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Abstract This paper presents a study of the production of
WW or WZ boson pairs, with one W boson decaying to eν or
μν and one W or Z boson decaying hadronically. The analy-
sis uses 20.2 fb−1 of

√
s = 8 TeV pp collision data, collected

by the ATLAS detector at the Large Hadron Collider. Cross-
sections for WW/WZ production are measured in high-pT

fiducial regions defined close to the experimental event selec-
tion. The cross-section is measured for the case where the
hadronically decaying boson is reconstructed as two resolved
jets, and the case where it is reconstructed as a single jet.
The transverse momentum distribution of the hadronically
decaying boson is used to search for new physics. Obser-
vations are consistent with the Standard Model predictions,
and 95% confidence intervals are calculated for parameters
describing anomalous triple gauge-boson couplings.
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1 Introduction

Measurements of the production of two massive vector gauge
bosons (hereafter, “diboson” production) represent an impor-
tant test of the Standard Model (SM) of particle physics.
Diboson measurements are powerful probes of the elec-
troweak theory of the SM, in particular the structure of the
triple gauge-boson couplings (TGCs) [1,2]. In addition, pre-
cise diboson measurements are a valuable test of higher-order
calculations in quantum chromodynamics (QCD).

Measurements of WW and WZ production in the leptonic
channels �ν�ν and �ν�� (� = e, μ) have been performed
by the ATLAS and CMS collaborations in pp collisions at√
s = 8 TeV and

√
s = 13 TeV [3–9], and by the Tevatron

experiments in p p̄ collisions [10–13]. Measurements in the
semileptonic channel WV → �νqq ′ (V = W, Z ) have been
performed by ATLAS [14] and CMS [15] at

√
s = 7 TeV,

and by the Tevatron experiments in p p̄ collisions [16,17].
The semileptonic channel offers features complementary to
the leptonic channels. On the one hand, the presence of jets
and the large background from W + jets and t t̄ produc-
tion limit the experimental precision. On the other hand, the
semileptonic channel has an approximately six times higher
branching fraction than the fully leptonic channels. Also, for
WW , the original diboson kinematics can be better recon-
structed in an �νqq ′ final state than in an �ν�ν final state,
since the latter has two invisible particles, rather than only
one in �νqq ′. Both of these advantages are particularly ben-
eficial for searching for beyond-the-Standard-Model (BSM)
enhancements of diboson production due to heavy new parti-
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cles, which could modify the diboson spectrum at high trans-
verse momentum (pT) of the bosons [18].

It is possible to reconstruct the V → qq ′ decay as two
small-radius jets (“small-R” jets, denoted by j) or as a single
large-radius jet (“large-R” jet, denoted by J). Reconstructing
the V → qq ′ decay as a large-R jet enables an increased
reconstruction efficiency at high pT(V ), thus improving the
sensitivity to BSM signals. In addition, by applying groom-
ing [19] techniques such as trimming [20] to the large-R jets,
it is possible to better distinguish events containing V → qq ′
decays from background events [21].

In this paper, measurements of WV → �νqq ′ fiducial
cross-sections are presented in phase spaces containing a
V → qq ′ candidate with high pT. Two fiducial cross-
sections are measured, in phase spaces chosen to closely
match the two experimental selections used in this paper.
The first event selection, denoted WV → �νjj, reconstructs
the V → qq ′ decay as two small-R jets, while the second
one, denoted WV → �νJ, reconstructs the V → qq ′ as a
single large-R jet. Previous cross-section measurements of
WV → �νqq ′ have not exploited large-R jets.

A search for anomalous triple gauge-boson couplings
(aTGCs) is also presented in this paper, using both the
WV → �νjj and WV → �νJ channels. Previous searches
for charged aTGC contributions toWV → �νqq ′ production
have been conducted by the ATLAS Collaboration [14] using
7 TeV pp collisions, by the CMS Collaboration [15,22] using
7 and 8 TeV pp collisions, and by the D0 [23] and CDF [24]
collaborations using p p̄ collisions. Most published aTGC
searches in the WV → �νqq ′ channel have reconstructed
the V → qq ′ as two small-R jets, with the exception of
Ref. [22], which reconstructed the V → qq ′ as a single
large-R jet.

2 Analysis overview

As mentioned above, measurements of WV → �νqq ′ pro-
duction are performed using either two small-R jets or a
single large-R jet to reconstruct the hadronically decaying
V boson. For both channels, the leptonically decaying W
boson is reconstructed by requiring the presence of a lepton
(electron or muon) and missing transverse momentum.

After applying stringent event selection requirements,
the signal-to-background ratio remains quite low at 5–10%,
because of the large W + jets background. In order to dis-
tinguish the SM WV signal from the background, the dijet
mass distribution (in the WV → �νjj channel) or the mass
distribution of the large-R jet (in the WV → �νJ channel)
is used as a discriminating variable. The signal events peak
near the W/Z mass in these distributions, while the shape
of the dominant W + jets background is smoothly falling. In
both channels, the signal is extracted from a fit to the dis-

criminating variable. Wide fitting ranges are used, in order
to allow the backgrounds to be constrained by the data.

A fiducial cross-section is measured separately in the
WV → �νjj and the WV → �νJ channel; the fiducial phase
spaces for the measurements are defined to be close to the
experimental event selections. The fiducial cross-section in
each channel is extracted from the previously mentioned fits.
The events in the two channels partially overlap, because
there are some events for which the V → qq ′ decay can
be reconstructed both as two small-R jets and as one large-
R jet. In order to simplify the interpretation of the results
and allow easier comparison with theoretical predictions, the
overlap events are not removed, and both measurements are
presented separately. No combination of theWV → �νjj and
WV → �νJ cross-section measurements is performed. The
electron and muon channels are combined when performing
the measurements, since little improvement in sensitivity is
expected from separating by lepton flavour. Event kinematics
and the signal-to-background ratio are similar in the electron
and muon channels, and the dominant sources of uncertainty
are unrelated to lepton flavour.

A search for aTGC contributions is also performed in the
WV → �νjj and WV → �νJ channels. The event selection
is the same as for the cross-section measurements, except that
a tighter requirement is made on the dijet mass or on the mass
of the large-R jet. The search is performed by fitting the pT

distribution of the dijet system (WV → �νjj channel) or of
the large-R jet (WV → �νJ channel). These distributions are
sensitive to aTGCs, which are expected to lead to deviations
from the SM prediction at high pT.

3 ATLAS detector

The ATLAS detector [25], which surrounds one of the inter-
action points of the Large Hadron Collider (LHC) [26], is
built of several subdetectors. The first subdetector layer con-
sists of the inner detector (ID), which provides charged-
particle tracking for |η| < 2.5.1 The ID is further subdi-
vided into (ordered from innermost to outermost) a pixel
detector, a silicon-microstrip tracker, and a transition radi-
ation tracker. Surrounding the ID there is a superconduct-
ing solenoid that provides a 2 T magnetic field. Outside of
the solenoid, there is an electromagnetic (EM) calorime-
ter based on liquid-argon technology, which provides cov-
erage up to |η| = 3.2. Additionally, a scintillator-tile

1 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-axis
along the beam pipe. The x-axis points from the IP to the centre of the
LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ)

are used in the transverse plane, φ being the azimuthal angle around the
z-axis. The pseudorapidity is defined in terms of the polar angle θ as
η = − ln tan(θ/2).
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calorimeter provides hadronic energy measurements in the
range |η|<1.7, and liquid-argon-based endcap and forward
calorimeters extend the EM and hadronic measurements up
to |η| = 4.9. A muon spectrometer, consisting of track-
ing and triggering detectors and three toroidal magnets, sur-
rounds the calorimeters; it provides muon tracking and iden-
tification up to |η| = 2.7 and triggering capability up to
|η| = 2.4.

A three-level trigger system is used to select the most
interesting events for data storage [27]. An initial hardware-
based trigger stage is followed by two software-based trig-
gers, which reduce the final event rate to about 400 Hz.

4 Data and Monte Carlo samples

This analysis is based on an integrated luminosity of 20.2 ±
0.4 fb−1 of 8 TeV pp collisions recorded by the ATLAS
detector in 2012. Events are required to pass one of several
single-lepton triggers. The triggers require either an isolated
electron or muon with pT > 24 GeV, or an electron (muon)
having pT > 60 (36) GeV without an isolation requirement.

The nominal signal Monte Carlo (MC) samples consist
of qq ′ → WV events generated at next-to-leading order
(NLO) in QCD using MC@NLO v4.07 [28] interfaced with
Herwig v6.520 [29] and Jimmy v4.31 [30] for the simulation
of parton showering, hadronization, and the underlying event.
The CT10 parton distribution function (PDF) set [31] and
parameter values from the AUET2 tune [32] are used for
these samples. TheW and Z bosons are generated on-shell by
MC@NLO and decayed subsequently byHerwig. The same
MC configuration is also used to model aTGC contributions
to WV production, using an event reweighting feature built
into MC@NLO.

