicates the octane rating of each sample

and the z-axis denotes the spectral intensities at different wavelengths. From the figure we

can see that there are very high correlations among different wavelengths. When strong

correlation exists among features, the learned regression coefficients are not stable and will

not reveal the true important features. Thus, in the testing phase, it will result in large

errors. For example, there are two perfect correlated features. Then, the two corresponding
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Figure 3.4: Overview of the octane data set.

regression coefficients can be any values as long as the difference of the two coefficients

remains constant. Suppose the two regression coefficients are infinite large. In the testing

phase, a small perturbation on one of the features will result in a huge error. Thus, we

use the LASSO method to complete the regression task. We randomly choose 80% of the

data samples as our training data and the rest as our test data. We do cross-validation on

the training data to decide the trade-off parameter in LASSO, and it gives λ = 0.5. Using

this parameter, we compute the regression coefficients. Using this regression coefficients on

the test data set, we have r2 = 0.979. Here, r2 is the r-squared value and is defined as

r2 = 1 − ∥y − ŷ∥22/∥y − ȳ∥22, where y is the ground truth response value, ȳ is the mean

value of the response value with each element being the mean of y, and ŷ is the predicted

response value. A larger r2 value indicates better regression coefficients. The blue line in

Fig. 3.5 shows the original regression coefficient. From this figure, we can see that there are

several important features.

For this dataset, the Frobenius norm of the feature matrix is 20.02 and the ℓ2 norm of

the response vector is 11.75. In the next step, we modify the response values and the feature

matrix with the energy budget ηy = 5 and ηx = 5 to suppress the 154th and 163th regression
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Figure 3.5: The regression coefficients before and after our attack.

coefficients, keep the 232th and 369th regression coefficients unchanged, and promote the

rest of the regression coefficients. In our algorithm, we set si = 1 for i ∈ S, ei = −1 for

i ∈ E, µi = 50 for i ∈ U , and step-size parameter γk = min(5, 5 × 100/k). The red-dashed

line in Fig. 3.5 shows the regression coefficients after our attacks. From the figure, we can

see that we successfully promote two regression coefficients that were zero-valued before the

attack. We also suppress the 154th and 163th regression coefficients and make the 232th

and 369th regression coefficients change very little. Using this regression coefficients on the

test data set, we got the r-squared value 0.694. Hence, by changing the response values and

the feature matrix, we can easily make the system choose the wrong features.

3.5.2 Attack Against Group LASSO

In this subsection, we will employ our attack strategy on group LASSO. We will use the

direction of arrival (DOA) problem as an example. In the DOA problem, we try to find the

directions of the sources from the received signals of an array of sensors [112,113]. Consider a

setup where the sensors are linearly located and equally spaced with half of the wavelength.

Hence, the measurements of the nth sensor are
∑K

k=1 e
j2πnfkxk, where K is the number of
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sources and fk ∈ (−π/2, π/2] is the arrival angle of the kth source. Furthermore, we assume

that the number of input sources is limited. If we divide the arrival of angle equally into N

grids and assume the sources are located on the grids, the DOA can be modeled as a linear

signal acquisition system:

y = Ax+ e,

where y ∈ CN is the measurements of the sensors, A ∈ CN×M , An,m = ej2πn
m−1
M , x ∈ CM

is the sparse source vector where only the locations that have targets are non-zero , and

e ∈ CN is the noise vector. We can first recover the sparse signal x, and then the arrival

angles can be derived from the locations of the non-zero components of x. Further, we can

solve the following LASSO problem to recover x:

argmin
x

: ∥y −Ax∥22 + λ∥x∥1, (3.33)

where the ℓ1 norm of x is defined as

∥x∥1 =
N∑
i=1

√
(xR

i )
2 + (xI

i )
2, (3.34)

and xR
i and xI

i are the real and imaginary parts of xi, respectively. Problem (3.33) is actually

a group LASSO problem if we separate its real and imaginary parts and we reformulate it

as:

argmin
xR,xI

∥ỹ − Ãx̃∥22 + λ
N∑
i=1

√
(xR

i )
2 + (xI

i )
2, (3.35)
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Figure 3.6: The magnitude of the coefficients before and after attacks.

where ỹ = [(yR)⊤, (yI)⊤]⊤, yR and yI are the real and imaginary parts of y respectively,

x̃ = [(xR)⊤, (xI)⊤]⊤,

Ã =

 AR AI

−AI AR

 , (3.36)

and AR and AI are the real and imaginary parts of A respectively.

Since DOA is very important in military applications, in this numerical example, we

demonstrate the vulnerability of DOA estimation using group LASSO. In this experiment,

we assume that there are N = 30 sensors, K = 4 sources, and the sources are located in

the possible M = 50 locations. The locations of the 4 sources are randomly chosen; for the

real part and imaginary part of each signal, they are i.i.d. drawn from a standard normal

distribution. The noise is i.i.d. distributed according to the standard Gaussian distribution

with zero mean and 0.1 standard deviation. In our experiment, the ℓ2 norm of y is 152.70,

where the ℓ2 norm of the complex vector y is defined as ∥y∥2 =
√∑m

i=1(y
I
i )

2 + (yRi )
2. To
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Figure 3.7: The real and the imaginary part of the observed signal before and after attacks.

make our attack more practical, we only attack the measurement signal, y. Thus, the attack

process can be seen as a procedure to inject some adversarial noises into our measurements.

In this attack, we set the energy of ηy = 1.5 with ℓ∞ norm constraint and set λ = 4. We try

to suppress the source on the (47)th grid with arrival of angle 306◦ and boost the coefficient
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on the (50)th grid that originally does not have a source target. In our experiment, we

set si = 20 for i ∈ S, ei = −1 for i ∈ E, µi = 20 for i ∈ U , and step-size parameter

γk = min(1, 100/k).

Fig.3.6 shows the magnitude of the original regression coefficients and the regression

coefficients after attack. Here, ‘orig’ denotes the original regression coefficients, ‘modi’ rep-

resents the regression coefficients after attack, ‘min’ and ‘max’ indicate the coefficients we

want to supperss and boost after attack, respectively. The non-zero coefficients exactly in-

dicate the directions of arrival of our generated target sources. The figure demonstrates

that we successfully suppressed the (47)th coefficient and boost the (50)th coefficient while

keeping others almost unchanged, which successfully make the receiver believe there is no

target on the (47)th grid and there is a counterfeit target on the (50)th grid. Fig. 3.7 shows

the real and imaginary part of the measurements before and after our attacks. Subfigure (a)

represents the real part of the observed signal and subfigure (b) the imaginary part of the

observed signal before and after attacks.

This figure reveals that, when we deliberately manipulate the regression coefficients in

this example, the modified measurements just seem to have been perturbed by the normal

noises. Hence, it is hard to detect this kind of attack.

3.5.3 Attack Against Sparse Group LASSO

In this subsection, we will use the NCEP/NCAR Reanalysis 1 dataset [114] to demonstrate

our attack strategy against the sparse group LASSO based feature selection. The dataset

consists of the monthly mean of temperature, sea level pressure, precipitation, relative hu-

midity, horizontal wind speed, and vertical wind speed from 1948 to present (871 months) on

the globe in a 2.5◦× 2.5◦ resolution. For demonstration purpose, we coarse the resolution to

10◦ × 10◦ and we get 403 valid ocean locations. This task aims to analyze the dependencies

between the records on the ocean and the records on certain land. Notably, we consider

the relationship between the records on the ocean and the temperature of Brazil. Moreover,
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Figure 3.8: The regression coefficients before and after attacks.

we follow [109] to remove the seasonality and the trend in the data that may dominate the

signal.

We use the data from Jan. 1984 to Dec. 2007 as the training data and the data from
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Jan. 2008 to Dec. 2017 as test data. Hence, we have 720 training samples and 120 test

samples. We use the sparse group LASSO algorithm to find the coefficients and then use these

coefficients to predict the temperature of Brazil. The regression coefficients are grouped by

their locations. So, each group has six coefficients. We use root mean square error (RMSE)

and r-square value to measure the goodness of the regression coefficients. In this experiment,

the Frobenius norm of the feature matrix is 1393.70 and the ℓ2 norm of the response vector

is 24.84. We set λ1 = λ2 = N/20, si = 1 for i ∈ S, ei = −1 for i ∈ E, µi = 20 for i ∈ U

and γk = min(1, 100/k). Our attack strategy is to use energy budgets ηy = 0.2 and ηx = 0.2

with the ℓ∞ constraints to suppress the coefficients in group 173 and boost the coefficients

in group 83 while keeping others unchanged.

Fig. 3.8 depicts the coefficients before and after our attacks. Subfigure (a) represents the

regression coefficients before and after attacks. Here, ‘orig’ denotes the original regression

coefficients, ‘modi’ represents the regression coefficients after Attack, ‘min’ and ‘max’ indi-

cate the coefficients we want to suppress and boost after attack, respectively. The group

coefficients that we try to maximize corresponding to the feature indices from 493 to 498

and subfigure (b) shows the coefficients in this group before and after the attack. The group

coefficients we want to minimize corresponding to the feature indices from 1033 to 1038 and

subfigure (c) demonstrates the coefficients in this group before and after attacks. From the

figure we can see, without attack, we can find the most representative coefficients in group

173 with coordinate 40W, 20S, which is located on the ocean near the land of Brazil. After

our attack, as demonstrated, we successfully suppressed the coefficients in group 173 and

boosted the coefficients in group 83. By doing so, it gives us the incorrect explanation of the

temperature in Brazil. Further, we get r2 = 0.55 and RMSE = 0.53 without attack on the

test data. After attack, we get r2 = 0.37 and RMSE = 0.62 on the test data. In summary,

by attacking the training data, we can manipulate the interpretation of the relationship

between the features and the response value and also worsen the prediction results.
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3.6 Summary

In this chapter, we have investigated the adversarial robustness of the LASSO based feature

selection algorithms, including ordinary LASSO, group LASSO and sparse group LASSO. We

have provided an approach to mitigate the non-differentiability of the ℓ1 norm based feature

selection methods and have designed an algorithm to obtain the optimal attack strategy.

The numerical examples on synthetic data and real data have shown that feature selection

based on LASSO and its variants are very vulnerable to adversarial attacks.
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Chapter 4

On the Adversarial Robustness of

Subspace Learning

4.1 Introduction

In this chapter, we examine the adversarial robustness of the subspace learning problem.

We characterize the optimal rank-one modification strategy and the modification without

any rank constraints. This chapter is organized as follows. In Chapter 4.2, we describe

the precise problem formulation. In Chapter 4.3, we investigate the optimal rank-one attack

strategy. We generalize our results to the case without the rank constraint in Chapter 4.4. In

Chapter 4.5, we provide numerical experiments with both synthesized data and real data to

illustrate results obtained in this paper. Finally, we offer concluding remarks in Chapter 4.6.

