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ARTICLE

Upper airway gene expression reveals suppressed
immune responses to SARS-CoV-2 compared
with other respiratory viruses
Eran Mick 1,2,3,6, Jack Kamm 3,6, Angela Oliveira Pisco3, Kalani Ratnasiri 3, Jennifer M. Babik1,

Gloria Castañeda3, Joseph L. DeRisi3,4, Angela M. Detweiler3, Samantha L. Hao 3, Kirsten N. Kangelaris5,

G. Renuka Kumar3, Lucy M. Li 3, Sabrina A. Mann3,4, Norma Neff 3, Priya A. Prasad5,

Paula Hayakawa Serpa1,3, Sachin J. Shah5, Natasha Spottiswoode5, Michelle Tan3, Carolyn S. Calfee2,

Stephanie A. Christenson2, Amy Kistler3,7 & Charles Langelier 1,3,7✉

SARS-CoV-2 infection is characterized by peak viral load in the upper airway prior to or at the

time of symptom onset, an unusual feature that has enabled widespread transmission of the

virus and precipitated a global pandemic. How SARS-CoV-2 is able to achieve high titer in the

absence of symptoms remains unclear. Here, we examine the upper airway host transcrip-

tional response in patients with COVID-19 (n= 93), other viral (n= 41) or non-viral (n=
100) acute respiratory illnesses (ARIs). Compared with other viral ARIs, COVID-19 is

characterized by a pronounced interferon response but attenuated activation of other innate

immune pathways, including toll-like receptor, interleukin and chemokine signaling. The IL-1

and NLRP3 inflammasome pathways are markedly less responsive to SARS-CoV-2, com-

mensurate with a signature of diminished neutrophil and macrophage recruitment. This

pattern resembles previously described distinctions between symptomatic and asymptomatic

viral infections and may partly explain the propensity for pre-symptomatic transmission in

COVID-19. We further use machine learning to build 27-, 10- and 3-gene classifiers that

differentiate COVID-19 from other ARIs with AUROCs of 0.981, 0.954 and 0.885, respec-

tively. Classifier performance is stable across a wide range of viral load, suggesting utility in

mitigating false positive or false negative results of direct SARS-CoV-2 tests.
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The emergence of severe acute respiratory syndrome cor-
onavirus 2 (SARS-CoV-2) in December 2019 has pre-
cipitated a global pandemic with over 45 million cases and

1 million deaths1. Coronavirus disease 2019 (COVID-19), the
clinical syndrome caused by SARS-CoV-2, is characterized by
peak viral load and transmissibility prior to or at the time of
symptom onset2–8 with a disease course that varies from
asymptomatic infection to critical illness9. Defining the host
response to SARS-CoV-2, as compared to other respiratory
viruses, is fundamental to identifying mechanisms of pathogeni-
city and potential therapeutic targets.

Metagenomic next-generation RNA sequencing (mNGS) is a
powerful tool for assessing host/pathogen dynamics and a pro-
mising modality for developing novel respiratory diagnostics that
integrate host transcriptional signatures of infection10,11. While
proven for diagnosis of other acute respiratory infections, tran-
scriptional profiling has not yet been evaluated as a diagnostic
tool for COVID-19, despite its potential to mitigate the risk of
false-positive or false-negative outcomes associated with standard
reverse transcription-polymerase chain reaction (RT-PCR) testing
for viral RNA from nasopharyngeal/oropharyngeal (NP/OP)
swabs12–14.

Here, we apply mNGS to examine the upper airway host
transcriptional response in patients with COVID-19, other viral
or non-viral acute respiratory illnesses (ARIs). We find that
COVID-19 is characterized by markedly attenuated activation of
innate immune and pro-inflammatory pathways early in the
course of disease compared to other viral ARIs, which may partly
explain the propensity for pre-symptomatic transmission of
SARS-CoV-2. We further develop parsimonious classifiers based
on patient gene expression that accurately differentiate COVID-
19 from other ARIs.

