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Abstract

Insights and applications from data driven representation learning

by

Baladitya Yellapragada

Doctor of Philosophy in Vision Science

University of California, Berkeley

Professor Stella X. Yu, Co-chair

Professor Bruno A. Olshausen, Co-chair

This dissertation is an exploration of data-driven discovery, inspired by neuroscientific stud-
ies of the brain. Each of the three projects listed will describe a different domain of input
data (self-driving video, medical image, and biological audio), and how investigating neural
network behavior trained on that data can reveal insights for each underlying task. Chapter
2 assess motion selectivity in a self-driving network trained to predict two output tasks:
steering and motor. We show how different control conditions can define temporal behavior,
as well as how frame order is only implicitly learned if relevant for the task, even if the frame
order is present in the input and output training data. Chapter 3 assesses self-supervisedly
learned representations from retinal fundus images. We show how these learned representa-
tions can drive a voting scheme classifier to match supervised and human expert baselines for
disease severity prediction in this field, minimizing the bias enforced from clinically relevant
ground truth labels. These representations can be further probed to discover mislabeled or
easily confused data, as well as phenotype groupings in retinal images that pertain to other
pathology and physiology of the subject. These imply NPID and cluster analysis tools could
aid clinicians organize and label data from multiple tasks, an expensive process that requires
uncommon expertise. Similarly, Chapter 4 extends this idea about data-driven learning to
the audio domain. Here, self-supervisedly learned representations from zebra finch data
yielded feature encodings that were functionally relevant for classifying vocalization calls,
driving a voting scheme classifier to match supervised baseline performance on a generally
difficult task of intra-species audio discrimination. We convert audio waveforms to spectro-
gram image representations of sound signals, and train a CNN on these inputs, so we can
probe these visually-defined audio features. To do so, we assessed how neuronal behavioral
preferences can be described by a mid-level representation space of audio (the modulation
power spectrum), as well as how these features compare to mid-level audio features corre-
lated with zebra finch brain activity. Data-driven algorithms can learn representations with
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minimal bias, so commonalities between artificial and biological neural systems imply simi-
lar encodings are optimally learned. All in all, this dissertation has evaluated deep learning
applied on a host of real world tasks aside from standard datasets curated for computer
vision. Though each project requires a different lens for explaining functionally salient be-
havior, we offer data-driven insights into each underlying task that seem to be consistent
with experimental findings in neuroscience and medicine.
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Chapter 1

Introduction

1.1 Importance of CNN Representations

A benchmark of human vision is the ability to encode world views through generalizable
representations. Structured patterns can be learned and related across objects and scenes,
often guided by an unclear level of supervision. There is evidence that this representation
learning is also relevant for deep learning on computer vision tasks. Convolutional Neural
Networks (CNNs) can do more than magically solve tasks they are trained on. Specific filters
do not need to be forcibly learned, but will naturally emerge from learning on different data
with a similar domain of image statistics. Similar representations can even be learned across
different tasks or levels of expert label guidance. The focus of this dissertation is to draw
a parallel between neuroscience and CNN feature interpretation experiments, and to reveal
how understanding learned CNN representations can give underlying insights into a variety
of applied tasks.

1.2 CNNs for Visual Learning

Deep learning algorithms have been been at the forefront of visual learning tasks this past
decade. Compared to other machine learning approaches (Support Vector Machines [76],
linear classifiers aided by Gaussian Mixture Models [95], decision trees [3], ensemble models
[10], and SIFT-based classifiers[144]), CNNs have dominated on the accuracy leader boards
for object classification of ImageNet data since 2012[76, 106, 72]. Deep learning approaches
were subsequently tailored for other research tasks, like object detection on MS COCO data
(Fast R-CNN)[52] and semantic segmentation on PASCAL VOC data (R-CNN)[57].

CNNs for Object Recognition

Deep CNNs can be trained to perform well on visual tasks because they learn patterns
across hierarchically complex scales of representations [149]. Earlier filters identify low-level
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concepts such as color, edges, and curves, and later layers focus on higher-level features
such as animals or animal parts. Although CNNs are typically used for natural image tasks
such as animal classification [106], aerial-view vehicle detection [140], and self-driving [13,
15], panoptic segmentation of scenes [69], etc. these algorithms have also been adapted
for datasets and tasks that were not curated for computer vision learning (like biological
applications). These will be discussed in a Chapter 4.

Feature Visualization for CNNs

Understanding these learned representations has been of common interest since around 2010
when neural networks gained popularity as the rise in computational power and memory
made them more feasible for applied research [75, 11]. There are many methods available to
probe neural filters across later layers of a trained network.

The first is gradient-based receptive field generation methods. These techniques aim to
visualize the patterns that maximally activate a given or group of neurons. They iteratively
update an input image by back-propagating a loss that maximizes activity for a target
neuron. This can be achieved with random noise inputs through gradient ascent [11], or with
maximal activating inputs through deconvolutional layers [141]. Regardless of technique,
later layer visualizations are harder to interpret correctly. Improved variants aim to apply
priors to clean up visualizations [88] or guiding a gradient through non-linearities without
deconvolutions [114].

The second is image synthesis techniques. In the 80s and 90s, more naturalistic image
synthesis helped neuroscientists and psychologists understand human perceptual groupings
by modeling defined visual features. The most popular example is by Portilla and Simoncelli
to define a model for texture synthesis [99]. Modern image synthesis relates to generative
neural network, primarily generative adversarial networks (GANs) that can even provide a
level of control for feature generation [53, 27, 58]. However, using one neural network to
probe the representations of another network can be tricky to interpret generalizably as the
first is also not easily explainable. A middle ground is image synthesis techniques that use
a single network’s gradient to guide random texture generation from a single base image in
a way that maximizes activity for a given layer, like Ecker [50]. This method can also be
considered a variant of gradient-based receptive field method for networks.

Another style of feature visualization is saliency map generation [114]. This highlights
image areas from a given image that drive a given neuron’s activation. This differs from
generating a pattern from a random signal in that the input is already defined, but the
feature needs to be interpreted from the visualization. Primarily, the easiest neurons to
interpret are output neurons in supervised networks because their activations are directly
tied to class-discriminable features. Class-activation maps or self-driving maps are the top
use cases of this technique [148, 14].

The last style of feature visualization techniques is network dissection [8]. The idea is
estimating neuron preferences by correlating output activity changes with quantified input
features, across many input samples of varying feature quantities. This technique can be
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achieved with expensive, dense pixel-wise labeling for a given feature domain (e.g., texture,
color, object, etc.). A simple application of this was for self-driving, to help determine which
parts of an image drive a network to the left or drive. Bau, et al., have shown that this
methodology can describe neuronal preferences for low level and high level feature represen-
tations, and that this hierarchy of features learned across artificial CNN layers parallels a
hierarchy of features learned by biological cortical layers. Low level features like color and
texture are preferred in early layers, and high level features like part, objects, and scenes are
represented in layer layers.

1.3 Brain Representations

Inspiration from Neuroscience Experiments

Fundamentally, CNNs are predictive models that are motivated by brain structures, and
the brain is another computational black box that learns representations. We can take
inspiration from the frameworks that exist for studying biologically learned representations.

The main techniques from neuroscience or psychology are most closely tied to network
dissection. The framework is to quantify input features and correlated differences in neuronal
activity or neuronal correlate activity with differences in features across input samples.

These style of investigation is tied to predictive feature encoding. Such predictive models
have helped researchers show evidence for a whitening pre-processing technique in the retina
that allows for uniform activation of responses across an imbalanced distribution of input
spatial frequencies [7]. Similar experiments have revealed differently oriented Gabor-like
(i.e. sombrero-shaped, center-surround features) preferences for neurons in cortical V1 [118];
contours, colors, motion, and stereoscopic disparity for neurons in V2 [51, 17]; more complex
contour, curvature, and color for neurons in V4 [87, 44, 91, 33, 43]; and faces or expertise
for neurons in IT [138, 104].

Many of these biological experiments revealed insights about the underlying experience of
the human visual system, and they were not localized to one layer of the brain. For example,
the retinal whitening experiment validated previous statistical evaluations of images that
there was an average 1/f distribution of spatial frequencies present in naturalistic stimuli
[105]. Similarly, IT experiments showed that neuronal tunings sensitive to faces or expert-
level recognition showed how ingrained socializing was with modern brain evolution of higher
level processing.

Overall, there are many similarities between artificial neural network functionality and
biological cortical functionality. Of note are two shared properties: (1) a parallel hierarchy
of features from low to high in both neural systems, and (2) positional invariance of higher-
level processing units in both systems. This implies an equivalent functionality between
both brain feedforward hierarchy and neural network pooling layers. Of course, specific
feature preferences at specific hierarchies may vary, or differences may exist between the
brain and CNNs in response to particular visual situations (e.g., crowding). However, an
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overall shared hierarchy implies that many experiments that interpret the brain may also be
viable for neural network research.

This dissertation aims to take inspiration from biological neural modeling experiments.
Each project listed relates to feature exploration across a different domain of input data
(self-driving video, medical image, and biological audio) to functionally describe learned
features unique to each domain. The goal of this dissertation is to demonstrate that studying
neural networks can reveal insights about what input representations are actually salient for
accomplishing any underlying task.
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Chapter 2

Motion Sensitivity Representations
for Self-Driving

2.1 Introduction

Much of the feature interpretation research discussed in the Introduction has been on sin-
gle image input tasks. One notable single image network was for a self-driving task [13].
Here, PilotNet, a CNN of a particular size (5 convolutional, 3 fully-connected layers) was
trained to predict single steer commands for a fixed-speed imitation learning task on dash-
cam driving data. They generated saliency maps for steering prediction by averaging output
activations across each convolutional layer (upsampling of later layer feature maps was per-
formed through fixed-weight deconvolution) [14]. The maps showed network activity was
generally driven by features that were salient to driving (i.e., much activity was focused on
lane markings on the road, or on parked cars), but the overall interpretation was ill-defined
and up to the viewer. Poor explainability is a general issue with saliency maps, and this
chapter’s project aims to show a low-cost example of a feature interpretation experiment
that can be better functionally describe results.

CNNs for Self-Driving

Before 2018, most self-driving research in the academic domain was done on simulated driv-
ing data or broadly collated dashcam driving data. Examples of such simulated driving
were usually done on environments like CARLA or GTA 5, with tools designed to record
user-driven data [35, 81]. Soon to follow were other examples on dashcam data was from
universities that collected their own (e.g. UC Berkeley with BDD [139]) or publicly released
datasets from companies like Waymo [119] and Lyft [62]. Ultimately, the simulated environ-
ments had relatively little variability in driving situations (e.g., the same looking towns in
CARLA with defined weather or lighting conditions) or were expensive to generate (e.g., the
price of GTA 5 research packages). On the other end, open-source datasets for self-driving
did not allow for as much control over driving situations as virtual environments.
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Some research had personally collected training data for real-world evaluations, like at
Carnegie Mellon University [97] or for DARPA desert driving challenges[83], but exhibited
the same problems as publicly available data: data collection and training became pro-
hibitively expensive to continue, or commonly structured environments in training and test-
ing features did not allow results to generalize to other data. Also, the DARPA contestants
did not train a CNN.

With respect to feature visualization of driving cues, there were saliency maps [14] or
predictive models of self-driving distributions [135]. The former is quantitatively uninter-
pretable, while the latter is overly dependent on dense segmentation labels for interpretation.
Motion selectivity was not well studied then, aside from action recognition tasks. Specifically
focusing on optical flow evaluation, experiments at the time were also performed with dense,
pixel-wise labels of image pair differences [127].

