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Topological quantum memory can protect information against local errors up to finite error thresh-
olds. Such thresholds are usually determined based on the success of decoding algorithms rather than
the intrinsic properties of the mixed states describing corrupted memories. Here we provide an intrin-
sic characterization of the breakdown of topological quantum memory, which both gives a bound on the
performance of decoding algorithms and provides examples of topologically distinct mixed states. We
employ three information-theoretical quantities that can be regarded as generalizations of the diagnostics
of ground-state topological order, and serve as a definition for topological order in error-corrupted mixed
states. We consider the topological contribution to entanglement negativity and two other metrics based on
quantum relative entropy and coherent information. In the concrete example of the two-dimensional (2D)
Toric code with local bit-flip and phase errors, we map three quantities to observables in 2D classical spin
models and analytically show they all undergo a transition at the same error threshold. This threshold is
an upper bound on that achieved in any decoding algorithm and is indeed saturated by that in the optimal
decoding algorithm for the Toric code.

DOI: 10.1103/PRXQuantum.5.020343

I. INTRODUCTION

The major roadblock to realizing quantum computers is
the presence of errors and decoherence from the environ-
ment, which can only be overcome by adopting quantum
error correction (QEC) and fault tolerance [1]. A first
step would be the realization of robust quantum memo-
ries [2–4]. Topologically ordered systems in two spatial
dimensions, owing to their long-range entanglement and
consequent degenerate ground states, serve as a promis-
ing candidate [5–8]. A paradigmatic example is the surface
code [9,10], whose promise as a robust quantum memory
has stimulated recent interest in its realization in near-term
quantum simulators [11–17].

One of the central quests is to analyze the performance
of topological quantum memory under local decoher-
ence. In the case of surface code and other topological
codes with local errors, it has been shown that the stored
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information can be decoded reliably up to a finite error
threshold [10,18–22]. Namely, as the error rate increases,
the success probability of the decoding algorithm drops to
zero at a critical value, which depends on the choice of the
algorithm. It is then natural to ask whether these decoding
transitions stem from an intrinsic error-induced singular-
ity in the mixed states. If so, how to probe this intrinsic
transition?

The intrinsic characterization has at least two important
consequences. First, the critical error rate for the intrin-
sic transition should furnish an upper bound for decoding
algorithms. The algorithmic dependence of the decoding
thresholds is a mere reflection of the suboptimality of
specific algorithms. Second, the correspondence between
successful decoding and intrinsic properties of the quan-
tum state acted upon by errors points to the existence
of topologically distinct mixed states. In another word,
answering this question amounts to relating the break-
down of topological quantum memory to a transition in the
mixed-state topological order. Progress towards this goal
lies in quantifying the residual long-range entanglement in
the error-corrupted mixed state. We will consider quanti-
ties that are motivated from both perspectives and explore
their unison.

In this work, we investigate three information-
theoretical diagnostics: (i) quantum relative entropy
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between the error-corrupted ground state and excited state;
(ii) coherent information; (iii) topological entanglement
negativity. The first two are natural from the perspec-
tive of quantum error correction (QEC). More specifically,
the quantum relative entropy quantifies whether errors
ruin orthogonality between states [23], and coherent infor-
mation is known to give robust necessary and sufficient
conditions on successful QEC [24–26]. The third one is
a basis-independent characterization of long-range entan-
glement in mixed states and is more natural from the
perspective of mixed-state topological order. This quan-
tity has been proposed to diagnose topological orders in
Gibbs states [27,28], which changes discontinuously at the
critical temperature. We borrow and apply this proposal to
error-corrupted states. Our transition occurs in two spatial
dimensions at a finite error rate, in contrast to the finite
temperature transitions in four spatial dimensions.

The presence of three seemingly different diagnostics
raises the question of whether they all agree and share
the same critical error rate. Satisfyingly, we indeed find
this to be the case in a concrete example, surface code
with bit-flip and phase errors. The nth Rényi version of
the three quantities can be formulated in a classical two-
dimensional statistical mechanical model of (n − 1)-flavor
Ising spins, which exhibits a transition from a paramag-
netic to a ferromagnetic phase as the error rate increases.
The three quantities are mapped to different probes of
the ferromagnetic order and must undergo the transition
simultaneously, which establishes their consistency in this
concrete example.

Interestingly, the statistical mechanical model derived
for the information-theoretic diagnostics is exactly dual
to the random-bond Ising model (RBIM) that governs
the decoding transition of the algorithm proposed in
Ref. [10]. This duality implies that the error threshold
of the algorithm in Ref. [10] saturates the upper bound.
Therefore, it confirms that this decoding algorithm is opti-
mal, and its threshold reflects the intrinsic properties of
the corrupted state. We remark that mappings to statisti-
cal mechanical models have been tied to obtaining error
thresholds of decoding algorithms [10,18–22]. Here such
mappings arise from characterizing intrinsic properties of
the error corrupted mixed state.

The rest of the paper is organized as follows. Section II
gives a concrete definition of the error-corrupted states
and introduces the three diagnostics. Section III studies
the concrete example, the 2D Toric code subject to local
bit-flip and phase errors. We close with discussions in
Sec. IV.

II. SETUP AND DIAGNOSTICS

In this section, we begin with introducing the error-
corrupted mixed state. We show that any operator expec-
tation value in a single-copy corrupted density matrix

cannot probe the transition, and instead one needs to con-
sider the nonlinear functions of the density matrix. Next,
we introduce three information-theoretic diagnostics of
the transition: (i) quantum relative entropy; (ii) coher-
ent information; (iii) topological entanglement negativity.
These quantities generalize the diagnostics of ground-state
topological order.

A. Error-corrupted mixed state

The type of mixed state we consider in the paper
describes a topologically ordered ground state |�0〉 〈�0|
subject to local errors

ρ = N [|�0〉 〈�0|] =
∏

i

Ni[|�0〉 〈�0|], (1)

where the quantum channel Ni models the local error at
site i and is controlled by the error rate p . We refer to ρ as
the error-corrupted mixed state.

The transition in the corrupted state, if exists, cannot be
probed by the operator expectation value in a single-copy
density matrix. To demonstrate it, we purify the corrupted
state by introducing one ancilla qubit prepared in |0〉i for
each physical qubit at site i. The physical and ancilla qubits
are coupled locally via unitary Ui(p) such that tracing out
the ancilla qubits reproduces the corrupted state ρ. This
leads to a purification

|�〉 =
∏

i

Ui(p) |�0〉
(⊗i |0〉i

)
, (2)

which is related to the topologically ordered state by a
depth-1 unitary circuit on the extended system [see Fig. 1].
It follows that the expectation value of any operator sup-
ported on a large but finite region of the physical qubits,
e.g., a Wilson loop operator, must be a smooth function
of the error rate [see Fig. 1 for a schematics]. Thus, it
is indispensable to consider the nonlinear functions of
the density matrix, e.g., quantum information quantities,
to probe the transition in the corrupted state. This prop-
erty holds when ρ describes a general mixed state in the
ground-state subspace under local errors.

We remark that the above argument does not prevent
observables in a single-copy density matrix from detecting
topological order in finite-temperature Gibbs states [29].
The key difference is the purifications of the Gibbs states at
different temperatures are not necessarily related by finite-
depth circuits.

