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ABSTRACT OF THE DISSERTATION

A Compute Capable SSD Architecture for Next-Generation
Non-volatile Memories

by

Arup De

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California, San Diego, 2014

Professor Rajesh Gupta, Co-Chair
Professor Steven Swanson, Co-Chair

Existing storage technologies (e.g., disks and flash) are failing to cope

with the processor and main memory speed and are limiting the overall perfor-

mance of many large scale I/O or data-intensive applications. Emerging fast

byte-addressable non-volatile memory (NVM) technologies, such as phase-change

memory (PCM), spin-transfer torque memory (STTM) and memristor are very

promising and are approaching DRAM-like performance with lower power con-

sumption and higher density as process technology scales. These new memories

are narrowing down the performance gap between the storage and the main mem-

ory and are putting forward challenging problems on existing SSD architecture,

xv



I/O interface (e.g, SATA, PCIe) and software. This dissertation addresses those

challenges and presents a novel SSD architecture called XSSD. XSSD offloads com-

putation in storage to exploit fast NVMs and reduce the redundant data traffic

across the I/O bus. XSSD offers a flexible RPC-based programming framework

that developers can use for application development on SSD without dealing with

the complication of the underlying architecture and communication management.

We have built a prototype of XSSD on the BEE3 FPGA prototyping system. We

implement various data-intensive applications and achieve speedup and energy ef-

ficiency of 1.5-8.9× and 1.7-10.27× respectively.

This dissertation also compares XSSD with previous work on intelligent

storage and intelligent memory. The existing ecosystem and these new enabling

technologies make this system more viable than earlier ones.

xvi



Chapter 1

Introduction

Existing memory hierarchy comprises of fast volatile SRAM-based caches,

DRAM-based main memory and slow non-volatile disk or flash-based storage. The

storage technologies (e.g., disk and flash) are orders of magnitude slower than

the processor and volatile memories (SRAM and DRAM). Hence, those block-

based storage technologies primarily use for persistence. The processor usually

loads data from the storage to the main memory in form of byte stream, creates

appropriate data structures and performs various computations on that data and

finally, stores data to the storage. The existing software and hardware mainly

optimize for block-based slow storage systems and use various techniques such as

caching and prefetching to minimize the impact of those slow storage technologies

on application’s performance.

Recently, we have seen a growing interest for large scale I/O or data-

intensive applications such as social networks, financial modeling, scientific sim-

ulations, data mining and enterprise applications. Those applications have large

datasets (in order of petabytes or larger) that can not fit into the main memory

(in order of gigabytes). Thus, we need to keep those data on storage and access via

read and write I/O interfaces. Those large scale applications are either streaming

over large data structures or randomly access different locations on storage. Thus

the existing memory hierarchy is not very effective for those applications and the

overall performance is limited by the slow storage technologies.

Emerging non-volatile memory (NVM) technologies such as phase-change

1
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Figure 1.1: The conventional system storage hierarchy to access data from
the storage by traversing the layers of software and the I/O bus.

memory (PCM) [Bre08], spin-transfer torque memory (STTM) [DSPE08] and

memristor [Wil08] are very promising and are projected to have DRAM-like per-

formance with lower power consumption and higher density as technology scales.

They appear as a boon to those applications and achieve great attention in

academia and industry as a viable replacement of existing storage technologies.

However, the simple replacement of slow storage technologies with NVMs can not

exploit the full potential of NVMs.

Figure 1.1 shows the conventional system storage hierarchy. It comprises

of various layers: application software, file systems, operating system, driver, I/O

interface (PCIe) and storage (e.g., disks and flash). The replacement of existing

storage technologies with NVMs can significantly impact different layers. It can

shift bottleneck from the storage to the software stack, and raise challenging prob-

lems on SSD architecture, I/O interface and software. Thus we need a thorough

analysis and a broad perspective to find an efficient solution to best utilize NVMs.

This dissertation addresses various challenges with NVMs in the storage

hierarchy and presents a novel SSD architecture called XSSD that colocates com-

putation with data and supports various I/O or data-intensive computations on
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Figure 1.2: The system storage hierarchy for XSSD XSSD (gray boxes)
extends the hardware and software to support application-specific processing close
to the storage.

storage. Figure 1.2 shows the system hierarchy for XSSD. We make three major

contributions: First, we extend the existing SSD architecture to offload I/O and

data intensive application code to the storage array. By moving computation as

close as possible to data, we can exploit the low latency and high bandwidth of

these new storage technologies and reduce the data traffic between the storage

and the host, resulting in a dramatic performance increase and significantly lower

power consumption. Second, we enhance the existing system software stack with

an RPC library to send the computational request from the host application to

XSSD using simple RPC calls. We provide a runtime library that facilitates a

smooth migration from the conventional I/O based storage to XSSD. Third, we

develop a range of data or I/O intensive applications on XSSD using the RPC

interface and compare them with the conventional I/O based implementation.

Chapter 2 discusses emerging NVM technologies. There are several NVM

technologies (e.g., phase change memory (PCM), spin-transfer torque memory

(STTM), memristor, magnetoresistive random access memory (MRAM), resistive

random-access memory (RRAM), ferroelectric random access memory (FRAM),

nano random access memory (NRAM) etc.) and they are at different levels of ma-
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turity starting from the initial research and prototyping to manufacturing [KK09].

We discuss three most promising NVM technologies such as PCM, STTM and

memristor. Then we study the latest work on NVM-based storage systems and

discuss the advantages and disadvantages of NVMs on the memory bus and I/O

bus. Based on our real measurement, we study the impact of NVMs on existing

storage hierarchies. We present motivation for XSSD and discuss salient features

of XSSD to best utilize NVMs.

Chapter 3 discusses XSSD system overview and various design enhance-

ment to exploit the full potential of NVMs and reduce the redundant data move-

ment between the storage and the host. We enhance the host software interface

and the request scheduler to easily dispatch various computational requests to

XSSD. XSSD’s SPU has a heterogeneous processing architecture that executes

control-intensive operations on a single-issue MIPS processor and data-intensive

operations on hardware accelerators. The MIPS and hardware accelerator signifi-

cantly improve performance and energy efficiency. XSSD facilitates a flexible RPC

based framework that enables applications to offload any application-specific func-

tions down to the storage and provide a simple programming environment that

developers can use to process data stored in the SSD without dealing with the

complication of the underlying architecture and communication management. We

build a prototype of XSSD on the BEE3 FPGA prototyping system [bee] for our

evaluation. We implement a power model for XSSD based system to measure the

power dissipation to run various workloads.

Chapter 4 presents the implementation of different I/O and data-intensive

applications on XSSD. We have chosen stream and random access applications

for our evaluation. XSSD uniquely supports large scale applications with poor

temporal and spatial locality. Example includes key-value store and tree-traversal

which often have very little data reuse and frequent random access to different

data locations. As a result, they make poor use of existing memory hierarchies

and perform poorly on the conventional system due to the I/O limitation. We

compare the performance and the energy efficiency of those applications on XSSD

with the highly optimized I/O based implementation. XSSD improves performance
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and energy efficiency by up to 8.91× and 10.27× for stream applications and up

to 4.39× and 5.07× for applications with random accesses to storage.

Chapter 5 discusses some of the most prominent previous work on intel-

ligent storage (e.g., Active Disks [RGF98, AUS98], Intelligent Disks [KPH98],

Smart SSD [KsKMP13] and BlueDBM [JLFA14] ) and intelligent memory (e.g.,

IRAM [PAC+97], Active Pages [OCS98] and FlexRAM [KHH+99] ). Then we

compare XSSD with previous work.

Chapter 6 presents XSSD infrastructure. XSSD infrastructure has several

components such as PCIe, request scheduler, ring network, MIPS processor and

NVM controller. We mainly focus on three main components: MIPS processor,

ring network and NVM controller. In MIPS processor, we present the pipeline

architecture and memory-mapped device interface. We discuss various utility ap-

plications such as loader, debugger and profiler to improve productivity. Then we

discuss design details of ring network that ensures reliable communication among

different components. Finally, we present NVM controller that can emulate differ-

ent NVM technologies and support start-gap wear leveling technique [QKF+09].

Finally, in Chapter 7 we conclude and present some future work.
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Chapter 2

Emerging Storage Technologies

and Motivation

In this chapter, we discuss emerging non-volatile memory (NVM) technolo-

gies and the recent work on NVM based storage systems. We study the advantages

and disadvantages of NVMs on parallel memory bus and serial I/O bus (PCIe).

Then we identify problems with the existing software stack and I/O interface (e.g.,

PCIe, SATA) for NVMs and present motivation for XSSD.

2.1 Emerging non-volatile memory technologies

In the last five decades, the disk has been the basic unit of persistent stor-

age for small and large scale computing systems. Disks are highly reliable but

generally suffer from poor latency and bandwidth, especially relative to processor

and main memory advances. Recently, flash based PCIe-attached SSDs have be-

come popular (e.g., FusionIO [FI09] and Virident [Vir10] as representative of the

high end SSDs) and are significantly faster (100×) than disk but still have slow

erase, high write latency and wear-out issues. In addition, flash does not support

in-place update and requires extra erase cycle to update data at same location.

To overcome that drawback, SSD vendors provide a flash translation layer (FTL)

between the software and flash memory which creates an illusion of in-place update

and maintains the logical to physical page mapping.

7
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Table 2.1: Memory Technology Summary [ITR09, LIMB09, PCM, GIS10, memb]

Technology Density Endurance Latency Energy
Read Write Read Write

Flash 4 F 2 105 25 us 200 us 250 pJ/bit 250 pJ/bit
PCM 4 F 2 108 67.5 ns 215 ns 3.4 pJ/bit 17.84 pJ/bit

STTM 10 F 2 1015 29.5 ns 95 ns 0.33 pJ/bit 10.0 pJ/bit
Memristor 6 F 2 1010 100 ns 100 ns 2 pJ/bit 2 pJ/bit

DRAM 4 F 2 1018 25 ns 25 ns 2.4 pJ/bit 2.4 pJ/bit

Emerging byte-addressable NVM technologies such as phase change mem-

ory (PCM), spin-transfer torque memory (STTM) and memristor are narrowing

the performance gap between the storage and the main memory and have poten-

tial, with density improvements, to replace existing storage technologies in future.

NVMs are fundamentally different than existing slow block-based storage technolo-

gies and offer orders of magnitude performance improvement and energy saving as

compared to disks and flash. NVMs support in-place update and do not need the

FTL between the software and memory device unlike flash.

There are several NVM technologies under research in academia and indus-

try. Here, we present three well-known NVM technologies: phase change memory,

spin-transfer torque memory and memristor. Table 2.1 briefly summarizes density,

latency and energy dissipation of different memory technologies.

Phase change memory Phase change memory (PCM) is the most promising of

the upcoming NVM technologies [Bre08]. It exploits the property of chalcogenide

glass to switch between two states, amorphous (high-resistance) and crystalline

(low-resistance), with application of current pulses. The crystalline state achieves

by heating above crystallization temperature using a moderate, long current pulse,

and logically stores “1”. The amorphous state achieves by high, short current pulse

and logically stores “0”. A small read current (less than 100uA) used to sense data

stored in a cell by measuring its resistance thus PCM consumes very small power

for read. PCM approaches DRAM-like performance with lower power consump-

tion and higher density as process technology scales. Despite this promise, PCM

suffers from long write latency, high energy writes and limited write endurance
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(on the order of 108). Recent studies [LIMB09, QSR09, QKF+09, DAR09] pro-

posed several hardware and software enhancements such as various wear-leveling

methods, new row buffer design, selective writes, (DRAM/PCM) hybrid memory

architecture, hot page swapping and write buffers to overcome PCM technology

limitations and make them a viable option for charge-based memory replacement

such as DRAM and flash.

Spin-transfer torque memory Spin-transfer torque memory (STTM) stores

bits as the orientation of a magnetic layer in a magnetic tunnel junction. The

junction’s resistance is low (the anti-parallel) or high (the parallel state) based on

the orientation [DSPE08]. STTM uses a spin-polarized current instead of electric

fields of previous MRAM technologies to set the orientation. It offers low latency

and high bandwidth read and writes accesses, and as technology scales, it will

achieve SRAM’s performance with zero standby power. It can significantly reduce

the power consumption of a wide range of applications starting from mobile de-

vices to data centers. Recent research [GIS10] also proposed a novel STTM-based

resistive computation to replace the conventional CMOS technology based logic

implementation in near future.