Notably unique at the time, Karl Zipser built a scaled-down remote-control car and
drove it around various structured and unstructured environments using a joystick controller
[61]. A CNN (SqueezeNet) was trained through imitation learning to predict output driving
samples across time using video inputs. [64]. A supplementary note about all of the examples
listed is that their CNNs process single image inputs with single output tasks, whereas this
network processes multiple inputs to predict over a longer time period of output driving
behavior (Fig 2.1).

Egomotion Cues

Self-driving is primarily an egomotion task (i.e. 3D motion of a camera within a scene). As
with representation learning in general, egomotion research can be inspired by human vision
experiments.

There are many non-attentional cues that can affect biological egomotion along a route.
Human salience modeled after behavioral data can be driven by brightness or color contrast
[66], blur and disparity [117], or other perspective cues (monocular and vestibular [20]).
While most of these features are particular to a biological egomotion and may not relate to a
camera-based egomotion using CNNs, some features (e.g. color, brightness, and texture) are
relatable to CNNs. However, those cues are expensive to thoroughly label, and also relate
to single-image vision.

Optical flow is another well-studied cue that pertains to biological egomotion [131]. It
is a pattern that captures visual motion relative to an observer (e.g. eye, camera) during
movement through an environment. Flow patterns generated from pure translation or pure
rotation can useful for viewpoint matching and distance approximation, just like stereoscopic
disparity cues. However, it differs from disparity in that a single camera or eye can experience
it across time. Also, optical flow can provide cues for path centers for curved paths, so it
inherently encodes future path information [107].
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2.2 Methods

For this autonomous driving project hosted by Karl Zipser, my goal is to perform neuro-
scientific style experiments to probe artificial neuronal tunings. The task was to train a
knee-high remote-controlled car top perform imitation learning. Using a joystick controller,
someone would drive the car and collect training data, on which a small feedforward neural
network would try to learn and reproduce driving behavior. As seen in ??, this self-driving
task would take in 10 frames of video from an RGB stereo-pair camera at a given framerate,
and then would predict 10 points of steering and motor in the future at a lower frame rate
(ultimately, the task is to predict across a longer time range than the inputs).

We organized input videos by their average steer and motor throttle combinations. We
only used videos whose current and future driving combinations had little variation (below a
certain standard deviation threshold, not reported), as well as only used videos whose future
driving outputs were well predicted by the network. This allowed us to easily test on salient
ego-motion videos containing one type of flow per video.

Figure 2.1: Input Task. Representative pipeline showing the self-drivinig task. Multiple
input frames are fed into a network that predicts across multiple time points for both steering
and motor. There is a longer time range for output predictions than input video frames with
the assumption that the CNN will improve future prediction with a little bit of past data.

We first created gradient ascent style visualizations of receptive fields [11, 141]. Shown
in Fig 2.2, we generated gradient ascent visualizations on Layer 1 for an shallow CNN (2
convolutional layers and 2 dense layers) taking in 2 frames at a times. Across frames and
cameras for any given neuron filter, Layer 1 receptive fields appear sensitive to optical flow
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and natural stereoscopic disparity. We note that gradient ascent style filter visualizations
directly match the filter weights for the first layer, but report the technique regardless.

Figure 2.2: Gradient Ascent Visualizations. Shown are four neurons’ receptive fields from
Layer 1 of our first self-driving network. Each neuron filter is divided into sub-filters, with
one sub-filter per camera, per input frame – hence the 2x2 layout per neuron filter. These
filters are appear sensitive to optical flow and stereoscopic disparity.

Despite being the simplest to visualize and confirm, these filters are not easily inter-
pretable, and later layers are even noisier, so this avenue of investigation is not feasible.
Furthermore, our current convolutional network is primarily the SqueezeNet architecture
from Iandola, et al. [65]. We did not want to interpret unstructured visualizations from 1x1
and 3x3 filters. Instead, though not semantic, we labeled and compared inputs by presumed
relevant features, similar to Zhou, et al. [8]. We then took inspiration from the general
feature manipulation of predictive modeling experiments in psychophysics [137].

We studied optical flow because they provide cues about depth and future trajectories
[107], and there is early evidence for them through gradient ascent analysis.

As seen in Fig 2.3, we changed the framerate for a given video by either sampling future
frames (for the speed up condition) or interpolating additional frames in between current
ones (for the slow down condition). Because of our video selection process, our framerate
manipulations created new videos with similar optical flow vectors across the visual field,
but with more or less magnitude. In addition, the manipulated videos had approximately
the same spatial frequency information from domain specific statistics.

A secondary control condition was the frame order. Before manipulating a video’s frame
rate, its frame order was either maintained, reversed, or randomized. This condition also
evaluates the importance of frame rate manipulation relative to frame order manipulation.

We then compared how these manipulations affected output driving predictions to test
the relevance of input video motion.

2.3 Results and Discussion

We assessed motion sensitivity learned by our CNN. We did not have a distribution of driving
situations in each visual domain of data collected, which ranged from manicured (sidewalk)
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Figure 2.3: Video Speed Manipulation. Natural videos are resampled for the optical flow
experiment, to simulate optical flow changes invariant of other natural features. The network
expects 10-frames of input video to the network, so each manipulated video samples the
original frames to match the appropriate size. Sped up versions can just use future frames,
but slowed down versions need the timepoints in between the normally captured frames,
which are created using the interpolation method by Meyer et al. [82]

to naturalistic (outdoors park) to in-between (on campus or tracks). Instead, we assessed
network sensitivity by modifying input video samples without majorly affecting the spatial
frequencies present across the video frames. Theoretically, we expected lower frame rate
sampling to push predictions both steering and motor toward zero, and for higher frame rate
sampling to do the opposite.

As seen in Fig 2.4, input video speed manipulation affects both steering and motor
throttle predictions. This suggests potential optical flow sensitivity, but will need to be
explored further.

Temporal Controls

In Fig 2.5, steer and motor throttle predictions were plotted for input videos with different
frame orders. Motor throttle predictions appear robust to frame order transformations, but
the steering predictions are not.

Steer Results Across Temporal Controls

As seen in Fig 2.6, changing around the frame order significantly impacts the video speed
manipulation experiment for steer predictions. We need smooth flow of time, either forward
or reverse, to get results similar to those from the video speed experiment in Fig 2.4. This
implies optical flow filters are used for steer decisions.
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Figure 2.4: Driving Predictions After Input Video Speed Manipulation. The output steer
(left) and motor throttle (right) neurons’ activations with respect to video speed changes are
plotted. The X coordinates are normal video predictions, and the Y coordinates are changed-
speed video predictions. Zero means no behavior for both plots. The fit lines indicate that
speeding up the input video pushes steer predictions to become more extreme, as well as
increasing throttle predictions. The opposite is also true for slower videos.

Motor Speed Results Across Temporal Controls

For motor throttle predictions, changing around the frame order does not significantly impact
the video speed manipulation experiment. Fig 2.7 shows motor throttle predictions are
sensitive to input motion independent of frame order, implying that variance filters are
used. Independent of frame order, little motion would yield little variance across the frames,
whereas high motion would yield the opposite.

We show that our network trained to predict steering and motor throttle from stereo
video exhibits different motion-selective behavior for steering and throttle. Through a series
of controlled psychophysical experiments, we demonstrated that both the steer and motor
throttle predictions are correctly affected by varying the motion in the input video. How-
ever, even though both behaviors look similar on the surface, correct steer predictions are
dependent on smooth frame order, whereas motor throttle predictions are not.

We show that steer decisions are based on frame order in the hidden layers, whereas
motor throttle decisions are not. Why are they behaving different when we expect them to
act similarly? They have the same input and have the same number of output timepoints
to predict, so their behavior should be identical, but they are not. This analysis shows that
frame order is not salient for the underlying motor prediction task, despite the optical flow
features visible in the input (as evidenced by its salience for steering prediction).

We did the same video speed experiments on hidden layer neurons as we did for the output
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Figure 2.5: Steer and Motor Throttle Prediction Changes From Temporal Frame Ordering.
Changes to output steer (left) and motor throttle (right) neurons from input frame ordering
are plotted. The X coordinates are naturally ordered video predictions, and the Y coordi-
nates are predictions after temporal ordering. The fit lines for the steer plots indicate that
randomizing the frame order nullifies any steering prediction, whereas reversing the order
(not in the training set) reverses the steer prediction. The fit lines for the throttle plots
indicate that randomizing and reversing the frame order had little impact on the throttle
prediction.

neurons. By plotting average neuron activation for changed-speed videos versus normal speed
videos, we can generate the same steer-like and motor-like profiles as in Fig 2.4. For example,
Fig 2.8 shows that Layer 4 has neurons that exhibit strong linear separability, just like output
motor throttle neurons seen in Fig 2.4. This layer was chosen because it had the highest
percentage of motor-like neurons Fig 2.10.

2.4 Conclusion

We further found the distribution of motor-like neurons across the layers (Fig 2.9), arguing
that these ultimately contribute to the final steer and motor throttle predictions. Each
layer clearly has neurons that exhibit motor-like tunings, and the fact that negatively-tuned
neurons exist is a neat parallel to human brains [22]. Linear SVMs were used to find the
motor-like neurons based on their activation profiles, with the middle layers of our network
having the most motor-like neurons. By tracking the percentage of motor-like neurons in
each layer, we can see that the signal dominates early filter preferences the most in Layer 4,
before again being the dominant signal for output predictions (which makes sense because it
is correlated with the output task). Motor-sensitivity is a feature that is learned early, and
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Figure 2.6: Steer Predictions Changes From Temporal Frame Ordering After Video Speed
Manipulation. Here, input videos are sped up and slowed down as in Fig 2.4, but also have
their frame orders changed. We can see that reversing the frame order (left) maintains the
natural steer changes correlated with video speed manipulation (as in Fig. 5), but random-
izing the frame order (right) breaks the natural steer prediction changes after speeding up
and slowing down the videos.

Figure 2.7: Motor Throttle Prediction Changes From Temporal Frame Ordering After Video
Speed Manipulation. Here, input videos are sped up and slowed down as in Fig 2.4, but also
have their frame orders changed. We can see that both randomizing the frame order (left)
and reversing the frame order (right) maintains the natural throttle prediction changes after
speeding up and slowing down the videos.

maintains throughout the network
This suggests a similar analysis could be performed to track steering-like neurons through-

out layers of the network to identify when frame order becomes a relevant feature for repre-
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Figure 2.8: Motor Throttle Prediction Changes After Video Speed Manipulation for Layer 4.
10 Least and 10 most separable neurons, sorted by linear separability, similar to the motor
throttle sensitivity profile seen in Fig 2.4.

Figure 2.9: Motor Throttle Types - Positive and Negative Tunings. By tracking linear
separability of neuron behavior, similar to the motor throttle sensitivity profile seen in Fig
2.4., different neurons are shown to have both positive and negative correlations to input
speed changes.

sentation encoding. In addition, it is notable that steering and motor prediction were driven
by the same input videos and output time points, yet exhibited different response behavior.
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Figure 2.10: Percentage of Linear Separability Acrooss Layers. For each layer of the network,
neurons are assessed for their linear separability to video speed manipulation, similar to
the motor throttle sensitivity profile seen in Fig 2.4. The average separability per neuron,
alongside standard error, is plotted. Motor-like sensitivities dominate layer representations
the most in Layer 4.

This suggests that network behavior is specifically task relevant, and motor prediction is
not causality-dependent [150], and this idea of data vs. architecture as the driver of learned
features is still debated [39]. Overall, we show that neurosicence-style experiments are useful
for interpreting neural network behavior, and they provide insights about the underlying
task.
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Chapter 3

Self-Supervised Representations for
Medical Retinal Data

3.1 Introduction

Moving away from supervised learning, there are many styles of neural network that do not
use expert labels to drive their high-level representation learning. Neural networks learn
representations that are relevant to a task without expert labels driving the loss gradient
through the labels? Given that neural networks learn similar representations despite a large
variety of loss functions (aka, different tasks), it’s not evident that supervision is needed for
functional representation learning.

