
Lawrence Berkeley National Laboratory
LBL Publications

Title
Technical Report on Deploying a highly secured OpenStack Cloud Infrastructure using
BradStack as a Case Study

Permalink
https://escholarship.org/uc/item/6c02v873

Authors
Mohammed, Bashir
Moyo, Sibusiso
Maiyama, KM
et al.

Publication Date
2017-12-25

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6c02v873
https://escholarship.org/uc/item/6c02v873#author
https://escholarship.org
http://www.cdlib.org/

1	
	

Technical Report on Deploying a highly secured
OpenStack Cloud Infrastructure using BradStack as

a Case Study. ∗	

1Bashir Mohammed, 1Sibusiso Moyo, 1K. M Maiyama, 1Sulayman
Kinteh, 1Al Noaman M.K. Al-Shaidy, 1M. A. Kamala and 2M. Kiran

1Cloud Computing Modelling and Simulation Research Group
School of Electrical Engineering and Computer Science

University of Bradford.UK
b.mohammed1@bradford.ac.uk

s.moyo10@ bradford.ac.uk
 k.m.maiyama@ bradford.ac.uk

 s.kinteh@bradford.ac.uk
	a.n.m.alshaidy@bradford.ac.uk

m.a.kamala@bradford.ac.uk

2Lawrence Berkeley National Labs, California, USA
mkiran@es.net

30th of October 2017

Abstract
Cloud computing has emerged as a popular paradigm and an attractive

model for providing a reliable distributed computing model.it is increasing
attracting huge attention both in academic research and industrial initiatives.
Cloud deployments are paramount for institution and organizations of all scales.
The availability of a flexible, free open source cloud platform designed with no
propriety software and the ability of its integration with legacy systems and third-
party applications is fundamental. Open stack is a free and opensource software
released under the terms of Apache license with a fragmented and distributed
architecture making it highly flexible. This project was initiated and aimed at
designing a secured cloud infrastructure called BradStack, which is built on
OpenStack in the computing Laboratory at the University of Bradford. In this
report, we present and discuss the steps required in deploying a secured
BradStack Multi-node cloud infrastructure and conducting Penetration testing on
OpenStack Services to validate the effectiveness of the security controls on the
BradStack platform. This report serves as a practical guideline, focusing on
security and practical infrastructure related issues. It also serves as a reference
for institutions looking at the possibilities of implementing a secured cloud
solution.

∗To cite this technical report, please use the following: Bashir Mohammed, Sibusiso Moyo, Kabiru M
Maiyama, Sulayman Kinteh, Al Noaman M.K.Al Shaidy and Mariam Kiran“ Technical Report on
Deploying a highly secured OpenStack cloud infrastructure using BradStack as a Case Study,”
Technical Report, Cloud Computing Modelling and Simulation Research Group School of Electrical
Engineering and Computer Science, University of Bradford.UK, October 30, 2017.

2	
	

Table	of	Contents	
1	INTRODUCTION	..	3	

1.0	 The	Concept	of	Cloud	and	it’s	Deployment	Models	..	4	
1.1	Cloud	Service	Models	...	4	

2			OPENSTACK	CLOUD	PLATFORM	OVERVIEW	..	6	

3			OPEN	SOURCE	CLOUD	PLATFORM	COMPARISON	..	9	

3.1	Findings	obtained	from	the	Comparative	Technical	Studies	9	
3.2	Summary	..	12	

4	CLOUD	INFORMATION	SECURITY	VULNERABILITIES	..	13	

4.1	Overview	of	information	security	...	13	
4.1.1	CONFIDENTIALITY	..	13	
4.1.2	INTEGRITY	...	14	
4.1.3	AVAILABILITY	...	14	

4.2	Insecure	API	...	14	
4.3	Information	security	protection	...	15	
4.3.1	Firewall	...	16	
4.3.2	Intrusion	Detection	...	16	

5	STEP-BY-STEP	OPENSTACK	DEPLOYMENT	...	16	

5.2	Proposed	Brasatck	Architectural	Design	..	18	
5.3	Network	Infrastructure	Implementation	and	Configuration	18	

6	BRADSTACK	IMPLEMENTATION	AND	CONFIGURATION	..	21	

6.3	BradStack	OpenStack	Implementation	Process	...	23	
6.3.1	STEP	1:		DESIGN	(BRADSTACK	DESIGN)	...	24	
6.3.2	STEP	2:	INSTALL	(INSTALLATION	REQUIREMENTS)	..	24	
6.3.3	STEP	3:	SETUP	DATABASE	(SERVICES	DATABASE	CREATION)	...	25	

7			BRADSTACK	CLOUD	TESTING	...	29	

7.1		BradStack	OpenStack	Installer	..	30	
7.2	Creating	private	network	...	32	
7.3	Building	an	instance	...	33	

6		CONCLUSIONS	...	35	

7			REFERENCES	..	36	

	

3	
	

1			Introduction		

Cloud Computing represents a major shift in the Information Technology (IT)
services landscape. Cloud has simplified the availability of enterprise-grade
computing power to the organisation, without the need to invest in hardware or staff
and associated costs for procurement activities. According to Mell and Grance [1],
Cloud refers to the use of computing resources in which hardware and/or software
resides on a remote machine often based on virtualization, computing technologies
distributed and delivering to the end users as a service over a network. The most
popular delivery network is being the internet, for example, when using online
services to edit documents, listen to music, send emails and store files (e.g.
Dropbox). Cloud architectures are highly abstract resources, scalable, flexible, near
instantaneous provision, shared resources on demand, usually with a ‘pay as you
go’ billing system, which turns computing into a utility.
The adoption of cloud computing by organisations has become prevalent in this
21st century. A recent survey conducted by North Bridge shows that 50% of the
companies had implemented cloud about 90% of which, their operations in one
way or another is compared to only 60% in 2014 [2].Furthermore, Gartner[3]
projected that cloud market will reach $246.8 billion in 2017 alone, and also
forecasted it to grow by more than 34.7% to reach $332.7 billion in 2019, where
55.3% expected to reach $383.3 billion by 2020 respectively [3]. Cloud computing
provides numerous advantages to companies; amongst them are low cost,
flexibility, faster market time, and faster deployment. However, security of data is
often cited as one of the major concerns for those considering a move towards
cloud-based services [4].
Failure to provide an appropriate security control or mechanism on one’s
infrastructure could lead to data breaches, which could result in financial losses,
loss of reputation and reduced customer confidence. Thus, cloud security is one of
the main problems in cloud computing [5]. As the above projection shown by
Garter[3], more organizations will be using cloud computing, which emphasizes the
need for more cloud security research to be conducted to find innovative ways to
secure cloud infrastructure.
The purpose of this project is to re-deploy and secure the BradStack environment
whilst addressing the known vulnerabilities from previous architectural design
including the network infrastructure to ensure that the setup is secure. BradStack is
a customized implementation of OpenStack open source Cloud Computing
Platform (CCP) that focuses on the deployment of main services such as
Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a
Service (SaaS). Cloud Modelling and Simulation research group (CMSRG) at
University of Bradford developed BradStack Cloud Computing Platform (CCP)
project. The project mentioned above aimed at providing cloud resources mainly
used for research as well as other services needed by the University community
and beyond.

