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Solving the quasi-static field model of the pulse-line

accelerator; relationship to a circuit model∗

Alex Friedman
LLNL and the Heavy Ion Fusion Virtual National Laboratory

October 14, 2005

The Pulse-Line Ion Accelerator (PLIA) is a promising approach to high-gradient acceleration of an
ion beam at high line charge density [1, 2, 3, 4, 5, 6]. A recent note by R. J. Briggs [7] suggests
that a “sheath helix” model of such a system can be solved numerically in the quasi-static limit.
Such a model captures the correct macroscopic behavior from “first principles” without the need
to time-advance the full Maxwell equations on a grid. This note describes numerical methods that
may be used to effect such a solution, and their connection to the circuit model that was described
in an earlier note by the author [8]. Fine detail of the fields in the vicinity of the helix wires is
not obtained by this approach, but for purposes of beam dynamics simulation such detail is not
generally needed.

In the axisymmetric limit, the continuity equation for charge (Briggs’ eqn. 3) is:

∂λ(z, t)

∂t
= −∂I(z, t)

∂z
, (1)

where I(z, t) is the helix current and λ(z, t) is the line charge density (charge per unit axial length
along the helix). Here I can be thought of as charge per unit time passing through a cross-sectional
plane cut across the wire itself, or (equivalently) as charge per unit time passing through a plane
cut across either the sheath helix or the actual helix normal to its major axis; the former view
makes the connection to a circuit model most obvious, while the latter is most natural for an
axisymmetric description. Denoting the helix radius by a and the wire center-to-center spacing
by s, the surface charge density on the helix sheet [Coul/m2] is σ = λ/2πa, the azimuthal sheet
current is Kθ = I/s [Coul/m/s], and the axial sheet current is Kz = I/2πa [Coul/m/s]. Eq. 1 can
be rewritten as:

∂σ(z, t)

∂t
= −∂Kz(z, t)

∂z
. (2)

We will use Eq. 2 to advance the surface charge density σ(z) to the future time level, and then
compute the advanced-time electrostatic potential φ(r, z), and thus the electric field E(r, z) that is
needed in the interior of the helix to advance the simulation particles.

It is now possible to establish a correspondence with the circuit model of [8], which assumed (for
convenience) one computational node per turn of the helix, that is, ∆z = s. The σi at each node
i can be integrated around the helix circumference and over an axial interval ∆z to yield a charge
Qi. Then, those charges are related to the voltages on the set of nodes by the mutual capacitances:∑

j

CijVj = Qi . (3)
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In the earlier note, a simpler local approximation (wherein the only nonzero elements of Cij were the
diagonal entries) was described, and it was the time derivative of this equation that was displayed,
so that differences between currents, rather than charges, appeared in the formulation. Here we may
precompute the capacitance matrix Cij and then, at each time step, invert it to obtain the advanced-
time voltages after we have computed the source terms by advancing the continuity equation, Eq. 2.
Note that in the circuit model, the capacitance between each helix turn and the grounded outer
pipe (with dielectric in between) plays a major role. Since the surface charge on the helix only
establishes the jumps in Er and not the actual potential values, the outer-wall boundary condition
in the Poisson solution used to establish Cij serves to set the diagonal elements Cii, effectively the
capacitances to ground.

For the purposes of a 1-D circuit model, knowledge of the capacitance matrix suffices. However,
to advance the particles in an (r, z) or 3-D simulation it is necessary to obtain the electric field
structure, and so (rather than using the capacitance matrix) a Poisson solution may well be carried
out at each step, including the beam charge as a source term.

Briggs also relates the helix voltage V (z, t) to the changing axial magnetic flux through the helix.
Taking a path of integration in Faraday’s law that passes inside the helix wire, extending axially
by a distance ∆z, the flux Φ(z, t) is encircled ∆z/s times, and the corresponding voltage change is:

∆V = −∆z

s

∂

∂t
Φ(z, t) , (4)

where the total flux through the helix (due to its own current and that of the primary strap) is:

Φ(z, t) =

∫ a

0

Bz(r, z, t) 2πr dr . (5)

In the continuum limit,
∂

∂t
Φ(z, t) = −s

∂V (z, t)

∂z
, (6)

where we have transposed the left and right members to make it clear that we intend to use this
equation to advance the flux in time. Actually, it is the magnetic field B(r, z, t), not the flux, that is
desired at the advanced time, and initially it was not clear that the flux (which is a scalar function of
the single spatial coordinate z) contains sufficient information to uniquely specify B(r, z, t) (which is
a vector function of two spatial coordinates). The key realization in formulating this algorithm was
the recognition that a set of N fluxes can uniquely specify a set of N current sources (corresponding
to N turns of the helix, when ∆z = s), and then those sources can be used to compute B(r, z, t)
via the Biot-Savart law or other means.