4.2 Problem Formulation

In this section, we introduce the problem formulation. Given a data matrixX = [x1,x2, · · · ,xn]

with each xi ∈ Rd, our goal is to learn a low-dimension subspace via PCA. In the data matrix

X, we assume that all the preprocessing steps (such as data centering and standardization)

have been done. In this chapter, we consider an adversarial setup in which an adversary will
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first observe X and then carefully design a modification (attack) matrix ∆X to change X

to X̂ = X+∆X. We denote function gk(·) as the PCA operation that computes the k lead-

ing principal components. Furthermore, let X = span(gk(X)) be a k-dimensional subspace

learned from X and X̂ = span(gk(X̂)) a k-dimensional subspace learned from the modified

data matrix X̂. The goal of the adversary is to design the modification matrix ∆X so as to

make the distance between X and X̂ as large as possible. To measure such a distance, we

use the largest principal angle between X and X̂ as defined below [67].

Definition 1. Let X and X̂ be two k-dimensional subspaces in Rd. The principal angles

{θi}ki=1 are defined recursively:

cos(θi) = max
ui∈X,vi∈X̂

u⊤
i vi

s.t. ∥ui∥ = ∥vi∥ = 1,

u⊤
j ui = v⊤

j vi = 0,∀ j = 1, 2, · · · , i− 1.

In this chapter, we will use ∥ · ∥ to denote the ℓ2 norm and θ
(
gk(X), gk(X̂)

)
or simply θ

to denote the Asimov distance between the subspace X estimated from X and the subspace

X̂ estimated from X̂. Given an orthonormal basis UX of X and an orthonormal basis UX̂ of

X̂, {cos(θ1), · · · , cos(θk)} are the singular values of U⊤
XUX̂ [67]. Hence, the Asimov distance

is determined by the smallest singular value of U⊤
XUX̂. It is easy to see that, if no constraint

is imposed on ∆X, X̂ can be arbitrary and θ can be easily made to be π/2. Therefore, we

impose an energy constraint on ∆X. In particular, we assume that the energy of ∆X is

less than or equal to η. In this chapter, we use the Frobenius norm ∥∆X∥F to measure the

energy. Hence, the goal of this attacker is to solve the following optimization problem:
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max
∆X∈Rd×n

: θ
(
gk(X), gk(X̂)

)
(4.1)

s.t. X̂ = X+∆X,

∥∆X∥F ≤ η.

Even though (4.1) is a complicated non-convex optimization problem, we will fully char-

acterize the optimal solution to (4.1) for any given η. This characterization will enable us

to investigate the impact of this optimal attack with respect to the energy budget η.

Note that we consider a very powerful adversary model that has access to the whole

dataset and can modify all data points. For security analysis, it is desirable to consider

the worst case scenario with a powerful adversary. Furthermore, our analysis provides a

universal upper bound on the maximum subspace distance incurred by any bounded energy

perturbation.

4.3 Optimal Rank-one Adversarial Strategy

In this section, we will solve (4.1) for the special case where the modification matrix ∆X is

limited to being rank-one. The techniques and insights obtained from this special case will

be useful for the general case considered in Chapter 4.4.

With this additional rank-one constraint, ∆X can be written as ab⊤ for some a ∈ Rd

and b ∈ Rn, and the optimization problem (4.1) becomes

max
a∈Rd,b∈Rn

: θ
(
gk(X), gk(X̂)

)
(4.2)

s.t. X̂ = X+∆X,

∆X = ab⊤,

∥∆X∥F ≤ η.
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It is easy to see that, for any feasible solution (ã, b̃) with ||b̃|| ≠ 1, we can construct another

feasible solution (||b̃||ã, b̃/||b̃||) that gives the same objective function value. Hence, without

loss of optimality, we will fix the norm of b to be 1 throughout this section.

Based on the value of k, i.e., the dimension of the subspace we select, we will first present

the solution to the case when k = rank(X), and then generalize the result to the case when

k < rank(X).

4.3.1 Case with k = rank(X)

In this subsection, we consider the case when the dimension of the subspace selected is

equal to the rank of the data matrix. In this case, the span of X equals the span of gk(X).

Furthermore, we divide this case into two scenarios where the data matrix is full-rank and

the data matrix is low-rank.

Full-Rank Case

In the full column rank case, rank(X) = n, where n ≤ d. This case arises when the number

of samples is limited, for example, at the beginning of online PCA. In this case, the span of

X̂ is equal to the span of gk(X̂), and hence we can write θ
(
gk(X), gk(X̂)

)
as θ(X, X̂). In the

following, we first find the expression of θ(X, X̂) for any given X̂ = X + abT . Using this

expression, we then characterize the optimal attack matrix ∆X.

Suppose the compact SVD of X is X = UΣV⊤ = UW, where Σ = diag(σ1, σ2, · · · , σn).

One set of orthonormal bases for the column space of X is U. We can also use SVD to find

a set of orthonormal bases Ũ of span(X̂).

Since X̂ = X+ ab⊤, Ũ can be directly expressed as a function of U [115]:

Ũ = U+ (αUw + βs)w⊤,
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where

au⊥ = (I−UU⊤)a, s = au⊥/∥au⊥∥,

w̃ = −W−⊤b, w = w̃/∥w̃∥,

ω = (1− a⊤Uw̃)/∥au⊥∥, g = [w̃, ω]⊤,

α = |ω|/∥g∥ − 1, β = −sign(ω)∥w̃∥/∥g∥,

and W−⊤ = (W−1)⊤. Hence, we have U⊤Ũ = U⊤ (U+ (αUw + βs)w⊤) = I+αww⊤. The

singular values of I+αww⊤ are {1, 1, · · · , 1+αw⊤w}. Since w⊤w = 1, 1+α = |ω|/∥g∥, the

smallest singular value of U⊤Ũ is cos(θ) = |ω|/∥g∥. Our objective is to maximize θ, which

is equivalent to minimizing the smallest singular value of U⊤Ũ. Hence, the optimization

problem (4.2) is simplified as

min
a,b

: |ω|/∥g∥

s.t. ∥ab⊤∥F = ∥a∥∥b∥ ≤ η,

where we use the identity ∥a∥∥b∥ = ∥a · b⊤∥F. Expanding the objective function, we have

|ω|
∥g∥

=
|1 + a⊤

uW
−⊤b|

∥[∥au⊥∥W−⊤b, 1 + a⊤
uW

−⊤b]∥
, (4.3)

where au = U⊤a.

Since W = ΣV⊤, we have W−⊤b = Σ−1V⊤b. As V is a unitary matrix, changing the

coordinate b ⇐ V⊤b does not result in the change of the constraint. The value a⊤
uW

−⊤b

in the original coordinate is the same as a⊤
uΣ

−1b in the new coordinate. In the following,

we will use this new coordinate system and the cost function in (4.3) can be written as

|ω|
∥g∥

=
|1 + a⊤

uΣ
−1b|

∥[∥au⊥∥Σ−1b, 1 + a⊤
uΣ

−1b]∥
. (4.4)
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The objective function (4.4) is zero if and only if the numerator is zero. Using the matrix

norm inequality[78], we have

|a⊤
uΣ

−1b| ≤ ∥au∥∥b∥∥Σ−1∥2 =
1

σn

∥au∥∥b∥

(a)

≤ 1

σn

∥a∥∥b∥ = 1

σn

∥ab⊤∥F
(b)

≤ η

σn

,

where ∥Σ−1∥2 is the induced 2-norm of matrix Σ−1, in (a) we use ∥au∥ ≤ ∥a∥, and (b) is due

to the energy constraint. From the inequalities, we conclude that when η < σn, we can not

make the numerator to be zero. We now consider two different cases depending on whether

we can make the numerator to be zero or not.

Case 1: When η > σn, if we set

au = [0, 0, · · · ,−σn]
⊤, b = [0, 0, · · · , 1]⊤,

and any ∥au⊥∥2 = â2 with 0 < â2 < η2 − σ2
n, the numerator will be zero. Since a =

Uau + (I−UU⊤)au⊥ , the attacker can make the Asimov distance to be π/2 by setting:

a = −σnun + âuq, b = vn, (4.5)

where uq is any vector orthogonal to the column space of X and 0 < â2 < η2 − σ2
n.

Case 2: When η ≤ σn, the value of 1 + a⊤
uΣ

−1b can not reach zero. In this case, it is easy

to check that minimizing (4.4) is equivalent to maximizing

∥au⊥∥2∥Σ−1b∥2

(1 + a⊤
uΣ

−1b)2
. (4.6)

As ∥b∥ = 1, ∥Σ−1b∥2 is maximized when b = [0, 0, · · · , 1]⊤. Furthermore, for any fixed

norm of au, (1 + a⊤
uΣ

−1b)2 is minimized when au = [0, 0, · · · ,−∥au∥]⊤, b = [0, 0, · · · , 1]⊤.
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Hence, for fixed norms of au, au⊥ , the objective function (4.6) is maximized when

au = [0, 0, · · · ,−∥au∥]⊤, b = [0, 0, · · · , 1]⊤. (4.7)

Let c = ∥au⊥∥, h = ∥au∥. Using the optimal form of au and b in (4.7), the objective

function (4.6) can be simplified to

max
c,h

:
c2/σ2

n

(1− h/σn)2

s.t. (c2 + h2) ≤ η2, (4.8)

It is easy to check that the objective function is maximized when c2 + h2 = η2. Hence,

we have c2 = η2 − h2. Inserting this value of c into the objective function and setting the

derivative with respect to h to be 0, we get a unique solution h = η2/σn. At this value of

h, the second derivative is −2σ2
n

(σ2
n−η2)3

, which is negative. It indicates that h = η2/σn is indeed

the maximum point. Hence, c = ±η
√

1− η2/σ2
n. This implies that the optimal solution to

problem (4.2) for Case 2 is

a = −η2/σnun ± η
√

1− η2/σ2
nuq, b = vn.

Summarizing the discussion above, we have the following proposition regarding the opti-

mal value of problem (4.2) in the full-rank case.

Proposition 4.1. In the full rank case, the optimal value of (4.2) is

θ∗ =


π/2, if η > σn

arcsin (η/σn), if η ≤ σn

.
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Low-Rank Case

We now consider the case where X is not full rank. Let k < min(d, n) be the rank of X. In

this subsection, with a slight abuse of notation, we write the full SVD of X as X = UΣV⊤.

The optimal attack matrix could be found by solving

max
a∈Rd,b∈Rn

: θ
(
X, gk(X̂)

)
(4.9)

s.t. X̂ = X+ ab⊤,

∥a∥∥b∥ ≤ η.