Memristor Memristor [Chu71] represents fourth passive element after the re-

sistor, inductor and capacitor. It relies on a hysteresis effect between the current

and voltage. Presently, it is a most promising Resistive RAM (RRAM) technology.

The memristor device has a platinum crossbar with titanium dioxide switches. The

titanium dioxide has a bipolar resistive switching that produces hysteresis loop be-

havior. In year 2008, HP Labs fabricated first memristor [Wil08]. The memristor

is projected to offer better scalability, power, performance and endurance with

scaling and is compatible with CMOS technology. The memristor is not only use

as a non-volatile memory device but also use to perform arithmetic operations on

stored data that can reignite the processing in memory (PIM) research.
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2.2 NVMs on Memory Bus vs. I/O Bus

Recently, there is a huge interest in academia and industry for NVM-based

storage systems. There are several research works on NVM-based storage systems

where either NVMs are attached to the memory bus such as NV-Heaps [CCA+11],

BPFS [CNF+09] and CDDS [VTRC11] or attached to the I/O bus (e.g. PCIe)

such as Moneta [CDC+10]. Those systems made various software and hardware

enhancements for better utilization of NVMs.

NVMs on memory bus provide fast access to NVMs using load and store

operations. NV-heaps [CCA+11] project proposes a persistent object system for

NVMs which facilitates a simple programming interface and protects against sys-

tem and application failures by providing a model for persistence (to catch all

sorts of programming errors) and supports transactional semantics. They imple-

ment various data structures such as search trees, hash tables, sparse graphs, and

arrays using NV-heaps. The BPFS [CNF+09] project proposes a file system and the

underlying hardware enhancement for better utilization of NVMs. They optimize

short-circuit shadow paging for fast and consistent updates. The hardware ensures

ordering and reliability of NVM accesses. CDDS (Consistent and Durable Data

Structures) [VTRC11] safely exploits fast NVMs and provides atomic update us-

ing versioning. The versioning scheme also facilitates rollback for failure recovery.

CDDS implements B-Tree data structure and optimizes lookup, insert, and delete

operations. However, NVMs on memory bus may suffer from scalability issues due

to parallel interface and limited package pin count of the processor [ITR09].

XSSD connects with the host using PCIe which facilitates safety and scal-

ability to sustain fast growth of data as compared to the parallel memory bus

interface. The recent work on PCIe-attached NVM-based SSD architecture called

Moneta-D [CMD+12] focuses on optimizing read and write I/O performance for

NVMs. Moneta-D provides a channel based I/O interface for each application and

bypasses some portion of file system and OS overhead for different I/O calls. How-

ever, the PCIe interface and driver still limit the overall performance of Moneta-D.

It inspires XSSD architecture that offloads application-specific functions down to

the storage to eliminate the PCIe and driver overhead, and better utilize NVMs.
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Table 2.2: Storage Systems

Name Technology Capacity Description
RAID-Disk Disk 4 TB RAID-0 of 4x 1 TB 7200 rpm hard

drives
Fusion-IO Flash 80 GB Fusion-IO 80 GB PCIe-attached flash-

based SSD
Moneta-D PCM 64 GB Moneta-D 64 GB PCIe-attached PCM-

based SSD

2.3 Why XSSD for NVMs?

NVMs are shifting the bottleneck from the storage to I/O interface (e.g.,

SATA and PCIe) and system software stack. We measure the time spent on various

components of I/O for different storage technologies to get the essence of XSSD

for NVMs. Table 2.2 briefly describes different storage systems. Figure 2.1 shows

the I/O latency for 4 KB random read accesses on different storage systems. The

total I/O latency of RAID-disk is 7.8 ms and it spends more than 99% of total I/O

latency on disk due to the disk seek latency and rotational delay. Fusion-IO shows

114× improvement as compared to the disk and takes 68 µs for accessing 4 KB

pages. However, the raw storage access overhead is still more than 90% of total I/O

latency for flash-based SSD. Moneta-D shows the huge improvement as compared

to the disk and flash and achieves I/O latency of 9 µs for 4 KB random reads.

The raw NVM access overhead for Moneta-D is less than 20% of total I/O latency

and the remaining overhead comes from the PCIe and software drivers. This

indicates a huge scope of improvement in performance and energy efficiency with

XSSD by offloading computations in storage. We also measure the read bandwidth

of different storage technologies. The RAID-disk achieves 500 KB/s for 4 KB

random page accesses and 125 MB/s for 4 KB sequential page accesses. The disk

seek latency (∼10 ms) limits the random access performance. Fusion-IO achieves

250 MB/s for 4 KB random page accesses and outperforms disk by 250× due to

relatively fast random read accesses on flash. PCM-based Moneta-D achieves 1.6

GB/s for 4 KB random page accesses which is more than 6.4× improvement as

compared to Fusion-IO. However, the aggregate internal bandwidth of Moneta-
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Figure 2.1: The I/O latency breakdown for different storage technologies
the PCM access time is less than 20% of total I/O latency for 4 KB page access.

D is 23.8 GB/s and the PCIe bandwidth and software driver limit the overall

Moneta-D’s performance. XSSD exposes the large internal bandwidth to the end

application by providing low latency and high bandwidth accesses to NVMs and

eliminating PCIe and driver overhead. As the performance of NVMs increase with

technology scaling, we get more advantage in terms of performance and energy

efficiency by pushing the computation close to data.

XSSD also supports more flexible access patterns to leverage byte-

addressable fast NVMs and provides a significantly higher level of programma-

bility compared to the conventional storage stack. It offers a flexible RPC-based

programming framework that developers can use for application development on

SSD without dealing with the complication of the underlying architecture and

communication management. XSSD is not limited to streaming applications and

supports a wide range of I/O intensive applications with small random accesses to

the storage such as key-value store and B+tree traversal.
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2.4 Motivation

XSSD extends the conventional SSD architecture to incorporate the compu-

tational capabilities in the SSD to achieve high performance and energy efficiency

than the conventional SSD based system. XSSD considered all three P’s of sys-

tem design: performance, power and programmability. Several fundamental trends

inspire XSSD architecture.

Inadequate existing SSD architecture The existing SSD architecture opti-

mizes for block accessible flash where the overhead of I/O interface and software is

negligible (less than 10%) as compared to the raw storage access overhead. NVMs

are more than 1000× faster than flash and facilitate in-place update unlike flash.

NVMs are radically changing the I/O latency breakdown among the software stack,

PCIe and NVM. The overhead of PCIe and software stack is more than 80% of to-

tal I/O latency and the remaining overhead comes from NVM [CMD+12]. So, the

simple replacement of flash with NVMs actually destroy the huge gain from fast

NVMs and it instigates XSSD architecture to offload application-specific process-

ing down to the storage to exploit the low latency and high bandwidth of NVMs

and reduce the redundant data movement between the storage and the host.

Huge performance and energy gain XSSD is based on NVMs which have

low latency and low power dissipation as compared to existing storage technolo-

gies such as disk and flash. XSSD significantly improves performance and energy

efficiency by reducing data traffic between the host and the storage, and perform-

ing efficient application-specific execution in the SSD. XSSD has a heterogeneous

processing architecture that executes control-intensive operations on single-issue

MIPS processor and data-intensive operations on hardware accelerator (holds fixed

function hardwares).The MIPS and hardware accelerator significantly improve per-

formance and energy efficiency. There are several research work on heterogeneous

computing such as EXOCHI [WCC+07] and C-cores [VSG+10] have demonstrated

more than 10× performance improvement and 16× energy saving as compared to

general-purpose processing. We implemented various data-intensive applications
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on XSSD and achieved speedup and energy efficiency of 1.5-8.9× and 1.7-10.27×
respectively.

Growing demand for large scale applications In the age of Big data, large

scale applications such as scientific data analysis, social networks and enterprise

applications need to process large amount of data in order of petabytes. For exam-

ple, semantic graphs representing social networks of interest to the Department of

Homeland Security will have 1015 entities [KBC+05]. The execution time of such

large data analysis algorithms is dominated by storage performance. They are

continuously spanning on three dimensions: volume (petabytes per day), velocity

(real-time analytics) and variety (structured and unstructured data web logs, audio

and video images). These applications often have low temporal and spatial local-

ity. As a result, they make poor use of existing memory hierarchies and perform

badly on the conventional system due to large I/O overhead. XSSD exposes huge

bandwidth and low latency of NVMs to those applications and improves perfor-

mance by eliminating I/O and efficient data processing in the SSD. XSSD allows

the processing of the system to scale with increasing storage demand for various

applications.

Ecosystem Existing ecosystem favors XSSD architecture. There are three main

reasons. First, the EDA tools and FPGA/ASIC technologies are more mature than

before to build XSSD system. These design methodologies can reduce the design

cycle time of the hardware development. Second, the software tools, compiler

infrastructure and programming languages are more user-friendly to utilize the

heterogeneous processing architecture of XSSD. We have seen OpenCL becomes

the de facto standard for heterogeneous computing and significantly reduces the

cost of adopting a new processor architecture. Third, XSSD keeps same PCIe

interface to connect with the host analogous to the existing SSD that simplifies

migration from the existing SSD to XSSD. Also, it can marginally increase cost to

incorporate additional computing resources.
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Chapter 3

XSSD System Overview

As discussed in the previous chapter, emerging byte-addressable non-

volatile memory (NVM) technologies are very promising and offer orders of mag-

nitude faster accesses than existing storage technologies such as disks and flash.

This huge improvement shrinks the performance gap between the storage and the

main memory, and requires rethink in the storage architecture, I/O interface and

system software stack to exploit fast NVMs and maximize application gain.

XSSD offloads various application-specific computations down to the stor-

age to exploit the low latency and high bandwidth of emerging NVMs and signifi-

cantly reduce data movement across the I/O bus. Figure 3.1 shows the XSSD archi-

tecture. We enhance the existing SSD with a new host software interface, request

scheduler and storage processing unit to perform computation in storage. XSSD

has four main components: request scheduler, storage processing unit (SPU), ring

network and memory controller. We extend the host interface for XSSD to dis-

patch function calls from the host using Remote Procedure Call (RPC) over the

PCIe. The driver offers a private communication channel interface per thread to

issue an RPC call to the XSSD. The request scheduler receives it and dispatches

it to the corresponding storage processing unit over the ring network. The storage

processing unit (SPU) receives the RPC request and sends back acknowledgement.

Then it executes that function with the given arguments and sends back a re-

sponse to the host via the request scheduler using the RPC interface. The RPC

hides complex message passing among different components and provides a sin-

17
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Figure 3.1: XSSD system architecture extends the software driver and SSD
hardware with an augmented request scheduler and SPUs.

gle programming interface for the application developer to dispatch computations

from the host to SPUs. Each NVM controller connects with dual-rank DIMMs

using the DDR2 interface. The ring network provides a packet based reliable com-

munication among the request scheduler and storage processing units, and has

peak bandwidth and round trip latency of 3.72 GB/s and 88 ns respectively. It

dispatches an RPC request from the request scheduler to the SPU based on SPU

ID and packet size information and similarly, sends back response from the SPU

to the request schedule. It supports hardware flow control to efficiently utilize the

ring network.

We describe each component in more detail below.
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3.1 Host Software Interface

Applications use a compute channel to offload computations to the storage.

The channel provides a low-level communication mechanism between the SPU

and the application thread. The channel has a set of control registers to manage

communication, access permission and a pair of circular queues (downstream and

upstream) for data communication between the request scheduler and the host.

The kernel driver allocates a channel up on application request. The user space

library mmaps it to application space and grants access to the control registers and

circular queues. The application can write to the downstream queue and read from

the upstream queue. The driver and hardware maintains the head and tail pointers

for both the downstream and upstream queues. The host issues a Programmed

IO (PIO) write to update the head pointer of the downstream queue to send data

to the XSSD and issue a PIO write to update the tail pointer of the upstream

queue to receive data from the XSSD. The tail pointer of the downstream queue

and the head pointer of the upstream queue are managed by the request scheduler

of XSSD. We use a DMA interface to send commands with various sizes along

with data and the PIO interface updates different control registers, head and tail

pointers of circular queues and notifies data availability to the request scheduler.

When the host wants to send data to the XSSD, it opens a channel and writes

the data into the downstream queue, and issues a PIO write to update the head

pointer of the downstream queue. XSSD uses this information to fetch data from

the host. During receive, the host polls on the upstream queue and reads all data

and then issues a PIO write to update the tail pointer of the upstream queue. We

provide an RPC library on top of the driver to call application-specific functions

and exploit the compute resources inside XSSD. In Section 3.5 we describe our

RPC library and low level message protocols in detail.