It is a reasonable approximation to neglect the azimuthal component of the magnetic field, Bθ(r, z).
This “skew” component is, in general, small in the vicinity of the beam, as can be seen via direct
solutions of the Maxwell equations on a computational grid [4]. This corresponds to a set of current
sources which are purely azimuthal (a coaxial set of circular hoops); at each computational node
on the helix, this source is Kθ(z, t)∆z = (2πa/s)Kz(z, t)∆z = I(z, t)∆z/s.

To make correspondence with the above-mentioned circuit model, the voltage change from node i
to node i + 1 is related to the currents at the nodes by:

∆z
∑

j

Mij
dKθ

dt
=

∆z

s

∑
j

Mij
dIj

dt
= Vi+1 − Vi . (7)

2



In the circuit model, Ii is the current flowing between “voltage” nodes i and i+1. It is desirable to
avoid two-cell difference expressions such as Vi+1−Vi−1 (which would be natural if all quantities were
defined at the same set of axial locations) because of a concern that “decoupled” solutions might
arise. That is, modes of oscillation wherein I is excited at odd-numbered nodes might diverge sec-
ularly from modes wherein the excitation is at even-numbered nodes. Also, finite differences based
on smaller axial separations are more accurate. Note also that the well-known Yee discretization of
finite-difference time-domain electromagnetics [9] employs “staggered” grids for E and B, so as to
preserve important properties of the continuum equations in the finite-difference model. So moti-
vated, we “offset” the axial locations of the currents from those of the voltages by half a cell. By
examination of the governing equations, the “centering” of all other quantities can be developed.
See Fig. 1.

Vi, σi Vi+1, σi+1
Ii, Kz,i
⇒

Ri, Φi
z

Figure 1: Spatial discretization along helix, showing locations of computational nodes.

When ∆z = s, Eq. 7 describes the usual mutual-inductance relationship between the rates of change
of the currents (Ij) through the turns j and the voltage change (Vi+1 − Vi) across each inductor
segment i. (Most of our work with the circuit model used the simpler local self-inductance coupling,
Li = −Mii, which discards the nonlocal nature of the flux coupling.)

For any node spacing, equations 6 and 7 are clearly equivalent (in a finite-difference sense) when:∑
j

MijIj = −Φi , (8)

which is a familiar formula for mutual inductances (see, e.g., [10]). In practice, the Mij are pre-
computed before a simulation run begins time advancement, by setting Ij to unity for each j in
turn, with the other currents zero, then computing B(r, z) and measuring the fluxes Φi at all axial
nodes for each such configuration.

The sheath-helix model we are using does not restrict the node spacing ∆z to be equal to s, and
(as noted above) we wish to allow arbitrary zoning in the simulation code. Thus, we interpret the
mutual inductances as coupling the magnetic fluxes through the tori associated with the individual
computational zones with the currents in those zones. Note that we associate Ij with the current
flowing in the helix wire through the plane z = zj. Ij is not the total current flowing azimuthally
in computational zone j on the helix, and is insensitive to zone size when sufficiently small zones
are employed. To avoid confusion on this point, we rewrite Eq. 8 as:

2πa
∑

j

MijKz,j = −Φi , (9)

An algorithm

Clearly, many variations are available. Here, we outline one possibility. The algorithm consists
of two main elements: a pre-computation phase to establish matrices that are needed during the
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time-advance, and a series of actions that are taken at each computational time step, to advance
the system state through an interval ∆t. Denoting the time level (abbreviated “tl”) of a quantity
by a superscript, the step is described herein as an advance of the system from tl 0 to tl 1. The
sheet current Kz is advanced from tl 1/2 to tl 3/2; it can be obtained at tl 1 by interpolation,
as necessary for diagnostics or magnetic field computation. The overall procedure is formally a
“leap-frog” advance, and is both “time centered” (in fact, reversible) and second-order accurate. At
problem start-up, the current in the helix may be assumed to be zero, or a half-step may be taken
to obtain values of Kz at tl 1/2.