4	
	

1.0 The	Concept	of	Cloud	and	it’s	Deployment	Models		
	
Cloud computing can be referred to as a model for enabling appropriate,
ubiquitous, on-demand network access to a public pool of configurable computing
assets (e.g., networks, storage, servers, services and applications). These assets
can be quickly provisioned and released with negligible management effort or
service provider communication [1]. Cloud computing can be categorized into three
distinct elements. Each element has a purpose which performs specific tasks as
follows; data centers, distributed servers, and clients[6].The four main cloud
deployment models are public, private, community and hybrid.

• Public clouds are provided to the public or a large industry group. This is
managed by a third party selling cloud services. As cloud technology
develops, public cloud services are becoming more attractive to Business
companies as well. Many actors such as critical infrastructure providers,
including financial institutions has shown special interest in cloud[7].

• Private cloud is owned and managed by a single organization that
concentrates on controlling the mechanism of visualizing resources and
automating services that are used and customized by various lines of
business and constituent groups. A private cloud provides services to an
organization through an intranet. Private clouds can be linked to each other
to form a partner cloud. Private clouds are operated solely for an
organization[5].

• Community cloud it is dedicated or allows services to be available to a
professional community or group of organization that comprises of
Subcontractors, Branches, allies and so forth to operate collaboratively on a
project. It may also be a government cloud dedicated to state
establishments [8].

• Hybrid cloud model is a mixture or combination of private and public cloud
infrastructures working together. As a result, hybrid cloud inherits the
properties of both private cloud and public cloud. It allows organizations to
manage their critical data and applications in private while outsourcing other
non-critical activities to the public cloud[9][10].

1.1	Cloud	Service	Models	

There are three levels of essential services offered by cloud computing:
Infrastructure as a service (IaaS), platform as a service (PaaS) and software as a
service (SaaS).

• Infrastructure as a service (IaaS), is the most basic and important cloud
service model under which virtual machines, load balancers, fault tolerance,
firewalls and networking services are provided[11]. The client or cloud user,
is provided with capability to provision processing, storage, networks and
other fundamental computing resources, to deploy and run arbitrary

5	
	

software such as operating system and applications. Common examples of
these services include Rackspace, GoGrid, EC2, Google Apps, Concur,
Cisco Webex, Citrix GoTo Meetings, Adobe Marketing Cloud, Facebook,
Flickr) and Amazon cloud[12] [13] .

• Under the PaaS model, a computing platform including APIs, operating
system and development environments are provided as well as
programming language execution environment and web servers. The client
maintains the applications, while the cloud provider maintains the service
run times, databases, server software, integrated server oriented
architectures and storage networks. Various types of PaaS vendors
offerings can include complete application hosting, development, testing
and extensive integrated services that include scalability and
maintenance[14]. Some key players include Microsoft Windows Azure and
Google Apps engine GoDaddy, Windows Azure, Apprenda, Google App
Engine, Amazon Web Services, and WordPress. The main benefit of these
services include focus on high value software rather than infrastructure,
leverage economies of scale and provide scalable go-to-market capability
[15].

• SaaS provides clients the capability to use provider application executing on
a cloud infrastructure. An entire application is available remotely and
accessible from multiple client devices through thin client interfaces such as
web browsers. Cloud user do not manage or control the underlying cloud
infrastructure [2] but providers install and operate the application software.
Example providers for this service include Salesforce, Facebook and
Google Apps, Amazon EC2, Rackspace, Microsoft Azure, Google Compute
Engine and Amazon Web Services [15]–[17].

	

Figure 1.0 Cloud Architecture[45]

	

6	
	

2			OpenStack	Cloud	Platform	Overview	

OpenStack, an open source cloud operating system is a cloud operating system
that controls large pools of compute, storage and networking resources throughout
a datacenter. The resources are managed through a dashboard giving
administrators control while empowering its users to provision resources through
web interfaces [18], [19].It is designed to provide flexibility to design private cloud,
with no proprietary hardware or software requirements and the ability to integrate
with legacy systems and third-party technologies. It is designed to manage and
automate pools of compute resources to work with virtualization technologies and
high-performance computing configurations. Administrators deploy OpenStack
compute using one of the multiple supported hypervisors in a virtualized
environment. KVM and XenServer are popular choices for hypervisor technology
and recommended for most use cases. Linux container technology such as LXC is
also supported for scenarios where users wish to minimize virtualization overhead
to achieve greater efficiency and performance. In addition to different hypervisors,
OpenStack supports ARM based processors and alternative hardware architectures
[18]–[20].

Figure 2.1 OpenStack overview[21]

The OpenStack software consists of the Compute, Network and Storage services
which collectively provide the OpenStack cloud management capabilities as shown
in Figure 2.1. These pools of resources can be managed or consumed from a
single place using the OpenStack dashboard. Both the users and the administrators
can utilize the dashboard to perform their tasks in a simple easy manner[22].
OpenStack cloud operating system controls the layer that sits above all the
virtualized layers and provides a simple and consistent way to access services
regardless of the technology used on the hypervisor. OpenStack Hypervisor
technology list (KVM, Hyper V, VMware, Xen, etc.)

7	
	

Figure 2.2 OpenStack Architecture[22]

Figure 2.2 presents the OpenStack conceptual architecture while Table 1 describes
the OpenStack services that make up the OpenStack architecture: OpenStack
consists of 6 main components, which apply to infrastructure as a service(IaaS),
these are OpenStack Identity Service (Keystone), OpenStack Compute (Nova),
OpenStack Networking service (neutron), OpenStack Image Service (Glance),
OpenStack Block Storage service (cinder) and OpenStack Dashboard (Horizon),
[22]. This work only focuses on Keystone, Nova, Neutron, Glance, Cinder and
Horizon, due to the time and document constants.

8	
	

Table 1 OpenStack Services.

	

9	
	

3			Open	Source	Cloud	Platform	Comparison	
	
This section presents a critical analysis of open source toolkits and their suitability
as well as the findings obtained from the comparative studies. The methodology
and approach based on the concept of cloud computing is presented and the
experimental results for the benefit of migrating to cloud using OpenStack.

	3.1	Findings	obtained	from	the	Comparative	Technical	Studies	
	
Table 2 presents a comparative technical analysis between various open source
IaaS cloud computing solutions such as Eucalyptus, CloudStack, OpenStack,
OpenNebula, Nimbus, Xen Cloud Platform (XCP), OpenIoT and AbiCloud. Each
open source software provides the IaaS to deliver a standard virtualization
environment, using the following classification criteria: Origin and Community
support, architecture, relation with Amazon, cloud implementation, programming
and scripting language, Hypervisor supported, Operating system support,
databases, Image management, VM migration support, Fault tolerance and load
balancing. The findings obtained from the comparative technical studies carried out
between the eight OpenSource Cloud solutions are as follows:

• OpenNebula is ideal for users who wants to setup a cloud environment
using a couple of machines because of its architecture as a classical
cluster, which is an architecture with a front-end and a set of cluster nodes
to run the VMs. This implies that at least one physical network is required to
connect all cluster nodes with the front-end. It is compatible with Xen, KVM
and VMware hypervisors and works with various operating systems such as
CentOS, Debian, fedora, RHEL and Ubuntu. It supports Fault tolerance and
Load balancing.