Results
To interrogate the molecular pathogenesis of SARS-CoV-2 and
evaluate the feasibility of a COVID-19 diagnostic based on host
gene expression, we conducted a multicenter observational study
of 234 patients with ARIs who were tested for SARS-CoV-2 by
NP/OP swab RT-PCR, and performed mNGS on the same swab
specimens. The cohort (Supplementary Table 1) included: (i) 93
patients who tested positive for SARS-CoV-2 by PCR early in the
course of disease and had no other pathogenic respiratory virus
detected by mNGS, (ii) 41 patients who tested negative for SARS-
CoV-2 but had another respiratory virus detected by mNGS
(Methods; Supplementary Fig. 1a), and (iii) 100 patients who
tested negative for SARS-CoV-2 and had no other virus detected
by mNGS (non-viral ARIs). Diagnoses in the latter group inclu-
ded bacterial pneumonia and non-infectious lung and airway
conditions, though a definitive etiology could not be determined
in every case (Supplementary Data 1).

We began by performing pairwise differential expression
(DE) analyses between the three patient groups (Methods;
Supplementary Data 2). Hierarchical clustering of the union
of the 50 most significant genes in each of the comparisons
revealed commonalities and distinctions in the transcriptional
response to SARS-CoV-2 and other viruses (Fig. 1a). Many
genes were upregulated in all viral ARIs and appeared to
be induced proportionally to SARS-CoV-2 viral load, as mea-
sured by the relative abundance of sequencing reads mapped
to the virus (Methods; Supplementary Fig. 1b). However,
we also detected gene clusters that were up- or down-regulated
by other viruses as compared to non-viral ARIs that
remained relatively unaffected by SARS-CoV-2. Only few
genes were upregulated by SARS-CoV-2 more than by other
viruses.

To investigate the pathways driving these patterns, we per-
formed gene set enrichment analyses15 (GSEA) on the genes
differentially expressed (DE) between SARS-CoV-2 and non-viral
ARIs, and separately, on the genes DE between other viral ARIs
and non-viral ARIs (Methods; Supplementary Data 3). We found
that both SARS-CoV-2 and other viruses elicited a robust inter-
feron response in the upper airway (Fig. 1b). The most statisti-
cally significant genes upregulated by SARS-CoV-2 were
interferon inducible, including IFI6, IFI44L, IFI27, IFI44, HERC6,
OAS2, and IFIT1, in general agreement with previous reports16,17.
IFI27 and, to a lesser degree, IFI6, were induced by SARS-CoV-2
more than by other viruses but most top DE genes did not spe-
cifically distinguish SARS-CoV-2 (Supplementary Figs. 2a, 3a).
ACE2, which encodes the cellular receptor for SARS-CoV-2, also
appeared to be non-specifically induced, consistent with its
identification as a general interferon-stimulated gene18 (Supple-
mentary Figs. 2a, 3a). However, recent reports suggest this signal
is driven by an ACE2 isoform that lacks the viral binding domains
and is unlikely to encode a functional receptor19,20.

Nevertheless, GSEA of DE genes in the direct comparison of
SARS-CoV-2 and other viruses suggested some elements of the
interferon response to SARS-CoV-2 were attenuated (Supple-
mentary Fig. 2b; Supplementary Data 3). Indeed, several inter-
feron response genes, such as IRF7 and OASL, were more
potently induced by other viruses, and high SARS-CoV-2 viral
load was required to achieve comparable induction (Supple-
mentary Fig. 2c). These results may be related to observations of a
blunted interferon response in cellular models of SARS-CoV-2
infection21, though the effects in patients are considerably more
nuanced.