This question is always relevant because labeling is expensive, but there are applications
where this cost is higher, like in medical imaging domains, so unsupervised / self-supervised
learning has more inherent utility.

Self-Supervised Learning

Learning without expert labels has been of some interest since around 2015, and has ap-
proached supervised performance on some tasks since then. Some styles of techniques are
exemplar learning [36, 9], image colorization [142], patch generation [92], and instance dis-
crimination [133]. Each one performs a pre-text task, with the hope that the feature encod-
ings can be adapted for another task. While many of these techniques learn representations
that are intrinsic to image features without the guidance of expert labels, it is unclear
how generalizable results are for tasks overall. For example, we would not expect an im-
age colorizer to either colorize or attend to medical image features properly, but instance
discrimination may be a more transferable prior task. As such, I will focus on instance
discrimination, for the sake of generalizability.

I will specifically focus on Non-Parametric Instance Discrimination (NPID) [133]. NPID
uses stored feature vectors for each training instance to help with both learning and evalu-
ation. In general, instance discrimination assigns identifier labels (i.e. ’1’, ’2’, ’3’, etc.) to
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each image, instead of expert labels. With each pass of the data the algorithm pulls encoded
features for the same image toward each other, and pushes encoded features for different
images away from each other.

NPID

For learning, a given training instance’s encoded output feature vector is pushed toward
the feature vector stored from the previous epoch, and away from many stored negative
samples from the previous epoch. NPID uses any neural network as its backbone, applies
an l2-normalization to the output feature vector, and then weights the push-and-pull effect
based on the distance (cosine similarity) of the normalized unit vectors. This representation
learning can be boosted with learned transformation invariance. However, there is a tradeoff
between better instance discrimination across negative samples and better transformation in-
variance across positive samples, which can be minimized with group discrimination through
batch-level clustering in an updated version of the training pipeline [129].

For evaluation, a given test query instance’s encoded output feature vector is compared
against the nearest K neighbors of encoded training references. Then, those neighbors’ true
expert label is used in a weighted voted scheme, where the majority vote drives the query
prediction for the task. The vote is is weighted by the distance (cosine similarity) of the
normalized unit vectors between the query and training instances.

NPID was originally evaluated for ImageNet and Places datasets. These are datasets that
were specifically curated for visual learning with a relatively uniform distribution of variabil-
ity per class [cite], so when we look at the nearest neighbor retrievals that led to successful
query predictions, it’s difficult to make claims about specific features learned. However, the
failure cases reveal more insights into the filters learned by instance discrimination. In the
case of ImageNet failures visualized by Wu, et al., [133], the failures reveal visually similar
colors, textures, and contrast between the query and retrievals of different object classes.

This nearest neighbor voting scheme allows us to investigate what specific training ref-
erences drove any given query’s prediction. It’s a level of interpretabilty built into the
algorithm itself.

Deep Learning on Medical Imaging

Deep learning is starting to replace other machine learning models in the medical domain.
Applied research has been developed for CNNs with brain MRI scans [112], lung CT scans
[77], eyelid images [128], and mammogram data [102]. A big disadvantage with medical data
is the lack of extensively labeled data, as it takes uncommon expertise to judge images. As
such, most deep learning applications have focused on image generation to augment datasets.

As an explorative study of the versatility of NPID to other tasks, we applied this technique
to a dataset of images curated for medical diagnosis, not generalizable visual learning. We
applied NPID to retinal fundus images (photos of the back of the eye) from the AREDS
research group, as there is a growing use of deep learning for retinal classification tasks.
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CNNs for Retinal Image Processing

In ophthalmology, deep learning algorithms can provide automated expert-level diagnostic
tasks such as detection of diabetic retinopathy [56, 49, 123, 108, 1, 71], age-related macular
degeneration (AMD) [19, 54, 93], and glaucoma [78, 30, 116] using retinal fundus images.
They can also extract information including age, sex, cardiovascular risk [98], and refractive
error [124] that are not discernable by human experts.

However, supervised learning approaches are trained using expert-defined labels which
classify disease type or severity into discrete classes based on human-derived rubrics that are
prone to bias and may not accurately reflect the underlying disease pathophysiology. Because
supervised networks can only identify phenotypes that are defined by human experts, they
are also limited to identifying known image biomarkers. Moreover, training labels are labor
intensive to generate, typically involving multiple expert graders who are susceptible to
human error. Even trained ophthalmologists do not grade retinal images consistently, with
significant variability in sensitivity for detecting retinal diseases [18].

AMD

AREDS

Sponsored by the National Eye Institute, the AREDS enrolled 4757 subjects aged 55 to 80
years in a prospective, randomized, placebo-controlled clinical trial to evaluate oral antioxi-
dants as treatment for AMD. The AREDS design and results have been previously reported
[34]. The study protocol was approved by a data and safety monitoring committee and by
the institutional review board (IRB) for each participating center, adhered to the tenets of
the Declaration of Helsinki, and was conducted prior to the advent of the Health Insurance
Portability and Accountability Act (HIPAA).The AREDS sites received informed consent
from subjects, which was not necessary for this this post-hoc analysis on the fundus data;
digitized AREDS color fundus photographs and study data were obtained from the National
Eye Institute’s Online Database of Genotypes and Phenotypes website (dbGaP accession
phs000001, v3.p1.c2) after approval for authorized access, and exemption by the IRB. The
median age of participants was 68, 56 precent were women, and 96 percent were Caucasian
[5, 40]. Color fundus images from AREDS were previously graded by the University of
Wisconsin fundus photograph reading center for anatomic features, including the size, area,
and type of drusen, area of pigmentary abnormalities, area of geographic atrophy (GA), and
presence of choroidal neovascularization (CNV) [5]. These gradings were used to develop
a 9-step (more accurately a 9+3-step) AMD severity scale for each eye which predicts the
5-year progression risk to CNV or central GA [34], with steps 1-3 representing no AMD,
4-6 representing early AMD, 7-9 representing intermediate AMD, and 10-12 representing
advanced AMD including central GA (step 10), CNV (step 11), or both (step 12) [34, 5,
40, 4] (Figure 3.1a). Both the 9+3-step scale and the simplified 4-step scale have been used
to successfully train supervised CNNs to classify AREDS fundus images for AMD severity
[54, 18]. As NPID’s feature space is more dependent on low-level visual variety to make
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its prediction space less susceptible to bias, performance is bolstered by not excluding any
images, such as stereoscopic duplicates or repeated subject eyes from different visits. A total
of 100,848 fundus images were available, with a long-tailed imbalance and overrepresentation
of the no-AMD classes for both scales, and class 11 (CNV) in the 9+3-step scale (Figure
3.1b-c). Images were randomly partitioned into training, validation, and testing datasets in
a 70:15:15 ratio, respectively, while ensuring that fundus images from the same subject did
not appear across different datasets.

The method used for labeling requires medical expertise, so it is more expensive than
ImageNet or Places annotations. Fig 3.2 shows that visual defect areas (i.e. drusen, GA,
CNV) have to be estimated according to different sizes (e.g. C-0, I-2, 0.5 DA) and then
according to different eccentricities (the concentric circles). This lends to the question of, is
this expertise needed for visual learning for AMD sevrity classification?

3.2 Methods

We pre-processed images according to a standard procedure that has worked for supervised
visual learning in this domain. This pre-processing significantly improves performance by
over 15 percent for the coarse task (not shown).

Fundus images were down-sampled to 224x224 pixels along the short edge while main-
taining the aspect ratio as similarly done in past literature [54]. Fundus images were also
preprocessed with a Laplacian filter applied in each of the red-green-blue (RGB) color dimen-
sions to better emulate the properties of more natural images of everyday scenes and objects
(Figure 3.3). Laplacian filtering is the difference of two Gaussian-filtered versions of the
original image. In this study, it is the original fundus image (effectively, a Gaussian-filtered
image with no blur) subtracted by the image Gaussian-filtered with a standard deviation
(SD) of 9 pixels in each of the RGB color channels.

As a minor point, neural networks (like ResNet) and NPID were originally developed
and evaluated on images with natural statistics. A tenet of natural statistics is the 1/f
distribution of spatial frequencies of a given image, where lower frequencies are more rep-
resented than higher frequencies [105]. Fundus photographs exhibit approximately the 1/f
power distribution of natural images of everyday scenes and objects 33,34 but with more
low-frequency than high-frequency information (Figure 3.3a). The Laplacian-filtered fundus
images more closely resembles that of natural statistics (Figure 3.3b).

Network Pretraining

A CNN can transfer knowledge from one image dataset to another by using the same or
similar filters [149]. Unlike natural images that contain a variety of shapes and colors that
are spatially distributed throughout the image, fundus photographs are limited by shared
fundus features such as the optic disc and retinal vessels, as well as the restricted colors of
the retina and retinal lesions. This in turn limits the variability of the filters learned by
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the network. Thus, to transfer learning from a higher variety of discriminable features, we
pretrained the network using the large visual database ImageNet (i.e., initialize the neurons
across naturalistic filters), and then finetuned on the AREDS dataset without any weights
frozen to further improve performance. A comparison of different sizes for the final layer
feature vector for NPID, which depends on the complexity of the filters learned from the task,
revealed an ideal size of 64 dimensions for our pretrained model to maximize the performance
gained from transfer learning (Figure 3.4a).

As seen in 3.5, we use the same general pipeline for training and evaluation as had been
originally done for ImageNet and Places.

For wkNN, we chose k=12, as it produced the highest balanced accuracies (Figure 3.4b).
We chose the epoch that yielded the best balanced accuracy using wkNN classification voting
scheme (see Appendix A). Then, we evaluated that epoch on a separate testing dataset using
various metrics from the wkNN result including unbalanced accuracy, Cohen’s kappa, true
positive rate, and false positive rate. Unbalanced accuracy is the average accuracy across all
samples, whereas balanced accuracy is the average class accuracy 36,37. While both accuracy
metrics are relevant and positively highlight the performance of NPID, balanced accuracy
is less biased to skewed class distributions by weighting underrepresented class scores as
equally as overrepresented ones, and is more appropriate for comparing performance across
different subsets of the same data as in our study. We also employed a second method to
evaluate self-supervised features using Linear Support Vector Machines (Linear SVMs) 35.

Supervised Training & Prediction

To establish our own baseline, we perform supervised finetuning on ResNet-50 with the
9+3-step severity scale, after pretraining on ImageNet, using the same set of AREDS fundus
photographs. The data augmentations and hyperparameters match that of our best imple-
mentation of NPID. To avoid retraining for each new scale, we mapped the logits from the
9+3-step scale to 4-step, 2-step advanced AMD, and 2-step referrable AMD classes to gen-
eralize coarse-grained performance. This baseline network is established to evaluate how our
NPID-trained representations from fundus images without expert labels compare to those
from a network supervised-trained with expert labels.

t-SNE visualization & Search Similarity

To assess neighborhoods of learned features, we evaluated search similarity and t-Distributed
Stochastic Neighbor Embedding (t-SNE) visualizations. Search similarities show how a given
query image’s severity is predicted based on nearest neighbor references, and t-SNE visual-
izations show us how all the fundus images are distributed across neighborhoods of visual fea-
tures chosen by the network. Specifically, t-SNE maps feature vectors from high-dimensional
to low-dimensional coordinates while approximately preserving local topology. Here, we map
the encoded 64D features onto 2D coordinates, wherein coordinates that are near each other
in 2D are also near each other in the original feature space, meaning they are similarly en-
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coded because they share visual features. Although t-SNE visualizations can distort some
mapping from high dimensional to 2D feature spaces, our claims about NPID feature group-
ings were confirmed by visual review by a board-certified ophthalmologist (GY), and are
thus based on the original images. The t-SNE visualization is used as a tool to discover
these images faster for additional review. Thus, we can color each 2D coordinate by the
known labels for each fundus image in the training set to observe which images are encoded
near to each other and what visual groupings emerge from these locally similar encodings.
This process is label agnostic, so evaluation across multiple domains of labels (e.g. 2-step
AMD severity, 4-step AMD severity, drusen count, media opacity, etc.) is possible without
retraining, unlike a supervised-trained network.