3.2 Request Scheduler

The request scheduler receives data from the host over the PCIe and sends

to different SPUs over the ring network. The request scheduler has two main com-
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Figure 3.2: Storage processing unit executes application-specific functions in
the SSD using MIPS. The DMA controller loads data from the NVM controller and
the ring network and the hardware accelerator improves performance and energy
efficiency.

ponents: PCIe interface (PIO and DMA) and queue manager. The PIO interface

is responsible for read and write to various control registers and the DMA interface

is responsible for issuing and handling DMA requests to send and receive data from

the host. The queue manager is responsible for reading requests from the host,

sending them to SPUs via ring network and writing the response back to the host.

It has two finite state machines : down fsm and up fsm. When the host sends data

to XSSD, it opens a compute channel, writes to the downstream queue and issues

a PIO write to update the head pointer of the downstream queue. The down fsm

uses this pointer to find how many new entries are available in the downstream

queue and issues the appropriate DMA requests to read data from the host. Then

it checks the message header for the destination SPU and dispatches over the ring

network. The up fsm is similar to down fsm for sending data from the XSSD to

the host.



21

3.3 Storage Processing Unit

The storage processing unit (SPU) receives an RPC from the host via the re-

quest scheduler, executes application-specific functions and sends back a response.

It comprises of four main components: MIPS, DMA Controller, hardware accel-

erator and local memory. We use a single issue, 5-stage pipelined 32-bit MIPS

processor to run application-specific functions in the SSD. The MIPS simplifies

design, reduces gate count and improves energy efficiency. The DMA controller

is a memory-mapped hardware device that enables fast movement of data from

the NVM controller and ring network to the local memory and vice-versa. The

MIPS configures various control registers of DMA controller to set source address,

destination address and data size, initiates DMA operation and waits for comple-

tion. This movement of data by the DMA controller significantly reduces the load

on the MIPS. The hardware accelerator holds fixed function hardware to improve

performance and energy efficiency. The MIPS sends input arguments and receives

response from the hardware accelerator using a memory-mapped interface. We

developed several application-specific hardware accelerators manually in Verilog.

They offer the highest performance at the corresponding cost of hardware design

expertise.

As an example, Figure 3.3 shows a simple streaming kernel, fgrep-8, which

receives input arguments from the MIPS using a memory mapped request FIFO.

The request extractor receives them and extracts the reference string and data

location information. The data may reside in a local NVM, in which case it is

loaded by the local NVM controller, or may reside in a remote NVM. In the latter

case, the data must be read by the remote NVM controller and transferred via

the ring network to a memory block local to the SPU. The fgrep-8 FSM compares

the reference pattern with the data in the local memory block. On matches, the

kernel increments the match word counter and when all the requested data has

been searched, it sends back the results to the MIPS via the response generator

by writing to the response FIFO.
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Figure 3.3: Fgrep-8 kernel receives compute requests from the MIPS, finds
matching strings, updates the word match counter, and sends a response to the
MIPS.

3.4 NVM Controller

XSSD has eight NVM controllers. Each controller connects with dual-rank

DIMM using DDR2 interface with total capacity 8 GB. Each controller runs at

250 MHz, receives 16 bytes of data each cycle and has peak bandwidth of 3.72

GB/s. Each DIMM has 16 memory chips per rank, each chip has 8 banks and

has a row buffer of 8 KB. NVM controller ensures persistence and writes back

data from volatile row buffer to non-volatile NVM memory array in case of power

failures to prevent data loss. Since phase change memory cells have limited life time

(106 writes), the NVM controller performs the start-gap wear-leveling and address

randomization scheme [QKF+09] to evenly distribute write memory accesses across

different physical memory pages with very little (less than 1%) overhead.
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Figure 3.4: XSSD RPC mechanism between the host and the SPU.

3.5 Programming Model

XSSD facilitates an RPC-based framework to exploit the processing ca-

pability in storage. RPC is simple to use and is often deployed in distributed

services. It is based on procedure call in a client/server setting and provides sim-

ple programmability to implement various application-specific functions in storage.

Figure 3.4 shows the RPC mechanism between the host and the SPU. The host

application calls an RPC function with a given arguments. The RPC library cre-

ates a packet and dispatches it to the SPU. The destination SPU unpacks it, calls

the RPC function and returns back result to the host. Figure 3.5 shows the RPC

packet structure for communication. The packet has following fields.

• Source address - identifies the sources address (host or SPU ID informa-

tion)

• Destination Address - identifies the destination address ( host or SPU ID

information)

• Length - holds the length of the packet
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Figure 3.5: XSSD RPC packet structure to communicate with the SPU.

• Tag - keeps sequence number to maintain ordering

• Application data - holds application related information such as process

ID (PID), RPC function and associated arguments.

The RPC library provides a set of APIs for simple communication between

the host and SPUs. Table 3.1 briefly describes those RPC APIs that are responsible

for creating RPC requests and responses, performing DMA operations, and sending

and receiving RPC messages.

Figure 3.6 shows the typical execution flow of a data-intensive application

using the XSSD architecture. If needed, the host CPU loads file data onto the

XSSD. Files are striped across multiple NVM controllers for parallelism. Next, the

host CPU allocates a compute channel per thread and distributes computations

across multiple SPUs through RPC calls. The SPU receives a RPC request, ex-

ecutes it and sends back a response. The host receives RPC responses, extracts

and merges results from different SPUs and produces the final output. Finally, the

host CPU deallocates compute channels.

3.6 Example

As an example, the Fgrep-8 benchmark scans through a data file, searches

for a specified 8-byte character pattern and counts the number of occurrences. We

implement two versions of this benchmark. The first, Fgrep-IO uses the conven-

tional I/O interface to read data from the SSD and perform computation on the

host. Figure 3.7 presents a code snippet illustrating a parallel fgrep-IO function
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Table 3.1: RPC APIs

Create RPC request and response
BuildMsgHeader(CPUID t dst id, uint32 t RPC Handler);

Create an RPC request header with the destination ID and RPC handler in-
formation.
AppendMsgBody(Port t src, uint32 t size, Address t src addr );

Append a message data from the given source (NV MEMORY PORT or
LOCAL MEMORY PORT) and address.
CreateResponse(Msg t* header, MsgResp t* response, RPC Status

status);

Extract the source and destination information from the request header and
then create RPC ack/nack response message.
DMA operation
DMATransfer(uint32 t size, Port t src, Address t src addr, Port t

dst, Address t dst addr);

Supports various combinations of DMA operations: 1. NVM controller and
network, 2. NVM controller and local memory, and 3. local memory and
network.
Send and receive of RPC messages
AppendMsgBodyAndFlush(Port t src, uint32 t size, Address t

src addr);

Append a message data and then send the RPC request.
SendResponse(response);

Send an RPC ack/nack response.
ReceiveBytes(void* buf, unsigned int size);

Receive “size” bytes from the network buffer to local memory buffer.
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Figure 3.6: The execution flow on XSSD based system is initiated by the
host, runs asynchronously on the SPU, and is terminated by the host.
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Algorithm 3.6.1: Fgrep-IO(int fd, int64 t offset, size t size,
int64 t key)

comment: Allocate local buffer

buf ← (int64 t∗)malloc(buf size);
int64 t match count = 0;
for i← 0 to size

do



comment: Read file with given offset

pread(fd, buf, buf size, offset+ i);
comment: Search for key and increment

for j ← 0 to buf size

do

{
if buf [j] = key

then
{
match count← match count+ 1;

i← i+ buf size;
return (match count);

Figure 3.7: Fgrep-IO code scans through a data file and counts the number of
occurrences of a given 8-byte character pattern.

using pthreads. The data file is split across multiple threads and each thread reads

the file at its assigned offset. The thread reads “size” bytes of data from the SSD

into a local buffer. Then it searches for a specified character pattern and incre-

ments match count when a match found. Finally, the main program combines all

the match counts to get the total number of matches.

The second, Fgrep-RPC implements an RPC function Fgrep-8() to count

the number of matches of a specified 8-byte character pattern using the SPU and

sends back the number of matches instead of fetching the data file from the storage.

The host application initiates computation using an RPC call to the SPU with

input arguments of the RPC function such as file extents and key. Our run-time

library function extracts information on the data file extents from the file system.

Upon receiving RPC, the SPU calls the RPC function Fgrep-8() as shown in

Figure 3.8 that retrieves command comprises of file extents and key. Then it reads

file data based on the extents information using DMA, and counts the number of

matches. Finally, it sends back the number of matches to the host using RPC.
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Algorithm 3.6.2: Fgrep-8(Msg t ∗ header)

comment: Retrieves file extents and key

GrepCmd t cmd;
ReceiveBytes(cmd, sizeof(GrepCmd t));
comment: Sends ack/nack response

MsgResp t response;
CreateResponse(header,&response,RPC SUCCESS);
SendResponse(response);
comment: Compute number of matches

int64 t spu match count = 0;
for i← 0 to cmd.extents length

do



comment: Use DMA to read data from NVM controller

DMATransfer(buf size,
NV MEMORY PORT,
cmd.extents addr + i,
LOCAL MEMORY PORT,
buf);
comment: Search for key and increment

for j ← 0 to buf size

do

{
if buf [j] = cmd.key

then
{
spu match count← spu match count+ 1;

i← i+ buf size;
comment: Sends number of matches to the host

CPUID t dst = cmd.src;
BuildMsgHeader(dst,GREP COMPLETE HANDLER);
AppendMsgBodyAndFlush(LOCAL MEMORY PORT,
8,&spu match count);
return ;

Figure 3.8: Fgrep-8 code RPC-based implementation on SPU to count the
number of occurrences of a given 8-byte key.
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3.7 Prototype

We implemented XSSD on the BEE3 FPGA prototyping system jointly

developed by Microsoft Research, UC Berkeley, and BEEcube Inc.. The BEE3

system holds 64 GB of 667 MHz DDR2 DRAM under the control of four Xilinx

Virtex-5 LX155T FPGAs, and it provides a PCIe-1.1 x8 (2 GB/s full duplex)

link to the host system. We used the high speed DDR2 ring network to connect

multiple FPGAs with roundtrip latency of 88 ns and bandwidth of 3.7 GB/s. The

system clock runs at 250 MHz. We implemented the hardware components such as

request scheduler, SPUs and NVM controllers on the FPGAs. Since PCM is the

most promising among different NVM technologies and receives great attention in

research community as a viable future replacement of existing charge based memory

technologies, we use PCM for our evaluation. We emulate PCM using the DRAM

of the BEE3 system with access latency (read: 48 ns and write: 150 ns) as described

in [LIMB09]. We modify the memory controller to add latency between the read

address strobe and column address strobe commands during reads and extend the

pre-charge latency after a write by inserting delay. We cannot stop DRAM refresh

to preserve data which is not required for these NVM technologies. The memory

controller delivers data at 3.7 GB/s. The MIPS in SPU runs at only 125 MHz,

and has 32 KB instruction memory and 32 KB data memory. To overcome the

slow processing of MIPS and effectively utilizing FPGA resources, we implement

various application-specific hardware accelerators to improve performance.

3.8 Power Model

We implement power model of XSSD to evaluate energy consumption

of XSSD based system. Table 3.2 briefly summarizes the power model of

XSSD based system. The SPU power evaluation uses Synopsys CAD tools

and 45 nm TSMC standard cell. The host Intel Xeon E5-2690, DDR3 DIMM

and the remaining components power come from datasheets and published pa-

pers [Int08, LAS+09, CDC+10, LIMB09, MAC+11, Int]. We measure the utiliza-

tion factor of each components in XSSD using hardware counters and the host
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Table 3.2: XSSD power model that includes the host from [Int], DIMM power
from [MAC+11], PCM from [LIMB09], the SPU components from Synopsys CAD
tools, and other components come from datasheets [Int08] and papers [LAS+09,
CDC+10]

Component Idle Active

Host Intel Xeon E5-2690 [Int] 60 W 135 W
4 GB DDR3 DIMM [MAC+11] 1 W 5 W
PCIe [Int08] 0.12 W 0.4 W
Scheduler [Int08] 0.3 W 1.3 W
Network [LAS+09] 0.03 W 0.06 W
MIPS 0.078 W 0.37 W
DMA Controller 0.01 W 0.09 W
Grep Hardware Accelerator 0.013 W 0.12 W
Saxpy Hardware Accelerator 0.06 W 0.3 W
FFT Hardware Accelerator 0.029 W 0.274 W
PCM controller [LAS+09] 0.24 W 0.34 W
PCM write [LIMB09] 16.82 pJ/bit
PCM read [LIMB09] 2.47 pJ/bit
PCM background [LIMB09] 264 µW/die 20 µW/bit

CPU utilization using “sar” command. We model each component’s power as

P = IdlePower× (1−UtilizationFactor) +ActivePower× (UtilizationFactor).
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Chapter 4

Applications

In this chapter, we present a set of applications from various application

domains such as scientific computing, artificial intelligence, image processing, en-

terprise computing and financial computing. Table 4.1 presents brief description

about different applications for evaluation. These applications are data or I/O

intensive. They are either stream over large data structures (e.g., fgrep-8, saxpy

and 2D-FFT) or randomly accesses different data locations (e.g., key-value store

and B+ tree). The stream applications have poor temporal locality and the I/O

bandwidth mainly limits the performance of those applications. The random ac-

cess applications have poor temporal and spatial locality. As a result, they make

poor use of existing memory hierarchies and perform poorly on the conventional

system. XSSD exposes huge bandwidth and low latency of NVMs to those appli-

cations and improves the performance by eliminating I/O and performing efficient

data processing in the SSD. We briefly discuss about the implementation of each

Table 4.1: Applications

Name Description
Fgrep-8 Scans a file for a given fixed pattern matching.
Saxpy Computes floating point scalar multiplication and vector

addition.
2D-FFT Calculates 2D-FFT.
Key-value Store Key-value store operations lookup, insert and delete.
B+ Tree B+ Tree traversal.