Pre-computation

If only the voltages and currents on the helix are desired (an improved circuit model), precomputa-
tion of the capacitance matrix is appropriate; indeed, it may be desirable even in the general case.
Refer to the discussion surrounding Eqn. 3. An enhanced model might also advance a set of particles
in 1-D using applied fields computed via a separately precomputed Green’s function that relates a
unit voltage on the helix at z = z0 to a voltage pattern V (z − z0) averaged over a nominal beam
cross-section. Beam self forces might be modeled using a simple “dλ/dz” formulation, or (better)
using yet another precomputed Green’s function averaging across a nominal beam cross-section for
both the charge-density and the force on a “slice” as a function of z.

In all cases, the mutual inductances of Eqn. 9 should be pre-computed.

Time advance

Enter the time step with the surface charge density on the helix σ defined at tl 0, and the axial
sheet current Kz defined at tl 1/2.

(a) Advance the surface charge density on the helix using the continuity equation:

(σ1
i − σ0

i )/∆t = −(K
1/2
z,i −K

1/2
z,i−1)/∆z . (10)

(b) For the simplest case of an improved circuit model, it suffices to associate charges Qi = σi∆z
with each node, and solve Eqn. 3 for the Vj values. For the full simulation case, the surface charge
induces a jump in the radial component of the electric field at the helix:

εouter

[
∂φ1(r, z)

∂r

]
r=a+

− εinner

[
∂φ1(r, z)

∂r

]
r=a−

= −σ1(z) , (11)

where ε is the dielectric constant (typically, constant in each subdomain of the problem), and
“outer” and “inner” are with respect to the helix radius a, to account for the possibility of a change
in ε at the helix radius. Here there are multiple possibilities:

(i) One could solve coupled Laplace equations with this jump in the gradient of φ as a constraint.
This is not simply a matter of solving a Laplace equation with a Neumann boundary condition
at the helix in each subdomain (i.e., in the inner and outer regions), since only the jump in the
gradient, and not the gradient itself, is known in advance. The additional constraint to be imposed
is that the potential φ take on the same values at the helix nodes (that is, the computational nodes
at r = a) in both subdomains.

(ii) Alternatively, we may “smear” the surface charge slightly by defining a charge density in the
computational cell at the radius of the helix as ρ = σ/∆r, then solving a Poisson equation (including
source terms from both helix charge, beam particles, stray electrons, and any other sources):

∇ · (ε∇φ1) = −ρ1 , (12)
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where the “stencil” for cells with radial index k corresponding to the helix radius might be:

εouter(φ
1
k+1 − φ1

k)− εinner(φ
1
k − φ1

k−1)

∆r2
+

(
∂2

∂z2
term

)
= − σ1

∆r
. (13)

For an infinitesimally thin sheet, the axial second derivative is not needed since all z variations are
“slow” in comparison to jump in the radial electric field; but in passing to a finite-thickness layer it
is appropriate to include such as term, as indicated above. This conclusion was reached by drawing
a Gaussian pillbox and noting that there may be a non-negligible electric flux E · n̂ through the
faces that separate adjacent computational nodes on the helix.

(c) From the solution φ1(r, z) to the Poisson equation, the electric field E1(r, z) can be obtained via
centered finite differences, and the voltages V 1(z) at the computational nodes on the helix obtained
as the corresponding values of φ1. If particles are to be advanced in the immediate vicinity of the
helix (within the last cell), it may be more appropriate to set the radial component of the electric
field in the zones at r = a to values computed via one-sided finite differences (since that component
is discontinuous across the helix layer).

(d) Time-advance the magnetic flux through each helix node i using a finite-difference form of Eq. 6:

(Φ
3/2
i − Φ

1/2
i )/(∆t) = −s(V 1

i+1 − V 1
i )/∆z . (14)

(e) Obtain currents at the helix nodes from the magnetic fluxes by inverting the inductance matrix,
Eq. 9.

(de′) Note that steps (d) and (e) may be combined, and introduction of the intermediary flux
quantities Φ avoided, by substituting Eq. 9 into Eq. 14 to yield:

∆z

s

2πa

∆t

∑
j

Mij(K
3/2
z,j −K

1/2
z,j ) = (V 1

i+1 − V 1
i ) , (15)

where the sum involving the K
3/2
z is to be segregated into the left member and the matrix inverted.

In general, this is a dense matrix, though the elements diminish in magnitude away from the
diagonal.

