Lawrence Berkeley National Laboratory Recent Work

Title
REGGE POLES AND UNEQUAL MASS SCATTERING

Permalink
https://escholarship.org/uc/item/6c36b85n

Authors

Freedman, Daniel Z. Wang, Jiunn-Ming.

Publication Date
1966-09-01

(ian) (tici
 (um) (ban) (man) (an) (ain) (an) (imi) (m)

\square

 2x (+ive University of Galiforna FD

 erelmest O Lawrence (a) Radiation laboratory

 R REGE POLES AND UNEOUAL MASS SCATTERING

(4u) (ver) (un)
3t (an) (by) (uas

This is a Library Circulating Copy

(he) (m) (myn) which may be borrowed for two weeks. For a personal retention copy, call
Tech. Info. Division, Ext. 5545

TWO WEEK LOAN COPY

exacerex
vorn

Berkeley Calforna

Her (ex

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA
 Lawrence Radiation Laboratory Berkeley, California

AEC Contract No. W-7405-eng-48

REGGE POLES AND UNEQUAL MASS SCATTERING
Daniel Z. Freedman and Jiunn-Ming Wang

REGGE POLES ATD UHEGAL Wisis scatmering ${ }^{*}$

Daniel Z. Frecirian ${ }^{\dagger}$ and Jiunn-iting Vang
Physics Department and Lavrence Radiation Iaboratory
University of Califo:nia, Berkelcy, California

Recent experimental and theoretical work indicates that the Recge pole theory is important in the description of high energy πN backward scattering. ${ }^{1-4}$ However the question of whether the Regge asymptotic form $s^{\alpha(u)}$ holds in the bachward recion has never been settled because there is a cone about the backward direction in which $\cos \theta_{u}$ does not becone large with jncreasing s. And there seems to be general uneasiness 5,6 in applying the Fecge asymptotic form in this region.

We have studied and resolved this kinematic ambiguity of the Regge representation, and in this note outline our argument and discuss some very interesting features of the unequal mass scattering problem and of the Regge pole theory in general which our investigations have revealed. In brief we find that the Regge form $s^{\alpha(u)}$ does hold throughout the backvard region, but in order to cancel singularities which would otherwise appear at $u=0$, Regge trajectories must exist in'famjlies whose $u=0$ intercepts differ by integers. We discuss some experimental implication of this idea. Further we are able to

[^0]charecterize the behavior of paitial wave anplitudes $a(u, l)$ ot $u=0$ and find results in contradiction with those comsonly believcd. 7 A more detailed paper on this subject will be puolished in the Piyssical Review. ${ }^{8}$

Usual discussions ${ }^{5}$ or the asymptotic bchavior in the bachard region are based on the application of the Somerfeld-watson transformation to expansions of the scattering amplitude in partial waves in the u-channel. jhe high energy limit is introduced through the variable

$$
\begin{equation*}
z_{u}=\cos \theta_{u}=-\left[1+\frac{2\left(s u-\left(m^{2}-\mu^{2}\right)^{2}\right)}{u^{2}-2 u\left(m^{2}+\mu^{2}\right)+\left(m^{2}-\mu^{2}\right)^{2}}\right] \tag{1}
\end{equation*}
$$

This variable is bounded by unity for all s in the backward cone defincd by $0 \leqq u \leq u_{B}=\left(m^{2}-\mu^{2}\right)^{2} s^{-1}$, and, since z_{u} does not become large mith increasing s, the conventional Regge representation (i.c. the Sommerfeld-Natson transformed partial wave expansion) docs not furnish an asymptotic limit in this region. Indeed any representation $A(u, s)=E\left(u, z_{u}\right)$ of the scattering amplitude is suspicious at $u=0$ because the transformation of variables is singular there.

Our'method is based on work of Khuri 9 who shows that SommerfeldWatson transformations and Reggc analysis can be applied to representations other than partial wave expansions. Starting from a power series in the momentum transfer t, we establish a representation which explicitly exhibits Regge behavior throughout the backward region.

In our notation u is always the Regige pole channel. For mathematical. simplicity we treat the case of two spinless particles with masses m and μ, $\mu<m$ and assume that the third channel spectral function $A_{s}(u, s) \equiv 0$. The more realistic case $A_{s} \neq 0$ is fully trcated in Reference 8. The method can also be generalized to include spin and definitely, applies to riN scatterinc.