32
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Table 4.2: The latency and bandwidth of access 8 KB data

Description Latency (us) Bandwidth (GB/s)
Host I/O 11.2 1.67
SPU DMA 3.4 2.7

applications on XSSD.

We implement two versions of each applications. The first, [application

name]-IO uses the highly optimized storage I/O interface [CMD+12]. The second,

[application name]-RPC uses the RPC interface of XSSD. We also implement the

hardware version of fgrep-8 and key-value store. We compare the performance and

energy efficiency of each implementation. We use the power model to find the

average power of each component as discussed in Section 3.8. Then we calculate

the system energy consumption for an application by multiplying the execution

time of the application with the total average power.

Before we measure the performance of each application, we measure the

access latency and bandwidth of 8 KB data access from the host over the PCIe

and inside XSSD. Table 4.2 summarizes the latency and bandwidth of the host

I/O access and SPU DMA access. XSSD has aggregate internal bandwidth of 21.6

GB/s that outperforms the host I/O bandwidth by 12.93×.

4.1 Fgrep-8

Fgrep-8 is a file readonly application. It scans through a data file, searches

for a specified 8-byte character pattern and counts the number of occurrences. It

has sequential accesses and the I/O interface bandwidth limits the overall per-

formance of fgrep-8. We implement three versions: Fgrep-IO, Fgrep-RPC and

Fgrep-HW.

4.1.1 Fgrep-IO

Fgrep-IO reads the data file using I/O, searches for the pattern and counts

the number of matches using the host. We implement a parallel fgrep-IO function

using pthreads that splits the data file across multiple threads with assigned offset
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and size. Each thread reads data from the SSD using I/O read interface and

searches a given character pattern on the host. If matches, it increments the

number of matches. Finally, the main program combines the number of matches

of each thread to get the total number of matches.

4.1.2 Fgrep-RPC

Fgrep-RPC implements an RPC function Fgrep-8() to count number of

matches of a specified 8-byte character pattern using SPU. The host application

initiates computation using RPC to the SPU with input arguments of the RPC

function such as file extents and 8-byte character pattern. Our run-time library

function extracts information on the data file extents from the file system. Upon

receiving, the SPU calls the RPC function with given arguments. Then it loads

file data from the NVM controller to local buffer using DMA based on the extents

information, and counts the number of matches. Since the MIPS processor runs

very slowly (at 125 MHz) and is unable to exploit the full NVM bandwidth (3

GB/s). We implemented a hardware accelerator for key comparison that can

process data at 4 GB/s. As an optimization, we implement double buffering to

simultaneously load data from the NVM controller to one local buffer and perform

computation on another buffer.

4.1.3 Fgrep-HW

We also implement a hardware version of fgrep-8. It has an FSM that

receives the key and file extents information from the host. Then it issues DMA

requests to load data from the NVM controller to the local memory buffer based

on file extents information. The FSM configures the source address, destination

address and data size of a DMA operation, and waits for the DMA completion.

When DMA completes, it sends the key and local buffer information to fgrep-8

hardware kernel as discussed in Section 3.3. The fgrep-8 hardware kernel compares

the key with the local buffer data, increments match count when it matches and

finally, sends back match count to the host.



35

CPU count

1 2 4 8

E
xe

cu
tio

n 
tim

e 
(s

ec
)

0

2

4

6

8

10

Fgrep−IO

Fgrep−RPC

Fgrep−HW

Figure 4.1: The execution time comparison with increasing CPU count for
Fgrep-IO, Fgrep-RPC and Fgrep-HW (File size 8 GB).

Data Sizes (GB)

1 2 4 8 16 32

F
gr

ep
−

H
W

 S
pe

ed
up

0

10

20

30

Figure 4.2: The performance improvement of fgrep-HW as compared
to fgrep-IO as we increase the size of data file from 1 GB to 32 GB.
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4.1.4 Evaluation

Fgrep-8 has sequential readonly accesses and is mainly I/O bandwidth lim-

ited which indicates a large scope of improvement with XSSD’s RPC version.

Fgrep-IO achieves maximum performance with 16 threads configuration and the

total execution time is 20.06 sec to scan a 32 GB data file. This is almost 4×
speedup over the single-threaded performance due to better utilization of the I/O

stack and multi-core system. However, the performance of Fgrep-IO is mainly

limited by the PCIe interface and the software driver overhead (about 86% of total

execution time). Fgrep-IO achieves read I/O bandwidth of 1.6 GB/s that is 6.7%

of XSSD’s internal bandwidth. Fgrep-RPC exploits huge internal bandwidth and

parallelism across multiple NVM controllers by running the RPC function Fgrep-

8() parallel on different SPUs to significantly improve performance. It eliminates

storage I/O overhead by offloading computations to the SSD. Fgrep-RPC achieves

aggregate read bandwidth of 21.6 GB/s and takes total execution time 2.25 sec

that outperforms the I/O version by 8.91×. Fgrep-IO consumes 6454.8 J energy

whereas Fgrep-RPC consumes 628.23 J by processing using MIPS and hardware

accelerator and achieves 10.27× energy efficiency as compared to the I/O version.

Fgrep-HW completely eliminates RPC software overhead and uses stream fgrep-8

hardware kernel to process data and achieves 1.7× improvement as compared to

RPC version.

Figure 4.1 shows the performance with increasing processing power for

Fgrep-IO, Fgrep-RPC and Fgrep-HW. Fgrep-IO performance saturates when num-

ber cores reaches 4. Fgrep-RPC shows better performance improvement as com-

pared to Fgrep-IO with increasing processing power of SPUs and its speedup

ranges from 1.73× to 8.91×. Fgrep-HW shows larger improvement for small num-

ber of cores due to lower software overhead and achives 44-73% improvement as

compared to RPC version. In addition, we experiment with different sizes of

dataset. Figure 4.2 shows the performance of the Fgrep-8 where we vary the data

set size from 1 GB to 32 GB. Fgrep-HW’s speedup ranges from 15.7× to 21.25×.

It achieves maximum speedup for 1 GB data since the I/O version can not exploit

the full PCIe bandwidth for small datasets whereas Fgrep-HW exploits the internal
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bandwidth of SSD. Eventually, we achieve sustainable speedup of 15.7× for larger

datasets. Fgrep-RPC facilitates software programmability but the performance

goes down by 43.2% as compared to Fgrep-HW.

4.2 Saxpy

The saxpy is a file read-write benchmark. It is a combination of a scalar

multiplication and addition of vectors. (A = αB + C where α is a scalar, and

A, B and C are vectors). Saxpy is a very common operation in the Basic Linear

Algebra Subprograms (BLAS) package. For our experiment, we used large vectors

with 2 billion entries (16 GB each) that can not fit into main memory. Those

vectors reside in storage and have sequential read and write accesses to fetch and

update data to those vectors. We similarly implement two versions: Saxpy-IO and

Saxpy-RPC.

4.2.1 Saxpy-IO

Saxpy-IO reads vector B and C using the conventional read I/O interface,

performs computations on the host and writes back results to the vector A using

the conventional write I/O interface. We implemented a parallel Saxpy-IO function

using pthreads. We split vectors accross multiple threads with assigned offset and

size. Each thread allocates three local buffers buf A, buf B and buf C, and reads

the vector B and C from the SSD to the local buffers buf B and buf C respectively.

Then it executes saxpy operations on each item of those local buffers, produces

output to the local buffer buf A and finally, writes back data from the local buffer

buf A to specified location of vector A and exits. The main program waits to finish

all threads.

4.2.2 Saxpy-RPC

The RPC version Saxpy-RPC implements Saxpy() on the SPU that reads

specified portions of vectors from the NVM controller using DMA, performs saxpy
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computations, writes back to the NVM controller and finally, sends back comple-

tion notification to the host. Here we implement multiply and add unit in hardware

to reduce the computation time and improve the energy efficiency.

4.2.3 Evaluation

Saxpy-IO operates on vectors with 2 billion entries (16 GB each) and the

overall execution time is 25.18 sec. It spends 76% time on I/O and exploits the full-

duplex PCIe bandwidth to read and write vectors from the storage. Saxpy-RPC

bypasses the PCIe and software driver overheads and operates on data resides

in local NVM controller. It takes only 6.29 sec and outperforms Saxpy-IO by

4.0×. Saxpy-IO and Saxpy-RPC consume 8104.36 J and 1784.58 J respectively,

and Saxpy-RPC achieves 4.54× energy efficiency by running saxpy operations on

SPU.

4.3 2D-FFT

FFT has been widely used in digital signal processing, wireless commu-

nication systems, image processing and various scientific applications. Here we

focus on the evaluation of 2D-FFT of large matrix (NxN) that does not fit into

main memory thus keeps in the storage. We implement an external 2D-FFT algo-

rithm [BC95]. It has three steps.

1. It computes 1D-FFT on N rows.

2. Then it performs matrix transpose operation on (NxN) matrix.

3. Finally, it performs 1D-FFT on N rows of transposed matrix.

Basically, this algorithm performs 2N 1D-FFT of size N and transpose of

matrix (NxN). Here we implement two versions: 2D-FFT-IO and 2D-FFT-RPC.
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4.3.1 2D-FFT-IO

The I/O version 2D-FFT-IO implements multi-threaded FFT computations.

Initially, it distributes N/T rows to each thread (where T is the total number of

threads). Then each thread issues I/Os to read a row from the storage, performs

1D FFT computation on that row and finally writes back the output to the storage.

It continues those operations for all N/T rows. When all threads terminate then

it starts matrix transpose operation. We use an efficient multi-threaded out-of-

core block-based transpose algorithm [KBCcL03] for transpose operation. Then

we again perform 1D FFT computation on each rows of transposed matrix.

4.3.2 2D-FFT-RPC

The RPC version 2D-FFT-RPC refactors 2D-FFT computation into two

parts: 1D-FFT computation and matrix transpose computation. We perform the

1D-FFT computation on the SPU and the matrix transpose computation on the

host. In 1D-FFT(), we split N rows across multiple SPUs. SPU loads data from

the NVM controller using DMA, performs 1D-FFT computations, stores back re-

sults to the NVM controller without the host intervention. When it finishes com-

putation then notifies to the host using RPC. When the host receives notification

from all SPUs, it performs Transpose() on the host as it requires exchange of

data among different NVM controllers and synchronization. Similarly, we again

perform 1D-FFT on transposed matrix using SPUs.

4.3.3 Evaluation

We implement both versions of 2D-FFT. Our FFT implementation has a

large sequential access to the storage to read different rows for FFT computa-

tions. The I/O bandwidth limits the overall performance 2D-FFT-IO. We perform

2D-FFT on large matrix N=32768 that occupies 32 GB of storage. 2D-FFT-IO

takes total 58.61 sec to perform the 2D-FFT computation in which 50.20% time

spend on the 1D-FFT computation of 2N rows and it consumes 17,084 J energy.

2D-FFT-RPC offloads the 1D-FFT computation down to the storage and exploits
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the huge bandwidth and parallelism across multiple NVM controllers. It reduces

the overall computation time to 37.5 sec and achieves 1.7× energy savings as com-

pared to 2D-FFT-IO.