B. Quantum relative entropy

Anyon excitations are crucial for storing and manipulat-
ing quantum information in a topologically ordered state.
For example, to change the logical state of the code one
creates a pair of anyons out of the vacuum and sepa-
rates them to opposite boundaries of the system. The first
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Information quantities,
e.g.,      

FIG. 1. Physical observables verses information quantities in
error-corrupted states. Each error-corrupted state can be obtained
from applying local unitaries to the system (topological order)
plus ancilla qubits (trivial product state). Thus, physical observ-
ables must be smooth functions of the error rate p . In contrast,
information quantities, e.g., the topological entanglement nega-
tivity γN , can have discontinuities that identify the many-body
singularities.

diagnostic tests if the process of creating a pair of anyons
and separating them by a large distance gives rise to a
distinct state in the presence of decoherence.

Specifically, we want to test if the corrupted state ρ =
N [ρ0] is sharply distinct from ρα = N [wα(P)ρ0wα(P)†]
for ρ0 in the ground-state subspace. In the second state,
wα(P) is an open string operator that creates an anyon α

and its antiparticle α′ at the opposite ends of the path P .
We use the quantum relative entropy as a measure for the
distinguishability of the two states

D(ρ||ρα) := trρ log ρ − trρ log ρα . (3)

In absence of errors the relative entropy is infinite because
the two states are orthogonal, and it decreases monotoni-
cally with the error rate [30–32]. Below the critical error
rate, however, the states should remain perfectly distin-
guishable if the anyons are separated by a long distance.
Therefore we expect the relative entropy to diverge as the
distance between the anyons is taken to infinity. Above the
critical error rate on the other hand we expect the relative
entropy to saturate to a finite value reflecting the inability
to perfectly distinguish between the two corrupted states.
In this regard, the relative entropy describes whether anyon
excitations remain well defined and is a generalization of
the Fredenhagen-Marcu order parameter for ground-state
topological order [33–36].

To facilitate calculations, we consider a specific
sequence of the Rényi relative entropies

D(n)(ρ||ρα) := 1
1 − n

log
trρρn−1

α

trρn , (4)

which recovers D(ρ||ρα) in the limit n → 1. In Sec. III we
map the relative entropies D(n) in the corrupted Toric code

to order parameter correlation functions in an effective sta-
tistical mechanical model, which is shown to exhibit the
expected behavior on two sides of the critical error rate.

C. Coherent information

The basis for protecting quantum information in topo-
logically ordered states is encoding it in the degenerate
ground state subspace. The second diagnostic we consider
is designed to test the integrity of this protected quantum
memory.

We use the coherent information, as a standard met-
ric for the amount of recoverable quantum information
after a decoherence quantum channel [24–26]. In our case,
the relevant quantum channel consists of the following
ingredients illustrated below: (i) a unitary operator U that
encodes the state of the logical qubits in the input R into the
ground-state subspace; (ii) a unitary coupling UQE of the
physical qubits Q to environment qubits E, which models
the decoherence. The coherent information in this setup is
defined as

Ic(R〉Q) := SQ − SQR.
R Q EUQE

U

(5)

Here SQ and SRQ are the von Neumann entropies of the
systems Q and RQ, respectively, and we use the Choi map
to treat the input R as a reference qubit in the output. It
follows from subadditivity that the coherent information
is bounded by the amount of encoded information in the
degenerate ground-state subspace, i.e., −SR � Ic � SR. In
the absence of errors, Ic = SR, and we expect this value to
persist as long as the error rate is below the critical value.
Above the critical error rate, we expect Ic < SR, indicat-
ing the loss of encoded information. We remark that the
recoverable information is also used to characterize the
robustness of quantum memory based on the edge mode
in 1D Kitaev chain [37].

Physically the coherent information is closely related
and expected to undergo a transition at the same point as
the relative entropy discussed above. The quantum infor-
mation is encoded by separating anyon pairs across the
system. It stands to reason that if this state remains per-
fectly distinguishable from the original state, as quantified
by the relative entropy, then the quantum information
encoded in this process is preserved.

The critical error rate for preserving the coherent infor-
mation is an upper bound for the threshold of any QEC
algorithms

pc � pc,algorithm. (6)

The key point is that coherent information is nonincreas-
ing upon quantum information processing and cannot be
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restored once it is lost. Thus, a successful QEC requires
Ic = SR. Moreover, the QEC algorithm involves syndrome
measurements that are nonunitary and generically do not
access the full coherent information in the system giving
rise to a lower error threshold. To facilitate calculations
and mappings to a statistical mechanical model we will
need the Rényi coherent information

I (n)
c := S(n)

Q − S(n)

RQ = 1
n − 1

log
trρn

RQ

trρn
Q

, (7)

which approaches Ic in the limit n → 1. In the example of
Toric code with incoherent errors discussed in Sec. III, we
show that I (n)

c takes distinct values in different phases.

D. Topological entanglement negativity

The topological entanglement entropy provides an
intrinsic bulk probe of ground-state topological order and
does not require a priori knowledge of the anyon exci-
tations. The third diagnostic we consider generalizes this
notion to the error-corrupted mixed state.

A natural quantity often used to quantify entanglement
in mixed states, is the logarithmic negativity of a subregion
A [38–40]

EA(ρ) := log ||ρTA ||1, (8)

where ρTA is the partial transpose on the subsystem A and
‖ · ‖1 denotes the trace (L1) norm. The logarithmic negativ-
ity coincides with the Rényi-1/2 entanglement entropy for
the pure state and is nonincreasing with the error rate of the
channel, a requirement that any measure of entanglement
must satisfy [41,42]. The logarithmic negativity was previ-
ously used in the study of ground-state topological phases
[43–45] and more recently for detecting topological order
in finite temperature Gibbs states [27,28].

We expect that the universal topological contribution
to the entanglement [46,47] will survive in the corrupted
mixed state below a critical error rate and can be captured
by the logarithmic negativity. Thus, the conjectured form
of this quantity is

EA = c|∂A| − γN + . . . , (9)

where |∂A| is the circumference of the region A, c is a
nonuniversal coefficient, and ellipsis denotes terms that
vanish in the limit |∂A| → ∞. The constant term γN is the
topological entanglement negativity of a simply connected
subregion. It is argued to be a topological invariant that
cannot come from local contributions to the entanglement
due to the conversion property EA = EĀ, i.e., negativity of
a subsystem is equal to that of the complement [27,48]. Let
us repeat the argument here for the reader’s convenience.
We assume that the nontopological part, arising from local

contributions, can be written as an integral along the
entanglement cut, EA,local = ∫

∂A f (κ , ∂κ)dl, where f(κ , ∂κ)

depends on the extrinsic curvature κ of the cut. For a
smooth and large entanglement cut, one can perform a Tay-
lor expansion f (κ , ∂κ) = f0 + f1κ + . . ., which integrates
to c|∂A| + c1 + c2|∂A|−1 + . . .. Notably, the extrinsic cur-
vature changes its sign when transforming A to Ā, neces-
sitating the vanishing of all odd-order terms to ensure
EA = EĀ. In particular, f1 = 0 and c1 = 0. Thus, local con-
tributions cannot produce a constant term in the negativity.
In contrast, the von Neumann entropy of a subregion in the
error-corrupted mixed state exhibits a volume-law scaling,
and its constant piece is not topological because SA 	= SĀ.

To facilitate the calculation of the negativity, we con-
sider the Rényi negativity of even order

E (2n)

A (ρ) := 1
2 − 2n

log
tr(ρTA)2n

trρ2n . (10)

The logarithmic negativity is recovered in the limit 2n →
1. Here, we choose a particular definition of the Rényi
negativity such that it exhibits an area-law scaling in the
corrupted state. In Sec. III, we show explicitly that in the
Toric code the topological part γ

(2n)
N of the Rényi nega-

tivity takes a quantized value log 2 in the phase where the
quantum memory is retained and vanishes otherwise.

