
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Tabletop Role-Playing Game Design Through a Pattern Language Software Model

Permalink
https://escholarship.org/uc/item/6c42m5zz

Author
Mayben, Alexander Montgomery

Publication Date
2020

Supplemental Material
https://escholarship.org/uc/item/6c42m5zz#supplemental

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
ShareAlike License, availalbe at https://creativecommons.org/licenses/by-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6c42m5zz
https://escholarship.org/uc/item/6c42m5zz#supplemental
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

TABLETOP ROLE-PLAYING GAME DESIGN
THROUGH A PATTERN LANGUAGE SOFTWARE MODEL

A thesis submitted in partial satisfaction of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTATIONAL MEDIA

by

Alexander Mayben

September 2020

The Thesis of Alexander Mayben
is approved:

Professor Noah Wardrip-Fruin, Chair

Professor Michael Mateas

Quentin Williams
Acting Vice Provost and Dean of Graduate Studies

Copyright c© by

Alexander Mayben

2020

Table of Contents

List of Figures iv

Abstract v

Dedication vi

Acknowledgments vii

1 Introduction 1

2 Related Work 6
2.1 On Pattern Languages . 6
2.2 On Tabletop Role-Playing Game Design 8

3 Methods 10
3.1 Developing a Pattern Language . 10
3.2 Producing a System Design Tool . 12

4 Results 14
4.1 Pattern Language . 14

4.1.1 Theme . 14
4.1.2 Setting . 16
4.1.3 Mechanics . 17

4.2 Assemble . 23
4.2.1 Blockly Development Observations 25

5 Conclusion 31

Bibliography 34

Appendix 37

iii

List of Figures

4.1 An entity relationship diagram of the pattern language. 15
4.2 A diagram of a move pattern. 19
4.3 The Assemble interface. 23
4.4 The history pattern as coded within the Blockly engine. 26
4.5 An example block in Assemble. 27
4.6 A flowchart summarizing how blocks interact with mutators. 28
4.7 The move from Figure 4.2 being written in Assemble. 29

iv

Abstract

Tabletop Role-Playing Game Design

Through a Pattern Language Software Model

by

Alexander Mayben

Currently, barriers to access are high for new or inexperienced designers in the fields

of tabletop role-playing game (TTRPG) design. TTRPGs remain a relatively unex-

plored design space, to the detriment of designers and system homebrewers– those who

wish to modify existing TTRPG systems, rather than write new ones. A useful solu-

tion to this issue is to compose a pattern language representative of these systems. A

pattern language provides a useful blueprint for designers of complex design systems,

simplifying the TTRPG design process. In this thesis, we create a conceptual language

which presents a simple-to-understand method of developing a TTRPG’s core elements

alongside a set of pre-defined options and goals. This pattern language will then be

simulated by an application developed within the JavaScript engine Blockly, as both a

demonstration and as a tool with which designers can write systems. This tool, which

we have named Assemble, will demonstrate how designers could benefit from utilizing

pattern languages in computer-aided design contexts for TTRPG systems.

v

To my grandfather,

William Harmon Mayben Jr.

(1920-2002)

For my education.

To my grandmother,

Patricia Bowing Fournier

(1927-2020)

For my childhood.

vi

Acknowledgments

I first want to thank Jason Morningstar and his game Fiasco, which inspired this work.

I also thank Meguey Baker and Vincent Baker for Powered by the Apocalypse, as well

as Sage LaTorra and Adam Koebel for Dungeon World, the system which introduced

me to Powered by the Apocalypse.

Much thanks to my faculty advisors Michael Mateas and Noah Wardrip-Fruin, as well

as Elizabeth Swensen and Katherine Isbister, for their patience and guidance.

Further appreciation goes out to my lab peers Elizabeth Oliver, Devi Acharya, Max

Kreminski, Isaac Karth, Melanie Dickinson, Rehaf Al Jammaz, Stacey Mason, and Shi

Johnson-Bey, and to my colleagues Tamara Duplantis, Henry Zhou, and Celeste Jewett.

This project would not have happened without Argent Eliot Reinhard and Benjamin

Rowland, whose assistance in validating this thesis’ pattern language was indispensable.

I also thank Benjamin Smithers, Andrew Miller, Tom O’Rourke, Adam Chan, Nick

Uhlig, Kevin Zhang, Mason Sipple, and Thomas McMaster for supporting my interest

in tabletop games– role-playing or otherwise– throughout my time in university.

I thank my dear friends Sebastian Timpe, Owen Chin, Anthony Boileau, Michael Adam

Mahar, Dustin Matheny, Logan McBride, and Manuel Palomares, for their ongoing

emotional support and encouragement through academic and personal hardship.

Finally, to my mother Mary, my father Bill, my brother Andrew, my aunt Janet, my

aunt Rhea, and my cousin Darcy: I would not be where I am today without your

bottomless love and support. Thank you all so much.

vii

Chapter 1

Introduction

Tabletop role-playing games (TTRPGs) are defined as a class of interactive

narrative-based games with a heavy focus on improvisational storytelling, imagination,

and, commonly, elements of random chance, such as dice rolls. TTRPGs are usually

driven by a group of players who assume the roles of fictional characters, and are medi-

ated and facilitated by a game master (GM). The GM plans out the game’s “campaign”–

its session-to-session story– by building upon the game’s world, driving conflict and ac-

tion in the game’s narrative, and evaluating player decision-making over the course of

play to accommodate and ensure interactivity.[23] To encourage certain approaches in

how stories are told, TTRPGs form structured systems that guide player interaction

and determine the tone and content of a role-playing campaign’s story and setting.