We can further simplify this optimization problem as

max
a∈Rk+1,b∈Rk+1

: θ
(
Σ̃, gk(Y)

)
(4.10)

s.t. Y = Σ̃+ ab⊤,

∥a∥∥b∥ ≤ η,

where Σ̃ = diag(σ1, σ2, · · · , σk, 0) and {σ1, σ2, · · · , σk} are singular values of X. Detailed

proof of the equivalence between (4.9) and (4.10) can be found in Appendix B. Here, we

describe the main idea of the proof. The primary step of the simplification is to left multiply

the unitary matrix U⊤ and right multiply the unitary matrix V on both X and X̂. Note that

multiplying a unitary matrix does not change the column space and its singular values. In

addition, a rank-one modification can only add at most one principal component orthogonal

to its original column subspace. Hence, by changing the coordinates, a and b are k + 1

dimensional vectors.

To solve problem (4.10), we divide it into two cases based on the value of the energy

budget.

Case 1: When η > σk, it is simple to verify that the solution

a = [0, 0, · · · , η]⊤, b = [0, 0, · · · , 1]⊤ leads to the maximal Asimov distance, which is π/2.
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Case 2: When η ≤ σk, the following theorem characterizes the form of optimal a and b.

Theorem 4.1. There exists an optimal solution to problem (4.10) in the following form

a = [0, · · · , 0, ak, ak+1]
⊤,b = [0, 0, · · · , 0, 1, 0]⊤, (4.11)

with a2k + a2k+1 = η2.

Proof. Please see Appendix C.

In the following, we will find the optimal values of ak and ak+1. Since ∥a∥2 = η2 and a is in

the form of (4.11), we can write a = η[0, 0, · · · , cos(α), sin(α)]⊤, where α ∈ [0, 2π). To com-

pute the k leading principal components of Y, we can perform the eigenvalue decomposition

of YY⊤,

YY⊤ =

Λ2
k−1 0

0 cc⊤

 ,

where c = [σk + η cosα, η sin(α)]⊤, Λk−1 = diag(σ1, σ2, · · · , σk−1). Suppose the compact

SVD of YY⊤ is YY⊤ = ÛΣ̂V̂⊤, where

Û =

Ik−1 0

0 z

 ,

and z ∈ R2 is the eigenvector of cc⊤ corresponding to its nonzero eigenvalue. Since one

orthonormal basis of span(Σ̃) is [Ik,0]
⊤, the Asimov distance is determined by the singular

values of Ik
0


⊤

·

Ik−1 0

0 z

 =

Ik−1 0

0 z1

 .

Hence, the Asimov distance is arccos(|z1|). Since c is the eigenvector of cc⊤ corresponding
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to its nonzero eigenvalue, we have |z1| = |c1|
∥c∥ . Our objective function is reduced to

min
α∈[0,2π)

:
|σk + η cos(α)|

∥[σk + η cos(α), η sin(α)]∥
. (4.12)

It is simple to show that the optimal solution to (4.12) is

α∗ = arccos(−η/σk) (4.13)

or

α∗ = 2π − arccos(−η/σk). (4.14)

Substitute the optimal solution of α∗ in (4.13) or (4.14) into the objective of problem (4.12),

we have sin(θ∗) = η/σk. Hence, the optimal solution to problem (4.10) is

a =

[
0, 0, · · · ,−η2/σk,±η

√
1− η2/σ2

k

]⊤
,

b = [0, 0, · · · , 0, 1, 0]⊤,

which indicates that the optimal solution to problem (4.9) is

a = −η2/σkuk ± η
√

1− η2/σ2
kuq, b = vk,

where uq is any vector orthogonal to the column space of X. The corresponding optimal

subspace distance is θ∗ = arcsin(η/σk). In summary, we have

Proposition 4.2. The optimal Asimov distance in the low-rank case is

θ∗ =


π/2, if η > σk

arcsin (η/σk), if η ≤ σk

. (4.15)

The result is similar to the full column rank case characterized in Proposition 4.1.
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4.3.2 Case with k < rank(X)

In this section, we consider the more practical but much more challenging case with k <

rank(X).

Given the data matrix X ∈ Rd×n, without loss of generality, we assume d ≤ n and

rank(X) = d. Assume the full SVD of X is X = UΣV⊤, where U ∈ Rd×d, Σ ∈ Rd×n, V ∈

Rn×n, and the singular values of X are {σ1, σ2, · · · , σk, · · · , σd}. Recall that we denote gk(·)

as the PCA operation that computes the k leading principal components. In this scenario,

as the original data matrix is not low-rank, we will perform PCA both on the original data

matrix and on the modified data matrix. Hence, the optimal rank-one modification matrix

can be found by solving the following optimization problem

max
a∈Rd,b∈Rn

: θ
(
gk(X), gk(X̂)

)
(4.16)

s.t. X̂ = X+ ab⊤,

∥ab⊤∥F ≤ η.

By diagonalizing the data matrix and using similar arguments in Appendix B, (4.16) can be

further simplified as

max
a∈Rd,b∈Rn

: θ
(
gk(Σ), gk(Y)

)
(4.17)

s.t. Y = Σ+ ab⊤,

∥ab⊤∥F ≤ η,

where gk(Σ) = [Ik,0]
⊤ ∈ Rd×k. Here we also perform variable change a ⇐ U⊤a and

b⇐ V⊤b. To solve this optimization problem, we divide it into two cases depending on the

energy budget and the difference between σk and σk+1.

Case 1: When η ≥ σk − σk+1, we have one simple solution a = [0, 0, · · · , 0, η, 0, · · · , 0]⊤,

where η is in the (k + 1)th coordinate, and b = [0, 0, · · · , 0, 1, 0, · · · , 0]⊤, where element 1 is
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in the (k + 1)th coordinate. Clearly, this setting of a and b leads to the maximal subspace

distance, which is π/2.

Case 2: When η < σk − σk+1, the following theorem gives the form of the optimal solution.

Theorem 4.2. The optimal solution to problem (4.17) should be in the form of

a = [0, 0, · · · , ak, ak+1, 0, · · · , 0]⊤, (4.18)

b = [0, 0, · · · , bk, bk+1, 0, · · · , 0]⊤, (4.19)

where a2k + a2k+1 = η2 and b2k + b2k+1 = 1.

Proof. Please see Appendix D for details.

As the optimal solution of a and b is in the form of (4.18) and (4.19), we can parametrize

a and b with parameters α and β using a = η[0, 0, · · · , cos(α), sin(α), 0, · · · , 0]⊤ and b =

[0, 0, · · · , cos(β), sin(β), 0, · · · , 0]⊤ respectively.

As a result, the modified data matrix Y can be written as

Y =


Σ1 0 0 0

0 Σ2 0 0

0 0 Σ3 0

 ,

where Σ1 = diag(σ1, σ2, · · · , σk−1), Σ3 = diag(σk+2, · · · , σd), and

Σ2 =

σk + η cos(α) cos(β) η cos(α) sin(β)

η sin(α) cos(β) σk+1 + η sin(α) sin(β)

 . (4.20)

Since Y has the pseudo block diagonal form, the singular values and principal components

of Y are determined by the SVD of Σ1, Σ2, and Σ3. For notation convenience, we denote

Σ2 = D + ηāb̄⊤, where D = diag(σk, σk+1), ā = [cosα, sinα]⊤, and b̄ = [cos β, sin β]⊤.

Let ξ1 and ξ2 be the two singular values of Σ2 and denote their corresponding left singular
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vectors as

W = [w1w2] =

cosφ − sinφ

sinφ cosφ

 . (4.21)

The following lemma characterizes the form of the k-dimensional subspace learned by PCA

from Y.

Lemma 4.1.

gk(Y) =


Ik−1 0

0 w1

0 0

 .

Proof. According to the perturbation theory [116], the singular values of Σ2 must satisfy

ξ2 < σk, ξ1 > σk+1.

It indicates that ξ1 > σk, ξ2 > σk and ξ1 < σk+1, ξ2 < σk+1 will not happen. Hence, we will

select the eigenvector corresponding to singular value ξ1 as one of the leading k principal

components, which completes the proof.

Since one set of orthonormal bases for gk(Σ) is [Ik,0]
⊤, the subspace distance θ

(
gk(Σ), gk(Y)

)
is determined by the singular values of


Ik

0


⊤

·


Ik−1 0

0 w1

0 0

 = diag (1, 1, · · · , cosφ) .

Hence, the subspace distance is arccos(| cosφ|) and our optimization problem can be equiv-
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alently formulated as

min
α∈[0,2π),β∈[0,2π)

| cosφ|. (4.22)

Let Z = Σ2Σ
⊤
2 , we can compute W through eigenvalue decomposition of Z. According to

the equality Σ2Σ
⊤
2 = W · diag(ξ21 , ξ22) ·W⊤, we have

Z =

Z1,1 Z1,2

Z2,1 Z2,2


=

ξ21 cos2 φ+ ξ22 sin
2 φ (ξ21 − ξ22) cosφ sinφ

(ξ21 − ξ22) cosφ sinφ ξ21 sin
2 φ+ ξ22 cos

2 φ

 .

From this equation, we obtain


cos(2φ)(ξ21 − ξ22) = Z1,1 − Z2,2

sin(2φ)(ξ21 − ξ22) = Z1,2 + Z2,1

.

Then we can compute φ through

φ = 0.5atan2(ay, ax), (4.23)

where atan2(·, ·) is the four-quadrant inverse tangent function, ax = Z1,1 − Z2,2, and ay =

Z1,2 + Z2,1. In our case, the specific expressions of ax and ay are


ax = σ2

k − σ2
k+1 + 2σkη cos(α) cos(β)− 2σk+1η sin(α) sin(β) + η2 cos(2α),

ay = 2η
(
σk sin(α) cos(β) + σk+1 cos(α) sin(β) + η cos(α) sin(α)

)
.

(4.24)

Let us write ax and ay as a function of α and β: ax = ax(α, β) and ay = ay(α, β). To
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further restrict the domains of α and β, we analyze the properties of the angle φ in (4.23) as a

function of α and β. First, we have ax(α, β) = ax(π+α, π+β) and ay(α, β) = ay(π+α, π+β).

So φ(α, β) = φ(π + α, π + β). This property indicates that we only need to consider the

function value in the domain α ∈ [0, π], β ∈ [−π, π]. Second, ax(α, β) = ax(π − α, π −

β) and ay(α, β) = −ay(π − α, π − β), and then we have φ(α, β) = −φ(π − α, π − β).

Since cos(φ) is an even function, we only need to consider the function with domain α ∈

[0, π/2], β ∈ [−π, π]. Note that Σ2 is in the form of (4.20), the variance in the direction

of ek is vk = cos(α)2 + σ2
k + 2 cos(α) cos(β), and the variance in the direction of ek+1 is

vk+1 = sin(α)2+σ2
k+1+2 sin(α) sin(β). To maximize the subspace distance, we should make

vk small and make vk+1 large. Apparently, the sign of cos(α) cos(β) should be negative

and the sign of sin(α) sin(β) should be positive. Hence, the optimal α and β should satisfy

α ∈ [0, π/2] and β ∈ [π/2, π]. As a result, the optimization problem (4.22) can be written as

min
α∈[0,π/2],β∈[π/2,π]

: | cos (φ(α, β)) |. (4.25)

The following theorem characterizes the optimal solution to problem (4.25).

