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Abstract

Large-language models (LLMs) such as GPT-4 caught the interest of many scientists. Recent
studies suggested that these models could be useful in chemistry and materials science. To
explore these possibilities, we organized a hackathon.

This article chronicles the projects built as part of this hackathon. Participants employed
LLMs for various applications, including predicting properties of molecules and materials, de-
signing novel interfaces for tools, extracting knowledge from unstructured data, and developing
new educational applications.

The diverse topics and the fact that working prototypes could be generated in less than two
days highlight that LLMs will profoundly impact the future of our fields. The rich collection
of ideas and projects also indicates that the applications of LLMs are not limited to materials

science and chemistry but offer potential benefits to a wide range of scientific disciplines.
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I. INTRODUCTION

The intersection of machine learning (ML) with chemistry and materials science has
witnessed remarkable advancements in recent years [1-9]. Much progress has been made
in using ML to, e.g., accelerate simulations [10, 11] or to directly predict properties
or compounds for a given application [12]. Thereby, developing custom, hand-crafted
models for any given application is still common practice. Since science rewards doing
novel things for the first time, we now face a deluge of tools and machine-learning models
for various tasks. These tools commonly require input data in their own rigid, well-
defined form (e.g., a table with specific columns or images from a specific microscope with
specific dimensions). Further, they typically also report their outputs in non-standard
and sometimes proprietary forms.

This rigidity sharply contrasts the standard practice in the (experimental) molecular
and materials sciences, which is intrinsically fuzzy and highly context-dependent [13].
For instance, researchers have many ways to refer to a molecule (e.g., IUPAC name,
conventional name, simplified molecular-input line-entry system (SMILES) [14]) and to
report results and procedures. In particular, for the latter, it is known that small details
such as the order of addition or the strength of stirring (e.g., “gently” vs. “strongly”)
are crucial in determining the outcome of reactions. We do not have a natural way
to deal with this fuzziness, and often a conversion into structured tabular form (the
conventional input format for ML models) is impossible. Our current “solution” is to write
conversion programs and chain many tools with plenty of application-specific “glue code”
to enable scientific workflows. However, this fuzziness chemistry and heterogeneity of
tools have profound consequences: A never-ending stream of new file formats, interfaces,
and interoperability tools exists, and users cannot keep up with learning [15]. In addition,
almost any transformation of highly context-dependent text (e.g., description of a reaction
procedure) into structured, tabular form will lead to a loss of information.

One of the aims of this work is to demonstrate how large language models (LLMs)
such as the generative pretrained transformer (GPT)-4 [16-21], can be used to address
these challenges. Foundation models such as GPTs are general-purpose technologies [22]
that can solve tasks they have not explicitly been trained on [23, 24], use tools [25-
27], and be grounded in knowledge bases [28, 29]. As we also show in this work, they
provide new pathways of exploration, new opportunities for flexible interfaces, and may

be used to effectively solve certain tasks themselves; e.g., we envision LLMs enabling non-



experts to program (“malleable software”) using natural language as the “programming
language” [30], extract structured information, and create digital assistants that make
our tools interoperable—all based on unstructured, natural-language inputs.

Inspired by early reports on the use of these LLMs in chemical research [31-34], we
organized a virtual hackathon event focused on understanding the applicability of LLMs
to materials science and chemistry. The hackathon aimed to explore the multifaceted
applications of LLMs in materials science and chemistry and encourage creative solutions
to some of the pressing challenges in the field. This article showcases some of the projects
(Table I) developed during the hackathon.

One of the conclusions of this work is that without these LLMs, such projects would
take many months. The diversity of topics these projects address illustrates the broad
applicability of LLMs; the projects touch many different aspects of materials science and
chemistry, from the wet lab to the computational chemistry lab, software interfaces, and
even the classroom. While the examples below are not yet polished products, the simple
observation that such capabilities could be created in hours underlines that we need to
start thinking about how LLMs will impact the future of materials science, chemistry,
and beyond [35]. The diverse applications show that LLMs are here to stay and are likely
a foundational capability that will be integrated into most aspects of the research process.
Even so, the pace of the developments highlights that we are only beginning to scratch
the surface of what LLMs can do for chemistry and materials science.

Table I lists the different projects created in this collaborative effort across eight coun-
tries and 22 institutions (SI section V). One might expect that 1.5 days of intense collab-
orations would, at best, allow a cursory exploration of a topic. However, the diversity of
topics and the diversity in the participants’ expertise, combined with the need to deliver
a working prototype (within a short window of time) and the ease of prototyping with
LLMs, generated not only many questions but also pragmatic solutions. In the remainder
of this article, we focus on the insights we obtained from this collective effort. For the
details of each project, we refer to the SI.

We have grouped the projects into four categories: 1. predictive modeling, 2. automa-
tion and novel interfaces, 3. knowledge extraction, and 4. education. The projects in
the predictive modeling category use LLMs for classification and regression tasks—and
also investigate ways to incorporate established concepts such as A-ML [36] or novel con-

cepts such as “fuzzy” context into the modeling. The automation and novel interfaces



Table I: Overview of the developed tools and links to source code repositories. Full descriptions

of the projects can be found in the Supplementary Material.

name

authors

links

Predictive modeling

Accurate Molecular Energy Predictions

Text2Concrete

Molecule Discovery by Context

Genetic algorithm without genes

Text-template paraphrasing

Ankur K. Gupta, Garrett W. Merz,
Alishba Imran, Wibe A. de Jong

Sabine Kruschwitz, Christoph Vélker,
Ghezal Ahmad Zia

Zhi Hong, Logan Ward

Benjamin Weiser, Jerome Genzling,
Nicolas Gastellu, Sylvester Zhang, Tao Liu,
Alexander Al-Feghali, Nicolas Moitessier,
Anne Labarre, Steven Ma

Michael Pieler

©) ankur56/ChemLoRA
B 10.5281/zenodo . 8104930

C) ghezalahmad/LLMs-for-the-Design-of-Sustainable-
Concretes
& 10.5281/zenodo.8091195

¥ globuslabs/ScholarBERT-XL
B 10.5281/zenodo.8122087

() BenjaminWeiser/LLM-Guided-GA
B 10.5281/zenodo.8125541

) micpie/text-template-paraphrasing-chemistry
B 10.5281/zenodo.8093615

Automation and novel interfaces

BOLLaMa
sMolTalk

MAPI-LLM

Conversational ELN interface (Whinchat)

Bojana Rankovié, Andres M. Bran,
Philippe Schwaller

Jakub Léla, Sean Warren,
Samuel G. Rodriques

Mayk Caldas Ramos, Sam Cox,
Andrew White

Joshua D. Bocarsly, Matthew L. Evans and
Ben E. Smith

) doncamilom/BOLLaMa

B 10.5281/zenodo. 8096827

) jakublala/smoltalk-legacy
@ 10.5281/zenodo. 8081749

) maykcaldas/MAPI_LLM

¥ maykcaldas/MAPI_LLM

@ 10.5281/zenodo. 8097336

() the-grey-group/datalab
& 10.5281/zenodo. 8127782

Knowledge Extraction

InsightGraph

Extracting Structured Data from
Free-form Organic Synthesis Text

TableToJson: Structured information
from scientific data in tables

AbstractToTitle & TitleToAbstract:
text summarization and generation

Defne Circi, Shruti Badhwar

Qianxiang Ai, Jacob N. Sanders, Jiale Shi,
Stefan Bringuier, Brenden Pelkie,
Marcus Schwarting

Maria Victoria Gil

Kamal Choudhary

defnecirci/InsightGraph
10.5281/zenodo.8092575

qai222/LLM_organic_synthesis
10.5281/zenodo. 8091902

vgvinter/TableToJson
10.5281/zenodo. 8093731

usnistgov/chemnlp
10.5281/zenodo. 8122419

EIO EBO mO md

Education

I-Digest

Beatriz Mourino, Elias Moubarak,
Joren Van Herck, Sauradeep Majumdar,
Xiaoqi Zhang

XiaoqZhang/i-Digest

(v}
B 10.5281/zenodo . 8080962

projects show that natural language might be the universal “glue” connecting our tools—

perhaps in the future, we will need not to focus on new formats or standards but rather

use natural language descriptions to connect across the existing diversity and different

modalities [35].

LLMs can also help make knowledge more accessible, as the projects in the “knowledge

extraction” category show; they can extract structured information from unstructured

text. In addition, as the project in the “education” category shows, LLMs can also offer

new educational opportunities.

A. Predictive modeling

Predictive modeling is a common application of ML in chemistry. Based on the

language-interfaced fine-tuning (LIFT) framework [37], Jablonka et al. [32] have shown
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that LLMs can be employed to predict various chemical properties, such as solubility or
HOMO-LUMO gaps based on line representations of molecules such as self-referencing
embedded strings (SELFIES) [38, 39] and SMILES. Taking this idea even further,
Ramos et al. [34] used this framework (with in-context learning (ICL)) for Bayesian
optimization—guiding experiments without even training models.

The projects in the following build on top of those initial results and extend them
in novel ways as well as by leveraging established techniques from quantum machine
learning.

Given that these encouraging results could be achieved with and without fine-tuning
(i.e., updates to the weights of the model) for the language-interfaced training on tabular
datasets, we use the term LIFT also for ICL settings in which structured data is converted
into text prompts for an LLM.

a. Molecular Energy Predictions

A critical property in quantum chemistry is the atomization energy of a molecule,
which gives us the basic thermochemical data used to determine a molecule’s stability or
reactivity. State-of-the-art quantum chemical methods (i.e., G4(MP2) [40]) can predict
this energy with an accuracy of 0.034eV (or 0.79kcal/mol) [41, 42]. This accuracy is
similar to, and in some cases even better than, the accuracy that can be reached experi-
mentally. This motivated Ramakrishnan et al. [41] and Narayanan et al. [42] to compute
these atomization energies for the 134,000 molecules in the QM9-G4MP2 dataset.

The Berkeley-Madison team (Ankur Gupta, Garrett Merz, Alishba Imran, and
Wibe de Jong) used this dataset to fine-tune different LLMs using the LIFT frame-
work. The team investigated if they could use an LLM to predict atomization energies
with chemical accuracy. Jablonka et al. [32] emphasized that these LLMs might be par-
ticularly useful in the low-data limit. Here, we have a relatively large dataset, so it is an
ideal system to gather insights into the performance of these models for datasets much
larger than those used by Jablonka et al. [32].

The Berkeley-Madison team showed that the LIFT framework based on simple line
representations such as SMILES and SELFIES [38, 39] can yield good predictions (R* >
0.95 on a holdout test set), that are, however, still inferior to dedicated models that have
access to 3D information [43, 44]. An alternative approach to achieve chemical accuracy
with LLMs tuned only on string representations is to leverage a A-ML scheme [45] in

which the LLM is tuned to predict the difference between G4(MP2) and B3LYP [46]



Table II: LIFT for molecular atomization energies on the QM9-G4MP2 dataset. Metrics for
models tuned on 90% of the QM9-G4MP2 dataset (117,232 molecules), using 10% (13,026
molecules) as a holdout test set. GPTChem refers to the approach reported by Jablonka et al.
[32], GPT-2-LoRA to PEFT of the GPT-2 model using LoRA. The results indicate that the
LIFT framework can also be used to build predictive models for atomization energies, that can
reach chemical accuracy using a A-ML scheme. Baseline performance (mean absolute error
reported by Ward et al. [44]): 0.0223 eV for FCHL-based prediction of GP4(MP2) atomization
energies and 0.0045eV (SchNet) and 0.0052eV (FCHL) for the A-ML scheme.

mol. repr. & framework  G4(MP2) Atomization Energy  (G4(MP2)-B3LYP) Atomization Energy

R2 MAD / eV R2 MAD / eV
SMILES: GPTChem 0.984 0.99 0.976 0.03
SELFIES: GPTChem 0.961 1.18 0.973 0.03
SMILES: GPT2-LoRA  0.931 2.03 0.910 0.06
SELFIES: GPT2-LoRA  0.959 1.93 0.915 0.06

energies. Table II shows that good agreement could be achieved for the A-ML approach.
This showcases how techniques established for conventional ML on molecules can also be
applied with LLMs.

Importantly, this approach is not limited to the OpenAl application programming
interface (API). With PEFT with LoRA [47] of the GPT-2 model [48], one can also obtain
comparable results on consumer hardware. These results make the LIFT approach widely
more accessible and allow research to the LIFT framework for chemistry without relying
on OpenAl

b. Text2Concrete

Concrete is the most used construction material, and the mechanical properties and
climate impact of these materials are a complex function of the processing and formula-
tion. Much research is focused on formulations of concrete that are less CO, intensive. [49]
To expedite the design process, e.g., by prioritizing experiments using ML-predictions,
data-driven methods have been investigated by Volker et al. [50] The Text2Concrete
team (Sabine Kruschwitz, Christoph Vélker, and Ghezal Ahmad Zia) explored, based on
data reported by Rao and Rao [51], whether LLMs can be used for this task. This data
set provides 240 alternative, more sustainable, concrete formulations and their respective
compressive strengths. From a practical point of view, one would like to have a model
that can predict the compressive strength of the concrete as a function of its formulation.

Interestingly, the largest LLMs can already give predictions without any fine-tuning.
These models can “learn” from the few examples provided by the user in the prompt.

Of course, such a few-shot approach (or ICL, [20]) does not allow for the same type of



optimization as fine-tuning, and one can therefore expect it to be less accurate. However,
Ramos et al. [34] showed that this method could perform well—especially if only so few
data points are available such that fine-tuning is not a suitable approach.

For their case study, the Text2Concrete team found a predictive accuracy comparable
to a Gaussian process regression (GPR) model (but inferior to a random forest (RF)
model). However, one significant advantage of LLMs is that one can easily incorporate
context. The Text2Concrete team used this to include well-established design principles
like the influence of the water-to-cement ratio on strength (Figure 1) into the modeling
by simply stating the relationship between the features in natural language (e.g., “high
water/cement ratio reduces strength”). This additional context reduced the outliers and
outperformed the RF model (R? of 0.67 and 0.72, respectively).

The exciting aspect is that this is a typical example of domain knowledge that cannot
be captured with a simple equation incorporable into conventional modeling workflows.
Such “fuzzy” domain knowledge, which may sometimes exist only in the minds of re-
searchers, is common in chemistry and materials science. With the incorporation of such
“fuzzy” knowledge into LIFT-based predictions using LLMs, we now have a novel and
very promising approach to leverage such domain expertise that we could not leverage
before. Interestingly, this also may provide a way to test “fuzzy” hypotheses, e.g., a
researcher could describe the hypothesis in natural language and see how it affects the
model accuracy. While the Text2Concrete example has not exhaustively analyzed how
“fuzzy” context alterations affect LLM performance, we recognize this as a key area for fu-
ture research that could enhance the application of LLMs and our approach to leveraging
“fuzzy” domain knowledge within materials science.

c.  Molecule Discovery by Context

Much context is available in the full text of scientific articles. This has been exploited
by Tshitoyan et al. [52] who used a Word2Vec [53] approach to embed words into a vector
space. Word2Vec does so by tasking a model to predict for a word the probability for
all possible next words in a vocabulary. In this way, word embeddings capture syntactic
and semantic details of lexical items (i.e., words). When applied to material science ab-
stracts, the word embeddings of compounds such as Li;CuSb could be used for materials
discovery by measuring their distance (cosine similarity) to concepts such as “thermo-
electric”. [54] However, traditional Word2Vec, as used by Tshitoyan et al. [52], only

produces static embeddings, which remain unchanged after training. Word embeddings



Training a Prediction Model In-Context Learning
between vectorized Concrete
Formulations (X) and Labels (Y) User

context " high water-cement ratio (F1) reduces strength /
heat curing (F3) increases FA-based binders (F2) strength / ... "
X Y examples
F1 F2 F3 T1 "F1=0.5 / F2=1 / F3=60" "T1=22 MPa"

P a | "F1=0.3 / F2=0 / F3=65" "T1=50 MPa"

05 |1 60 22

"F1=0.4 / F2=1 / F3=40" "T1=36 MPa"
03 |0 65 y 50 prompt "What is the output for F1=0.3 / F2=1 / F3=30?"
3% GPT

"response” "T1=45 MPa"

04 |1 40

Figure 1: Using LLMs to predict the compressive strength of concretes. An illustration of the
conventional approach for solving this task, i.e., training classical prediction models using ten
training data points as tabular data (left). Using the LIFT framework LLMs can also use tabular
data and leverage context information provided in natural language (right). The context can
be “fuzzy” design rules often known in chemistry and materials science but hard to incorporate
in conventional ML models. Augmented with this context and ten training examples, ICL with
LLM leads to a performance that outperforms baselines such as RFs or GPR.

extracted from an LLM, on the other hand, are contextualized on the specific sequence
(sentence) in which they are used and, therefore, can more effectively capture the contexts
of words within a given corpus [55]. Inspired by this, the GlobusLabs team (Zhi Hong,
Logan Ward) investigated if similar embeddings could be used to discover hydrogen car-
rier molecules, that are relevant for energy storage applications. For this, they leverage
the ScholarBert model [56] trained on a large corpus of scientific articles collected by
the Public.Resource.Org nonprofit organization. For different candidate molecules, they
searched for sentences in the Public.Resource.Org corpus and used the average of the
embeddings of these sentences as a fingerprint of the molecules. Given those fingerprints,
they could rank molecules by how close their fingerprints are to the ones of known hy-
drogen carrier molecules. Visual inspection indicates that the selected molecules indeed
bear similarities to known hydrogen carrier molecules.

d. Text template paraphrasing

In the LIFT framework used in the examples above, the data are embedded in so-
called prompt templates that can have a form like What is the <property name> of
<representation>?, where the texts in chevrons are placeholders that are replaced with
actual values such as “solubility” and “2-acetyloxybenzoic acid”. In the low-data regime,
data points are “wasted” by the model needing to learn the syntax of the prompt tem-
plates. In the big-data regime, in contrast, one might worry that the model loses some of

its general language modeling abilities by always dealing with the same template. This
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naturally raises the question if one can augment the dataset to mitigate these problems—
thereby leveraging again, similar to A-ML, a technique that has found use in conventional
ML previously. However, text-based data are challenging to augment due to their discrete
nature and the fact that the augmented text still needs to be syntactically and seman-
tically valid. Interestingly, as Michael Pieler (OpenBioML.org and Stability.Al) shows
(and as has been explored by Dai et al. [57]), it turns out that LLMs can also be used to
address this problem by simply prompting an LLM (e.g., GPT-4 or Anthrophic’s Claude)
to paraphrase a prompt template (see SI section ID).