A striking contrast between SARS-CoV-2 and other viruses
emerged in the activation of additional innate immune signaling
pathways. Other viruses caused significant upregulation of gene
expression associated with toll-like receptors, interleukin signal-
ing, chemokine binding, inflammasomes, neutrophil degranula-
tion and interactions with lymphoid cells, yet the response of
these pathways to SARS-CoV-2 was markedly attenuated (Fig. 1b,
Supplementary Fig. 2b). Other viruses depressed expression of
genes involved in cilia functions as well as ribosomal protein
genes and certain mitochondrial functions, which was not
observed for SARS-CoV-2, whereas SARS-CoV-2 specifically
depressed expression of olfactory receptors, consistent with the
loss of sense of smell frequently reported in COVID-1922,23 (Fig.
1b, Supplementary Fig. 2b).

Certain differences in gene expression between patient groups
may be driven by changes in tissue cellular composition,
including through recruitment of immune cell types to the site of
infection. To examine this, we performed in silico estimation of
cell-type proportions in the bulk RNA sequencing data using
markers previously derived from airway single-cell sequencing
studies (Methods; Supplementary Data 4). Strikingly, while
patients with other viral ARIs exhibited significantly increased
proportions of monocytes/macrophages and neutrophils in the
upper airway compared to non-viral ARIs, this was not the case
for those infected with SARS-CoV-2 (Fig. 1c, Supplementary
Fig. 4). SARS-CoV-2 infection increased proportions of dendritic
and B-cells more than other viruses, while other viruses decreased
proportions of ciliated cells and goblet cells. These results closely
aligned with the GSEA findings and suggested that the dimin-
ished innate immune responses observed in COVID-19 patients
were coupled to blunted recruitment and activation of pro-
inflammatory macrophages in the airway microenvironment.

Further supporting these findings, we found that the gene
most depressed in expression in COVID-19 patients compared to
those with other viral ARIs was IL1B, which encodes a pro-
inflammatory cytokine produced by the inflammasome complex,
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particularly in macrophages24,25 (Fig. 1d, Supplementary Data 2).
Moreover, among the top 100 differentially decreased genes were
those involved in inflammasome activation and activity26

(NLRP3, CASP5, IL1A, IL1B, IL18RAP, and IL1R2) and in che-
mokine signaling for recruiting innate immune cells to the epi-
thelium (CCL2, CCL3, and CCL4). Importantly, we recapitulated
these findings in a re-analysis we performed on a large, inde-
pendent dataset of NP swab mNGS that included 166 patients
with COVID-19 and 79 patients with other viral ARIs16,27

(Methods; Supplementary Data 2). We note that the muted

response of the IL-1 and inflammasome pathways to SARS-CoV-
2 infection appeared to distinguish it from most other pathogenic
respiratory viruses in our cohort, including common cold cor-
onaviruses, with the possible exception of influenza (Supple-
mentary Fig. 3b).