To summarize, we expect the topological negativity
takes the same universal value as the topological entan-
glement entropy in the uncorrupted ground state and drops
sharply to a lower value at a critical error rate. It is a priori
not clear, however, that the transition in the negativity must
occur at the same threshold as that marks the transition
of the other two diagnostics we discussed. In Sec. III we
show, through mapping to a statistical mechanical model
that, in the example of the Toric code, a single phase
transition governs the behavior of all three diagnostics.

III. EXAMPLE: TORIC CODE UNDER BIT-FLIP
AND PHASE ERRORS

In this section, we use the three information-theoretical
diagnostics to probe the distinct error-induced phases in
the 2D Toric code under bit-flip and phase errors. In partic-
ular, we develop 2D classical statistical mechanical models
to analytically study the Rényi-n version of the diagnos-
tics in this example. The statistical mechanical models
involve (n − 1)-flavor Ising spins and undergo ferromag-
netic phase transitions as a function of error rates. We show
that the three diagnostics map to distinct observables that
all detect the ferromagnetic order and undergo the transi-
tion simultaneously. We remark that our results also apply
to the planar surface code.

In Sec. III A, we introduce the Toric code and the error
models. We derive the statistical mechanical models in
Sec. III B and analyze the phase transition in Sec. III C.
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TABLE I. Dictionary of the mapping. The Rényi-n version of the diagnostics of topological order in error-corrupted states and their
corresponding observables in (n − 1)-flavor Ising models are listed in the first and second columns, respectively. We consider 2D Toric
code subject to one type of incoherent error (bit-flip or phase errors). The asymptotic behaviors of these diagnostics in the paramagnetic
(PM) and ferromagnetic (FM) phases of the spin model are provided.

Diagnostics Observable PM FM

D(n) Logarithm of order parameter correlation function O(|il − ir|) O(1)

I (n)
c Related to the excess free energy for domain walls along noncontractible loops 2 log 2 0
E (2n)

A Excess free energy for aligning spins on the boundary of A c|∂A|/ξ − log 2 c|∂A|/ξ

Section III D discusses the three diagnostics and their cor-
responding observables in the statistical mechanical mod-
els. See Table I for a summary. We discuss the replica limit
n → 1 in Sec. III E.

A. Toric code and error model

We consider the 2D Toric code on an L × L square lat-
tice with periodic boundary conditions. This code involves
N = 2L2 physical qubits on the edges of the lattice, and
its code space is given by the ground-state subspace of the
Hamiltonian

HTC = −
∑

s

As −
∑

p

Bp , (11)

where As and Bp are mutually commuting operators asso-
ciated with vertices and plaquettes

As =
∏


∈star(s)

X
, Bp =
∏


∈boundary(p)

Z
. (12)

Here, X
 and Z
 denote the Pauli-X and Z operators on
edge 
, respectively. The ground state satisfying As |�〉 =
Bp |�〉 = |�〉 is fourfold degenerate and can encode two
logical qubits.

We consider specific error channels describing uncorre-
lated single-qubit bit-flip and phase errors

NX ,i[ρ] = (1 − px)ρ + pxXiρXi,

NZ,i[ρ] = (1 − pz)ρ + pzZiρZi,
(13)

where the Pauli-X (Z) operator acting on the Toric code
ground state creates a pair of m (e) anyons on the adjacent
plaquettes (vertices), px and pz are the corresponding error
rates. The corrupted state reads

ρ = NX ◦ NZ[ρ0],

where NX (Z) = ∏
i NX (Z),i. We assume that the error rate

is uniform throughout our discussion. We remark that the
error channels in Eq. (13) do not create coherent superpo-
sition between states with different anyon configurations
and are referred to as incoherent errors. Pauli-Y errors cre-
ate anyons incoherently and can also be analyzed using our
framework.

B. Statistical mechanical models

Here, we map the nth moment of the corrupted density
matrix trρn to the partition function of the (n − 1)-flavor
Ising model. In this statistical mechanical model, one can
analyze the singularity in the Rényi version of the three
diagnostics, which will be presented in Sec. III D.

To begin, we consider the maximally mixed state in the
ground-state subspace

ρ0 = 1
4

∏

s

1 + As

2

∏

p

1 + Bp

2
. (14)

We note that the choice of the ground state ρ0 determines
the boundary conditions in the resulting model and does
not affect the location of the critical point. For our purpose
here, it is convenient to write ρ0 in a loop picture

gz

gx

ρ0 =
1

2N

∑
gz

gz

∑
gx

gx ,

(15)

where gz and gx are Z and X loops on the original and
dual lattice given by the product of As and Bp opera-
tors, respectively. The summation runs over all possible
loop configurations. In what follows, we will use gx(z) to
denote both the operators and the loop configurations. The
meaning will be clear in the context.

Two error channels act on the loop operators gx, gz by
only assigning a real positive weight:

NX ,i[gz] =
{

(1 − 2px)gz Zi ∈ gz

gz Zi /∈ gz
,

NZ,i[gx] =
{

(1 − 2pz)gx Xi ∈ gx

gx Xi /∈ gx
.

Thus, the corrupted state remains a superposition of loop
operators

ρ = 1
2N

∑

gx ,gz

e−μx |gx |−μz |gz |gxgz, (16)

where |gx(z)| denotes the length of the loop, and μx(z) =
− log(1 − 2pz(x)) can be understood as the line tension.
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Using Eq. (16), it is straightforward to see that the expec-
tation values of operators, such as the Wilson loop and
open string, behave smoothly as the error rate increases,
in consistence with the general argument in Sec. II A.

Using this loop picture Eq. (16), we can write the nth
moment as

trρn = 1
2nN

∑

{g(s)
x ,g(s)

z }
tr

(
n∏

s=1

g(s)
x g(s)

z

)
e
∑

s −μx |g(s)
x |−μz |g(s)

z |,

(17)

where g(s)
x(z), s = 1, 2, . . . , n is the X (Z) loop operator from

the sth copy of density matrix. The product of loop oper-
ators in Eq. (17) has a nonvanishing trace only if the
products of X and Z loops are proportional to identity
individually, which leads to two independent constraints

g(n)
a =

n−1∏

s=1

g(s)
a , a = x, z. (18)

The nth moment factorizes into a product of two partition
functions

trρn = 1
2(n−1)N Zn,xZn,z, (19)

where Zn,a = ∑
{g(s)

a } e−Hn,a with a = x, z is a statistical
mechanical model that describes fluctuating X (Z) loops
with a line tension. The Hamiltonian takes the form

Hn,a = μa

(
n−1∑

s=1

∣∣g(s)
a

∣∣+
∣∣∣∣∣

n−1∏

s=1

g(s)
a

∣∣∣∣∣

)
. (20)

Here, we have imposed the constraints (18), and the
summation in each partition function runs over the loop
configurations only in the first n − 1 copies.

The loop model can be mapped to a statistical mechan-
ical model of n − 1 flavors of Ising spins with nearest-
neighbor ferromagnetic interactions. The mapping is estab-
lished by identifying the loop configuration g(s)

a with s =
1, 2, . . . , n − 1 with domain walls of Ising spins. Specifi-
cally, for a Z loop configuration on the original lattice, we
associate a Ising spin configuration σi on the dual lattice
such that

σ
(s)
i

σ
(s)
jg

(s)
z,� ∣∣∣g(s)

z,�

∣∣∣ =
(
1 − σ

(s)
i σ

(s)
j

)
/2 ,

where i, j are connected by the link dual to 
, and |g(s)
z,
 | is

a binary function that counts the support of loop on link 
.

