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Thymic tolerance as a key brake on autoimmunity

Mickie Cheng and Mark S. Anderson
Diabetes Center, University of California, San Francisco, California 94143

Abstract

Although the thymus has long been recognized as a key organ for T cell selection, the intricate 

details linking these selection events to human autoimmunity have been challenging. Over the last 

two decades, there has been rapid progress in understanding the role of thymic tolerance 

mechanisms in autoimmunity through genetics. Here, we review some of the recent progress in 

our understanding of key thymic tolerance processes that are critical for preventing autoimmune 

disease.

INTRODUCTION

The prevention of autoimmunity is a major challenge for the adaptive immune system. The 

stochastic generation of the T cell receptor in individual thymocytes during thymic 

development will invariably result in the generation of individual clones with the potential 

for autoreactivity. Although it has long been hypothesized that the removal of such clones 

from the T cell repertoire in the thymus is crucial for the prevention of autoimmunity, it has 

only been in the last two decades that we have achieved clear evidence for a key role in 

thymic central tolerance in the prevention of autoimmunity. In this review, we highlight 

some of the recent advances in our understanding of the cellular and molecular processes 

that control central T cell tolerance and the growing evidence for a relationship between 

thymic central tolerance and autoimmune diseases.

The Autoimmune Regulator (Aire): A direct link of central tolerance with autoimmunity

During their development in the thymus, it has long been appreciated that thymocytes with 

high self-reactivity are deleted and removed from the T cell repertoire through negative 

selection 1,2. In spite of this knowledge, directly linking a breakdown in this important 

mechanism to the development of clinical autoimmunity had been a persistent challenge 

until the identification of the Autoimmune Regulator (Aire) gene as a key promoter of the 

expression of self-antigens within the thymus 3–5. Aire was originally identified as the 

defective gene in the Mendelian autoimmune syndrome called Autoimmune Polyglandular 

Syndrome Type 1 (APS1) in a positional cloning effort 6,7. Patients with APS1 develop 

autoimmunity that targets many individual organs with a predilection for destruction of the 

adrenal glands and the parathyroid glands 8,9. Interestingly, the patients also frequently 

develop susceptibility to mucocutaneous candidiasis which is now associated with an 

autoimmune response to Th17 related cytokines 10,11. Anti-cytokine autoantibodies to Type 
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1 interferons are found in > 99% of APS1 patients, and anti-IFNα antibodies are virtually 

diagnostic for the syndrome 12. Whether these interferon autoantibodies are pathogenic or 

protective remains unclear, though recent correlation of neutralizing interferon antibodies 

with reduced incidence of Type 1 diabetes in APS1 patients suggests that such 

autoantibodies may mediate a potential protective role in part 13.

Major clues into Aire function came from mapping its gene expression pattern and the 

development of a knockout mouse model. Aire is highly expressed in medullary thymic 

epithelial cells (mTECs) and to a lesser extent in thymic B cells and in a peripheral dendritic 

cell population 14–17. While such Aire-expressing peripheral dendritic cells and thymic B 

cells can serve as APCs to mediate antigen-specific deletional tolerance mechanisms 16–18, it 

remains unclear what the relative contribution of these smaller cell subsets may to enforcing 

thymic tolerance measures. Within mTECs, Aire helps promote the expression of thousands 

of tissue specific self-antigens (TSAs) for display to the developing T cell repertoire and we 

now have evidence that this display drives both the deletion of autoreactive T cells 19–21 and 

the positive selection of a subset of self-reactive T regulatory cells (Tregs) 22–24. Similar to 

the mouse model, individuals with APS1 demonstrate autoantibodies to a wide array of 

TSAs 13,25 with development of targeted organ-specific autoimmunity 26–28 though the 

specific antigenic targets and spectrum of organ-specific autoimmunity differs somewhat 

from the mouse model 29. Thus, the Aire/APS1 model system has provided the strongest 

evidence to date for a relationship between a defect in central tolerance the generation of 

autoimmunity in humans.