This approach will allow us to automatically create new paraphrased high-quality
prompts for LIFT-based training very efficiently—to augment the dataset and reduce the
risk of overfitting to a specific template. Latter might be particularly important if one
still wants to retain general language abilities of the LLMs after finetuning.

e. Genetic algorithm using an LLM

Genetic algorithms are popular methods for generating new structures; they are evo-
lutionary algorithms in which building blocks (e.g., fragments of SMILES strings) are
iteratively crossed over, mutated, and subjected to other genetic operations to evolve
structures with better performance (such as catalysts with higher conversion) [58]. The
efficiency of such a genetic algorithm often depends on how well the genes and genetic
operations match the underlying chemistry. For example, if the algorithm replaces atom
by atom, it may take several generations before a complete functional group is replaced.

One might hypothesize that LLMs can make the evolution process more efficient, e.g.,
by using an LLM to handle the reproduction. One might expect that inductive biases in
the LLM help create recombined molecules which are more chemically viable, maintaining
the motifs of the two parent molecules better than a random operation.

The team from McGill University (Benjamin Weiser, Jerome Genzling, Nico-
las Gastellu, Sylvester Zhang, Tao Liu, Alexander Al-Feghali, Nicolas Moitessier) set
out the first steps to test this hypothesis (Figure 2). In initial experiments, they found
that GPT-3.5, without any finetuning, can fragment molecules provided as SMILES at
rotatable bonds with a success rate of 70 %. This indicates that GPT-3.5 understands
SMILES strings and aspects of their relation to the chemical structures they represent.
Subsequently, they asked the LLMs to fragment and recombine two given molecules. The
LLM frequently created new combined molecules with fragments of each species which

were reasonable chemical structures more often than a random SMILES string combining

11



N

r

/_ ;_-.\ \ / » \ KS:UI‘HE modifications that could pntentla].m
\ h /‘-( % improve the scores include adding or
& X \ _/’—-{/ removing halogens, modifying the length or
b 7 s e branching of the carben chain, and adding
== "““-O r}‘\i ”{j e, ; or removing functional groups such as
\ 5 : I i s -€0-, -COC-, -C=C- and -0CO-.
Y . \ Additionally, modifying the

stereochemistry of the molecule could also
have an impact on the score."

Tanimote Similarity over Generations

0424
040

Pord

138

Tanimotc Similarity ¢

- 032

L

el
% a ==
N )

[
Generation

Figure 2: GA using an LLM. This figure illustrates how different aspects of a GA can be
performed by an LLM. GPT-3.5 was used to fragment, reproduce, and optimize molecules
represented by SMILES strings.
molecule represented by a SMILES string (input molecule on top, output LLM fragments below).
The middle column showcases how an LLM can reproduce/mix two molecules as is done in a

The first column illustrated how an LLM can fragment a

GA (input molecule on top, output LLM below). The right column illustrates an application in
which an LLM is used to optimize molecules given their SMILES and an associated score. The
LLM suggested potential modifications to optimize molecules. The plot shows best (blue) and
mean (orange) Tanimoto similarity to Vitamin C per LLM produced generations.

operation (two independent organic chemists judged the LLM-GA-generated molecules
to be chemically reasonable in 32/32 cases, but only in 21/32 cases for the random recombi-
nation operation).

Encouraged by these findings, they prompted an LLM with 30 parent molecules and
their performance scores (Tanimoto similarity to vitamin C) with the task to come up
with n new molecules that the LLM “believes” to improve the score. A preliminary visual
inspection suggests that the LLM might produce chemically reasonable modifications.
Future work will need to systematically investigate potential improvements compared to
conventional GAs.

The importance of the results of the McGill team is that they indicate that these LLMs
(when suitably conditioned) might not only reproduce known structures but generate new
structures that make chemical sense [32, 59].

A current limitation of this approach is that most LLMs still struggle to output valid
SMILES without explicit fine-tuning [33]. We anticipate that this problem might be

mitigated by building foundation models for chemistry (with more suitable tokeniza-
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tion [60, 61]), as, for instance, the ChemNLP project of OpenBioML.org attempts to do
(https://github.com/OpenBioML/chemnlp). In addition, the context length limits the
number of parent molecules that can be provided as examples.

Overall, we see that the flexibility of the natural language input and the in-context
learning abilities allows using LLMs in very different ways—to very efficiently build pre-
dictive models or to approach molecular and material design in entirely unprecedented
ways, like by providing context—such as “fuzzy” design rules—or simply prompting the
LLM to come up with new structures. However, we also find that some “old” ideas, such

as A-ML and data augmentation, can also be applied in this new paradigm.

B. Automation and novel interfaces

Yao et al. [62] and Schick et al. [25] have shown that LLMs can be used as agents
that can autonomously make use of external tools such as Web-APIs—a paradigm that
some call MRKL (pronounced “miracle”) Systems—modular reasoning, knowledge, and
language systems [26]. By giving LLMs access to tools and forcing them to think step-by-
step [63], we can thereby convert LLMs from hyperconfident models that often hallucinate
to systems that can reason based on observations made by querying robust tools. As the
technical report for GPT-4 highlighted [64], giving LLMs access to tools can lead to
emergent behavior, i.e., enabling the system to do things that none of its parts could do
before. In addition, this approach can make external tools more accessible—since users
no longer have to learn tool-specific APIs. It can also make tools more interoperable—by
using natural language instead of “glue code” to connect tools.

This paradigm has recently been used by Bran et al. [65] to create digital assistants that
can call and combine various tools such as Google search and the IBM RXN retrosynthesis
tool when prompted with natural language. Boiko et al. [66] used a similar approach and
gave LLMs access to laboratories via cloud lab APIs. In their system, the LLM could
use external tools to plan a synthesis, which it could execute using the cloud lab.

a. MAPI-LLM

Electronic structure calculations have reached such a high level of accuracy that
one can answer questions like “Is the material AnByCz stable?” Indeed, the Materi-
als Project [67] stores thermodynamic data on many components from which one can
obtain a reasonable estimate of the stability of a given material. Or, if the material is

not in the database, one can do a simulation instead. Similarly, to answer prompts such
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as “Give me a reaction to produce CaCQO3”, there is a lot of helpful information in the
Materials Project database and the internet that can help to come up with an answer.

To answer these questions, state-of-the-art computational tools or existing databases
can be used. However, their use often requires expert knowledge. To use existing
databases, one must choose which database to use, how to query the database, and what
representation of the compound is used (e.g., international chemical identifier (InChI),
SMILES, etc.). Otherwise, if the data is not in a database, one must run calculations,
which requires a deep understanding of technical details. LLMs can simplify the use of
such tools. By typing in a question, we can prompt the LLM to translate this question
into a workflow that leads to the answer.

The MAPI-LLM team (Mayk Caldas Ramos, Sam Cox, Andrew White) made the first
steps towards developing such a system (MAPI-LLM) and created a procedure to convert
a text prompt into a query of the Materials Project API (API) to answer questions such
as “Is the material AnByCz stable?” In addition, MAPI-LLM is capable of handling
classification queries, such as “Is Fe203 magnetic?”, as well as regression problems, such
as “What is the band gap of Mg(Fe203)27”.

Because an LLM is used to create the workflow, MAPI-LLM can process even more
complex questions. For instance, the question “If Mn23FeO32 is not metallic, what is its
band gap?” should create a two-step workflow first to check if the material is metallic
and then calculate its band gap if it is not.

Moreover, MAPI-LLM applies ICL if the data for a material’s property is unavailable
via the MAPI. MAPI-LLM generates an ICL prompt, building context based on the
data for similar materials available in Materials Project database. This context is then
leveraged by an LLM to infer properties for the unknown material. This innovative use
of ICL bridges data gaps and enhances MAPI-LLM’s robustness and versatility.

b. sMolTalk

The previous application already touches on the problem that software for chemical
applications requires scientists to invest a significant amount of time in learning even the
most basic applications. An example of this is visualization software. Depending on the
package and its associated documentation, chemists and materials scientists might spend
hours to days learning the details of specific visualization software that is sometimes
poorly documented. And in particular, for occasional use, if it takes a long time to learn

the basics, it won’t be used.
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Figure 3: Schematic overview of the MAPI-LLM workflow. It uses LLMs to process the user’s
input and decide which available tools (e.g., Materials Project API, the Reaction-Network
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package, and Google Search) to use following an iterative chain-of-thought procedure. In this
way, it can answer questions such as “Is the material AnByCz stable?”.

As the sMolTalk-team (Jakub Lala, Sean Warren, Samuel G. Rodriques) showed, one
can use LLMs to write code for visualization tools such as 3dmol.js to address this
inefficiency [68]. Interestingly, few-shot prompting with several examples of user input
with the expected JavaScript code that manipulates the 3dmol. js viewer is all that is
needed to create a prototype of an interface that can retrieve protein structures from
the protein data bank (PDB) and create custom visualization solutions, e.g., to color
parts of a structure in a certain way (Figure 4). The beauty of the language models is
that the user can write the prompt in many different (“fuzzy”) ways: whether one writes
“color” or “colour”, or terms like “light yellow” or “pale yellow” the LLM translates it
into something the visualization software can interpret.

However, this application also highlights that further developments of these LLM-
based tools are needed. For example, a challenge the sMolTalk tool faces is robustness.
For instance, fragments from the prompt tend to leak into the output and must be handled
with more involved mechanisms, such as retries in which one gives the LLMs access to
the error messages or prompt engineering. Further improvement can also be expected if
the application leverages a knowledge base such as the documentation of 3dmol. js.

As the work of Glenn Hocky and Andrew White shows [69], an LLM-interface for
software can also be used with other programs such as VMD [70] and extended with speech-

to-text models (such as Whisper [71]) to enable voice control of such programs. In
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Figure 4: The sMolTualk interface. Based on few-shot prompting LLMs can create code for
visualization tools such as 3dmol. js that can create custom visualization based on a natural-
language description of the desired output. The top left box is the input field where users can
enter commands in natural language. The top right box prints the code the LLM generates.
This code generates the visualization shown in the lower box. In this example, the user entered
a sequence of four commands: the LLM (1) generates code for retrieving the structure, (2)
colors the carbons blue, (3) displays the hydrogens as red spheres, and (4) reduces the size of
the spheres.

particular, such an LLM-based agent approach might be implemented for the PyMOL
program, where various tools for protein engineering could be interfaced through a chat
interface, lowering the barrier to entry for biologists to use recent advancements within
in silico protein engineering (such as RosettaFold [72] or RFDiffusion [73]).

c. FELN interface: whinchat

In addition to large, highly curated databases with well-defined data models [74] (such
as those addressed by the MAPI-LLM project), experimental materials and chemistry
data is increasingly being captured using digital tools such as ELNs and or laboratory

information systems (LIMS). Importantly, these tools can be used to record both struc-
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tured and unstructured lab data in a manner that is actionable by both humans and
computers. However, one challenge in developing these systems is that it is difficult for a
traditional user interface to have enough flexibility to capture the richness and diversity
of real, interconnected, experimental data. Interestingly, LLMs can interpret and con-
textualize both structured and unstructured data and can therefore be used to create a
novel type of flexible, conversational interface to such experimental data. The whinchat
team (Joshua D. Bocarsly, Matthew L. Evans, and Ben E. Smith) embedded an LLM
chat interface within datalab, an open source materials chemistry data management
system, where the virtual LLM-powered assistant can be “attached” to a given sample.
The virtual assistant has access to responses from the JavaScript object notation (JSON)
API of datalab (containing both structured and unstructured/free text data) and can
use them to perform several powerful tasks: First, it can contextualize existing data
by explaining related experiments from linked responses, resolving acronyms/short-hand
notations used by experimentalists, or creating concise textual summaries of complex
and nested entries. Second, it can reformat or render the data, for instance, by creating
(mermaid. js) flowcharts or (Markdown) tables (Figure 5). Third, it can use its generic
reasoning abilities to suggest future experiments, for instance, related materials to study,
synthesis protocols to try, or additional characterization techniques. This is shown in the
examples given in SI section 2C, where whinchat was able to provide hints about which
NMR-active nuclei can be probed in the given sample.

It is easy to envision that this tool could be even more helpful by fine-tuning or condi-
tioning it on a research group’s knowledge base (e.g., group Wiki or standard operating
procedures) and communication history (e.g., a group’s Slack history). An important
limitation of the current implementation is that the small context window of available
LLMs limits the amount of JSON data one can directly provide within the prompt, lim-
iting each conversation to analyzing a relatively small number of samples. Therefore, one
needs to either investigate the use of embeddings to determine which samples to include
in the context or adopt an “agent” approach where the assistant is allowed to query the
API of the ELN (interleaved with extraction and summarization calls).

d. BOLLaMa: facilitating Bayesian optimization with large language models

Bayesian optimization (BO) is a powerful tool for optimizing expensive functions,
such as mapping of reaction conditions to the reaction yield. Chemists would greatly

benefit from using this method to reduce the number of costly experiments they need
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v LLM Chat Block with contextual data (powered by GPT-3.5-turbo) & I X

Hello! | am your virtual assistant and | am here to help you manage your
experimental data. What can | help you with today?

Please make me a mermaid flowchat showing how this cell was made from
other items in the database

Certainly! Here is a Mermaid flowchart that shows how the cell with item_id
jdb1-1_e1_c1was made from other items in the database:

In this flowchart, each rectangular box represents an item in the database,
and the arrows between the boxes represent the relationships between the
items. For example, SM1 and SM2 were used to create sample JDB1-1, which
was then used to create sample E1, which was finally used to create the cell
cl.

Figure 5: Using an LLM as an interface to an ELN/data management system. LLM-based
assistants can provide powerful interfaces to digital experimental data. The figure shows a
screenshot of a conversation with whinchat in the datalab data management system (https://
github.com/the-grey-group/datalab). Here, whinchat is provided with data from the JSON
API of datalab of an experimental battery cell. The user then prompts (green box) the system
to build a flowchart of the provenance of the sample. The assistant responds with mermaid. js
markdown code, which the datalab interface automatically recognizes and translates into a
visualization.

to run [75, 76]. However, BO faces an interface and accessibility problem, too. The
existing frameworks require significant background knowledge and coding experience not
conventionally taught in chemistry curricula. Therefore, many chemists cannot benefit
from tools such as BO. The BOLLaMa-team (Bojana Rankovi¢, Andres M. Bran, Philippe
Schwaller) showed that LLMs can lower the barrier for the use of BO by providing a
natural language chat-like interface to BO algorithms. Figure 6 shows a prototype of
a chat interface in which the LLM interprets the user request, initializes a BO run by
suggesting initial experimental conditions, and then uses the feedback of the user to
drive the BO algorithm and suggest new experiments. The example used data on various
additives for a cooperative nickel-photoredox catalyzed reaction [77] and the BO code
from Rankovi¢ et al. [78]. This ideally synergizes with an LLM interface to a data
management solution (as discussed in the previous project) as one could directly persist

the experimental results and leverage prior records to “bootstrap” BO runs.
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[ LLM+BO Backend ] [ Chat Interface ]

Hi and welcome to BOLLaMa,
the coolest llama for
optimization in chemistry!
How can | assist you today?