In order to study systematic uncertainties, alternative
qq ′ → WV samples are generated at NLO in QCD
with Powheg- Box [33–35] using the CT10 PDF set.
The parton showering and hadronization is modelled with
Pythia 8.175 [36] using the AU2 tune [37]. Off-shell W and
Z/γ ∗ decays are included; the Z/γ ∗ decays have a require-
ment of mqq ′ > 20 GeV and m�� > 20 GeV.

Another set of alternative qq ′ → WV samples are gen-
erated with Sherpa v1.4.1 [38–41]. These samples are gen-
erated at leading order (LO) in QCD, but include up to three
additional partons in the matrix element. Off-shell W and
Z/γ ∗ decays are included; the Z/γ ∗ decays have a require-
ment of mqq ′ > 4 GeV and m�� > 4 GeV.

Contributions from gg → H → WW ∗ are only at the
1% level after applying the full event selection and are thus
neglected. Signal MC samples for non-resonant gg → WW
production are not used in the analysis, but the contribution
from this process is estimated as described in Sect. 10, and
included in the final cross-section predictions.

The W + jets and Z + jets backgrounds (collectively
referred to as V + jets) are modelled at LO in QCD with
Sherpa v1.4.1, with up to four additional final-state par-
tons. The CT10 PDF set is used for these samples, and they
are normalized using inclusive cross-sections that are next-
to-next-to-leading order (NNLO) in QCD, obtained using
FEWZ [42]. For studies of systematic uncertainties, alterna-
tive W + jets samples are generated with Alpgen [43] inter-
faced with Pythia 6.426 [44], modelling the process at LO
in QCD with up to five final-state partons. These additional
samples use the Perugia 2011C tune [45] and the CTEQ6L1
PDF set [46].

The MC samples for the t t̄ and single-top-quark (t-
channel, s-channel, and Wt) processes (collectively referred
to as top-quark processes) are generated with Powheg-
Box [47–49] interfaced with Pythia 6.426 [44] (or
Pythia 6.427 for the t-channel single-top-quark process).
All of these samples use the CT10 PDF set for the matrix
element, the CTEQ6L1 PDF set for the parton shower, and
the Perugia 2011C tune.

The Z Z background process is modelled with Powheg
interfaced with Pythia 8. The sample is normalized using
the NLO prediction from MCFM [50,51].

The MC samples are passed through a GEANT4-based
[52] simulation of the ATLAS detector [53]. For some of
the MC samples, a fast simulation is used that makes use
of a parameterization of the showers in the calorimeter. The
hard-scattering processes in the MC samples are overlaid
with simulated minimum-bias events in order to model addi-
tional collisions in the same or neighbouring bunch crossings
(“pile-up”). The MC samples are reweighted so that their
pile-up profile matches that observed in the data.

5 Event reconstruction

This analysis considers events with exactly one lepton (elec-
tron or muon), missing transverse momentum, and either two
small-R jets or one large-R jet.

In each event, primary vertices are reconstructed, which
must be formed from at least three tracks with pT >

400 MeV. In case an event has multiple primary vertices
(due to pile-up), the primary vertex with the highest

∑
p2

T
of the associated tracks is defined as the hard-scatter vertex.

Electron candidates are formed from energy clusters in
the EM calorimeter matched to ID tracks. They are required
to have pT > 30 GeV and |η| < 2.47. Candidates in the
transition region between the barrel and endcaps of the EM
calorimeter, 1.37 < |η| < 1.52, are excluded. In order to
ensure that the electron candidates are consistent with hav-
ing been produced at the hard-scatter vertex, the transverse
impact parameter d0 and longitudinal impact parameter z0

are required to satisfy |d0|/σd0 < 5 and |z0 sin θ | < 0.5 mm,
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respectively, where σd0 is the uncertainty in the measured d0.
Both d0 and z0 are measured with respect to the hard-scatter
vertex. Electron candidates must also satisfy the “tight” cut-
based identification criteria from Ref. [54], based on track
parameters and on the shower shapes in the calorimeter.
Candidates must also pass isolation requirements based on
calorimeter and track measurements. The calorimeter isola-
tion requires Riso

cal < 0.14, where Riso
cal is defined as the scalar

transverse energy sum of the calorimeter energy deposits
within a 
R ≡ √

(
η)2 + (
φ)2 = 0.3 cone centred on
the electron candidate (excluding transverse energy from the
candidate itself), divided by the pT of the electron candi-
date. Similarly, the track isolation requires Riso

ID < 0.07,
where Riso

ID is the scalar sum of the pT of the tracks within a

R = 0.3 cone centred on the electron candidate (excluding
the pT of the candidate’s track itself), divided by the electron
candidate’s pT.

Muon candidates are formed from the combination of a
track in the muon spectrometer and one in the ID. They
are required to have pT > 30 GeV and |η| < 2.4. Their
impact parameters must satisfy |d0|/σd0 < 3 and |z0 sin θ | <

0.5 mm. The candidates must also satisfy the isolation cri-
teria Riso

cal < 0.07 and Riso
ID < 0.07, where Riso

cal and Riso
ID are

defined analogously to the electron case.
Small-R jets are reconstructed from topological energy

clusters [55] in the calorimeter using the anti-kt algo-
rithm [56] with radius parameter R = 0.4. The jet energies
are calibrated as described in Ref. [57] and are corrected
for pile-up. They are required to have pT > 25 GeV and
|η| < 2.5 for the WV → �νjj channel. Small-R jets with
|η| < 4.5 are used in the WV → �νJ channel as part of a jet
veto (see Sect. 6). In order to remove jets originating from
pile-up, small-R jets having pT < 50 GeV and |η| < 2.4 are
required to have an absolute value of the “jet vertex fraction”
variable (JVF) [58] greater than 0.5.

In the WV → �νJ channel, large-R jets are reconstructed
using the anti-kt algorithm with radius parameter R = 1.0,
and are trimmed [20] using a subjet radius of 0.2 and a
momentum-fraction parameter fcut = 0.05; the trimming
procedure discards soft subjets from the large-R jets and
reduces their sensitivity to pile-up [21]. They are required
to have pT > 200 GeV and |η| < 2.0. The energies of the
small-R and large-R jets and the masses of the large-R jets are
calibrated using pT- and η-dependent scale factors [57,59].

If an electron and a muon candidate share the same ID
track, the electron candidate is rejected. If a small-R jet is
within 
R = 0.2 of a selected electron candidate, the jet is
rejected; if the jet is within 0.2 < 
R < 0.4 of a selected
electron, the electron candidate is rejected. Muon candidates
are rejected if they are within 
R = 0.4 of a small-R jet.
Finally, large-R jets are rejected if they are within 
R =
1.0 of a selected lepton candidate. In the object selection
stage, small-R jets and large-R jets are allowed to overlap;

however, in the event selection stage a 
R requirement is
applied between the small-R and large-R jets, as explained
in Sect. 6.

The missing transverse momentum �Emiss
T is computed as

the negative vector sum of the transverse momentum of all
the detected objects in the event, including reconstructed jets,
photons, electrons, and muons. An additional “soft term” is
included that accounts for the pT of clusters in the calorime-
ter which are not associated with any specific reconstructed
object [60]. The magnitude of �Emiss

T is denoted Emiss
T .

6 Event selection

Two independent sets of event selection criteria are devel-
oped that target different event topologies: the WV → �νjj
selection, described in Sect. 6.1, and the WV → �νJ selec-
tion, described in Sect. 6.2. The WV → �νJ channel and
WV → �νjj channel differ significantly from one another
in their kinematics, expected signal yields, and signal-to-
background ratios. Therefore, the event selection criteria are
optimized separately for the two channels.

For both the WV → �νjj and WV → �νJ selections, all
events are required to contain at least one primary vertex.
Events must have exactly one good electron or muon candi-
date. Events are vetoed if they contain any additional lepton
candidates that have pT > 15 GeV and satisfy a looser set of
selection criteria.

6.1 WV → �νjj channel

Events must have Emiss
T > 40 GeV and a transverse mass2

mT > 40 GeV. Events must contain exactly two small-R
jets. The requirement of exactly two jets substantially reduces
the background from top-quark decays. The pseudorapidity
separation of the selected jets is required to satisfy 
η(j, j) <

1.5, in order to improve the signal-to-background ratio.
In order to reduce the multijet background not removed

by the Emiss
T > 40 GeV requirement, an azimuthal-angle

difference between the Emiss
T direction and the direction of

the leading-pT jet of |
φ(j1, Emiss
T )| > 0.8 is required.