Each TTRPG system, such as Dungeons & Dragons 5th Edition, FATE, and Apocalypse

World, conveys these structures through one or more reference guides, detailing the

rules of play, the world in which the game is set, and the kinds of roles which players

1

are able to assume within that world.[6][12][16]

For many GMs in the TTRPG community, existing role-playing systems do

not always suit the needs of the stories they wish to tell. This phenomenon most notably

occurs from a failure by the rules or accompanying setting of a role-playing system to

match the GM’s standards or expectations. As every campaign is different, with any

given role-playing group bearing a unique style of story-crafting, there may often be

circumstances for which a pre-established rule structure would be insufficient for ac-

commodating certain story situations or attitudes toward play. Yet to an individual

GM, designing an entirely new system can be a massive undertaking; in most circum-

stances, “homebrewing”– tweaking existing systems to fit the GM’s or players’ needs–

is a much more forgiving alternative. Homebrew is a GM’s reinterpretation, change, or

addition of mechanics within an existing TTRPG system, thus re-purposing said system

to apply to the specific needs of a given campaign. Homebrew can take many forms,

ranging from minor, innocuous reinterpretations of certain rules, to the addition of en-

tirely new mechanical interactions or story approaches. For instance, a GM may want

to devise rules for handling a vehicle in a system where foot-based travel is usually im-

plied, or plan a campaign set in the modern age using an explicitly high-fantasy system

originally written for a medieval setting. Homebrew-minded approaches are indispens-

able for capturing these kinds of interactions, without the need for the GM to change

to a different, potentially less-preferable system, or write a new system from scratch.

While TTRPGs have gained popularity in recent years, designing new role-

playing systems– and to a lesser degree, homebrew– remains challenging and unintuitive

2

for many newcomers. Few comprehensive texts on tabletop role-playing system design

exist, and the field of TTRPGs shares a fault with the broader field of game design: there

are insufficient tools or strategies to on-board designers who are not already extensively

trained in game design.[9] There also exists no design ontology for TTRPG systems

within current research. The question of how a system is designed resides at the core of

what motivates homebrewers, and so developing an effective design ontology would help

not only those developing systems of their own, but also those who are more interested

in adapting existing systems for homebrew purposes. Additionally, while the field of

homebrew typically requires less effort on the part of the designer compared to authoring

full systems, the game design considerations made by homebrewers are similar to those

of designers of role-playing systems in general. Expanding access to design tools and

literature for GMs and TTRPG designers could therefore encourage further innovation

within TTRPG design and ultimately aid future game design research.

Given that TTRPG systems occupy an abstract design space when compared

to other practices, it is worthwhile to consider a solution that allows the process of

system design to be tactile, easy to follow, and structurally comprehensive. Pattern

languages present a worthwhile solution to help simplify the process of both homebrew

and general system design. A pattern language effectively generalizes existing systems

by breaking them down into an interactive network of generic design patterns. In re-

search, pattern languages function not as a taxonomy, but a partonomy, organizing a

system and its parts into a structured hierarchy to further understand their relation-

ships and function. The elements of a pattern language are interrelated; patterns can

3

require the satisfaction of related patterns, refer to other patterns that are dependent

on their completion, or do both.[4] Pattern languages work jointly as partonomies and

practical aids, describing the composition of an effectively-designed exemplar system

while providing a useful road-map for designers to author new systems. They can also

provide a unified understanding of design processes. Thus, producing a well-validated

pattern language of TTRPG systems would have positive implications for expanding

upon their design’s theory and practice.

For a pattern language to be practical, it also must be accessible to those who

are closely involved in design. Accomplishing this requires access to design software

that effectively incorporates pattern languages and allows users to create full systems

from those languages. Accordingly, software also can ease the process by which design

concepts are transmitted from person to person while a system is in the process of

being drafted. This can especially be useful for homebrew purposes, as homebrews

themselves have been known to inherit or adapt concepts between different systems,

and there is a broad tradition in the homebrew community of sharing others’ design

modifications.[1][2]

This thesis will demonstrate a solution to accommodating design choices made

by TTRPG designers and homebrewers by describing a pattern language representing

an example class of TTRPGs, thereby introducing several meaningful TTRPG design

patterns. Furthermore, this thesis will detail a software application which implements

the pattern language in a manner that can aid the process of TTRPG design and

homebrew. The digital interface which this thesis specifies will present a workflow

4

which streamlines TTRPG design, while at the same time producing TTRPG systems

that satisfy the expected criteria of their category. This application should appeal to

people without significant design experience who wish to develop a process for TTRPG

design, as well as intermediate-level GMs who are interested in including new mechanics

into their stories and campaigns.

5

Chapter 2

Related Work

2.1 On Pattern Languages

Pattern languages were first introduced in the 1977 book A Pattern Language

by Christopher Alexander et al. The work presents a recontextualization of design sys-

tems into patterns, conceived as a hypertextual structure informed by computational

reasoning. Through this hypertext, design elements are referenced by or connected with

each other, thereby comprising a structured, practical, and pedagogical system with in-

terlocking and reflexive elements[4]. Though the ideas outlined in A Pattern Language

were originally conceived for architecture, the pattern language concept has been ex-

panded to other fields, such as information science and human-computer interaction,

to cover a wide range of various useful applications. In “Pattern language and HCI”,

Yue Pan and Erik Stolterman outline some of these applications in detail, including

ethnographic research, interface design, and software engineering. Furthermore, Pan

6

and Stolterman argue that pattern languages are more effective for design practice than

patterns alone, facilitating design cohesion as a part of a larger whole, rather than

developing each pattern in an ontological vacuum[18].