Hi BOLLaMal! | want to
optimize the additives to
increase the yield of a
decarboxylative amination
reaction. Let's start with 4
experiments,

» 7
BO Initialization
n=4

Welcome to BOLLaMa.
Sure! You can start with
[ | these 4 additives:

o <SMILES>

BO Step
data={ Thanks, here are my
SMILES1:4, [ ——= results: 4%, 12%, .. | ]
SMILES_2: 12,
Perfect! Based on your
results, | suggest you try
bo_step(data) [ | this additive next: > >
<SMILES>
Awesome! 30% this
‘_
I'm glad you got better
bo_step(data) [ | results! Try this next:

Figure 6: Schematic overview of BoLLama. An LLM can act as an interface to a BO algorithm.

W

bo_init(n)

An experimental chemist can bootstrap an optimization and then, via a chat interface, update
the state of the simulation to which the bot responds with the recommended next steps.

As the examples in this section show, we find that LLMs have the potential to greatly
enhance the efficiency of a diverse array of processes in chemistry and materials science by
providing novel interfaces to tools or by completely automating their use. This can help
streamline workflows, reduce human error, and increase productivity—often by replacing
“olue code” with natural language or studying a software library by chatting with an

LLM.

C. Knowledge Extraction

Beyond proving novel interfaces for tools, LLMs can also serve as powerful tools for
extracting knowledge from the vast amount of chemical literature available. With LLMs,
researchers can rapidly mine and analyze large volumes of data, enabling them to uncover
novel insights and advance the frontiers of chemical knowledge. Tools such as paper-
qa [28] can help to dramatically cut down the time required for literature search by
automatically retrieving, summarizing, and contextualizing relevant fragments from the
entire corpus of the scientific literature—for example, answering questions (with suitable

citations) based on a library of hundreds of documents [35]. As the examples in the
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Json file:
Abstract: 15 nm diameter {"nodes™: [

with a grafted {"id"1,

consisting of a 5 nm rubbery “name": "$i02 nanoparticles”,
inner “label": " "
block and a 30 nm outer block of matrix "attributes": {
compatible "diameter": "15 nm",
were synthesized to toughen an | gl "copolymer": "grafted block copolymer" }

epoxy. A systematic study of the effect of 1.
block copolymer graft density (from 0.07 {"edges": [
to 0.7 chains/nm2) and block molecular {
weight (from 20 to 80 kg/mol) on the "source": 1,
tensile behavior, fracture toughness, and “target": 6,

rties was conducted. ... "type": "properties”

}

1}

Figure 7: The InsightGraph interface. A suitably prompted LLM can create knowledge graph
representations of scientific text that can be visualized using tools such as neo4j’s visualization
tools. [81]

previous section indicated, this is particularly useful if the model is given access to search
engines on the internet.

a. InsightGraph

To facilitate downstream use of the information, LLMs can also convert unstructured
data—the typical form of these literature reports—into structured data. The use of GPT
for this application has been reported by Dunn et al. [79] and Walker et al. [80], who
used an iterative fine-tuning approach to extract data structured in JSON from papers.
In their approach, initial (zero-shot) completions of the LLM are corrected by domain
experts. Those corrected completions are then used to finetune LLMs, showing improved
performance on this task.

However, for certain applications, one can construct powerful prototypes using only
careful prompting. For instance, the InsightGraph team (Defne Circi, Shruti Badhwar)
showed that GPT-3.5-turbo, when prompted with an example JSON containing a high-
level schema and information on possible entities (e.g., materials) and pairwise relation-
ships (e.g., properties), can, as Figure 7 illustrates, provide a knowledge graph repre-
sentation of the entities and their relationships in a text describing the properties and
composition of polymer nanocomposites. A further optimized version of this tool might
offer a concise and visual means to quickly understand and compare material types and
uses across sets of articles and could be used to launch a literature review. An ad-
vanced potential application is the creation of structured, materials-specific datasets for
fact-based question-answering and downstream machine-learning tasks.

b. Extracting Structured Data from Free-form Organic Synthesis Text

Unstructured text is commonly used for describing organic synthesis procedures. Due

to the large corpus of literature, manual conversion from unstructured text to struc-
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A suspension of compound 63 (0.22 g, 0.93 mmol) and 64 (0.33 g, 0.92 mmol)
in THF/triethvlamine (11 mL, 10/1) was stirred at room temperature for 48 h.
After this time, a clear solution was formed. The solvent was removed under
reduced pressure and the residue was purified by flash chromatography (silica
gel, 10:1:0.1 chloroform/methanol/concentrated ammonium hydroxide) to
provide the guanidine 65 (0.3 g, 60%) as a yellow solid. TH NMR (300 MHz,
DMSO-d6) & 1.42 (s, 9H), 1.55 (m, 4H), 2.19 (s, 6H), 2.58 (m, 4H), 3.99 (m, 2H),
6.83 (d, 2H), 7.12 (d, 2H), 7.40 (br s, 2H), 9.02 (m, 2H).

: "compound 63"}1,
s": "GRAM"}},

v, "value": "THE"}],
: 11, "units": "MILLILITER"}},

Figure 8: The Organic Synthesis Parser interface. The top box shows text
describing an organic reaction (https://open-reaction-database.org/client/id/ord-
1£99b308e17340cb8e0e3080c270£d08), which the finetuned LLM converts into structured
JSON (bottom). A demo application can be found at https://qai222.github.io/LLM_
organic_synthesis/.

tured data is unrealistic. However, structured data are needed for building conventional
ML models for reaction prediction and condition recommendation. The Open Reaction
Database (ORD) [82] is a database of curated organic reactions. In the ORD, while reac-
tion data are structured by the ORD schema, many of their procedures are also available
as plain text. Interestingly, an LLM (e.g., OpenAl’s text-davinci-003) can, after fine-
tuning on only 300 prompt-completion pairs, extract 93 % of the components from the
free-text reaction description into valid JSONs (Figure 8). Such models might signifi-
cantly increase the data available for training models on tasks such as predicting reaction
conditions and yields. It is worth noting that all reaction data submitted to ORD are
made available under the CC-BY-SA license, which makes ORD a suitable data source
for fine-tuning or training an LLM to extract structured data from organic procedures. A
recent study on gold nanorod growth procedures also demonstrated the ability of LLM in
a similar task. [80] In contrast to the LIFT-based prediction of atomization energies re-
ported in the first section by the Berkeley-Madison team, parameter-efficient fine-tuning
of the open-source Alpaca model [83-85] using LoRA [47] did not yield a model that can
construct valid JSONs.
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c. TableToJson: Structured information from tables in scientific papers

The previous example shows how structured data can be extracted from plain text
using LLMs. However, relevant information in the scientific literature is not only found
in text form. Research papers often contain tables that collect data on material prop-
erties, synthesis conditions, and results of characterization and experiments. Converting
table information into structured formats is essential to enable automated data analy-
sis, extraction, and integration into computational workflows. Although some techniques
could help in the process of extracting this information (performing OCR or parsing
XML), converting this information in structured data following, for example, a specific
JSON schema with models remains a challenge. The INCAR-CSIC team showed that
the OpenAl text-davinci-003 model, when prompted with a desired JSON schema and
the HyperText Markup Language (HTML) of a table contained in a scientific paper, can
generate structured JSON with the data in the table.

First, the OpenAl text-davinci-003 model was directly used to generate JSON
objects from the table information. This approach was applied to several examples using
tables collected from papers on different research topics within the field of chemistry [86—
92]. The accuracy for those different examples, calculated as the percentage of schema
values generated correctly, is shown in Figure 9. When the OpenAl model was prompted
with the table and desired schema to generate a JSON object, it worked remarkably well
in extracting the information from each table cell and inserting it at the expected place
in the schema. As output, it provided a valid JSON object with a 100 % success rate of
error-free generated values in all the studied examples. However, in some examples, the
model did not follow the schema.

To potentially address this problem the team utilized the jsonformer approach. This
tool reads the keys from the JSON schema and only generates the value tokens, guaran-
teeing the generation of a syntactically valid JSON (corresponding to the desired schema)
by the LLM [93, 94]. Using an LLM without such a decoding strategy cannot guarantee
that valid JSON outputs are produced. With the jsonformer approach, in most cases,
by using a simple descriptive prompt about the type of input text, structured data can
be obtained with 100 % correctness of the generated values. In one example, an accuracy
of 80 % was obtained due to errors in the generation of numbers in scientific notation.
For a table with more complex content (long molecule names, hyphens, power numbers,

subscripts, and superscripts,...) the team achieved an accuracy of only 46 %. Most of

22



these issues could be solved by adding a specific explanation in the prompt, increasing
the accuracy to 100 % in most cases.

Overall, both approaches performed well in generating the JSON format. The OpenAl
text-davinci-003 model could correctly extract structured information from tables and
give a valid JSON output, but it cannot guarantee that the outputs will always follow
the provided schema. Jsonformer may present problems when special characters need
to be generated, but most of these issues could be solved with careful prompting. These
results show that LLMs can be a useful tool to help to extract scientific information in
tables and convert it into a structured form with a fixed schema that can be stored in a

database, which could encourage the creation of more topic-specific databases of research

results.
text-davinci-003 text-davinci-003
(schema in prompt) + jsonformer
prompt = "Generate a JSON object extracting the information from
this table in html code: "
+ HTML_table +
"Generate the JSON result with the following JSON schema and give
only the JSON as output: "
+ JSON_schema
JSON follows schema % values extracted ok JSON follows schema % values extracted ok
carbon materials for CO, adsorption v 100% v 100%
MOFs properties v 100% v 100%
supercapacitor performance v 100% v 100%
catalysts for CO, conversion Xm v 100% v 94%
biomass properties v 100% v 100%
anode materials for SOFCs Xmv 100% v 80%=*100%
perovskite cathodes for SOFCs v 100% v 46%=»60% = 86-100%

Figure 9: TableToJson. Results of the structured JSON generation of tables contained in
scientific articles. Two approaches are compared: (i) the use of an OpenAl model prompted
with the desired JSON schema, and (ii) the use of an OpenAI model together with jsonformer.
In both cases, JSON objects were always obtained. The output of the OpenAl model did not
always follow the provided schema, although this might be solved by modifying the schema.
The accuracy of the results from the jsonformer approach used with OpenAl models could be
increased (as shown by the blue arrows) by solving errors in the generation of power numbers
and special characters with a more detailed prompt. The results can be visualized in this demo
app: https://vgvinter-tabletojson-app-ktbaiv.streamlit.app/

d. AbstractToTitle & TitleToAbstract: text summarization and text generation

Technical writing is a challenging task that often requires presenting complex abstract
ideas in limited space. For this, frequent rewrites of sections are needed, in which LLMs
could assist domain experts. Still, evaluating their ability to generate text such as a

scientific paper is essential, especially for chemistry and materials science applications.
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Large datasets of chemistry-related text are available from open-access platforms such
as arXiv and PubChem. These articles contain titles, abstracts, and often complete
manuscripts, which can be a testbed for evaluating LLMs as these titles and abstracts
are usually written by expert researchers. Ideally, an LLM should be able to generate a
title of an abstract close to the one developed by the expert, which can be considered
a specialized text-summarization task. Similarly, given a title, an LLM should generate
text close to the original abstract of the article, which can be considered a specialized
text-generation task.

These tasks have been introduced by the AbstractToTitle & TitleToAbstract team
(Kamal Choudhary) in the JARVIS-ChemNLP package [95]. For text summariza-
tion, it uses a pre-trained Text-to-Text Transfer Transformer (T5) model developed by
Google [96] that is further fine-tuned to produce summaries of abstracts. On the arXiv
condensed-matter physics (cond-mat) data, the team found that fine-tuning the model
can help improve the performance (Recall-Oriented Understudy for Gisting Evaluation
(ROUGE)-1 score of 39.0 % which is better than an untrained model score of 30.8 % for
an 80,20 split).

For text generation, JARVIS-ChemNLP finetunes the pretrained GPT-2-medium [48|
model available in the HuggingFace library. [97] After finetuning, the team found a
ROUGE score of 31.7%, which is a good starting point for pre-suggestion text applica-
tions. Both tasks with well-defined train and test splits are now available in the JARVIS-
Leaderboard platform for the AI community to compare other LLMs and systematically
improve the performance.

In the future, such title to abstract capabilities can be extended to generating full-
length drafts with appropriate tables, multi-modal figures, and results as an initial start
for the human researcher to help in the technical writing processes. Note that there
have been recent developments in providing guidelines for using LLM-generated text in
technical manuscripts [98], so such an LLM model should be considered as an assistant

of writing and not the master/author of the manuscripts.

D. Education

Given all the opportunities LLM open for materials science and chemistry, there is

an urgent need for education to adapt. Interestingly, LLMs also provide us with entirely
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A B

Video link Questions:

https://www.youtube.com/watch?v=aKLOIFTwxsQ

What inspired you to pursue research in the field of carbon capture?

~

Can you discuss the main challenges faced by scientists in the field of carbon capture?
Path to audio

w

How do you think the general public can become more aware of the importance of carbon capture
and reducing CO2 emissions?

IS

Are there any potential negative impacts or drawbacks of using carbon capture technology?
Go

@

Can you discuss any current or ongoing projects related to carbon capture that you are involved in?

)

How do you see the field of carbon capture evolving in the next few years, and what role do you see
Keywords: computational modeling playing in that evolution?

1. Monte Carlo simulation Chemical compounds:
2. Metropolis algorithm
copper, co2, carbon, carbon dioxide, zinc

3. Importance sampling

Summary: D 0 D 1 0 o n ° O 4
label: co2
The speaker, Beard Smith, is continuing a lecture on Monte Carlo simulation, focusing on the details of the O S iupac: None
algorithm. The audience is introduced to a basic form of the metropolis algorithm, in which particles in a CU' N R\ ::‘(k: ptbehamnchiimaih Zn
s://pubchem.ncbi.nim.nih.gov/com
box are randomly displaced and their energy is calculated before acceptance. The speaker raises several o) pos" a//;so ih.govieom
questions about the algorithm's effectiveness and implementation, including the selection of particles at SMILES: C(=0)=0
random, the order of displacement, and the size of the displacement. The talk will delve into these
questions and provide answers to them. n e Sortby ~ Search Feid
Questions:

-

. Can you explain the concept of importance sampling in Monte Carlo simulation?

~

. How do you calculate the energy of the system in the new position of the particle?

w

. Why is it important to space out the sampling of thermodynamic properties during Monte Carlo
simulation?

Figure 10: The I-digest interface. A video (e.g., of a lecture recording) can be described using
the Whisper model. Based on the transcript, an LLM can generate questions (and answers).
Those can assist students in their learning. The LLM can also detect mentions of chemicals
and link to further information about them (e.g., on PubChem [100-102]).

novel educational opportunities [99], for example, by personalizing content or providing
almost limitless varied examples.

The I-Digest (Information-Digestor) hackathon team (Beatriz Mourifo, Elias
Moubarak, Joren Van Herck, Sauradeep Majumdar, Xiaoqi Zhang) created a path toward
such a new educational opportunity by providing students with a digital tutor based on
course material such as lecture recordings. Using the Whisper model [71], videos of lec-
ture recordings can be transcribed to text transcripts. The transcripts can then be fed
into an LLM with the prompt to come up with questions about the content presented in
the video (Figure 10). In the future, these questions might be shown to students before
a video starts, allowing them to skip parts they already know or after the video, guiding
students to the relevant timestamps or additional material in case of an incorrect answer.

Importantly, and in contrast to conventional educational materials, this approach can
generate a practically infinite number of questions and could, in the future, be contin-
uously be improved by student feedback. In addition, it is easy to envision extending
this approach to consider lecture notes or books to guide the students further or even

recommend specific exercises.
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II. CONCLUSION

The fact that the groups were able to present prototypes that could do quite complex
tasks in such a short time illustrates the power of LLMs. Some of these prototypes would
have taken many months of programming just a few months ago, but the fact that LLMs
could reduce this time to a few hours is one of the primary reasons for the success of our
hackathon. Combined with the time-constrained environment in teams (with practically
zero cost of “failure”), we found more energy and motivation. The teams delivered more
results than in most other hackathons we participated in.