Also, both the V → qq ′ and W → �ν candidates must
pass requirements on their transverse momenta: pT(jj) >

100 GeV and pT(W → �ν) > 100 GeV, where pT(W →
�ν) ≡ | �Emiss

T + �pT(�)|. These pT requirements enhance the
separation between the signal and background distributions
in the dijet mass.

As described in Sect. 8, the signal is extracted using a
maximum-likelihood (ML) fit to the dijet mass (mjj) distribu-

2 The transverse mass is defined as mT ≡√
(Emiss

T + pT(�))2 − | �Emiss
T + �pT(�)|2, where pT(�) is the trans-

verse momentum of the lepton candidate.
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tion. In the dijet mass calculation, the mass of each individual
jet is set to zero, which makes the variable easier to model
in the MC simulation. Since the signal is extracted from a
fit to mjj, only a loose requirement is made on this variable:
40 GeV < mjj < 200 GeV.

6.2 WV → �νJ channel

Events must contain exactly one large-R jet with pT >

200 GeV and |η| < 2.0. The backgrounds from top-quark
decays are suppressed by rejecting events containing any
small-R jets with pT > 25 GeV and |η| < 4.5 that
are separated from the large-R jet by 
R(j, J) > 1.0. In
order to suppress the multijet background, a requirement of
Emiss

T > 50 GeV is applied. The trimmed mass of the large-R
jet, mJ, must be 50 GeV < mJ < 170 GeV, and the signal is
measured from the ML fit to mJ.

Since the WV → �νjj and WV → �νJ event selections
are done independently, some events pass both selections.
About 10% of the signal MC events that pass the WV →
�νjj selection also pass the WV → �νJ selection, while
about 50% of the signal MC events that pass the WV → �νJ
selection also pass the WV → �νjj selection.

7 Background estimation

The methods for estimating the expected background yields
and kinematic distributions are described in this section. The
estimates from this section are used as inputs to the ML fit
in which the signal is measured while the backgrounds are
allowed to vary within their systematic uncertainties. In that
ML fit, the V + jets normalization is allowed to vary without
constraint, so the estimates given in this section are pre-fit
estimates.

Most of the backgrounds (W + jets, Z + jets, t t̄ , single
top-quark, and Z Z ) are estimated using MC simulation, with
data-driven corrections applied in some cases, as described
later in this section. By far the largest background in the
analysis is from W + jets, followed by top-quark production.
Despite the latter background’s subdominant contribution,
it plays an important role because it contains contributions
from real W → qq ′ decays, which make it more difficult
to distinguish from the signal. About 80% of the top-quark
background is due to t t̄ production, and the remainder comes
from single-top-quark production.

Multijet processes form another source of background.
Multijet events can pass the event selection if they contain
non-prompt leptons (produced from semileptonic decays of
c- andb-hadrons) or “fake” leptons (resulting from misidenti-
fied jets). The multijet backgrounds are estimated using data-
driven techniques, as described in Sects. 7.1 and 7.2.

7.1 WV → �νjj channel

The V + jets background prediction is MC-based, but data-
driven corrections are applied to the MC prediction in order
to improve the description of the jet kinematics. A V + jets
control region (CR) is defined identically to the signal region,
except that the region 65 GeV < mjj < 95 GeV is vetoed, in
order to remove most of the signal events. One-dimensional
reweighting functions of the variables pT(j1) and 
φ(jj) are
derived from this V + jets CR. These reweighting functions
have approximately 10% effects on the shapes of the pT(j1)
and 
φ(jj) distributions. Data–MC comparisons in the V +
jets CR are shown in Fig. 1, before and after application of
the reweighting functions. All further results in this paper
are shown with these two reweighting functions applied to
the V + jets MC samples. The same reweighting functions
are used for both the W + jets and Z + jets processes. It
was checked that the reweighting functions obtained from
the low-mjj and high-mjj portions of the V + jets control
region are compatible.

The top-quark background is modelled with MC simula-
tion, and is cross-checked in a validation region containing
three small-R jets, one of which is b-tagged using the MV1
algorithm [61,62]. Good agreement is observed between the
data and the MC simulation, so no corrections are applied
to the prediction. The background from Z Z events is also
modelled with MC simulation.

The data-driven multijet background estimate makes use
of a multijet CR. The multijet CR is formed by selecting
events in data that pass the same selection requirements as
for the signal region, except that the lepton quality criteria are
modified in order to produce a CR enriched in non-prompt
and fake leptons. Lepton candidates satisfying these mod-
ified criteria are called “anti-identified” lepton candidates.
Anti-identified muon candidates must have a non-negligible
impact parameter, |d0|/σd0 > 4, and satisfy looser isolation
criteria than the signal muon candidates. Anti-identified elec-
trons must fail the “tight” but satisfy the “medium” cut-based
identification criteria from Ref. [54], and are also required
to contain a hit in the innermost layer of the pixel detec-
tor. In addition, the isolation criteria are modified for anti-
identified electron candidates, in order to enrich the sample
in non-prompt and fake electrons.

The shapes of the kinematic distributions [such as mjj,
Emiss

T , and pT(jj)] of the multijet background are estimated
from events in the multijet CR, after subtracting the MC pre-
dictions of the non-multijet contributions to the CR. These
non-multijet contributions are about 20% (50%) of the total in
the electron (muon) channel. The overall multijet background
event yield is estimated from a fit to the Emiss

T distribution
of events that pass the full signal region selection, except
that the requirements on Emiss

T and 
φ(j1, Emiss
T ) (and also


η(j, j) and mT for the muon channel) are removed in order
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Fig. 1 Comparisons between the data and the prediction in the V +jets
control region of the WV → �νjj channel. The top panel shows the
data and prediction before applying the pT(j1) and 
φ(j1, j2) kine-
matic reweighting to the V + jets predictions. The distributions shown
are a pT of the leading jet and b 
φ between the leading jet and sub-

leading jet. Overflow is included in the last bin of the pT(j1) plot. The
bottom panel shows the ratio of the SM prediction to the data before
and after applying the kinematic reweighting to the V + jets prediction.
The hatched bands indicate the statistical uncertainty in the predictions

to enhance the number of multijet events. This selection is
referred to as the extended signal region. In this Emiss

T fit, the
multijet Emiss

T shape is estimated from an extended multijet
CR, defined analogously to the extended signal region, but
requiring the lepton to pass the anti-identified-lepton selec-
tion. The Emiss

T shapes of the other backgrounds are estimated
using MC samples. The multijet event yield obtained from
this fit is then extrapolated to the signal region, using the
ratio of events in the multijet CR and the extended multijet
CR, corrected for non-multijet contributions. The multijet
background estimates are performed separately for the elec-
tron and muon channels. Only about 5% of the total multijet
background is in the muon channel.

The expected signal and background yields in the WV →
�νjj signal region are given in Table 1, and compared to the
number of events observed in data. The predictions for themjj

distribution shapes of the signal and backgrounds are shown
in Fig. 2a.

7.2 WV → �νJ channel

In the WV → �νJ channel, the W + jets, Z + jets, and top-
quark backgrounds are estimated using MC samples. The
MC predictions for the two largest backgrounds (W+jets and
top-quark production) are corrected by scale factors obtained
from dedicated control regions.

The top-quark control region (top CR) is formed by events
satisfying the signal region selection, except that the presence
of at least one small-R b-tagged jet with pT > 25 GeV and

R(j, J) > 1.0 is required instead of applying the nominal

Table 1 Expected number of signal and background events in the
WV → �νjj and WV → �νJ signal regions, prior to performing the
mjj and mJ fits. The quoted uncertainties only include detector-related
uncertainties and statistical uncertainties of the MC samples and con-
trol regions. The number of events observed in data is also shown. The
signal predictions only correspond to qq ′-initiated WV production

WV → �νjj WV → �νJ

Signal

WW 2860 ± 110 542 ± 61

WZ 730 ± 30 128 ± 15

Total expected signal 3590 ± 140 670 ± 75

Background

W + jets 136,000 ± 8600 10500 ± 1300

Z + jets 2750 ± 340 245 ± 32

t t̄ 12,980 ± 520 1130 ± 150

Single top-quark 3620 ± 150 249 ± 35

Multijet 3689 ± 60 313 ± 18

Z Z 14 ± 1 –

Total expected background 159,000 ± 8600 12,400 ± 1500

Total SM expected 162,600 ± 8700 13,100 ± 1600

Observed 164,502 12,999

S/B
(65 GeV < mjj < 95 GeV)