Hierarchical Learning

Because NPID appears more suitable for coarse-level than fine-level classification across
dependent classes, we split up the 9+3-step dataset into each of the 4-step classes. We
trained the NPID network on only no, early, intermediate, or advanced AMD images, then
evaluated NPID’s ability to discriminate between the three fine 9+3-step classes within
each coarse 4-step class to identify which of the 9+3-step classes appear to show less visual
discriminability than the grading rubric suggests.

3.3 Results

Accuracy in grading AMD severity We first evaluated NPID performance on a 2-step dis-
crimination task for detecting advanced AMD (CNV and/or central GA), and found that our
self-supervised-trained network achieved an unbalanced accuracy (94%) that is comparable
to the performance of our supervised-trained CNN (95.8%), a similar published supervised
network (96.7%) or trained ophthalmologist (97.3%) [93]. The balanced accuracy, which
is more applicable due to dataset imbalance, was also similar between the self-supervised-
trained NPID (82%), our supervised-trained network (92%), the published supervised net-
work (81%), and ophthalmologist (8%) (Figure 3.6a). Next, we compared the balanced
accuracy of NPID with another supervised algorithm to distinguish “referable” AMD (in-
termediate or advanced) from no or early AMD, and found that our self-supervised-trained
network performed only slightly worse (87%) than our supervised-trained network (90%), the
published supervised network (92%), and ophthalmologist (96%) [18], despite never learning
the class definitions directly (Figure 3.6b). For grading AMD severity using the 4-step scale,
NPID achieved a 65% balanced accuracy, which was comparable to our supervised-trained
network (75%), the published network (63%), and ophthalmologist (67%)(Figure 3.6c) [18].
In particular, the confusion matrix for NPID demonstrated superior performance for distin-
guishing early AMD (class 2) as compared to both the published supervised network and
human expert (Figure 3.6d) [18].
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When applied to a finer classification task, NPID only achieved a balanced accuracy of
25% on the 9+3-step scale, as compared to 40% using our supervised-trained network and
74% using the published supervised network [54] that utilized the same backbone network
as our NPID approach. We achieved this balanced accuracy score using k=12 for wkNN,
although we also tested k=5, 8, 23, and 50, and found that results were mostly consistent
across different k-values (Figure 3.4b). Even though our most class-homogenous neighbor-
hoods are defined by k=12 neighbors, they are still mostly coherent with k=50 neighbors,
which was how NPID was originally evaluated on the ImageNet dataset 24. With k=50,
28% shared the query image’s label while 68% were within 2 steps of the correct 9+3-step
label (Figure 3.6e). Even for cases with incorrect 9+3-step class predictions, the 50 near-
est neighbor images shared the query’s 4-step class label 56% of the time, which accounts
for the higher accuracy of our network in the 4-step classification task. Thus, although
self-supervised learning achieves lower supervised wkNN performance on the finer 9+3-step
AMD severity scale compared to binary or 4-step AMD classifications, incorrect predictions
deviate minimally from ground-truth labels. We confirmed our findings using linear SVM
classifiers, which achieved a 26% balanced accuracy for 9+3-step classification consistent
with the wkNN results.

We can see that functionally, instance discrimination learns representations that are
salient to coarse-level classification. Matching human performance, especially for the the
class hardest to re-grade by humans, implies our implementation is maximizing performance
on this dataset.

Similar to learning on ImageNet, the nearest neighbor retrievals from NPID learning
show successful classification is driven by features that are correlated with the task (i.e.
object features for ImageNet classes, disease phenotypes for 12-step AMD severity classes).
However, the same could be said for many failed classifications.

The apparent visual similarity between query and retrievals for failure cases leads to two
questions: (1) Is the 12-step scale necessary for effective disease classification, especially
when the primary use of this standard is to estimate closeness to advanced AMD, and (2)
Is NPID organizing features that are relevant to other clinical applications, as well?

Network Behavior

To discern how the NPID network visually organizes images from different AMD classes,
we employed t-SNE visualizations which mapped encoded 64-dimensional features onto 2-D
coordinates. On the 4-step AMD severity scale, fundus images with no (blue), intermediate
(yellow), and advanced (red) AMD formed distinct clusters, while early AMD (aqua / green)
images are scattered throughout the plot (Figure 3.7a), which likely explains the lower per-
formance in this class (Figure 3.6d). On the 9-step AMD severity scale (Figure 3.7b), the
t-SNE plot appear similar to that of the 4-step scale, as each of the 4 major classes on the
simplified scale are dominated by one or two of the finer classes within each subset (Figure
3.1b), and may account for the poorer performance of our self-supervised-trained network
on the 9+3-step task.



CHAPTER 3. SELF-SUPERVISED REPRESENTATIONS FOR MEDICAL RETINAL
DATA 22

To determine which AMD features contributed most to the self-supervised learning, we
mapped AREDS reading center-designated labels including (1) drusen size, area, and type,
(2) depigmentation or hyperpigmentation area, and (3) total or central GA area onto the
t-SNE plots (Figure 3.8). We found that drusen area provided the most visually distinct
clusters that matched the separation of the 4-step severity scale. GA area and depigmenta-
tion correlated well with advanced AMD classes as expected, while larger drusen size or soft
drusen type corresponded to intermediate AMD classes.

We can do more than color-code instances by ground truth severity, like color-code them
according to K-means clustering performed on the original 64D vectors (K=4). This shows
that there is a clear representational boundary between instances with and without AMD
severity. If we investigate individual neighborhoods along this boundary, and separate each
neighborhoods by its K-means clusters (so the separation is in the original feature space),
we see neighborhoods correlated with other domains.

To identify other physiologic or pathologic phenotypes beyond AMD features, we per-
formed K-means clustering on all training images using a K-value of 4, based on the presence
of 4 coarse classes in the 4-step severity scale. We observed one cluster (Cluster A) which
correspond to images with no AMD, and three other clusters (Clusters B, C, and D) which
appear to straddle AMD classes, suggesting that these latter groups may be distinguished
by features unrelated to AMD pathophysiology (Figures 3.10a-b). A closer examination of
cluster B images near the border between AMD and non-AMD classes revealed eyes with
a prominent choroidal pattern known as a tessellated or tigroid fundus appearance (Figure
3.10c) – a feature associated with choroidal thinning and high myopia 41. Cluster C images
near this border contain fundi with a blonde appearance (Figure 3.10d), often found in pa-
tients with light-colored skin and eyes, or in patients with ocular or oculocutaneous albinism
42. Images from cluster D in this area showed poorly-defined fundus appearances that were
suspicious for media opacity (Figure 3.10e). To determine if this cluster may include eyes
with greater degrees of lens opacity, we overlaid the main t-SNE plot with labels for nuclear
sclerosis, cortical cataracts, or posterior sub-capsular opacity from corresponding slit lamp
images obtained in AREDS, and found that eyes in cluster D corresponded to a higher de-
gree of both nuclear and cortical cataracts (Figure 3.9). Hence, fundus images contain other
ophthalmologically-relevant information that are not constrained to the retina, and K-means
clustering of retinal images can also identify eyes with tessellated or blonde fundi as well as
visually-significant cataracts.

3.4 Conclusion

In this study, we successfully trained a self-supervised neural network using fundus pho-
tographs which could be used with a supervised evaluation method to predict AMD severity
across different human-defined classification schema, reveal AMD features that drove net-
work behavior, and identify novel pathologic and physiologic ocular phenotypes, all without
the bias and constraints of human-assigned labels during the training process. NPID per-
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formance was comparable to a supervised-trained CNN using the same backbone network,
previously-published supervised networks, and human experts in grading AMD severity on a
4-step scale (none, early, intermediate, and advanced AMD) [18], and in binary classification
of advanced AMD (CNV or central GA) [93] and referable AMD (intermediate or advanced
AMD) [18]. Our self-supervised-trained network also performed similarly to a supervised-
trained network that was trained with both fundus images and genotype data on a custom
3-step classification of class 1, class 2-8, and class 9-12 on the 9+3-step severity scale (65%
vs. 56-60%) [136]. Our results suggest that even without human-generated labels during
training, self-supervised learning with parameter-frozen supervised evaluation can achieve
predictive performance similar to expert human and supervised-trained neural networks.

Self-supervised learning using NPID has significant advantages over supervised learning.
First, eliminating the need for labor-intensive annotation of training data vastly enhances
scalability and removes human error or biases. Also, NPID predictions resemble ophthal-
mologists more closely than do supervised networks (Figure 3.6d). Like humans, the self-
supervised-trained NPID network considers the AMD severity scale as a continuum and the
relationship of adjacent classes. By contrast, supervised-trained algorithms generally assume
independence across classes, are susceptible to noisy or mislabeled images, and may produce
more egregious misclassifications. Because the NPID algorithm groups images by visual
similarity rather than class labels, inaccurate predictions can be salvaged by other nearest
neighbors during group voting.

In our study, we probed the NPID network’s behavior and found that AMD features such
as drusen area drove predictions of AMD severity more than drusen size or type, or area of
pigmentary changes. Using hierarchical learning and spherical K-means clustering, we also
identified eyes with non-central GA among those with intermediate or advanced AMD based
on proximity to eyes with central GA (class 10), even though this feature is not encoded in the
human-labeled AMD severity scales. Our findings suggest that self-supervised learning can
more objectively identify certain AMD phenotypes such as drusen area or GA presence which
may better reflect disease pathophysiology, and enable the development of more unbiased,
data-driven classification of AMD severity or subtypes that could better predict disease
outcomes than human-assigned grades. Interestingly, K-means clustering also identified
images with central GA that appeared mislabeled as intermediate AMD, further highlighting
the ability of an self-supervised-trained network to discover miscategorized images in ways
that label-driven supervised learning cannot.