We assume that the oratnoy parial vave amplitudes $a(u, b)$ are meromorphic in the half-plane Rcd $>-1 / 2$, so that a RecGe representation can be Writion for the scattering amplitude
$A(u, t)=\frac{i}{2} \int_{-\frac{1}{2}-i \infty}^{-\frac{1}{2}+i \infty} d \ell(2 \ell+1) a(u, \ell) \frac{P_{\ell}\left(-z_{u}\right)}{\sin \pi 2}-\pi \sum_{i} P_{i}(u)\left(2 \alpha_{i}(u)+1\right) \frac{P_{\alpha_{i}}(u)\left(-z_{u}\right)}{\sin \pi \alpha_{i}(u)}$

Where the sum is over the finite number or Rege trajectories to the right of background.

The amplitude $A(u, t)$ is analytic in a disc of radius $t_{0}=4 \mu^{2}$ about the origin in the t-plane. We can cepress it as a power series

$$
\begin{equation*}
A(u, t)=\sum_{v=0}^{\infty} b(u, v) t^{v} \tag{3}
\end{equation*}
$$

with coefficients

$$
\begin{equation*}
b(u, v)=\pi^{-1} \int_{t_{0}}^{c} d t A_{i}(u, t) t^{-v-1} \tag{4}
\end{equation*}
$$

Where $A_{t}(u, t)$ is the spectral function in the momentum transfer dispersion relation. Actually the integral defining $b(u, v)$ converges only for $R e v>\mathbb{N}$ where N is the number of subtractions necessary in the dispersion relation, and must be defined by analytic continuation to the left of this line. For Rev $>N, b(u, v)$ is analytic in v and has only the physical, cut in u. The Regge representation is valid for $u \neq 0$, and we use it to compute A_{t} and in this way determine the continuation of $b(u, v)$ to the left of. $\operatorname{Rev}=\mathbb{N}$.

$$
\begin{equation*}
A_{t}(u, t)=D(u, t)+\sum_{i} \beta_{i}(u)\left(2 \alpha_{i}(u)+1\right) p_{\alpha_{i}(u)}\left(1+\frac{t}{2 q^{2}}\right) . \tag{5}
\end{equation*}
$$

$D(u, t)$ is the discontinuity of the Regge background integral and is of order $O\left(\epsilon^{-1 / 2}\right)$ for $u \neq 0$. Its contribution to $b(u, v)$ through (4) is therefore $\because \because$
analytic in Rcy>-1/2.
The contribution of the Reçe pole terms can be found from the integrals

$$
\begin{equation*}
\int_{t_{0}}^{\infty} d t t^{-v-1_{p}}{ }_{c}(u)\left(l+\frac{t}{2 q^{2}}\right) \tag{6}
\end{equation*}
$$

Khuri ${ }^{9}$ has show that (6) is regular for Rev $>-1 / 2$ except for simple poles at $v=\alpha(u), \alpha(u)-I, \ldots, \alpha(u)-n$ where $1 / 2>\operatorname{Re} \alpha(u)-n>-1 / 2$. Thus the imace of a single Regge pole is a principal Khuri pole at $v=\alpha(u)$ plus satellite poles displaced to the left by intcgers. The residues of the Khuri poles have been computed in References 8 and 9 . We can write for $b(u, v)$ the representation
$b(u, v)=\vec{b}(u, v)+\frac{1}{\sqrt{\pi}} \sum_{i} \frac{\bar{\beta}_{i} \Gamma\left(\alpha_{i}+3 / 2\right)}{\Gamma\left(\alpha_{i}+1\right)}\left[\frac{1}{v-\alpha_{i}} \div \frac{2 q^{2} \alpha_{i}^{+}}{v-\alpha_{i}^{+}+1}+\ldots+\frac{\left(2 q^{2}\right)^{n_{i}} r_{n_{i}}}{v-\alpha_{i}^{+}+n_{i}}\right]$.
The function $\vec{b}(u, v)$ is,regular in Rev $>-1 / 2$, and the argument u of the trajectory and residue functions has been omitted. $\overline{\bar{p}}(u)$ is the reduced Regge residue function defined by $\rho(u)=q^{2 \alpha(u)} \bar{\beta}(u)$. Only the residues of the principal and First Khuri satellite poles have been written explicitly in (7). The significant property is that the residue of the $j^{\text {th }}$ satellite pole has a factor of $\left(2 q^{2}\right)^{\alpha}$ which has poles of order up to j at $u=0$.