This approach is especially attractive when the helix ends in a terminating resistive line shaped so
as to continue the helical pattern. In that case, the voltage drop per unit length has both inductive
and resistive contributions, which add in series since the current in the inductor is exactly that in
the resistor. The resistive voltage drop between nodes i+1 and i separated by a helix segment with
a resistance per unit length Ri has two contributions:

∆z

s

2πa

∆t

∑
j

Mij(K
3/2
z,j −K

1/2
z,j ) + 2πa∆zRi

(K
3/2
z,i + K

1/2
z,i )

2
= (V 1

i+1 − V 1
i ) , (16)

where again the terms in K
3/2
z are to be segregated into the left member.

If it is desirable to obtain the Kz values at tl 1, a simple interpolation between quantities at tl 1/2
and tl 3/2 suffices; the required storage is trivial.

(f) Use the resulting sheet currents Kz,j as sources in a magnetic field solving routine to obtain
B1(r, z) or B3/2(r, z), if desired (necessary when electron orbits are being computed, or for improved
accuracy in ion orbits, in the absence of an overwhelmingly strong applied magnetic field).
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The “drive” can enter in any of several ways:

(i) If it is a current source, it replaces step (e) at node 1 using the prescribed input Iinput(t).

(ii) If it is a voltage source, it enters as a boundary condition (internal boundary) in the Poisson
solution of step (b), and the σ at that node may be ignored.

(iii) If it is via a transformer primary strap, itself driven by a current source, it becomes an extra
“node 0” in the mutual inductance matrix; the flux Φ0 is probably not of direct interest, unless the
influence on the driving circuit is needed.

Discussion

The equations presented herein define a detailed one-dimensional model of wave propagation on
the helix that can be coupled with a one-dimensional particle-in-cell model. The simplicity of such
a model is attractive for development of insight and for rapid scoping studies; indeed, the simpler
circuit model presented earlier lent valuable insight into the behavior of this novel system.

The circuit model from that earlier note was adapted by D. Grote for use in WARP, which allows
multi-dimensional (2-D and 3-D) particle-in-cell simulations to be carried out, including detailed
space charge fields. Such a more detailed model is valuable for detailed design and analysis studies.
One reason it is necessary is that the programmatic goal is to employ very high line-charge densities,
presenting a challenge to beam-end control. At the ends, the beam is not sufficiently paraxial for
a reduced description to be reliable. Also, transverse and longitudinal motions are coupled at the
ends; even when the effective longitudinal “synchrotron” frequency of individual particle motion is
small, the shape of the beam-end evolves.

In the earlier circuit model, the effects of circuit “loading” by the beam were considered. For that
purpose, it was necessary to infer an image current, and this was accomplished by introducing a
time-varying surface charge that induced a voltage on the nodes via their capacitance to ground;
the equation solved was:

∂I

∂z
= −C ∂V

∂t
− ∂Ib

∂z
= −C ∂V

∂t
+

∂λb

∂t
(17)

where C is the capacitance to ground per unit length, λb is the beam line charge density, and the
latter equality follows from the continuity equation.

The WARP model improved on this by solving a Poisson equation that included the beam space
charge as the only source term; the radial electric wall at the helix, which was the radial boundary
of the simulation domain in that model, was used to infer the image charge induced by the beam.
This, in conjunction with the field solution using the voltages on the helix as boundary values, led
to a valuable “smoothing” of the coupling between the helix and the beam. The net effect was to
greatly diminish the feedback of short wavelength modes in a way that the simple circuit model
did not; thus the simple circuit model was, in that sense, pessimistic, especially with regard to
beam-loading effects. The “enhanced” 1-D model proposed in this note would also capture the key
smoothing effects on short wavelength feedback.

The WARP model also employed “sub-cycling” of the circuit equation advance, that is, use of a
timestep size ∆tcircuit to advance the current and voltage on the helix that was smaller than the
∆tPIC used to advance the particles and space-charge field. This can readily be accomplished in the
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model described herein, since the charge density ρ1 of the beam can be obtained by advancing the
particle velocities to tl 1/2 and then the positions to tl 1, without knowledge of the helix voltages at
intervening substeps. By interpolating between ρ0 and ρ1, an approximate charge density at each
substep can be used in solving for φ while including the effects of circuit loading by the beam.

Treating the helix as a perfect conductor for the purpose of computing the image charges is only an
approximation. If the helix turns are separated by a large enough pitch, the “inner” fields can leak
through and induce images on the outer pipe. The best model to use is still under consideration.

Studies of electrical breakdown, field stress, and (for some situations) electron-cloud in the helix
may require a detailed treatment of the wires and their surroundings, and for such purposes another
treatment will be needed.
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