Relatively few genes were specifically upregulated in COVID-
19 patients compared to both other viral and non-viral ARIs.
These included TRO, which encodes a membrane-bound cell
adhesion molecule; WDR74, which plays a role in rRNA pro-
cessing and associates with the RNA helicase MTR428; EIF4A2, a
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Fig. 1 Host Transcriptional Signatures of SARS-CoV-2 Infection as Compared to Other Respiratory Viruses. a Hierarchical clustering of 121 genes
comprising the union of the top 50 differentially expressed (DE) genes by significance in each of the pairwise comparisons between patients with COVID-
19 (SARS-CoV-2; n= 93), other viral ARIs (n= 41) and non-viral ARIs (n= 100). Gene expression values were clustered after variance-stabilizing
transformation and row normalization. Group labels and viral load of SARS-CoV-2 are shown in the annotation bars. rpM, reads-per-million. b Normalized
enrichment scores of selected REACTOME pathways that achieved statistical significance in at least one of the gene set enrichment analyses, using either
DE genes between SARS-CoV-2 and non-viral ARIs or between other viral ARIs and non-viral ARIs. If a pathway could not be tested in one of the
comparisons since it had <10 members in the input gene set, the enrichment score was set to 0. Pathway p-values were calculated using an adaptive,
multilevel splitting Monte Carlo approach and Benjamini–Hochberg adjusted. c In silico estimation of cell-type proportions in the bulk RNA sequencing
using single-cell signatures. Black lines denote the median. The y-axis in each panel was trimmed at the maximum value among the three patient groups of
1.5*IQR above the third quartile, where IQR is the inter-quartile range. Pairwise comparisons between patient groups were performed with a two-sided
Mann–Whitney–Wilcoxon test followed by Bonferroni’s correction. Sample sizes as in (a). d Scatter plots of normalized gene counts (log2 scale, y-axis) as
a function of SARS-CoV-2 viral load (log10(rpM), x-axis). Shown are inflammasome-related genes selected from among the genes most depressed in
expression in SARS-CoV-2 compared to other viral ARIs. Robust regression was performed on SARS-CoV-2 positive patients with log10(rpM)≥ 0 (n= 82)
to characterize the relationship to viral load. Shaded bands represent 95% confidence intervals. Statistical results listed for each gene refer to, from top to
bottom: the regression analysis (p-values for difference of the slope from 0 derived from a t-statistic and Benjamini–Hochberg adjusted; R2 is the adjusted
robust coefficient of determination), the DE analysis between SARS-CoV-2 and non-viral ARIs (p-values derived from a moderated t-statistic and
Benjamini–Hochberg adjusted), and the DE analysis between SARS-CoV-2 and other viral ARIs (p-values derived from a moderated t-statistic and
Benjamini–Hochberg adjusted). Sample sizes for DE analyses as in (a). FC, fold-change.
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translation initiation factor that has been shown to interact with
other coronaviruses as well as HIV29,30; and FAM83A, which is
involved in epidermal growth factor receptor (EGFR) signaling31

(Supplementary Fig. 3c).
We next asked whether host gene expression data could be

used to construct a classifier capable of accurately differentiating
COVID-19 from other ARIs (viral or non-viral). By employing a
combination of lasso regularized regression and random forest
(Methods), we first identified a 27-gene signature that performed
with an area under the receiver operating characteristic curve
(AUROC) of 0.981 (range of 0.955–0.994), as estimated by five-
fold cross validation (Fig. 2a, Supplementary Tables 2, 3). Even
though many patients undergoing testing for COVID-19 may not
be infected with other respiratory viruses, we recognized the need
for classifier specificity in this circumstance and examined how
well the classifier performed at distinguishing SARS-CoV-2 from
other respiratory viruses. We found that it achieved an AUROC
of 0.966 (range 0.921–1.000) when tested only on patients with
other viral ARIs, indicating robust specificity for SARS-CoV-2
(Supplementary Tables 2, 3). Using a cut-off of 40% predicted

out-of-fold probability for COVID-19 to call a patient positive,
this translated into a sensitivity of 96% and a specificity of 93%
for patients with non-viral ARIs and 83% for patients with other
viral ARIs (Fig. 2b).

Given that a parsimonious gene set could enable practical
incorporation into a clinical PCR assay, we implemented a more
restrictive regression penalty and identified a 10-gene classifier
that could differentiate SARS-CoV-2 from other respiratory ill-
nesses with an AUROC of 0.954 (range 0.932–0.962) (Fig. 2c;
Supplementary Tables 2, 3). Classification performance specifi-
cally against other viral ARIs suffered slightly but still achieved an
AUROC of 0.912 (range 0.868–0.947). Existing SARS-CoV-2
PCR assays typically employ 3 gene targets and thus we tested the
potential to further reduce host classifier gene size. We found that
a sparse 3-gene (IL1B, IFI6, and IL1R2) classifier still achieved an
AUROC of 0.885 (range 0.852–0.935) (Fig. 2d; Supplementary
Tables 2, 3).