• Eucalyptus is tailored towards institutions or organizations that want to build
their own private cloud but does not support virtual machine migration. It is
compatible with AWS application programming interface.

• Nimbus mainly targets features of the scientific community such as support
for proxy credentials, batch schedulers, and best-effort allocations. It is also
compatible with AWS application programming interface and most Linux
distributions. However, it does not support virtual machine migration,
making it more suitable for users interested in internal techniques of the
system.

• XCP is an open source enterprise server virtualization and cloud-computing
platform. It concentrates more on the provision of tools to manage a
collection of virtualized host. Even though it was developed under Public
License and supports Fedora, Red Hat and CentOS, its greatest limitation is
that, it does not offer a user interface to manage the cloud user access
using only command line input.

• CloudStack supports key features such as Hypervisor agnostic, built high
availability for host, VMs, snapshot management, Virtual machine migration,
load balancing and fault tolerance. It is compatible with AWS’s application

10	
	

programming interface and its programming framework in Java and Python.
The biggest drawback is that CloudStack architecture is to have a reduced
installation flexibility and lack of support for shared access.

• AbiCloud is an open source platform used to develop, manage and integrate
private and public cloud in a homogenous environment. However, it does
not support VM migration, fault tolerance and is not compatible with AWS’s
application programming interface even though its programming framework
is Java and Python and works with Xen, KVM, VMware and VirtualBox.

• OpenStack is free and open source software released under the terms of
the Apache license with a fragmented and distributed architecture making it
highly flexible. It is compatible with hypervisors such as KVM, XEN, QEMU
and Hyper-V and is written in Python and UNIX shell. It has AWS EC2
compatibility, supports AWS S3 API and is an open source platform for
building private and public cloud. It has a broad range of support from major
tech key industry players like Dell, IBM, NASA, Rackspace, Cisco, HP etc.
OpenStack supports image management, VM migration, load balancing and
fault tolerance as well as a web interface for user’s access.

• OpenIoT is completely free open source blueprint middleware infrastructure
for developing and integrating non-trivial IoT applications. It supports
virtually any sensor type available by enabling and facilitating the integration
and use of virtually any internet-connected physical or virtual sensor to IoT
applications. It embraces AWS and it is an open source platform for
building a sensor-centric private and public cloud. The OpenIoT Cloud
software is written in Java and built on popular open source packages such
as Apache Active MQ and JBoss Netty [23]. It is also available under a
Business-Friendly License, i.e. GPL 3.0 which enables enterprises
particularly SMEs to use it for solution development and deployment. It uses
the web as an access interface.

11	
	

Table 2 Comparison of Opensource Cloud implementation tools

12	
	

3.2	Summary	
	
Figure 3.1 presents the Open Source Cloud Tools Analysis Quadrant where it was
observed that the tools located in third quadrant (OpenStack and OpenNebula) are
the most flexible in terms of data centre virtualization, infrastructure provision and
relation with Amazon web services while the least tools located in quadrant one
(AbiCloud, Nimbus and Xen) and least are not as flexible as the others. Eucalyptus,
OpenIOT and CloudStack are in the middle of the quadrant because they are not as
flexible as tools located in the third quadrant but are much better that tools located
in the first quadrant.

								

	

 Figure 3.1 Open Source Cloud Tools Analysis Quadrant

13	
	

4			Cloud	information	security	vulnerabilities	
	
The security risks and requirements for each cloud model vary depending on
factors such as architecture, deployment model and the sensitivity of information
assets. Security concerns from traditional infrastructure still affect the cloud
infrastructure especially from the perspective of cloud service provider, including
threats that are associated with cloud computing such as virtual machine escape
[24].One of the first steps in reducing risk associated with cloud computing is to
identify cloud security threats. Cloud Security Alliance (CSA) has created industry-
wide standards for cloud security. Which provides best practices to secure cloud
computing, that is addressed within the fourteen domains of CSA Guidance. CSA
suggest a regular vulnerability scanning, prompt patch management, and can help
mitigate such threats. While there are numerous security threats in the cloud
computing related to on-demand, the shared nature of cloud computing. Data
breaches, insecure API’s and system application vulnerabilities will be explored in
this research. The Open Web Application Security Project OWASP (2017) and CSA
generated a list of the most critical security vulnerabilities; which are Buffer
Overflow, Cross Site Scripting (XSS), Command Injection, SQL Injection, etc. Cloud
computing heavily relies on the web application to deliver the service to its
customers, therefore, is important to minimize the potential risk. Thus, this report
will cover the most critical security flaws highlighted by OWASP and CSA.
Furthermore, it has been addressed that insecure API in the cloud can affect the
organization business, loss of customers, financial loss, and loss organization
reputation [5].In 2016 a breach that exposed insecure API took place at an online
greeting card vendor Moonping in USA. As a result, numerous customer’s
information was obtained. Hence, it obvious that APIs security is a serious security
challenge because it is the public door to the cloud.

4.1	Overview	of	information	security	
Information systems security refers to any activities designed to protect information
systems, protect sensitive information or data from unauthorized use, access,
modification, destruction, disclosure and disruption in order provide to provide
integrity, confidentiality and availability
The international standard, ISO/IEC 27002 [25], defines information security as the
preservation of, confidentiality, integrity and availability.it consists of the processes
and mechanisms that are deployed to protect information systems from all threats
whether the external or internal. According to [26], [27]these terminologies are also
known in information security as the CIA triangle.

4.1.1	Confidentiality	

[28] defines confidentiality as the prevention of sensitive information from reaching
unauthorized entity. End-users who used the cloud services to store their personal
data in the provider’s infrastructure, concern about user data confidentiality and
privacy. Therefore, confidentiality is the most serious concern in cloud especially for
data storage for instance customer data and credit card information [4], [29].As a

14	
	

result, encryption is the fundamental solution to improve data, communications,
processes confidentiality [30]. [31]studied the privacy and security issues in the
cloud computing. However, the discussion of the security challenges was focused on
confidentiality availability, integrity and accountability but they did not mention the
limitations that caused the vulnerabilities such infrastructure design. This report aims
to provide a step-by-step guideline for design and deployment as well as testing of a
secure OpenStack cloud computing platform. discover and highlight the security
issues and limitations that lead to security holes and vulnerabilities in cloud
computing.

4.1.2	Integrity	 	 	 	 	 	 	 	 												

According to [32] Data integrity is the assurance to eliminate third parties from
auditing the data. Since the fundamental solution to ensure confidentiality cloud
computing, hence, data integrity should be checked and maintained constantly to
guarantee that data are accurate. Cloud providers should ensure that any
modification to the data is detected. Integrity also covered that computer programs
execution should be protected from malware, malicious user or insider, which may
render an incorrect result or change the program execution[33]. Over the years,
researchers have proposed different data integrity scheme, for instance, ithe authors
in [34]highlights the importance of data integrity and presented a taxonomy of data
integrity schemes that could be used in for cloud computing. However, Solutions
proposed are not suitable for all types of data and environments.
	