The total length of the loop is given by |g(s)
z | = ∑


 |g(s)
z,
 |.

Similarly, we can define the Ising spins on the original
lattice that describe the X loop configuration on the dual
lattice.

In terms of the Ising spins, the effective Hamiltonian is
given by

Hn,a = −Ja

∑

〈i,j 〉

(
n−1∑

s=1

σ
(s)
i σ

(s)
j +

n−1∏

s=1

σ
(s)
i σ

(s)
j

)
(21)

with a ferromagnetic coupling Jx(z) = − log
√

1 − 2pz(x).
In what follows, we refer to this model as the (n − 1)-
flavor Ising model. We remark that the model exhibits
a global symmetry G(n) = (Z⊗n

2 � Sn)/Z2, where Sn is
the permutation symmetry over n elements. As is shown
below, increasing the error rate the model undergoes a
paramagnetic-to-ferromagnetic transition that completely
breaks the G(n) symmetry.

C. Phase transitions

Here, we study the ferromagnetic transition in the (n −
1)-flavor Ising model. The transition points depend on n
and are determined using both analytical methods (e.g.,
Kramers-Wannier duality for n = 2, 3) and Monte-Carlo
simulation (for n = 4, 5, 6, etc.). The results are presented
in Fig. 2.

For n = 2, the statistical mechanical model is the stan-
dard square-lattice Ising model:

H2,a = −2Ja

∑

〈i,j 〉
σiσj . (22)

1 2 3 4 5 6
0

0.1

0.2

0.3

FIG. 2. Critical error rates for various Rényi index n. p (2)
c ≈

0.178 and p (3)
c ≈ 0.211 are determined by the exact solution

(blue diamonds). For n � 4, p (n)
c is determined by calculating the

crossing of the Binder ratio for various system sizes via Monte
Carlo (red squares). p (n)

c in the replica limit n → 1 (the yellow
star) is given by the critical point of random-bond Ising model
(RBIM) in 2D, p (1)

c ≈ 0.109, as explained in Sec. III E. In the
limit n → ∞, the spin model is asymptotically decoupled Ising
models with p (∞)

c ≈ 0.293 (the gray dashed line).
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The critical point is determined analytically by the
Kramers-Wannier duality [49,50]

p (2)
c = 1

2

(
1 −

√√
2 − 1

)
≈ 0.178. (23)

For n = 3, the model becomes the Ashkin-Teller model
on 2D square lattice along the S4 symmetric line. The
Hamiltonian is

H3,a = −Ja

∑

〈i,j 〉
σ

(1)
i σ

(1)
j + σ

(2)
i σ

(2)
j + σ

(1)
i σ

(2)
i σ

(1)
j σ

(2)
j .

(24)

The model is equivalent to the standard four-state Potts
model [51] with a critical point determined by the
Kramers-Wannier duality

p (3)
c = 1

2

(
1 − 1√

3

)
≈ 0.211. (25)

For n � 4, we are not aware of any exact solution and
resort to the Monte Carlo simulation. To locate the tran-
sition point pc, we consider the average magnetization per
spin,

m := 1
(n − 1)L2

n−1∑

s=1

∑

i

σ
(s)
i . (26)

We calculate the magnetization square 〈m2〉 and the Binder
ratio B = 〈m4〉/〈m2〉2 numerically and display the results
in Fig. 3. Assuming a continuous transition, we determine
p (n)

c by the crossing point of B(p , L) for various system
sizes L and extract the critical exponents using the scal-
ing ansatz B(p , L) = Fb((p − pc)L1/ν) and 〈m2〉(p , L) =
L−2β/νFm((p − pc)L1/ν). The analysis yields p (4)

c = 0.231
for n = 4. However, the sharp drop of magnetization and
the nonmonotonic behavior of B(p , L) near p (4)

c hint at a
possible first-order transition [52,53].

The critical error threshold pc increases monotonically
with n and is exactly solvable in the limit n → ∞. In this
case, the interaction among different flavors is negligible
compared to the two-body Ising couplings. Thus, the crit-
ical point is asymptotically the same as that in the Ising
model with coupling Ja and is given by

p (∞)
a,c = 1

2

(
2 −

√
2
)

≈ 0.293. (27)

D. Three diagnostics

The Rényi version of the three information-theoretic
diagnostics, quantum relative entropy, coherent informa-
tion, and topological entanglement negativity, translate
into distinct physical quantities in the statistical mechan-
ical model. We write these quantities explicitly below and

0.20 0.22 0.24
0

0.1

0.2

(a)

–2 0 2
0.0

0.1

0.2

0.3

0.22 0.23 0.24

1

2

3

4

5(b)

–1 0 1
1

2

3

4

5

FIG. 3. Phase transition in the statistical mechanical model
for n = 4. Magnetization (a) and Binder ratio (b) as a function
of error rate p for various system sizes up to Lx = Ly = L =
64. The crossing of B(p , L) yields pc = 0.231. The exponents
ν = 0.74 and β = 0.04 are extracted from the finite-size scaling
collapse in the insets. The results are averaged over 105 inde-
pendent Monte Carlo measurements for each of 48 initial spin
configurations.

show that all three detect the establishment of ferromag-
netic order. Therefore, the transition in all three quantities
is governed by the same critical point, a fact that is not
evident before mapping to statistical mechanical models.

1. Quantum relative entropy

We start with the Rényi version of the quantum relative
entropy given by Eq. (4). Let ρ be the corrupted ground
state of the Toric code, and ρm = N [|�m〉 〈�m|] where
|�m〉 := wm(C) |�0〉 has a pair of m particles at the end of
path C. The phase errors do not change the distinguishabil-
ity between the two states and can be safely ignored here.
Only the statistical mechanical model for the Z loops (or
Z spins) is relevant. Let i
 and ir denote the positions of
two m particles, we show in Appendix A 1 that the Rényi
relative entropy is mapped to a two-point function of the
Ising spins

D(n)(ρ||ρα) = 1
1 − n

log〈σ (1)
i
 σ

(1)
ir 〉, (28)
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where σ
(1)
j is the first flavor of the Ising spin at site j , and

the subscription z is suppressed.
When the error rate is small and the system is in the para-

magnetic phase, the correlation function decays exponen-
tially, and thus D(n) = O(|i
 − ir|), which grows linearly
with the distance between i
 and ir. This indicates that the
error-corrupted ground state and excited state remain dis-
tinguishable. When the error rate exceeds the critical value
and the system enters the ferromagnetic phase, D(n) is of
O(1) due to the long-range order, which implies that the
error-corrupted ground state and excited state are no longer
distinguishable.

2. Coherent information

Next consider the Rényi version of the coherent infor-
mation I (n)

c in Eq. (7). We let the two logical qubits in
the system Q be maximally entangled with two reference
qubits R. As detailed in Appendix A 2, I (n)

c can be mapped
to the free energy cost of inserting domain walls along
noncontractible loops that are related to the logical oper-
ators. More explicitly, let dal with a = x, z and l = l1, l2
be a (n − 1)-component binary vector. Each component of
dal dictates the insertion of domain walls for a = x, z spins
along the noncontractible loop l, respectively, in n − 1
copies of the Ising spins. Here, along the domain walls,
the couplings between nearest-neighbor spins are flipped
in sign and turned antiferromagnetic. Then, we have

I (n)
c = 1

n − 1

∑

a=x,z

log

⎛

⎝
∑

da1da2

e−�F
(da1,da2)
n,a

⎞

⎠− 2 log 2,

(29)

where �F (da1,da2)
n,a is the free energy cost associated with

inserting domain walls labeled by binary vectors dal, the
sum runs over all possible dal.