Through the LIFT framework, one can use LLMs to address problems that could al-
ready be addressed with conventional approaches—but in a much more accessible way
(using the same approach for different problems), while also reusing established concepts
such as A-ML. At the same time, however, we can use LLMs to model chemistry and
materials science in novel ways; for example, by incorporating context information such
as “fuzzy” design rules or directly operating on unstructured data. Overall, a common
use case has been to use LLMs to deal with “fuzziness” in programming and tool de-
velopment. We can already see tools like Copilot and ChatGPT being used to convert
“fuzzy abstractions” or hard-to-define tasks into code. These advancements may soon
allow everyone to write small apps or customize them to their needs (end-user program-
ming). Additionally, we can observe an interesting trend in tool development: most of
the logic in the showcased tools is written in English, not in Python or another pro-
gramming language. The resulting code is shorter, easier to understand, and has fewer
dependencies because LLMs are adept at handling fuzziness that is difficult to address
with conventional code. This suggests that we may not need more formats or standards
for interoperability; instead, we can simply describe existing solutions in natural lan-
guage to make them interoperable. Exploring this avenue further is exciting, but it is
equally important to recognize the limitations of LLMs, as they currently have limited
interpretability and lack robustness.

It is interesting to note that none of the projects relied on the knowledge or under-
standing of chemistry by LLMs. Instead, they relied on general reasoning abilities and
provided chemistry information through the context or fine-tuning. However, this also
brings new and unique challenges. All projects used the models provided by OpenAl’s
API. While these models are powerful, we cannot examine how they were built or have

any guarantee of continued reliable access to them.
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Although there are open-source language models and techniques available, they are
generally more difficult to use compared to simply using OpenAl’s API. Furthermore, the
performance of language models can be fragile, especially for zero- or few-shot applica-
tions. To further investigate this, new benchmarks are needed that go beyond the tabular
datasets we have been using for ML for molecular and materials science—we simply have
no frameworks to compare and evaluate predictive models that use context, unstructured
data, or tools. Without automated tests, however, it is difficult to improve these systems
systematically. On top of that, consistent benchmarking is hard because de-duplication
is ill-defined even if the training data are known. To enable a scientific approach to the
development and analysis of these systems, we will also need to revisit versioning frame-
works to ensure reproducibility as systems that use external tools depend on the exact
versions of training data, LLM, as well as of the external tools and prompting setup.

The diversity of the prototypes presented in this work shows that the potential appli-
cations are almost unlimited, and we can probably only see the tip of the iceberg—for
instance, we didn’t even touch modalities other than text thus far.

Given these new ways of working and thinking, combined with the rapid pace of
developments in the field, we believe that we urgently need to rethink how we work and
teach. We must discuss how we ensure safe use [103], standards for evaluating and sharing
those models, and robust and reliable deployments. But we also need to discuss how we
ensure that the next generation of chemists and materials scientists are proficient and
critical users of these tools—that can use them to work more efficiently while critically
reflecting on the outputs of the systems. We believe that to truly leverage the power of
LLMs in the molecular and material sciences, we need a community effort—including not
only chemists and computer scientists but also lawyers, philosophers, and ethicists: the

possibilities and challenges are too broad and profound to tackle alone.
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I. Predictive Modeling

A. Leveraging LLMs for Accurate Molecular Energy Predictions

Table I. LIF'T for molecular atomization energies on the QM9-G4MP2 dataset. Metrics for models tuned on 90%
of the QM9-G4MP2 dataset (117,232 molecules), using 10% (13,026 molecules) as a holdout test set. Note that the
metric used for the baseline results [1] is MAE, whereas this work used the MAD. The results indicate that the LIFT
framework can also be used to build predictive models for atomization energies, that can reach chemical accuracy
using a A-ML scheme.

mol. repr. & framework G4(MP2) Atomization Energy (G4(MP2)-B3LYP) Atomization Energy
R? MAD / eV R? MAD / eV

SMILES: GPTChem 0.984 0.99 0.976 0.03

SELFIES: GPTChem 0.961 1.18 0.973 0.03

SMILES: GPT2-LoRA 0.931 2.03 0.910 0.06

SELFIES: GPT2-LoRA 0.959 1.93 0.915 0.06

SchNet baseline - - - 0.0045

FCHL baseline - 0.0223 - 0.0052

Accurate prediction of chemical properties has long been the ultimate objective in computational chemistry
and materials science. However, the significant computational demands of precise methods often hinder their
routine application in modeling chemical processes. The recent surge in machine learning development, along
with the subsequent popularity of large language models (LLMs), offers innovative and effective approaches
to overcome these computational limitations. Our project takes steps toward establishing a comprehensive,
open-source framework that harnesses the full potential of LLMs to accurately model chemical problems and
uncover novel solutions to chemical challenges. In this study, we assessed the capability of LLMs to predict the
atomization energies of molecules at the G4(MP2) [2] level of theory from the QM9-G4MP2 dataset [3, 4]
using solely string representations for molecules, specifically, SMILES [5] and SELFIES [6, 7]. G4(MP2)
is a highly accurate composite quantum chemistry method, known for its accuracy within 1.0kcal/mol for
molecular energies compared to experimental values, making atomization energy an ideal property to predict
to demonstrate the usefulness and impact of LLMs on the field of computational chemistry.

Jablonka et al. [8] recently demonstrated the potential of fine-tuning pre-trained LLMs on chemistry
datasets for a broad array of predictive chemistry tasks. As an initial validation for our project, we fine-
tuned generative pretrained transformer (GPT)-3 [9] to learn how to reproduce a molecule’s atomization
energy at the G4(MP2) level of theory, using its SMILES or SELFIES string through the prompt, “What is
the G4MP2 atomization energy in kcal/mol of 'SMILES/SELFIES string of a molecule’?” Additionally, we
fine-tuned LLMs to predict the atomization energy difference between B3LYP/6-31G(2df,p) and G4(MP2)
levels of theory with the prompt, “What is the G4AMP2 and B3LYP atomization energy difference in kcal/mol
of 'SMILES/SELFIES string of a molecule’?”, which mirrors the A-machine learning (A-ML) schemes [10]
found in the existing literature.
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Figure 1. Illustration of the molecular property prediction workflow, from molecule representation to model fine-tuning
and performance evaluation.



We fine-tuned the GPT-3 (Ada) model using 90% of the QM9-G4MP2 dataset (117,232 molecules) for
eight epochs with the GPTChem [8] framework’s default settings. The remaining 10 % (13,026 molecules)
was kept as the hold-out set, following the same data split as Ward et al. [1], to evaluate the model’s
performance. Table I summarizes the regression metrics for the hold-out set. The strong correlation between
the predicted and ground truth values suggests that the model effectively learned the structural information
from the molecular string representation. Although the MAD remains relatively high compared to state-of-
the-art models in the literature [1, 11] that utilize a molecule’s full 3D structural information for descriptor
construction, we achieved chemical accuracy (< 1.0kcal/mol ~ 0.04eV) for the A-ML task. Consequently,
this approach can predict G4(MP2) energies with high accuracy when B3LYP energies are available. We
also compared the model’s performance using SMILES and SELFIES molecular representations, with the
former proving marginally superior for predicting atomization energies, possibly due to its more compact
representation for molecules. We additionally calculated regression metrics for the G4AMP2-Heavy dataset [1],
the results of which are provided in Table II.

Table II. Regression metrics, (Coefficient of Determination), and MAD (Mean Absolute Deviation) for predicting
G4(MP2) and (G4(MP2)B3LYP) atomization energies for the G4MP2-Heavy dataset using a fine-tuned GPT-3
model with GPTChem

mol. repr. & framework G4(MP2) Atomization Energy (G4(MP2)-B3LYP) Atomization Energy
R? MAD / eV R? MAD / eV

SMILES: GPTChem 0.583 6.02 0.856 0.13

SELFIES: GPTChem 0.146 9.44 0.659 0.15

While GPT-3 fine-tuning models are accessible through the OpenAl application programming interface
(API), their usage costs can become prohibitive for larger datasets, rendering hyperparameter searches and
other exploratory research economically unfeasible. Consequently, we aim to develop a free and open-source
framework for fine-tuning LLMs to perform a wide range of predictive modeling tasks, encompassing chemical
property prediction and inverse design.

To fine-tune a pre-trained LLM locally on a GPU instead of querying OpenAI’s API, we employed the
Hugging Face parameter efficient fine-tuning (PEFT) library [12] to implement the low-rank adaptors (LoRA)
tuning paradigm [13]. Conventional fine-tuning updates all model parameters, utilizing pretrained weights
from a large training dataset as a starting point for gradient descent. However, fine-tuning memory-intensive
LLMs on consumer hardware is often impractical. The LoRA approach addresses this by freezing the model’s
weights and tuning a low-rank adapter layer rather than the entire model, parameterizing changes concerning
the initial weights rather than the updated weights.

Using this approach, we fine-tuned the smallest version of GPT-2 [14] (124 million parameters) for 20
epochs on the same 90 % training set as used in GPTChem, allocating 10 % of that training set for validation,
and computed metrics on the same 10 % hold-out set as in the GPTChem run, employing the same prompt
structure. Although the model performs well, it demonstrates slightly inferior performance to GPT-3 on
the GAMP2 task and moderately worse on the (G4(MP2)-B3LYP) task. This is not unexpected, given that
GPT-3 is a more recent model with substantially more parameters than GPT-2 (175 billion vs. 124 million)
and has exhibited superior few-shot performance on various tasks [15].

Moving forward, we plan to employ the LoRA tuning framework to fine-tune other models, such as
LLaMA [16] and GPT-J, to investigate the impact of LLM selection on performance in chemistry-related
tasks. Moreover, we intend to experiment with molecular-input representations beyond string formats to
more accurately represent a molecule’s 3D environment [17].

One sentence summaries

a. Problem/Task Predicting the atomization energies of molecules using large language models.

b. Approach Fine-tuning of GPT-3 ada model as well as PEFT of a small open-source model (GPT-2)
on SMILES to either directly predict the atomization energies or the difference between a lower and a higher
level of theory.



c.  Results and Impact Even though simpler, direct fine-tuning for a complicated property on SMILES
leads to errors one order of magnitude higher than baselines, and the error can only be brought close to the
baselines with an A — M L approach—first demonstration of A-ML in the LIFT framework for chemistry.

d. Challenges and Future Work Since the predictions without 3D coordinates is not satisfactory, a
question for future work is how the approach would perform when provided with 3D coordinates.



B. From Text to Cement: Developing Sustainable Concretes Using In-Context Learning

The inherently intricate chemistry and variability of feedstocks in the construction industry have limited
the development of novel sustainable concretes to labor-intensive laboratory testing. This major bottleneck
in material innovation has significant consequences due to the substantial contribution of CO5 emissions of
materials in use today. The production of Portland cement alone amounts to approximately 8 % of anthro-
pogenic COy emissions [18]. The increasing complexity of alternative raw materials and the uncertain future
availability of established substitutes like fly ash and granulated blast furnace slag make the experimental
development of more sustainable formulations time-consuming and challenging. Traditional trial-and-error
approaches are ill-suited to efficiently explore the vast design space of potential formulations.

In previous studies, inverse design (ID) has been shown to accelerate the discovery of novel, sustainable, and
high-performance materials by reducing labor-intensive laboratory testing [19-21]. Despite their potential,
the adoption of these techniques has been impeded by several difficulties that are connected to the predictive
model at the core of ID: Incorporating domain knowledge typically requires extensive data collection to
accurately capture underlying relationships, which makes representing complex tasks in practice challenging
due to the high costs of data acquisition. Furthermore, ID necessitates formulating research problems
as search space vectors. This process can be unintuitive and challenging for lab personnel, limiting the
comprehension and adoption of these techniques. Lastly, sparse training samples in high dimensions can
lead to co-linearities and overfitting, negatively impacting prediction performance. With in-context learning

Training a Prediction Model In-Context Learning
between vectorized Concrete
Formulations (X) and Labels (Y) User

context " high water-cement ratio (F1) reduces strength /
heat curing (F3) increases FA-based binders (F2) strength / ...

X Y examples
1| [ "F1=0.5 / F2=1 / F3=60" "T1=22 MPa"
Vo | "F1=0.3 / F2=0 / F3=65" "T1=50 MPa"
o8 KO 160 |22 | "F1=0.4 / F2=1/ F3=40" "T1=36 MPa"
03 |0 65 m prompt "What is the output for F1=0.3 / F2=1 / F3=30?"
04 |1 |40 [ 36 | GPT

"response" "T1=45 MPa"

Figure 2. Using LLMs to predict the compressive strength of concretes. The left part illustrates the conventional
approach for solving this task, i.e., training classical prediction models using tabular data. Using the LIFT framework
LLM can also use tabular data but also leverage context information provided in natural language. Augmented with
this context, in-context-learning with LLM leads to a performance that outperforms baselines such as RFs or GPRs.

(ICL), Jablonka et al. [8] and Ramos et al. [22] demonstrated that LLMs offer a solution by incorporating
context and general knowledge, providing flexibility in handling non-numeric inputs and overcoming the
limitations of traditional vector space formulations (Figure 2).

In this study, we have adopted an ICL approach based on a dataset from a study by Rao and Rao [23].
The dataset comprises 240 alternative and more sustainable concrete formulations based on fly ash and
ground granulated slag binders, along with their respective compressive strengths. The goal is to compare
the prediction performance of the compressive strength with ICL using the text-davinci-003 model [24]
against established methods, RF [25].

Randomly sampled training subsets containing ten formulations are drawn. The prediction performance
is assessed on a separate, randomly sampled test set of 25 samples and evaluated using the coefficient of
determination (R-squared) [26]. This process is repeated ten times to ensure more reliable results.

The experimental results reveal that ICL attains comparable performance to GPR but underperforms
RF when provided with small training data sets (R-squared of 0.5, 0.54, and 0.67, respectively). However,
when using general, qualitative concrete design knowledge, such as the influence of the water-to-cement ratio
on strength, the models significantly reduce prediction outliers and ultimately surpass RF (R-squared =
0.71). When we incorrectly changed the context of the ratio of fly ash to GGBFS, it negatively affected the
R-squared value for ICL, causing it to drop to 0.6. This misrepresentation of the rule led to a decrease in
the model’s predictive accuracy, demonstrating that the quality of the information included in the “fuzzy”
context is critical to the overall performance of LLMs. It should be noted, however, that the impact on the
R-squared value may vary depending on the importance of the rule in the overall context. That is, not all



changes in context have a similar impact, and the drop to 0.6 might occur only in the case of the ratio of fly
ash to GGBFS. Other studies, such as those conducted in the LIFT work, [27] have shown LLM performance
for minor changes in wording or the presence of noise in the features. In these experiments, the robustness
of LIFT-based predictions was comparable to classical ML algorithms, making it a promising alternative for
using fuzzy domain knowledge in predictive modeling.

LLMs have been shown to provide significant advantages in sustainable concrete development, including
context incorporation, adaptable handling of non-numeric inputs, and efficient domain knowledge integration,
surpassing traditional methods’ limitations. ICLs simplifies formulating data-driven research questions,
increasing accessibility and democratizing a data-driven approach within the building materials sector. This
highlights LLMs potential to contribute to the construction industry’s sustainability objectives and foster
efficient solutions.

One sentence summaries

a. Problem/Task Predicting the compressive strength of concrete formulations.

b.  Approach ICL on language-interfaced tabular data, with and without “fuzzy” domain expertise (such
as relationship between columns) provided in natural language.

c. Results and Impact Predictive models can be built without any training; if provided with domain
expertise, those models outperform the baselines—first demonstration in chemistry of such fuzzy knowledge
can be incorporated into models.

d. Challenges and Future Work ICL can be very sensitive to the prompt, hence future work should
investigate the robustness of this approach.



C. DMolecule Discovery by Context

The escalating climate crisis necessitates the deployment of clean, sustainable fuels to reduce carbon
emissions. Hydrogen, with its potential to prevent approximately 60 gigatons of COs emissions by 2050,
according to the World Economic Forum, stands as a promising solution [28]. However, its storage and
shipping remain formidable challenges due to the necessity for high-pressure tanks. To address this, we
sought new molecules to which hydrogen could be conveniently added for storage. Traditional screening
methods, like brainstorming, are insufficient due to their limited throughput. This research proposes a novel
method of leveraging ScholarBERT, [29] a pre-trained science-focused LLM, to screen potential hydrogen
carrier molecules efficiently. This approach utilizes ScholarBERT’s ability to understand and relate the
context of scientific literature. The data used for this study consisted of three datasets. The “Known”
dataset comprised 78 known hydrogen carrier molecules. The “Relevant” dataset included 577 molecules,
all of which are structurally similar to the “Known” molecules. The “Random” dataset contained 111
randomly selected molecules from the PubChem database [30]. The first step involved searching for contexts
for molecules in the Public Resource Dataset (PRD), which includes 75M English language research articles.
These contexts (i.e. sentences that mentioned the molecule name) were then fed into ScholarBERT. For each
context, three calculations were made:

1. the average of the last four encoder layers in ScholarBERT

2. the average embedding of all tokens constituting the molecule name as one contextualized embedding
for this molecule, and

3. the average of all contextualized embeddings for a molecule as ScholarBERT’s representation of this
molecule.