4.1.3	Availability	

Availability remains a challenge in cloud computing since cloud systems
infrastructure are complex because it provides different services with different
requirements. According to Khan et al. availability is calculated as the percentage of
time an application and its services are available, given a specific time interval. Many
services can be used to improve the availability of a service, such as, load
balancing, and redundancy [35]

4.2	Insecure	API	
Service representation in cloud computing is given by client applications, supported
by application program interface (API)[36] . In practical, API is a middleware that
uses to integrate between underlying layers where developers use them for the
application development and high- level applications layer [37]. Many researchers
studied clouds and API security in particular, [38]summarized that APIs should
provide flexible security interfaces to limit the existing security holes. One of the
suggestion is that API should be provided with standards and security controls to
enhance APIs with authentication and authorization using Open Authorization
Protocol (OAuth). However, in 2015 Phogat and Sujatha studied OAuth
authentication protocol mechanism in APIs, they conclude that OAuth security does
not provides an acceptable security level. On the other hand, [39]highlighted that
OAuth is an ideal candidate for Software as a Service, nevertheless different
service provides use different version of OAuth and offer different
authentication/authorization process which posing interesting challenges at the

15	
	

same time. Therefore, they proposed OAuthHub solution which used as a single
trusted intermediary to control and manage data is shared and how authentication
is done. In addition, the proposed solution required to isolate the APIs in the
memory. In fact, the cloud applications may have subjected to the same
vulnerabilities as traditional Web applications. Nevertheless,[34] stated that the
traditional security solutions are not sufficient for the cloud computing environment.
This is probably driven from the fact that cloud computing vulnerabilities can lead to
huge damage and propagate more widely. The distributed location of multiple
users, resources and data make the cloud computing security a serious issue.
Therefore, management, use and development of Web applications must consider
web application vulnerabilities risk to protect the cloud. Insecure API can be
disturbing for the users and the cloud. The APIs vulnerabilities includes insufficient
authorization, input-data validation and weak credentials. However, after exhaustive
research, it was founded that there is a lack of researches that consider API in open
stack. Thus, this thesis focuses on implementing a penetration testing on API open
stack core services.

4.3	Information	security	protection	

Information security protection may be achieved through implementing technical,
physical, management, and operational measures designed to protect the
confidentiality, integrity and availability of information. [40]suggest that such control
to consist of Detective, Preventative, Responsive and countermeasures such as
Intrusion Detection Systems (IDS), Intrusion Prevention Systems (IPS) and firewalls.
Effective information systems controls include multiple layers’ approach, to mitigate
the threats such an approach is very effective if one control is bypassed the other
control can detect or prevent threat such as having Network based IDS and Host
IDS.

Table 3 Comparison of firewalls advanced features

FIREWALL CHANGING

DEFAULT

POLICY TO

ACCEPT/REJECT
(BY ISSUING A

SINGLE RULE)

ETHERNE
T MAC

DESTINA
TION

ADDRES
S

ETHERNE
T

MAC

SOURCE
ADDRESS

INBOUND

FIREWALL
(INGRESS)

CHANGE
TTL?

(TRANSPAR
ENT TO

TRACEROU
TE)

CONFIGUR
E

REJECTWIT
H ANSWER

AV

(ANTIVIR
US)

PFSENSE YES YES YES YES NO YES YES

UNTANGL
E YES NO NO YES NO NO YES

VYATTA YES NO YES NO NO NO YES

IPFIRE YES YES NO YES YES NO YES

	

16	
	

4.3.1	Firewall	

Firewall as described by [41] is a network security device that monitors incoming and
outgoing network traffic that can be a software program or a dedicated network
appliance, which decides whether to allow or block specific traffic based on a defined
set of security rules Since this project is focused on opens source solution, many
open source firewalls have been looked at e.g. IPfire, Vyttta, Untangle and Pfsense.
Based on the comparison of various features such as usability, advanced rule-set,
rule-set Appliance-UTM filtering, base OS, pfsense is the preferred tool of choice
because of its versatility.
Pfsense is an open source network firewall distribution, based on the FreeBSD
operating system with a custom kernel which including third-party open source
software packages for additional functionality pfsense.org [42]. Pfsense can
implement the same performance as commercial firewalls, without any of the
artificial limitations [42].

4.3.2	Intrusion	Detection	
An Intrusion Detection System (IDS) is a network security technology originally for
detecting vulnerability exploits against a target application or computer. Intrusion
Prevention Systems (IPS) extended IDS solutions by adding the ability to block
threats in addition to detecting them [40], [43].
A vast amount of research has been carried by many researchers comparing the two
best known open sources IDS/IPS snort and suricate. For instance,[40] looks at
performance deference’s between two IDS/IPS and suggest that snort is better. In
addition [43] Compares the fail positives, their result suggests snort is better. For this
project, snort will be used.

5	Step-by-Step	OpenStack	Deployment		

As mentioned earlier, the aim of this report is to detail the steps required to perform
a complete installation of OpenStack on multiple nodes. We split the installation
process into two parts:
The first part is Deploying, securing BradStack multi-node OpenStack cloud
infrastructure and developing OpenStack deployment toolkit.The second part is
focused on conducting Penetration testing on OpenStack Services to validate the
effectiveness of the security controls on the BradStack CCP.
This report describes how the BradStack OpenStack cloud infrastructure was
designed, built and configured. The chapter also looks at the installation of the
following security mechanisms; Pfsense firewall, snort (IPS/IDS) and Cisco switch
hardening that include a step by step guide to using the proposed OpenStack
installation toolkit.

17	
	

5.1	Hardware	Setup

Table 4 Hardware Setup and Specifications

Component Quantity Description
Admin PXE node 1 Dell Optiplex 745

• CPU: Intel Core 2 6400 @ 2.13GHz X 2 Cores
• RAM: 2 GB
• OS: 64 Bit
• HDD: 160 GB
• NIC: X 1

Cloud Controller

1 Dell Precision T5400
• CPU: Intel Xeon E5405 @ 2.00GHz X 8 Cores
• RAM: 32 GB
• OS: 64 Bit
• HDD: 1TB
• NIC: X 2

Compute servers

2 Dell Precision T3400
• CPU: Intel Core 2 Quad Q6600 @ 2.40GHz X 4

Cores
• RAM: 4 GB
• OS: 64 Bit
• HDD: 500 GB
• NIC: X 1

Block Storage
Server

1 Dell PowerEdge 1600SC
• CPU: Intel Xeon @ 2.8GHz X 2 Cores
• RAM: 4 GB
• OS: 64 Bit

HDD: 150 GB

Network server 1 Dell Precision T3400
• CPU: Intel Core 2 Quad Q6600 @ 2.40GHz X 4

Cores
• RAM: 4 GB
• OS: 64 Bit
• HDD: 500 GB

Data switch 1 HP Procurved Networking 10Gbps
Private switch 1 ZyXEL Internet Security gateway

Cables

7 x RJ 45 straight through copper cables

	

18	
	

5.2	Proposed	BradStack	Architectural	Design		

	

										Figure	5.1	Proposed	BradStack	Design	

Figure 5.1 depicts the proposed infrastructure topology (and architecture) of the
redesigned, secured and reconfigured BradStack OpenStack CCP. The
architecture comprises of the additional security layer using the PfSense firewall,
snort IDS/IPS, tunnelling to segment networks as well as the failover strategy.
Details of the architecture and how it’s been implemented are provided in the next
subsections.

5.3	Network	Infrastructure	Implementation	and	Configuration		
The following sections looks at steps taken to install Pfsense, snort and Cisco
switch hardening including their configurations.