4.4 Key-value store

The key-value store (KVS) is becoming a fundamental building block

for many large-scale enterprise applications. Examples include Amazon’s Dy-

namo [DHJ+07], LinkedIn’s Voldemort [vol], Facebook’s Memcached [mema], in-

line data deduplication [ZLP08] and online multiplayer games [Xbo]. Those appli-

cations have opted to use the key-value store rather than the conventional relational

database because of its simplicity and better scalability. Persistent key-value stores

such as BerkeleyDB [ora], Cassandra [LM10, cas], and MongoDB [PHM10] often

use in-storage data structures (e.g., BTrees or hash tables). They have random

accesses over large datasets and are mainly limited by the poor performance of

existing storage technologies such as disk and flash.

A persistent key-value store keeps key-value data in storage and uses an

in-storage hash table data structure. We use chaining for collision avoidance. The

key-value store provides three operations: PUT() to insert or update a key-value

pair, GET() to retrieve the value corresponding to a key, and DELETE() to

remove a key-value pair. We similarly implement 2 versions: KVS-IO and KVS-RPC.

4.4.1 KVS-IO

The I/O version KVS-IO implements three operations: GET(), PUT() and

DELETE(). During GET(), it applies hash function to a given key to get the

bucket index of the hash table. Then it uses the head pointer of that bucket to

traverse the in-storage linked list of key-value pairs associated with that bucket.

If it finds the key-value pair with matching key then it returns that key-value pair

otherwise returns NULL. During PUT(), it applies hash function to get the bucket

index and then inserts given key-value pair to the corresponding in-storage linked

list of that bucket. During DELETE(), similarly it applies hash function to get
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Figure 4.3: KVS-IO GET operation applies hash and selects bucket index.
Then traveses in-storage linked list associated with that bucket using host. It
issues multiple I/O requests to fetch data from the storage to the host.

the bucket index and then removes key-value pair to the corresponding in-storage

linked list with matching key.

As an example, Figure 4.3 shows the I/O implementation of GET() and we

are looking for key-value pair associated with a given key “K3”. It has following

steps:

1. The host gets the bucket index by applying hash function on a given key

“K3”. Here we get bucket index “0”.

2. It gets the head pointer of the linked list from the index structure.

3. It performs the I/O read to fetch the first element (K1, V1) of the linked

list, loads it to the local data buffer and compares it with a given key “K3”.

4. The key does not match (K3 6= K1).

5. It checks the next pointer to get the location of the second element of that

linked list.
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6. It again performs the I/O read to fetch the next element (K2, V2) of the

linked list and similarly compares it with a given key “K3”.

7. Again, the key does not match (K3 6= K2).

8. Similarly, it uses the next pointer, issues the I/O read to fetch the next

element (K3, V3) of the linked list and compares it with a given key “K3”.

9. Now, it matches with a given key “K3” and returns key-value pair (K3, V3).

As the number of key-value pairs increases for a fixed-size index, the in-

dex will have more collisions per bucket of the hash table. For KVS-IO, the host

must issue multiple I/O calls to traverse the collision chain for a given key-value

operation. To reduce the I/O overhead, we implement KVS-RPC.

4.4.2 KVS-RPC

KVS-RPC keeps both key-value data and index structure in the storage and

offloads key-value operations down to the storage to exploit the low latency, high

internal bandwidth of NVMs and parallelism across multiple memory controllers.

Figure4.4 shows shows the RPC implementation of key-value store. It partitions

the index structure across multiple NVM controllers. Each partition of the index

structure points to key-value pairs stored on that controller and it resolves collision

using chaining. The host uses hashing to select a particular NVM controller/SPU

using Ctrl ID field and dispatches key-value operations along with hash index to

the associated SPU using RPC. The SPU performs those operations and returns

results to the host.

The RPC version implements GET(), PUT() and DELETE() on the SPU.

During GET(), the host sends bucket index with key and SPU traverses the linked

list of that bucket using multiple short DMA requests and returns key-value pair

with matching key otherwise returns NULL. During PUT(), SPU receives bucket

index and key-value pair from the host and inserts the key-value pair to the linked

list associated with that bucket. During DELETE(), SPU receives key and bucket
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Figure 4.4: Key-value store RPC implementation splits the index struc-
ture across multiple memory controllers and each partition points to key-value
data stored on that controller. The host applies hash function on key. The hash
output has 2 fields: Ctrl ID and Index. The host selects a particular memory con-
troller/SPU using Ctrl ID and dispatches key-value operations along with index
to the associated storage processor.

index from the host, and deletes the key-value pair with matching key in that

bucket.

As an example, Figure 4.5 shows the RPC implementation of GET() and

we are similarly looking for key-value pair associated with a given key “K3”. Now,

the computation splits between the host and SPU. It has following steps:

1. The host calculates the Ctrl ID and bucket index by applying hash function

on a given key “K3”. Here we get Ctrl ID “0” and bucket index “0”.

2. The host issues an RPC to run GET() along with input arguments key “K3”

and bucket index “0” on SPU 0.

3. The SPU gets the head pointer of the in-storage linked list from the index
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Figure 4.5: KVS-RPC GET operation sends key and bucket index to the
SPU. SPU traverses the linked list associated with that bucket and searches for
a given key. If matches it sends back key-value pair. SPU issues multiple short
DMA requests to fetch data from the storage to the local data buffer.

structure to traverse the linked list.

4. The SPU issues DMA to fetch the first element (K1, V1) of the linked list,

loads it to the SPU’s local data buffer and compares it with a given key

“K3”.

5. The key does not match (K3 6= K1).

6. It checks the next pointer to get the location of next key-value pair. Then

issues DMA to fetch the next element (K2, V2) of the linked list and similarly

compares it with a given key “K3”.

7. The key does not match (K3 6= K2).
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Figure 4.6: Key-value store hardware accelerator receives key-value opera-
tions, performs them using KVS Controller and sends back response to the MIPS.
The Get, Put and Delete modules operate on data in a dual-port data buffer and
use the DMA engine to load data from the memory controller and vice-versa.

8. Similarly, It uses the next pointer, reads the next element (K3, V3) of the

linked list using DMA and compares it with a given key “K3”.

9. Now, it matches with a given key “K3”. Then SPU sends key-value pair (K3,

V3) to the host using RPC. Finally, the host returns key-value pair (K3, V3).

The RPC version significantly reduces data movement between the host

and the storage through PCIe channel. Also, the DMA operations are 3.3× faster

than the I/O. In this example, the I/O version issues 3 I/O and the RPC version

issues 1 RPC Req/Rsp + 3 DMA ∼ 2 I/O. So, the RPC version saves one I/O

execution time.

We also implemented the same functions in hardware accelerator to improve

performance. Figure 4.6 shows the architecture of the key-value store hardware ac-

celerator. The hardware accelerator receives key-value operations from the MIPS

using memory-mapped interface and enqueues to the request FIFO. Then it ex-

tracts information, applies hash index to get the head pointer of the linked list

from the index structure and sends to the KVS controller. The KVS controller

has a central state machine to receive information about key-value operations,

dispatch them to appropriate hardware modules such as Get, Put and Delete to
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Figure 4.7: MemcacheDB performance Using KVS-RPC Get() achieves 8%
improvement as compared to KVS-IO. Put() achieves 2× as compared I/O version
by reducing data movement between the storage and host. KVS-RPC performs
better for write-heavy workloads unlike KVS-IO.

perform various key-value operations and finally, sends back response to the MIPS

via response generator.

KVS-RPC has made two major enhancements to improve performance and

better utilize fast NVMs.

Avoid redundant data transfer The I/O based key-value store must issue

multiple I/O requests to random storage locations to traverse the collision chain.

The chain elements must be read into memory and traverse the cache hierarchy

just to access the address of the next element of the chain. In the RPC based

key-value store, the SPU provides faster linked list traversal as compared to the

conventional I/O version by avoiding PCIe and software driver overhead. SPU

only sends back the final result to the host. It significantly reduces data transfer

between the host and storage with increasing chain length.
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Exploit parallelism across multiple controllers The RPC based key-value

store dispatches key-value operations to different SPUs to exploit the parallelism

across multiple NVM controllers. SPU exploits the fine grain parallelism within a

controller and keeps data movement local to effectively utilize the NVM bandwidth.

4.4.3 Evaluation

We used MemcacheDB [Chu] to evaluate both implementations of key-value

store. MemcacheDB [Chu] is a persistent version of memcached [mema], the popu-

lar distributed key-value store. MemcacheDB has a client-server architecture, and,

for this experiment, we run it on a single computer acting as both clients (using

16 threads configuration) and server.

First, we evaluate the performance of Get() and Put() operations

and then measure the overall performance for two workloads A) update heavy

(50% Put() / 50% Get()) and B) read heavy (5% Put() / 95% Get()). We run

all tests with 16-byte keys and 1024-byte values.

Figure 4.7 shows the performance comparison between the I/O based and

RPC based implementations MemcacheDB. KVS-IO performs 403 GET() Kops/sec

and 256 PUT() Kops/sec. KVS-RPC performs 436 GET() Kops/sec and 512

PUT() Kops/sec and outperforms KVS-IO by 1.08× and 2× respectively. KVS-IO

performs poorly during PUT() due to poor utilization of PCIe whereas KVS-RPC

operates close to the storage and significantly reduces data movement between the

host and the storage. KVS-RPC nicely exploits the PCIe and parallelism across mul-

tiple NVM controllers. KVS-IO consumes 817.44 J and 1295 J energy to perform

one million GET() and PUT() operations whereas KVS-RPC requires 700 J and

560 J for one million GET() and PUT() operations and saves 1.16× and 2.3×
energy as compared to the I/O version.

KVS-RPC achieves 530 Kops/sec and 457 Kops/sec for update heavy and

read-heavy workloads respectively. KVS-IO performs poorly on update heavy work-

loads and achieves less than 85% of read heavy workloads performance due to poor

utilization of PCIe and ring network. For update heavy workloads, KVS-IO per-

forms 313 Kops/sec and consumes 1042.32 J to perform one million operations
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Figure 4.8: Key-value operations as a function of chain length KVS-RPC

performs better than KVS-IO with increasing chain length and speedup ranges from
1.08× to 8.6×.

where as KVS-RPC performs 532 Kops/sec, and saves 1.7× energy as compared to

KVS-IO. For read heavy workloads, KVS-RPC performs 457 Kops/sec and outper-

forms KVS-IO by 16.6%. KVS-RPC can exploit parallelism across multiple memory

controllers and achieves 1.16× improvement compared read heavy workloads.

As the number of key-value pairs increases, so does the number of entries per

bucket. Figure 4.8 shows affect of rising bucket chain length on Get() and Put()

performance. KVS-IO performance drops more than 30% with eight links per chain

while KVS-RPC see very small decreases in performance and nicely utilize PCIe

bandwidth. KVS-RPC achieves 430,000 Get() ops/s and 510,000 Put() ops/s with

chain length 8 and outperforms KVS-IO by 3.9×. KVS-RPC’s performance drops

beyond chain length 8 as it requires more processing power to traverse long chain.

To further improve performance, we have developed KVS-HW that implements key-

value operations using the hardware accelerator. We observed KVS-HW achieves

better performance as compared to KVS-RPC beyond chain length 8 by exploiting

FPGA-based hardware acceleration.

We also study the impact of chain length on energy-delay product. Fig-

ure 4.9 shows the energy-delay product (EDP) for KVS-IO and KVS-RPC for update

heavy workloads. The EDP KVS-IO increases quickly with with increasing chain

length due to high I/O overhead. KVS-RPC traverses chain using SPU and improves

EDP by significantly eliminating I/O and utilizing in-storage processing.
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Figure 4.9: The KVS EDP as a function of chain length KVS-RPC shows
up to 300% improvement in EDP as compared to KVS-IO by performing key-value
operations using SPU.

4.5 B+ Tree

The B+ tree is often used in filesystem and relational database management

systems for indexing. In B+ tree indexing data pointers are stored only at the leaf

nodes. Assume the branching factor of B+ tree is b then the number of childrens q

of a given node must be less than b. This application traverses a B+ tree to find a

match for a given key and returns associated value. Figure 4.10 shows the B+ tree

traversal algorithm to find the key k. It starts from the root node and searches

for a leaf node that contains key k. In each node, it checks different sub-interval

to find the range of particular next child pointer that holds that key and finally it

reaches to the leaf node. Then it searches the leaf node for a given key and returns

the associated value.