Another notable feature of self-supervised learning is the ability to identify non-retinal
phenotypes from fundus images, including camera artifacts (lens dirt or flare), media opacity
(cataracts or asteroid hyalosis), and choroidal patterns (tessellated or blonde fundus). While
we identified these features by spherical K-means clustering using a K-value of 4, additional
cluster resolution could unveil additional pathologic or physiologic phenotypes. Future stud-
ies using von-Mises mixture models for spherical K-means clustering, which do not assume
identical cluster size, may enable smaller, localized clusters of phenotypic groupings to be
identified. Thus, the application of NPID may not be limited to AMD grading, and its po-
tential supersedes that of supervised-trained networks that are limited to the classification
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task for which it is trained.
The takeaway from this project is that we should shift our mentality of how to tackle

medical datasets. The general procedure is to label all collected images, but that requires
expensive expertise and leads to bias that can be irrelevant to disease progression. In addi-
tion, cluster analysis reveals that medical images like retinal images can represent features
across different tasks. This suggests tools like NPID could assist clinicians organize and label
medical images distributed across multiple tasks with minimal bias and learned data-driven
groupings.
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Figure 3.1: 9+3-step and 4-step AMD severity scales & data distribution. (a) Dendogram
showing representative images from each of the 9+3-step AMD severity classes as defined
by the reading center for AREDS, and corresponding simplified 4-step AMD severity classes
including no AMD (blue), early AMD (aqua), intermediate AMD (yellow), and advanced
AMD (red). (b-c) Histogram plots across training, validation, and testing labels for the (c)
9+3-step and (c) 4-step AMD severity scales, across a random 70:15:15 split of the dataset.
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Figure 3.2: AREDS-defined grading rubric for AMD feature detection. Grid circles are at
1/3, 1, and 2 disc diameters with a standard inner circle diameter of 500 µm; The standard
circles have the following diameters and areas: C-0, 63 µm and 0.0017 DA; C-1, 125 µm and
0.0069 DA; C-2, 250 µm and 0.028 DA; I-2, 354 µm and 0.056 DA; O-2, 650 µm and 0.19
DA; and 0.5 DA, 1061 µm and 0.50 DA. More detail can be referenced in Figure 3.11
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Figure 3.3: Preprocessing steps for difference with Gaussian filtering.(a) Comparison of pre-
processing steps on representative fundus image, and (b) corresponding azimuthally-defined
1D power spectrum. Blue, orange, and green power spectra lines correspond to the images
in (a), while the red line corresponds to the power spectrum of natural images.
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Figure 3.4: Balanced Accuracy Across Different Final Layer Sizes for NPID (Top) and Differ-
ent K for wkNN voting (Bottom). (a) Representative plot showing the balanced accuracy for
NPID trained at different sizes for the final layer representations, with and without transfer
learning from ImageNet (i.e. pretraining). Solid lines correspond to the AMD severy clas-
sification task for the 9+3 Step labels from the AREDS Reading Center and dashed lines
correspond to the 4 Step labels from the AREDS Reading Center. “With Pretraining” means
the network was first pretraind on ImageNet with NPID and then finetuned on AREDS data,
whereas “Without Pretraining” means only training on AREDS. (b) A plot showing the bal-
anced accuracy results for the predictions determined from weighted k-Nearest Neighbors,
across different values of k, on the output vectors derived from ResNet-50 trained using
NPID.
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Figure 3.5: Schematic of NPID training & testing on retinal fundus images. Schematic
diagram of the process by which Non-Parametric Instance Discrimination (NPID) trains
a self-supervised neural network to map preprocessed fundus images to embedded feature
vectors. The feature vectors and associated AMD labels are used as a reference for queried
severity discovery through neighborhood similarity matching. The NPID network can then
be analyzed to measure balanced accuracy in AMD severity grading, explore visual features
that drive network behavior, and discover novel AMD-related features and other ocular
phenotypes in a data-driven manner with minimal bias.
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Figure 3.6: Comparison of NPID-trained performance with supervised-trained networks and
human experts. (a-c) Comparisons of the self-supervised-trained NPID network performance
with a supervised-trained ResNet-50 network, as well as published supervised baselines and
human ophthalmologists as reported by *Peng, et al. [93] and #Burlina, et al. [18] for binary
classification of advanced AMD (a) or referable AMD (b), as well as the 4-step AMD severity
scale (c). (d) Comparison of confusion matrices of our self-supervised-trained network with
our supervised-trained network, published supervised baselines, and human expert gradings
reported in #Burlina, et al. [18] for the 4-step AMD severity scale task. (e) Confusion
matrices of the NPID network and our supervised-trained network on the 9+3-step AMD
severity classification task.
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Figure 3.7: Self-supervised NPID clusters fundus images based on visual similarity. t-
Distributed Stochastic Neighbor Embedding (t-SNE) visualizations of NPID feature vectors
colored by (a) 4-step and (b) 9+3-step AMD severity labels, where each colored spot rep-
resents a single fundus image with AMD severity class as described in the legend of Figure
3.1. (c) Representative search similarity images for successful and failed cases for the 9+3-
step AMD severity scale task. The leftmost column corresponds to the query fundus image,
while the next 5 images on each row correspond to the top 5 neighbors as defined by network
features. The colored borders and numeric labels for each image define the true class label
defined by the reading center for AREDS, and correspond to the color scheme in Figure 3.1

.
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Figure 3.8: AMD-related fundus features that drive NPID-trained network predictions. t-
Distributed Stochastic Neighbor Embedding (t-SNE) visualizations of NPID feature vectors
colored by AREDS reading center labels for AMD-related fundus features, with correspond-
ing stacked bar plots showing ratio of each label across the 4-step AMD severity classes.
Labels include (a) drusen area, (b) maximum drusen size, (c) reticular drusen presence, (d)
soft drusen type, (e) hyperpigmentation area, (f) depigmentation area, (g) total geographic
atrophy (GA) area, and (h) central GA area. Category definitions for each fundus feature
are shown in Figure 3.11.
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Figure 3.9: Data-driven discovery of central and non-central geographic atrophy. t-
Distributed Stochastic Neighbor Embedding (t-SNE) visualizations of NPID feature vectors
colored by (a) 9+3-step AMD severity labels and (b) spherical K-means cluster labels with
K=6, based on hierarchical learning using only fundus images with referable AMD (inter-
mediate or advanced AMD). A selection (outlined area) of intermediate AMD cases (classes
7-9) adjacent to advanced AMD cases (classes 10-12) from clusters A-C show (c) fundus
images with non-central GA (top row) and central GA (bottom row). t-SNE visualizations
of NPID feature vectors colored by (d) with 9+3-step AMD severity labels and (e) spherical
K-means cluster labels with K=3, based on hierarchical learning using only fundus images
with advanced AMD (classes 10-12). A selection (outlined area) of CNV cases (class 11)
adjacent to images with central GA with or without CNV (classes 10 and 12) from cluster
C show (f) non-central GA.
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Figure 3.10: Data-driven discovery of ophthalmic features. t-Distributed Stochastic Neighbor
Embedding (t-SNE) visualizations of NPID feature vectors colorerd by (a) 4-step AMD
severity labels and (b) spherical k-means (K=4) cluster labels. Fundus images that straddle
no AMD vs. early, intermediate, or advanced AMD within K-means cluster B (yellow-purple
circle), cluster C (teal-blue circle), and cluster D (green-red circle), corresponded to fundus
images with (c) tessellated fundus, (d) blonde fundus, and (e) media opacity. (f) t-SNE
visualization of 9+3-step AMD severity labels with a selection (outlined areas) of fundus
images with no AMD (class 1) located within clusters of early, intermediate, or late AMD
classes corresponded to fundus images with (g) asteroid hyalosis, (h) camera lens flare, and
(i) camera lens dirt.



CHAPTER 3. SELF-SUPERVISED REPRESENTATIONS FOR MEDICAL RETINAL
DATA 35

Figure 3.11: Class definitions for AREDS Reading Center labels. Descriptive tables detailing
label definitions for (a) drusen area, (b) max drusen size, (c) reticular drusen presence, (d)
soft drusen type, (e) hyperpigmentation area, (f) depigmentation area, (g) total geographic
atrophy (GA) area, (h) central GA area, (i) nuclear cataracts severity, (j) cortical cataracts
severity, (k) posterior sub-capsular cataracts severity. In the table definitions, C, I, and
O correspond to groups of open circles, where C=Central, I=Inner, and O=Outer. Their
numbers correspond to the Disc Diameter (DD) in relation to the average Disc Area (DA),
C0=0.042 DD, C1=0.083 DD, C2=0.167 DD, I1=0.120 DD, I2=0.241 DD, O1=0.219 DD,
O2=0.439 DD.
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Chapter 4

Self-Supervised Representations for
Zebra Finch Audio Data

4.1 Introduction

We have shown evidence that NPID can functionally train a CNN to perform a task aside
from object classification on images with natural statistics, where the actual task requires
medical expertise to perform classification. We also showed that investigating the learned
features reveals insights into the underlying medical data: (a) data-driven learning without
expert guidance reduces bias in disease classification, and (b) cluster-analysis tools can aid
clinicians discover expert-level groupings across a range of medical tasks on the same data.
We now want to evaluate NPID’s use in another domain that requires biological expertise
across a non-natural statistical distribution of data: zebra finch audio vocalizations.

Audio is a different modality than vision, so it is not obvious whether we can use NPID
to train a network to discriminate task-relevant features, or if we need expert-level guidance.
Furthermore, audio samples are 1D waveform signals, but we want to extract more infor-
mation by converting the inputs into 2D images. While structured representation learning
is necessary for learning on both modalities, one difference between vision and audio is the
level of contrast between signal and noise. How will NPID organize features and how can
we probe representations without other feature labels?

Supervised Audio Processing

Supervised learning has been applied to biological audio data in the past, with reasonable
classification performance using older machine learning techniques but with clear limitations.
The first is that most research studies perform supervised learning for species classification,
like for for birds, bats, or dolphins sounds in the wild [73, 28, 115, 41]. This implies that
the level of discriminability learned across audio samples cannot separate call types within a
species. The second limitation is that even if a study is performing intra-species classification
of audio samples, their best results come from extracting expertly-defined audio features and
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learning to discriminate in this predefined feature space [37]. This approach moves away from
biologically-inspired learning, which can both data-driven and expert-driven. Furthermore,
supervision constrains the learning space to a fixed set of boundaries for call representations.

CNNs for Audio Processing

Deep learning is being applied in this domain more recently. Specifically, sound event lo-
calization and detection with neural networks in general is gaining interest in the research
community [96]. Sound as input modality can help in robotic navigation tasks either to nav-
igate towards sounding objects [26, 25, 24], provide layout information [29, 100, 46], or to
tracking and segment sound events, even behind audio occlusions [125, 45]. Impact sound can
also be leveraged for object and material classification [23, 143]. In videos, the audio-visual
signal allows to separate individual voices or musical instruments [47, 121], and improves
action recognition as computationally favorable modality providing additional features [134,
68].

Data-driven Audio Learning

Self-supervised and unsupervised learning organizes stimuli based on features that are not
predetermined by human labeling. Unsupervised and semi-supervised neural networks have
been developed using several methods, including instance-based learning, exemplar learning,
deep clustering, and contrastive learning [36, 9, 142, 92]. As a contrastive learning approach,
Non-Parametric Instance Discrimination (NPID) was previously designed for complex visual
tasks [133]. Networks trained with NPID first learn to identify each stimulus as being
uniquely encoded compared to every other stimulus, so each image’s feature vector gets
pushed toward its corresponding feature vector in the previous epoch, and away from many
other negative samples. As long as the feature encodings are not too high-dimensional, this
contrastive push and pull creates distinct neighborhoods of training feature vectors that
are task-relevant, and can subsequently be used for supervised evaluation. After that initial
training, NPID predicts a stimulus class label by determining the most common label among
its nearest neighbors within a multi-dimensional hypersphere of encoded feature vectors
drawn from training stimuli. In addition, data augmentation can boost NPID training
performance across training epochs by enforcing a level of transformation invariance (e.g.
separately cropped views of the image represent positional invariance). In previous work,
this technique significantly outperforms other unsupervised networks for ImageNet, Places,
and PASCAL Visual Object Classes classification tasks [133].

In general, NPID features are primarily learned through contrastive repelling of negative
pairs of instances. Better contrastive learning occurs with more negative samples [122,
60], but that is limited by computational memory. Data augmentation effective creates
more negative samples for contrastive learning. Further, data augmentation helps create
transformation-invariant encodings, which are harder to repel using only low-level image
differences. This encourages common repulsion of samples from the same class away from
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samples from other classes. However, more solutions than data augmentation are possible for
better contrastive learning. An updated version of NPID attempts to modulate the distance
between the negative pairs based on presumed cross-level hierarchy of instances and groups
[130].