Theorem 4.3. The optimal solution to problem (4.25) is


α∗ = arccos

(√
σ2
k−σ2

k+1+η2−
√
H

2(σ2
k−σ2

k+1)

)
,

β∗ = arccos

(
−
√

σ2
k−σ2

k+1+η2+
√
H

2(σ2
k−σ2

k+1)

)
,

(4.26)

where H = σ4
k + σ4

k+1 + η4 − 2σ2
kσ

2
k+1 − 2σ2

kη
2 − 2σ2

k+1η
2.

Proof. Please see Appendix E.

Accordingly, the optimal solution to problem (4.16) is

a∗ = η cos(α∗)uk + η sin(α∗)uk+1, (4.27)

b∗ = cos(β∗)vk + sin(β∗)vk+1. (4.28)
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Furthermore, the optimal subspace distance θ∗ can be computed according to (4.24) and (4.23).

Moreover, according to the properties of the function φ(α, β) we have discussed before, there

are other three optimal solutions

(−α∗,−β∗), (π − α∗, π − β∗), (α∗ − π, β∗ − π),

which lead to the same optimal objective value.

4.4 Optimal Adversarial Strategy without the Rank

Constraint

Using the insights gained from Chapter 4.3, we now characterize the optimal attack strategy

in the general case without the rank-one constraint by solving (4.1). We will directly consider

the general case with k ≤ rank(X).

Following the similar transformation from (4.9) to (4.10), we can simplify the optimization

problem (4.1) as

max
B∈Rd×n

: θ
(
gk(Σ), gk(Y)

)
(4.29)

s.t. Y = Σ+B,

∥B∥F ≤ η,

where without loss of generality we assume d ≤ n, the full SVD of the data matrix is

X = UΣV⊤, the singular values of the data matrix are {σ1, σ2, · · · , σd}, and B = U⊤∆XV.

To identify the optimal modification matrix B in problem (4.29), we divide it into two cases.

Case 1: When η ≥ σk−σk+1√
2

, by setting bk,k = −η/
√
2, bk+1,k+1 = η/

√
2, and all other entries

of B to zero, where bi,j is the element in the ith row and jth column of B, it will lead to the

maximal subspace distance, π/2.
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Case 2: When η < σk−σk+1√
2

, the following theorem states the form of the optimal B.

Theorem 4.4. The optimal B to problem (4.29) has only four possible non-zero entries:

bk,k, bk,k+1, bk+1,k and bk+1,k+1.

Proof. Please see Appendix F.

This characterization reduces the complexity of problem (4.29). Using this optimal form

of B and following similar steps leading to (4.23), we can write the subspace distance as

θ = 0.5 |atan2(by, bx)| , (4.30)

where

by = 2
(
(bk,k + σk)bk+1,k + (bk+1,k+1 + σk+1)bk,k+1

)
,

bx = (bk,k + σk)
2 + b2k,k+1 − (bk+1,k+1 + σk+1)

2 − b2k+1,k.

It is easy to see that we can change the sign of by by changing the signs of bk,k+1 and bk+1,k.

We also have bx > 0, as

bx
∥[bk,k + σk, bk,k+1]∥+ ∥[bk+1,k+1 + σk+1, bk+1,k]∥

= ∥[bk,k + σk, bk,k+1]∥ − ∥[bk+1,k+1 + σk+1, bk+1,k]∥

≥ σk − σk+1 − ∥[bk,k, bk,k+1]∥ − ∥[bk+1,k, bk+1,k+1]∥

≥ σk − σk+1 −
√
2η > 0.

Using these two facts and the fact that atan2(by, bx) is an odd function of by when bx > 0, we

know that maximizing θ in (4.30) is equivalent to maximizing by/bx. Hence, our optimization
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problem can be written as

max
u

:
u⊤A1u

u⊤A2u
(4.31)

s.t. ∥u− σ∥2 ≤ η2,

where u ≜ b̄+ σ with b̄ = [bk,k, bk+1,k, bk,k+1, bk+1,k+1]
⊤ and σ = [σk, 0, 0, σk+1]

⊤,

A1 =



0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


, and A2 =



1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


.

The objective function is the ratio of two quadratic functions. It is a non-convex problem

in general. In the following, we transform this problem into a feasibility problem and obtain

the closed-form solution analytically.

Let λ denote the value of the objective function in (4.31). We can rewrite the optimization

problem (4.31) as

max
λ,u

: λ

s.t.
u⊤A1u

u⊤A2u
= λ, (4.32)

∥u− σ∥2 ≤ η2.

The first constraint can be written as u⊤(A1 − λA2)u = 0, where

Q 0

0 Q

 ≜ A1 − λA2 =



−λ 1 0 0

1 λ 0 0

0 0 −λ 1

0 0 1 λ


.
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To further simplify the constraint, we perform eigenvalue decomposition on Q = PΛP⊤,

where Λ = diag(
√
λ2 + 1,−

√
λ2 + 1) and

P = t

 1 −(
√
λ2 + 1 + λ)

√
λ2 + 1 + λ 1

 , (4.33)

with t = 1/
√
(
√
λ2 + 1 + λ)2 + 1.

We further perform variable change v ≜ diag(P⊤,P⊤)u. Thus, the constraint (4.32) is

equivalent to v⊤Λv = 0, which indicates v21 + v23 = v22 + v24. With this, the optimization

problem is simplified as

max
λ,v

: λ (4.34)

s.t. v21 + v23 = v22 + v24, (4.35)

∥v − σ̄∥2 ≤ η2, (4.36)

where σ̄ = diag(P⊤,P⊤)σ = [p1,1σk, p1,2σk, p2,1σk+1, p2,2σk+1]
⊤. Note that p1,2 = −p2,1 and

p2,2 = p1,1, we have σ̄ = [p1,1σk, −p2,1σk, p2,1σk+1, p1,1σk+1]
⊤.

Now, problem (4.34) can be solved by checking the feasibility of (4.35) and (4.36) given

a particular λ. Given λ, the feasibility of problem(4.34) is equivalent to the feasibility of

min
v21+v23=v22+v24

∥v − σ̄∥2 ≤ η2. (4.37)

Note that σ̄ depends on λ, we denote the left hand side of inequality (4.37) as f(v, λ) =

∥v − σ̄∥2 and parametrize v as

v1 = r cos(α), v2 = r cos(β), v3 = r sin(α), v4 = r sin(β). (4.38)

It is easy to verify that the minimum point of f(v, λ) in terms of v is obtained at the
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following stationary point



r = 1
2

(√
p21,1σ

2
k + p22,1σ

2
k+1 +

√
p22,1σ

2
k + p21,1σ

2
k+1

)
,

cos(α) = p1,1σk/
√
p21,1σ

2
k + p22,1σ

2
k+1,

sin(α) = p2,1σk+1/
√
p21,1σ

2
k + p22,1σ

2
k+1,

cos(β) = −p2,1σk/
√
p21,1σ

2
k+1 + p22,1σ

2
k,

sin(β) = p1,1σk+1/
√
p21,1σ

2
k+1 + p22,1σ

2
k.

(4.39)

Plug the optimal r, α, β of (4.39) into f(v, λ), and we have

f(λ) ≜ min
v21+v23=v22+v24

f(v, λ)

= (σ2
k + σ2

k+1)/2

−
√

p21,1σ
2
k + p22,1σ

2
k+1

√
p22,1σ

2
k + p21,1σ

2
k+1.

According to inequality (4.37), inequality f(λ) ≤ η2 now is equivalent to

√
p21,1σ

2
k + p22,1σ

2
k+1

√
p22,1σ

2
k + p21,1σ

2
k+1

≥ (σ2
k + σ2

k+1)/2− η2. (4.40)

Denote the right hand of the above inequality as c ≜ (σ2
k + σ2

k+1)/2 − η2. Since η < (σk −

σk+1)/
√
2, we have c > σkσk+1. Furthermore, we notice that p21,1 = 1 − p22,1. Plug it into

inequality (4.40), and we have

p42,1 − p22,1 +
c2 − σ2

kσ
2
k+1

(σ2
k − σ2

k+1)
2
≤ 0. (4.41)
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Let

w ≜
c2 − σ2

kσ
2
k+1

(σ2
k − σ2

k+1)
2
, (4.42)

and since σkσk+1 < c ≤ (σ2
k + σ2

k+1)/2, we have 0 < w ≤ (σ2
k+σ2

k+1)
2/4−σ2

kσ
2
k+1

(σ2
k−σ2

k+1)
2 = 1/4. Denote

the left hand of inequality (4.41) as h(p2,1), and we have

hmin = h(1/
√
2) = −1/4 + w ≤ 0,

h(1) = w > 0.

Moreover, since 1/
√
2 < p2,1 < 1, we must have

p2,1 ≤ pH2,1, (4.43)

where pH2,1 =
√

(1 +
√
1− 4w)/2 is the largest root of h(p2,1) = 0. Pluging the expressions

of p2,1 and pH2,1 into (4.43), we can get

√
λ2 + 1 + λ√

(
√
λ2 + 1 + λ)2 + 1

≤

√
1 +
√
1− 4w

2
.

Simplifying this inequality leads to λ ≤ e2−1
2e

, where

e =

√
1 +
√
1− 4w

1−
√
1− 4w

. (4.44)

Thus we can conclude that

λmax =
e2 − 1

2e
. (4.45)
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Accordingly, the optimal subspace distance in (4.1) is

θ∗ = atan(λmax)/2. (4.46)

In summary, given energy budget η, we first compute w according to (4.42) and compute

e according to (4.44), from which we can get λmax and θ∗ using (4.45) and (4.46). Having

obtained the optimal λmax, we can compute P in (4.33) and compute v using (4.39) and

(4.38), and sequentially compute u and b̄. Finally, if the optimal solution of problem (4.29)

is B∗ with non-zero entries b̄∗ = [b∗k,k, b
∗
k+1,k, b

∗
k,k+1, b

∗
k+1,k+1]

⊤, we also have another paired

feasible optimal solution with non-zero entries being [b∗k,k,−b∗k+1,k,−b∗k,k+1, b
∗
k+1,k+1]

⊤, which

leads to the same optimal value. Accordingly, the optimal solution to problem (4.1) is

∆X∗ = UB∗V⊤.

4.5 Numerical Experiments and Applications

In this section, we provide numerical examples to illustrate the results obtained in this

chapter. We will also apply the results to principal component regression[117] to illustrate

potential applications in practice.

4.5.1 Numerical Experiments

In this subsection, we illustrate the results with synthesized data.

In the first experiment, we employ different attack strategies in a low-rank data matrix.