4.5.1 B+tree-IO

The I/O version B+tree-IO implements above algorithm and performs tree

traversal on the host. It traverses a particular path from the root to the leaf based
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Algorithm 4.5.1: BplustreeTraversal(int fd btree,
int64 t root node,
int k)

n← block containing root node of B+tree;
Read block n;
comment: Traverse tree for a given key

while n is not leaf node

do



q ← tree pointers in node n;
comment: n.keyi represents ith search key of node n

comment: n.pi represents ith pointer of node n

if k < n.k1

then
{
n← n.p1

else if k ≥ n.kq−1

then
{
n← n.pq

else

{
comment: Search for i such that n.ki−1 < K ≤ n.ki

n← n.pi

Read block n;
comment: Find key k in node n and read the value v else return NULL

if key matches

then

{
Read value v;
return (v);

else
{
return (NULL);

Figure 4.10: B+ tree traversal algorithm to find a match for a given key and
return associated value.
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Figure 4.11: B+ tree example B+tree-IO issues I/O to read different nodes
for a given key starting from the root node to the leaf node as shown in dotted
line. B+tree-RPC brings those nodes from the local or remote NVM controllers to
the SPU using DMA. B+ tree data are striped across multiple NVM controllers
from MC 0 to MC 7.

on a given key and brings different nodes on that path to the host using I/O. When

it reaches the leaf node then it searches the key on that node, if matches it issues

I/O to read the corresponding value from the storage.

As an example, Figure 4.11 shows a B+tree where each node can have at

most 3 keys. Nodes are striped across multiple NVM controllers from MC 0 to MC

7. The I/O version has same latency to access data from different NVM controllers.

We need to traverse the B+tree to search a given key “4” as shown in dotted line.

It has following steps:

1. The host issues the I/O read to fetch the root node from the storage to the

host.

2. It compares key “4” with a set of keys in that node to find the appropriate

child node. Here, key “4” is less than key “14” of the root node and it selects

the left pointer to read the next child node.

3. It again issues the I/O read to fetch the child node and similarly compares

keys in that node with the given key to select the next child node. Now, key
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Figure 4.12: The RPC optimization on B+ tree implements B+ tree on
each NVM controller. The host applies hash function on a key to find the SPU
ID/NVM Controller ID and dispatches it to that SPU to perform traversal on that
NVM Controller. It eliminates remote accesses to different NVM controllers over
the ring network.

“4” is less than key “8” and it selects the left pointer.

4. Then it issues the I/O read to fetch the leaf node and searches for a given

key in that node. If it matches read the corresponding value otherwise return

NULL. Here, we find key “4” and read corresponding value “V2”.

4.5.2 B+tree-RPC

The RPC version B+tree-RPC initially implements same algorithm and

brings tree node data to the SPU using small DMA read, finds the child pointer

and keeps on traversing tree from the root to leaf. Then it reads the corresponding

value and returns it to the host using RPC. The RPC version has following steps

to search key “4” on B+tree.

1. The host issues RPC to run Traversal() along with input arguments key

and send it to SPU. In this it sends to SPU 0 with key “4”.

2. The SPU reads the root node using local DMA from NVM Controller MC 0

and checks keys to find the appropriate pointer for child node. In this case

we find the child node at NVM Controller MC 1.
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3. The SPU reads the child node from NVM Controller MC 1 using remote

DMA and checks the set of keys in that node to find the next child node. In

this case, we get the leaf node at NVM Controller MC 3

4. The SPU reads the leaf node using remote DMA and searches for a given key

“4” and if it matches read the value otherwise return NULL. In this case we

find key “4” and read corresponding value “V2” using remote DMA calls.

5. Finally, the SPU sends value “V2” to the host using RPC.

During tree traversal, as data striped across different NVM controllers, we

need to bring data from the remote NVM controller over the shared ring network

and the ring bandwidth (3.7 GB/s) limits the overall performance. To overcome

this problem, we implement B+ tree on each NVM controller and using hashing to

select particular B+ tree as shown in Figure 4.12. The host basically applies hash

function on a given key to get the SPU ID and then dispatches it to that SPU.

SPU performs tree traversal on that NVM controller that completely eliminates

remote memory accesses to further improve performance.

4.5.3 Evaluation

We evaluate the performance of B+ tree with node size 4 KB. We use 16-

byte keys and 1024-byte values for this test. B+tree-IO performs 116,568 search

ops/sec whereas B+tree-RPC base version performs 244,342 search ops/sec and

2.09× speedup as compared to the I/O version by performing those operations

on SPU. However, the SPU needs to access remote memory controller over the

ring network. Our optimized B+tree-RPC resolves that issue and performs 507,806

search ops/sec and achieves 2.07× speedup over the base RPC version. B+tree-RPC

requires 628.07 J energy for one million search and that improves energy efficiency

by 5.07× as compared to B+tree-IO. This huge improvement comes from the

reduction of data transfer between the host and the storage, parallelism across

multiple NVM controllers and efficient computation in the SSD.
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Figure 4.13: The performance improvement of RPC based implemen-
tation of different applications. XSSD improves performance by up to 8.91× for
stream applications and up to 4.39× for applications with random accesses to
storage as compared to the I/O version.

4.6 Summary

Figure 4.13 and Figure 4.14 show the performance and energy efficiency

of different applications for I/O and the RPC based implementation. We use

two types of applications for evaluation: stream applications (e.g., Fgrep-8, Saxpy

and 2D-FFT) and random access applications (e.g., key-value store and B+). The

stream applications need more processing power and use XSSD’s hardware acceler-

ator. The hardware accelerator facilitates adequate processing power to efficiently

utilize huge NVM bandwidth. It significantly improves performance and energy

efficiency of the system. The RPC implementation fgrep-8 achieves 8.91× perfor-

mance improvement and 10.27× energy efficiency as compared to the I/O version.

The I/O version of saxpy exploits the full duplex of PCIe and the RPC version

shows 4.7× performance improvement and 5.2× energy efficiency. The RPC ver-

sion of 2D-FFT splits computation between the host and SPUs, and achieves 44%

and 66% improvement in performance and energy efficiency respectively. The ran-

dom access applications such as key-value store and B+tree often wait for loading
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Figure 4.14: The energy efficiency of RPC based implementation of dif-
ferent applications. XSSD improves energy efficiency by up to 10.27× for stream
applications and up to 5.07× for applications with random accesses to storage.

data from the NVM controller to the processor’s local memory, and need very

little processing. The key-value store achieves more than 1.5× performance im-

provement and shows better scalability with increasing key-value pairs. The RPC

version of B+ outperforms the I/O version by 335%. Overall, the RPC implemen-

tation of different applications optimizes for XSSD and significantly improves the

performance and energy efficiency as compared to the conventional I/O version.
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Chapter 5

Related Work

Several research projects have proposed colocation of computations and

data in storage and memory hierarchies. Here we discuss some of the most promi-

nent previous work on intelligent storage and intelligent memory. Then we compare

XSSD with previous work.

5.1 Intelligent Storage

In the storage hierarchy, in the 80’s DeWitt et al. [DH81] proposed

application-specific processing on storage to exploit the disk bandwidth of database

machines. However, the cost and the complexity of the application-specific hard-

ware on disk did not allow vendors to commercialize this design. Two decades

later, Active Disks [AUS98, RGF98] projects tried to take advantage of processing

power on individual disk drives to run application-level code. Similarly, Intelli-

gent Disks (IDISKs) [KPH98] were designed for decision support database servers

and data warehousing workloads, and facilitated communication among multiple

IDISKs using fast serial links. Recently, the Smart SSD [KsKMP13] project pro-

posed map-reduce style data processing on flash-based SSDs to exploit the large

internal bandwidth and parallelism across multiple flash channels. The Smart

SSD proposal also improved the performance of various database query opera-

tions [DKP+13, KOP+11]. The BlueDBM [JLFA14] project proposed a high per-

formance and scalable distributed flash storage for “Big Data” analytics.

57
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5.1.1 Active Disks

We discuss two projects on Active Disks [RGF98, AUS98] to exploit the

available computation power of disks for application level processing. The first

project [RGF98] presented the feasibility of the Active Disks in the late 90’s. Gen-

erally, the conventional disk consisted of a control processor, memory, a SCSI in-

terface and a set of chips to perform error-correcting code (ECC), disk movement

and SCSI processing. During that time, the Trident chip integrated specialized

individual chips into a single ASIC for next-generation disks. They proposed to

integrate a general-purpose processor on the disk to perform application-level pro-

cessing along with various disk related operations. They also leveraged parallelism

across multiple Active Disks and demonstrated up to 2× performance gain on

database, data mining and image processing applications.

The second project [AUS98] proposed a stream-based programming model.

The host application code interacted with application code on disks (also known

as disklets) using streams. There were three types of stream: disk-resident stream

that consisted of disk’s file data, host-resident stream that sent information from

the host application to disklets, and pipe stream that sent result from one disklet to

other disklet. The disklet received input streams, performed application-specific

disklet operations and finally produced output streams. The disklet had a ini-

tialization function, a application-specific processing function and a finalization

function. They expressed applications as a number of streams and disklets, and

mapped to multiple Active Disks for parallel processing. Simulation results showed

that Active Disks outperformed the conventional disks by 1.07-3.15× for a set of

applications including database select, nearest neighbor search, external sort, dat-

acubes, and image processing.

5.1.2 Intelligent Disks (IDISKs)

In 90’s decision support systems (DSS) were growing at the rate of 35% of

database server sale [KPH98]. The standard disk-based system in a cluster was

not adequate for DSS and was limited by the I/O bus bottleneck and packag-

ing issues. In addition, the conventional host system was not optimized for DSS
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computations. To overcome those issues Kimberly et al. [KPH98] proposed Intel-

ligent Disks (IDISKs) that replaced the standard disk-based systems with IDISKs

in a cluster to exploit the processing capability of the disk and disk-to-disk direct

communication. The IDISK consisted of an embedded processor, memory, and a

fast serial interface. A crossbar switch connected multiple IDISKs using fast serial

links. IDISKs ran a lightweight operating system for managing resources. They

demonstrated effectiveness of IDISKs by offloading various DSS computations such

as scan, sort and join from the host to embedded disk processors.

5.1.3 Smart SSD

Smart SSD [KsKMP13] leveraged the computation capability of an SSD

and the aggregate bandwidth of multiple flash channels for bulk-data processing.

They offloaded various data-intensive tasks (also known as tasklets) to the SSD

and proposed map-reduce style processing [DG04] in which the host acted as a

master node and the in-storage processing (ISP) engine acted as a slave node and

performed map and intermediate combine tasks. The host performed shuffle and

reduce tasks. They adopted an object-based protocol for low level communication

between the host and the SSD. The SSD firmware provided three APIs to use

tasklets: create object, execute object, and read object. The object-based I/O

library at the host dispatched requests and received responses via SSD firmware

APIs. For bulk-data processing, the Smart SSD achieved up to 4× speedup and

up to 2× energy efficiency as compared to the conventional I/O-based host imple-

mentation.

Smart SSD also accelerated various database query operations [DKP+13].

They implemented the Microsoft SQL server on the Smart SSD to exploit the

internal SSD bandwidth and general-purpose processing capability, and achieved

up to 2.7× performance improvement and up to 3.0× energy saving for various

SQL query operations.
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5.1.4 BlueDBM

BlueDBM (Blue Database Machine) [JLFA14] proposed a high performance

and scalable flash-based storage architecture. It had multiple nodes for large scale

data processing and those nodes were connected via ethernet. Each node was

composed of a host PC and a PCIe-attached flash storage. The storage controller

received requests from the local and remote nodes and used a two layer tagging

scheme to efficiently handle those requests. It also exploited the parallelism across

multiple flash channels and facilitated direct access to remote flash controllers using

fast serial interconnect without the host intervention. The FPGA-based hardware

accelerator in flash storage improved performance by efficient data processing and

achieved more than 3× performance improvement as compared to the software-

only approach.

5.2 Intelligent Memory

In the memory hierarchy, the intelligent memory or processing in mem-

ory (PIM) integrated processors and memory in the same chip to address the

processor-memory communication bottleneck. This idea initially proposed in sev-

eral research systems such as Terasys [GHI95], J-machine [DFK+92] and EXE-

CUBE [Kog94] but mainly suffered from the poor density of SRAM. The high

density of DRAM made intelligent memory designs appealing, and there were sev-

eral research works in late 90’s [PAC+97, OCS98, KHH+99, BKF+99, HKK+99].