CNNs for Biological Audio Data Like imagery data (e.g., camera trap images), the ecological
community has also actively applied deep learning to bioacoustics for all sorts of applications.
For example, using deep learning to detect and identify animal species from audio clips (e.g.,
bird species and marine animals) [67, 59, 2, 147, 146, 12, 113]. In addition, using deep
learning methods to classify and understand animal behaviors and functional calls [101, 145,
85]. However, most previous studies focus on supervised machine learning, which requires
a large number of ground-truthed annotations for the training process. Thus, to explore
methods that do not rely on annotations, some studies also introduce unsupervised learning
methods (such as Gaussian Mixture Models and Auto Encoders) to cluster bioacoustics data
without annotations [85, 89, 31]. However, previous unsupervised bioacoustics studies are
either based on relatively simple tasks (e.g., clustering between two independent categories,
fish and whale) [89] or have limited data sizes and performance [31].

Audio Representations in the Brain

Vocal communication plays a central role in coordinating the behavior of social animals.
Many vertebrate species, such as the spotted hyena [73], the African elephant [115], the
vervet monkey [28] and a myriad of bird species [41, 32, 37], use a large repertoire of call-
types in clearly distinct behavioral situations to signal danger, aggression, distress and hunger
or to encourage cooperation, pair-bonding, and mating intentions. This repertoire of call-
types has been called the language” or animals [80]. Although comparisons between human
language and animal vocal communication quickly become controversial as one addresses
higher linguistic functions [109], it is clear that some of the computational issues faced by
computers for automatic speech recognition and by the brain of humans and other animals are
similar: the identity of the words in the speech stream or of the call-types in an animals’ call
exchanges needs to be determined. This sound categorization task is made possible because
of each phonemic unit or each call-type is characterized by a set of identifying acoustical
features. However, it is also a difficult task because these identifying acoustical features
can be ”high-level” (e.g. formant transitions for distinguishing among stop consonants) and
because of the acoustic variability that is found across vocalizers [38], across renditions from
the same vocalizer (e.g. in different states emotional states)[94], and because information
bearing structure in the sound can be degraded by propagation [86] or contamination by
other sound sources [84]. Thus, in order to understand the computational steps that allow
computer algorithms or brains to recognize words in the speech stream or vocal-types in
vocal exchanges in animals it is essential to, first, describe the nature of the identifying
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acoustic features and, second, to understand how this acoustic code can be discovered by a
computer or a brain amidst the variability found in natural soundscapes.

Researchers in human phonetics or animal bioacoustics have made significant progress in
the first task: describing potential acoustic codes that could be used to discriminate among
the group of sounds making these meaningful categories [16, 126, 111, 55]. At the same
time neurophysiologists have made some progress in investigating the neural representation
of these call categories and in doing so determining whether the acoustical features used by
the brain are similar to those found in bio acoustical analyses.

The sound features extracted by high-level single auditory neurons have been described
by their single or multiple spectro-temporal receptive fields [120, 6, 70] and the features
extracted by these receptive fields can be related to specific acoustical structure found in
natural sounds [63, 132, 103, 21].

Much less is known about the second task in the biological systems: the discovery of the
set of relevant and maybe even optimal high-level features for performing the categorization.
In humans, the developmental stages of speech perception have been well described [74] but
the underlying brain changes that occur in speech areas during learning and development
remain unknown. In animals, the recognition of identifying features can be innate, in which
case this discovery phase occurs on an evolutionary time scale [48], or can be learned by
experience as in humans [110]. Ultimately, however, we are do not know how the evolved or
learned neural representation for high-levels auditory features that could be used to catego-
rize vocalizations into their meaningful units emerge in brain systems. It is in this domain
that one can obtain significant insights by leveraging the power of machine learning ap-
proaches to automatic sound recognition. More precisely, we propose to analyze the features
extracted by CNNs trained at a call-type discrimination task and compare them to those
that have be obtained in neurophysiological recordings in response to the same stimulus set.

We will test the hypothesis that efficient representations of high-level acoustic features
in CNN and auditory systems can arise by statistical learning: the repeated exposure to the
underlying statistical structure of noisy stimuli is sufficient to generate high-level represen-
tations that capture the underlying structure (e.g. categories) of the stimulus [42]. More
specifically, we will test the performance in the call-categorization task by an self-supervised
CNN and compare the acoustic features extracted by such CNN to those obtained in high-
level auditory areas. We will perform this analysis using the vocal communication system
of a social songbird, the zebra finch which we have studied using bioacoustical, behavioral
and neurophysiological analyses. The self-supervised CNN used will be based on a deep
convolutional network architecture trained by a form of instance-based learning procedure
called Non-Parametric Instance Discrimination (NPID) [133].

Audio Representations in Zebra Finches

In this study, we used a CNN backbone trained via NPID on the large data base of call-
types of the zebra finch repertoire described in [37]. We first tested whether the represen-
tation extracted in the output layer of the unsupervised CNN could be used for classifying
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novel-call types based on the nearest neighbor voting scheme and whether the classification
performance of this CNN would match or exceed the one that was obtained with supervised
classifiers or by decoding the neural activity. Second, we assessed the nature of the extracted
sound feature representation, by describing the responses of the output layers in terms of
their MTF. We compared these artificial MTFs to the neuronal MRFs that we obtained in
our neurophysiological data to determine whether neural responses in high-level auditory
areas could have been learned simply by statistical learning implemented as an instance
discrimination.

Receptive Fields are a descriptor of what input pattern a given learned filter is tuned
toward. These were originally created for neuroscientific experiments to evaluate how suc-
cessive layers of the cortex process different hierarchies of features. A neuron’s behavior
(through recordings like fMRI, EEG, cell spike activity, etc.) can be correlated with differ-
ent measurements of input features. Assuming sampling happens over a well-distributed set
of inputs, we can estimate which input features drive changes in neuronal output activity.
Similar receptive fields have also been generated for neural network analysis, both for well-
defined input features across many domains of features [8], as well as for class-correlated
input features [148].

Ultimately, we want to (1) evaluate if and how a data-driven CNN can learn salient
representations for this audio task, with biologically-plausible input data, and (2) quantify
receptive fields for output neurons and evaluate if these learned representations compare to
those from neural response models for the same task.

Zebra Finch Audio Dataset

Zebra finches are highly intelligent, social birds that depend on functional calls to one an-
other. Even as chicks, they interact and mature with groups of up to 100 zebra finches,
so they are able to distinguish and communicate with individuals across time. Domesti-
cated zebra finches also reproduce almost every single call a wild zebra finch would (except
for a group, migratory call). This means that zebra finches are a valuable research animal
for understanding how lower-level vocalizations can relay and be processed into higher-level
concepts.

The audio dataset across domesticated zebra finches was collected by Elie and Theunissen
[37]. There are 3433 stereo audio waveforms with stereo channels across the 12 call types,
which vary in temporal amplitude envelope (i.e., the limits of the waveform shape over time),
intensity, and frequency, all visible through the waveforms in Fig 4.1. For instance, some
classes (e.g., Te, Th, Tu) have samples much shorter than others (e.g., DC, Ag, So), so we
would expect higher frequencies to be more relatively salient for representing the first group.
Alternately, even across classes with long samples (e.g., Be, Ag, Di), we see differences in
intensity and frequency distribution.

Fundamentally, a challenge of this dataset is that it is imbalanced from all perspectives.
Even seen in Figs 4.1 and 4.1, the distribution of waveform counts and call length per
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functional call all long-tailed distributed across call type, age, and individual. Can NPID
functionally separate these different distributions of inputs?
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Figure 4.1: Data Plots for Zebra Finch Vocalizations. (Top) Representative samples from
each vocalization class, sorted by sample count per class (counts in parentheses). (Bottom
left) Histograms showing sample counts per individual for adult and chick zebra finches.
(Bottom right) Sorted bar plot showing min and max waveform lengths per vocalization
class

Spectrograms

Even without assessing empirical performance, spectrograms are a theoretically salient in-
put representation for audio classification, and have been commonly used [67, 59, 146] for
deep learning experiments. Mathematically, spectrograms are short-time Fourier transforms
(STFTs) that calculate spectral information within overlapping temporal windows; each ”col-
umn” in the spectrogram image represents the frequency distribution of one time window.
As a whole, spectrograms visualize a distribution of frequencies across a given waveform,
and 2D spectrogram activity visually matches 1D waveform activity over time Figure 4.2.
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Figure 4.2: Sample Waveform and Spectrogram. Representative Sample Waveform and
Corresponding Spectrogram for a 0.5 second audio clip from the ’Be’ (’Begging’) call type

When interpreting a spectrogram, local energy peaks are referred to as formants, and
they indicate that band of frequencies form a dominant part of the incoming sound. These
formants can be described by the audio features they impact. Two common features for
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speech recognition are pitch and timbre. Pitch is easier to understand, as most people can
intuitively match a given tone to an frequency range (i.e. low, mid, or high), though the same
tonality can be equated by different harmonics of the same fundamental frequency. Timbre
is more caused by the larynx or vocal chord. Consequently, two people can speak at the
same pitch with different timbres (e.g. consider Barack Obama and Arnold Schwarzenegger
trying to match the same pitch – they will still sound different). The individual differences
in their throats and mouths create different vowel sounds, which can be as salient to specific
vocalized call types as it can be different individuals.

When assessing zebra finches, we see more vocal similarities than differences across indi-
vidual birds, so we expect timbre to be salient to functional vocalizations.

Modulation Power Spectrum

The Modulation Power Spectrum (MPS) of a given audio signal is another representation
that shows temporal dynamics of pitch and timbre. However, unlike a spectrogram, it is
not sensitive to start time. It is computed as a spatially-weighted average of overlapping
windows across a spectrogram, specifically with a 2D gaussian weighting. For simplicity,
the MPS can be equated to a second Fourier transform applied on the STFT of a given
waveform, even though that is not entirely accurate.

This new audio representation shows the dominant temporal frequencies in a given signal,
independent of when they are, while also representing how those frequencies shift over time.
When a given energy band is more asymmetric to the left of the y-axis, we describe this as
an an ”upsweep”, and the opposite as a ”downsweep”.

We can assess the periodicity of a signal’s pitch along the y-axis of the MPS. Note, that
the frequency representation is inverted. 2cyc/kHz corresponds to 500Kz, and energy bands
above it represent lower frequency, while energy bands below it represent higher frequency.
The timbre of a signal is described by the formant information just above the x-axis, while
the x-axis describes the rhythm of the signal 4.3.

Just as a spectrogram represents low-level information akin to low-level cochlear process-
ing, the MPS can be viewed as representing mid-level audio features. One example feature
is tonality, which can be viewed analogous to mid-level visual features, like convexity. This
may not be directly tied to spectrogram features, but they derive from them.

It is relevant to establish the baseline features that can be represented in this feature
space. The two important baselines are the average MPS per sample, and the average MPS
per class. The average MPS signal per sample (seen in Fig 4.4 is subtracted from every
sample’s MPS, so we assess an input relative to the calculated average. This means we
analyze a model’s response sensitivity relative to a perceived common experience, which is
more relevant to feature extraction (e.g. the redder the apple compared to raw green, the
riper it is). The same feature assumptions are for true class-average MPS plots, so sample
averages are removed from class averages (Fig 4.5) to assess the function of neuronal receptive
fields in that new class-average space.
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Figure 4.3: Diagram of Modulation Power Spectrum Features. The interpretation of audio
features from MPS representations is different than for spectrograms. Here, the x-axis rep-
resents temporal modulations along the spectrogram, while the y-axis represents spectral
modulations. The main areas of focus will be the pitch along the y-axis, and the timbre
formants above the origin.