5.5% 10.1%

S/
√
B

(65 GeV < mjj < 95 GeV)
11.1 7.1

veto on small-R jets. The jets are b-tagged using the MV1
algorithm [61,62], using a working point with a b-tagging
efficiency of about 70% and a gluon/light-quark jet rejection
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Fig. 2 The shapes of a the predicted mjj distributions in the WV → �νjj signal region and b the predicted mJ distributions in the WV → �νJ
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Fig. 3 Comparison between data and prediction in the WV → �νJ
channel for a mJ in the top CR, and b pT(J) in the W + jets CR. A
scale factor is applied to the top-quark background prediction in the top
CR and the W + jets CR, and a scale factor is applied to the W + jets

background prediction (which is part of the “V + jets” histogram) in
the W + jets CR. The hatched bands indicate the systematic uncertainty
of the prediction. For the V + jets component, only shape systematic
uncertainties are included in the bands

factor of over 100 in t t̄ events. About 90% of the events in
this top CR originate from top-quark backgrounds. There is
a deficit in data in the top CR relative to the MC predic-
tion, which is attributed to a mismodelling of the top-quark
backgrounds. A global scale factor of 0.87 for the top-quark
backgrounds is obtained from this CR, after subtracting the
prediction for non-top-quark backgrounds. The data in the
top CR is shown in Fig. 3a, compared to the SM prediction
after application of the top-quark scale factor. This scale fac-
tor is applied to the top-quark background predictions in the
signal region.

The control region for the W + jets background (W + jets
CR) is obtained by applying the standard signal region selec-
tion, but adding the requirement that mJ < 65 GeV or

mJ > 95 GeV. This additional mJ requirement removes
almost all of the WV signal events and also a large frac-
tion of the top-quark events. About 85% of the events in
this CR originate from W + jets backgrounds. The top-quark
background prediction in theW+jets CR is scaled by the top-
quark scale factor obtained above. A data deficit is observed
in the W + jets CR relative to the prediction. A global scale
factor of 0.84 is obtained for the W + jets background, after
subtracting the expected contributions from the other sig-
nal/background processes. A comparison between the data
and the prediction in the W + jets CR is shown in Fig. 3b,
after application of the W + jets scale factor. The W + jets
scale factor is applied to the W + jets prediction in the signal
region.
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The method for estimating the multijet background is sim-
ilar to that used in the WV → �νjj channel. As in the
WV → �νjj channel, a multijet CR is defined by requir-
ing an “anti-identified” lepton candidate. The shapes of the
kinematic distributions are estimated from this CR using the
same method as in theWV → �νjj channel. The non-multijet
background contributions to the CR are about 6% of the total.
The multijet event yield is estimated from a fit to the Emiss

T
distribution, as in the WV → �νjj channel, but the only
requirement that is removed for the definition of the extended
signal region/multijet CR is the Emiss

T > 50 GeV require-
ment. The multijet background is found to be negligible for
the muon channel, so only the contribution in the electron
channel is considered for the final results.

The numbers of expected and observed events in the
WV → �νJ signal region are summarized in Table 1. The
previously mentioned top-quark andW+jets scale factors are
applied to the predictions. The contribution from Z Z events
is expected to be very small in the WV → �νJ channel, so it
is neglected. The nominal predictions for the mJ distribution
shapes of the signal and backgrounds are shown in Fig. 2b.

8 Cross-section extraction

The fiducial cross-section σfid for WV → �νqq ′ production
is measured independently for the WV → �νjj and WV →
�νJ phase spaces, in both cases using the formula:

σfid = NWV

L · Dfid
,

where NWV is the measured signal yield, L is the integrated
luminosity, and Dfid is a factor that corrects for experimen-
tal acceptance and efficiencies. Since this analysis measures
NWV as the sum of the WW and WZ processes, which can
each have different acceptances and efficiencies, Dfid is given
by:

Dfid = f WW
fid · CWW +

(
1 − f WW

fid

)
· CWZ ,

where the CWV are reconstruction correction factors and
the variable f WW

fid is the predicted ratio of the WW fidu-
cial cross-section to the WW + WZ fiducial cross-section.
The CWV and f WW

fid values are estimated from MC simula-
tion. The CWV factors are defined as the predicted number
of WV signal events passing the reconstruction-level event
selection divided by the number of WV events in the fiducial
phase space defined with generator-level particles. The CWV

factors account for reconstruction inefficiencies, resolution
effects, and for contributions to the signal region from WV
events that do not decay to �νqq ′ (such as WV → τνqq ′ or
WW → �ν�ν); the latter are included in the CWV numer-
ator and not in the denominator. The cross-section σfid is

measured for the sum of the electron and muon channels,
so Dfid is computed as a weighted average over the electron
and muon channels. The fiducial cross-section measurement
therefore assumes that the signal MC simulation correctly
predicts the ratio of WW to WZ and of electrons to muons.
The value of Dfid is 0.83 ± 0.05 in the WV → �νjj chan-
nel and 0.60 ± 0.08 in the WV → �νJ channel, including
systematic uncertainties (see Sect. 9).

The fiducial phase spaces for the WV → �νjj and WV →
�νJ channels are defined in Sects. 8.1 and 8.2, respectively.
These fiducial phase spaces partially overlap. In order to cope
with the small signal-to-background ratios in this analysis (5–
10%), the cross-section σfid is extracted using a binned ML fit
to the mjj distribution (in the WV → �νjj analysis) or the mJ

distribution (in the WV → �νJ analysis). The ML fits are
performed on the sum of the electron and muon channels.
It was cross-checked that the electron and muon channels
are compatible, in both the WV → �νjj and WV → �νJ
channels.

In the ML fits, the value of σfid and the V+jets background
yield are both free to vary without constraint. Systematic
uncertainties in the signal and backgrounds are incorporated
in the fit by including nuisance parameters that are allowed to
vary within prior constraints. The nuisance parameters allow
the luminosity, Dfid, the non-V + jets background yields,
and the mjj and mJ shapes of the signal and background dis-
tributions to vary within their systematic uncertainties. The
correlations between the uncertainty in Dfid and the uncer-
tainty in the signal mjj/mJ shapes are accounted for in the
fit. The sources of systematic uncertainty and the methods to
assess these uncertainties are described in detail in Sect. 9.

8.1 WV → �νjj fiducial phase space

The WV → �νjj fiducial phase space is defined to closely
match the experimental event selection. The phase-space
definition requires a WV pair with the bosons decaying as
V → qq ′ and W → �ν, where � = e, μ. Events containing
other kinds of WV decay channels (such as WW → �ν�ν

events or WV → τνqq ′ with the τ decaying to � + X ),
are not included in the fiducial phase-space definition. Such
WV events can still pass the experimental event selection
(where they are included in the signal category), and they are
accounted for in the Dfid definition.

Leptons selected in the fiducial region must have pT(�) >

30 GeV and |η(�)| < 2.47. The four-momentum of the lep-
ton is modified by adding to it the four-momenta of all the
photons within 
R = 0.1, excluding photons produced by
hadron decays. Particle-level anti-kt R = 0.4 jets are con-
structed using as constituents all stable particles, excluding
muons and neutrinos. Stable particles are defined as those
having a mean lifetime of τ > 30 ps. The particle-level jets
must have pT > 25 GeV and |η| < 2.5. Jets within 
R = 0.2
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Table 2 Summary of the fiducial phase-space definitions. All the spec-
ified selection criteria are applied at the particle level as specified in
the text. The notations “j” and “J” refer to R = 0.4 and R = 1.0 jets,
respectively, as explained in the text

WV → �νjj WV → �νJ

Lepton N� = 1 with pT > 30 GeV and |η| < 2.47,


R(�, j) > 0.4

W → �ν pT(�ν) > 100 GeV −
mT > 40 GeV −

Emiss
T Emiss

T > 40 GeV Emiss
T > 50 GeV

Jet Nj = 2 with pT > 25 GeV,
|η| < 2.5,

NJ = 1 with
pT > 200 GeV, |η| < 2.0,


R(j, e) > 0.2 
R(J, �) > 1.0

No small-R jets with
pT > 25 GeV, |η| < 4.5,


R(j, J) > 1.0,

R(j, e) > 0.2

40 < mjj < 200 GeV 50 < mJ < 170 GeV

pT(jj) > 100 GeV −

η(j, j) < 1.5 −

Global 
φ(j1, Emiss
T ) > 0.8 −

of a selected electron are rejected, and then leptons within

R = 0.4 of a remaining jet are rejected. The true Emiss

T in
the event is defined as the magnitude of the vector pT sum
of all the neutrinos.

The event must have exactly one lepton and two R = 0.4
jets matching the above definitions. The remaining require-
ments for the fiducial phase space are summarized in Table 2,
and are analogous to the experimental event selection, but
are defined using the lepton, Emiss

T , and particle-level jets
described in this section.