Researchers and game designers have also adopted pattern languages within

their own approaches toward understanding games and storytelling systems. One key

example is Staffan Bjork and Jussi Holopainen’s extrapolation of Alexander’s ideas to

game design contexts, in their book Patterns in Game Design[7]. The Game Ontol-

ogy Project is yet another work concerned with the development of a partonomy for

the purpose of better understanding design in games, citing industry demand as a key

driver of interest in developing such a language[22]. Pattern language-based ontologies

have also become increasingly used as mechanisms for understanding intention-based de-

sign in the live-action role-playing (LARP) community, as demonstrated by descriptive

systems such as Morningstar and Li’s “Pattern Language for LARP Design”[17] and

experiments such as Miko laj Wicher et al.’s “LARP Design Cards”[21]. One impor-

tant thing to note here is that game design and LARP hold different general attitudes

towards balancing storytelling and causal system interactions. While game design occu-

pies a more rules-oriented space that often prioritizes the act of play over story content,

LARP usually tends to be motivated significantly more by story than mechanics. By

comparison, TTRPGs can be viewed as occupying a spectrum between these two in-

terests, with different role-playing systems varying upon the extent to which they may

prioritize one over the other.

7

2.2 On Tabletop Role-Playing Game Design

Beyond pattern languages, researchers have made other observations on how

interactive storytelling and TTRPGs could be conceptualized. Robin Laws, author of

the Over the Edge role-playing system, offers one such concept in his book Hamlet’s Hit

Points. Here Laws introduces a representation of plot, which he terms “Beat Analysis”,

to break down stories into their constituent “beats” to better understand the mechanics

of narrative causality. Laws then indicates how this treatment of storytelling can apply

to both existing narratives (using the titular Hamlet as one example) and interactive

contexts as with TTRPGs. In the latter case, Laws specifically focuses on the GM’s

organizational process, offering the Beat Analysis system as an option for GMs to plan

individual role-playing sessions and campaigns.[15]. In his Ph.D. dissertation, Aaron

Reed contextualizes TTRPGs as “storygames”. Designing a storygame, Reed writes,

is heavily dependent upon the game’s facilitation of one or more of four key activities:

generation, negotiation, administration, and what he refers to as “storywrighting”; the

process by which ideas are “combined and shaped into an ongoing, coherent, and com-

pelling story”. According to Reed, storygames occur at the midpoint of a “simulative

spectrum” between world simulation and storytelling, and a “performative spectrum”

between authorship and improvisation. Reed also characterizes the game master role as

unique to storygames in particular, imposing a level of mediation between simulation

and performativity.[19].

Vincent Baker, co-creator of Apocalypse World and Powered by the Apocalypse,

8

has also shared some of his philosophy on TTRPG design through his blog on the Lump-

ley Games website, in which he describes the design motivations behind his work. Baker

writes that for a TTRPG to be designed effectively, it should start with an outline, and

have that outline be repeatedly iterated upon, with revisions and optimizations made

between each iteration. He also indicates how Powered by the Apocalypse has benefited

TTRPG designers in presenting a useful outline to serve as a starting point for this

iteration process. Because of this, Baker argues, Powered by the Apocalypse should be

viewed not as a strict category of TTRPGs but as a general TTRPG design approach[5].

Baker’s notion of establishing an iterable preliminary system outline provides a promis-

ing indication of how deploying an effective pattern language might serve an important

design role.

9

Chapter 3

Methods

3.1 Developing a Pattern Language

Given that a holistic pattern language does not yet exist for TTRPGs, it

would be imprudent for the pattern language we define to attempt to encompass all

TTRPG systems without any basis to start from. Instead, this language was based

on a well-defined subset of tabletop role-playing systems, laying a foundation upon

which a more comprehensive pattern language can be developed in the future. The

Powered by the Apocalypse set of systems, originally conceived by Meguey Baker and

Vincent Baker, is therefore a more reasonable template to work from within the scope of

this thesis. Powered by the Apocalypse systems are characterized by their definition of

player actions within the system (known as “Moves”), the use of modular, class-specific

character sheets (“playbooks”), and the determination of situational outcomes via two

six-sided dice and a simple set of parameters (a roll of 10 or higher being a success, 7 to

10

9 a partial success, 7 and above counting as a hit, and a roll of 6 or lower being a miss).

Powered by the Apocalypse systems tend to be light on rules, well-defined regarding

intended player action, and tailored for quick and easy setup. Together, these simple,

easily-specifiable qualities make Powered by the Apocalypse systems more amenable to

the process of composing a pattern language.

To be effective, a pattern language should define a cohesive, yet nonrestric-

tive process for writing material for a system, standardize that material to a set of

constraints, and specify a logical connection of patterns that, when used to assemble a

completed system or homebrew, will help foster robust, insightful, and impactful play

experiences. Starting with Apocalypse World, the exemplar system of Powered by the

Apocalypse, we established the initial outline for the pattern language through empirical

observation, and then rigorous comparison against a variety of Powered by the Apoca-

lypse systems, amending the pattern language as necessary until we were satisfied that

it sufficiently covered a broad sample set. This process began with the author examin-

ing the contents of two additional systems, Monsterhearts 2 [3] and Dungeon World [14],

before collaborating with two undergraduate students to test and revise the prototype

pattern language against Apocalypse World and three additional systems: Big Bad

World [8], Bluebeard’s Bride[13], and Monster of the Week [20], which was accomplished

via a shared spreadsheet. Once validation was completed, the author proceeded to the

next phase of the project.