Subsequently, we calculated the similarity between the known and candidate molecules. The definition of
“similarity” used in this study was the cosine similarity between the ScholarBERT representations of two
molecules. We then sorted the candidates based on the similarity score in descending order, with a higher
score indicating greater potential as a hydrogen carrier. Figure 3 and 4 show the candidate molecules with
the highest similarity to the known molecules. We can see that ScholarBERT does a passable job finding
similar molecules from the random set. We do see that it favors finding molecules with 5- and 6-member
rings, though with features we didn’t expect, like halogens. On the other hand, ScholarBERT does a much
better job when we reduce the search space to those with structural similarity. We see that molecules with
5-member rings, for instance, are found to be similar structurally and in how they are described in the
literature via ScholarBERT.
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Figure 3. Each column shows a Known molecule on the bottom and its top candidate molecule from the Random set
on the top

Based on our empirical data, computing the energy capacity (wt%Hs) and energy penalty (kJ/mol/Hs) of
adding and removing Hs to the molecule (which are the quantitative “success metrics” for this project) of a
candidate molecule using traditional quantum chemistry takes around 30 seconds per molecule on a 64-core
Intel Xeon Phi 7230 processor, whereas the proposed LLM approach can screen around 100 molecules per
second on a V100 GPU, achieving a 3000 times speedup.

One sentence summaries

a. Problem/Task Recommending hydrogen carrier molecules.
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Figure 4. Each column shows a Known molecule on the bottom and its top candidate molecule from the Relevant
set on the top

b. Approach Ranking of molecules based on similarity of embeddings created with a language model by
showing aggregating the embeddings of mentions of the molecules in scientific texts.

¢. Results and Impact Approach can recommend molecules with a success rate better than random.

d. Challenges and Future Work More benchmarks compared to conventional generative modeling are
needed.
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D. Text template paraphrasing with LLMs
1. Problem

Text data is much trickier to augment for machine learning applications due to the discrete nature of the
data modality. There are some traditional augmentation approaches for these tasks. However, they can
be inefficient or still need extensive manual checks to be sure they deliver the desired results, especially for
scientific or chemistry applications.

2. Solution

To automate high-quality text data augmentations, LLMs have been explored by Dai and his coworkers [31]
as a very recent and promising solution to this problem. We investigated such a setup in the scope of
the OpenBioML chemistry NLP project (https://github.com/OpenBioML/chemnlp) to paraphrase text
templates for the insertion of chemical raw data into natural language for LIFT. [27]

An example prompt is shown below. The outlined prompt setup has after “Question:” the desired task
with additional information and after “Sentence:” the starting text template for the paraphrasing. The
“Question:” and “Answer:” headers are not used if the LLM interface uses a chat interface, i.e., with
OpenAl GPT-4.

Example Prompt

Question: Please paraphrase the sentence below ten times without changing the original meaning
and the placeholder in the curly {} brackets. Please use all the placeholders in the curly {}
brackets for every rephrased sentence.

Sentence: The molecule with the {SMILES description} representation {SMILES_data} has a
{target name} of {target_value}{target_units}.

Answer:

Example Response by GPT-4

1. The {SMILES description} representation of the molecule is {SMILES data}, and its
{target_name} is {target_value}{target_units}.

2. With a {SMILES description} representation of {SMILES_data}, the molecule has a
{target_name} of {target_value}{target_units}.

3. The molecule, represented by {SMILES description} as {SMILES_data}, possesses a
{target name} of {target_value}{target_units}.

4. A molecule having a {SMILES_description} representation of {SMILES_data} also has a
{target name} equal to {target_value}{target_ units}.

5. The {SMILES description}-represented molecule with {SMILES data} exhibits a
{target_name} of {target_value}{target_units}.

6. For the molecule with a {SMILES description} representation of {SMILES data}, its
{target_name} measures {target_value}{target_units}.

7. The {target.name} of the molecule having a {SMILES_description} representation of
{SMILES_data} is {target_value}{target_units}.

8. Represented by {SMILES_description} as {SMILES_data}, the molecule’s {target_name} is
{target_value}{target_units}.




11

9. The molecule’s {target_name} is {target_value}{target_units} when its {SMILES_description}
representation is {SMILES data}.

10. A {target_name} of {target_value}{target_units} is associated with the molecule whose
{SMILES_description} representation is {SMILES_data}.

Example Response by Anthropic Claude v1
Here are 10 paraphrased sentences of the original sentence with the placeholders retained:

1. The molecule represented by the {SMILES description} code {SMILES data} has a
{target_name} of {target_value}{target_units}.

2. The {SMILES description} notation {SMILES data} denotes a molecule with a
{target_name} equal to {target_value}{target_units}.

3. A {targetname} of {target_value}{target_units} is possessed by the molecule depicted using
{SMILES _description} as {SMILES data}.

4. {SMILES_data} signifies the {SMILES_description} of the molecule which has a
{target name} of {target_value}{target_units}.

5. The {SMILES_description} {SMILES data} characterizes the molecule that exhibits a
{target_name} of {target_value}{target_units}.

6. A {target_name} equal to {target_value}{target_units} belongs to the molecule expressed with
{SMILES_description} code {SMILES_data}.

7. {SMILES_data} denotes the {SMILES_description} for the molecule possessing a
{target name} of {target_value}{target_units}.

8. The molecule defined by {SMILES_description} {SMILES_data} presents a {target_name} of
{target_value}{target_units}.

9. {SMILES _description} {SMILES_data} specifies the molecule which displays a {target_name}
of {target_value}{target_units}.

10. A {target name} amounting to {target_value}{target_units} is a property of the molecule
represented with {SMILES_description} {SMILES_data}.

Example Response by GPT-J

The molecule with the {SMILES description} representation {SMILES_A} has a {target name}
of {target_value}{target_units}. {SMILES_A} has a {target-name} of {target_units}. The
molecule with the {target_units} representation {target.name} has a TARGET_UNITS of
{target_value}{target_units}.  {target_name} of {target_units} have a TARGET_UNITS of
{target_value}{target_units}.

In the above answer, there is the {SMILES_description} representation of {SMILES_query}, but we don’t
use it in the sentence yet. And there is no curly brackets for the excepted answer.
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3. Impact

The outlined approach allows to automatically create new paraphrased high-quality prompts for LIFT
LLM training data very efficiently. With the additional paraphrased text templates, overfitting to special
text passages should be avoided. We explore this setup in follow-up work in more detail.

4. Lessons learned

The outlined paraphrasing setup works well for the latest state-of-the-art models, e.g., OpenAl’'s GPT-
4 and Anthropic’s Claude v1. Less capable open-source models seem to lack the understanding of this
paraphrasing task. Still, new and upcoming open-source LLM efforts could change that soon, enabling a
cost-effective and broader application of this setup.

One sentence summaries

a. Problem/Task Generation of many text-templates for language-interfaced fine-tuning of LLMs

b.  Approach Prompting of LLM to rephrase templates (with template syntax similar to Jinja).

c. Results and Impact Large models (GPT-4, Claude), in contrast to smaller ones, can successfully
rephrase templates, offering a potential avenue for data-augmentation.

d. Challenges and Future Work As next step, ablation studies need to carried out that test the effect
of data augmentation by template rephrasing on regression and classification case studies.



13

E. GA without genes

We investigate the ability for a LLM to work in parallel with genetic algorithms (GAs) for molecular
property optimization. By employing a LLM to guide genetic algorithm operations, it could be possible
to produce better results using fewer generations. We hypothesize that a GA can take advantage of the
“smart” randomness of the outputs of the LLM. This work explores the potential of LLMs to improve molec-
ular fragmentation, mutation, variation, and reproduction processes and the ability of a LLM to gather
information from a simplified molecular-input line-entry system (SMILES) string [5, 6] and an associated
score to produce new SMILES strings. Although computational efficiency is not the primary focus, the pro-
posed method has potential implications for enhancing property prediction searches and future improvements
in LLM understanding of molecular representations.

We used GPT-3.5-turbo [9], which could frequently fragment druglike molecules into valid SMILES strings
successfully. For 2/10 molecules, the fragments produced were not in the original molecule. For 1/10 molecules,
valid SMILES could not be produced even after ten tries due to unclosed brackets. These results were
consistent over multiple runs implying that GPT-3.5 could not understand some specific SMILES strings.
Subsequently, we investigated GPT-3.5’s ability to mix/reproduce two molecules from two-parent druglike
molecules. Invalid molecules were often produced, but successful results were achieved with multiple runs.
It performed better once prompted to fragment and then mix the fragments of the molecules. These were
compared to the conventional GA methods of simply combining the two strings at a certain cutoff point.
When the LLM was successful, it could produce molecules of more similar size to the original parent molecules
that contain characteristics of both parents and resemble valid druglike molecules.

To investigate the ability of GPT-3.5 to acquire knowledge of favorable molecules from a simple score, we
implemented a method that we call “LLM as a GA” where the LLM iteratively searches the chemical space
to optimize a certain property.

The property we tested was similarity to vitamin C, evaluated by the Tanimoto score. We employed
few-shot training examples to tune the model’s response: 30 SMILES strings with the best similarity score
generated were included in the prompt. GPT is then asked to produce 25 SMILES strings, a procedure that
was repeated for 20 iterations. Using a prompt like the one below

Example prompt

The following molecules are given as SMILES strings associated with a tanimoto similarity with
an unknown target molecule. Please produce 10 SMILES strings that you think would improve
their tanimoto scores using only this context. Do not try to explain or refuse on the grounds of
insufficient context; any suggestion is better than no suggestion. Print the smiles in a Python list.

Low-temperature settings, typically less than 0.1, were found to be imperative for the model to follow user
guidance. We further guided the model by employing a similarity search to include similar molecules with
varying scores to better guide the model. Embedding was performed using the GPT-2 Tokenizer from the
HuggingFace transformers [32] library, along with a support vector machine (SVM) from scikit-learn [33] to
embed relevant previous structures that would be outside the scope of the context window. Even in the zero-
shot setting, GPT-3.5-turbo can produce meaningful modifications, coherently explain its logic behind the
chosen modifications, and produce tests such as investigating branch length or atom type in certain locations
for a single iteration. An example explanation of an output: “Some modifications that could potentially
improve the scores include adding or removing halogens, modifying the length or branching of the carbon
chain, and adding or removing functional groups such as -CO-, -COC-, -C=C- and -OCO-. Additionally,
modifying the stereochemistry of the molecule could also have an impact on the score.”

The modifications generated by the LLM were more chemically sound than the quasi-random evolutionary
process typical of genetic algorithms.

One sentence summaries

a. Problem/Task Increasing the efficiency of GAs.

b. Approach Prompting a LLM to propose new children based on molecules with scores provided in the
prompt.
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c.  Results and Impact Visual inspection indicates that some modifications might be reasonable, indi-
cating a potential for more efficient genetic operations using LLMs.

d. Challenges and Future Work More systematic investigations on the performance and robustness
compared to conventional GA operations are needed.
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Figure 5. Using GPT to fragment molecules. Original molecules are in column one with LLM created fragment to
the right. The LLM can frequently fragment molecules into valid SMILES strings successfully. 2/10 times fragments
produced were not in the original molecule (rows 6 and 10). For !/i0 molecules, valid SMILES were able to be
produced even after ten attempts (row 8)
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Figure 6. Using GPT-3.5-turbo to reproduce/mix molecules. Two original parent molecules on 1st row, followed by
LLM created children, followed by conventional GA string splicing children for comparison
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Figure 7. Tanimoto similarity to vitamin C as a function of GA generations. Conventional GA run for 30 generations
and the best score (most similar to vitamin C) of each generation is given to the LLM as a LLM along with its
associated Tanimoto similarity score to Vitamin C. LLM was then asked to create new molecules and improve the
score for 12 generations. Multiple new best molecules were found using LLM as shown by the blue line.
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II. Automation and novel interfaces

A. Using chain-of-thought and chemical tools to answer materials questions

Researcher

% % Questions MAPI-LIM
Answers

Figure 8. Schematic overview of the MAPI-LLM workflow. It uses LLMs to process the user’s input and decide
which available tools (e.g., Materials Project API, and Google Search) to use following an iterative chain-of-thought
procedure. In this way, it can answer questions such as “Is the material AnByCz stable?”.

LLMs have demonstrated remarkable success in various tasks [34-36]. Recently, LLMs have gained atten-
tion in chemistry, demonstrating exceptional ability to model chemical systems [37] and predicting tabular
data [8, 22, 27]. Predicting the properties of materials is challenging since it requires computationally inten-
sive techniques, such as density functional theory (DFT) [38-40]. Data-driven models offer a viable option
to balance accuracy and computational time. Here we presented the MAPI-LLM, a multi-task package that
employs LangChain [41] agents with access to multiple tools to address users’ questions about materials.

It has been shown that providing chemistry-specific tools to an LLM allows the LLM to solve chemistry
problems with significantly higher accuracy [42]. In a similar manner, we developed tools to iteratively
query the Materials Project (MAPI) dataset [43] and utilize the reaction-network package [44], among oth-
ers. MAPI-LLM can process user prompts in natural language using LLMs and follow a chain of thought
(COT) [45] approach to determine the most suitable tools and inputs to answer the prompt. Due to MAPI-
LLM’s design, more tools can be added as needed, and tools can be combined (multiple tools can be used for
a given prompt), opening the door for a large variety of applications. Figure 8 illustrates MAPI-LLM’s capa-
bilities. The code for the app is available in https://github.com/maykcaldas/MAPI_LLM, and a graphical
user interface (GUI) is implemented in https://huggingface.co/spaces/maykcaldas/MAPI_LLM.

An important feature implemented into MAPI-LLM is a technique known as ICL [9], which allows the
model to learn from the context within the prompt. For example, users can use MAPI-LLM’s tool to query
the MAPI dataset, first triggering the dataset search in the COT. However, if the desired material is not
found in the dataset, MAPI-LLM still has access to other tools (such as ICL) to build context around the
user prompt and adjust the COT actions to make a prediction. Another interesting tool is the ability to
use the reaction-network package [44], which is a package for predicting inorganic reaction pathways. We
showed the promising capabilities of MAPI-LLM by simply asking for reactions that use a given material as
reactants or products. It can suggest such reactions for material synthesis or decomposition.

We built from the knowledge that LLMs are suitable for such tasks of interest in this application, for
instance, classification and regression tasks [8]. Nevertheless, this application still needs a systematic vali-
dation of its predictions, such as the reinforcement learning from human feedback (RLHF) implementation
in GPT-3.5 [46].

One sentence summaries

a. Problem/Task Answering complex materials science questions based on reliable data and tools.

b. Approach LLM-based agent in the ReAct framework that has access to tools such as the Materials
Project API and uses ICL to answer questions for materials that are not in the materials project.

c. Results and Impact Coupling of tools allows answering questions that none of the tools or LLMs
alone could solve by themselves, providing a very accessible interface to materials informatics tools.
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d. Challenges and Future Work 1If a description of tools is incorporated in the prompt, this limits the
number of tools that can be coupled. In addition, LLM agents still tend to not perform equally well on all
prompts, and systematic investigation to better understand this and to increase the robustness is needed.
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B. sMolTalk
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Figure 9. The sMolTalk interface. Based on few-shot prompting LLMs can create code for visualization tools such
as 3dmol. js.

Since the advent of 3D visualization methods, chemists have employed computers to display their molecules
of interest to better understand their underlying structure and properties. Nevertheless, a lot of chemists
are not equipped with the required coding skills to use and customize their visualizations. Depending on
the package, and its associated documentation, chemists might end up spending hours to days learning the
details of the specific visualization software.

We developed a natural language interface that generates code for 3dmol. js, an open-source visualization
JavaScript library [47], meaning the visualizations are run in a web browser (Figure 9). The user input is
fed into ChatGPT API, using the GPT-3.5-turbo model. We use in-context learning (few-shot prompting),
giving several examples of the user input with the expected JavaScript code that manipulates the 3dmol. js
viewer. Before the user submits further commands, we update the prompt with the current state of the
viewer.