Thymic medullary epithelial cells, the display of self-antigens, and the activity of Aire

The mTEC population of cells has many unique properties and study of their development 

and gene expression pattern has been a renewed area of interest. The mTEC compartment 

can be broadly segregated into MHC Class II low versus MHC Class II high expressing sets 

of cells (mTEClo and mTEChi) 30–33. It now appears that a subset of mTEClo cells are 

destined to mature into mTEChi cells, which then also acquire Aire expression through 

RANK/RANK-Ligand mediated signals 34–36 In adult mice, this developmental pathway is 

remarkably dynamic with the half-life of Aire-expressing mTEChi cells being about 12–14 

days 31,37. Thus, every two weeks, a new pool of mTEChi cells is generated within the 

medulla. This dynamic turnover may be in place to help ensure the consistent display of 

TSAs to developing thymocytes, especially because of heterogeneity in TSA-expression in 

the mTEC pool (see below). Interestingly, in vivo blockade of RANK-Ligand with 

monoclonal antibody (mAb) treatment in adult mice over two weeks can lead to selective 

depletion of mTECs from the thymus and an induced defect in negative selection 38. 

Consistent with these findings, recent studies with an Aire-driven reporter system also 

suggest that the majority of mTECs are on a developmental pathway to acquire Aire 

expression 39, and thus continued blockade of RANK-Ligand would be expected to 

significantly deplete the mTEC pool. Despite the defect in negative selection in RANK-

Ligand treated mice, they do not succumb to spontaneous autoimmunity, and this may have 

to do with other peripheral tolerance mechanisms such as Tregs in the tissues that hold 

newly generated autoreactive cells in check in the periphery 24. Regardless, it will be 

interesting to determine if patients that are treated with anti-RANK-Ligand mAbs, which are 
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widely used in the treatment of osteoporosis, show an increased susceptibility to 

autoimmunity. While an increased frequency of sinus and upper respiratory infections is 

noted with the anti-RANK-Ligand agent denosumab, which has been in use since 2010 for 

treatment of postmenopausal osteoporosis or skeletal-related complications in cancers with 

metastatic bone disease, reports of autoimmunity have been lacking thus far though absence 

of autoimmunity may be confounded by the advanced age of patients, relatively infrequent 

dosing (e.g. every 6 months) or differences in dose effect on different cell subtypes. A more 

intriguing possibility is whether it may be possible to also harness the effects of RANK-

Ligand blockade to improve immune responses against tumor antigens 38,40.

The properties of the mTEChi pool of cells have been a source of intense study (see Figure 

1) and recent studies using single cell RNA-Sequencing (RNA-Seq) have revealed that the 

nature of expression of Aire-dependent TSAs within these cells is both stochastic and 

ordered 41,42. It now appears that only a small fraction of mTECs express a particular TSA 

(1–3%), which highlights the stochastic feature of expression within the pool of mTEChi 

cells. At the same time, within individual cells, a general pattern of multiple co-expression 

of sets of TSAs can be identified. For the most part, these co-expression sets often have little 

in common and do not reflect how these TSAs are expressed in the peripheral tissues. 

Epigenetic studies have revealed that these TSAs are in open chromatin conformations and 

that looping of the chromatin between chromosomes correlates with co-expression 

properties 43. Recently, Aire was shown to be greatly enriched in “super” enhancers within 

mTECs along with other chromatin regulators, particularly the topoisomerases TOP1 and 

TOP2 44,45. Aire had previously been implicated to interact with Topoisomerase family 

members but through depletion studies it now appears that TOP1 is the primary 

Topoisomerase that Aire binds to44 and this interaction helps drive Aire’s localization to 

super enhancers where other factors that include elements involved in DNA-Double stranded 

break repair can interact to promote transcription of Aire target genes 46. Finally, Aire has 

also been demonstrated to promote transcriptional elongation of RNA-Polymerase II through 

its interaction with pTEFb 47,48. Thus, through localization of Aire to “super” enhancers that 

include chromosomal looping, a wide number of genes in this local environment can be 

transcribed. Taken together, a picture is emerging that a complex series of epigenetic events 

are required for Aire to promote the expression of TSAs (for further detail see 49,50).

Fezf2: an Aire-like transcription factor

Studies on gene expression of mTECs have also revealed that a wide array of TSAs continue 

to be expressed in Aire−/− mTECs 3,51. This observation has led to the attractive hypothesis 

that other transcription factors are present and operate in mTECs to promote the expression 

of TSAs (Figure 1). Recently, forebrain expressed zinc finger 2 (Fezf2) has been implicated 

as such a transcription factor 52. Fezf2 was identified by screening for transcription factors 

that are differentially expressed between cortical thymic epithelial cells (cTECs) and 

mTECs. Fezf2 is highly expressed in the brain and plays an important role in the 

differentiation and development of corticospinal neurons 53. Germline knockout mice of 