	

19	
	

5.4	Installing	and	Configuring	Snort		

This section evidences the installation configuration and updating of snort IPD/IDS.
Snort has been discussed in chapter 2. Snort status can be found Figure 3-2 shows
the status of the snort installed rules.

	

Figure 5.2 snort update status

5.5	Configuring	Switch		

This section looks at implementing Cisco’s best practices for device hardening
which include the following countermeasures; service password-encryption, BPDU
guard, transport input SSH and switch port-security including mac-address sticky
have been implemented and tested.

	
	

20	
	

5.6			IP	Addressing	Table		

	
Table 5 IP addressing table

OPENSTACK	
SERVICE	
NAME	

HOSTNAME	 MANAGEMENT	
VLAN	 REPOSITORY	

VLAN	

INTERNET	
VLAN	

NFS	VLAN	
TENNANT	
VLAN	

TENNANT	
VLAN	

CONTROLLER 	 Richmond1 	 192.168.1.100 	 	 192.168.20.99 	 	 	 	

 	 Richmond2 	 192.168.1.101 	 	 192.168.20.100 	 	 	 	

NETWORK 	 	 192.168.1.	106 	 	 192.168.20.110 	 	
192.168.3.0/24 	 192.168.4.0/24 	

 	 	 192.168.1.107 	 	 192.168.20.111 	 	 	 	

COMPUTE 	 Horton1 	 192.168.1.110 	 192.168.2.101 	 192.168.20.101 	
192.168.10.101 	

 	 	

 	 Horton2 	 192.168.1.111 	 192.168.2.102 	 192.168.20.102 	
192.168.10.102 	

 	 	

 	 Horton3 	 192.168.1. 112 	 192.168.2.103 	 192.168.20.103 	
192.168.10.103 	

 	 	

 	 Horton4 	 192.168.1. 113 	 192.168.2.104 	 192.168.20.104 	
192.168.10.104 	

 	 	

CINDER 	 Phoenix1 	 192.168.1.120 	 	 192.168.20.120 	 	 	 	

 	 Phoenix2 	 192.168.1.121 	 	 192.168.20.121 	 	 	 	

SWIFT 	 Ashfield1 	 192.168.1.130 	 	 192.168.20.130 	 	 	 	

 	 Ashfield2 	 192.168.1.131 	 	 192.168.20.131 	 	 	 	

	

		

21	
	

6			BradStack	Implementation	and	Configuration		
	
This section gives a brief overview of OpenStack Alternative installer, OpenStack
installation toolkit, BradStack OpenStack deployment process, BradStack
OpenStack Cloud Infrastructure implementation and BradStack CCP cloud testing.

6.1	OpenStack	Alternative	Installer	Comparison		

PackStack: Packstack is an OpenStack installer that uses Puppet for deploying

OpenStack services. Puppet modules deploy OpenStack components on multiple

pre-installed servers over SSH automatically [22].

DevStack : DevStack is a sequence of expansible shell scripts used to rapidly

install OpenStack environment depending on the latest versions of everything from

git master. It is deployed as a development setting and as the basis for much of the

OpenStack project's functional testing[22].

ANVIL : ANVIL is open source python shell scripts and utilities that can be used to

deploy OpenStack. This tool is mainly for developers [22].

Table 6 depicts OpenStack alternative installer. It can be observed from the table
below that DevStack is a developer installer and it's not stable. But ANVIL only
supports older version of Centos, which is a big limitation and also, it's not stable
and doesn’t support multiple node installations. PackStack is also a developer
installer which is not stable as the rest of the developer installers mentioned above.
Juju and MaaS are commercial installation tools their biggest drawback is the
difficulty level of the installation and also limits the number of nodes one can deploy
for free. As stated by [44]This limitation of Juju and MaaS is similar when it comes
to fuel Mirantis. However, our installer overcome all the limitations associated with
the installation tools presented above with the additional advantages of
modularization approaches which is capable of production environment deployment
and easy to install.

Table 6 OpenStack Installer Comparison

Features\
installer

Devstack

ANVIL

PackStack

Juju and

MaaS

Mirantis

fuel

Proposed
Installation toolkit

Deployment

Developer

Developer

Developer

Commercial

Commercial

Production

environment

Supporting
operating
System

Ubuntu,

fedora and
centos

RHEL7

RHEL 6.2
Centos
Oracle

enterprise

Ubuntu

Centos 7

Ubuntu

Ubuntu

Centos

 Support
Multinode

yes

no

yes

yes

yes

yes

opensource

yes

yes

yes

yes

yes

yes

Stability of
deployment

Setup

no

no

Stable than

devstack

yes

yes

yes

Difficulty
level

no no normal High High easy

22	
	

6.2	BradStack	OpenStack	Deployment	Process		

This deployment toolkit is based on OpenStack installation tutorials and guides.
Even with the tutorial provided, installation is not that straightforward due to its
complexity and the number of steps required to get fully functional Cloud
infrastructure as discussed in the previous section. Figure 6.1 below illustrates the
process for implementing BradStack OpenStack Octaca based on the development
toolkit.

	
Figure 6.1 BradStack OpenStack deployment process

	 • Design
Involves selecting the operating systems, choosing OpenStack service model,
installing and updating all nodes, configuring network interfaces and name
resolution and conducting basic connectivity test.
	
	 • Install		
At this step, all OpenStack Dependents and requirements are installed after adding
Centos-Release-OpenStack-Ocata and epel7 repository. Each service has its own
shell script to install all its requirements.
	 	• Database Setup		
This involves installing and creating database for all the selected services during
the design stage in contrast to OpenStack guide where the database for each
service is configured as the service is being installed.

		

23	
	

	 • Register		
This step involves the creation of domains, projects, users, and roles and all
services selected during the design phase created including API endpoints.
OpenStack uses three API endpoint variants for each service: admin, internal, and
public endpoint. The admin API endpoint allows modifying users and tenants. More
details on OpenStack API endpoints can be found in the next section.
 • Start
This step involves installing and configuring service before starting them for
instance Glance, Nova, Neutron and Cinder. This includes controller node and
services in their relevant node such as Nova in compute node. This is dependent
on the design stage what OpenStack Services are required and some core service
that is required in any design.
	 • Test		
At this step, all installed OpenStack services will be verified, followed by
functionality testing which involves creating network and starting virtual machines.

6.3	BradStack	OpenStack	Implementation	Process	
	
In this section, we will cover the procedures to install OpenStack using the
suggested toolkit and the process mentioned above. Each service has its own shell
script in line with the installation process steps. Below is the flow and layout of the
OpenStack installation toolkit.
		
	

		

Figure 6.2 BradStack Installation toolkit layout

24	
	

6.3.1	Step	1:		Design	(BradStack	design)		

The BradStack infrastructure Design is based on the BradStack requirement in
terms of what services for example storage as a service detects the installing of
swift. This service and their variations have been discussed in the previous chapter.
Figure 6.3 below is the service design for BradStack. The controller box shows all
the services installed on the controller node, Compute box show the services
installed on the compute node, storage shows the services installed in the storage
nodes and the block storage box shows all the service installed block storage
nodes. Centos 7.3 has been chosen over Ubuntu as the base systems because
Ubuntu tends to be less conservative than CentOS, which means that its
repositories contain fresher packages, whereas CentOS packages tend to focus on
security patches, stability and consistency.