The current implementation might lead to a one-stop solution for visualizing and retrieving properties for
molecules. This would accelerate chemists’ workflow for querying information about molecules. Furthermore,
if an LLM is able to control structural software, it might be possible to perform reasoning on the molecular
structure itself. For instance, in drug discovery, one may ask what functional group of the ligand needs to
be changed for binding affinity to the protein to increase. Another example might involve proteins, looking
at what amino acid residues could be mutated to cysteines in order to create new disulfide bonds between
chains. This would presumably require specific fine-tuning and equipping the LLM with more tools. The
approach of generating code and structural reasoning might be similar but is most likely going to require a
different set of tools that were specifically developed for protein structure manipulation (such as PyMoL [48],
or MolStar [49]). Then, another set of highly accurate tools for binding affinity predictions or protein folding
is also required. The major problem encountered is prompt leakage, where examples from in-context learning
would leak into the actual LLM output. For the best evaluation, it is best to have as few and as different
examples as possible. Moreover, although OpenAI’'s GPT models can sometimes correctly recall protein data
bank (PDB) IDs of proteins or Chemical Abstract Services (CAS) numbers of compounds, it’s not reliable,
making tooling the models with API calls to PubChem, or the PDB, much more robust. We are currently
developing an agent based on the ReAct approach [50] tooled with these APIs so that correct structures are
always retrieved (i.e., to avoid the LLM needs to remember internally all such IDs). This framework would
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then help us iteratively add tools to the agent, creating a chatbot one can query about any molecule of
interest, including the structural reasoning task mentioned above. Lastly, we hypothesize we could improve
the generation of 3dmol. js code by using self-instruct fine-tuning. Using an external LLM with access to
the documentation would create a dataset that could be used for fine-tuning. The same approach might be
utilized for generating code for any other type of software, not just visualization packages. Therefore, such
LLM could control molecular dynamics software, such as LAMMPS [51], or GROMACS [52].

One sentence summaries

a. Problem/Task Making bioinformatics tools, in particular the visualization software 3dmol. js acces-
sible to non-experts.

b. Approach Chat-interface by prompting a LLM to produce commands to 3dmol. js, which are then
passed to the software.

c. Results and Impact The LLM can, without consulting the documentation, generate code that often
successfully performs the requested actions, demonstrating that LLM might help make tools more accessible
by providing access to complex interfaces via natural language.

d. Challenges and Future Work The approach suffers from robustness issues, which might be overcome
with conditioning on a knowledge base, more advanced decoding strategies, or error handling (e.g., giving
the agent access to error messages and logs and prompting it to reflect).
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C. whinchat: A Conversational ELN Interface

Laboratory data management systems such as ELNs and laboratory information systems (LIMS) can
record rich data about experimental samples and the experiments that have been performed on them. Then,
the user interfaces for these systems typically allow researchers to explore their samples with various pre-
programmed visualizations. However, it is difficult for a traditional user interface to have enough flexibility to
capture the richness and diversity of real, interconnected, experimental data. Here, our aim was to investigate
whether an LLM could process digital laboratory data and serve as a flexible, conversational interface to
a data management system. As a proof-of-concept for this approach, we introduced an automated data
management assistant into the open-sourced “Datalab” software, which we have been developing to address
needs in experimental materials chemistry (https://github.com/the-grey-group/datalab). Datalab can
be used to capture data and metadata about materials chemistry samples, their synthesis constituents, and
resulting devices. The system tracks each sample’s provenance through the research lifecycle and makes this
data available via a JavaScript object notation (JSON) API that can be explored programmatically or with
a Vue.js-based web user interface (UI). During the hackathon, we embedded a prompted LLM into the Ul
and gave it access to raw responses from datalab’s JSON API. We used the most recent publicly available
models from OpenAl (gpt-3.5-turbo) via their Python API. We found that the LLM does a very good job
at interpreting JSON and inferring the meaning of fields (including linked data) and can:

1. Contextualize existing data: Explain a set of related experiments from linked JSON responses, resolve
acronyms,/ short-hand used by experimentalists or create simple text summaries.

Contextualizing existing data

Assistant Hello! I am your virtual assistant and I am here to help you manage your experimental
data. How can I assist you today?

User Can you provide a brief summary of this experiment?

Assistant Based on the provided JSON data, this experiment involves the synthesis and charac-
terization of NaCoQOs as a battery cathode material. The synthesis method used was solid-state
reaction, and the starting materials used were sodium carbonate and cobalt (ILIII) oxide. The
synthesized NaCoO; was then used to make an electrode, which was characterized using X-ray
diffraction. The electrode was then incorporated into a coin cell battery, which was cycled electro-
chemically and characterized using various techniques.

2. Generate text and graphical representations of the data: Aggregate data from different fields in the
JSON response and convert to formats such as tables (potentially formatted for a particular journal),
CSV, and even mermaid.js graph visualizations.

3. Suggest future experiments: The assistant readily identifies related materials to study, additives to try,
additional characterization techniques, and synthesis protocols.

Suggest experiments
User: What NMR nuclei could I probe in this sample?

Assistant: Based on the information provided in the JSON file, the sample is NaCoOg, which
contains sodium, cobalt, and oxygen. Therefore, the NMR nuclei that could be probed in this
sample are:

(a) Sodium-23 (23Na) NMR: This can provide information about the local environment and
coordination of sodium ions in the NaCoQO5 lattice.

(b) Cobalt-59 (59Co0) NMR: This can provide information about the local environment and co-
ordination of cobalt ions in the NaCoQ; lattice.

(c) Oxygen-17 (170) NMR: This can provide information about the local environment and coor-
dination of oxygen ions in the NaCoOs lattice.
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v LLM Chat Block with contextual data (powered by GPT-35-turbo) & M X

Hello! | am your virtual assistant and | am here to help you manage your
expenmental data, What can | help you with today?

Please make me a marmaid flowchat showing how this cell was made from
other items in the database

Certainly! Here is a Mermaid flowchart that shows how the cell with item_id
jdb1-1_e1_c1 was made from other items in the database:

In this flowchart, each rectangular box represents an item in the database,
and the arrows between the boxes represent the relationships between the
items. For example, SM1 and SM2 were used to create sample JDB1-1, which
was then used to create sample E1, which was finally used to creata the cell
c1.

Figure 10. The chatbot can generate mermaid.js markdown code, which our interface automatically recognizes and
translates into the visualization.

It is worth noting that NMR spectroscopy is a powerful technique for probing the local environment
of atoms in a material, but it requires a relatively large amount of sample and may not be sensitive
to all types of nuclei. Therefore, it may be necessary to use other techniques in conjunction with
NMR to fully characterize the sample.

User: What techniques (that I haven’t already used) should I use in conjunction with the NMR?

Assistant: In addition to the techniques I mentioned earlier, you could use the following techniques
in conjunction with NMR to fully characterize the NaCoQOy sample:

(a) X-ray photoelectron spectroscopy (XPS): This can provide information about the chemical
composition and oxidation state of the NaCoOs sample, which can help to interpret the NMR
spectra.

(b) Transmission electron microscopy (TEM): This can provide information about the crystal
structure, morphology, and defects of the NaCoO- sample, which can help to interpret the
NMR spectra.

(¢) Electrochemical impedance spectroscopy (EIS): This can provide information about the elec-
trical properties and performance of the NaCoOs sample as an electrode material, which can
help to interpret the NMR, spectra.

(d) Thermogravimetric analysis (TGA): This can provide information about the thermal stability
and decomposition behavior of the NaCoOs sample, which can help to interpret the NMR
spectra.

By using a combination of these techniques, you can gain a more complete understanding of the
NaCoO, sample

The assistant performs quite well at certain tasks out-of-the-box, but we believe it should also be possible
to further increase its general utility by fine-tuning the model on the domain knowledge present in a research
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group’s Wiki and papers. Furthermore, while we have only given the model data from a single project so
far (up to 8 samples/starting materials, 1700 tokens of JSON), it would be of great interest to provide the
model with a larger context across multiple projects to attempt to facilitate cross-fertilization of ideas. One
notable challenge in this area is the limited context size of currently available LLM models (e.g., 4097 tokens
for GPT-3.5-turbo). Therefore, future work will investigate larger models (e.g., GPT-4 with 30K token
context), as well as approaches to give existing LLMs access to larger context (e.g., an embedding-based
approach or allowing an LLM agent to query the OpenAPI directly as needed). At present, we note that the
scientific usefulness of this assistant is highly task- and model-dependent; however, any additional interface
that can lower the barrier to improving data capture and dissemination in the field should be investigated
further and will be a future development target for Datalab.

One sentence summaries

a. Problem/Task Providing very flexible access to data in ELNs/LIMS.

b. Approach Prompting of a large language model with questions provided in a chat interface and
context coming from the response of the API of an LLM.

¢.  Results and Impact The system can successfully provide a novel interface to the data and let user
interact with it in a very flexible and personalized way, e.g, creating custom summaries or visuals for which
the developers did not implement specific tools.

d. Challenges and Future Work Since the current approach relies on incorporating the response of the
ELN/LIMS into the prompt, this limits how much context (i.e., how many experiments/samples) the system
can be aware of. One potential remedy is to use retrieval-augmented generation, where the entries are
embedded in a vector store and the agent will be able to query this database on put (parts of) the most
relevant entries into the prompt.
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D. BOLLaMa

The field of chemistry is continuously evolving towards sustainability, with the optimization of chemical
reactions being a key component [53]. The selection of optimal conditions, such as temperature, reagents,
catalysts, and other additives, is challenging and time-consuming due to the vast search space and high cost
of experiments [54]. Expert chemists typically rely on previous knowledge and intuition, leading to weeks or
even months of experimentation [55].

Bayesian optimization (BO) has recently been applied to chemistry optimization tasks, outperforming
humans in optimization speed and quality of solutions [55]. However, mainstream access to these tools
remains limited due to requirements for programming knowledge and the numerous parameters these tools
offer. To address this issue, we developed BOLLaMa. This artificial intelligence (AI)-powered chatbot
simplifies BO for chemical reactions with an easy-to-use natural language interface, which facilitates access
to a broader audience.

[ LLM+BO Backend ] [ Chat Interface ] [ User side ]

Hi and welcome to BOLLaMa,
the coolest llama for
optimization in chemistry!
How can | assist you today?

Hi BOLLaMa! | want to
optimize the additives to
increase the yield of a
decarboxylative amination
reaction. Let's start with 4
experiments.

———

Welcome to BOLLaMa.

BO Initialization
n=4
Sure! You can start with

bo_init(n) | | these 4 additives: -—1 >
* <SMILES>

Thanks, here are my
R results: 4%, 12%,.. | €]

Perfect! Based on your

results, | suggest you try
this additive next: |

<SMILES>
Awesome! 30% this
“
I'm glad you got better
[ | results! Try this next:
<SMILES> D

Figure 11. Schematic overview of BOLLaMa. A LLM can act as an interface to a BO algorithm. An experimental
chemist can bootstrap an optimization and then, via a chat interface, update the state of the simulation to which
the bot responds with the recommended next steps.

B0 Step
data=(

SMILES_1: 4,

SMILES 2: 12,

bo_step(data)

bo_step(data)

BOLLaMa combines LLMs with BO algorithms to assist chemical reaction optimization. The user-friendly
interface allows even those with limited technical knowledge to engage with the tool. BOLLaMa’s current
implementation provides two main tools: the initialization function and the optimization step function [56],
that are retrieved on LLM-demand as shown in Figure 11.

The primary contribution of this project is democratizing access to advanced BO techniques in chemistry,
promoting widespread adoption of sustainable optimization tools, and impacting sustainability efforts within
the community. This approach can be further enhanced to provide a more comprehensive assistant experi-
ence, such as with additional recommendations or safety warnings, and improve the explainability of the BO
process to foster user trust and informed decision-making.

Key insights gained from this project include the critical role of accessibility in developing expert tools
and the potential of LLMs in chemistry through various agent architectures [50]. In addition, the initial BO
tool adapted for BOLLaMa was designed for closed-loop automated laboratories, emphasizing the need for
accessible tools catering to diverse user backgrounds.

One sentence summaries

a. Problem/Task Giving scientists without coding and machine learning expertise access to Bayesian
optimization.
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b. Approach LLM as a chat-interface for a Python package for Bayesian optimization by using ReAct-
like approach in which the LLM has access to text-description of relevant functions (such as initialization
and stepping of the BO run).

c.  Results and Impact The chat interface can successfully initialize a BO run and then convert obser-
vations reported in natural language into calls to the stepping function of the BO tool.

d. Challenges and Future Work As most LLM agents, the tools suffers from robustness issues and the
correct functioning cannot be guaranteed for all possible prompts.
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III. Knowledge Extraction

A. InsightGraph

Json file:
Abstract: 15 nm diameter 5102 {"nodes": [
with a grafted {"id" 1, e
consisting of a 5 nm rubbery "name": "Si02 nanoparticles", @ @ @ —~
inner "label": " " i
block and a 30 nm outer block of matrix “attributes": { LY N\ p
compatible "diameter": "15 nm", @ ’ @ i
were synthesized to toughen an - "copolymer": "grafted block copolymer" } - J O Q
epoxy. A systematic study of the effect of , o o,
block copolymer graft density (from 0.07 {"edges": [ @ an! ., @ p
to 0.7 chains/nm2) and block molecular { i & §
weight (from 20 to 80 kg/mol) on the "source": 1, @
tensile behavior, fracture toughness, and “target": 6, Q s {1342 )— oo O
fatigue properties was conducted. ... ;WPE"I "properties"
I}

Figure 12. The Insight Graph interface. A suitably prompted LLM can create knowledge graph representations of
scientific text that can be visualized using tools such as neo4j’s visualization tools. [57]

The traditional method of performing a literature review involves months of reading relevant articles to
find crucial information on material properties, structure, reaction pathways, and applications. Knowledge
graphs are sources of structured information that enable data visualization, data discovery, insights, and
downstream machine-learning tasks. Knowledge graphs extracted from published scientific literature covering
broad materials science domains [58] as well as more-focused domains such as polymer nanocomposites [59]
empower material scientists to discover new concepts and accelerate research. Until recently, capturing
complex and hierarchical relationships for a knowledge graph within the materials science literature was a
time-consuming effort, often spanning multi-disciplinary collaborations and many Ph.D. years. By leveraging
zero to few-shot training and pre-trained LLMs, it is now possible to rapidly extract complex scientific entities
with minimal technical expertise [58, 60, 61]. We envision that knowledge graphs built by LLMs based on
scientific publications can offer a concise and visual means to launch a literature review.

To demonstrate a proof of concept of a zero-shot entity and relationship extraction, we identified 200
abstracts on polymer-nanocomposite materials for which detailed structured information was already avail-
able [62]. Each abstract was fed as a prompt to GPT-3.5-turbo, a language model powering the popular
ChatGPT web application by OpenAl. The instructions in our prompt consisted of an example JSON con-
taining high-level schema and information on possible entities and pairwise relationships. The nodes and
relationships in the output JSON response were then stored in a neo4j graph database using Cypher, a
graph query language (Figure 12). [57] The zero-shot capabilities of the model allowed the specification of
an arbitrary entity and relationship types depending upon the information contained in the text. Given
that this required a change in the neo4j pipeline every time the prompt changed, we found it necessary to
constrain the JSON schema to a standard format.

While large language models on their own are prone to hallucinations, leveraging them with guidance to
create structured databases empowers chemists/materials scientists with no expertise in natural language
processing to search and build on existing knowledge leading to new insights. The speed at which LLMs
can create structured graphs dramatically exceeds the years required for humans to manually curate data
into existing knowledge graphs. Access to structured databases will accelerate the pace of data-driven
material science research, synthesizing details embedded in dispersed scientific publications. Additionally,
other scientific fields could benefit from a similar use of LLMs to extract entities and relationships to build
knowledge graphs.

Owing to the non-deterministic nature of LLMs, we found that the output response would vary even when
the same prompt was provided. An instruction constraining the JSON schema minimized the variability. A
systematic study comparing different foundation models, prompt techniques (zero-shot, one-shot, few-shot),
prompt chaining, and the role of fine-tuning is needed to evaluate the precision and recall of extracted entities
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and relationships. Notably, pairwise links between the nodes are not often enough to model the complex
nature of materials requiring improvement in the input schema.

One sentence summaries

a. Problem/Task FExtraction of entities and their relationships from text.

b. Approach Prompting of GPT-3.5-turbo prompted with abstract and example JSON and the task to
extract entities and their relationships in a structure as provided in the example.

c. Results and Impact The approach can successfully create meaningful JSON data structures with
extracted entities and their relationships for hundreds of abstracts.

d. Challenges and Future Work The non-deterministic behavior of LLMs can lead to variability and
fragile behavior. To better understand this as well as the performance of this approach, more systematic
benchmarking is needed.
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B. Extracting Structured Data from Free-form Organic Synthesis Text

A suspension of compound 63 (0.22 g, 0.93 mmol) and 64 (0.33 g, 0.92 mmol)
in THF/triethylamine (11 mL, 10/1) was stirred at room temperature for 48 h.
After this time, a clear solution was formed. The solvent was removed under
reduced pressure and the residue was purified by flash chromatography (silica
gel, 10:1:0.1 chloroform/methanol/concentrated ammonium hydroxide) to
provide the quanidine 65 (0.3 g, 60%) as a yellow solid. TH NMR (300 MHz,
DMSO-d6) & 1.42 (s, 9H), 1.55 (m, 4H), 2.19 (s, 6H), 2.58 (m, 4H), 3.99 (m, 2H),
6.83 (d, 2H), 7.12 (d, 2H), 7.40 (br s, 2H), 9.02 (m, 2H).