Fezf2 die shortly after birth and the role of Fezf2 in the thymus or immune system had not 

been studied until recently 52. The thymus in Fezf2−/− neonatal mice is reported to be 

relatively normal with appropriate expression of Aire, distribution of mTEClo and mTEChi 
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cells, and normal thymocyte population numbers and percentages. Within mTECs, Fezf2 

appears to promote the expression of an array of TSAs that is distinct from the Aire-

dependent TSAs. Furthermore, in either thymic grafting experiments with Fezf2−/− thymi or 

in TEC-specific knockouts of Fezf2, mice developed spontaneous autoimmunity with 

evidence of tissue organ infiltrates and autoantibodies in a spectrum distinct from those seen 

with Aire−/− mice. In addition, it was suggested that the induction of Fezf2 expression in 

mTECs was dependent on lymphotoxin beta signaling while that of Aire-expressing mTECs 

was mainly dependent on RANK induced signals. Recently, conflicting data to this was put 

forth by Anderson and colleagues, where it was found that TEC-specific deletion of the 

lymphotoxin beta receptor (LTβRTEC) did not ablate the development of either Fezf2 or Aire 

expressing mTECs 54. Here, it was found that RANK/RANK-Ligand signals were crucial 

for the development of both Aire and Fezf2 expressing cells. Nonetheless, the medulla of 

LTβRTEC mice showed a decreased frequency of mTECs and smaller islands of medullary 

areas. Interestingly in the same study, in contrast to the TEC specific loss of LTβR, mice 

with germline inactivation of LTβR (Ltβr−/−) showed evidence of generating autoimmunity 

in thymic grafting experiments and a defect in both medullary organization and the 

frequency of medullary dendritic cell populations. These results suggest a complex role of 

LTβR in both the mTEC and dendritic cell compartments in the medulla. Overall, further 

work will be needed to determine the exact mechanisms by which Fezf2 operates within 

mTECs, directly linking Fezf2 defects to human autoimmune disease, and if there are other 

similar factors that promote the expression of self within the medulla.

Thymic selection of Tregs, Aire, and autoimmunity

Although there is extensive data for a clear role for Aire-induced TSA display in promoting 

the negative selection of autoreactive T cells 19–21, its relationship with promoting Treg 

selection has come back into focus. In previous work, forced expression of model self-

antigens in Aire-expressing mTECs could induce the positive selection of Foxp3-expressing 

Tregs in a TCR-transgenic model 55. In contrast, the frequency and general function of Tregs 

in the thymus and periphery of adult Aire-deficient mice appear relatively normal 24,56. 

Recently, more detailed studies on the TCR repertoire of Tregs from Aire-deficient versus 

wildtype hosts with a limited repertoire system have provided new evidence that a subset of 

the Treg repertoire is dependent on Aire 22,23. At the same time, many Treg specific TCRs 

do not appear at all to rely on Aire for their positive selection within the thymus and 

interestingly, may rely on the passive transfer of antigens from mTECs to thymic dendritic 

cells 23. Recently, the specificity of an Aire-dependent Treg TCR was identified and 

determined to be the prostate self-antigen Tcaf3 57. This particular Treg clone was originally 

identified by sequencing TCRs of individual Tregs in implanted prostate tumors in Aire+/+ 

mice 22. The expression of Tcaf3 within the thymus has been examined and determined to 

be Aire-dependent. Interestingly, tetramer analysis of CD4+ T cells from Aire+/+ versus Aire
−/− mice for this specificity show great enrichment of Tregs in Aire+/+ mice. This data 

suggests that there is something potentially peculiar about the display of Tcaf3 within the 

thymus that promotes Treg induction. In contrast, a previously identified Aire-dependent 

CD4+ T cell epitope for an eye antigen called IRBP does not show this propensity for Treg 

induction in Aire+/+ hosts 21; rather, IRBP-specific cells appear to be absent suggesting a 

strong induction of negative selection. Clearly, more work will be needed to determine the 
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nature of TSA-display within the thymus by mTECs that induces negative selection versus 

Treg selection and how such selection drives or prevents autoimmunity. Likewise, there has 

also been recent work that has shown that during the neonatal period in mice, there is a 

decreased frequency of Tregs within the thymus of Aire-deficient hosts 24. Elaborate Treg 

transfer studies in this time window suggest that this may be part of the cellular mechanism 

by which autoimmunity ensues in the Aire-deficient model. At the same time, previous work 

by two independent groups showed that simultaneous co-transfer of Aire+/+ and Aire−/− 

thymi into nude mouse hosts did not protect against autoimmunity which favors defects in 

deletional mechanisms rather than a dominant tolerance mechanism as the primary trigger 

for autoimmunity in the model 20,58. Again, more detailed study of the TCR specificities that 

emerge in the Treg and T conventional pool and their relationship with autoimmunity will 

have to be worked out to resolve these issues.