When the error rate is small and the system is in the
paramagnetic phase, the domain wall along a noncon-
tractible loop costs nothing, i.e., �F (da1,da2)

n,a = 0. It follows
that the corrupted state retains the encoded information,
i.e., I (n)

c = 2 log 2. When the error rate exceeds the criti-
cal value and the system enters the ferromagnetic phase,
inserting a domain wall will have a free energy cost that
is proportional to its length. Namely, �F (da1,da2)

n,a is pro-
portional to the linear system size unless no defect is
inserted. One can deduce I (n)

c = 0 when the spin model for
either Z or X loop undergoes a transition to the ferromag-
netic phase, namely, the corrupted state corresponds to a
classical memory. When both spin models are in the fer-
romagnetic phase, we have I (n)

c = −2 log 2, indicating that
the system is a trivial memory.

3. Topological entanglement negativity

The Rényi negativities of even order are given in
Eq. (10). Let us specialize here to the Toric code with only
phase errors. As shown in Appendix A 3, the 2nth Rényi
negativity of a region A is given by

E (2n)

A = �FA, (30)

where �FA is the excess free energy associated with align-
ing a single flavor of Ising spins on the boundary ∂A in the
same direction (illustrated in Fig. 4).

The excess free energy �FA, or more precisely, its sub-
leading term can probe the ferromagnetic transition in the
statistical-mechanical model. The excess free energy has
two contributions. The energetic part is always propor-
tional to |∂A|. The entropic part is attributed to the loss
of degrees of freedom due to the constraint. In the para-
magnetic phase, the Ising spins fluctuate freely above the
scale of the finite correlation length ξ . Hence, enforcing
each constraint removes O(|∂A|/ξ) degrees of freedom
proportional to the circumference of A, which yields the
leading term (area law). Importantly, there is still one resid-
ual degree of freedom, namely, the aligned boundary spins
can fluctuate together, which results in a subleading term
log 2. Altogether, we have E (2n)

A = c|∂A|/ξ − log 2. Here,
it is an interesting question to verify whether the prefac-
tor c is universal or not [54], and we leave it for future
study [55]. In the ferromagnetic phase, the finite correla-
tion length ξ sets the scale of the critical region, below
which the spins can fluctuate. Thus, imposing each con-
straint removes O(|∂A|/ξ) degrees of freedom. However,
the aligned boundary spins should also align with the
global magnetization resulting in a vanishing subleading
term in the excess free energy. Hence, the negativity E (2n)

A
exhibits a pure area law without any subleading term.

To support our analytical argument, we also numerically
calculate the Rényi-4 negativity (the Rényi-2 negativity
is trivially zero) and show that the topological term γ

(4)
N

indeed exhibits distinct behaviors across the transition. We
adopt the Kitaev-Preskill prescription to extract γN [46].
More specifically, we consider the subsystems A, B, C

∂AA

FIG. 4. Entanglement negativity between region A and its
complement Ā corresponds to the excess free energy for align-
ing Ising spins on the boundary of A (pink plaquettes) pointing
to the same direction.
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depicted below, and γN is given by

A

B

C

−γN := EA + EB + EC + EABC

− EAB − EBC − EAC .

(31)

Our choice of the subsystems further simplifies the above
expression to −γN = 2EA − 2EAC + EABC [56].

The result is presented in Fig. 5, where γ
(4)
N approaches

log 2 and 0 for small and large pz, respectively. The curves
become steeper as the system size increases, which is
consistent with the predicted step function in the thermo-
dynamic limit. One can also observe a dip of γ

(4)
N below

zero. This phenomenon has also appeared in the numer-
ical study of the topological entanglement entropy across
transitions [13]. We believe that this dip is due to the finite-
size effect, which might be more severe for information
quantities with a large Rényi index n [57].

So far, we considered only a simply connected subre-
gion. If A is not simply connected, that is, ∂A contains
k disconnected curves (for example, the boundary of an
annular region that contains two disconnected curves),
then the constraints require only the Ising spins to align
with other spins on the same boundary curve. In this case,
the topological entanglement negativity is k log 2. This
is the same dependence on the number of disconnected

0.0 0.1 0.2 0.3
–0.5

0.0

0.5

1.0

FIG. 5. Topological negativity γ
(4)
N as a function of the phase

error rate pz . We consider the subsystems A, B, and C as in
Eq. (31) and choose the side of the region ABC to be L/4.
γ

(4)
N approaches log 2 and zero at small and large pz , respec-

tively. The curves become steeper as the system size L increases.
The dashed line indicates the predicted behavior in the thermo-
dynamic limit. The results are averaged over 107 independent
Monte Carlo measurements from each of 48, 96 random initial
spin configurations for L = 8, 12, respectively. The error bars for
L = 8 are negligible and thus omitted.

components as in the topological entanglement entropy of
ground states [47].

E. n → 1 limit, duality and connection to optimal
decoding

In this subsection, we determine pc in the limit n → 1
via a duality between the statistical mechanical model
established in Sec. III B and the 2D random bond Ising
model (RBIM) along the Nishimori line [58]. The RBIM
is also known to govern the error threshold of the optimal
decoding algorithm for the 2D Toric code with incoherent
errors [10]. The duality shows that the decoding threshold
indeed saturates the upper bound given by the threshold in
our information theoretical diagnostics. This duality was
derived before via a binary Fourier transformation [59,60].
Here, it follows naturally from two distinct expansions of
the error-corrupted state.

The statistical mechanical model in Sec. III B is based
on the loop picture in Eq. (15). Here, we work in an alterna-
tive error-configuration picture, writing the error-corrupted
state as

e

e
m

m

Cz Cx

ρ =
∑

Cx,Cz

P (Cx)P (Cz)

ZCzXCxρ0X
CxZCz ,

(32)

where Cz (Cx) denotes the error string on the original (dual)
lattice. The error string creates error syndromes, i.e., e (m)
anyons, on the boundary ∂Cz (∂Cx). The probability for
each string configuration is

P(Ca) = p |Ca|
a (1 − pa)

N−|Ca|, (33)

where |Ca| with a = x, z denotes the total length of the error
string, and N is the total number of qubits.

The expansion in error configurations allows writing the
nth moment as

trρn =
∑

{C(s)
x , C(s)

z }

n∏

s=1

P
(C(s)

x

)
P
(C(s)

z

)

× tr

(
n∏

s=1

ZC(s)
z X C(s)

x ρ0X C(s)
x ZC(s)

z

)
. (34)

We again choose ρ0 to be the maximally mixed state in
the logical space. The trace is nonvanishing only when the
error strings in two consecutive copies differ by a closed
loop. Thus, the error strings in the 2, . . . , nth copies are
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related to that in the first copy via

v
(s)
z

e

e

C(1)
z

C(s+1)
a = C(1)

a + ∂v(s)
a + l

d
(s)
a1

1 + l
d
(s)
a2

2 ,

s = 1, . . . , n − 1 ,

(35)

where v(s)
a is a set of plaquettes on the original (or dual)

lattice, its boundary ∂v(s)
a consists only of homologically

trivial loops. Two strings can also differ by a noncon-
tractible loop l1, l2 on the torus indicated by the binary
variables d(s)

a1 , d(s)
a2 = 0, 1. Noticing the decoupling between

Z and X , we have

trρn = Z ′
n,zZ ′

n,x,

Z ′
n,a =

∑

da

∑

C(1)
a

P
(C(1)

a

)

×
∑

{v(s)
a }

n−1∏

s=1

P
(
C(1)

a + ∂v(s)
a + l

d(s)
a1

1 + l
d(s)

a2
2

)
,

(36)

where we denote the collection of (d(s)
a1 , d(s)

a2 ) for s =
1, 2, . . . , n − 1 as a binary vector da. Comparing the above
expression with Eq. (19), we have

Zn,x = 2
(n−1)N

2 Z ′
n,z, Zn,z = 2

(n−1)N
2 Z ′

n,x. (37)

In the following, we focus on Z ′
n,z and suppress the

subscripts for clarity. The analysis of Z ′
n,x is similar.