For Rev $<N$ the analyticity oi $b(u, v)$ at $u=0$ cannot be inferred rjgorously either from the defining integral (4) which diverges or from the Regge representation since the lattcr fails to furnish the asymptotic behavior of $D_{t}(0, t)$. It seens impossible to avoid this difinculty, which we regard as a failure of the Regge representation rather than as a defect of the Khuri amplitudes. Therefore we assume that the Khuri amplitudesb(u,v) as defined by (4) can be continued to $u=0$, and have no singularities for Rev $>-1 / 2$ other than those given by the finite number of moving poles in (7). Although
not proven, such behavior is succected by the maximal analyticiey concept. Next we make a Somerfeld-Wtson franspomation of the power series
(5) obtaining
$A(u, t)=\left(-2_{i}\right)^{-1} \int_{-\frac{1}{2}-j \omega}^{-\frac{1}{2}+i \omega} d v(\operatorname{sing} v)^{-\frac{1}{0}}(u, v)(-t)^{v}$
$-\sqrt{\pi} \sum_{i} \frac{\bar{\beta}_{i} \Gamma\left(\alpha_{i}+3 / 2\right)}{\Gamma\left(\alpha_{i}+1\right) \sin \alpha_{i}}\left[(-t)^{\alpha_{i}}-2 \alpha^{2} \alpha_{i}(-t)^{\alpha_{i}-1}+\ldots+(-1)^{n}\left(2 q^{2}\right)^{n_{i}}(-t)^{\alpha_{i}-n_{i}}\right]$
The backoround integrail defines a function with cut plane analyticity in u. and asymptotic form $O\left(t^{-1 / 2}\right)$. Each square bracket in (8) cives the coneributions of the principal and satcllite inuri poles corning from a single Rege pole, and coincides with the first n_{i} terms of the asymptotic series of: $\left(2 q^{2}\right)^{\alpha} P_{\alpha}(-z)$.

We consider the analyticity properties of the pole terms in Eq. (8) at $u=0$. It is shown in Reference 8 that the reduced residues $\bar{\beta}$ (u) have no cut in the vicinity of $u=0$ but may have poles there because of the unequal mass kinematics. The contrioution of each principal Khuri pole has the same analyticity at $u=0$ as the reduced residuc of the Regge pole to which it corresponds, and the $j^{\text {th }}$ satellite contribution has an additional singular polynomial of order j in u^{-1}.: The sum of the finite number of Khuri pole contributions must be analytic at $u=0$, and this can occur only if the singularities of the individual contributions cancel because of cooperation among the Regee trajectories.

Let $\alpha_{0}(u)$ be the leading Regge trajectory near $u=0$. Its reduced residue $\vec{\beta}_{0}(u)$ must de analytic at $u=0$, since a sincularity there could not otherwise be cancelled. The first Shuri satellite contribution then has a pole at $u=0$. To cancel this pole there must be another Regge trajectory
$c_{1}(u)$ satisifying $c_{2}(0)=c_{0}(0)-j$, which we call the itrst daughter trajectory. jits reduced residue $\bar{\beta}_{1}(u)$ has a pole at $u=0$, fired so that the singuiar part of its principal Khuri contribution exactiy cancels that oit the Iirst Knuri satellite of the lecading parent leefge pol.c. ${ }^{11}$

In general there will be a series of daughter trajectorics $\alpha_{k}(u)$ in the ℓ-plane satisfying

$$
\begin{gather*}
\alpha_{k}(0)=\alpha_{0}(0)-k \\
k=1, \ldots, n \quad 1 / 2>\operatorname{Re\alpha }_{0}(0)-n>-1 / 2 . \tag{9}
\end{gather*}
$$

The corresponding reduced residucs $\overline{\bar{B}}_{k}(u)$ will have poles of order k at $u=0$, with everything arranged so that singuiarities of the individual Khuri pole contributions cancel amons thenselves upon summation. Such a nechanism for the canceliation of singularitics may secm miraculous, but it is a rigorous consequence of the assumed annivitic behavior of $b(u, v)$ at $u=0$.