In this simulation, we set d = 5, n = 5, and k = 3. We generate the original data matrix

as X = AB⊤, where A ∈ Rd×k, B ∈ Rn×k, and each entry of A and B is i.i.d. generated

according to a standard normal distribution. First, we conduct our optimal rank-one attack

strategy. In this strategy, we use the result from the analysis of the optimal rank-one

modification matrix to design a,b and add the attack matrix ∆X = ab⊤ to the original

data matrix X. We then perform SVD on X̂ and select the k leading principal components.
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Figure 4.1: Subspace distances with different attack strategies on a low-rank data matrix
over different energy budgets.

Finally, we compute the distance between the selected subspace and the original subspace.

We also conduct a test using a random rank-one attack strategy, in which we randomly

generate a,b with each entry of a,b being i.i.d. generated according to the standard normal

distribution. Then we normalize the energy of ab⊤to be η2. For each η, we repeatedly

generate 100000 pairs of a and b and compute their corresponding subspace distances. In

addition, we compare it with the strategy where the modification matrix is free of rank

constraint. Although our analysis is deliberately designed for general data matrices, we

set the (k + 1)th singular value to be zero so that it can be applied to the low-rank data

matrix. We design the modification matrix ∆X according to our analysis in this chapter and

calculate the subspace distance between the original subspace and that after modification.

Moreover, we conduct another random attack strategy in which we randomly generate the

modification matrix without any rank constraint. Each entry of the modification matrix

is i.i.d. generated according to a standard normal distribution. After that, we normalize

its Frobenius norm equal to η. We repeat this attack 100000 times for each η and record

its corresponding subspace distance. Furthermore, we also compare it with the strategy

described in [27], which adds one adversarial data sample into the data set.
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Fig. 4.1 demonstrates the subspace distances obtained by the five strategies. In this figure,

r1-opt represents the rank-one optimal attack obtained in this chapter, r1-rnd represents the

maximal subspace distance obtained among the 100000 times random rank-one attacks,

wr-opt stands for our optimal attack without the rank constraint, wr-rnd is the maximal

subspace distance among the 100000 random attacks without the rank constraint, and ad-

pca is the algorithm described in [27]. The x axis is the ratio between η and the smallest

singular value of the original data matrix. From the figure, we can see our optimal strategies

are much better than the ad-pca strategy. It is because our strategies can modify the

data matrix and thus have higher degree of freedom to manipulate the data. The optimal

strategies designed in this chapter also have a larger subspace distance compared with their

corresponding random attack strategies. In the region where η/σk ∈ [0, 1/
√
2], both of

our two optimal strategies provide the same subspace distances, which can be verified by

setting σk+1 = 0, computing θ∗ in equation (4.46) and comparing it with the value in

equation (4.15). When η/σk > 1/
√
2, the optimal attack without the rank constraint leads

to the largest subspace distance, π/2, which is much larger than the distance obtained by

the optimal rank-one attack strategy. That means, without the rank constraint, it indeed

provides a larger subspace distance.

In the second numerical experiment, we test these strategies except the ad-pca in the

general data matrix in which the data matrix is not low-rank. In this experiment, we set

d = 5, n = 5, and k = 3. We randomly generate the data matrix X ∈ Rd×n with each entry

i.i.d generated according to a standard normal distribution. We also design the optimal rank-

one attack matrix and the optimal modification matrix without the rank constraint according

to the analysis provided in this chapter. In addition, we do random attacks 100000 times

using the randomly generated modification matrix with the rank-one constraint and without

the rank constraint, respectively.

Fig. 4.2 shows the subspace distances obtained through different strategies over different

energy budgets. In this figure, the x axis is the ratio between η and σk−σk+1. We demonstrate
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Figure 4.2: Subspace distances achieved by using different attack strategies under different
energy budgets.

the maximal subspace distances achieved by the 100000 times random attacks for the two

random attack strategies. As the figure shows, both random strategies have smaller subspace

distances than their optimal strategies. Unlike, the low-rank case, the strategy without the

rank constraint provides larger subspace distances consistently over all the energy budgets.

4.5.2 Applications

In this subsection, we use real data to illustrate the results obtained in this chapter.

In particular, we illustrate the impact of the adversarial attack on PCR, which is widely

used in statistical learning, especially when collinearity exists in the data. Ordinary regres-

sion will increase the standard error of the coefficients when there are high correlations or

even collinearities between features. This happens particularly when the number of features

is much larger than the number of data samples. PCR deals with this issue by performing

PCA on the feature matrix and only selecting the leading k principal components as the

predictors, and thus dramatically decreases the number of predictors. The regression pro-

cess of PCR can be seen as projecting the response values onto the subspace spanned by the
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leading k principal components. So, the accuracy of the subspace will significantly influence

the regression results. Appendix G provides an example of how the change of the subspace

will influence the result of PCR. More details of PCR can be found in [117].

In this experiment, our task is to use the gasoline spectral intensity to predict its octane

rating. We use the gasoline spectral data set [111], which comprises spectral intensities of 60

samples of gasoline at 401 wavelengths and their octane ratings. Fig. 3.4 shows the spectral

intensities of the data set. This figure indicates that the correlation of intensity among

different wavelengths is very high. To complete the regression task, we can use PCR.

In this experiment, we randomly select 80 percent of the data as the training set and the

remaining 20 percent as the test set. We choose 4 principal components as our predictors

and perform regression based on these principal components. We also record the r-squared

values both in the training phase and the test phase. The r-squared value is defined as

r2 = 1− ∥y−ŷ∥2
∥y−ȳ∥2 , where r2 is the r-squared value, y is the response values, ŷ is the predicted

values, ∥y − ȳ∥2 represents the total variance of the response values, and ȳ = mean(y) · 1

stands for the mean vector of the response values. R-squared value measures how well the

model fits the data and larger r-squared value indicates better regression. Firstly, we perform

regular PCR without attack and let na-train and na-test denote the r-squared values of the

training and test, respectively. We then attack the feature matrix using the optimal rank-one

strategy proposed in this chapter with different energies and denote r1-train and r1-test as

its r-squared values in the training and test processes. Finally, we also carry out the optimal

attack without the rank constraint and denote wr-train, wr-test as the r-squared values in

the training and test procedures.

Fig. 4.3 illustrates the r-squared values with different attack strategies under different

energy budgets. As shown in this figure, with the increase of the energy budget, r-squared

values of training and test decrease for both attack strategies. This figure also indicates that

the strategy with no rank constraint is more efficient than the rank-one strategy considering

its smaller r-squared values. Furthermore, the r-squared value of the strategy without the
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Figure 4.3: R-squared values with different attack strategies over different energy budgets.

rank constraint has a tremendous drop at the point η/(σ4− σ5) = 1/
√
2, which is consistent

with our analysis that beyond this particular point, the maximal subspace distance is π/2.

4.6 Summary

In this chapter, we have investigated the adversarial robustness of the subspace learning

problem. We have characterized the optimal rank-one adversarial modification strategy and

the optimal strategy without the rank constraint to modify the data. Our analysis has shown

that both of the two strategies depend on the singular values of the data matrix and the

adversary’s energy budget. We have also performed numerical simulations and investigated

the impact of this attack on PCR. Both the numerical experiments and the PCR application

illustrate that adversarial attacks degrade the performance of subspace learning significantly.
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Chapter 5

Conclusions and Extensions

In this chapter, we summarize the contributions of this dissertation and propose several

possible extensions.

5.1 Summary

In our dissertation, we have carried out theoretical analyses of the adversarial robustness of

some machine learning problems. We stood in the position of the adversary and studied its

optimal attack strategy. By investigating its optimal attack strategy, our dissertation gave

a clear view of the robustness of the linear regression, LASSO based feature selection, and

subspace learning under adversarial attacks.

In Chapter 2, we have investigated how to manipulate the coefficients obtained via linear

regression by adding carefully designed poisoning data points to the dataset or modifying

the original data points. Given the energy budget, we first provided the closed-form solution

of the optimal poisoning data point when our target is modifying one designated regression

coefficient. We then extended the analysis to a more challenging scenario where the attacker

aims to change one particular regression coefficient while making others to be changed as

small as possible. For this scenario, we introduced a semidefinite relaxation method to design

the best attack scheme. Finally, we studied a more powerful adversary who can perform
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a rank-one modification on the feature matrix. We proposed an alternating optimization

method to find the optimal rank-one modification matrix. Numerical examples are provided

to illustrate the analytical results obtained in this paper.

In Chapter 3, we have investigated the adversarial robustness of feature selection based

on LASSO. In the considered model, a malicious adversary can observe the whole dataset and

then carefully modify the response values or the feature matrix to manipulate the selected

features. We formulated the modification strategy of the adversary as a bi-level optimization

problem. Due to the difficulty of the non-differentiability of the ℓ1 norm at the zero point,

we reformulated the ℓ1 norm regularizer as linear inequality constraints. We employed the

interior-point method to solve this reformulated LASSO problem and obtained the gradient

information. Then we used the projected gradient descent method to design the modification

strategy. In addition, we demonstrated that this method could be extended to other ℓ1

based feature selection methods, such as group LASSO and sparse group LASSO. Numerical

examples with synthetic and real data illustrated that our method is efficient and effective.

In Chapter 4, we have studied the adversarial robustness of subspace learning problems.

Different from the assumptions made in existing works on robust subspace learning where

data samples are contaminated by gross sparse outliers or small dense noises, we considered

a more powerful adversary who can first observe the data matrix and then intentionally

modify the whole data matrix. We first characterized the optimal rank-one attack strategy

that maximizes the subspace distance between the subspace learned from the original data

matrix and that learned from the modified data matrix. We then generalized the study to

the scenario without the rank constraint and characterized the corresponding optimal attack

strategy. Besides, our analysis showed that the optimal strategies depend on the singular

values of the original data matrix and the adversary’s energy budget. Finally, we have

provided numerical experiments and practical applications to demonstrate the efficiency of

the attack strategies.
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5.2 Future Work

One possible extension of this dissertation is to study the defense strategy against our attacks.

