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Abstract

The correlation between the shift current mechanism for the bulk photovoltaic effect (BPVE) and

the structural and electronic properties of ferroelectric perovskite oxides is not well understood.

Here, we study and engineer the shift current photovoltaic effect using a visible-light-absorbing

ferroelectric Pb(NixTi1−x)O3−x solid solution from first principles. We show that the covalent

orbital character dicates the direction, magnitude, and onset energy of shift current in a predictable

fashion. In particular, we find that the shift current response can be enhanced via electrostatic

control in layered ferroelectrics, as bound charges face a stronger impetus to screen the electric

field in a thicker material, delocalizing electron densities. This heterogeneous layered structure

with alternative photocurrent generating and insulating layers is ideal for BPVE applications.
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Solar energy is a promising long-term solution for future energy supply challenges because

it is both renewable and environmentally friendly [1]. To convert solar energy efficiently,

low band gap semiconducting materials are needed that can separate the photo-excited

charge carriers well for electricity generation or catalysis [2–4]. While traditional charge

separation is accomplished through some externally engineered asymmetry as found for

example in a p-n junction, ferroelectrics (FEs) provide an alternative way to separate charge

by the internal depolarization field or by the bulk photovoltaic effect (BPVE) [5–7]. In the

BPVE under sustained illumination, the electrons are continuously excited to a quasiparticle

coherent state that has an intrinsic momentum, generating a spontaneous direct short-circuit

photocurrent. Furthermore, the BPVE is able to create an open-circuit photovoltage that

is above the material’s band gap, potentially enabling high power conversion efficiences

beyond the Shockley-Queisser limit [8, 9]. Time dependent perturbation theory analysis

clearly shows the roles of broken inversion symmetry and spontaneous charge separation in

the BPVE through the “shift current” mechanism [10, 11].

However, the effects of material structure and electronic structure on shift current remain

unclear, and this hinders shift current engineering for photovoltaics. Here, we elucidate the

connections between structure, electronic structure, and shift current using a low band gap

solid solution Pb(NixTi1−x)O3−x (Ni-PTO) based on first-principles calculations [12, 13].

We construct the Ni-PTO solid solutions as layered systems, by substituting one Ni atom

for Ti in the 1 × 1 × N supercells of bulk PbTiO3 (PTO), and then removing the O atom

that is adjacent to the Ni atom at its apical position (Fig. S1 in the Supplementary Mate-

rial). These layered materials could potentially be synthesized and remain in the perovskite

phase even for high B-site substitution levels [12]. We choose this recently designed visible-

light absorbing ferroelectric material as a prototypical example for this study because its

electronic states near the band gap possess a diverse character that enhances the physical

and chemical tunabilities of this material. We show that the shift current response can be

tuned substantially via electrostatic control in these compositionally layered ferroelectrics,

potentially enabling future high power conversion efficiency.

A previously developed approach that yields good agreement with experiment for shift

current magnitude and spectral profile was used to calculate the shift current. [11, 14]

The QUANTUM-ESPRESSO code was used to perform density functional theory (DFT)

calculations with the local density approximation (LDA) functional [15–17]. All elements are
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represented by norm-conserving, optimized nonlocal pseudopotentials [18]. For structural

optimizations, at least 6 × 6 × 6 Monkhorst-Pack k-point grid [19] was used while for the

self-consistent and non-self-consistent calculations, finer k-point grids up to 40 × 40 × 40

were used to get a well-converged shift current response. The DFT+U method was used

to improve the description of d-orbital electrons, with Hubbard U parameterized by the

linear-response approach [20]. The calculated U values are ≈ 4.7 and 8.9 eV for Ti and Ni.

All photon energies are shifted by 1.05 eV so that PTO is at its experimental band gap (3.6

eV).

Tetragonal PTO belongs to the P4mm space group, corresponding to the C4v point group,

whose third rank shift current response tensor must have the form

σ =


0 0 0 0 σzyY 0

0 0 0 σzyY 0 0

σxxZ σxxZ σzzZ 0 0 0

 , (1)

where the lower and upper case letters represent directions of the light polarization and

photocurrent, respectively. We choose our polarization direction to be normal to the Ni

layers, so that the systems analyzed have the same symmetry properties, and (for unpolarized

light) only σxxZ and σzzZ are relevant.