When the spectral function A_{s} is included ve find that the daughter trajectories alternate in signature, the first daughter having signature opposite to the parent. This means that the first daughter trajectory to the Poneranchuik is unphysical at $t=0$ and does not correspond to a zero mạs scalar meson.

To obtain additional support for the daughter trajectory hypothesis we have examined Bethe-Salpeter models, and find that the hypothesis is satisfied there for any Bethe-Sajpeter kernel which Reggeizes in the first
 energy is the group $O(3)$ of three dinensional rotations leaving the total energy momentum four-vector rized. For zero total energy (i.e., $u=0$) this four-vector vanishes and the equation becomes invariant to four dimensional transformations of its integration variables. This extra degree of invariance
at $u=0$ ensures the existence on dangher irajectorjes leven for equal fiass kincmatics) in much the sone ay that the catra degrec of invariance Which sets in as the range oi a Yukwa potential becones infinite ensures the Coujonib degeneracy of bound atates. The simnetry property is indepencient of the ladder appoxination ond follo:s from the Lorentz invarjance of cencral Bethe-salpcter kerncis. In ieference 8 we show explicitly that the reduced resjdue of the first deughter frajectory has a pole at $u=0$ With exactly the residue necessary to cancel the sinçularity in the first Khuri satellite contrioution of the parent Rege trojectory.

Our work sugcests that each of the presently knom particle trajectories is the parent trajectory to a family of daughters of the sane internal quanturn numbers but of alternating siçature with zero encrey intercepts spaced by integers. We discuss first daughter trajectories here, which have the property that in $J^{ \pm}$is a physjcally rcalizable J^{P} state of the parent, then $(J-1)^{\mp}$ is a physically realizaiole state of the daughter:

Baryon daughters would best be detected in hith enerey backrard meson-baryon scattering. The Khuri representation (8) gives the correct asymptotic term to be used in fitting such experiments. The leading term $s^{\alpha(u)}$ is exactly what would come from the Legendre function of the Recge representation. However if one vishes to include any terms of order $s^{\alpha(u)-1}$, one should include the contribution of the first daughter trajectory. A Taylor expansion about $u==^{\circ} 0$ should be uscd so that the cancellation of singularities there is made manirest.

The first daughter trajectory of the Poneranchuk, $\alpha_{p j}(t)$, (or the P^{\prime} daughter $\left.\alpha_{P^{\prime}}(t)\right)$ has $B=Y=T=0, G=+1$ and odd signature. arhe ρ daughter $\alpha_{\rho l}(t)$ has $B=Y=0, T=1, G=+1$ and even signature. Consideration of quantum numbers revals that neither trajectory can couple to the tro body channels $\pi \pi$, $K \bar{K}$ or INT and neither would be observed in common scattering
or raction processes. These trajcctories do couple to unequal mass channels and could, in principle, be observa in douivle production processes such as
 dauchter trajectories would be necossary in such processes to resolve kinematic anbiguities in the Recge reprosentation similar to those for backVard scattering.

It is difficult theorctically to predict the behavior of daughter trajectories away from zero enerw; but it is tempting to consider the possibility that they are roughly parallel with the parents. If so there would be a physical vector meson of mass bctween 1.2 and 1.6 Bev on the PI trajectory, and a scalar meson of mass betwicen 700 and 1100 Mev on the pl. Feither could decay into two pscubscalar mesons. The I^{-}Pomeranchuk dauchter could decay into $\bar{K} \bar{K}$ with p-vave ancular momentum barriers in the confjguration $K^{*} \bar{K}$ or α-vave barriexs in the configuiation $(K \bar{K}) \pi$, but the quentun numoers prohiojt the $0^{\dagger} \rho$ daughter from decayint into KKi. Both particles have 4π decay modes, the I^{-}into the configuration ρp and the O^{+}into the conficuration op. Both pariticles can decay clectronacnetically to $\pi \pi \gamma$, and this mode may be dominant for the 0^{\dagger}. The present experimental situation, although not conclusjve, does not seem fevorable to the existence of these mesons. This would indicate that the daughter trajectories have slopes more shallo:r than the parenis.