"identifiers": [{"type": "NAME", "va
{"value": 11,
"reactionRole": "SOLVENT"

Figure 13. The Organic Synthesis Parser interface. The top part shows text describing an organic reaction (https:
//open-reaction-database.org/client/id/ord-1£99b308e17340cb8e0e3080c270£d08), which the finetuned LLM
converts into structured JSON (bottom). A demo application can be found at https://qai222.github.io/LLM_
organic_synthesis/.

a. Problem As data-driven approaches and machine learning (ML) techniques gain traction in the field of
organic chemistry and its various subfields, it is becoming clear that, as most data in chemistry is represented
by unstructured text, the predictive power of these approaches is limited by the lack of structured, well-
curated data. Due to the large corpus of organic chemistry literature, manual conversion from unstructured
text to structured data is unrealistic, making software tools for this task necessary to improve or enable
downstream applications, such as reaction prediction and condition recommendation.

b. Solution In this project, we leverage the power of fine-tuned LLMs to extract reactant information
from organic synthesis text to structured data. 350 reaction entries were randomly selected from the Open
Reaction Database (ORD) [63]. The field of reaction.notes.procedure_details is used as the input
(prompt), and the field of reaction.inputs is used as the output (completion). 300 of these prompt-
completion pairs were used to fine-tune a GPT-3 (OpenAl Davinci) model using the OpenAl command
line interface (version 0.27.2), and the rest were used for evaluation. In addition to this, we also explored
fine-tuning the Alpaca-LoRA model [16, 64, 65] for this task. All data and scripts used in this project are
available in the GitHub repository.

c.  Results and Discussion Surprisingly, the pre-trained language model (OpenAl Davinci), fine-tuned
with only 300 prompt-completion pairs, is capable of generating valid JSON complying with the ORD data
model. For the 50 prompt-completion pairs in evaluation, 93 % of the components in reaction inputs were
correctly extracted from the free text reaction description by the GPT-3 based model. The model also
associates existing properties, such as volume or mass used in the reaction, to these components. In addition
to recognizing in-text chemical entities (such as molecule names), as shown in Figure 13, tokens referencing
external chemical entities (compound numbers) can also be captured by the model. On the other hand,
while completing the prompts with extracted chemical information, the fine-tuned Alpaca-LoRA model was
unable to properly construct a valid JSON complying with the ORD data model.
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Despite these encouraging preliminary results, there are still challenges to a robust synthesis text parser.
One of them is the ambiguous and often artificial boundary between descriptions of reactions and workups,
which leads to misplaced chemical entities in the structured data, e.g., a solvent used in the extraction of
products is instead labeled as a reaction solvent. The aforementioned external reference problem, where a
compound number in the procedure is only explicitly identified in an earlier section of the manuscript, can
only be solved by prompting the LLM with multiple paragraphs or even the entire document, adding more
irrelevant tokens to the prompt. It is also important to prevent the LLM from “auto-completing” extracted
named entities with information outside the prompt, e.g., the chemical is extracted as “sodium chloride” in
the completion while it is only specified as “chloride” in the prompt.

One sentence summaries

d. Problem/Task Extraction of structured reaction condition and procedure data from text.

e. Approach Fine-tuning of LLMs on hundreds of prompt (unstructured text)- completion (extracted
structured data) pairs.

f- Results and Impact OpenAl’s davinci model can extract the relevant data with a success rate of 93 %.

g. Challenges and Future Work Parameter efficient fine-tuning could not match the performance of
OpenAl’s models. In addition, there are instances in which the LLM goes beyond the specified tasks (e.g.,
modifies/ “autocompletes”) extracted entries, which can lead to fragile systems.
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C. TableToJson: Extracting structured information from tables in scientific papers

Much of the scientific information published in research articles is presented in an unstructured format,
primarily as free text, making it a difficult input for computational processing. However, relevant infor-
mation in scientific literature is not only found in text form. Tables are commonly employed in scientific
articles, e.g., to collect precursors and raw materials’ characteristics, synthesis conditions, synthesized ma-
terials’ properties, or chemical process results. Converting this information into a structured data format
is usually a manual time-consuming and tedious task. Neural-network-based table extraction methods and
optical character recognition (OCR) [66], which can convert typed, handwritten, or printed documents into
machine-encoded text, can be used to extract information from tables in PDF files. However, it is often
not straightforward to extract the data in the desired structured format. Nonetheless, structured data is
essential for creating databases that aggregate research results, and enable data integration, comparison,
and analysis.

In this context, JSON is a widely adopted structured data format due to its simplicity, flexibility and com-
patibility with different programming languages and systems. However, obtaining structured data following a
specific JSON schema with models can be challenging. The generated JSON needs to be syntactically correct
and conform to a schema that defines the JSON’s structure. Models typically do not provide structured out-
put that perfectly matches the desired JSON schema. Some manual post-processing or data transformation
is often necessary to map the extracted information to the appropriate schema fields.

In this work, we have studied two approaches to generate structured JSON from data contained in tables
of scientific papers focused on different research topics within the field of chemistry [67-73]. The Python
json module was used to parse JSON data and validate the outputs.

As a first approach, the OpenAl text-davinci-003 model was used to generate structured JSON from
data in tables. The input to the LLM is the HyperText Markup Language (HTML) code of the table,
obtained directly from the digital object identifier (DOI) of the article using the Python selenium library,
while the output of the model is the data extracted in JSON form (Figure 14). The OpenAl text-curie-001
model, although not tested in this work, can also be utilized if the number of input tokens, considering both
the HTML text of the table and the schema, meets the requirements of this model (maximum 2049 input
tokens, compared to 4097 for text-davinci-003).

The use of the OpenAl model to generate structured JSON was compared with a second approach, i.e., the
use of jsonformer (https://github.com/1rgs/jsonformer), which implements a data processing pipeline
that combines the model generation with appropriate data transformation. This method introduces an
efficient way to generate structured JSON using LLMs by generating only the content tokens and filling in
the fixed tokens. This avoids generating a complete JSON string and parsing it. This approach ensures that
the produced JSON is always syntactically correct and aligns with the specified schema. [74]

~ <table class="table"> <thead><tr><th rowspan="3"><em>T</em> (°C)</th><th colspan="2">CH<sub>4</sub>
ggvé\hsﬁg\_ﬁg +H<sub>2</sub>0 = CO + 3H<sub>2</sub></tt
NJC - CO<sub>2</sub> + Hesub>2</sub></th><Ar><tl (. 4ooed sorc anodes: [
colspan="2">(WGS)</th></tr><tr><th>(a<em>H ( , K

mol<sup>-1</sup>)</th><th>(A<em>H</em>,
mol<sup>-1</sup>)</th></tr></thead><tbody><
249</td><td>-13.928</td></tr><tr><td>450</t
12.140</td></tr><tr><td>500</td><td>221.369
r><tr><td>550</td><td>222.284</td><td>20.02)
td><td>223.084</td><td>17.490</td><td>-36.
Dislocation  Lattice strain, Lattice </td><td>-35.636</td><td>-5.32

Ni-doped ~ Crystalline density, £=pl4tan0  constant] HTML p</td><td>-3.695</td></tr></tbo
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ftd></t
600</
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M) Ghock for updates Table 3 Structural properties of the synthesised composite anodes
through XRD*®

26</t

NDC1 33.03 9.161 x 107 3.
NDC2 31.29 1.021 x 1072
NDC3 1.025 x 10°°
NDC4 9.154 x 10"
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Figure 14. TableToJson. Extraction of structured information from scientific data in tables using LLMs. The input
to the LLM model is the HTML code of a table contained in a scientific paper. The output of the LLM model is data
structured in JSON form. Results can be visualized in this demo app: https://vgvinter-tabletojson-app-ktbaiv.
streamlit.app/.

In our first approach, we directly asked the OpenAl text-davinci-003 model to generate a JSON object
according to a desired JSON schema provided in the model prompt. The table content was also included in
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the prompt as HTML code. The accuracy in the prediction, calculated as the percentage of schema values
generated correctly, is shown in Figure 15. In all examples, the OpenAl model was queried with a simple
prompt, and it correctly extracted all the data in the table and inserted every value into the corresponding
position in the schema, with 100 % accuracy, providing as output a JSON object. This model also correctly
generated both string and number values according to the type assigned in the schema. However, in two
of the examples, the OpenAl model did not generate the JSON object name specified in the schema when
the corresponding name was not found in the table, generating only the list of components. This was solved
by modifying the object name in the schema to a term that more closely aligned with the content of the
table. It appears that when the model could not establish a clear relationship between the provided name
and the table content, it disregards that part of the schema during generation. These results indicate that
the OpenAl text-davinci-003 model is able to convert scientific data from tables of research papers to a
structured format following the approach used in this work, where the desired JSON schema was included
in the model prompt. Nevertheless, the model retains a certain degree of freedom to modify the requested
scheme if it considers that something may be wrong.

text-davinci-003 text-davinci-003
(schema in prompt) + jsonformer
prompt = "Generate a JSON object extracting the information from

this table in html code: "

+ HTML_table +

"Generate the JSON result with the following JSON schema and give
only the JSON as output: "

+ JSON_schema

JSON follows schema % values extracted ok JSON follows schema % values extracted ok

carbon materials for CO, adsorption v 100% v 100%
MOFs properties v 100% v 100%
supercapacitor performance v 100% v 100%
catalysts for CO, conversion Xm v a 100% v 94% b
biomass properties v 100% v 100%
anode materials for SOFCs Xmva 100% v 80%=100% c
perovskite cathodes for SOFCs v 100% d v 46%=»60%=»86-100% d
MOFs properties: providing v 100% v (values in table are inserted
a wrong schema to the model (new schema is created following the table) in the provided wrong schema)

a | the OpenAl model did not generate the JSON object name provided in the schema when this name was not included
in the table, generating only the list of components; this was solved by using an object name closer to the table contents

b | errors in the generation of compounds formulas due to the “-” character (e.g., “Fe\\u2013” and “MnFe\\u2013N2"
instead of “Fe-PYL” and “MnFe-N2")

c | errors in generating numbers with powers (e.g., 9.161 x 107%); this was solved with an explanation in the prompt:
“if you find numbers as 1.025 x 1@<sup>-3</sup>, this means 1.025e-3"

d | for this table (below) the OpenAl model generated all values correctly; jsonformer failed to generate molecule
names (e.g., “Pr1-xSrxCol-"), strings with the “-” character (e.g., “129\\u2013369d”) and numbers with powers (e.g.,
“5.93\\ueed710"); after solving the generation of wrong names the accuracy increased from 46% to 60%, after solving

the generation of numbers with powers it increased up to 86%, but the issues with the “-” character could not be solved
systematically and the resulting accuracy varied between 86% and 100% for several attempts of JSON generation.

Composition o, (Scm™) 6; (Sem™) CTE (1075K™) References
La14SrMnO3 130-300 5.93x 1077 11-13 [20]
La1xSr,Co03  1200-1600 0.22 19-20 [91,92]
Lay,SryFeO3 129-369  0.205-5.6x 1073 12.2-16.3 [[93], [94], [95]]
LaySrcCoFeO3 87-1050 0.058-8x 1073 14.8-21.4 [96,97]
Pr1.xSrxCo1.yFe,03 76-950 1.5x1073-4.4x 107 12.8-21.3 [95,98]

Figure 15. TableToJson. Results of the structured JSON generation of tables contained in scientific articles. Two
approaches are compared: (i) the use of an OpenAl model prompted with the desired JSON schema, and (ii) the use
of an OpenAl model together with jsonformer.

The second approach used to generate structured information was a version of the jsonformer approach
adapted for use with OpenAl LLMs (https://github.com/martinezpl/jsonformer/tree/add-openai),
with the implementation of the inclusion of the table text as an input parameter to the jsonformer function.
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Detection of strings indicating null values was also added when the schema type is number, as “nan”, “NaN”,
“NA”, and “NAN” entries are common in research data tables. The OpenAl text-davinci-003 model was
used. In this case, the model was prompted with the desired JSON schema and the HTML code of the
studied table. Jsonformer reads the keys from the JSON schema and only delegates the generation of the
value tokens to the language model, ensuring that a valid JSON is generated by the LLM model.

For this approach, the accuracy in the prediction is also shown in Figure 15. The use of the OpenAl
text-davinci-003 model together with jsonformer generated valid JSON objects with 100% accuracy for
most of the tables evaluated using a simple prompt. Figure 16 shows the results of one of the examples
studied, where using a simple descriptive prompt denoting the type of input text, this approach correctly
generated structured data JSON from a table with a complex header. However, it was detected that when
the values to be generated contain special characters or specific texts, a more detailed prompt with some
simple examples, but without finetuning, can be necessary to provide good results, as shown in Figure 17
for a special numeric notation that included power numbers.

Biomass type: [ t
e Sample: "CHET",
sample: "AS", Ultimate Analysis (wt%, db): {
Ultimate Analysis (wt%, db): { C: s1.3,
Ultimate analysis Proximate analysis HHV HIO He density C: 49.44, N: 0.4,
N: 0.31 : 5.4
sample (Wt%, db) - (Wt%) (wt%, db) - (MJIkg, db) ratio  (glem®)® Wi .85, <o
C N H S ©0 MC Ash VM FC® EmptyCell EmptyCell Empty Cell Zf 3503' 0: 42.59
: 42, }
AS 4944 031 585 005 4290 65 145 789 196 19.565 216 1252 [}, Proximate Analysis (wt%, db): {
Proximate Analysis (wt%, db): { MC (wt¥): 8.2 ’
CHE 5022 0.34 555 001 4341 84 047 812 183 19.109 203 1.268 MC (wt%): 6.5 P82,
(wt%): 6.5, Ash: 0.29,
CHET 51.30 040 540 0.02 4259 82 029 800 19.7 19.588 201 1.275 Ash: 1.45, wM: 80.0,
VM: 78.9, FC: 19.7
CS 4796 274 593 021 3526 67 790 704 21.7 19.067 267 1.156 FC: 19.6 3
b HAV (M3/kg, db): 19.588
GP 4550 1.82 505 017 3473 116 1273 67.6 197 18.682 231 1210 | Ly (mi/kg, db): 19.565, H/O:(Z.elg, ): 19.588,
0S 5121 029 601 003 4188 43 058 815 179 20511 2.28 1.241 H/0: 2.16, He dg,,sit; (g/cm3): 1.275
He density (g/cm3): 1.252 3
PCL 5289 044 606 003 3946 101 1.12 765 224 20976 244 1237 | 3, ¢
[ { sample: “CHE" Sample: "CS",
" s 3 N ’ i Ar i :
prompt="Generate an object with the Ultimate Analysis (wt%, db): { Ul?“‘:;‘z%"aly“s (wt%, db): {
following schema extracting the C: 50.22, N: 2.74,
information from the provided table : ‘:'i‘:' H: 5.93,
a P02, S: 0.21,
in html code: s: 0.01, 0: 35.26
0: 43.41 y
I
Proxinate Analysis (Wi, d0): { ' ye (ockyn ey (wt%, db): {
MC (wt%): 8.4, Ash: 7AQ' ’
Ash: 0.47, W: 70 a
M: 81.2, o
FC: 18.3 N FC: 217
b
HHV (M3/kg, db): 19.109, :% (”Z‘Jg';g' db): 19.067,
H/0: 2.03, 2257,
He density (g/cm3): 1.268 , He density (g/cm3): 1.156
b ’

Figure 16. TableToJson. Structured JSON generation of tables contained in scientific articles using a prompt with
a simple description of the type of input text. One example is shown for a table that contains data on properties of
biomass materials [71].

As shown in Figure 15, in one of these examples, an accuracy of 94 % was obtained from a table containing
a few catalyst names that included the “-” character, and those values were erroneously generated. In
another example, an accuracy of 80 % was initially obtained due to errors in the generation of numbers with
powers (e.g., 9.161 x 10%), which could be solved by adding an explanation in the prompt: "if you find
numbers as 1.025 x 10<sup>3</sup>, this means 1.025e-3", increasing the accuracy to 100 %.