11

3.2 Producing a System Design Tool

Once the pattern language was developed, it was translated into a software

paradigm where it could then be used to dynamically compose new systems within a

visual interface. This software application needed to be capable of fluidly manipulating

system elements and loading content produced externally. For this purpose, we used

Blockly, a JavaScript engine developed by Google.[10] Based on the Scratch visual pro-

gramming language used to help teach coding, Blockly’s open-source access and verbose

documentation made it especially useful for development outside its original core pur-

pose. Blockly’s dynamic compartmentalization of information is especially helpful for

simplifying complex processes into an understandable visual vocabulary. The approach

of assembling a hierarchical block tree to complete a functional work product is more

than suitable for a pattern language-based use case, as pattern languages themselves are

hierarchical. Therefore the technical implementation of the pattern language in Blockly

could provide for a visual, comprehensive, and descriptive demonstration of the TTRPG

design process, making design more intuitive and understandable.

The Blockly application was first developed on the block-by-block level via

Google’s Blockly Developer Tools engine[11], with each block representing an individual

pattern of the pattern language. Once each pattern was translated into a correspond-

ing block, those blocks were converted into both XML and JavaScript code and placed

into the Blockly engine. The blocks’ JavaScript code was then developed further over

a four-month period to allow for interaction between different sets of blocks within the

12

Blockly workspace, including functions such as populating menus with blocks’ content,

packing certain data into JSON objects stored within the blocks’ XML, and specifying

dynamic inputs within the block structure. As the blocks were developed in JavaScript,

quality assurance was conducted via an HTML file displaying them, which was edited

and maintained alongside the blocks’ internal code. Upon completion of the JavaScript

portion of the software, the application was given the name Assemble, and the applica-

tion’s HTML portion was further developed into a complete website, receiving features

such as export and import functions for Assemble workspaces, a list of three exam-

ple systems ported to Assemble, and an informational sidebar explaining Assemble’s

function and purpose.

13

Chapter 4

Results

4.1 Pattern Language

This section will describe the pattern language developed over the course of

the Assemble project. This pattern language lays out a network of discrete patterns

which produce a valid Powered by the Apocalypse TTRPG system as output. In this

language, we say that a system is comprised of three patterns: themes, setting, and

mechanics.

4.1.1 Theme

Themes are the simplest of the three patterns used to form a system. A theme

is a short description of a principle or tonal affect that drives the design and play

of a system. It characterizes what makes a system interesting, or what that system

is generally “about”. Some examples of themes may include genre (i.e. the post-

14

Figure 4.1: An entity relationship diagram of the pattern language.

15

apocalyptic framing of Apocalypse World), an approach that puts an interesting spin

on role-playing (i.e. modular storytelling), or a compelling prompt that introduces the

general premise of the system (i.e. players control fantasy monsters emerging from a

modern-day nuclear event).

Any given theme should have one or more functions. A function is a means

by which a given theme is embodied within the design and play of the system. For

instance, Monsterhearts 2 ’s theme of ”adolescents who are secretly monsters” satisfies

two specific functions: exploring the disorientation inherent in adolescence through the

lens of monstrosity, and using monstrosity as an allegory to explore the other “mon-

strous” qualities of teenagers, such as gender expression, high school social politics, and

developmental angst. Functions also can have a more direct design role, with Apocalypse

World ’s post-apocalyptic theme having functions of a scarcity in resources that drives

character motivation and providing an ominous sense of the unknown which haunts

both play and story.

4.1.2 Setting

A setting is a world in which the system’s story is set. A system can have more

than one setting; this is true in Monsterhearts 2, where these individual settings take

the form of “Small Towns”. A system can also simply have an undefined setting, leaving

worldbuilding up to the GM if the system’s general focus is on mechanics instead.

A setting can be comprised of up to four patterns: society, region, mystery,

and history. A society is a description of a group of people that lives within the setting,

16

of which there can be none or many. A region is a defined geographical area within the

world with unique characteristics. A region can also have a number of landmarks, or

notable locations and features within that region that may bear some significance.

A history is an account of past events, both recent and distant, that are signif-

icant to the story of a particular setting. As there may be different historical accounts

depending on the subject, or even the narrator (i.e. the Rashomon effect), a setting

can have more than one history. The history pattern bears three patterns of its own:

era, entity, and event. An era is a period in time with pertinence to the story; it both

establishes how far back the history’s defined plot originates, as well as what techno-

logical period the present is established in. For instance, given that Bluebeard’s Bride

is set in the world of fairy-tales, its main history will have one “medieval” era. As

Apocalypse World is post-apocalyptic, its main history has two defined eras: one before

the apocalypse, and one after. An entity is a person or group with significance within

the system’s narrative, and an event is a relevant past occurrence.

4.1.3 Mechanics

The system’s mechanics describe the rules and procedure of the system’s play,

and references four patterns: factor, move, special parameter, and player rules.

For a Powered by the Apocalypse system, moves are quintessential. The sys-

tem’s moves define various classes of player interaction within the story. Each move will

have a name, a story effect, a description of how the move is executed through system

interactions, and a set of factors. A factor is a metric that has some impact on the out-

17

come of a given mechanic, with factors uniting to form the building blocks which drive

the resolution of moves and other mechanics. A factor can also occur as a move result;

if a move is successful (or unsuccessful, depending on the move), it may also cause one

or more additional factors that could have a future mechanical effect. Most moves also

depend on dice rolls to be resolved, and to this end Powered by the Apocalypse uses a

set of pre-defined parameters (See Section 3.1) to determine the outcome of roll-based

moves. If these parameters prove to be insufficient, the system can also define a number

of special parameters to specify additional types of outcomes.