Among the most prominent, IRAM [PAC+97] integrated processor and memory

in same die, Active Pages [OCS98] integrated reconfigurable logic for specialized

computation on memory pages and connected with the host using the memory bus,

and FlexRam [KHH+99] replaced the conventional DRAM chips with intelligent

memory chips. However, those designs were not commercialized due to manufac-

turing and cost issues. Recently, 3D-IC technology again resurged the interest of

PIM architecture in industry and academia [LGBT05, JEZ+05, MAS+06]. It basi-

cally stacked the high performance logic layer with memory layer. Micron’s Hybrid

Memory Cube (HMC) [Hyb] is working on 3D stacking of logic and DRAM, and
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the logic layer can be used to perform non-compute logic (e.g., memory controller,

built-in-self-test), fixed-function hardware accelerators, and general purpose pro-

cessing.

5.2.1 IRAM

The IRAM project integrated the processor and DRAM into a single

chip to improve performance and energy efficiency of general-purpose process-

ing [PAC+97, FPC+97]. IRAM [KP02] consisted of a scalar 64-bit RISC processor,

a vector processor and eight 256-bit on-chip DRAM. The vector processor acted

as a coprocessor and had four 64-bit datapaths for parallel data processing. IRAM

extended the MIPS ISA with vector instructions for integer and floating point op-

erations to improve performance. IRAM prototyped on 0.18 um CMOS technology

and had more than 125 million transistors. It consumed 2 watts at 200 MHz and

ran up to 9.6 giga-ops.

5.2.2 Active Pages

The Active Pages project integrated reconfigurable logic with DRAM to

exploit the huge internal bandwidth and low latency of DRAM. It preserved the

parallel memory bus interface to connect with the host for seamless transition to

new DRAM chips. An active page was composed of data that resided in DRAM

and a set of functions that were implemented on reconfigurable logic to operate on

those data. The computation distributed between the host and the active page.

The host performed complex control intensive operations and the active page per-

formed index comparison and scatter/gather operations. The host communicated

with the active page using memory read and write operations. The reconfigurable

logic received virtual address from the host and performed the virtual to physical

address transformation and then accessed physical pages. It generated interrupt

to the host when the address location fell outside the page. The host received

that information from the active page, checked page table and sent it to appro-

priate active page. This took extra time but simplified the hardware and software
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design. ActiveOS [OCS99] used this system and supported concurrent execution

of multiple applications. It showed significant performance improvement over the

conventional system.

5.2.3 FlexRAM

FlexRAM [KHH+99, FRF+03] replaced conventional DRAM chips with the

FlexRAM processor-memory chips to exploit the low latency and high bandwidth

of DRAM. It mainly addressed the programmability issues of this heterogeneous

(the host processor and memory processors) machine and proposed a solution based

on compiler directives. The FlexRAM chip had 64 MB DRAM organized in 64

banks, 64 PArrays and 1 P.Mem. The PArray was a simple general-purpose pro-

cessor with 2 KB instruction cache and 8 KB data cache. The host and PArrays

connected via FlexRAM chip controller (FXCC). The host dispatched computa-

tions using memory-mapped registers in FXCC and shared memory interface. The

P.Mem was a superscalar processor to perform serial operations and coordinate

among multiple PArrays. It significantly reduced the high latency accesses from

the host to distribute and collect results from multiple PArrays within same chip.

The software handled data coherency to maintain the consistent view of data from

the host and PArrays. FlexRAM was programmed using CFlex, a scalable compiler

directive based approach to split computations between the host and PArrays and

handle various synchronization issues. CFlex directives were similar to OpenMP

directives and kept information about the parallel code segment, execution strategy

and data layout.

5.3 Comparison

XSSD is based on emerging fast byte-addressable non-volatile memory

(NVM) technologies which is fundamentally different than previous work on in-

telligent storage such as Active Disks, IDisks, Smart SSD and BlueDBM. We will

argue that these new technologies make this a compelling time to revisit the pre-

vious work and reasses the conclusions made at the time.
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Active Disks and IDISKs are based on disk, and Smart SSD and BlueDBM

are based on flash. Both of these technologies (disk and flash) lag behind main

memory whereas NVMs are approaching DRAM-like performance with lower power

consumption and higher density as process technology scales. XSSD addresses sev-

eral challenges with NVM-based SSD architecture, interconnect and software stack,

and proposes a new SSD architecture and a user-friendly programming framework

to offload application-specific computations down to the SSD. Previous work pri-

marily focuses on improving performance and supports streaming applications to

exploit the disk characteristics such as fast sequential access. Smart SSD pro-

poses map-reduce style data processing and BlueDBM provides infrastructure for

bulk data processing whereas XSSD offers a more flexible RPC-based program-

ming model. XSSD is not limited to streaming applications and supports a wide

range of I/O intensive applications with small random accesses to the storage such

as key-value store query and B+tree traversal. XSSD’s highly parallel heteroge-

neous processing architecture achieves up to 8.27× performance improvement and

10.27× energy efficiency as compared to the I/O based implementation.

Previous work on intelligent memory addresses the processor-memory com-

munication bottleneck and integrates processor and DRAM in same die connecting

with the host using the memory bus. Intelligent memory focusses on various data

structures on memory with small datasets and facilitates fine-grained synchro-

nization between the host and memory. The overhead of accessing data through

memory bus is much smaller (∼ 300×) than I/O bus (PCIe). XSSD adopts vari-

ous ideas from intelligent memory, focuses on large scale persistent data structures

and supports coarse-grained synchronization. XSSD connects with the host using

PCIe which facilitates better scalability and more advantages for offloading com-

putations in storage (by eliminating the PCIe and software overhead) as compared

to the parallel memory bus interface.
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5.4 Stream Programming

The stream programming [TKA02] is a very popular programmig model

to utilize massively parallel hardware resources of modern computers. Presently,

serveral processors support stream programming such as GPGPU, Cell [Hof05] and

multi-core CPU. The stream programming model breaks a program into a set of

kernels that operate on input data streams and produce output data streams. It

requires coarse-grained synchronization between kernels and streams. A stream

program can be expressed by a directed graph where nodes represent different

kernels and edges represent streams. There are several applications expressed as a

stream program such as scientific simulations, audio and video processing.

We have seen several stream programming languages such as

Brook [BFH+04], Streamit [TKA02], CUDA [NBGS08] and OpenCL [Khr08].

Presently, OpenCL is one of the most popular stream programming languages

to develop applications on different processors such as multi-core CPUs, GPG-

PUs (AMD and NVIDIA) and Cell. Stream programs are easily mapped into

parallel hardware. Optimus [HKM+08] uses the stream programming model to

automatically generate fixed-function hardware for FPGAs. However, the stream

programming model is limited to a set of applications. Some applications are

quite difficult to express in the stream programming model such as key-value

store and B+ tree. XSSD considers a broader perspective and supports both types

(stream and random access) of applications.

5.5 Key-value Store

Recently, several research works have been done on flash based key-value

stores such as FlashStore [DSL10], BufferHash [AMK+10], SkimpyStash [DSL11],

SILT [LFAK11] and FAWN-KV [AFK+09] to exploit flash characteristics for im-

proving performance and reducing main memory usage.

FlashStore [DSL10] is a persistent key-value store which improves perfor-

mance by using flash-aware data structures and algorithms. Here flash acts as a

non-volatile cache between the main memory and the disk. FlashStore comprises
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of several components such as write buffer, read cache, cuckoo hasing [PR01],

recency bit vector and disk-presence Bloom filter to reduce the number of I/Os.

FlashStore requires 6 bytes main memory per key and achieves 5× speedup as

compared to flash-based BerkeleyDB [OBS]. This huge performance gain comes

from a very few accesses to flash (1 flash read/lookup) and the sequential write to

flash during insertion. However, FlashStore suffers from high main memory usage

with increasing key-value datasets.

BufferHash [AMK+10] proposes for data-intensive networked systems to

support fast query and frequent updates. It divides the flash storage into a num-

ber of supertables. A super table consists of a buffer, an incarnation table and a

set of Bloom filters. The in-memory buffer is basically a hash table to store the

index structure and key-value pairs. When the buffer is full, it writes to flash. The

incarnation table on flash holds the chain of those buffers (arranged chronologi-

cally). BufferHash keeps a Bloom filter for each buffer to avoid redundant search

to all buffers during lookup. BufferHash requires around 4 bytes index per key and

the lookup requires multiple accesses to the main memory to check the appropriate

Bloom filter and then performs a flash read to load a buffer from flash. However,

BufferHash suffers from poor storage utilization since buffers in the incarnation

table are usually 50% occupied based on hash table load factor.

SkimpyStash [DSL11] aims to reduce the main memory usage per key-value

pair. It hashes multiple keys into the same bucket of the hash table and resolves

collisions with a linked list. The hash table in main memory holds the tail pointer of

the linked list and a Bloom filter for each bucket. The Bloom filter per bucket holds

the information about keys in that bucket and helps to decide whether the given

key exists in a bucket before blindly following the linked list pointers to lookup the

key-value pair in flash. Each key-value pair also contains a flash pointer to locate

its predecessor in the linked list. SkimpyStash reduces the main memory usage

to 1.3 bytes per key by using a fewer number of buckets with average linked list

size 10. However, this requires multiple I/O reads (5 flash reads/lookup) during a

lookup.

SILT [LFAK11] further reduces the memory usage to 0.7 bytes/key by using
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a chain of three different basic key-value stores such as LogStore, HashStore and

SortedStore and orchestrates adequate transformations (LogStore to HashStore

and HashStore to SortedStore). It retrieves key-value pairs using on average 1.01

flash reads each and scales to billion of key-value pairs for the conventional system.

However, those trasformations adversely affect the overall performance.

FAWN-KV [AFK+09] is a distributed key-value store and has better energy

efficiency as compared to the conventional host system by using low-power FAWN-

DS node with 32 GB Intel SATA Flash SSD. However, it requires large main

memory for indexing (6 bytes/key) and has long query latency due to the slow

ring network.

However, the index structure on main memory limits the number of key-

value pairs stored on flash and will lead to major scalability issues. As the number

of key-value pairs increases for a fixed-size index, the index will have more collisions

per bucket of the hash table and the host must issue multiple I/O calls to traverse

the linked list for a given key-value operation. To overcome this problem XSSD

based key-value store keeps both key-value data and index structure in the SSD

and offloads linked list traversal operations down to the storage to exploit the low

latency, high internal bandwidth of NVMs and parallelism across multiple NVM

controllers.
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Chapter 6

Infrastructure

XSSD comprises of several components such as MIPS processor, ring net-

work, NVM controller, DMA controller, request scheduler and PCIe. Here we

discuss the design details of three main components: MIPS processocer, ring net-

work and NVM controller. We significantly optimize those components to best

utilize NVM technologies and FPGA resources.

6.1 MIPS

We design the MIPS processor that provides flexibility in the implementa-

tion of our XSSD design. A processor allows us to implement new features more

easily in software rather than in hardware. With software based approach, we can

keep a stable hardware design and make functional enhancements through software

changes. It significantly reduces the overall development time of an application

program.

Figure 6.1 shows the MIPS processor that comprises of MIPS core, 32 KB

instruction memory, 32 KB data memory, program loader and program debugger.

We implement the Harvard architecture with separate instruction and data buses

to simultaneously access the instruction and data memory to improve performance.

It uses RISC architecture that facilitates a simpler instruction set and faster per-

formance. On average, it executes one instruction per cycle. The processor runs

at 125 MHz.

68
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Figure 6.1: MIPS block diagram comprises of MIPS core, 32 KB instruction
memory, 32 KB data memory, program loader and program debugger. The MIPS
core has 5-stage pipeline and runs at 125 MHz. It has Harvard architecture and
executes about one instruction per cycle on average. The program loader loads
program to the processor’s memory and the program debugger holds various de-
bugging information to debug application software.

The program loader is responsible for downloading program to the MIPS

processor. The host first configures the program loader with starting address of

memory and data size information, and then sends program binary code to the

program loader over the ring network. The program loader receives program binary

code from the host over the ring network and loads it to processor’s instruction

and data memory.

The program debugger provides several features to debug application soft-

ware.

• Register file access - support debug access to the register file to see the

contents of general-purpose registers from the host

• Memory access - support debug access to data memory from the host
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Figure 6.2: MIPS system address space comprises of instruction memory,
data memory and various memory mapped peripherals.

• Program counter access - support debug access to see the program counter

from the host

• Single step execution - support single step execution to debug an appli-

cation

The program debugger has a state machine to control various debug sig-

nals and has several debug registers to hold information about the register file,

data memory and program counter. It uses virtual serial interface to send debug

information over the ring network.

The MIPS processor supports to connect different peripherals such as DMA

controller and application-specific hardware accelerators as a memory mapped de-

vice. It communicates with them using simple register and shared-memory inter-

face.