A host-based diagnostic might have particular utility if it could
increase the sensitivity of standard NP/OP swab PCR testing,
which may return falsely negative in a significant proportion of
patients12–14. Presumably, false negatives are in large part due to
insufficient viral abundance in the collected specimen. While our
cohort did not include PCR-negative samples from patients with
clinically confirmed COVID-19, we evaluated whether classifier
performance was affected by viral load. The predicted probability
of SARS-CoV-2 infection had little apparent relationship to the
abundance of SARS-CoV-2, suggesting host gene expression has
the potential to provide an orthogonal indication of COVID-19
status even when viral abundance is low (Fig. 2e).

Discussion
We studied patients with ARIs to define the human upper airway
gene expression signature in COVID-19. Our results reveal an
attenuated innate immune response to SARS-CoV-2 as compared
to other respiratory viruses. The IL-1 and NLRP3 inflammasome
pathways were particularly non-responsive to SARS-CoV-2,
commensurate with a signature of impaired neutrophil and
macrophage recruitment to the upper airway, at least early in the
course of the disease.

The blunted activation of these pro-inflammatory pathways in
the upper airway carries two important implications. First, it
suggests a potential mechanism underlying the observation of
high viral titers in the upper airway prior to symptom onset in
infected individuals, which poses a major challenge to preventing
viral transmission in the COVID-19 pandemic32,33 and distin-
guishes it from the SARS outbreak of 2002-200334. Intriguingly, a
human challenge study with influenza virus reported that blunted
activation of the IL-1 and NLRP3 inflammasome pathways was
specifically associated with an asymptomatic course of infec-
tion35, supporting this connection. Influenza was indeed the only
other virus that showed a degree of similarity to SARS-CoV-2 in
this regard in our data. Future work is needed to identify potential
SARS-CoV-2 factors responsible for this immune attenuation and
to clarify the underlying biological mechanisms.

Second, given that IL1-β and other pro-inflammatory cytokines
are primary targets of monoclonal antibody therapeutics under
investigation36, these results raise the question of whether further
suppression early during the course of the disease may be detri-
mental in the setting of an already suppressed inflammatory
response to SARS-CoV-2. That said, it is important to consider
that the attenuation of inflammatory pathways we observed may
not hold over the course of the disease, especially in severe cases
of COVID-19 where the lower and not upper respiratory tract is
the primary site of pathology37–39. Additional work examining
the temporal dynamics of the host response to SARS-CoV-2 in
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both the upper and lower airways is needed to address these
outstanding questions.

We also leveraged these data to develop an accurate, clinically
practical, COVID-19 diagnostic classifier that may help overcome
the limitations of direct viral nucleic acid detection. A host
transcriptional classifier, utilized alone or in combination with
molecular detection of SARS-CoV-2, could reduce both
false negative results, for example due to insufficient viral load, or
false positive results, for example due to cross-contamination.
Nevertheless, the applicability of the classifier developed here
could be limited by sample size and incomplete demographic
information. Moreover, due to the small proportion of severe
COVID-19 cases in our cohort and limited availability of clinical
follow-up data, we were unable to examine the important ques-
tion of whether host transcriptional markers early in the course of
disease can provide prognostic value for disease severity and
outcomes. Future prospective studies in a larger cohort will be
needed to validate our findings, determine the prognostic value of
host signatures, and assess the performance of integrated host/
viral diagnostic assays.

Methods
Study design, clinical cohort, and ethics statement. We conducted an obser-
vational cohort study of 234 patients with ARIs tested for COVID-19 at the
University of California, San Francisco (UCSF) and Zuckerberg San Francisco
General Hospital. We evaluated leftover RNA extracted from clinical swab speci-
mens processed at the UCSF Clinical Microbiology Laboratory. The UCSF Insti-
tutional Review Board granted a waiver of consent for this study, which was part of
a larger ongoing surveillance study of patients with outbreak-associated viral and
bacterial infections (UCSF IRB protocol 17-24056).