4.2 Methods

Preprocessing

At each epoch of training or testing, input samples are again preprocessed, but our model’s
validation accuracy derives from a low amount of preprocessing. Contrary to standard deep
learning procedure, common applied transformations did not boost performance, even ones
that were designed for audio learning (not shown). For a published supervised deep learning
model, they found that applying transformations directly on the spectrogram reduced error
rate for word classification [90]. They applied time masking (masking spectrogram rows with
fixed values), frequency masking (masking spectrogram columns with fixed values), and time
warping to learn representations that are invariant to occlusions and speed changes in audio
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Figure 4.4: Mean-Subtracted MPS. Representative plot showing the average MPS removed
from a sample’s MPS so the final difference can be analyzed without bias. It is important
to assess differences relative to the average, as neural preferences are relative not absolute.
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Figure 4.5: Average MPS Per Vocalization Class. Average MPS plotted per vocalization
class, with with the same colorbar limits. Here, the average MPS per sample is removed for
each class plot, as it is important to assess differences relative to the average, since neural
preferences are relative not absolute

data. We attempt to explain this rejection of transformation viability in the Discussion.
Most of the pre-processing is fixed with each iteration. First, a 1D input waveform is

cropped to .5s and converted to a 2D input spectrogram. Even though STFTs compute both
the magnitude and complex phase in the Fourier domain, we ignore the angle information.
We could not improve performance with different ways to include phase in the input (not
shown). Second, the spectrogram magnitude is log-scaled to better visualize energy contrast.
Third, bandpass filtering was performed directly on the spectrograms. This was chosen as
filtering raw waveforms would be too complicated by creating aliasing effects that need to
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be extrapolated away). Finally, the 1-channel magnitude input was mapped to a 3-channel
color before training.

As an additional note, the spectrogram shown in Figure 4.2 visualizes the magnitude with
an RGB color map. While this representation may not exactly match the input for biological
auditory processing, it is holistically comparable. The ear separates an audio signal through
successively lower-pass filters, which ends up breaking down a sound signal into band-passed
signals across multiple bins of frequency filtering, and this frequency binning is analyzed over
time [79]. As such, this biological input pipeline compares similarly to that of a spectrogram
input.

The variable part of the preprocessing pipeline should be thought of as data augmen-
tation. As implied by recent experiments at Google, data augmentation can be necessary
for learning to discriminate audio samples (especially individual semantic units), since audio
data is generally limited [90]. We also know that data augmentation boosts NPID perfor-
mance [133] in general, so we expect data augmentation to be useful in data-driven audio
processing. Even though traditional data augmentation techniques did not work for our
pipeline, we still need to tackle the problem of minimal data. We augmented samples by
doing randomized time crops for our first preprocessing step.

Randomized time crops allows us to capture a signal at different start times, which works
for samples that are both shorter and longer than the fixed window for cropping. If a sample
is shorter than the time window, we include the whole signal and randomize ts start time. If a
sample is longer than the time window, we just take a random, fixed subset of the waveform.
This enforces a level of temporal invariance to learned features for each individual sample.
This way, our model does not expect the ”start” to a call to always be in the left part of the
spectrogram, or to always expect to experience the whole call to identify it.

In general, NPID is still susceptible to data imbalance, so the fixed-window time cropping
helped our model assess a more uniform distribution of temporal dynamics across samples,
without ignoring any data.

NPID Training and Evaluation

NPID training and testing is accomplished with the same general pipeline as described in
Chapter 3, as seen in Fig 3.5. For sake of brevity, this pipeline is not repeated in detail.
Input samples are preproccesed and fed into a ResNet-50 backbone for training, and output
encoding vectors are normalized with L2 normalization (i.e., mapped to unit vector represen-
tations). Each training sample is encoded into unit feature vectors and stored in a memory
bank for use across epochs. Instance discrimination is learned through contrastive learning
of differently preprocessed inputs. Positive pairs correspond to the same input sample across
epochs, and negative pairs correspond to different input samples. This contrastive push and
pull is weighted based on distance, where distances equal angles for unit vectors. This weight
is thus an softmax of cosine similarity for pairs compared to all pairs. For more detail, please
reference the original NPID training paper [133].
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The memory bank of training vectors is also used in NPID evaluation. Classification
with NPID-learned features depends on a voting scheme between nearest encoded training
samples and a given query called weighted kNN voting (w-kNN). Query inputs are encoded
through the NPID pipeline, and its distance (i.e., cosine similarity) is computed across k-
nearest neighbors of training vectors. Each training retrieval is assigned its expert label for
the task, and retrieved labels are tallied for the prediction of the query label. Just as the
loss function for training, the voting scheme for evaluation is exponentially weighted based
on distance, and a temperature hyperparameter determines just how exponentially weighted
the voting is. Just as in Chapter 3, the hyperparameter k for w-kNN voting is empirically
tuned across range of values between 5 and 50.

Analogous to t-SNE visualizations from Project 2, we generate Uniform Manifold Ap-
proximation and Projection (UMAP) visualizations for our training feature space. UMAP
approximations reduce dimensionality while preserving local topology just like t-SNE ap-
proxmiations, but also maintains more global structure, unlike t-SNE.

To compare with previously published data, we estimated the posterior probability along-
side class accuracy from w-kNN voting. The posterior probability estimates the likelihoods
of classifying each class given that the sample is from a given class, and relates to the con-
fusion matrix. We computed posterior probabilities using the same exponentally-weighted
cosine similarity of positive pairs to nearest neighbors from each class. To balance the prior
distributions, we normalized over an equal distribution of neighors from each class.

Lastly, 10-fold training and validation allowed us to evaluate generalizability with the
limited data available.

[Receptive Field Generation and Evaluation] We generate novel receptive fields in
the MPS feature space using a common receptive field pipeline. For a given output neuron
from our neural network, we take a weighted average of all input MPS, where the weights are
the output activation for that neuron. We refer to this receptive field as an MTF. We also
generated biological receptive fields from neuronal spike data from zebra finch recordings,
and refer to these as MRFs. Artificial MTFs were compared with biological MRFs, both
relative to the average MPS of all inputs. Because MTFs and MRFs are in same MPS space
defined by the same limits, we can compare the two receptive fields, for which we also use
cosine similarity.

To assess MTF representational salience relative to neuronal preferences, we performed
principal component analysis (PCA) on all the artificial MTFs. The principal components
(PCs) were generated in the MPS space. Using the top 3 principal components as bases,
we projected MTFs and sample MPSes into this orthogonally-defined space, and visually
compared distributions.
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4.3 Results and Discussion

Classification Performance and Retrieval Explainability

Our hyperparameter selection for w-kNN voting was empirically decided based on results
from crossfold training. For each run, classification accuracy was computed across all listed
k (5-50), and the k with the highest accuracy was chosen. Though not shown, this k=8.

Fig 4.6 shows class confusions for the run with 66% average class accuracy on validation
data, with the sample average being 68%. Notably, most classes are well-discriminable, with
Tu having the lowest class score of 35% and So having the highest class score of 97%. What
is additionally interesting is that the Di call was vastly underepresented compared to other
calls (Fig 4.1), but still outperformed Tu.

Furthermore, misclassification can be explained by the confusion matrix. For example,
poor Tu classification performance can be explained by class-confusion with Th, which is
still biologically plausible. Functionally, Tu and Th are variants of the same alarm call
type, so they can be viewed as sub-classes of the same super-class. However, we know from
Chapter 3 that NPID is not suitable for fine-grain classification of sub-classes, so we have
likely achieved near optimal discriminablity without modifying our data-driven process. In
addition, LT misclassifications with DC can also be biologically explained. LT and DC are
both variants of the same distance call, but across chicks and adults. Plausible explanations
are either (a) some learned representations for LT are invariant to pitch differences between
LT and DC, or (b) some LT data is more fundamentally similar to DC data than other LT
data.

Many class confusions can be explained by the UMAP visualizations of the encoded
training vectors. Fig 4.6 shows how all the training samples are distributed, color-coded by
functional class. Most notable are our two confusion pairs. Th and Tu overlap almost entirely,
so mapping them to the same class is reasonable. However, the LT and DC distributions
have only partial overlap. This partial overlap explains the partial confusion between LT
and DC.

Additional explanations for LT and DC confusions can be extrapolated from data plots.
Fig 4.1 shows that DC is vastly overrepresented compared to LT, so better DC classification
and more LT misclassification can be attributed to w-kNN bias derived from these distribu-
tional differences. Similarly, Fig 4.5 shows the average difference between DC and LT signals
in the MPS space. LT distribution is very similar to DC’s distribution, but with relatively
less energy at around 2cyc/kHz (500Hz signal frequency). This combined with misclassifi-
cation results suggest that some LT samples are closer to the average DC distribution than
the average LT distribution.

From Fig 4.7, we can see our best run’s posterior probability matrix compared to the
published baseline [37]. The average probability was 56%, which approaches performance
from the published baseline classifiers from neural responses on the same data. This difference
in average probability may be explained by different prior estimates per class, and different
priors may need to be evaluated.



CHAPTER 4. SELF-SUPERVISED REPRESENTATIONS FOR ZEBRA FINCH AUDIO
DATA 49

Similar to Chapter 3, we present example retrievals for correct and incorrect classifica-
tions. The advantage to using NPID over deep learning algorithms without memory banks is
we can visualize the exact images that drive a given prediction. Even though the underlying
features are learned from back-propagation just like every other network, neighborhoods of
features ultimately determine task performance, and those neighborhoods can be visualized.

Correct prediction retrievals show similar structures between training references and
query images. Fig 3.7 shows how Be, So, and Te samples can be correctly predicted by
spectrogram feature encoding, and these encoded features are visually separable. For exam-
ple, Te class samples can be described by single lower frequency energy bursts, whereas Be
and So can be described by 3 and 7 sound events, respectively, at higher frequencies.

Failed prediction retrievals also provide insights into the vocalization prediction task.
Fig 3.7 shows Th appears similar to Tu samples with less higher frequency energy. Sim-
ilarly, Be samples with more background noise appear indistinguishable from Ne samples.
These classes do tend to have longer waveforms (Fig 4.1), so longer time crops of waveforms
may improve separability of these classes, potentially at the expense of classes with shorter
samples. A future direction may be toward a model that generalizes across input temporal
lengths.

Lastly, with respect to failed classification retrievals, we see evidence for LT confusion
with DC that aligns with class MPS and UMAP visualization differences. Based on Fig 4.5,
we expect LT samples to have relatively less higher frequency energy, but some DC samples
have similarly less higher frequency energy. Since DC samples overrepresent the training
space, we expect these outlier DC samples to bias LT predictions.

These retrievals also provide evidence for why various transformations were not useful as
data augmentation for NPID training. This example of Be and So sample confusion could
also explain why time masking did not improve performance. Masking a Be sample could
mask the sample appear to have more sound events like So, and masking an So sample could
mask over sound events that would separate Be features from So features. Similarly, Ne and
Be class similarities could explain why blurring or random noise addition was not useful, as
they only increase similarities between the two. In addition, frequency masking could mask
over frequency differences between LT and DC samples, leading to further misclassification.
In general, masking and noise increasing transformations only increase sample similarity by
attenuating differences.

Receptive Field Analysis of MPS Features

Fig 4.9 shows 20 of the 32 MTFs (i.e., artificial receptive fields) generated as output activation
weighted averages of input MPS representations. Our assumption is that neural preferences
are positively correlated with output activations, so we want to visualize what MPS features
are correlated with the average input that drives a neuron’s activation. We aim to evaluate
if these MPS-defined receptive fields functionally describe neural preferences.

Early investigation of these MTFs seem to indicate response separability that useful for
vocalization discriminability. We index rows and columns starting at 1 for reference. For
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Row 1, Column 3 neuron, its MTF appears sensitive to dual harmonics at 1.5 cyc/kHz and
2 cyc/kHz, which is a plausible MPS of zebra finches sounds as they have separable left- and
right-halves to their larynxes that allow them to create two pitches at once.