We now interpret Z ′
n as a partition function of Ising

spins that is related to the replicated RBIM. We first
introduce n − 1 flavors of Ising spins on the plaquettes
to represent v(s), s = 1, . . . , n − 1. The Ising domain wall
represents ∂v(s) as shown below.

Next, we identify the probability of error strings with the
Boltzmann weight of Ising spin configurations. Effectively,
the spins of the same flavor have nearest-neighbor antifer-
romagnetic interactions if their link crosses the path C(1)

or l1(2) when d(s)
1(2) = 1; the interaction is ferromagnetic

otherwise. Specifically,

Z ′
n = ((1 − p)p)N/2

∑

{ηij }
P({ηij })

∑

d

∑

τ (s)

e−Hn(ηij ,d), (38)

where

Hn(ηij , d) = −J
n−1∑

s=1

∑

〈ij 〉
ξ

(s)
ij (d)ηij τ

(s)
i τ

(s)
j . (39)

Here, J depends on p and satisfies the Nishimori condi-
tion e−2J = p/(1 − p) [10,58]. Both ηij and ξ

(s)
ij (d) take

the value ±1. The random variable ηij takes the −1 value
along C(1), which can be interpreted as a random sign of
bond coupling. The variable ξ

(s)
ij (d) = −1 along noncon-

tractible loops l1(2) when d(s)
1(2) = 1, which can be inter-

preted as a defect in the spin model. The above expression
allows writing Z ′

n = Zn−1
RBIM as the disorder-averaged parti-

tion function of n − 1 copies of RBIM along the Nishimori
line.

The replicated RBIM in the error configuration picture
and the spin model in the loop picture are derived from the
n-th moment of the same error corrupted state. Therefore,
they are dual to each other and share the same critical error
rate for all replica indices. Note that the replicated RBIM
exhibits two phases, a ferromagnetic and a paramagnetic
phase at small and large error rates, respectively. The phase
diagram is exactly opposite to that of the spin model in
its dual picture, which is a common feature of Kramers-
Wannier dualities [61].

In the replica limit n → 1, the replicated RBIM reduces
to the RBIM derived for the optimal quantum error-
correction algorithm [10] and undergoes an ordering tran-
sition at pc = 0.109 [62,63]. This implies that all three
diagnostics should also undergo the transition at the
same pc in the replica limit and confirms that the opti-
mal decoding threshold saturates the upper bound in
Eq. (6).

IV. DISCUSSION

In this work, we introduced information-theoretic diag-
nostics of error-corrupted mixed states ρ = ∏

i Ni[ρ0],
which probe their intrinsic topological order and capacity
for protecting quantum information. We focused on a con-
crete example, where ρ0 is in the ground-state subspace
of the Toric code and Ni describes the bit-flip and phase
errors. We noted that the nth moment trρn can be writ-
ten as the partition function of a 2D classical spin model,
that is dual to the (replicated) random-bond Ising model
along the Nishimori line, which is used to establish the fol-
lowing results. We consider three complementary diagnos-
tics, quantum relative entropy, coherent information, and
topological entanglement negativity, which are mapped
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to different observables in the spin model and shown to
undergo a transition at the same critical error rate. Gen-
erally speaking, this critical error rate is an upper bound
for the error threshold that can be achieved by any decod-
ing algorithm. The aforementioned duality implies that the
critical error rate identified here is exactly saturated by
the error threshold of the optimal decoding algorithm for
the Toric code proposed by Dennis et al. [10]. This result
unveils a connection between the breakdown of topolog-
ical quantum memory and a transition in the mixed-state
topological order, and also provides physical interpretation
for the decoding transition.

We have focused on Toric code with incoherent
errors. It will be interesting to generalize the discus-
sion to coherent errors that create anyons with coherence,
e.g., amplitude damping or unitary rotations [64–67]. In
these cases, one has to concatenate coherent errors and
dephasing channels that mimic the syndrome measure-
ment in order to make better contact to quantum error
correction based on that syndrome measurement. It is
also interesting to further consider non-Abelian quantum
codes [68–70].

It might be surprising that the intrinsic properties of
the 2D error-corrupted quantum states are captured by 2D
classical statistical-mechanical models. In Appendix B, we
give a brief discussion on ZN Toric code with specific
incoherent errors and show that this is also the case. A
more general perspective is the so-called errorfield dou-
ble formalism, which is proposed by the same authors.
It follows from this general formalism that the intrin-
sic properties of the 2D error-corrupted states can always
be captured by a 1+1D quantum model. Details will be
reported elsewhere [71].

In the Toric code and other topological codes with local
errors, the statistical mechanical model for the optimal
decoding algorithm always satisfies the Nishimori condi-
tion [10,18–22,72]. One salient feature of the statistical
mechanical model on the Nishimori line is an enlarged
Sn symmetry in the replicated model of n − 1 replicas
[73,74]. In our analysis of intrinsic mixed-state transition,
the (n − 1)th replicated model actually corresponds to the
nth moment trρn, where the invariance under permuting
n copies of the density matrix naturally gives rise to the
Sn symmetry. This offers an alternative perspective on the
occurrence of Nishimori physics in the context of optimal
decoding.

As we have commented in Sec. II A, the error-induced
transition acquires a different nature from the thermal
transition in finite-temperature topological order. This dis-
tinction suggests a hierarchy of topological transitions in
general mixed states. For example, it suffices to use phys-
ical observables (linear in the density matrix) to detect
the thermal transition, while it requires at least second
Rényi quantities (quadratic in the density matrix) to detect
the error-induced transition. It is interesting to explore

more exotic topological transitions in mixed states that
are detectable only by nonlinear functions of the density
matrix of even higher orders, such as the entanglement
Hamiltonian.

The above task is intimately related to the goal
of classifying mixed-state topological order. A suitable
definition of mixed-state topological order should be both
operationally meaningful and also identify computable
topological invariants. Our discussion, which focuses on
the error-corrupted mixed states, represents one particular
aspect of this more general question. Here, the coherent
information provides the operational definition, namely, a
locally corrupted state is in a different phase if QEC is
impossible, while the topological entanglement negativity
is believed to provide a computable topological invari-
ant that diagnoses the present transition. However, note
that both the local error channel and QEC process are
generally nonunitary, for which the Lieb-Robinson bound
does not apply. Therefore, understanding the role of local-
ity is key to obtaining a general notion of equivalence
classes of mixed states. Similarly, a more general justi-
fication of topological negativity and its universality, in
the sense of establishing its invariance under the applica-
tion of local quantum channels at a certain place, is left
for future work. The main difficulty comes from under-
standing how local perturbations affect the spectrum of
a partially transposed density matrix, which is an inter-
esting problem in its own right and is left to future
work.
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APPENDIX A: DETAILS OF THE MAPPING

In this section, we detail the mapping between the three
diagnostics and observables in the statistical-mechanical
models.

1. Quantum relative entropy

We here explicitly show that the Rényi quantum relative
entropy is related to the correlation function in the classical
spin model. Specifically, we consider the relative entropy
between the error-corrupted ground state and an excited
state |�m〉 := wm(C) |�0〉 with a pair of m particles created
at the end of path C.