We can see one example of how moves use factors with Monster of the Week ’s

“manipulate someone” move. Note that this move uses an “advanced success”, signifying

a roll of 12 or above, as a special parameter.

Once you have given them a reason, tell them what you want them to do
and roll +Charm.

For a normal person1:

On a 10+, then they’ll do it for the reason you gave them. If you asked too
much, they’ll tell you the minimum it would take for them to do it (or if
there’s no way they’d do it).

On a 7-9, they’ll do it, but only if you do something for them right now
to show that you mean it. If you asked too much, they’ll tell you what, if
anything, it would take for them to do it.

Advanced: On a 12+ not only do they do what you want right now, they
also become your ally for the rest of the mystery (or, if you do enough for
them, permanently).

For another hunter2:

On a 10+, if they do what you ask they mark experience and get +1 forward.

On a 7-9, they mark experience if they do what you ask.

1A non-player character (NPC).
2A player character.

18

Figure 4.2: A diagram of Monster of the Week ’s “manipulate someone” move as imple-
mented in the pattern language.

On a miss, it’s up to that hunter to decide how badly you offend or annoy
them. They mark experience if they decide not to do what you asked.
Monsters and minions cannot normally be manipulated.

Advanced: On a 12+ they must act under pressure to resist your request. If
they do what you ask, they mark one experience and take +1 ongoing while
doing what you asked.[20]

Starting from the beginning of the move, we examine what mechanical inter-

actions occur as the move is executed. The move starts with a Charm roll, so its first

factor is the player’s Charm stat. Next, the outcome will depend on whether or not the

character is played by the GM or another player, thus we might describe “NPC or PC”

as the next factor. The next result depends on the parameter under which the outcome

falls; in our pattern language this is assumed for all moves unless stated otherwise, so

there is no need to list this as a factor. Since there are no other conditions for this

move’s resolution, we must then determine if there is any mechanical result from the

move beyond its story impact. In this case, this does not occur for the NPC portion

19

of the move, but it does for the player character portion. If the move is a success,

the move’s target gets experience and forward. If it’s a partial success, they just get

experience. If it’s a miss, nothing happens. If the move ends in an advanced success,

they get experience and a +1 advantage to all moves while the manipulated action is

being carried out. Therefore, we can say that this move has the results of “experience”,

“forward”, and “advantage”, constituting the full set of factors that could arise from

the move.

The player rules pattern governs system interactions pertaining to player char-

acters. This pattern references six others: resource, equipment, playbook, character

creation, character improvement, and extra mechanic.

A resource is any stored value that a player tracks in their personal notes. This

might include health, energy, or other such values. Player stats (such as the Hot stat

in Apocalypse World or the Dark stat in Monsterhearts 2) also count as resources. A

resource usually tends to have an implied range of possible values, as well as an initial

value indicating the amount of a given resource that a player begins play with. If this

default value varies, it can be clarified further within the character creation pattern.

The equipment is the pattern which describes pre-defined items that players

can acquire. Equipment references two patterns: item type and item. An item type is

a category of items with defined properties in the system. Any item type can also have

a number of subtypes defined; these subtypes are themselves identical to item types,

and can also have subtypes. An item is any tool or object that can be acquired in the

system, and must have at least one distinguishing item type associated with it. An item

20

can also have additional types and subtypes.

A playbook is a character class in the system, fulfilling a particular role in play.

Playbooks can have their own unique moves and resources, and might have a number

of items to choose from at the start of play. Beyond these, a playbook has two unique

patterns: introduction and feature. A playbook’s introduction summarizes what makes

it unique among other playbooks. The introduction can include a flavor pitch tonally

describing the playbook from the standpoint of the system’s setting, a description of

the playbook’s social role (e.g. the intended personality of the playbook’s character),

and/or a description of its mechanical role (e.g. what abilities the playbook may have

within the context of the game itself). A feature is a mechanic that affects play outside

of the context of a move. Features specify a number of factors that might affect a variety

of moves or play situations for that playbook, while not necessarily corresponding to a

specific action. The distinction between moves and features in this case is intentionally

vague, allowing the designer to decide for themself whether a mechanic corresponds to

a class of player action, or is unsuited for being designated as a move per se. This

also encourages the designer to consider the benefits of providing a playbook with traits

beyond the framework of moves.

The character creation and character improvement patterns are closely similar

in their function, as both describe processes by which playbooks are maintained over the

course of play. Character creation specifies the process of generating a new playbook

from scratch, while character improvement describes character advancement, or ”level-

ing up”. Each pattern lays out a general process followed by all classes, demarcated by

21

an ordered list of steps describing each individual action to be taken. These patterns can

also define special processes for playbooks, signified with the playbook process pattern.

Character improvement also requires conditions to be met for improvement to occur;

this can also be specific to certain playbooks, in which case the playbook conditions

pattern is used.

The last pattern described by the pattern language is the extra mechanic pat-

tern. This pattern allows for additional rules to be established that affect the course of

play. Extra mechanics can also include a set of associated factors, moves, or resources.

22

4.2 Assemble

Figure 4.3: The Assemble interface, as viewed in Google Chrome.