8.2 WV → �νJ fiducial phase space

As in the WV → �νjj channel, the fiducial phase-space
definition requires a WV pair with V → qq ′ and W → �ν.
Leptons, Emiss

T , and particle-level R = 0.4 jets are defined
in the same way as in the WV → �νjj channel, except that
two sets of leptons and small-R jets are considered: central
leptons (small-R jets) are required to have |η| < 2.47 (|η| <

2.5), and extended leptons and small-R jets are required to
have |η| < 4.5. Particle-level large-R jets are defined by
applying the anti-kt algorithm with radius parameter R = 1.0
to all stable particles, excluding muons and neutrinos. No
trimming is applied to these jets. The large-R jets are required
to have pT > 200 GeV and |η| < 2.0. Central (extended)
small-R jets that are within 
R = 0.2 of a central (extended)
electron are rejected. Then, central leptons are rejected if
they are within 
R = 0.4 of a remaining central small-
R jet. Large-R jets are rejected if they are within 
R =

1.0 of any remaining central leptons. Events are required to
contain exactly one central lepton and one large-R jet with
the above definitions, and events are discarded if they contain
any extended small-R jets with 
R(j, J) > 1.0. The event
must also have Emiss

T > 50 GeV, and the large-R jet must
have a mass greater than 50 GeV. The fiducial phase-space
definition is summarized in Table 2.

9 Systematic uncertainties

Systematic uncertainties in the measured σfid can be due to
uncertainties in L, Dfid, and/or NWV . Uncertainties in the
measured NWV can in turn be due to uncertainties in the
background yields or in the shapes of the kinematic distribu-
tions (mjj,mJ) of the signal and backgrounds (hereafter called
“shape uncertainties”). The dominant systematic uncertain-
ties in the σfid measurement are those affecting the measured
NWV .

A wide variety of detector-related experimental uncer-
tainties are considered, which affect Dfid, the predicted
background yields, and the signal and background shapes.
The most important of these uncertainties are those related
to the jet reconstruction. Uncertainties in the small-R jet
energy scale and resolution are accounted for [57,63]. In
the WV → �νJ channel, uncertainties in the large-R jet
energy and jet mass scales are also taken into account. The
scale uncertainties of the large-R jets are estimated using
a double-ratio method that compares calorimeter- and track-
jets in data and MC simulation [21]. The energy and mass res-
olution uncertainties of large-R jets are estimated by smear-
ing the jet energies/masses so as to degrade the resolutions
by 20%; this approach is based on prior studies of large-
R jets [64,65]. The systematic uncertainty due to the JVF
requirement is also included [66]. In addition to the jet-
related uncertainties, there are also systematic uncertainties
in the electron and muon reconstruction (including trigger-
ing, object reconstruction, identification, and the energy scale
and resolution) [54,67–70]. The effects of the jet and lepton
uncertainties are propagated to the Emiss

T calculation, and an
additional systematic uncertainty in the soft terms entering
the Emiss

T calculation is also included [60].
In the cross-section fits, the V + jets yield is taken to be a

free parameter, while several uncertainties in the modelling of
its shape are accounted for (in addition to the shape uncertain-
ties from the previously mentioned detector effects). System-
atic uncertainties in the V + jets shape are estimated by vary-
ing the MC event generator used (Sherpa compared toAlp-
gen+Pythia). The differences between the predictions of
the two generators are taken as additional systematic uncer-
tainties. Additional uncertainties in the V + jets shape are
estimated by varying the renormalization and factorization
scales by factors of 2 and 0.5, and by varying the scale used
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in Sherpa for matching the matrix elements to the parton
showers [39] from its nominal value of 20 GeV to alternative
values of 15 GeV and 30 GeV. In the WV → �νjj channel,
the uncertainty in the shapes of the V + jets predictions due
to the two kinematic reweighting functions (see Sect. 7.1) is
estimated by including the full difference between applying
and not applying each reweighting function as additional sys-
tematic uncertainties. In the WV → �νjj channel, an uncer-
tainty of 10% in the (W + jets)/(Z + jets) cross-section ratio
is also included; this uncertainty is ignored in theWV → �νJ
channel as it has a negligible effect.

For the t t̄ background, uncertainties due to the matrix-
element event generator, parton shower/hadronization model,
and amount of initial- and final-state radiation are all
included. The theoretical uncertainties in the top-quark back-
ground cross-sections are also taken into account. In the
WV → �νJ channel, instead of using the theoretical cross-
section uncertainty, the top-quark background is assigned a
normalization uncertainty of 14% to account for the uncer-
tainty in the data-driven scale factor. Systematic uncertainties
in the multijet background estimate are also included, which
affect both its normalization and its shape. These uncertain-
ties are derived from studies of variations of the data-driven
estimate, such as changing the control region definitions and
varying the non-multijet background subtraction. The uncer-
tainty in the multijet yield amounts to 30% (100%) for the
electron (muon) channel in the WV → �νjj channel. In the
WV → �νJ channel, an uncertainty of 50% is assigned to
the multijet yield in the electron channel, while the multijet
background is neglected in the muon channel. A 30% uncer-
tainty is assigned to the Z Z event yield in the WV → �νjj
channel, to account for uncertainties in the Z Z cross-section
and the extrapolation to the fiducial phase space.

Additionally, the uncertainty in the modelling of pile-up
interactions is accounted for [71]. The uncertainty in the inte-
grated luminosity is also included, computed as described in
Ref. [72]. The statistical uncertainty of the MC samples is
taken into account, which affects each bin in the ML fits in
an uncorrelated way.

Uncertainties in the signal shapes and in the Dfid param-
eter due to variations of the signal model are computed by
varying the renormalization and factorization scales by fac-
tors of 2 and 0.5, and by comparing the nominal MC@NLO
signal samples to alternative samples generated with Sherpa
and Powheg +Pythia 8. The effect on Dfid from the uncer-
tainties in the CT10 PDF set is also taken into account; the
PDF uncertainty has a negligible impact on the signal shapes.

The measured σfid values are compared to theoretical pre-
dictions from MC@NLO. The uncertainty in the theoretical
σfid prediction is calculated including the uncertainties due
to renormalization and factorization scales. Since the fiducial
phase spaces contain a veto on additional jets, the Stewart–
Tackmann procedure [73] is used to estimate the scale uncer-
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Fig. 4 The observed mjj distribution in the WV → �νjj signal region,
overlaid with the post-fit background and signal estimates. The hatched
band indicates the total uncertainty of the fit result

tainties. These uncertainties are also propagated to the the-
oretical f WW

fid value which enters into the Dfid calculation,
although the effect of this on the measured σfid is very small
(∼0.1%). PDF-induced uncertainties in the theoretical pre-
diction are also taken into account.

10 Cross-section results

The result of the ML fit to the mjj distribution for the
WV → �νjj channel is shown in Fig. 4. The fit is performed
on the sum of events in the electron and muon channels.
The observed significance is 4.5σ , including statistical and
systematic uncertainties,3 while the expected significance,
calculated using the Asimov data set [74], is 5.2σ . The fitted
V + jets background normalization is 1.02 ± 0.01 times its
pre-fit value, while the fitted top-quark background normal-
ization is 0.96 ± 0.10 times its pre-fit value.

The fiducial cross-section for the signal process is
extracted from the fit as described in Sect. 8, and the result is

σfid(WV → �νjj, observed) = 209 ± 28(stat) ± 45(syst) fb.

The impacts of the various systematic uncertainties on the
cross-section measurement are shown in Table 3. The mea-
surement can be compared to the theoretical prediction of

σfid(WV → �νjj, theory) = 225 ± 13 fb .

3 The significance is calculated based on the profile-likelihood ratio of
the background-only and signal-and-background hypotheses. This ratio
is converted to a significance using the asymptotic approximation [74].
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Table 3 Breakdown of the uncertainties in the measured fiducial cross-
section in the WV → �νjj channel. Uncertainties smaller than 1% are
omitted from the table

Source of uncertainty Relative uncertainty
for σfid (%)

Top-quark background modelling 13

Signal modelling 12

V + jets modelling 4

Multijet background modelling 1

Small-R jet energy/resolution 9

Other experimental (leptons, pile-up) 4

Luminosity 2

MC statistics 9

Data statistics 14
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Fig. 5 The observed mJ distribution in the WV → �νJ signal region,
overlaid with the post-fit background and signal estimates. The hatched
band indicates the total uncertainty of the fit result

The theoretical prediction is obtained using MC@NLO for
the qq ′ → WV prediction. The gg → WW prediction
is also included, and is calculated using the total NLO
gg → WW cross-section prediction [75] multiplied by the
qq ′ → WW acceptance from MC@NLO. The gg → WW
contribution increases the fiducial cross-section prediction
by 4% in both the WV → �νjj and WV → �νJ channels.
Given the relatively small gg → WW contribution, the pos-
sible differences in acceptance between the gg → WW and
qq ′ → WW processes are neglected. The uncertainty in the
MC@NLO prediction is described in Sect. 9.