First, we write down the error-corrupted state ρm in the
loop representation

ρm = 1
2N

∑

g

sgn
(
gz, X C) gzgxe−μx |gx |−μz |gz |, (A1)

where the commutation relation between the loop operator
and the string operator is accounted by sgn(gz, X C); the
sign function equals +1 when gz and X C commute and
−1 otherwise. The above expression allows one to write
trρρn−1

m as

trρρn−1
m = Zn,x

2(n−1)N

∑

{g(s)
z }

O(n)
D e−Hn,z , (A2)

where O(n)
D denotes the product of sign functions in n − 1

copies of ρm

O(n)
D = sgn

(
g(1)

z , X C) . (A3)

Here, we have used the constraint g(1)
z = ∏n

s=2 g(s)
z for

nonvanishing trace in the loop representation. Using this
expression, the nth Rényi relative entropy takes the form

D(n)(ρ||ρm) = 1
1 − n

log〈O(n)
D 〉. (A4)

Our next step is to express the observable 〈O(n)
D 〉 in terms

of the Ising spins. In the spin model, the closed loop g(1)
z

is identified with the domain wall of σ
(1)
i , and the Ising

spins on two sides of g(1)
z antialign. Thus, σ

(1)
il and σ

(1)
ir on

the two ends of the open string C is aligned if g(1)
z crosses

C for even number of times and is antialigned otherwise.
The parity of the crossing is exactly measured by the sign
function sgn(g(1)

z , X C). Hence, the observable 〈O(n)
D 〉 maps

to the correlation function

〈O(n)
D 〉 = 〈σ (1)

il σ
(1)
ir 〉. (A5)

2. Coherent information

We now develop a spin-model description for the Rényi
coherent information I (n)

c in Eq. (7). In the definition of
coherent information, the system density matrix ρQ is the
error-corrupted state ρ in Sec. III B, and its nth moment is
mapped to the partition function of the (n − 1)-flavor Ising
model on the torus. Here, we show that the nth moment of
ρRQ maps to the partition function of the same model with
defects (domain walls) inserted along large loops on the
torus.

First, we write down the initial state of the system Q
and the reference R. We consider two reference qubits and
two logical qubits in the ground-state subspace, and maxi-
mally entangle them in a Bell state. Let sa=x,z

l be the Pauli
operator of two reference qubits, and ḡal be the four logical
operators

l1

l2

ḡzl :=
∏
�∈l

Z� ,

ḡxl :=
∏
�∈l∗

X� ,

(A6)

where l = l1,2 and l∗ = l∗1,2 are on the original and dual
lattice. We consider the Bell state prepared as the +1
eigenstate of stabilizers ḡzlsz

l and ḡxlsx
l , and write the initial

density matrix for the system and reference as

ρ0,RQ =
∏

l=l1,l2

∏

a=x,z

1 + ḡalsa
l

2

∏

s

1 + As

2

∏

p

1 + Bp

2
.

(A7)

Here, we again work in the loop picture of ρ0,RQ, and
further factorize the density matrix into a product

ρ0,RQ = 1
2N+2 �x

0,RQ�z
0,RQ, (A8)

where �a
0,RQ is a summation of a = x, z loops and takes the

form

�a
0,RQ =

∑

ga

ga

∏

l=l1,l2

(
1 + ḡa,lsa

l

)
. (A9)

In the error-corrupted state ρRQ, the X and Z error channels
act on �z

0,RQ and �x
0,RQ, respectively, giving rise to ρRQ =

�x
RQ�z

RQ/2N+2 with

�a
RQ =

∑

ga

∑

dal=0,1

e−μa

∣∣∣
∏

l=l1,l2
(ḡal)

dal ga

∣∣∣ga

∏

l=l1,l2

(ḡalsa
l )

dal ,

(A10)

where dal is a binary variable indicating whether the loop
operator in the summation acts on the noncontractible loop
l of the torus.
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Our next step is to write down the nth moment of ρRQ in
the loop picture

trρn
RQ = 1

2n(N+2)
tr
((

�x
RQ

)n (
�z

RQ

)n)
, (A11)

where each �
x(z)
RQ is a sum over all possible X (Z) loop oper-

ators with positive weights. The product of loop operators
from n copies has a nonvanishing trace only if the product
is identity. This imposes the constraint on loop configura-
tions and allows expressing the nth moment as a sum of
partition functions

trρn
RQ = 1

2(n−1)(N+2)

∏

a=x,z

∑

da1da2

Z (da1,da2)
n,a , (A12)

where dal with l = 1, 2 is a (n − 1)-component binary vec-
tor, the sum runs over all possible dal, and Z (da1,da2)

n,a =
∑

{g(s)
a } e−H

(da1,da2)
n,a is the partition function with an effective

Hamiltonian

H (d1a,d2a)
n,a = μa

n−1∑

s=1

∣∣∣(ḡ(s)
a1 )da1,s(ḡ(s)

a2 )da2,sg(s)
a

∣∣∣

+ μa

∣∣∣∣∣

n−1∏

s=1

(ḡ(s)
a1 )da1,s(ḡ(s)

a2 )da2,sg(s)
a

∣∣∣∣∣ . (A13)

Here, dal,s denotes the sth component of vector dal.
The loop model in Eq. (A13) can be identified with a

classical spin model similar to Eq. (21). However, there
is an important difference due to the presence of the
homologically nontrivial loop ḡ(s)

al . Here, we interpret the
homologically trivial loop g(s)

a as the Ising domain wall and
ḡ(s)

al as a defect along the noncontractible loop. The defect
corresponds to flipping the sign of Ising coupling along a
large loop. Specifically, for Z (X ) loops on the original lat-
tice, we introduce Ising spin on the plaquettes (vertices)
such that

∣∣∣(ḡa1)
da1,s

 (ḡa2)

da2,s

 g(s)

a,


∣∣∣ = 1 − (−1)λ
(s)

 σ

(s)
i σ

(s)
j

2
, (A14)

where i, j are connected by the link 
, and λ
(s)

 =

|(ḡa1)
da1,s

 (ḡa2)

da2,s

 | is binary variable that denotes whether

the defect goes through the link 
. This results in an
effective Hamiltonian

H (d1a,d2a)
n,a = −Ja

∑

〈i,j 〉

n−1∑

s=1

(−1)λ
(s)

 σ

(s)
i σ

(s)
j

+
n−1∏

s=1

(−1)λ
(s)

 σ

(s)
i σ

(s)
j . (A15)

Hence, Z (da1,da2)
n,a becomes the partition function of the

classical spin model with defects inserting along the non-
contractible loops labeled by binary vectors dal.

The mapping developed above allows a spin-model
description for the nth Rényi coherent information I (n)

c .
The nth moment of ρQ is identified with the partition
function with no defect, i.e., trρn

Q = Z (0,0)
n,x Z (0,0)

n,z /2(n−1)N .
Therefore, we have

I (n)
c = 1

n − 1

∑

a=x,z

log

∑
da1da2

Z (da1,da2)
n,a

2n−1Z (0,0)
n,a

. (A16)

Thus, the Rényi coherent information is associated with
the excess free energy of inserting defects along non-
contractible loops

�F (da1,da2)
n,a := − log

(Z (da1,da2)
n,a /Z (0,0)

n,a

)
. (A17)

3. Entanglement negativity

Here, we show that the Rényi negativity in the error-
corrupted state maps to the excess free energy for aligning
spins in the statistical mechanical model. Specifically, we
consider the case when only one type of error, e.g., bit-flip
errors, is present.