Assemble is a computer-aided design application written in JavaScript that

translates the aforementioned pattern language into an interface. This interface allows

designers to organize and develop system parts through a comprehensive visual vocab-

ulary that aids understanding and composition of Powered by the Apocalypse systems.

Assemble was developed using the open-source engine Blockly.

Assemble’s editor consists of a central tree of blocks that simulates the pattern

23

language of Section 4.1, with each block signifying a pattern. This tree can be navigated

with the scroll wheel of the mouse or either of the two scroll bars. Blocks can be added

into the workspace from the toolbox (the gray toolbar on the left side of the editor), or

deleted by dragging and dropping them into the trash bin icon on the bottom right.

The toolbox divides the blocks of the pattern language into seven main cate-

gories: System contains the theme, function, and player rules blocks, Setting contains

all patterns related to the system’s setting, Moves contains factor, move, and param-

eter blocks, Playbooks contains playbook, introduction, feature, and playbook move

blocks, Management contains character creation, character improvement, playbook

process, step, condition, and resource blocks, Equipment contains equipment, item

type, and item blocks, and Extra Mechanics contains extra mechanics blocks. The

toolbox also lists example blocks from three existing systems entered into Assemble:

Apocalypse World, Monsterhearts 2, and Monster of the Week.

Below the workspace are two buttons that allow the user to import and export

Assemble projects. “Export Blocks” saves the current workspace to the user’s hard

drive as an XML file, while “Import Blocks” loads a previously-saved XML file back

into Assemble. Not only does this allow for Assemble’s users to write system content

over multiple design sessions, but it allows for pre-existing system material to be shared

and edited, encouraging homebrew-minded use cases.

On the far left side of the page is a sidebar that describes how to interact with

the editor, summarizing Powered by the Apocalypse and the pattern language.

24

4.2.1 Blockly Development Observations

For the pattern language to be translated into Blockly, a unique block needed

to be coded to represent almost every pattern within it. Blocks within the Blockly engine

are defined via an initialization function, which specifies the fields, inputs, connections,

and validators used by the block. We can examine this further within the history

pattern’s code, which is reproduced in Figure 4.4.

The function begins with the declaration of all named inputs and fields, in

order. Each input is a grouping of fields that are shown on a subsequent row of the

block. Assemble uses two types of inputs: dummy inputs, which only store fields specific

to the given block, and statement inputs, which can specify both block-specific fields and

connections to other blocks. Together, both provide for full coverage of the necessary

operations of a pattern language: dummy inputs specify the data within a pattern’s

own fields, whereas statement inputs allow for patterns to easily reference sub-patterns.

In this example, the history pattern has one dummy input containing the history’s

subject, and three statement inputs. Each of these inputs references a corresponding

sub-pattern: era, entity, and event.

Once inputs have been declared, the block then specifies how it can connect to

blocks on the same hierarchical level in the block tree. This specifies whether a pattern

acts on its own or utilizes multiple instances of the same pattern to accomplish its

purpose. In the case of the history pattern, our pattern language specifies that multiple

history blocks can be referenced by a given setting. Thus, we specify “next” statements,

25

Block ly . Blocks [’ h i s to ry ’] = {

i n i t : f unc t i on () {

t h i s . appendDummyInput ()

. s e tA l i gn (Block ly .ALIGN CENTRE)

. appendField (” His tory o f ”)

. appendField (new Block ly . Fie ldTextInput (”< subject >”) , ”name”) ;

t h i s . appendStatementInput (” era ”)

. setCheck (” era ”)

. appendField (” Eras : ”) ;

t h i s . appendStatementInput (” en t i t y ”)

. setCheck (” en t i t y ”)

. appendField (” Notable En t i t i e s : ”) ;

t h i s . appendStatementInput (” event ”)

. setCheck (” event ”)

. appendField (” Notable Events : ”) ;

t h i s . s e t I n pu t s I n l i n e (f a l s e) ;

t h i s . setPrev iousStatement (true , ” h i s t o r y ”) ;

t h i s . setNextStatement (true , ” h i s t o r y ”) ;

t h i s . s e tCo lour (75) ;

t h i s . s e tToo l t i p (”What happened or i s happening in the world that i s

r e l e van t to the p l aye r s ?”) ;

t h i s . se tHe lpUr l (””) ;

}

} ;

Figure 4.4: The history pattern as coded within the Blockly engine.

26

Figure 4.5: Left: The block generated by the code in Figure 4.3. Right: With sub-
pattern blocks (era, entity, and event) connected.

allowing multiple history blocks to be connected together.

For some blocks, especially those encompassed by the mechanics pattern, we

might specify dynamic inputs, which affect the shape of the block depending on how

the user interacts with it. Many of these dynamic inputs are simple, only requiring the

use of a simple validator function based on the content of a particular field. Several

other blocks require the use of memory to track their inputs, which must be handled

by a mutator function. Mutators store a string of information within a block’s XML

code to be re-accessed when the block is reloaded within a page. These functions

facilitate communication between the block’s JavaScript code and the markup language

of the browser in which Assemble is viewed, tracking the number of dynamic inputs

that the block contains. Given the variety of data types that can be saved as JSON

(JavaScript Object Notation), this functionality is well-suited for JavaScript to store and

read information. However, mutators mandate the use of a helper function to process

the XML’s stored information, requiring additional effort on the development end.

27

Figure 4.6: A flowchart summarizing how blocks interact with mutators.