The result of the mJ fit for the WV → �νJ channel is
shown in Fig. 5. Although the signal-to-background ratio is
better in this case than in the WV → �νjj channel, the total

Table 4 Breakdown of the uncertainties in the measured fiducial cross-
section in the WV → �νJ channel. Uncertainties smaller than 1% are
omitted from the table

Source of uncertainty Relative uncertainty
for σfid (%)

V + jets modelling 60

Top-quark background modelling 32

Signal modelling 15

Multijet background modelling 13

Large-R jet energy/resolution 45

Small-R jet energy/resolution 16

Other experimental (leptons, pile-up) 3

Luminosity 2

MC statistics 19

Data statistics 33

fid, theo.
WVσ/fid, meas.

WVσRatio of measurement to prediction, 
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Data
Tot. uncertainty

Stat. uncertainty

MC@NLO

ATLAS
-1 = 8 TeV, 20.2 fbs

jjν l→WV

Jν l→WV

Fig. 6 The ratios of the measured fiducial cross-sections to the cross-
sections predicted by MC@NLO, for the WV → �νjj and WV → �νJ
phase spaces. The WV → �νjj and WV → �νJ phase spaces partially
overlap

number of signal events is much smaller. The observed sig-
nificance of the result is 1.3σ (including statistical and sys-
tematic uncertainties), compared to an expected significance
of 2.5σ . The fitted V + jets (top-quark) background normal-
ization is 1.01 ± 0.04 (1.06 ± 0.20) times its pre-fit value.

The extracted fiducial cross-section for the signal process
is

σfid(WV → �νJ, observed) = 30 ± 11(stat) ± 22(syst) fb,

which is compatible with the theoretical prediction of

σfid(WV → �νJ, theory) = 58 ± 15 fb.

The breakdown of the uncertainties contributing to the fidu-
cial cross-section measurement is shown in Table 4.

The cross-section measurements are summarized in Fig. 6.
As mentioned in Sect. 8, the two cross-section measurements
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are performed in partially overlapping phase spaces. The
uncertainty in the theory prediction is significantly larger
in the WV → �νJ channel than in the WV → �νjj chan-
nel. The theoretical uncertainty in the WV → �νJ channel
is dominated by the scale uncertainties, which are particu-
larly large because of the aggressive jet veto in this channel
(only about 30% of signal MC events pass the jet veto in
the WV → �νJ channel, compared to about 80% in the
WV → �νjj channel).

11 Constraints on anomalous gauge couplings

In many extensions of the SM, diboson production can be
modified, such as through new resonances that couple to
bosons. If the scale of new physics is sufficiently high, new
resonances may not be visible in the current data; however,
diboson production could still be affected below the new-
physics scale, in the form of modified couplings. One com-
mon framework for parameterizing new physics in diboson
production is an effective Lagrangian [1] of the form:

LWWX ∝
[
(1 + 
gX1 )(W+

μνW
−μ − W+μW−

μν)X
ν

+(1 + 
κX )W+
μ W−

ν Xμν + λX

m2
W

W+ν
μ W−ρ

ν Xμ
ρ

]
,

where X = Z or γ , W±
μν = ∂μW±

ν − ∂νW±
μ , and Xμν =

∂μXν −∂νXμ. The six parameters λX , 
κX , and 
gX1 (here-
after called “aTGC parameters”) are all zero in the SM. The
parameter 
gγ

1 is zero because of EM gauge invariance, leav-
ing five free aTGC parameters, which describe deviations of
the triple gauge-boson couplings from their SM predictions.
It is common to apply the so-called LEP constraint [76],
which imposes SU (2) × U (1) gauge invariance, and which
reduces the number of independent aTGC parameters to
three, by introducing the following constraints: λγ = λZ

and 
gZ1 = 
κZ + 
κγ tan2 θW , where θW is the weak
mixing angle. Since aTGC parameters lead to violation of
unitarity at high energies, form factors are often applied to
them in order to ensure unitarity:

α → α
(

1 + ŝ
�2

FF

)2 ,

where α is one of the aTGC parameters, ŝ is the square of the
diboson invariant mass, and �FF is the form factor’s energy
scale.

An alternative framework for describing modifications of
diboson production is an effective field theory (EFT) [77,78]
that is assumed to be valid below an energy scale �, and
which introduces three CP-conserving dimension-six opera-
tors:

OW = (Dμ�)†Wμν(Dν�),

OB = (Dμ�)†Bμν(Dν�),

OWWW = Tr [WμνW
νρWμ

ρ ].

Here, � is the Higgs doublet field, Dμ is the covariant deriva-
tive, and Wμν and Bμν are the field strength tensors of the W
and B gauge boson fields. The coefficients of these operators
(EFT parameters), cW /�2, cB/�2, and cWWW /�2, are zero
in the SM and can be related to the LEP-constraint aTGC
parameters as follows:

cW
�2 = 2

m2
Z


gZ1 ,

cB
�2 = 2

m2
W


κγ − 2

m2
Z


gZ1 ,

cWWW

�2 = 2

3g2m2
W

λ.

This relation only holds if no form factor is applied to the
aTGCs. The effect of aTGC/EFT parameters on the H →
WW process is neglected.

The aTGC and EFT parameters both tend to increase the
diboson cross-section at high pT(V ) and high invariant mass
of the diboson system. Both the WV → �νjj channel and the
WV → �νJ channel can be used to search for these BSM
enhancements. The WV → �νJ channel, although currently
less sensitive as a SM WV measurement, is expected to pro-
vide a higher sensitivity to the aTGC/EFT models, because
of the better efficiency at high pT(V ). On the other hand,
the WV → �νjj channel, where the SM WV measurement
is clearly established, is useful as a complementary search
channel that probes a different energy range.

In this analysis, the new-physics search uses signal regions
with exactly the same event selection as the cross-section
measurements, except that the mjj requirement is tightened
to 65 GeV < mjj < 95 GeV in the WV → �νjj channel and
the mJ requirement is tightened to 65 GeV < mJ < 95 GeV
in the WV → �νJ channel. These tighter requirements
lead to an increase in the signal-to-background ratio. In the
WV → �νjj channel, events which fail the mjj requirement
(i.e. 40 GeV < mjj < 65 GeV or 95 GeV < mjj < 200 GeV)
are put into a sideband control region. The Z Z background
is neglected in the new-physics search, due to its very small
expected contribution.

The search makes use of the pT(jj) (WV → �νjj chan-
nel) or pT(J) (WV → �νJ channel) distribution. Here-
after, pT(Vrec) is used to refer to both pT(jj) and pT(J).
The pT(Vrec) distributions of the events in the signal regions
are shown in Fig. 7. This figure also shows the expected
enhancement at high pT(Vrec) in the presence of different
EFT parameter values. As can be seen from the figure, no sig-
nificant deviation from the SM prediction is observed; there-
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Fig. 7 The observed a pT(jj) distribution in the WV → �νjj aTGC
signal region, and b pT(J) distribution in the WV → �νJ aTGC sig-
nal region, overlaid with the background and signal prediction. The
expected BSM enhancements due to anomalous values of the EFT
parameter cWWW /�2 are also shown, for cWWW /�2 = 4 TeV−2 and

cWWW /�2 = 8 TeV−2. The hatched bands indicate the systematic
uncertainty in the SM prediction. The histograms are displayed with
the binning that is used for the computation of the confidence intervals
for the aTGC and EFT parameters. The last bin includes overflow

Table 5 The observed and expected 95% confidence intervals for the
aTGC parameters without the LEP constraint. The confidence intervals
are computed separately for the WV → �νjj and WV → �νJ chan-

nels, and are calculated both for �FF = 5 TeV and �FF = ∞ (i.e. no
form factor). The confidence intervals for each parameter are calculated
while fixing the other parameters to zero

Form factor Parameter WV → �νjj WV → �νJ

Observed Expected Observed Expected


gZ1 [ −0.039, 0.059] [ −0.050, 0.066] [ −0.033, 0.036] [ −0.039, 0.042]


κZ [ −0.045, 0.063] [ −0.060, 0.076] [ −0.028, 0.030] [ −0.033, 0.035]

�FF = ∞ λZ [ −0.024, 0.024] [ −0.029, 0.029] [ −0.015, 0.015] [ −0.017, 0.017]


κγ [ −0.099, 0.14] [ −0.13, 0.17] [ −0.058, 0.063] [ −0.067, 0.073]

λγ [ −0.084, 0.084] [ −0.10, 0.10] [ −0.042, 0.041] [ −0.049, 0.049]


gZ1 [ −0.042, 0.064] [ −0.055, 0.073] [ −0.044, 0.048] [ −0.051, 0.054]


κZ [ −0.047, 0.068] [ −0.064, 0.083] [ −0.037, 0.040] [ −0.043, 0.047]

�FF = 5 TeV λZ [ −0.026, 0.026] [ −0.032, 0.032] [ −0.020, 0.019] [ −0.023, 0.022]


κγ [ −0.10, 0.15] [ −0.14, 0.18] [ −0.077, 0.084] [ −0.089, 0.097]

λγ [ −0.089, 0.089] [ −0.11, 0.11] [ −0.056, 0.056] [ −0.065, 0.065]

fore, 95% confidence intervals are computed for the aTGC
and EFT parameters.