The first step is to write down the partially transposed
density matrix ρTA . We again work in the loop representa-
tion, where the error-corrupted state is expressed as a sum
of Pauli strings g = gxgz in Eq. (16). The Pauli string g
is invariant under the partial transpose up to a sign factor
yA(g) = (−1)NY depending on the number NY of Pauli-Y
operators inside the subsystem A. Hence,

ρTA = 1
2N

∑

g

yA(g)e−μx |gx |−μz |gz |g. (A18)

Using the above expression, one can write down the nth
moment of ρTA

tr
(
ρTA

)n = 1
2(n−1)N

∑

{g(s)}
O(n)

N e−Hn,x−Hn,z . (A19)

Here, similar to trρn, the trace imposes a constraint on the
loop operators g(s), and the summation runs over g(s) only
in the first n − 1 copies. The sign factors collected from
the partial transpose in each copy are combined in O(n)

N ,

O(n)
N =

[
n−1∏

s=1

yA
(
g(s))

]
yA

(
n−1∏

s=1

g(s)

)
. (A20)

Equation (A19) allows expressing the 2nth Rényi negativ-
ity in terms of the expectation value of O2n:

E (2n)

A = 1
2 − 2n

log
〈
O(2n)

N

〉
. (A21)
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Yet, analyzing the number of Pauli-Y operators in
Eq. (A20) is a formidable task. Moreover, the observable
O(n)

N derived from the partial transpose should be a basis-
independent quantity. Indeed, one can express O(n)

N in terms
of loop configurations

O(n)
N =

n−2∏

r=1

sgnA

(
r∏

s=1

g(s), g(r+1)

)

=
n−1∏

r=2

r−1∏

s=1

sgnA
(
g(s), g(r)) . (A22)

Here, we use the property

yA(g)yA(h) = yA(gh) sgnA(g, h), (A23)

where the sign function sgnA(g, h) = ±1 depending on the
commutation relation between the support of Pauli string
g and h on subsystem A:

sgnA(g, h) =
{

1 [gA, hA] = 0
−1 {gA, hA} = 0

. (A24)

In the second equality of Eq. (A22), we use the property of
sign function

sgnA(g1g2, g3) = sgnA(g1, g3) sgnA(g2, g3). (A25)

In the Toric code, the operator g further factorizes into g =
gxgz, where gx, gz are closed-loop operators of Pauli X and
Z, respectively. The sign function between two such loop
operators g and h reduces to

sgnA(g, h) = sgnA(gx, hz) sgnA(gz, hx). (A26)

We then arrive at

O(n)
N =

n−1∏

s,r=1,s 	=r

sgnA
(
g(s)

x , g(r)
z

)
. (A27)

To develop an analytic understanding of the observable
O(n)

N and how it detects the ferromagnetic transition, we
first consider the situation when only X or Z error is
present. In this case, we show that log〈O(n)

N 〉 exactly maps
to the excess free energy of spin pinning and sharply dis-
tinguish the two phases. After that, we discuss the general
situation when both types of error are present.

We here consider the case when only X errors are
present, namely pz = 0 and μx = 0. The vanishing X -loop
tension indicates that Hn,x is in the paramagnetic phase, and
the domain walls gx of arbitrary sizes occur with the same

probability. Thus, we can perform an exact summation
over all possible gx and obtain

tr(ρTA)n = 1
2(n−1)N

∑

{g(s)
z }

O(n)
N ,ze

−μzHn,z , (A28)

where O(n)
N ,z = ∑

{g(s)
x } O(n)

N . The summation in O(n)
N ,z is non-

vanishing only if the sign functions in Eq. (A27) for differ-
ent g(s)

x interfere constructively. This yields a constraint on
the g(s)

z

O(n)
N ,z =

n−1∏

r=1

Ngxδh(r)(A), (A29)

where h(r) = ∏n−1
s=1,s 	=r g(s)

z , the Kronecker δ function δh(r)(A)

takes the value unity only if the support of h(r) on subsys-
tem A is a closed loop and equals zero otherwise, and Ngx
is an unimportant prefactor that denotes the number of pos-
sible gx in each copy. The n − 1 δ function constraints are
independent for odd n, whereas for even n they give rise to
only n − 2 independent constraints as

∏n−1
r=1 h(r) = I .

The constraint requires h(r) not to go through the bound-
ary of subsystem A. In the statistical-mechanical model
of Ising spins, this corresponds to no domain wall going
through the boundary of A, namely forcing |∂A| bound-
ary spins aligning in the same direction (see Fig. 4). Thus,
the negativity is associated with the excess free energy for
aligning spins

E (2n)

A = 1
2n − 2

(F (2n)

A − F (2n)

0 ) := �F (2n)

A

2n − 2
, (A30)

where F (2n)

0 := − logZ2n,xZ2n,z and F (2n)

A are the free
energy without and with constraints, respectively. Since we
have in total 2n − 2 constraints, E (2n)

A = �FA with �FA
being the excess free energy for aligning one species of
Ising spins.

APPENDIX B: ZN TORIC CODE

So far, we focus only on the Z2 Toric code with inco-
herent errors. It is natural to inquire whether our methods
are still applicable to ZN Toric code and whether the results
change. We provide a brief discussion on the Z3 Toric code
in this subsection. We will use similar symbols to denote
the basic operators and stabilizers, although their meanings
are different from those in the Z2 case.

Let us first specify the Hamiltonian and the error mod-
els. Consider an L × L square lattice with periodic bound-
ary conditions. The physical qutrits live on the edges of the
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lattice. We introduce the clock and shift operators

XZ = wZX , w = e2π i/3,

Z =
⎛

⎝
1

w
w2

⎞

⎠ , X =
⎛

⎝
1

1
1

⎞

⎠ .
(B1)

In and only in this subsection, X and Z refer to the clock
and shift, respectively. The code subspace is given by the
ground state subspace of the Hamiltonian

HZ3 = −
∑

s

As −
∑

p

Bp , (B2)

where As and Bp are mutually commuting projectors asso-
ciated with vertices and plaquettes, e.g.,

s

p 1

2

3

4
5

6

As =
1
3

2∑
n=0

X4X5X
−1
1 X−1

6

)n

Bp =
1
3

2∑
n=0

Z4Z1Z
−1
2 Z−1

3

)n

(B3)

One can verify that A2
s = As, B2

p = Bp . The ground state
|�〉 satisfies As |�〉 = Bp |�〉 = |�〉, and the violation of
As and Bp will be refered to as e (and its antiparticle
ē) and m (and its antiparticle m̄) anyons, respectively.
For simplicity, we consider only the following incoherent
error:

NX ,i[ρ] = (1 − p1 − p2)ρ + p1ZiρZ†
i + p2Z2

i ρZ2,†
i ,

(B4)

which creates a pair of e anyons in two different ways
with probabilities p1 and p2. In the following, we will first
assume p1 = p2 = p and comment on what could change
without this assumption.

To compute the three diagnostics, one can still work
in the loop picture and map the nth momentum of the
error-corrupted state to a partition function of a classical
spin model that involves n-flavor three-state Potts spins.
As the error rate increases, the spin model undergoes a
paramagnet-to-ferromagnet transition. The three diagnos-
tics are mapped to the corresponding observables in a
similar fashion as what we have shown in the Z2 case.
Therefore, they should undergo a transition simultaneously
and yield a consistent characterization of the error-induced
phase.

When p1 	= p2, the spin models obtained in the loop pic-
ture contain complex phases and do not admit a statistical-
mechanical interpretation. Technically, it brings sign prob-
lems to the Monte Carlo simulation. It is unclear whether
the three diagnostics still exhibit transition simultaneously,
which may be an interesting question for future study.
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