	

Figure 6.3 BradStack Service Design

6.3.2	Step	2:	Install	(installation	requirements)		

Adding centos-release-OpenStack, EPEL repository and install dependents on all
nodes. All this done by a shell script, which is named requirements.sh. Each service
has different requirements so thus, each module has one below are the three
module and their requirement shell scripts.
	
Controller-node:		
#the	following	must	be	run	as	
root	cd
/Desktop/deployment-
kit/controller-node 	
./chmodcontroller +x
*.sh- requirements.sh

	
		

25	
	

Compute-node		
#the	following	must	be	run	
as	root	cd
/Desktop/deploymen
t-kit/compute-node
chmod +x *.sh 	
./compute-
requirements.sh 	
			
Storage-node:		
#the	following	must	be	run	as	root		
cd
/Desktop/deployment-
kit/storage-node	
chmod +x *.sh	
./storage-node-
requirements.sh	
		
6.3.3	Step	3:	Setup	database	(services	database	creation)		

This step only applies the controller nodes (Richmond). MariaDB-server-10.0,
MariaDB-client was installed using the shell script named database.sh. This script
creates all database for the services that have been selected at the design stage of
BradStack. Below is the command in the database install scripts.

Install Database

yum -y erase mysql
yum -y install mariadb-galera-server mariadb-galera-
common mariadb-galera	
galera	
yum -y install OpenStack-utils	
crudini --set /etc/my.cnf.d/server.cnf mysqld
max_allowed_packet 256M sed -i -r "s/^bind-
address.*=.*0.0.0.0/bind-	
address=0.0.0.0\nmax_connections=$dbmaxcon
s/" /etc/my.cnf.d/galera.cnf
systemctl enable mariadb.service
systemctl start mariadb.service	
/usr/bin/mysqladmin -u $mysqldbadm password
$mysqldbpassword > /dev/null 2>&1	
/usr/bin/mysqladmin -u $mysqldbadm -h $dbbackendhost
password $mysqldbpassword > /dev/null 2>&1	

	
After installing the database software then followed by services databases are
installed starting with Keystone, Nova, Glance, Neutron and cinder. Only keystone
script snippet will be shown below due to document constants. The full script will be
available made available online for reference.

26	
	

echo "CREATE DATABASE $keystonedbname default character
set utf8;"|$mysqlcommand echo "GRANT ALL ON
$keystonedbname.* TO '$keystonedbuser'@'%'
IDENTIFIED BY 	
'$keystonedbpass';"|$mysqlcommand
 echo "GRANT ALL ON $keystonedbname.* TO
'$keystonedbuser'@'localhost' 	
IDENTIFIED BY '$keystonedbpass';"|$mysqlcommand
echo "GRANT ALL ON $keystonedbname.* TO
'$keystonedbuser'@'$keystonehost' 	
IDENTIFIED BY
'$keystonedbpass';"|$mysq
lcommand for
extrahost in
$extrakeystonehosts 	
 do 	
 echo "GRANT ALL ON $keystonedbname.* TO
'$keystonedbuser'@'$extrahost' 	
IDENTIFIED BY '$keystonedbpass';"|$mysqlcommand 	
 done
 echo "FLUSH PRIVILEGES;"|$mysqlcommand

6.3.4	Step:4	Register	(service	registration	and	identities)		

	
This step will install keystone, bootstrap keystone, create services, add a member
and all the service from design step will have a service created and endpoint. Using
script keystone.sh. This toolkit has been designed in a modular approach, which
means for each service has its own keystone install script, for instance, keystone-
glance, which would create glance service and the API endpoints.
	
Installing keystone
cd
/Desktop/deployment-
kit/controller-node
chmod./core +-
xservices *.sh
/install-keystone.sh 	
	
yum -y install OpenStack-keystone OpenStack-utils
OpenStack-selinux python-psycopg2 	
yum -y install mod_wsgi memcached
python-memcached httpd yum -y
install python-OpenStackclient 	
# We also start/enable memcached service 	
cat ./libs/memcached/memcached
> /etc/sysconfig/memcached
systemctl enable memcached
systemctl stop memcached
systemctl start memcached 	

27	
	

Using pyhton based "ini" configuration tools, we
begin Keystone configuration crudini --set
/etc/keystone/keystone.conf DEFAULT compute_port
8774 crudini --set /etc/keystone/keystone.conf
DEFAULT debug False crudini --set
/etc/keystone/keystone.conf DEFAULT log_file 	
/var/log/keystone/keystone.log 	
crudini --set /etc/keystone/keystone.conf DEFAULT
use_syslog False crudini --set
/etc/keystone/keystone.conf memcache servers
$keystonehost:11211

 	
After installing keystone service users are created, roles and endpoints for Nova,
Glance, Neutron and cinder on snippet for neutron will be shown below
.	source $keystone_admin_rc_file echo "" 	

echo "Creating
NEUTRON
Identities"
echo "" 	
#"Neutron User:" 	
OpenStack user create --domain $keystonedomain --password
$neutronpass --email 	
$neutronemail $neutronuser 	
#"Neutron Role:" 	
OpenStack role add --project $keystoneservicestenant --user
$neutronuser 	
$keystoneadminuser 	
#"
Neutron Service:" OpenStack service create \ 	
 --name $neutronsvce \ 	
 --description "OpenStack Networking" \ 	
 network 	
#"Neutron Endpoints:" 	
OpenStack endpoint create -
-region $endpointsregion \
network public
http://$neutronhost:9696
OpenStack endpoint create -
-region $endpointsregion \
network internal
http://$neutronhost:9696
OpenStack endpoint create -
-region $endpointsregion \
network admin
http://$neutronhost:9696 	

			
6.3.5	Step:	5	Start	(starting	the	OpenStack	services)		

In this step, all services will be started then in the next step verified in the next step.		

28	
	

	
cd /Desktop/deployment-kit/ ./OpenStack-
services-restart.sh		
	
6.3.6	Step:	6	Test	(service	verification)		

This section will involve verifying that all services are running, creating a network,
flavors, uploading an image to glance and finally launching the virtual machine.
Only Nova and cinder service will be displayed due to document constraints. The
following will involve querying service to view their status. Figure 6.4 below shows
the status of services.

Nova		

		

Figure 6.4 Nova service list

Cinder

Figure 3-6 below show the status of cinder services.