Since mutators are effective at storing dynamic information, they are quintessen-

tial for allowing patterns to correspond with one another. Mutators and their helper

functions serve numerous purposes within Assemble’s code, such as specifying the types

and subtypes that a given item pattern can use, or listing the available starting items

which a playbook has to choose from. Another example of this can be seen in move

blocks. Before building a move, we must first build its factor blocks and slot them into

the system. Once we begin filling in the move itself, we can then select its factors from

a drop-down list that populates with the factor blocks in the tree. There are two lists

in this case, one for regular factors and a second for results. For each factor added to

a list, the mutator function stores the factor’s name into a JSON object maintaining

both lists as arrays. This object is then stored as a string within the move block’s XML

data. The block’s helper function then receives that string, re-parses it into two arrays,

and uses those arrays to update the block’s inputs.

28

Figure 4.7: Top: A move block being written, beside the list of factors it uses to generate
options for its drop-down lists. Bottom: The finished block slotted into place within
Assemble’s tree.

29

Though many of Blockly’s features make the engine well-suited to compos-

ing pattern languages, there are some hurdles that hinder the engine’s usefulness with

regards to pattern language development. The first is optimization; when portions of

block data rely on reading lists of other blocks to generate content, the functions which

use that data tend to draw more heavily upon system resources when there are greater

numbers of blocks. Large volumes of blocks within the workspace or toolbox often

reduce performance. An engine that is more optimized for larger numbers of blocks,

especially blocks with dynamic components, would thus be more effective in aiding the

design process. Another hurdle lies in Blockly’s rendering of text fields. As of writing,

text-wrapping functionality does not exist in Blockly for text-based block fields; this

results in strings longer than 50 characters being cut off by an ellipsis within the editor.

The inability to view an entire string of design text in a block’s position makes it diffi-

cult to read the pattern’s information at a glance, hampering productivity. Finally, the

nature of the Blockly engine simply makes programming nonstandard functionality both

challenging and unintuitive. Many features which would be useful for simulating pattern

languages are simply not implemented at the engine level, requiring a large number of

helper functions to be directly coded, tested, and debugged. This unfortunately limits

Blockly’s access to developers with intermediate-level or greater experience in writing

JavaScript, and significantly impacted the time required to develop Assemble. While in

many ways the engine is structurally and visually well-suited to pattern language visu-

alization, Blockly currently lacks functionality that could significantly ease the process

of writing pattern languages in the engine.

30

Chapter 5

Conclusion

In this thesis we examine how to improve design strategy for tabletop role-

playing games and evaluate how a simplified design process can aid top-level system

design, homebrew design, and ultimately play. Simultaneously, we recognize that there

is a lack of research toward developing design ontologies for tabletop role-playing games.

This work responds to this need by introducing a pattern language which covers a well-

known class of tabletop role-playing games, as a theoretical basis for a future, more

holistic design ontology. Here we also describe Assemble, a digital interface that simu-

lates said pattern language, as a demonstration of how pattern languages can contribute

to a streamlined and intuitive design process for tabletop role-playing design. We also

note aspects of Blockly, the engine in which Assemble is implemented, that are both

amenable to (and less suited for) the simulation of pattern languages. This evaluation

also posits some considerations for how software can most effectively ease enablement

of general-purpose pattern languages through computer-aided design resources.

31

Due to both the scope and engine in which the application was developed, the

focus of this thesis had to be adapted. Furthermore, as a result of a relatively small work

team and the conditions present in the academic environment in which this research was

conducted (in the midst of both a graduate student worker strike and a global pandemic),

production of the pattern language and Assemble was somewhat hampered. While the

language itself was developed based on the contents of six different Powered by the

Apocalypse systems, the validation process was only completed for approximately four,

with a fifth only being validated later in the software design stage. Additional time and

resources would have assisted in allowing more systems to be validated in this manner,

which would have likely made the pattern language more rigid as a result. On a broader

level, the scope limitations inherent to a thesis of this nature also inhibited a pattern

language applicable beyond a specific set of role-playing games from being developed.

On the software side, Blockly, the engine used by Assemble, has many af-

fordances that ease the process of development for pattern language simulation, but

unfortunately lacks other key features that would have substantially reduced the time-

line necessary to implement the pattern language. While the simplistic way in which the

application handles visualization and data linkage provided many benefits for organizing

a complex pattern language, the lack of certain predefined methods for pattern reference

and the requirement of major time investment to sufficiently implement the previously

designed pattern language proved to be significant obstacles for speedy completion of

the software. Runtime performance of the final application was also less than ideal,

as larger block trees constructed in Assemble unfortunately suffer from deficiencies in

32

speed and high resource demand, both inherent within the Blockly engine.

Limitations aside, this thesis effectively developed a pattern language that re-

sponds affirmatively to Powered by the Apocalypse systems and lays forward a potential

framework for a future TTRPG language to be produced. Furthermore, the Assemble

program shows an novel and useful means of examining system design, presenting the

process in a format that is relatively intuitive and understandable for designers when

compared with conventional methods. The ease and simplicity by which Assemble can

be used makes the application useful for both high and low level system designers, in-

cluding homebrewers. As a result, both the pattern language and Assemble represent

a conceptual breakthrough in easing the TTRPG system design process, providing a

worthy blueprint for future innovation in TTRPG design ontology.

33

Bibliography

[1] Homebrew campaign settings. RPGNet Wiki, https://wiki.rpg.net/index.

php/Homebrew_Campaign_Settings, accessed 2020.

[2] r/unearthedarcana. https://www.reddit.com/r/UnearthedArcana/, accessed

2020. Subreddit.

[3] Avery Alder. Monsterhearts 2. Buried Without Ceremony, 2017.