The confidence intervals are computed from binned ML
fits to the pT(Vrec) distributions. The intervals are calculated
using a frequentist Feldman–Cousins approach [79]. In the
WV → �νjj channel, simultaneous fits to the pT(Vrec) dis-
tributions in the signal region and sideband CR are used,
while in the WV → �νJ channel, only the pT(Vrec) distribu-
tion in the signal region is used. Since the WV → �νJ and
WV → �νjj selections overlap, the confidence intervals are
calculated separately for the WV → �νJ and WV → �νjj
selections. In the fits, the SM WV and background predic-

tions are allowed to vary within their uncertainties. The mea-
sured cross sections of Sect. 10 are consistent with theoretical
SM WV predictions, but have large associated uncertainties;
for this reason the theoretical prediction is used here. The
systematic uncertainties in the normalizations and pT(Vrec)

shapes of the signal and backgrounds are accounted for
through nuisance parameters. The systematic uncertainties
that have the largest impact on the results are the jet-related
uncertainties (in both channels) and the uncertainty from the
limited size of the MC samples (in the WV → �νjj channel).

The observed 95% confidence intervals for the aTGC
parameters are shown in Table 5, without applying the LEP
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Table 6 The observed and expected 95% confidence intervals for the
aTGC parameters in the LEP-constraint scenario with �FF = ∞, com-
puted separately for the WV → �νjj and WV → �νJ channels. The

confidence intervals for each parameter are calculated while fixing the
other parameters to zero

Parameter WV → �νjj WV → �νJ

Observed Expected Observed Expected


gZ1 [ −0.027, 0.045] [ −0.036, 0.051] [ −0.021, 0.024] [ −0.024, 0.027]


κγ [ −0.11, 0.13] [ −0.15, 0.16] [ −0.061, 0.064] [ −0.071, 0.075]

λZ = λγ [ −0.022, 0.022] [ −0.027, 0.026] [ −0.013, 0.013] [ −0.015, 0.015]

Table 7 The observed and expected 95% confidence intervals for the EFT parameters. The parameters are given in units of TeV−2. The confidence
intervals for each parameter are calculated while fixing the other parameters to zero

Parameter WV → �νjj WV → �νJ

Observed (TeV−2) Expected (TeV−2) Observed (TeV−2) Expected (TeV−2)

cWWW /�2 [ −5.3, 5.3] [ −6.4, 6.3] [ −3.1, 3.1] [ −3.6, 3.6]

cB/�2 [ −36, 43] [ −45, 51] [ −19, 20] [ −22, 23]

cW /�2 [ −6.4, 11] [ −8.7, 13] [ −5.1, 5.8] [ −6.0, 6.7]

constraint. The confidence intervals for a given aTGC param-
eter are computed while fixing the other aTGC parameters to
zero. The confidence intervals are shown separately for the
WV → �νjj and WV → �νJ selections, and the expected
confidence intervals under the SM hypothesis are also shown
for comparison. Confidence intervals for the aTGC parame-
ters are shown for �FF = 5 TeV and for the case of no form
factor (equivalent to �FF = ∞). The value of �FF = 5 TeV
is chosen in order to ensure unitarity over the range of aTGC
parameter values to which this analysis is sensitive [80].

The WV → �νJ selection has significantly better sen-
sitivity to the aTGC parameters. No combination of the
WV → �νjj and WV → �νJ constraints is performed, since
it is expected that the WV → �νJ channel would dominate
the combination. The sensitivity to the aTGC parameters in
the WV → �νJ channel mainly comes from the pT(Vrec) >

600 GeV bins, whereas the sensitivity in the WV → �νjj
channel mainly comes from the 300–600 GeV bins. Since
the WV → �νjj channel probes a lower pT(Vrec) range, its
sensitivity is less degraded by the form factors (which have
a larger effect at higher pT) than the WV → �νJ channel.

In addition, the observed and expected confidence inter-
vals for the aTGC parameters in the LEP-constraint scenario
are given in Table 6 for �FF = ∞.

The observed and expected confidence intervals for the
EFT parameters are shown in Table 7, separately for the
WV → �νjj and WV → �νJ selections. Confidence regions
for combinations of two EFT parameters are shown in Fig. 8;
for each combination the third EFT parameter is held fixed to
zero. Although the constraints from the WV → �νjj channel
are less stringent than those from the WV → �νJ channel,
they probe a complementary phase space. The sensitivity

of the WV → �νJ channel is similar to the most sensitive
previous analyses to publish constraints on these parame-
ters [3,5,6,22]. The WV → �νJ channel probes a similar
phase space to Ref. [22]; these analyses benefit from their
ability to reconstruct high-pT V → qq ′ decays.

12 Conclusion

The production of WV → �νqq ′, with V being a W or
Z boson, is measured using 20.2 fb−1 of pp collisions at
8 TeV at the LHC with the ATLAS detector. The mea-
surements focus on WV production where the bosons have
large transverse momentum. Fiducial cross-sections for the
WV → �νqq ′ process are measured in two different, but
partially overlapping, phase spaces.

The first phase space, denoted WV → �νjj, targets a
hadronically decaying V boson whose decay products can
be distinguished as two R = 0.4 jets. In this phase space, the
WV → �νqq ′ process is measured with a significance of
4.5σ , and the fiducial cross-section is measured to be 209 ±
28(stat) ± 45(syst) fb, in agreement with the MC@NLO
prediction of 225 ± 13 fb.

The second phase space, denoted WV → �νJ, contains
a single R = 1.0 jet consistent with the collimated decay
products of a high-pT V boson. The WV process is mea-
sured with a significance of 1.3σ in this phase space. The
fiducial cross-section for this phase space is measured to be
30 ± 11(stat) ± 22(syst) fb, consistent with the MC@NLO
prediction of 58 ± 15 fb.

The events are also used to search for new physics modify-
ing triple gauge-boson vertices, which could lead to enhance-
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Fig. 8 The 95% confidence-level regions for combinations of two EFT
parameters. a cWWW /�2 and cB/�2, b cWWW /�2 and cW /�2, c
cB/�2 and cW /�2. The expected and observed confidence regions are

shown for theWV → �νjj channel (outer contours) and theWV → �νJ
channel (inner contours). When computing the confidence regions for
two parameters, the third EFT parameter is held fixed to zero