Inclusion criteria were: (1) status as a patient under investigation for COVID-
19, (2) age of 18 years or older, (3) a clinician-ordered test for SARS-CoV-2 was
performed between 03/10/2020 and 04/07/2020 using RT-PCR from a
nasopharyngeal (NP) swab, obtained with or without an oropharyngeal (OP) swab
(Supplementary Table 1), and (4) excess extracted RNA was available for
metagenomic sequencing. If more than one sample was collected from a patient
ultimately diagnosed with COVID-19, only the first available positive sample was
analyzed. Demographic and clinical characteristics were assessed exclusively from
each institution’s Epic-based electronic health record.

SARS-CoV-2 detection by clinical PCR. PCR testing for COVID-19 was carried
out in the UCSF Clinical Microbiology Laboratory. Primers targeted either two
regions of the SARS-CoV-2 N gene (n= 153, 65%), or the E and RNA-dependent
RNA polymerase genes (n= 81, 35%), plus human RNAse P as a positive control.
In all our analyses, we defined patients with COVID-19 as those with a positive
SARS-CoV-2 result by PCR.

Metagenomic sequencing. To evaluate host gene expression and detect the pre-
sence of other viruses, metagenomic next-generation sequencing (mNGS) of RNA
was performed on the same specimens subjected to SARS-CoV-2 PCR testing.
Following DNase treatment, human cytosolic and mitochondrial ribosomal RNA
were depleted using FastSelect (Qiagen). To control for background contamination
(see details below), we included negative controls (water and HeLa cell RNA) as
well as spike-in RNA standards from the External RNA Controls Consortium
(ERCC)40. RNA was then fragmented and subjected to a modified metagenomic
spiked sequencing primer enrichment (MSSPE) library preparation41. In brief, a 1:1
mixture of the NEBNext Ultra II RNA Library Prep (New England Biolabs) ran-
dom primers and a pool of SARS-CoV-2 primers at 100 µM was used at the first
strand synthesis step of the standard RNA-seq library preparation protocol to
enrich for reads spanning the length of the SARS-CoV-2 genome. RNA-seq
libraries underwent 146 nucleotide paired-end sequencing on an Illumina NovaSeq
6000 instrument. The total number of read-pairs per sample is provided in Sup-
plementary Data 5 (min: 3.1 million, mean: 28.4 million, max: 94 million).

Quantification of SARS-CoV-2 viral load by mNGS. All samples were processed
through a SARS-CoV-2 reference-based assembly pipeline that involved removing
reads likely originating from the human genome or from other viral genomes
annotated in RefSeq with Kraken242 (v. 2.0.8_beta), and then aligning the
remaining reads to the SARS-CoV-2 reference genome MN908947.3 using mini-
map243 (v. 2.17). We calculated SARS-CoV-2 reads-per-million (rpM) using the
number of reads that aligned with mapq ≥ 20. For plotting purposes, a value of 0.1
rpM was added to all samples with rpM < 0.1.

Detection of other pathogenic respiratory viruses by mNGS. All samples were
processed through the IDSeq pipeline44,45 (v. 4.3), which performs reference-based
alignment at both the nucleotide and amino acid level against sequences in the
National Center for Biotechnology Information (NCBI) NT and NR databases,
respectively, followed by assembly of the reads matching each taxon detected. We
further processed the results for viruses with established pathogenicity in the
respiratory tract10. We evaluated whether one of these viruses was present in a
patient sample if it met the following three initial criteria: (i) at least 10 counts
mapped to NT sequences, (ii) at least 1 count mapped to NR sequences, (iii)
average assembly nucleotide alignment length of at least 70 bp.