[4] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern Lan-

guage: Towns, Buildings, Construction. Oxford University Press, New York, 1977.

[5] D. Vincent Baker. Powered by the Apocalypse, part 1. Lumpley Games,

https://lumpley.games/2019/12/30/powered-by-the-apocalypse-part-1/,

December 2019.

[6] Meguey Baker and D. Vincent Baker. Apocalypse World. Lumpley Games, 2010.

[7] Staffan Bjork and Jussi Holopainen. Patterns in Game Design. Charles River

Media, Hingham, Massachusetts, 2004.

34

https://wiki.rpg.net/index.php/Homebrew_Campaign_Settings
https://wiki.rpg.net/index.php/Homebrew_Campaign_Settings
https://www.reddit.com/r/UnearthedArcana/
https://lumpley.games/2019/12/30/powered-by-the-apocalypse-part-1/

[8] Nathan Black and Sean Nittner. Big Bad World . Big Bad Con,

https://www.bigbadcon.com/big-bad-world/, 2016.

[9] Elin Carstensdottir, Erica Kleinman, and Magy Seif El-Nasr. Player interaction

in narrative games: Structure and narrative progression mechanics. In The Four-

teenth International Conference on the Foundations of Digital Games (FDG ’19).

Association for Computing Machinery, August 2019.

[10] Neil Fraser, Quynh Neutron, Ellen Spertus, and Mark Friedman. Blockly. Google

Developers, https://developers.google.com/blockly, 2012.

[11] Neil Fraser, Quynh Neutron, Ellen Spertus, and Mark Friedman. Blockly Devel-

oper Tools. Blockly Demo, https://blockly-demo.appspot.com/static/demos/

blockfactory/index.html, accessed 2020.

[12] Fred Hicks and Rob Donoghue. FATE Core System. Evil Hat Productions, 2013.

[13] Marissa Kelly, Sarah Richardson, and Whitney Beltrán. Bluebeard’s Bride. Magpie

Games, 2017.

[14] Adam Koebel and Sage LaTorra. Dungeon World. Sage Kobold, 2015.

[15] Robin D. Laws. Hamlet’s Hit Points. Gameplaywright Press, Roseville, Minnesota,

2010.

[16] Mike Mearls and Jeremy Crawford. Dungeons & Dragons: Player’s Handbook.

Wizards of the Coast, Renton, Washington, 2014.

35

https://www.bigbadcon.com/big-bad-world/
https://developers.google.com/blockly
https://blockly-demo.appspot.com/static/demos/blockfactory/index.html
https://blockly-demo.appspot.com/static/demos/blockfactory/index.html

[17] Jason Morningstar and J Li. Pattern language for LARP design. http://www.

larppatterns.org/, May 2016. Paper downloaded from ”main document” button.

[18] Yue Pan and Eric Stolterman. Pattern language and HCI. In Proceedings of the

2013 ACM Conference on Human Factors in Computing Systems (CHI 2013):

Changing Perspectives. Association for Computing Machinery - Special Interest

Group on Computer–Human Interaction (ACM SIGCHI), April 2013.

[19] Aaron A. Reed. Changeful Tales: Design-Driven Approaches Toward More Expres-

sive Storygames. PhD thesis, University of California, Santa Cruz, June 2017.

[20] Michael Sands and Steve Hickey. Monster of the Week. Evil Hat Productions, 2015.

[21] Miko laj Wicher, Agnieszka Kisiel, and Marcin S lowikowski. Larp Design

Cards. Nordic Larp, https://cdn.nordiclarp.org/wp-content/uploads/2018/

05/Larp-Design-Cards-PDF.pdf, May 2018.

[22] José P. Zagal, Michael Mateas, Clara Fernández-Vara, Brian Hochhalter, and Nolan

Lichti. Towards an Ontological Language for Game Analysis. In Proceedings of Di-

GRA 2005 Conference: Changing Views – Worlds in Play. Digital Games Research

Association (DiGRA), June 2005.

[23] Csenge Virág Zalka. Adventures in the classroom: Creating traditional story-

based role-playing games for the high school curriculum. Storytelling, Self, Society,

12(2):173–206, Fall 2016.

36

http://www.larppatterns.org/
http://www.larppatterns.org/
https://cdn.nordiclarp.org/wp-content/uploads/2018/05/Larp-Design-Cards-PDF.pdf
https://cdn.nordiclarp.org/wp-content/uploads/2018/05/Larp-Design-Cards-PDF.pdf

Appendix

Links

• Pattern language validation spreadsheet: https://docs.google.com/spreadsheets/

d/1P2GpTZyKnU2-WIhK3DCZRbxRujiWSvs8Ge7eYKy6Crc/edit?usp=sharing

• Assemble’s GitHub repository: https://github.com/amayben/assemble

37

https://docs.google.com/spreadsheets/d/1P2GpTZyKnU2-WIhK3DCZRbxRujiWSvs8Ge7eYKy6Crc/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1P2GpTZyKnU2-WIhK3DCZRbxRujiWSvs8Ge7eYKy6Crc/edit?usp=sharing
https://github.com/amayben/assemble

	List of Figures
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Related Work
	On Pattern Languages
	On Tabletop Role-Playing Game Design

	Methods
	Developing a Pattern Language
	Producing a System Design Tool

	Results
	Pattern Language
	Theme
	Setting
	Mechanics

	Assemble
	Blockly Development Observations

	Conclusion
	Bibliography
	Appendix