Next, a table with more complex content (long molecule names, hyphens, power numbers, subscripts, and
superscripts. . . ) was selected (Figure 15), resulting in an accuracy of 46% in the JSON generation, meaning
that only 46% of the schema values were correctly generated. The erroneous generation of long formula or
molecule names with a mixture of letters and numbers as subscripts could be solved by increasing the value
of the max_string token length argument of the jsonformer function to get a longer response where the
end of the string can be detected more easily, which increased the accuracy to 60 %. Jsonformer also showed
some issues in this example in generating power numbers, which are represented as 10<sup>—n</sup> in
the input HTML text. As mentioned above, this was solved by adding a specific explanation in the prompt,
increasing the accuracy to 86%. A specific explanation was also included in the prompt to address the
issues related to the presence of hyphens in the text. Still, this problem could not be solved systematically,
and the resulting accuracy varied between 86 % and 100 % for several JSON generation attempts. In this
particular case, the generated value provided by the model included Unicode text instead of the “-” character
(and usually several “\” characters). An instruction to "decode Unicode characters in your response"
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was then included in the prompt. Although this solution sometimes yielded satisfactory results, it did not
systematically guarantee correct output. These results indicate that the OpenAl model combined with
jsonformer can provide wrong outputs when the values to be generated contain some special characters,

such as the “”

character in this example. This issue requires further investigation to be improved.

prompt="Generate an object with the
following schema extracting the
information from the provided table
in html code:"

Dislocation density, &
Ce-doped SOFC anodes: [

prompt="Generate an object with the
following schema extracting the
information from the provided table
in html code (if you find numbers as
1.025 x 10<sup>-3</sup>, this means
1.025e-3):"

Ce-doped SOFC anodes: [

Ni-doped ceria NP: "NDC1",

7 \ . - 2
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Figure 17. TableToJson. Structured JSON generation of a table contained in a scientific article using a standard
prompt and a prompt with a few simple examples of the special numeric notation found in some of the cells of the
input table [72].

Lastly, for one of the examples, a test was performed by providing a wrong schema to the model (Figure 15).
In this case, as expected, jsonformer inserted the values contained in the table into the given wrong schema
in a more or less ordered fashion, generating an invalid output. However, the OpenAl model created a new
schema according to the table structure and headers, providing a valid result, and confirming its freedom to
decide what may be wrong with the user’s query. An example of these results is shown in Figure 18.

The two approaches used in this work showed a good performance in the generation of JSON format when
the data contained in the table are regular strings or numbers, with an accuracy of 100 % in most of the
examples. The results of this work show that, although the OpenAl text-davinci-003 is able to easily
extract structured information from tables and give a valid JSON output, this approach cannot guarantee
that the outputs will always follow a specific schema. On the other hand, although jsonformer may present
problems when special characters need to be generated, some of these issues have been solved with careful
prompting, and others could probably be solved with further research. It can be concluded that jsonformer
can be a powerful tool for the generation of structured data from unstructured information in most tables,
ensuring the generation of valid JSON syntax as the output of LLMs that always complies with the provided
schema. The use of jsonformer could facilitate and promote the creation of databases and datasets for
numerous topics within the field of chemistry, especially in experimental domains, where the availability of
structured data is very scarce.

One sentence summaries

a. Problem/Task Extracting structured data in a JSON-schema-compliant form from HTML tables.
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table from the “MOFs properties” example

BET (m?/g) Vpore (cc/g)
MOFs N2 calcd N2 CHy caled p (glem®) metal (mmol/cc)
HKUST-1 1850 2064 0.78 0.78 0.78 0.883 438
Ni-MOF-74 1350 1240 0.51 0.52 0.49 1.206 774
L2 gty text-davinci-003
3 ” . . o
schema from the “catalysts CO,” example + jsonformer
json_schema_catalystco2 = { { {
"type": "object", Carbon-supported catalysts C02: [ MOFs: "HKUST-1",
"properties”: { N2: 1850,
“Carbon-supported catalysts 02": { Catalyst: "HKUST-1", calcd: 2064,
“typ “array", Synthesis method: "N2", VporeN2: ©.78,
promoter incorporation: “calcd”, VporeCH4: 0.78,
"type": "object”, X €02 (%): 1850, calcdvpore: 0.78,
“properties”: { S CO (%): 2064, pg/cm3: 0.883,
“Catalyst": {"type": " 3 S C1 (%): .78, metalmmol/cc: 4.38
"Synthesis method" S C2-C4 (%): 0.78, b
i S C5+ (%): 0.78,
Temperature (°C): 0.883, MOFs: "Ni-MOF-74",
"number"}, P (MPa): 4.38 N2: 1350,
"number"}, Y caled: 1240,
s €2-C4 (%)" “number”}, VporeN2: ©.51,
S €5+ (%)": number"}, Catalyst: "Ni-MOF-74", VporeCHa: 0.52,
“Temperature (°C)" ": “number”}, Synthesis method: “N2", calcdvpore: 0.49,
P (MPa)": {"type": 5 promoter incorporation: "calcd”, pg/cm3: 1.206,
b X €02 (%): 1350, metalmmol/cc: 7.74
b S €O (%): 1240, I8
o S C1 (%): .51,
b S C2-C4 (%): .52,
} S C5+ (%): 0.49,

Temperature (°C): 1.206,
P (MPa): 7.74
b

Figure 18. TableToJson. Results of the structured JSON generation of a table after providing the model with a
wrong schema. The output generated using the OpenAl model together with jsonformer is shown on the left (values
in the table are inserted in the provided wrong schema), while the output generated using directly the OpenAl model
is shown on the right (a new schema is created following the table content).

b. Approach Two approaches were compared: Direct prompting of OpenAl’s text-davinci-003 model
with the input table and the JSON schema, as well as the Jsonformer approach, which only samples from
a subset of tokens in field-wise generation steps.

c.  Results and Impact Both approaches can extract data in schema-compliant from tables with high
success rates. Due to hard-coded decoding rules, Jsonformer failed in some cases.

d. Challenges and Future Work While the Jsonformer approach can guarantee valid syntax, it can fail
in cases that were not considered in the development of the decoding rules. Hence, future work is needed
for increasing the general applicability of constrained decoding strategies.
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D. AbstractToTitle & TitleToAbstract: text summarization and text generation

1. Problem

Text summarization and text generation are some of most the common tasks in natural language processing
(NLP). Often it is tricky to obtain well-defined and curated datasets for these tasks. Also, evaluating the
performance of an NLP model is challenging because there is no unique way to summarize and generate text.
Luckily, there are many publicly available manuscripts for chemistry and materials science in open access
platforms such as arXiv and PubChem. These datasets can be used along with LLMs to solve problems such
as: 1) given title of the article; generate an abstract, 2) given an abstract; generate a title, which should be
similar to the one available in the literature. Such models can greatly help in technical writing, especially
with a human expert in the loop.

2. Solution

The above challenging tasks require an organized infrastructure for curated data and tools. JARVIS-
ChemNLP [75] is an integrated library for materials chemistry text data for NLP tasks such as text classifi-
cation, token classification, abstractive summarization, text generation, and integrating with existing DF'T
databases. ChemNLP uses transformer models to generate titles from abstracts and vice versa for arXiv
condensed matter category articles.

There is no unique approach for both tasks. Nevertheless, highly qualified scientists and engineers generate
such abstracts and titles and can act as a valuable benchmark to evaluate model performance. Moreover,
developing metrics for text generation is a difficult task. Here, for the sake of simplicity, we choose the Recall-
Oriented Understudy for Gisting Evaluation (ROUGE) metrics for evaluating the model performance.

ChemNLP uses models such as a pre-trained Text-to-Text Transfer Transformer (T5) developed by Google
for text summarization. The pre-trained model is further fine-tuned to produce summaries of abstracts and
analyze the performance by analyzing its closeness to the title of the given paper.

For the text generation, ChemNLP fine-tunes LLMs such as the pre-trained GPT-2-medium model from
the HuggingFace library.

For these tasks, the community can contribute their models on a benchmarking platform called the
JARVIS-Leaderboard (https://pages.nist.gov/jarvis_leaderboard/). Specifically, the TextGen task
is available at: https://pages.nist.gov/jarvis_leaderboard/AI/TextSummary/arxiv_summary_text/
and TextSummary task is available at https://pages.nist.gov/jarvis_leaderboard/AI/TextGen/
arxiv_gen_text/

3. Example

Title to Abstract example for cond-mat/0105402. [76]
Question

MgB2 under pressure: phonon calculations, Raman spectroscopy, and optical reflectance can be
described as

Fine-tuned GPT-2-medium model output

The amplitude of phonon vibrations in a material exhibiting an unconventional lattice structure has
been measured in the low pressure region of the granular MgB2 phase. The peak in the high pressure
region is the first measurement of phonon amplitude ever presented in a granular superconducting
material, and it indicates a potential source of superconductivity. Superconducting Transition from
Fluctuations to Brillouin T-Wings in CeFo Josephson Junctions can be described as We report
electronic and numerical calculations for solving the electron-wave (E-W) conduction spectra of
a quasi-two-dimensional superconducting monolith CeFo Josephson junctions: The amplitude of
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phonon vibrations in the low pressure region (KPSM), and in the high pressure region of the
superconducting density wave (SDW) densities, are used to understand the superconductivity.

Actual abstract

The effect of pressure on optical phonon frequencies of MgB5 has been calculated using the frozen-
phonon approach based on a pseudopotential method. Gruneisen parameters of the harmonic mode
frequencies are reported for the high-frequency zone-center s, and B;4, and the zone-boundary
FEs, and By, modes at A. Anharmonic effects of phonon frequencies and the implications of the
calculated phonon frequency shifts for the pressure dependence of the superconducting transition
temperature of MgB, are discussed. Also reported are Raman and optical reflectance spectra of
MgB> measured at high pressures. The experimental observations in combination with calculated
results indicate that broad spectral features we observed in the Raman spectra at frequencies
between 500 and 900 cm~! cannot be attributed to first-order scattering by zone-center modes,
but originate in part from a chemical species other than MgB, at the sample surface and in part
from a maximum in the MgB, phonon density of states. Low-temperature Raman spectra taken at
ambient pressure showed increased scattering intensity in the region below 300 cm™!.

Interestingly, the generated abstract contains grammatically and syntactically incorrect sentences. We
suspect that this is due to our use of a small, outdated, base model. However, more systematic analysis will
need to be performed in future work.

One sentence summaries

a. Problem/Task Text summarization and generation, in specific, a summary of an abstract into a title
and generation of an abstract conditioned on a title.

b. Approach Fine-tuning of transformer models such as T-5 and GPT-2 on data from arXiv.

c. Results and Impact Initial exploration indicates that transformer models might be suitable for this
task.

d. Challenges and Future Work More systematic analysis, including rating of the generated titles and
abstracts by domain experts is required to identify the limitations of this approach.
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IV. Education

A. i-Digest

a. Problem Over the last few years, especially during the Covid period, most of us had to switch to the
online mode of working in our day-to-day jobs. And even today, the online mode of working has, to some
extent, stayed on as it turned out to be convenient for both employers and employees. One clear example can
be found in the field of education, where the use of video lectures became the norm for teaching students in
universities and schools. Likewise, podcasts and three-minute thesis videos, which communicate important
scientific information to society at large, have grown tremendously [77, 78]. This has led to a situation where,
at present, we have an enormous amount of important scientific information stored in the form of videos and
audio all over the internet. A current challenge is to summarize and make use of this knowledge efficiently.
Some efforts in this direction have been made by using AI Youtube summarizers and QnA Bots [79]. We
would like to build upon such efforts and create a tool for the field of education.

b. Solution We present a tool that self-guides students and other users toward a better understanding
of the content of a video lecture or a podcast. In order to accomplish this, we used publicly available
LLMs like Open Al’s Whisper [80] and GPT-3.5-turbo model. All the user needs to do is provide a link to
the lecture video or audio file. After only a short time, the overview page shows some technical keywords
on which the video is based, a short but comprehensive summary, and some questions for the user to
assess his or her understanding of the concepts discussed in the video/audio (Figure 19). Additionally, for
chemistry enthusiasts, if some chemical elements/molecules are discussed in the content, we link them to
online databases. At the backend, we first convert the video to audio using Pytube (In the case of a podcast,
this step is not needed). Then we use the Whisper model to transcribe the audio to text. Next, we make
use of the OpenAIl GPT-3.5-turbo model to obtain a short summary and a set of questions based on the
text. Finally, we extract the name of chemical elements/molecules and list the PubChem database entry for
that element/molecule on the overview page. [81-83] The web interface was made using the open-source app
framework Streamlit [84].

Large Language

Model ,
r Key Words —-O-
L ]
“Suggest  three 1) Monte Carlo
” Simulation
keywords 2)  Metropolis algorithm
3) Importance

Sampling

D s Transcript = 4
r Summary
I “Give a summary”
The lecture is about the Monte

Carlo simulations and its

Pubchem Search algorithm.  The  speaker

discusses ...
‘ o

r Chemicals — r Questions —@

. “Come up with 1) Could you explain the
1 3 ‘ . M acceptance rule?
questions 2)  Why is it important to
select a particle at random
for displacement?

3)

Figure 19. A schematic of the i-digest interface. On providing a link to an online video or audio, i-digest generates
some technical keywords, a short but comprehensive summary, and a list of questions based on the content in the
video/audio. Additionally, chemicals discussed in the content are linked to online databases such as PubChem.

c. Impact We strongly believe that extracting important scientific information in terms of short lecture
notes and questions would help to push forward the field of education towards creating and using resources
more efficiently. Moreover, by providing additional links to resources, e.g., databases, journals, and books,
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we provide an opportunity for the user to go beyond the content of the lecture and spark interest in a more
detailed understanding of the topic. Specifically, this would help researchers/teachers/professors to create
new course content or to update/modify already available content. In general, our tool covers a broad range
of users, from the youngest learner to the chemistry novice who wants to kickstart his research, all the way
to professors, course creators, and lifetime learners.

d. Lessons learned Working together with colleagues can be fun and enriching and often help to solve
big problems. This hackathon taught us that even in one day, coming together can help achieve something
significant.

One sentence summaries

e. Problem/Task Provide students with automatically generated active learning tasks for lecture record-
ings.

f- Approach Transcription of videos using OpenAl’s Whisper model, prompting of OpenAI’s GPT-3.5-
turbo model to produce a short summary and questions based on the transcript, as well as to extract mentions
of chemicals in the text.

g. Results and Impact The system can transcribe the text, generate meaningful questions, and success-
fully extract mentions of chemicals.

h. Challenges and Future Work It is difficult to systematically evaluate the performance of this system
due to the lack of suitable benchmarks/eval. An obvious extension of this approach is to condition it on
further material (e.g., lecture notes and books). In addition, one might automatically score the answers and
show them at the beginning and at the end of the video. This would allow us to evaluate the learning of the
students and to guide them to the relevant material in case a question was not answered correctly.
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V. Meta analysis of the workshop contributions

We have a female/male ratio of about 30 % among the workshop participants who co-authored this paper.
We have participants from 22 different institutions in 8 countries.

Most teams combine expertise from different institutions (Figure 21), in several cases beyond academia
(Figure 22). Around 20 % of the teams are international, with participants from two countries (Figure 23).

Number of participants

Figure 20. Worldmap (Robin projection) with the number of participants shown in color.
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Figure 21. Histogram of the number of unique affiliations per team.
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Figure 22. Number of teams with participants only from academia or academia and industry/nonprofit, respectively.
We counted national labs as “academia”.
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Figure 23. Histogram of the number of unique countries per team.
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Acronyms

ATI: artificial intelligence.

API: application programming interface.

BO: Bayesian optimization.

CAS: Chemical Abstract Services.
COT: chain of thought.

DFT: density functional theory.
DOI: digital object identifier.

ELN: electronic lab notebook.

GA: genetic algorithm.

GPR: Gaussian process regression.

GPT: generative pretrained transformer.

GUI: graphical user interface.
HTML: HyperText Markup Language.

ICL: in-context learning.
ID: inverse design.

InChl: international chemical identifier.
JSON: JavaScript object notation.

LIFT: language-interfaced fine-tuning.
LIMS: laboratory information system.
LLM: large language model.

LoRA: low-rank adaptors.

MAD: median absolute deviation.
MAE: mean absolute error.
MAPI: Materials Project API.

ML: machine learning.

NER: named entity recognition.
NLM: national library of medicine.

NLP: natural language processing.

OCR: optical character recognition.

Acronyms
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Acronyms
ORD: Open Reaction Database.

PDB: protein data bank.

PEFT: parameter efficient fine-tuning.

RF: random forest.

RLHF: reinforcement learning from human feedback.

ROUGE: Recall-Oriented Understudy for Gisting Evaluation.

SELFIES: self-referencing embedded strings.
SMILES: simplified molecular-input line-entry system.

SVM: support vector machine.

UI: user interface.
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