We first consider a 1× 1× 3 supercell. The band gap is reduced due to the introduction

by nickel of a low-lying conduction band (CB) into the bulk PTO gap; as a result, the

band-edge electronic transitions, which will be responsible for the low energy shift current

response, occur only between the valence bands (VBs) and this particular CB. Fig. 1 shows

the calculated tensor elements of the shift current susceptibility and Glass coefficient, which

FIG. 1. (Color online) The (a) shift current susceptibilities and (b) Glass coefficients of the 1×1×3

layered Ni-PTO.
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FIG. 2. (Color online) (a) The band structure and real-space wavefunction isosurfaces correspond-

ing to the states indicated by the dashed rectangular regions of the 1× 1× 3 layered Ni-PTO. (b)

The k-resolved shift current for N=3. The bands describe the transitions, with the color giving

the value of the shift current response (A/V2). The near-gap response is dominated by the region

around the line from X to R, and changes direction along this path.

show response well within the visible range, as expected. Additionally, the shift current

induced by the perpendicularly polarized light (σxxZ) is much stronger than that induced

by the parallel polarized light (σzzZ) because of their different absorption efficiencies. Fur-

thermore, mapping of the k-resolved shift current strength (Fig. 2) shows that the electronic

transitions occurring near X(0, 0.5, 0) and R(0, 0.5, 0.5) k-points and along the X-R line

induce the most substantial shift current responses and are thus the most important for

the band-edge electronic transitions. However, the contribution from the ends of this region

largely counteract each other, as the shift vector changes direction along this line, suggesting

that the total response has the potential to be much stronger than what appears in Fig. 1.

To understand this, we consider the details of the electronic states at the points X and R.

Real-space wavefunction distribution analysis for the highest VB shows that it is essentially

delocalized at both X and R, with the wavefunction extending to the whole supercell because

of the overlap among the Pb 6s, Ti 3d, Ni 3d, and O 2p orbitals (Fig. 2). However, the

wavefunction distribution for the lowest CB shows substantial difference between X and

R. At X, it arises mainly from the Ni 3dx2−y2 and the nearby Pb 6p orbitals, and is more

localized, whereas at R it becomes much more delocalized, with a larger orbital contribution

from the Pb 6p, Ti 3dx2−y2 and Ti 3dz2 orbitals that are away from Ni. The local structural

environment around Ni is different from those around Pb and Ti, with a square planar
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symmetry around Ni, but a strong structural asymmetry along the polar axis around Pb

and Ti. The change of the orbital character and the local structural environment can have

two effects on the shift vector. First, compared to the Ni 3dx2−y2 orbital, the Pb 6p and

Ti 3dx2−y2 orbitals are more delocalized, while the Ti 3dz2 orbitals extend the wavefunction

along the shift current direction; this facilitates the motion of the shift current carriers.

Correspondingly, the shift vector magnitude at R is much larger than that at X (Fig. 3).

Second, it opens up the way for the sign change of the shift vector at R from that at X [11].

Therefore, if the orbital contribution of the Ti 3d and Pb 6p orbitals to the lowest CB

increases, not only is the shift vector magnitude enhanced, but also the orbital character

similarity between the X- and R-regions becomes stronger. Accordingly, the shift current

direction at the X-region changes to the same direction as the shift current at the R-region,

largely eliminating the cancellation of counter propagating currents. This means that we

should be able to engineer shift current direction and magnitude through the adjustment of

the orbital character contribution to the band-edge electronic transitions.

To verify this, we engineer the shift current response by changing the local structure.

Basically, the bottom of the CB is composed of the Ni 3d, Ti 3d, Pb 6p, and O 2p orbitals,

with the Ni 3d orbitals making a major contribution (Fig. S1 in the Supplementary). Since

the peak of the Ti 3d orbitals is located at a higher energy than that of the Ni 3d peak,

the contribution of the Ti 3d states to the band-edge electronic transitions can be enhanced

by a downshift of the Ti 3d orbitals at the CB. Therefore, we move Ti atoms antiparallel

to the overall polarization, reducing, but not entirely eliminating the local Ti off-center

displacements found in the relaxed structure. Clearly, the shift current direction changes

FIG. 3. (Color online) The shift current susceptibilities (σxxZ) and the shift vector for the k points

along the X−R line in the Brillouin zone of the 1× 1×N layered Ni-PTO.
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FIG. 4. (Color online) The (a) shift current susceptibilities (σxxZ), (b) Glass coefficients (GxxZ),

(c) percentages of the Ti and Ni 3d orbitals at the CB (
∑

m

∣∣〈ψCB,X|φ32m〉
∣∣2) at X k point, and

(d) total and projected density of states, of the 1× 1× 3 layered Ni-PTO with different Ti atomic

movements (Å) with respect to their relaxed positions. The inset in (c) shows the orbital character

of the Ti-O orbital overlap at the CB. When Ti moves towards the O4 plane, the Ti-O interaction

becomes more of nonbonding and less of antibonding character.

and its magnitude is substantially enhanced by moving the Ti sublattices antiparallel to

the overall polarization (Fig. 4). The shift current onset energy also moves downwards as

the Ti sublattice artificial displacement antiparallel to the polarization is increased. The

DOS analysis shows that the contribution of the Ti 3d (and also Pb 6p, not shown) orbitals

to the lowest CB increases while the proportion of the Ni 3d orbitals decreases steadily

with Ti atomic movements (Fig. 4). When the Ti off-center displacements and the lattice

distortions are reduced, the antibonding character of the Ti-O orbital overlap is reduced [21].