		

Figure 6.5 Cinder Service List

29	
	

7			BradStack	Cloud	Testing			
In this section, the deployed BradStack cloud infrastructure will be extensively
tested. First, a private network is created, upload image then launching an instance.
The image below shows the network topology from BradStack functionality test

	

Figure 7.0 Network Topology with running instances

		

Figure 7.1 Network Topology with webserver and pentest running instance

30	
	

	

Figure 7.2 Network Topology with windows Server running instance

7.1		BradStack	OpenStack	Installer		

The following is the database-install script

Database-install.sh		

#!/bin/bash	
#	
	
PATH=	$PATH	:/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin	
	
#	
# First, we source our config file.	
#	
if[-f
./conf/controller
-config.rc] then
source
./conf/controller
-config.rc	
else	
echo "Can't access controller-config.rc configuration
file. Aborting !" echo "" exit 0 fi	

31	
	

echo "Installing Local
MariaDB
Software"
rm /root/.my.cnf
 yum -y erase mysql	
yum -y install mariadb-galera-server mariadb-galera-
common mariadbgalera galera	
yum -y install OpenStack-utils	
crudini --set /etc/my.cnf.d/server.cnf mysqld
max_allowed_packet	
256M	
sed -i -r "s/^bind-address.*=.*0.0.0.0/bind-	
address=0.0.0.0\nmax_connections=$dbmaxcons/"
/etc/my.cnf.d/galera.cnf systemctl enable
mariadb.service systemctl start
mariadb.service	
/usr/bin/mysqladmin -u $mysqldbadm password $mysqldbpassword
>	
/dev/null 2>&1	
/usr/bin/mysqladmin -u $mysqldbadm -h $dbbackendhost
password	
$mysqldbpassword >
/dev/null 2>&1
sleep 5	
echo "[client]" > /root/.my.cnf
echo "user=$mysqldbadm" >>
/root/.my.cnf echo
"password=$mysqldbpassword" >>
/root/.my.cnf	
echo "GRANT ALL PRIVILEGES ON *.* TO '$mysqldbadm'@'%'
IDENTIFIED	
BY '$mysqldbpassword' WITH
GRANT OPTION;"|mysql
echo "FLUSH PRIVILEGES;"|mysql	
iptables -A INPUT -p tcp -m multiport --dports
$mysqldbport -j ACCEPT	
service
iptables save
echo "MariaDB
Installed"	
The following two variables are used later in the
database creation section	
#	
mysqlcommand="mysql --port=$mysqldbport --
password=$mysqldbpassword --	
user=$mysqldbadm --host=$dbbackendhost"	
echo "[client]" > /root/.my.cnf
echo "user=$mysqldbadm" >>
/root/.my.cnf
echo "password=$mysqldbpassword" >>
/root/.my.cnf

32	
	

echo "Keystone"	
echo "CREATE DATABASE $keystonedbname default
character set utf8;"|$mysqlcommand echo
"GRANT ALL ON $keystonedbname.* TO
'$keystonedbuser'@'%'	

7.2	Creating	private	network		
Figure 7.3 below shows the creation of private software-defined network (SDN).
 	

Figure 7.3 Private Network Creation

		

Figure 7.4 Moyo Network Overview

33	
	

Figure 7.4 below shows an overview of the entire network with Moyo account which
includes the public networks that are used for floating allocation

7.3	Building	an	instance		
The following section demonstrates the brief steps to launching of an instance from
web application Horizon. The following information is required; image, flavour which
specifies the how resources the instance needs, for example, random access
memory (RAM), virtual processing unit (VPU), Operating System image and a
network.

		

Figure 7.5 selecting Kali Linux image as the boot source

Figure 7.5 shows the selection of the image to be booted and figure 7.6 shows the
status of the launched instance.

						

							Figure 7.6 Status of Kali instance	

34	
	

Figure 7.7 below shows the Kali Linux instance full desktop experience of the test
instance kali. The building and deploying of the instance took a few minutes which
shows how fast the infrastructure is in terms of performance.

		

Figure 7.7 Kali Linux full desktop

 	

35	
	

6		Conclusions		
	
Cloud computing’s growing popularity especially using infrastructure as a service
has inspired many academic institutions to transform their current infrastructure
into a private or hybrid cloud. However, even though openstack was not the first to
propose open source cloud computing frameworks, but it works with popular
enterprise and open source technologies making it ideal for heterogeneous
infrastructure. In this report, three issues have been successfully addressed which
include: securing BradStack’s network infrastructure, configuring and deploying
BradStack using a developed toolkit as well as testing the entire cloud key
functionalities. We divided our proposed strategy into two parts: The first part
involves redesign, redeploying of BradStack CCP using the developed OpenStack
installation toolkit, and the second part looks at testing all the cintslled cloud
services.This report serves as a practical guideline to academic instituons intending
to build a private cloud and focusing on security and practical infrastructure related
issues. It also serves as a reference for institutions looking at the possibilities of
implementing a secured cloud solution.
In the future we will focus on securing BradStack multi-node OpenStack cloud
infrastructure by incorporating network firewalls, intrution detection and prevention
sytems, web application firewall, network segregation through the use of virtual
LANs and implementing Cisco’s best practise on switch hardening

36	
	

7			References		
	
[1] P. Mell, T. Grance, and T. Grance, “The NIST Definition of Cloud Computing

Recommendations of the National Institute of Standards and Technology,” Natl. Inst. Stand.
Technol. Spec. Publ. 800-145 7 pages, 2011.

[2] ITProPortal, “ITProPortal.com: 24/7 Tech Commentary & Analysis,” 2017. [Online]. Available:
http://www.itproportal.com/. [Accessed: 24-Jun-2015].

[3] P. Dawson, “Virtualization,” Gartner. Gartner, 2010.
[4] M. Kantarcioglu, A. Bensoussan, and S. R. (Celine) Hoe, “Impact of security risks on cloud

computing adoption,” 2011 49th Annu. Allert. Conf. Commun. Control. Comput., pp. 670–674,
Sep. 2011.

[5] A. Elzamly, B. Hussin, A. Samad, H. Basari, and C. Technology, “Classification of Critical
Cloud Computing Security Issues for Banking Organizations: A cloud Delphi Study,” Int. J. Grid
Distrib. Comput., vol. 9, no. 8, pp. 137–158, 2016.

[6] Z. Amin, N. Sethi, and H. Singh, “Review on fault tolerance techniques in cloud computing,” Int.
J. Comput. Appl., vol. 116, no. 18, pp. 11–17, 2015.

[7] M. Fu, L. Zhu, D. Sun, A. Liu, L. Bass, and Q. Lu, “Runtime recovery actions selection for
sporadic operations on public cloud,” Softw. - Pract. Exp., vol. 39, no. 7, pp. 701–736, 2016.

[8] D. Gnanavelu and D. G. Gunasekaran, “Survey on Security Issues and Solutions in Cloud
Computing,” Int. J. Comput. Trends Technol., vol. 8, no. 8, pp. 126–130, 2014.

[9] B. Wang, Y. Zheng, W. Lou, and Y. T. Hou, “DDoS attack protection in the era of cloud
computing and Software-Defined Networking,” Comput. Networks, vol. 81, pp. 308–319, 2015.

[10] M. Amoon, “A Framework for Providing a Hybrid Fault Tolerance in Cloud Computing,” pp.
844–849, 2015.

[11] R. Jhawar, V. Piuri, and I. Universit, “Fault Tolerance Management in IaaS Clouds,” 2012 IEEE
First AESS Eur. Conf. Satell. Telecommun., pp. 1–6, 2012.

[12] B. Mohammed, M. Kiran, K. M. Maiyama, M. M. Kamala, and I.-U. Awan, “Failover strategy for
fault tolerance in cloud computing environment,” Softw. Pract. Exp., 2017.

[13] Z. Pantic and M. Babar, “Guidelines for Building a Private Cloud Infrastructure,” ITU Tech. Rep.
- TR-2012-153TR-2012-153, 2012.

[14] C. Pahl and H. Xiong, “Migration to PaaS clouds - Migration process and architectural
concerns,” 2013 IEEE 7th Int. Symp. Maint. Evol. Serv. Cloud-Based Syst., pp. 86–91, Sep.
2013.