If we consider the defense strategy, one possible problem formulation is

β̂ = argmin
β

ℓdef (X̂, ŷ,β) (5.1)

s.t. X̂, ŷ = argmin
X∈Cx,y∈Cy

ℓadv(X,y), (5.2)

where ℓdef (·) is the objective of the defender , ℓadv(·) is the objective of the adversary,

and Cx and Cy are the modification constraints of the feature matrix and response values,

respectively. We should also note that ℓadv(·) may also depend on the defense strategy, which

will then render the problem as a competing game between the defender and attacker. With

an appropriately designed loss function of the defender, solving this optimization problem

leads to the best defense strategy under the optimal attack strategy. The complexity of

this problem depends on the forms of ℓdef (·), ℓadv(·) and their relationship. In some special

cases, we can analyze this problem. For example, Chapter 2 solved this problem when ℓdef (·)

is the MSE loss function and ℓadv(·) is the objective of manipulating one of the regression

coefficients. When ℓdef (·) = −ℓadv(·), it is a minmax problem and Jagielski et al. studied this

problem when ℓdef (·) = −ℓadv(·) and ℓdef (·) equals to the MSE loss function [9]. Generally,

this problem is very complicated as the upper-level and lower-level optimization problems are

interconnected. Hence, how to design ℓdef (·) and solve (5.1) efficiently are potential future

research topics.
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Appendix A

Lasserre’s Relaxation Method

In this appendix, we briefly introduce Lasserre’s relaxation method and use this method to

solve problem (2.37). Lasserre’s relaxation method is dedicated to solving the multivariate

polynomial optimization problems. A general multivariate polynomial optimization problem

contains a multivariate polynomial objective function, p(x) : Rn → R, and some constraints

defined by polynomial inequalities, gi(x) ≥ 0, i = 1, 2, . . . , r:

min : p(x) (A.1)

s.t. gi(x) ≥ 0, i = 1, 2, . . . , r. (A.2)

Clearly, our optimization problem (2.37) can be viewed a multivariate polynomial optimiza-

tion problem, since in (2.37) the objective function is a fourth order multivariate polynomial

and the constraint is a quadratic polynomial.

To proceed, let us explain more details about the problem. The polynomial in the

objective, p(x), can be written as:

p(x) =
∑
α

pαx
α, (A.3)
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where α ∈ Nn,

xα =
n∏

i=1

xαi

i , (A.4)

and |α| =
∑

i α
i. Suppose the order of the objective function ism0, we have |α| ≤ m0. Define

pα = {pα} ∈ Rs(m0) as the coefficients of the polynomial basis {1, x1, x2, . . . , xn, x
2
1, x1x2, . . . , x

m0
n }.

Hence, the dimension of the basis is s(m0) =
(
n+m0

m0

)
. Instead of directly solving prob-

lem (A.1), Lasserre’s relaxation method [83] first converts it into the following equivalent

problem

min
µ∈P(K)

:

∫
p(x) d(µ(x)), (A.5)

where K is the semialgebraic set defined by the inequalities: K = {x | gi(x) ≥ 0, i =

1, 2, . . . , r}, and P(K) is the set of all probability measures supported on K.

To see that problem (A.1) and (A.5) are equivalent, suppose the optimal values of (A.1)

and (A.5) are p∗0 and p∗, respectively. Since p(x) ≥ p∗0, we have p
∗ ≥ p∗0. Conversely, suppose

the optimal solution of (A.1) is x∗, µ = δx∗ is a feasible solution to (A.5). Hence, we also

have p∗ ≤ p∗0. Thus, the two problems are equivalent.

With the help of this reformulation, finding the global optimal points for (A.1) is equiva-

lent to finding the optimal distribution of (A.5). Since
∫
p(x) dµ(x) =

∑
α pα

∫
xα dµ(x), the

objective function of (A.5) is just p⊤
αyα, where yα = {yα} and yα =

∫
xα dµ(x). So, finding

the optimal probability is identical to finding the optimal yα under the constraint that yα

is a valid moment sequence with respect to some probability measure on K. The solution to

this problem is fully characterized by the K-moment problem in case K is compact. Let us

give more notations for the convenience of introducing this method.

Given an s(2m) length vector, yα = {yα}, with its first element y0,...,0 = 1. The s(m)

dimensional moment matrix Mm(y) is constructed as follows: the first row and columns is

defined as Mm(1, k) = yαk
and Mm(k, 1) = yαk

for k = 1, 2, . . . , s(m) and Mm(i, j) = yαi+αj
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for i, j = 2, . . . , s(m). For instance, when n = 2,m = 2,

Mm(y) =



1 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04


.

Moreover, Mm(y) defines a bi-linear form, ⟨· , ·⟩, on two polynomials

⟨p, q⟩y = ⟨p,Mm(y)q⟩ =
∑
α

(pq)αyα =

∫
p(x)q(x) dµ(x).

So, if yα is a sequence of moments of some probability measure, we have

⟨q, q⟩y =
∫

q(x)2 d(µ(x)) ≥ 0.

Thus, we have Mm(y) ≽ 0. Let p(x) be a multivariate polynomial with coefficient vector

pβ = {pβ}, and define the localizing matrix Mm(py) as

Mm(py)(i, j) =
∑
β

pβyαi+αj+β.

For example, with

M1(y) =


1 y10 y01

y10 y20 y11

y01 y11 y02

 and p(x) = a− x2
1 − x2

2,
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we have

M1(py) =


a− y20 − y02 ay10 − y30 − y12 ay01 − y21 − y03

ay10 − y30 − y12 ay20 − y40 − y22 ay11 − y31 − y13

ay01 − y21 − y03 ay11 − y31 − y13 ay01 − y22 − y04

 .

Also, if p(x) ≥ 0, by definition, we have Mm(py) ≽ 0.

Further, we make the following assumption on the semialgebraic set K.

Assumption 1. The set K is compact and there exists a real-valued polynomial u(x): Rn →

R such that {u(x) ≥ 0} is compact and

u(x) = u0(x) +
r∑

k=1

gi(x)ui(x) for all x ∈ Rn, (A.6)

where the polynomial ui(x) is the sum of squares for i = 0, 1, . . . , r.

Assumption 1 is satisfied in many cases. For example, this assumption is satisfied when

there is only one inequality constraint that is compact, which is the case in our prob-

lem (2.37).

With the help of the notations and Assumption 1, we have the main result. Let wi =

⌈mi/2⌉, where mi, i = 1, 2, . . . , r, is the order of gi(x) and m0 is the order of the objective,

with N ≥ max{wi} for i = 0, 1, . . . , r. Consider the following semidefinite programming

min :
∑
α

pαyα (A.7)

s.t. MN(y) ≽ 0,

MN−wi
(giy) ≽ 0, i = 1, 2, . . . , r,

where N is called the relaxation order. Lasserre [83] shows that as N approaches infinity,

the solution of (A.7) converges to the solution of (A.5). However, the dimension of the

semidefinite programming (A.7) grows rapidly as N increases and infinite N makes solving
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problem (A.7) infeasible. Fortunately, in practice, a small N is enough to get a very good

approximation of problem (A.5) [83]. Furthermore, a small N is usually sufficient to get the

global optimal solutions and the sufficient rank condition, rankMN(y) = rankMN−wmax(y),

where wmax = max{wi}, i = 0, 1, . . . , r, assures the global optimality. Therefore, after we

solving problem (A.7) we are ready to check whether we reach the global optimality. Besides,

Henrion and Lasserre developed a systematic way to extract all the optimal solutions in case

the rank condition is satisfied [118]. Since our problem (2.37) is just a special case of

multivariate polynomial optimization, with the help of this relaxation method, we can solve

problem (2.37).
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Appendix B

Poof of the Equivalence of

Problem (4.9) and Problem (4.10)

Before giving the proof, we first examine the unitary invariant property of the Asimov

distance, which is helpful in our subsequent proof.

Proposition B.1. Let P and T be unitary matrices, and then for the Asimov distance

function θ(·, ·), we have

θ
(
X1, gk(X2)

)
= θ
(
PX1T

⊤, gk(PX2T
⊤)
)
.

Proof. First, we show θ(X1,X2) = θ(PX1T
⊤,PX2T

⊤). Suppose the thin QR decompo-

sitions of X1 and X2 are X1 = Q1R1, X2 = Q2R2, and then the subspace distance

between the two subspaces spanned by the columns of X1 and X2 is determined by the

singular values of Q⊤
1 Q2. Since (PQ1)

⊤(PQ2) = Q⊤
1 Q2 and right multiplying an unitary

matrix does not change the singular values and the column subspace of a matrix, we have

θ(X1,X2) = θ(PX1T
⊤,PX2T

⊤).

Second, suppose the full SVD of X2 is X2 = U2Σ2V
⊤
2 , where U2 = [u21,u22, · · · ,u2d].
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Then

Pgk(X2) = P[u21,u22, · · · ,u2k] = gk(PX2),

which can be verified by checking that PU2Σ2V
⊤
2 is a valid SVD of PX2. It completes the

proof.

With the help of this proposition, let P = U⊤, T = V⊤, right multiply P and left

multiply T⊤ on both X and X̂, and we can simplify problem (4.9) as the following

max
a∈Rd,b∈Rn

: θ(Σ, gk(Ỹ)) (B.1)

s.t. Ỹ = Σ+ ab⊤,

∥a∥∥b∥ ≤ η,

where we assume n > d, Σ = [diag(σ1, σ2, · · · , σk,0),0] ∈ Rd×n. Also, from problem (4.9)

to problem (B.1), we do variable change a⇐ U⊤a,b⇐ V⊤b.

To further simplify this optimization problem, we split a and b into a = [a⊤
1 , a

⊤
2 ]

⊤,b =

[b⊤
1 ,b

⊤
2 ]

⊤, where a1 ∈ Rk, a2 ∈ Rd−k, b1 ∈ Rk, and b2 ∈ Rn−k. In addition, utilizing the

Householder transformation[78], we construct an orthogonal matrix

M1 =

Ik 0

0 H1

 , (B.2)

where

M⊤
1 M1 = I, H1 = I− 2

uu⊤

∥u∥2
,

u = a2 − s1∥a2∥ · e1, e1 = [1, 0, · · · , 0]⊤ ∈ Rd−k,

H⊤
1 a2 = s1∥a2∥ · e1, s1 = ±1.

Similarly, we can construct another Householder transformation matrix H2 for b2 and the
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corresponding orthogonal matrix M2 = diag(Ik,H2). Left multiplying M⊤
1 and right multi-

plying M2 on Ỹ, we have

M⊤
1 ỸM2 =

Σ̃ 0

0 0

+


a1

s1∥a2∥

0


[
b⊤
1 s2∥b2∥ 0

]
,

where s2 = ±1.

Let a ≜ [a⊤
1 , s1∥a2∥]⊤ and b ≜ [b⊤

1 , s2∥b2∥]⊤. Utilizing Proposition B.1, it is clear that

problem (4.10) and problem (B.1) are equivalent.
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Appendix C

Proof of Theorem 4.1

The proof follows similar steps to those in [27]. In problem (4.10), Σ̃ is a diagonal matrix with

diagonal elements {σ1, σ2, · · · , σk, 0}. The subspace spanned by gk(Y) is a k-dimensional

subspace in Rk+1. We denote this subspace as Q, denote P as the subspace spanned by Σ̃

and further denote their intersection as T = P∩Q. Note that P is not equal to Q (otherwise

the Asimov distance will be zero), so we have dim(P∪Q) = k+1. Since dim(P)+dim(Q)−

dim(T) = dim(P ∪ Q), we have dim(T) = k − 1. Let T be an orthonormal basis of T. Let

[T,p] be an orthonormal basis of P and let [T,q] be an orthonormal basis of Q. By the

definition of Asimov distance, the subspace distance between P and Q is the angle between

p and q.