This downshifts the Ti 3d orbitals at the CB and leads to an enhancement of the Ti 3d (Pb
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6p) states contributing to the lowest CB. At a certain point, the shift vector at the X-region

changes sign, and the collective shift current responses for the X- and R-regions add up

constructively.

It is clear that structural distortion of the bulk PTO can significantly affect the contribu-

tion of states dominated by the nickel layer. Such manipulation of the atomic configuration

is artificial, but suggests that altering the number of bulk PTO layers may have a significant

effect. This is confirmed by the response for thicker Ni-PTO supercells with one NiO2 plane

per supercell (Fig. 5); contrary to naive expectations, reducing the Ni fraction actually in-

creases the effectiveness of substitution, increasing the response and reducing the band gap

as the number of layers is increased. The proximate reason for the change in response be-

comes clear upon looking at the response along the X-R line (Fig. 3). The dramatic change

going from 1 × 1 × 3 to 1 × 1 × 4 is due to the disappearance of the sign change versus k

point in the shift current response response, and as the number of PTO layers is further

increased, the magnitude of the shift current further increases. To investigate further, we

plot the layer-averaged probability density as a function of layer normal coordinate for the

relevant VBM and CBM states (Fig. 6). Going from N=3 to N=4, these states, especially

the VB state, becomes more delocalized, corresponding to the enhancement of the shift cur-

rent magnitude. Additionally, this delocalization is only moderately enhanced from N=4 to

N=6, resulting in the relatively flat progression of shift vector observed for N > 3.

This state delocalization can ultimately be understood from the conceptual picture of

charge separation introduced by the Ni-VO substitution. In Ni-PTO, the Ni
′′
Ti layer has −2

FIG. 5. (Color online) The (left) shift current susceptibilities (σxxZ) and (right) Glass coefficients

(GxxZ) of the layered Ni-PTO with varying superlattice periodicity.
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charge, adjacent to the V ··
O layer with +2 charge. Approximating these as simple charged

planes, this results in a periodic series of regions with electric field, similar to those respon-

sible for the polar catastrophe in LaAlO3/SrTiO3 [22]. However, in this case, the distance

between each dipolar pair of planes and the next is not constant. As N increases, the elec-

tric field in the PTO layers becomes smaller under short-circuit boundary conditions, and

bound charges face a stronger impetus to screen the field over a greater length, delocalizing

electron densities (Fig. 6).

The foregoing holds important lessons for engineering BPV materials. For one, it in-

dicates that the problem of band gap and shift current generating states can be partially

separated. Nickel substitution provides lower-energy CB states, that, while tending to local-

ization along the layer normal direction, which is not favorable for shift current, nonetheless

may participate in transitions with what are essentially PTO states that are delocalized and

thus shift current favorable. We have thus chosen a material with robust shift current poten-

tial but too large a gap (PTO), and introduced a modification that solves the latter without

losing the former. Second, it emphasizes the importance of not only the magnitude of shift

vector as a factor in response, but consistency in direction, which is sensitive to relatively

small structural changes, and therefore amenable to manipulation. Third, the electrostatic

effects of the Ni-VO substitution on the electronic structure of bulk PTO are pronounced

and most apparent for lower nickel fractions.

Finally, we wish to point out an additional potential benefit of the above structures. Re-

cently, the importance of conventional transport characteristics has been highlighted [23].

Essentially, the performance of BPV materials depends not only on their current generation

capability, but on the photovoltage they can sustain. This latter quantity is determined

by resistance of current leaking back through the material, and the design of useful devices

will require control over conventional conductivity. In BiFeO3, domain walls can serve as

barricades against such leakage, substantially increasing the resistance and, consequently,

maximum photovoltage. We note that the present system similarly features a nanoscale

heterogeneous layered structure, and, in particular, that an additional consequence of in-

creasing N is delocalizing electronic states. In this sense, the structure may be viewed as a

nanoscale composite with alternating photocurrent generating layers and insulating layers,

ideal for a BPVE device.

F. W. was supported by the National Science Foundation, under Grant DMR-1124696.
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FIG. 6. (Color online) (a) The real-space probability density distribution summed over the Carte-

sian x and y coordinates (ρ(z)=
∫

dxdy
∣∣〈 #»r |ψn0,R〉

∣∣2) for the VBM and CBM states at R k point.

N is the number of layers. (b)The electric field and potential inside Ni-PTO for N=3 and 4.

The Ni-VO substitution results in adjacent planes of charge. As layers increase, stronger screening

over a greater distance is generated in response to the potential changes introduced by this charge

separation. The electric field magnitude over the PTO layers is approximately 2e
(2N−1)ε0 , decreasing

as N increases.
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