[15] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Cloud computing migration and IT resources
rationalization,” 2014 Int. Conf. Multimed. Comput. Syst., pp. 1164–1168, Apr. 2014.

[16] A. Sen and S. Madria, “Off-Line Risk Assessment of Cloud Service Provider,” 2014 IEEE World
Congr. Serv., pp. 58–65, Jun. 2014.

[17] S. Yadav, “Comparative Study on Open Source Software for Cloud Computing Platform :
Eucalyptus , Openstack and Opennebula,” Res. Inven. Int. J. Eng. Sci. Vol.3, Issue 10, vol. 3,
no. 10, pp. 51–54, 2013.

[18] R. Nasim and A. J. Kassler, “Deploying OpenStack: Virtual Infrastructure or Dedicated
Hardware,” 2014 IEEE 38th Int. Comput. Softw. Appl. Conf. Work., pp. 84–89, Jul. 2014.

[19] Openstack, “Software » OpenStack Open Source Cloud Computing Software,” 2014. [Online].
Available: http://www.openstack.org/software/. [Accessed: 11-Nov-2014].

[20] C.-T. Yang, Y.-T. Liu, J.-C. Liu, C.-L. Chuang, and F.-C. Jiang, “Implementation of a Cloud
IaaS with Dynamic Resource Allocation Method Using OpenStack,” 2013 Int. Conf. Parallel
Distrib. Comput. Appl. Technol., pp. 71–78, Dec. 2013.

[21] OpenStack, “OpenStack Cloud Administrator Guide,” pp. 1–333, 2015.
[22] E. T. and J. T. Tom Fifield, Diane Feleming, Anne Gentle, Lorin Hochestien, Jonathan proulx,

OpenStack Operations Guide. 2014.

37	
	

[23] ipexpert, “IpExpert - Total Network Solutions - Storage Virtualization,” 2011. [Online]. Available:
http://www.ipexpert.gr/en/Storage_Virtualization. [Accessed: 11-Nov-2014].

[24] N. Ahmad, A. Kanwal, and M. A. Shibli, “Survey on secure live virtual machine (VM) migration
in Cloud,” 2013 2nd Natl. Conf. Inf. Assur., no. Vm, pp. 101–106, Dec. 2013.

[25] T. Faculty, A. Susanto, T. Faculty, and T. Faculty, “Assessment of ISMS Based On Standard
ISO / IEC 27001 : 2013 at DISKOMINFO Depok City,” 2013.

[26] G. Wangen and E. A. Snekkenes, “A Comparison between Business Process Management
and Information Security Management,” 2014 Fed. Conf. Comput. Sci. Inf. Syst. ACSIS’14, vol.
2, pp. 901–910, 2014.

[27] R. Jhawar and V. Piuri, Cyber Security and IT Infrastructure Protection. Elsevier, 2014.
[28] C. Rong, S. T. Nguyen, and M. Gilje, “Beyond lightning : A survey on security challenges in

cloud computing q,” Comput. Electr. Eng., vol. 39, no. 1, pp. 47–54, 2013.
[29] M. Nancylia, E. K. Mudjtabar, S. Sutikno, and Y. Rosmansyah, “The Measurement Design of

Information Security Management System,” IEEE Secur. Priv., vol. 10, no. 3, pp. 200–205,
2014.

[30] Kamesh and N. Sakthi Priya, “Security enhancement of authenticated RFID generation,” Int. J.
Appl. Eng. Res., vol. 9, no. 22, pp. 5968–5974, 2014.

[31] L. Wei, H. Zhu, Z. Cao, X. Dong, W. Jia, Y. Chen, and A. V Vasilakos, “Security and privacy for
storage and computation in cloud computing,” Inf. Sci. (Ny)., vol. 258, pp. 371–386, 2014.

[32] S. A. E. Keke Gai, Meikang Qiu, “Security-Aware Information Classifications Using Supervised
Learning for Cloud-Based Cyber Risk Management in Financial Big Data,” in 2016 IEEE 2nd
International Conference on Big Data Security on Cloud, IEEE International Conference on
High Performance and Smart Computing, IEEE International Conference on Intelligent Data
and Security, 2016, pp. 197–202.

[33] K. Hajdarevic and P. Allen, “A new method for the identification of proactive information
security management system metrics,” Inf. Commun. Technol. Electron. Microelectron.
(MIPRO), 2013 36th Int. Conv., pp. 1121–1126, 2013.

[34] F. Zafar, A. Khan, S. U. R. Malik, M. Ahmed, A. Anjum, M. I. Khan, N. Javed, M. Alam, and F.
Jamil, “A survey of cloud computing data integrity schemes: Design challenges, taxonomy and
future trends,” Comput. Secur., vol. 65, pp. 29–49, 2017.

[35] S. V. Kushwah, K. S. Goyal, and P. Narwariya, “A SURVEY ON VARIOUS FAULT TOLERANT
APPROACHES FOR CLOUD ENVIRONMENT DURING LOAD BALANCING,” Int. J. Comput.
Networking, Wirel. Mob. Commun., vol. 4, no. 6, pp. 25–34, 2014.

[36] G. C. Fox, S. Kamburugamuve, and R. D. Hartman, “Architecture and measured characteristics
of a cloud based internet of things,” Proc. 2012 Int. Conf. Collab. Technol. Syst. CTS 2012, pp.
6–12, 2012.

[37] M. Serrano, H. N. M. Quoc, M. Hauswirth, W. Wang, P. Barnaghi, and P. Cousin, “Open
services for IoT cloud applications in the future internet,” 2013 IEEE 14th Int. Symp. a World
Wireless, Mob. Multimed. Networks, WoWMoM 2013, 2013.

[38] M. Al Morsy, J. Grundy, and I. Müller, “An Analysis of The Cloud Computing Security Problem,”
Proc. APSEC 2010 Cloud Work. Sydney, Aust. 30th Nov 2010. An, pp. 1–6, 2010.

[39] D. Fett, R. Küsters, and G. Schmitz, “A Comprehensive Formal Security Analysis of OAuth
2.0,” vol. 0, 2016.

[40] S. S. Tirumala, H. Sathu, and A. Sarrafzadeh, “FREE AND OPEN SOURCE INTRUSION
DETECTION SYSTEMS : A STUDY.”

[41] M. Anwar, “Virtual firewalling for migrating virtual machines in cloud computing,” 2013 5th Int.
Conf. Inf. Commun. Technol., pp. 1–11, Dec. 2013.

[42] S. A. Vahid Asghari, Shima Amiri, “Implementing UTM based on PfSense Platform,” pp. 6–8.
[43] E. Vasilomanolakis, S. Karuppayah, M. A. X. M. Uhlh, and M. Fischer, “55 Taxonomy and

Survey of Collaborative Intrusion Detection ¨ ¨,” vol. 47, no. 4, pp. 1–33, 2015.
[44] R. Kumar, N. Gupta, S. Charu, K. Jain, and S. K. Jangir, “Open Source Solution for Cloud

Computing Platform Using OpenStack,” vol. 3, no. 5, pp. 89–98, 2014.
[45] B. Mohammed and M. Kiran, “Analysis of Cloud Test Beds Using OpenSource Solutions,” 2015

3rd Int. Conf. Futur. Internet Things Cloud, pp. 195–203, 2015.

38	
	