ments of the cross-section at high pT of the bosons. No evi-
dence is found for new physics, and 95% confidence intervals
are computed for anomalous coupling parameters. The con-
straints on new physics are also interpreted in terms of an
effective field theory. The WV → �νJ channel is found to
be significantly more sensitive to the new-physics parame-
ters than the WV → �νjj channel, which demonstrates the
power of large-radius jet substructure techniques. The con-
straints from this analysis on the new physics parameters are
comparable to the previous most stringent constraints from
other diboson analyses.
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F. Fiedler86, A. Filipčič78, M. Filipuzzi45, F. Filthaut108, M. Fincke-Keeler172, K. D. Finelli152, M. C. N. Fiolhais128a,128c,r,
L. Fiorini170, A. Fischer2, C. Fischer13, J. Fischer178, W. C. Fisher93, N. Flaschel45, I. Fleck143, P. Fleischmann92,
R. R. M. Fletcher124, T. Flick178, B. M. Flierl102, L. R. Flores Castillo62a, M. J. Flowerdew103, G. T. Forcolin87,
A. Formica138, F. A. Förster13, A. Forti87, A. G. Foster19, D. Fournier119, H. Fox75, S. Fracchia141, P. Francavilla83,
M. Franchini22a,22b, S. Franchino60a, D. Francis32, L. Franconi121, M. Franklin59, M. Frate166, M. Fraternali123a,123b,
D. Freeborn81, S. M. Fressard-Batraneanu32, B. Freund97, D. Froidevaux32, J. A. Frost122, C. Fukunaga158, T. Fusayasu104,
J. Fuster170, C. Gabaldon58, O. Gabizon154, A. Gabrielli22a,22b, A. Gabrielli16, G. P. Gach41a, S. Gadatsch32,
S. Gadomski80, G. Gagliardi53a,53b, L. G. Gagnon97, C. Galea108, B. Galhardo128a,128c, E. J. Gallas122, B. J. Gallop133,
P. Gallus130, G. Galster39, K. K. Gan113, S. Ganguly37, Y. Gao77, Y. S. Gao145,g, F. M. Garay Walls49, C. García170,
J. E. García Navarro170, J. A. García Pascual35a, M. Garcia-Sciveres16, R. W. Gardner33, N. Garelli145, V. Garonne121,
A. Gascon Bravo45, K. Gasnikova45, C. Gatti50, A. Gaudiello53a,53b, G. Gaudio123a, I. L. Gavrilenko98, C. Gay171,
G. Gaycken23, E. N. Gazis10, C. N. P. Gee133, J. Geisen57, M. Geisen86, M. P. Geisler60a, K. Gellerstedt148a,148b,
C. Gemme53a, M. H. Genest58, C. Geng92, S. Gentile134a,134b, C. Gentsos156, S. George80, D. Gerbaudo13, A. Gershon155,
G. Geßner46, S. Ghasemi143, M. Ghneimat23, B. Giacobbe22a, S. Giagu134a,134b, N. Giangiacomi22a,22b, P. Giannetti126a,126b,
S. M. Gibson80, M. Gignac171, M. Gilchriese16, D. Gillberg31, G. Gilles178, D. M. Gingrich3,d, N. Giokaris9,*,
M. P. Giordani167a,167c, F. M. Giorgi22a, P. F. Giraud138, P. Giromini59, G. Giugliarelli167a,167c, D. Giugni94a, F. Giuli122,
C. Giuliani103, M. Giulini60b, B. K. Gjelsten121, S. Gkaitatzis156, I. Gkialas9,s, E. L. Gkougkousis139, P. Gkountoumis10,

123



Eur. Phys. J. C   (2017) 77:563 Page 21 of 31  563 

L. K. Gladilin101, C. Glasman85, J. Glatzer13, P. C. F. Glaysher45, A. Glazov45, M. Goblirsch-Kolb25, J. Godlewski42,
S. Goldfarb91, T. Golling52, D. Golubkov132, A. Gomes128a,128b,128d, R. Gonçalo128a, R. Goncalves Gama26a,
J. Goncalves Pinto Firmino Da Costa138, G. Gonella51, L. Gonella19, A. Gongadze68, S. González de la Hoz170,
S. Gonzalez-Sevilla52, L. Goossens32, P. A. Gorbounov99, H. A. Gordon27, I. Gorelov107, B. Gorini32, E. Gorini76a,76b,
A. Gorišek78, A. T. Goshaw48, C. Gössling46, M. I. Gostkin68, C. A. Gottardo23, C. R. Goudet119, D. Goujdami137c,
A. G. Goussiou140, N. Govender147b,t, E. Gozani154, L. Graber57, I. Grabowska-Bold41a, P. O. J. Gradin168, J. Gramling166,
E. Gramstad121, S. Grancagnolo17, V. Gratchev125, P. M. Gravila28f, C. Gray56, H. M. Gray16, Z. D. Greenwood82,u,
C. Grefe23, K. Gregersen81, I. M. Gregor45, P. Grenier145, K. Grevtsov5, J. Griffiths8, A. A. Grillo139, K. Grimm75,
S. Grinstein13,v, Ph. Gris37, J.-F. Grivaz119, S. Groh86, E. Gross175, J. Grosse-Knetter57, G. C. Grossi82, Z. J. Grout81,
A. Grummer107, L. Guan92, W. Guan176, J. Guenther65, F. Guescini163a, D. Guest166, O. Gueta155, B. Gui113,
E. Guido53a,53b, T. Guillemin5, S. Guindon2, U. Gul56, C. Gumpert32, J. Guo36c, W. Guo92, Y. Guo36a, R. Gupta43,
S. Gupta122, G. Gustavino115, P. Gutierrez115, N. G. Gutierrez Ortiz81, C. Gutschow81, C. Guyot138, M. P. Guzik41a,
C. Gwenlan122, C. B. Gwilliam77, A. Haas112, C. Haber16, H. K. Hadavand8, N. Haddad137e, A. Hadef88, S. Hageböck23,
M. Hagihara164, H. Hakobyan180,*, M. Haleem45, J. Haley116, G. Halladjian93, G. D. Hallewell88, K. Hamacher178,
P. Hamal117, K. Hamano172, A. Hamilton147a, G. N. Hamity141, P. G. Hamnett45, L. Han36a, S. Han35a, K. Hanagaki69,w,
K. Hanawa157, M. Hance139, B. Haney124, P. Hanke60a, J. B. Hansen39, J. D. Hansen39, M. C. Hansen23, P. H. Hansen39,
K. Hara164, A. S. Hard176, T. Harenberg178, F. Hariri119, S. Harkusha95, R. D. Harrington49, P. F. Harrison173,
N. M. Hartmann102, M. Hasegawa70, Y. Hasegawa142, A. Hasib49, S. Hassani138, S. Haug18, R. Hauser93, L. Hauswald47,
L. B. Havener38, M. Havranek130, C. M. Hawkes19, R. J. Hawkings32, D. Hayakawa159, D. Hayden93, C. P. Hays122,
J. M. Hays79, H. S. Hayward77, S. J. Haywood133, S. J. Head19, T. Heck86, V. Hedberg84, L. Heelan8, S. Heer23,
K. K. Heidegger51, S. Heim45, T. Heim16, B. Heinemann45,x, J. J. Heinrich102, L. Heinrich112, C. Heinz55, J. Hejbal129,
L. Helary32, A. Held171, S. Hellman148a,148b, C. Helsens32, R. C. W. Henderson75, Y. Heng176, S. Henkelmann171,
A. M. Henriques Correia32, S. Henrot-Versille119, G. H. Herbert17, H. Herde25, V. Herget177, Y. Hernández Jiménez147c,
H. Herr86, G. Herten51, R. Hertenberger102, L. Hervas32, T. C. Herwig124, G. G. Hesketh81, N. P. Hessey163a,
J. W. Hetherly43, S. Higashino69, E. Higón-Rodriguez170, K. Hildebrand33, E. Hill172, J. C. Hill30, K. H. Hiller45,
S. J. Hillier19, M. Hils47, I. Hinchliffe16, M. Hirose51, D. Hirschbuehl178, B. Hiti78, O. Hladik129, X. Hoad49, J. Hobbs150,
N. Hod163a, M. C. Hodgkinson141, P. Hodgson141, A. Hoecker32, M. R. Hoeferkamp107, F. Hoenig102, D. Hohn23,
T. R. Holmes33, M. Homann46, S. Honda164, T. Honda69, T. M. Hong127, B. H. Hooberman169, W. H. Hopkins118,
Y. Horii105, A. J. Horton144, J-Y. Hostachy58, S. Hou153, A. Hoummada137a, J. Howarth87, J. Hoya74, M. Hrabovsky117,
J. Hrdinka32, I. Hristova17, J. Hrivnac119, T. Hryn’ova5, A. Hrynevich96, P. J. Hsu63, S.-C. Hsu140, Q. Hu36a,
S. Hu36c, Y. Huang35a, Z. Hubacek130, F. Hubaut88, F. Huegging23, T. B. Huffman122, E. W. Hughes38, G. Hughes75,
M. Huhtinen32, P. Huo150, N. Huseynov68,b, J. Huston93, J. Huth59, G. Iacobucci52, G. Iakovidis27, I. Ibragimov143,
L. Iconomidou-Fayard119, Z. Idrissi137e, P. Iengo32, O. Igonkina109,y, T. Iizawa174, Y. Ikegami69, M. Ikeno69,
Y. Ilchenko11,z, D. Iliadis156, N. Ilic145, G. Introzzi123a,123b, P. Ioannou9,*, M. Iodice136a, K. Iordanidou38, V. Ippolito59,
M. F. Isacson168, N. Ishijima120, M. Ishino157, M. Ishitsuka159, C. Issever122, S. Istin20a, F. Ito164, J. M. Iturbe Ponce62a,
R. Iuppa162a,162b, H. Iwasaki69, J. M. Izen44, V. Izzo106a, S. Jabbar3, P. Jackson1, R. M. Jacobs23, V. Jain2, K. B. Jakobi86,
K. Jakobs51, S. Jakobsen65, T. Jakoubek129, D. O. Jamin116, D. K. Jana82, R. Jansky52, J. Janssen23, M. Janus57,
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