Firstly, it is easy to see that ak+1 ̸= 0. Otherwise, Q will be equal to P, which means

that their Asimov distance is zero.

Secondly, it is easy to see q ∈ span[T,p, ek+1], where ek+1 is an ordinary basis vector

that only has element 1 in the (k + 1)th coordinate. Since T is orthogonal to q, we have

q ∈ span[p, ek+1]. It is easy to see that the larger variance in the direction of p is, the closer

p and q will be. Then we should select p as the direction with the smallest variance in X.

Since we are assuming that σ1 ≥ σ2 ≥ · · · ≥ σk, p should be ek.

Thirdly, for a fixed direction of a, let â be the projection of a onto span[ek, ek+1]. Clearly,
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q will be closer to a as â grows. As a result, the angle between q and p will be larger. This

also implies that the length of a should be maximized: ∥a∥ = η. Hence, the Asimov distance

is maximized when a = â and ∥a∥ = η, implying that a only has nonzero elements in its kth

and k + 1th coordinates.

Finally, for a fixed a in the form of (4.11), the projected variance of Y on the direction of

ek is v1 =
∑

i ̸=k(akbi)
2+(akbk+σk)

2 = a2k+σ2
k+2akbkσk and the projected variance of Y on

the direction of ek+1 is v2 =
∑

i(ak+1bi)
2 = a2k+1. To maximize the Asimov distance, we need

to make v1 small and v2 large. Apparently, for fixed a, v1 is minimized when bk = −sign(ak),

which implies bi = 0,∀i ̸= k. To avoid the sign ambiguity, we set bk = 1.
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Appendix D

Proof of Theorem 4.2

This proof follows similar steps in the proof of the low-rank case. Denote P as the subspace

spanned by gk(Σ) and Q as the subspace spanned by gk(Y), and denote their intersection

as T = P ∩Q. We further denote T as an orthonormal basis of T, [T,p] as an orthonormal

basis of P, and [T,q] as an orthonormal basis of Q. From the definition of Asimov distance,

the subspace distance between P and Q is the subspace distance between the span of p and

the span of q.

First, it is apparent that q ∈ span[T,p, ek+1, ek+2, · · · , ed]. Since q ⊥ T, we have

q ∈ span[p, e], where e ∈ span[ek+1, · · · , ed]. It is easy to see that the subspace distance

between the span of q and the span of p will be large if the variance of Σ in the span of

p is large and the variance of Σ in the span of q is small. So we should select p as the

direction in span[e1, · · · , ek] that has the smallest variance of Σ and select e as the direction

among span[ek+1, · · · , en] that has the largest variance of Σ. Since e ∈ span[e1, e2, · · · , ed]

and σ1 ≥ σ2 ≥ · · · ≥ σk ≥ σk+1 ≥ · · · ≥ σd, p should be ek and e should be ek+1. So, we

have q ∈ span[ek, ek+1].

Second, for a fixed direction of a, let â be the projection of a onto span[ek, ek+1]. It is

easy to see that q will be closer to a as â grows, and as a result, the angle between q and p

will be larger. This implies the length of a should be maximized, which indicates ∥a∥ = η
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and the distance is maximized when a = â. It also indicates ai = 0 if i ̸= k, k + 1.

Finally, for a fixed a in the form of (4.18), the projected variance of Y in the direction of

ek is vk =
∑

i ̸=k(akbi)
2+(akbk +σk)

2 = a2k +σ2
k +2akbkσk and the projected variance of Y in

the direction of ek+1 is vk+1 =
∑

i ̸=k+1(ak+1bi)
2+(σk+1+ak+1bk+1)

2 = a2k+1+σ2
k+1+2ak+1bk+1.

To maximize the Asimov distance, we should make vk small and make vk+1 large. With the

constraint that ∥b∥ = 1, we should have b2k + b2k+1 = 1, which implies bi = 0 for all i ̸= k and

i ̸= (k + 1).

As shown above, the optimal a and b should be in the form of (4.18) and (4.19), which

completes our proof.
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Appendix E

Proof of Theorem 4.3

The optimal solution to problem (4.25) either locates at the boundary or the stationary

points.

We first characterize the stationary points. At the stationary points, the value (α∗, β∗)

satisfies the necessary conditions


∂
∂α
| cosφ(α, β)|α=α∗,β=β∗ = 0,

∂
∂β
| cosφ(α, β)|α=α∗,β=β∗ = 0.

(E.1)

Since sinφ∗ ̸= 0, we have


∂
∂α
φ(α, β)|α=α∗,β=β∗ = 0,

∂
∂β
φ(α, β)|α=α∗,β=β∗ = 0,

(E.2)
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in which

∂φ

∂α
=

η

a2x + a2y

(
η(3σ2

k+1 − σ2
k + η2) + 2η(σ2

k − σ2
k+1) cos

2(α) + 2η(σ2
k − σ2

k+1) cos
2(β)

+ σk(σ
2
k − σ2

k+1 + 3η2) cos(α) cos(β) + σk+1(σ
2
k+1 − σ2

k + 3η2) sin(α) sin(β)
)
,

∂φ

∂β
=

η

a2x + a2y

(
σk(σ

2
k+1 + η2 − σ2

k) sin(α) sin(β)

+ σk+1(σ
2
k + η2 − σ2

k+1) cos(α) cos(β) + 2ησkσk+1

)
.

Eliminating sin(α) sin(β) from (E.2), we have

C cos2(α) +D cos(α) cos(β) + C cos2(β) + F = 0, (E.3)

where

C = 2ησk(σ
2
k − σ2

k+1)(σ
2
k+1 + η2 − σ2

k),

D = (σ2
k − σ2

k+1)
(
−(σ2

k − σ2
k+1)

2 − 2η2(σ2
k + σ2

k+1) + 3η4
)
,

and

F = ησk

(
σ4
k + σ4

k+1 + η4 − 2σ2
kσ

2
k+1 − 2σ2

kη
2 − 2σ2

k+1η
2
)
.

Further, we rewrite the first equation of (E.2) as

c
√
(1− cos2(α))(1− cos2(β)) + d cos(α) cos(β) + e = 0, (E.4)

where c = σk(σ
2
k+1 + η2 − σ2

k), d = σk+1(σ
2
k + η2 − σ2

k+1), and e = 2ησkσk+1.

Combining (E.3) and (E.4) and eliminating cos2(α) and cos2(β), we have

(c2 − d2) cos(α)2 cos(β)2 +

(
Dc2

C
− 2de

)
cos(α) cos(β) +

c2F

C
+ c2 − e2 = 0.

The left side of the equation is a quadratic function with respect to r = cos(α) cos(β). The
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two roots are:

r1 = −
σkη

σ2
k − σ2

k+1

, r2 = −
σk

2

(
1

η
+

η

σ2
k − σ2

k+1

)
.

Note that η ∈ [0, σk − σk+1), so we have r1 ∈ (− σk

σk+σk+1
, 0], r2 ∈ (−∞,− σk

σk−σk+1
). Since

| cos(α) cos(β)| ≤ 1, σk

σk+σk+1
< 1, and σk

σk−σk+1
> 1, we should only retain the first root

r1. Substitute cos(α) cos(β) = r1 = − ησk

σ2
k−σ2

k+1
into (E.3), and we have C cos4(α) + (Dr1 +

F ) cos2(α) + Cr21 = 0. The left side of the equation is a quadratic function with respect to

s = cos2(α), so we can easily find its roots. Let us denote s1 and s2 as the two roots:

s1 =
σ2
k − σ2

k+1 + η2 −
√
H

2(σ2
k − σ2

k+1)
, s2 =

σ2
k − σ2

k+1 + η2 +
√
H

2(σ2
k − σ2

k+1)
,

where H = σ4
k+σ4

k+1+η4−2σ2
kσ

2
k+1−2σ2

kη
2−2σ2

k+1η
2. We need to check that H is positive.

Viewing H as a function of η and taking derivative, we have H ′(η) = 2η(2η2−2(σ2
k+σ2

k+1)) <

0. Since η2 ∈ [0, (σk − σk+1)
2), we have H(η) ∈ (0, (σ2

k − σ2
k+1)

2].

As cos(α)2 ≤ 1, we need to check whether s1, s2 ∈ [0, 1].

Firstly, as H is a decreasing function of η in the considered range, s1 is a increasing

function of η. Therefore, we have min(s1) = s1(η)|η=0 = 0 and max(s1) = s1(η)|η=σk−σk+1
=

σk

σk+σk+1
< 1. Hence, s1 is a valid solution.

Secondly, it is easy to check that s2 is a decreasing function of η. So, we have max(s2) =

s2(η)|η=0 = 1 and min(s2) = s2(η)|η=σk−σk+1
= σk

σk+σk+1
< 1, which means s2 is also a valid

solution. Hence, we have two stationary points


cos2(α) =

σ2
k−σ2

k+1+η2±
√
H

2(σ2
k−σ2

k+1)
,

cos2(β) =
σ2
k−σ2

k+1+η2∓
√
H

2(σ2
k−σ2

k+1)
.

(E.5)

Since there are two sets of solutions in (E.5), we should determine which one is better.

The variance ofY in the direction of ek is vk = cos2(α)+σ2
k+2 cos(α) cos(β) and the variance

124



of Y in the direction of ek+1 is vk+1 = sin2(α) + σ2
k+1 + 2 sin(α) sin(β). Both of the two sets

of solutions in (E.5) lead to cos(α) cos(β) = − ησk

σ2
k−σ2

k+1
and sin(α) sin(β) = ησk+1

σ2
k−σ2

k+1
. For fixed

cos(α) cos(β) and sin(α) sin(β), the smaller cos2(α) is, the smaller vk will be, and the larger

the subspace distance will be. Hence, we conclude the stationary point that satisfies


cos2(α∗) =

σ2
k−σ2

k+1+η2−
√
H

2(σ2
k−σ2

k+1)

cos2(β∗) =
σ2
k−σ2

k+1+η2+
√
H

2(σ2
k−σ2

k+1)

(E.6)

leads to a larger subspace distance.

Finally, it is easy to compute the objective values of problem (4.25) at the boundary

points. Comparing these values with the objective values induced by the point in equa-

tion (E.6), we can readily conclude the point in equation (E.6) gives a larger objective value.

In summary, given that α ∈ [0, π/2] and β ∈ [π/2, π], the optimal α and β are shown

in (4.26).

125



Appendix F

Proof of Theorem 4.4

The proof has two main steps. In the first step, we show that non-zero entries of B are in

the kth and (k + 1)th rows. In the second step, we will further prove the entries except in

the kth and (k + 1)th columns should be zero.