PSMB11, positive selection of CD8 T cells, and links to autoimmunity

Within the cortex of the thymus, the display of MHC-peptide ligands is crucial for the 

positive selection of developing thymocytes. Interestingly, the generation of peptide ligands 

for MHC class I are likely to be unique because of the expression of a thymus specific 

proteasome subunit called PSMB11 mainly in cTECs. PSMB11 is a catalytic subunit of the 

proteasome that has chymotrypsin-like activity and whose presence is critical for positive 

selection by cTECs 59 PSMB11 has lower chymotrypsin-like activity than other such 

subunits in the immunoproteosome and thus it likely helps produce a different array of 

peptide ligands for MHC Class I loading in cTECs than those present outside of the thymus. 

Recently, Nitta et al. took a translational approach to model human variants of PSMB11 in 

mice 60. Here they found that variants could indeed alter thymic positive selection and the 

array of peptides being displayed by cTECs. Interestingly, this process may have a link to 

autoimmunity as a SNP that results in the G49S variant is associated with the development 

of Sjogren’s disease and also impairs CD8+ T cell positive selection in the mouse model. 

More work will have to be done on the specific selection events that give rise to autoreactive 

T cells with this specificity, but this work underscores a relationship of cTEC-driven positive 

selection with autoimmune disease.

Impaired T cell signaling and defective thymic tolerance

During their transit through the thymic maturation process, T cells display dynamic changes 

in the levels of cell surface TCR and signaling components to help guide the positive and 

negative selection process. Zap-70 is a tyrosine kinase and critical T cell signaling molecule 

whose expression is upregulated during thymocyte maturation. Loss of Zap-70 is associated 

with severe immune-deficiency with the absence of CD8 T cells and impaired CD4 T cells. 

Previous work by the Sakaguchi group on a spontaneous mutant mouse line termed Skg, 

identified a mutation in Zap-70 that was associated with autoimmunity and a defect in 

thymic selection 61,62. In a large body of work it now appears that this allele has 

hypomorphic activity that impairs but does not block Zap-70’s activity. Within the thymus, 

this results in an increased threshold for positive selection, such that only more autoreactive 

T cells can pass through this selection step. At the same time, negative selection is also 

impaired and in the end a more autoreactive repertoire is generated (see Figure 2). This 

elegant model has now been extended into a series of Zap70 alleles that cover a spectrum of 
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hypomporphic activity in mouse models and highlight how altering TCR signaling 

thresholds in the thymus can promote the production of an autoreactive T cell repertoire, an 

altered Treg repertoire (Figure 2), and autoimmunity (see for a more thorough discussion 
63,64). Recently, a novel human autoimmune syndrome was described in a single human 

kindred with two hypomorphic Zap-70 alleles that underscores this mechanism in promoting 

autoimmunity 65. The affected siblings in this kindred developed autoimmunity in the 

kidneys and the skin. Whole exome sequencing (WES) of the family revealed that the 

affected siblings harbored two mutant Zap-70 alleles, one with a R192W mutation and the 

other with a R360P mutation. Detailed analysis of these mutant alleles revealed that the 

R192W mutation in the SH2 domain of Zap-70 had reduced binding to the ζ-chain and the 

R360P mutation in the kinase domain affected autoinhibitory function. Thus, when both 

alleles are present Zap-70 signaling is likely to be somewhat hypomorphic and likely follows 

the autoimmune model developed in the mouse studies on hypomorphic Zap-70. Of course, 

in this human model it is difficult to determine the contribution of thymic versus peripheral 

defects in generating the autoimmune phenotype seen here and factors such as lymphopenia 

could play an important triggering role. Nonetheless, the preponderance of mouse data 

would suggest that at least in part, an altered thymic repertoire is part of the break in 

tolerance (Figure 2).