We have used the Khuri representation to characterize the behavior of partial wave amplitudes $a(u, l)$ at $u=0$ and find

$$
\begin{equation*}
a^{ \pm}(u, l) \approx \frac{\bar{\beta}^{ \pm}(0)}{\pi^{3 / 2}} \frac{\Gamma\left(c^{ \pm}(0)+3 / 2\right)}{\Gamma\left(\alpha^{ \pm}(0)+2+2\right)}\left[\frac{\left(m^{2}-\mu^{2}\right)^{2}}{u}\right]^{\alpha^{ \pm}(0)} \tag{10}
\end{equation*}
$$

where $\alpha^{ \pm}(0)$ is the zero energy intercept of the leading Regge trajectory of
the same sichature in the direct channel, and $\overrightarrow{\hat{\beta}}(0)$ is its reduced residuc. The behavior (10) applies if $\alpha^{ \pm}(0)>-1$, $\operatorname{concrisisc} a(u, \lambda) \sim$ u loce u. The proof invoives a staightomaid estimete of the invecrais in the froissartGribov derinition of $\dot{a}(u, k)$ and is given in Foference 8. It is not surprising thet $i t$ is the hitrh eneroy behavior in crossed channels which detormines the behavior of partial wave amplitudes at $u=0$ in the unequal mass case, since the integral from $z=-1$ to $z=+1$ which derines (physical) partial wave amplitudes corresponds to an integration of infinite range in the liandelstan variables at $u=0$. The behavion (10) is in contradiction to what has gencrally been belicved ${ }^{7,13}$ and may very well have interestine implications for dynamical calculations. We apect that (10) characterizes the behavior of $a(u, 2)$ for $|u| \ll\left(m^{2}-\mu^{2}\right)$.

Goldbercer and Jones ${ }^{1 / 4}$ have recently written a papor in which the same subject is anproached from a different point of view. Different results are found largely because these authors fail to take into account the mechanism of cancellation of singularitios by daughter trajectories. They find that the condition $C(0)<I / 2$ must be satispied for the consistency of theis nethod. This condition would seem to be violated by the Pomeranchuk which certainly couples to unequal mass channels and in Bethe-Salpeter models which have all the analyticity properties used by Goldbercer and Jones. Since the dauchter trajectory hypothesis is derinitely satisried in Bethe-Salpeter nodels we feel thit it is the correct'mechanism by which the ambiguity in the Regge representation is resolved.
$\because \quad$ ACMOMLMGETENS
We are happy to thank Professors K. Bardakci, G. Domokos, and S. Mandelstam, Drs. D. Atkinson and J. Stack and Kessrs. W. Kaufman and K. Rothe for very helpful discussions.' It is a particular pleasure to thank Professor G. Chew for unfailing guidance and encouragement.

Reremecs

1. H. R. Frisken, et al, Phys. Pev. Letters 15, 323 (1965).
a. C. T. Coîtin, ct al, Phys. Rev. Letucis 15, 833 (1965).
2. G. F. Chew and J. D. Sta.ck, umpailiched, vCRI--16293, and J. D. Stack, Fhys. Rev. Letters 16,286 (1965).
3. V. Barger and D. Cline, Phys. Rev. Letters 1.6, 913 (1966).
4. For example sce M. Gell-Mann, s. C. Prautschi and F. Zachariascn, Phys. Rev. $1.26,2204$ (1962), Rooinnote 15.
5. D. A. Atkinson and V. Barger, Nupvo Cincnto 38, 634 (.2965).
6. S. C. Frautschi and J. D. Walcclia, Phys. Rev. 120, 1486 (1960).
7. D. Z. Frecdran and J. M. Wang, to be published.
8. N. N. IThuri, Phys. Rev. 132, 931 (1963).
9. This possibility was first sucgested or Fiofessor S. Nandelstian.
10. G. Domokos and P. Suranyi, Fuclear Physics 5 化, 529 (2964).
11. E. S. Abers and V. L. Teplitz derived a more prinitive form of the result (10) by using the froissart bound as input. See iruovo Cimento 39, 739 (1965).
12. M. L. Goldberger and C. E. Jones, Princeton University preprint. 1
13. In Reference 8 we show that the Khuri representation can be extended to the left of $-1 / 2$ as far as the corresponding Regge representation (in Mandelstam's form) cant be extended.

[^0]: * Research supported in part by the Atomic Energy Commission and in part by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, Grant No. AF-AFOSR-232-66.
 t
 NSF Postdoctoral Fellow while major portion of this work was done.