Figure 6.2 shows the address space of our MIPS based system. The in-
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Figure 6.3: MIPS pipeline architecture has 5 pipeline statges: Fetch, Decode,
Execute, Memory and Writeback.

struction memory starts from 0x100000 and has 1 MB program space. The data

memory starts from 0x200000 and has 1 MB space. However, we use 32 KB in-

struction and 32 KB data memory due to FPGA resource limitations. We set the

stack pointer at the bottom of the data memory. Then we allocate various memory

mapped devices such as serial UART, DMA controller and hardware accelerator.

6.1.1 Pipeline Architecture

MIPS processor uses a 32-bit registers and 5-stage pipeline as shown in Fig-

ure 6.3. We implement bypass logic to forward results back through the pipeline

and allow most instructions to be effectively executed in a single cycle. We im-

plement hazard detection logic to check read-after-write (RAW) hazards and stall

the pipeline. It starts executing again after resolving dependency problem.

The five pipeline stages are:

• Fetch - The instruction is read from the instruction memory for a given

address.
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• Decode - The instruction is decoded, and then we fetch operands from

register file or bypass logic.

• Execute - It performs an operation based on given instruction. Simple

instructions finish in this stage (e.g., addition, subtraction and logical oper-

ations).

• Memory - It performs memory access in this stage. For example, store

instruction write data to the memory.

• Writeback - It updates the register file with the instruction output. For

example, load instruction reads data from the memory and update a register

in this stage.

6.1.2 Software Tool Chain

We use several utility programs to improve productivity.

Compiler and Linker

We use GCC MIPS cross-compiler to compile C/C++ source code. The

boot code is implemented in assembly language to initialize registers (e.g., stack

pointer and global pointer) and memory, and then jump to the main program.

The linker script controls memory layout (e.g., instruction memory, data memory,

stack, global memory etc.). MIPS linker uses this script to generate the final

program. We provide a Makefile to simplify the build process.

Loader

We develop loader utility to download programs on MIPS. First, it resets

MIPS processor and sends starting memory address and data size information

to the program loader. Then it downloads program to the instruction and data

memory of the MIPS using program loader. When download completes, it sets

program counter (PC) and deasserts reset signal.
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Debugger

The debugger utility provides several features to debug the application code

running on MIPS. It receives debug information from the MIPS virtual serial device

(printf statements) over the ring network and prints them using the host minicom

terminal. We provide more visibility to the MIPS core. A programmer can use the

program debugger hardware to see the contents of the register file, data memory

and program counter. We support single step execution for debugging. It also

detects the stack overflow error and stalls the processor.

Profiler

We also implement profiling support to capture the execution time of differ-

ent functions running on MIPS with minimal software overhead. The profiler has

a MIPS memory buffer and it assigns unique memory location for each function

to store the profiling information (e.g., function call time and frequency). It uses

hardware support to read the 64-bit timer counter (e.g., start time and end time of

a function), calculate the execution time of the function and finally, write it to the

memory buffer. The host utility program reads that memory buffer and dumps it

to a file. It significantly reduces the load on the MIPS processor to capture the

profiling information. We extensively use this profiler to optimize various functions

in our RPC library and applications.

6.2 Ring Network

We use token ring network for connecting different components such as re-

quest scheduler, memory controllers and SPUs. The router is an essential part of

this framework which provides the reliable communication across different com-

ponents. Each router has a unique ID (router id). Each component called client

connects with a router to communicate with other components.

Figure 6.4 shows the router architecture. The router moves a small pulse

called token around the network. The possession of the token grants the right to

transmit. At a time, there is only one sender and one receiver. The sender client
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Figure 6.4: Router architecture receives data along with control signals from
the ring network, sends it to corresponding client or forwards it to other router. It
holds token and sends data from the client to destination over the ring network.

holds the token to send a request to the receiver client. It releases the token after

sending the request. If a client that receives the token has no information to send,

it forwards the token to the next router otherwise it seizes the token, and sends a

request to other client over the ring network.

The router is responsible for decoding the incoming request and if it matches

with the router id then it sends it to that client for further processing otherwise

forwards it to the next router. When a request receives by the receiver client it

sends acknowledgment to the sender router.

Router controller has two state machines: FSM TX and FSM RX. The

FSM TX is active when it receives the token and the client has data to send (In TX

client, ready is high) otherwise it is in idle state. Selector module has a multiplexer

to select data from TX client interface or RX ring interface based control signals

from the router controller. Then it dispatches them to the network via TX ring

interface. During transmit, it sends the header with SOP (start of packet) and
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valid signals, then it sends the payload with valid signal only and finally, it sends

last 16 bytes with EOP (end of packet) and valid signals. The FSM RX is always

active and checks different control signals from the ring network. When it finds

SOP and valid signals (indicate header data) then it triggers decoder to check the

destination router field of the header and if it matches with the router id then it

sends that packet to the client via RX client interface.

We implement two types of flow control for reliable communication over the

ring network.

• Request-acknowledge flow control - When the sender wants to transmit

a packet to the receiver. First, it ensures that the receiver client has enough

space to receive the packet and then only it sends the packet. Initially, the

sender sends a request with packet size information to the receiver. The

receiver gets the request, checks the available space. If there is enough space

then it sends ack otherwise returns nack. In case of ack, the sender transmits

the packet over the ring network otherwise it releases the token for other

clients. This flow control nicely utilizes the ring bandwidth for large packets

and does not stall the ring network. However, it has initial handshaking

overhead.

• Young packet not consume (YPNC) flow control - Here we do not

use initial handshaking between the sender and receiver. So, it may possible

that the receiver does not consume the full packet. In that case, the receiver

sends notification to the router associated with that client. The router asserts

YPNC signal and leaves the remaining portion of that packet on the ring

network. Those remaining data keep on circulating over the ring network.

When the receiver is ready again, the router receives those data from the ring

network and sends to the client. Since this flow control does not need initial

handshaking and it is particularly suitable for small packets. However, it

wastes ring bandwidth and stalls other clients to send packets when a router

asserts YPNC.

We run ring network at 250 MHz and transfer 128 bit data per cycle. So,

overall we achieve 3.7 GB/s. The round trip latency is 88 ns.
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Figure 6.5: NVM controller architecture extends the existing Xilinx MIG
DDR2 controller (grey boxes) with start-gap. The start-gap is a simple wear-
leveling technique to distribute wear across the chip to increase lifetime as phase
change memory suffers from endurance issues. We enhance the control logic to
emulate any NVM technologies by changing read and write time.

6.3 NVM Controller

NVM controller manages the data stored on NVM and contains the logic

necessary to read and write to NVM. It receives read and write requests from SPU.

It can fetch data either from the processor’s memory or from the RX ring network

buffer. Similarly, it sends data to the processor or the TX ring network buffer. It

connects with dual-rank DIMM using DDR2 interface with total capacity 8 GB.

It runs at 250 MHz and has peak bandwidth of 3.72 GB/s.

Figure 6.5 shows the NVM controller architecture. We extend the existing

Xilinx MIG DDR2 controller [Xil] with start-gap. We enhance the control logic

to emulate emerging NVM technologies. The existing MIG DDR2 controller com-

prises of five main components: infrastructure, idelay control, user top, physical

top and ctrl. The infrastructure module has a PLL that takes system clock and

reset as inputs and produces various clocks and reset signals for the memory con-

troller. The idelay control takes 200 MHz clock signal and performs calibration for

each idelay element based on request from the physical top to correctly capture
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Figure 6.6: Start-gap architecture computes logical to physical address trans-
formation using 3-stage pipeline logic. For every gap write interval (GWI) writes,
start-gap controller initiates start-gap operation and updates start and gap regis-
ters and swaps gap line.

incoming data on the I/O pin. The user top provides user interface and receives

read and write requests from the user. It has three FIFOs: address FIFO, read

FIFO and write FIFO. The address FIFO holds the information about the given

address and command (read or write). The write FIFO holds data. In case of

write, it reads the address from the address FIFO and data from the write FIFO,

and dispatches them to the physical top for writing to the memory chip. In case

of read, It reads the address from the address FIFO and dispatches to the physical

top to read data from the memory array and enqueue them read FIFO. The phys-

ical top comprises of various I/O blocks (IOBs), IDDR and ODDR primitives to

capture data at double data rate from the memory chip. It drives various control

signals to the memory chip such as RAS N, CAS N and WE N from the ctrl mod-

ule and performs initialization and calibration of strobes and data signals using

idelay control.

We assume NVM chips will have similar internal architecture as DRAM
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chips and we need to consider the impact of internal row buffer for different mem-

ory accesses. So, we extend the ctrl logic to accurately emulate various NVM

technologies. The ctrl produces all control signals for the DDR2 memory inter-

face. It reads address and command from the address FIFO and generates various

control signals. It performs refresh operation to preserve data in DRAM array. It

supports multiple-bank mode to simultaneously open multiple banks to improve

performance. We modify the existing ctrl state machine to add latency between

the read address strobe (RAS) and column address strobe (CAS) commands dur-

ing reads. We extend the pre-charge latency after a write by inserting delay. We

configure those delay from the host over the ring network. We cannot stop DRAM

refresh to preserve data which is not required for these NVM technologies.

We implement start-gap wear leveling [QKF+09] to uniformly distribute

wear across the chip for non-uniform write accesses as phase change memory cells

suffer from limited endurance (1000,000 writes). It divides the memory array into

lines where N+1 is the total number of lines (+1 for gap line) and L is the length of

each line in bytes. It uses two registers. start and gap. Initially, the start register

points to the first line of the memory array and the gap register points to the last

line of the memory array. It uses gap write interval parameter to initiate start-gap

operation. For phase change memory, we configure gap write interval W = 100.

For every W writes, the gap line swaps data with its previous line. When gap

reaches to the first line and receives W writes, then it increments start register to

point to the next line and swaps gap line with the last line of the memory array. It

changes logical address (LA) to physical address mapping (PA). We use the formula

from [QKF+09] (if (LA + start)%N ≥ gap then PA = (LA + start)%N + 1 else

PA = (LA+ start)%N).

As the memory controller has very stringent timing requirement, we im-

plement it using 3-stage pipeline logic where S1 and S2 represent intermediate

registers.

• Add - It performs addition of LA with start register ( S1 = (LA+ start)).

• Modulo - Then it computes modulo N (S2 = S1%N).
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• Compare - Finally, It compares with gap register and updates PA accord-

ingly ( if S2 ≥ gap then PA = S2 + 1 else PA = S2 ).

Figure 6.6 shows the start-gap architecture. It has two modes of operations:

normal and start-gap mode. During normal mode, it only performs logical address

to physical address transformation. We use 3-stage pipeline logic (add, modulo

and compare) for the address transformation. When the number of writes reaches

to gap write interval, it triggers start-gap mode. During start-gap mode, start-gap

controller issues a read and a write request of L bytes to swap the gap line with the

previous line. Then it updates gap register to point the new gap line and switches

back to the normal mode.
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Chapter 7

Conclusion and Future Work

This thesis provides insight on what radical impacts on storage systems be

if NVM technologies evolve as a potential replacement for existing storage tech-

nologies such as disks and flash. We present XSSD architecture to offload computa-

tion in storage to exploit fast NVMs and reduce the redundant data traffic across

PCIe. It significantly eliminates the PCIe and software overheads, and exposes

low latency and high bandwidth NVMs to end application. XSSD offers a flexible

user-friendly RPC-based programming framework to implement applications on

storage. We implement various data-intensive applications and achieve speedup

and energy efficiency of 1.5-8.91× and 1.7-10.27× respectively.

There are several ongoing and future work directions.

Support multiple applications we need to extend XSSD such that it can sup-

port concurrent execution of multiple applications on storage to efficiently utilize

fast NVMs and compute resources of XSSD. We need a lightweight scheduler to

execute multiple applications on SPUs and maintain the status of different appli-

cations. We need to support demand paging for concurrent execution of multiple

programs on SPU. We also need an elegant protection mechanism to ensure au-

thenticate access of resources by different applications.

Support storage services XSSD primarily focuses on application-specific com-

putations and in-storage data structures. It can be extended to support various

81
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storage services such as caching, transactions and permission management. It can

facilitate different applications to take advantage of those services transparently.

Database and “Big Data” applications We can enhance XSSD to support

various database operations such as scan, join, sort, group-by and aggregate primi-

tives to improve performance. As “Big Data” applications are increasingly limited

by the storage performance, we can build a large scale system of XSSDs that can

offer adequate storage, computation and communication bandwidth to support

those applications.
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