Altered thymic architecture and autoimmunity

The role of central tolerance is notable also in examples of disease states associated with 

altered thymic architecture or function (reviewed in 66), such as seen with thymoma and in 

myasthenia gravis. Thymomas are highly associated with a wide variety of organ-specific 

and systemic autoimmune diseases (reviewed in 67). Notably, 95% of thymomas fail to 

express AIRE, suggesting that disordered thymic selection contributes to the paraneoplastic 

autoimmunity in these cases through the loss of AIRE-mediated effects on thymic epithelial 

development and TSA expression 68–70. Myasthenia gravis is frequently seen in association 

with thymoma along with the presence of anti-cytokine autoantibodies to type 1 interferons 
71 Although the loss of AIRE-expression is thought to contribute to the autoimmune 

predilection in these subjects, it is worth noting that they rarely develop the pattern of 

autoimmunity associated with APS1. Interestingly, thymic hyperplasia is also associated 

with myasthenia gravis and these observations have led to the development of thymectomy 

as a clinical treatment for the disorder. Somewhat remarkably, thymectomy seems to be 

effective in significantly improving outcomes and reducing need for immunosuppression in 

many patients with myasthenia gravis, even in absence of overt thymoma 72. The 

mechanism(s) by which this technique provides clinical benefit still remains to be worked 

out but could include the blockade of the generation of new autoreactive T cells.

Links to more common autoimmune disease settings

Finally, the discovery of common risk variants through directed genetic studies and GWAS 

studies provides further clues as to contribution of thymic selection and central tolerance. 

Polymorphisms of the VNTR region of the insulin promoter lead to variable thymic 

expression of insulin are linked to risk for development of Type 1 diabetes 73, and Aire-

mediated expression of CHRNA1 is linked to risk for development of myasthenia gravis 74. 

It is also worth noting that recent GWAS studies on myasthenia gravis have identified SNP 
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variants in RANK, as a risk factor in myasthenia gravis 75. In all of these cases, the 

relationship of these more common risk variants with thymic selection have been greatly 

strengthened through the detailed study of the rare Mendelian forms of autoimmunity like 

APS1/APECED highlighted above. For example, it is now clear that Aire promotes the 

expression of insulin in the thymus and this provides a more detailed mechanism of how this 

likely connects the VNTR risk variant in insulin to diabetes risk. Likewise the myasthenia 

gravis risk variant in RANK can be more closely tied to mTEC’s, given what we have 

learned in its key role in mTEC maturation outlined above.

It is also worth noting the pattern of autoimmunity in the human conditions that are linked to 

the mechanisms highlighted here. For instance, APS1 patients tend to develop parathyroid 

and adrenal autoimmunity but thymoma patients develop myasthenia gravis. Likewise, the 

autoimmune clinical pattern in patients with ZAP70 hypomorphic activity is also distinct. 

Clearly, there is more work to do in unraveling the mechanisms and steps in play here that 

ultimately lead to these autoimmune phenotypes. Overall, the last two decades have seen 

major progress in unraveling key events in the thymic tolerance and linking them to 

autoimmune predisposition. Looking forward, the challenge remains of how to harness this 

information for the treatment and prevention of autoimmunity. Although it may be a difficult 

path forward, one can now imagine strategies that selectively target mTEC’s and TSA-

expression through targeting RANK/RANK-Ligand or reconstruction and repair of the 

thymus through stem cell approaches 76. In the case of the latter, this could also be coupled 

with genetic engineering approaches such as CRISPR/Cas9 to enhance TSA expression or 

Aire function. Together, such approaches could have major implications for the induction of 

tolerance and the prevention of autoimmunity.
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Figure 1. 
Properties of mTECs and drivers of TSA-expression. A) Shown is a schematic of a cross 

section of the thymus. Highlighted are some of the unique and unusual features of mTECs 

that may help poise them for promoting display of TSA’s and the induction of tolerance. B) 

Shown is a single representative mTEC and an array of TSA’s being expressed. It now 

appears that Aire and Fezf2 are unique promoters of TSA expression in mTECs and that 

there are likely to be other factors beyond this transcriptional pair that drive this process.
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Figure 2. 
Model of hypomorphic ZAP70 and altered T cell selection. Shown is a theoretical curve for 

positive selection and negative selection of T cell clones that results in a tolerant repertoire 

(green shading). In the case of hypomorphic ZAP70 activity the thresholds for both positive 

and negative selection result in a shift in the repertoire that now includes autoreactive T cell 

clones (red shading). The regulatory T cell repertoire is likely to fall in the interface between 

tolerant and autoreactive clones based on the model of induction of Treg fate in moderately 

self-reactive clones (gray dotted overlay).
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