Further, the neuron at Row 2, Column 2 has an MTF that exibits harmonics at 1.5
cyc/kHz that could be useful for separation of Be or Wh call types from others. In addition,
the neuron at Row 2, Column 5 appears to have the opposite sensitivity of features to the
neuron at Row 3, Column 5. The former MTF is sensitive to higher pitch but lower timbre
formants than the latter (note the inversion of spectral frequency at the y-axis compared
to spectrograms). This could help separate low frequency and high frequency features for
vocalizations with different vowel sounds.

We further compared these artificial MTFs with analogous biological MRFs generated
from zebra finch neuronal response data. Of the 364 zebra finch neurons whose activity was
recorded, the MRFs with the highest cosine similarity to artificial MTFs was discovered. Fig
4.10 shows 20 MRFs, each corresponding to its most similar MTF in the same grid loca-
tions as in Fig 4.9. We see staggering similarity in harmonics and general positive/negative
selectivity of different energies, especially for the individual MTFs called out previously.

Based on visual analysis of MTFs and MRFs, these MTFs appear relevant for zebra finch
vocalization classifcation. PCA should help us investigate if these MTFs actually encode a
range of features that are salient for this task, and if we can interpret neuron behavior
through MTFs. On face value, Fig 4.16 shows PCs of both domains of receptive fields being
structurally similar.

Fig 4.11 shows the projection of each MTF in red onto the top 3 PCs (axes), as well as
showing the projection of each sample MPS in blue onto the same PCs. The distribution of
MTFs matches the overall shape of the distribution of MPS samples, so these MTFs relate
to the input features encoded in this space. Further, Fig 4.12 shows separation of functional
vocalization, color-code samples by their ground truth class. Not only is this distribution of
encoded input features correlated with MTF response vectors along these orthogonal bases in
the MPS space, the features are functionally separable in this space. This is further evidence
that neuronal behavior can be described by MTFs.

In order to dive into the results, we also independently assess neuron MTFs. Individual
analysis of each neuron reveals three classes of behavior along these functional bases in the
MPS space. Figs 4.13, 4.14, and 4.15 show the vector projection of individual MTFs onto
the PC bases. Each figure also shows MPS projections of average input samples across the
5, 10, 20, and 40 samples that either maximally (red) activate or minimally (blue) activate
the corresponding neuron. Some neurons’ behavior can be linearly described by these bases
(e.g., Fig 4.13), as we can see the MTF projection vector lines up with the maximally and
minimally activating sample projects. Other neuron behaviors can be quadratically described
in this space (e.g., Fig 4.14), while others altogether require other non-linear descriptions
(e.g., Fig 4.13). These results imply that the PC bases of MTFs is an appropriate starting
point of quantifying first-order correlations of this feature space and neuronal behavior, but
higher-order properties can be also explored in the future.
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4.4 Conclusion

Just as in Chapter 3, we see data-driven deep learning can be applied to biological datasets
to functionally learn class representations with minimal bias. Here, w-kNN voting of NPID-
trained feature vectors yielded accuracy that compared to supervised models on pre-defined
acoustical features [37], showing that these data-driven features are as salient as expert-
defined features.

Additionally, NPID is also applied on a different domain of data: audio. We discover
that representation learning generalizes to this domain also, though object structures do not
easily correlate to those learned from vision.

Instead, MPS-defined receptive fields can functionally describe artificial neuronal behav-
ior in neural netwrorks. Also, through comparisons of MTF and neuronal behavior projec-
tions onto orthogonally defined bases in the MPS feature space, some neurons’ behavior can
be functionally described by first or second order formulations of these bases. This project led
to data-driven discovery of feature bases that are unique to biological audio representations.

Lastly, MPS-defined receptive fields also describe biological neuronal behavior in zebra
finches, and the functionally calculated receptive fields match well between artificial and bi-
ological neurons. This commonality implies shared optimal learning of functionally-relevant
representations from audio samples between both artificial and biological neural systems.
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Figure 4.6: Confusion matrix and UMAP visualizations of best NPID-traned network per-
formance. (Top) Confusion matrix showing class confusions. (Bottom) UMAP visualizations
of the output training feature encodings describe underlying confusion matrix results. This
visualization reveals which neighborhoods are distinct and which are mixed that can lead to
confusions in the confusion matrix.
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Figure 4.7: Posterior Probability Matrix. (Left) Posterior probability estimates derived from
w-kNN voting normalized by a presumed uniform prior across classes. (Right) Posterior
probability estimates derived from a published supervised baseline [37]. Our results are
comparable to their spectrogram-based classifers.
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Figure 4.8: Retrievals with NPID. (Top) Retrievals leading to successful class predictions.
(Bottom) Retrievals leading to failed class predictions. Leftmost column shows query images.
Rightward columns show nearest 5 encoded training samples. There is heavy visual similarity
between query and retrivals for both the successful and failed predictions, driving further
investigation into why misclassified samples were confused with other classes.
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Figure 4.9: Artificial MTFs. Receptive fields generated in the MPS space from input sample
MPS representations weighted by output CNN neuronal activations to those samples. The
MTFs describe presumed neuronal preferences to mid-level audio features. We see receptive
field relate to class-related harmonics, high-frequency, and low-frequency preferences.
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Figure 4.10: Real MRFs. Receptive fields generated in the MPS space from input sample
MPS representations weighted by output zerba finch neuronal activations to those samples,
sorted by highest cosine similarity to corresponding artificial MTFs from Fig 4.9
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Figure 4.11: Artificial MTFs and Input MPSes projected onto Their PCs. With the top-
3 PCs generated from the artificial MTFs as the bases, all MTFs and input MPSes are
projected and plotted to assess salience of PC bases. There is significant overlap between
the data distribution MPS features and presumed neural receptive field vectors in this feature
space.
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Figure 4.12: Artificial MTFs and Input MPSes projected onto Their PCs (colored by vo-
calization class). With the top-3 PCs generated from the artificial MTFs as the bases, the
MTFs and input MPSes are projected and plotted to assess salience of PC bases. Input
MPS coordinates are color-coded by their vocalization class as defned by the legend in Fig
4.6. There is class discriminability between the input sample MPS features projected onto
these bases, implying MPS is a salient feature for the task.
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Figure 4.13: Example artificial MTF with linearly defined preferences. Line plot showing how
MTF from output artificial Neuron 0 is projected onto the top 3 MTF PC bases (positive in
red, negative in blue). Projections of the average MPS of the 5, 10, 20, 40, 100 min-activating
(blue) and max-activating (red) samples for this neuron are plotted. This neuron’s behavior
can be described by a linear function of these PC bases.
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Figure 4.14: Example artificial MTF with quadratically defined preferences. Line plot show-
ing how MTF from output artificial Neuron 6 is projected onto the top 3 MTF PC bases
(positive in red, negative in blue). Projections of the average MPS of the 5, 10, 20, 40, 100
min-activating (blue) and max-activating (red) samples for this neuron are plotted. This
neuron’s behavior can be described by a quadratic function of these PC bases.
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Figure 4.15: Example artificial MTF with higher-order preferences. Line plot showing how
MTF from output artificial Neuron 3 is projected onto the top 3 MTF PC bases (positive in
red, negative in blue). Projections of the average MPS of the 5, 10, 20, 40, 100 min-activating
(blue) and max-activating (red) samples for this neuron are plotted. This neuron’s behavior
can be described by a higher order function of these PC bases.
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Figure 4.16: Artificial and Real MTF PCs. Comparison of the top 5 PCs generated from
Artificial (top) and Real (bottom) MTFs. Corresponding explained variance plots are to the
right of each PC plot. For both artifical and biological PCs, the top 3 PCs explain almost
all variability and can be a useful set of bases for evaluation.
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Chapter 5

Conclusion

This dissertation aims to take inspiration from biological neural modeling experiments to
evaluate learned features from deep learning through data-driven discovery. Each project
listed relates to feature exploration across a different domain of input data (self-driving video,
medical image, and biological audio) to functionally describe learned features unique to each
domain. The goal of this dissertation is to demonstrate that studying neural networks can
reveal insights about what input representations are actually salient for accomplishing any
underlying task.

Chapter 2 shows that we can take inspiration from neuroscience-style experiments to
model artificial neuronal behavior. Here, a remote-controlled car with a CNN processing
unit was trained to perform obstacle-avoidance through imitation learning in various struc-
tured and unstructured driving environments. Overall, the only labels for the data are
motion-related, as steering and motor outputs were auto-generated from a joystick con-
troller during data collection. Using these minimal labels, input videos were manipulated
through framerate and frame order conditions and output activity was correlated to those
conditions. Sensitivity plots for output neurons showed temporal dependence was learned dif-
ferently between motor and steering tasks in same network processing the same time-series
data, suggesting optical flow features mattered for steering prediction but not for motor
prediction. The salience of these features can be assessed across the layers of the network,
suggesting that framerate and frame order are correlated with early temporal representations
in learned feature hierarchies. On a personal note, feature visualization learned on custom
data and tasks can yield important insights, but it can be difficult to relate them to research
on other data because there is no common point of evaluation; thus, performance results
and verification of data viability should be of higher priority. Nevertheless, this project is
the first evidence in this dissertation that data-driven analysis can yield insights into the
underlying task.

In Chapter 3, data driven learning on medical retinal image data using NPID yields
feature encodings that are functionally relevant to classification of AMD severity. Accuracy
results were also comparable to published supervised and expert baselines. Though expert
labels are needed for evaluation, learning occurs without them. Feature space boundaries
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are determined by the distribution of input training features, as opposed to human-defined
boundaries, so this clinical bias is minimized for the classification task. Further cluster
analysis of this learned feature space has revealed that globally organized neighborhoods are
relevant for AMD classification, while locally organized neighborhoods are correlated with
other clinically-relevant physiology and pathology. In addition, learning on hierarchically-
organized subsets yields discovery of common patterns across mislabeled or easily confused
data, providing insights about features that drive misclassification for AMD classification.
Self-supervised learning on AREDS patient data revealed how useful feature interpretation is
in the medical domain. Here, datasets are not curated for computer vision, so there is a need
for visual breakdown of related phenotypes. These imply that data-driven deep learning and
better cluster analysis tools could aid clinicians organize and interpret patient data in the
future.

Chapter 4 4 extends this idea about data-driven learning to the audio domain. Here,
NPID applied on zebra finch data yielded feature encodings that were functionally relevant
for classifying vocalization calls, comparably performing to a published supervised base-
line. Even though deep learning on audio data is primarily supervised and on species-level
classification, this data driven approach was able to learn features salient to fine vocaliza-
tion, a harder task. Our CNN’s inputs may be 2D spectrogram images, but the learned
representations are organized with temporal structures than representations learned from
naturalistic videos. We assessed these structures with an audio-specific feature space: the
MPS. We confirmed that our interpretation of neuronal activity in MPS feature space could
functionally organize neuronal behavior relative to input samples. Furthermore, through
novel comparisons of MPS-defined receptive fields for our artificial model and zebra finch
neuronal spike data, we showed that CNNs discriminate audio data through learned repre-
sentations that also help the brain discriminate audio. Similar to medically curated datasets,
I discovered through this project that there is a need for representation visualization in (a)
non-visual data domains, where learned representations can still be structured, and (b) bi-
ological neural data, where biological behavior needs to still be explained. Finally, common
representations imply that similar encodings are optimally learned through these artificial
and biological neural processing systems, so data-driven learning can assist neuroscientists
compare learned representations with minimal bias.

Overall, this dissertation has evaluated deep learning applied on a host of real world tasks
aside from standard datasets curated for computer vision: in-house self-driving video, med-
ical retinal image, and zebra finch audio data. Though each project requires a different lens
for explaining functionally salient behavior, we offer data-driven insights into each learned
task that seem to be consistent with experimental findings in neuroscience and medicine.
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