In the first step, we follow similar proof procedures in Theorem 4.2. We use P to denote

the subspace spanned by gk(Σ) and Q to denote the subspace spanned by gk(Y). We also

use T to represent the intersection of the two subspaces and further denote T as one set

of orthonormal bases of T, [T,p] as one set of orthonormal bases of P and [T,q] as one

set of orthonormal bases of Q. So, the subspace distance between P and Q is the subspace

distance between the subspace spanned by p and that spanned by q. Following the same

arguments in Theorem 4.2, by setting all the entries of B to be zero except the kth and

(k + 1)th rows, we can guarantee achieving the maximal subspace distance and further we

have q ∈ span[ek, ek+1] and p = ek.

In the second step, since the non-zero elements of B only locate in the kth and (k+1)th

rows and q ∈ span[ek, ek+1], it indicates q is the direction with the maximal variance on the

span of ek and ek+1. Assuming q = [0, · · · , cos(γ), sin(γ), · · · , 0]⊤ with cos(γ) and sin(γ)

being in the kth and (k + 1)th coordinates respectively and according to the definition of
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principal components, we can find γ by solving the optimization problem

argmax
γ

: q⊤YY⊤q. (F.1)

Plug q = [0, · · · , cos(γ), sin(γ), · · · , 0]⊤ into the objective function, and we have

q⊤YY⊤ q =

cos(γ)
sin(γ)


⊤ bx1 1

2
by

1
2
by bx2


cos(γ)
sin(γ)

 , (F.2)

where bx1 = ∥bk + ekσk∥2, bx2 = ∥bk+1 + ek+1σk+1∥2, by = 2(bk + ekσk)
⊤(bk+1 + ek+1σk+1),

with bk and bk+1 being the transpose of the kth and (k + 1)th rows of B respectively and

ek ∈ Rn, ek+1 ∈ Rn being the standard bases.

We can solve (F.2) by computing the first principal component of the middle matrix of

the right hand of (F.2). Using the result from equation (4.23), we have γ = 0.5atan2(by, bx),

where bx = bx1 − bx2. Since the subspace distance is the distance between q and ek, it is

apparent that the subspace distance is |γ|. To maximize |γ|, we first determine the sign of

by or bx. We have

bx
∥bk + ekσk∥+ ∥bk+1 + ek+1σk+1∥

= ∥bk + ekσk∥ − ∥bk+1 + ek+1σk+1∥

≥ σk − ∥bk∥ − σk+1 − ∥bk+1∥

≥ σk − σk+1 −
√
2η (F.3)

> 0, (F.4)

where inequality (F.3) is the result of the energy constraint that η ≥ ∥B∥F =
√
∥bk∥2 + ∥bk+1∥2 ≥

1√
2
(∥bk∥+ ∥bk+1∥), and inequality (F.4) is due to the assumption that η < σk−σk+1√

2
. In sum-

mary, bx is positive. Using the property of atan2 function, when bx > 0, maximizing |γ| is
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equivalent to maximizing |by/bx|. Thus, we can formulate our problem as

max
bk,bk+1

: |by/bx| (F.5)

s.t. ∥[bk,bk+1]∥F ≤ η.

In the objective function,

by = 2
(
b⊤
1 b2 + (bk,k + σk)bk+1,k + bk,k+1(bk+1,k+1 + σk+1)

)
,

bx = ∥b1∥2 − ∥b2∥2 + (bk,k + σk)
2 + b2k,k+1 − b2k+1,k − (bk+1,k+1 + σk+1)

2,

where b1 = [bk,1, bk,2, · · · , bk,k−1, bk,k+2, · · · , bk,n]⊤ and

b2 = [bk+1,1, bk+1,2, · · · , bk+1,k−1, bk+1,k+2, · · · , bk+1,n]
⊤ which are the vectors obtained by

deleting the kth and (k + 1)th elements of bk and bk+1 respectively. We can change the

sign of by/bx by changing the signs of b1, bk+1,k, and bk,k+1. Since both of the values by/bx

and −by/bx are obtainable, we can remove the absolute value operation. Thus, our objective

can be further simplified to maximize by/bx. To complete the proof of Theorem 4.4, we

should further demonstrate that when the optimality of our objective function is obtained,

b1 and b2 should be vectors with all their entries being zero. To prove that, we examine the

objective function further

by ≤ 2
(
∥b1∥∥b2∥+ (bk,k + σk)bk+1,k + bk,k+1(bk+1,k+1 + σk+1)

)
(F.6)

≤ 2
(
(bk,k + σk)bk+1,k +

√
b2k,k+1 + ∥b1∥2(

√
b2k+1,k+1 + ∥b2∥2 + σk+1)

)
, (F.7)

bx ≥ (bk,k + σk)
2 + b2k,k+1 + ∥b1∥2 − b2k+1,k − (

√
b2k+1,k+1 + ∥b2∥2 + σk+1)

2. (F.8)

Inequality (F.6) implies that the optimal value is determined by the norms of b1 and b2
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instead of their specific values. Inequality (F.7) is true as

√
b2k,k+1 + ∥b1∥2(

√
b2k+1,k+1 + ∥b2∥2 + σk+1)

=
√
b2k,k+1 + ∥b1∥2

√
b2k+1,k+1 + ∥b2∥2 + σk+1

√
b2k,k+1 + ∥b1∥2

≥ bk,k+1bk+1,k+1 + ∥b1∥∥b2∥+ σk+1bk,k+1

= ∥b1∥∥b2∥+ bk,k+1(bk+1,k+1 + σk+1).

Inequality (F.8) is due to −(
√

b2k+1,k+1 + ∥b2∥2+σk+1)
2 ≤ −∥b2∥2− (bk+1,k+1+σk+1)

2. The

equalities in (F.7) and (F.8) hold when ∥b1∥ = 0 and ∥b2∥ = 0. This means that, for any

feasible solution (b1,b2, bk,k, bk,k+1, bk+1,k, bk+1,k+1) in (F.5), there is another corresponding

feasible solution (0,0, bk,k,
√

b2k,k+1 + ∥b1∥2, bk+1,k,
√
b2k+1,k+1 + ∥b2∥2), which has a larger

objective value. In conclusion, b1 and b2 should be zero vectors when the optimality of

(F.5) is obtained. This completes our proof.
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Appendix G

Connection Between Asimov Distance

and PCR Problem

We first illustrate a connection between the Asimov distance and the projection 2-norm.

We then use this connection to establish a connection between the Asimov distance and the

PCR problem.

To see the relationship between the Asimov distance and the projection 2-norm, assume

X be the k-dimensional subspace learned from the original data matrix and X̂ be the k-

dimensional subspace learned from the modified data matrix. Furthermore, let P ∈ Rn×n be

the orthogonal projection onto X and P̂ ∈ Rn×n be the orthogonal projection onto X̂. Then,

the Asimov distance between X and X̂, denoted as θ(X, X̂), can also be computed as:

sin θ = ∥P− P̂∥2,

where ∥ · ∥2 is the induced 2-norm. Detailed proof can be found in Chapter 2.5 of [67].

Using results in this chapter and the aforementioned relationship between Asimov dis-

tance and projection 2-norm, we can perform further analysis on the PCR problem. In

particular, let r1 = ∥y − y1∥ denote the residual after PCR, where y is the response vector

and y1 = Py is the projection of y onto the selected k-dimensional subspace according to
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the original feature matrix. Denote r2 = ∥y − y2∥ as the residual of PCR after we modify

the feature matrix, where y2 = P̂y is the projection of y onto the selected k-dimensional

subspace after we modify the feature matrix. The following inequality shows that the differ-

ence of the two residuals can be bounded by the product of the norm of y and the projection

2-norm:

|r1 − r2| =
∣∣∥y − y1∥ − ∥y − y2∥

∣∣
=
∣∣∥y −Py∥ − ∥y − P̂y∥

∣∣
≤ ∥(P− P̂)y∥

≤ ∥P− P̂∥2∥y∥

= ∥y∥ sin θ.

As our analysis shows, θ depends on the energy budget and the singular values of the original

feature matrix. Hence, given the energy budget and the original data points, we can establish

the largest possible change of the residual compared with the original residual.
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2018, pp. 6106–6116.

[12] L. Lyu, X. He, F. Wu, and L. Sun, “Killing two birds with one stone: Stealing model
and inferring attribute from bert-based apis,” arXiv:2105.10909, May 2021.

[13] X. He, L. Lyu, L. Sun, and Q. Xu, “Model extraction and adversarial transferability,
your bert is vulnerable!” in Proc. of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Online, Jun. 2021, pp.
2006–2012.

[14] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor attacks on deep
learning systems using data poisoning,” arXiv preprint arXiv:1712.05526, Dec. 2017.

[15] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, “Practical
black-box attacks against machine learning,” in Proc. ACM on Asia Conference on
Computer and Communications Security, Abu Dhabi, United Arab Emirates, Apr.
2017, pp. 506–519.

[16] D. Meng and H. Chen, “Magnet: a two-pronged defense against adversarial examples,”
in Proc. ACM SIGSAC Conference on Computer and Communications Security, Dal-
las, TX, Oct. 2017, pp. 135–147.

[17] X. Yan and X. Su, Linear regression analysis: theory and computing. World Scientific,
2009.

[18] G. Papageorgiou, P. Bouboulis, and S. Theodoridis, “Robust linear regression analy-
sis— a greedy approach,” IEEE Transactions on Signal Processing, vol. 63, no. 15, pp.
3872–3887, Aug. 2015.

[19] X. Jiang, W. Zeng, H. C. So, A. M. Zoubir, and T. Kirubarajan, “Beamforming via
nonconvex linear regression,” IEEE Transactions on Signal Processing, vol. 64, no. 7,
pp. 1714–1728, Apr. 2016.

[20] J. Chien and J. Chen, “Recursive Bayesian linear regression for adaptive classification,”
IEEE Transactions on Signal Processing, vol. 57, no. 2, pp. 565–575, Feb. 2009.

[21] T. Gustafsson and B. D. Rao, “Statistical analysis of subspace-based estimation of
reduced-rank linear regressions,” IEEE Transactions on Signal Processing, vol. 50,
no. 1, pp. 151–159, Jan. 2002.

[22] J. H. McDonald, Handbook of biological statistics. Sparky House Publishing, 2009.

[23] O. E. Barndorff-Nielsen and N. Shephard, “Econometric analysis of realized covari-
ation: High frequency based covariance, regression, and correlation in financial eco-
nomics,” Econometrica, vol. 72, no. 3, pp. 885–925, May 2004.

133



[24] C. J. ter Braak and S. Juggins, “Weighted averaging partial least squares regres-
sion (WA-PLS): an improved method for reconstructing environmental variables from
species assemblages,” in Proc. International Diatom Symposium, Renesse, The Nether-
lands, Aug. 1993, pp. 485–502.

[25] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge University Press,
2004.

[26] F. Li, L. Lai, and S. Cui, “On the adversarial robustness of subspace learning,” IEEE
Transactions on Signal Processing, vol. 68, pp. 1470–1483, Mar. 2020.

[27] D. L. Pimentel-Alarcón, A. Biswas, and C. R. Soĺıs-Lemus, “Adversarial principal
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