Negative control (water and HeLa cell RNA) samples enabled estimation of the
number of background reads expected for each virus, which were normalized by
input mass as determined by the ratio of sample reads to spike-in ERCC RNA
standards46. Viruses were then additionally tested for whether the number of
sequencing reads aligned to them in the NT database was significantly greater than
background. This was done by modeling the number of background reads as a
negative binomial distribution, with mean and dispersion fitted on the negative
controls. For each batch (sequencing library preparation) and taxon (virus), we
estimated the mean parameter of the negative binomial by averaging the read
counts across all negative controls after normalizing by ERCCs, slightly
regularizing this estimate by including the global average (across all batches) as an
additional sample. We estimated a single dispersion parameter across all taxa and
batches, using the functions glm.nb() and theta.md() from the R package MASS47

(v. 7.3-51). We considered a patient to have a pathogenic respiratory virus detected
by mNGS if the virus achieved an adjusted p-value < 0.05 after Holm–Bonferroni
correction for all tests performed in the same sample.

Host DE analysis. Following demultiplexing, sequencing reads were pseudo-
aligned with kallisto48 (v. 0.46.1), using the bias correction setting, to an index
consisting of all transcripts associated with human protein-coding genes
(ENSEMBL v. 99), cytosolic and mitochondrial ribosomal RNA sequences, and the
sequences of ERCC RNA standards. Samples retained in the dataset had at least
400,000 estimated counts associated with transcripts of protein-coding genes (min:
400,000, mean: 5.8 million, max: 24.5 million). Gene-level counts were generated
from transcript abundance estimates using the R package tximport49 (v. 1.14) with
the lengthScaledTPM method.

Genes were retained for DE analysis if they had at least 10 counts in at least 20%
of samples (n= 15,979). The analysis was performed with the R package limma50

(v. 3.42) using quantile normalization, the voom method and the design: ~0+ viral
status+ gender + age, where viral status was either “SARS-CoV-2”, “other virus”
or “no virus”. The biological gender of all patients was inferred based on
chromosome Y gene expression. Age was self-reported, and the age of patients for
whom we lacked this information was taken as the mean age of samples with age
reported in the respective viral status group. Due to policies prohibiting public
disclosure of patient age above 89, we set to 89 the age of two patients in the cohort
who were older than 89 so that our analysis can be reproduced with the
demographic information we are allowed to make public. DE p-values reported in
Supplementary Data 2 are based on a moderated t-statistic. p-values adjusted
within each comparison with the method of Benjamini–Hochberg are also
reported.

To generate the gene expression heatmap, hierarchical clustering was performed
on the union of the top 50 genes (by p-value) in each of the pairwise comparisons
among the three groups (n= 121 genes). Gene counts were subjected to the
variance-stabilizing transformation, as implemented in the R package DESeq251 (v.
1.26), centered and scaled prior to clustering. The distance measure for rows was
based on Pearson correlation and for columns on Euclidean distance. Ward’s
criterion (ward.D2) was the agglomeration method for both rows and columns.

The independent NP swab mNGS dataset was generated as part of a study that
did not address the comparison between COVID-19 and other viral ARIs16,27, and
was re-analyzed here for this purpose. The dataset was filtered to retain samples
with at least 5 million counts and genes with at least 32 counts in at least 10% of
samples. A DE analysis was then performed using limma, with quantile
normalization and the voom method, between patients who tested negative for
SARS-CoV-2 by RT-PCR (n = 308), patients who tested positive for SARS-CoV-2
(n= 166), and patients who tested negative for SARS-CoV-2 but had other
respiratory viruses detected (n= 79). No covariates were included in the analysis.

Gene set enrichment analysis. GSEA was performed on REACTOME52 pathways
with a minimum size of 10 genes and a maximum size of 1500 genes using the
fgseaMultilevel function in the R package fgsea53 (v. 1.13.5), which calculates p-
values based on an adaptive, multilevel splitting Monte Carlo scheme. Genes
included in each pairwise comparison were those with a Benjamini–Hochberg
adjusted p-value < 0.1 in the respective DE analysis, pre-ranked by fold-change.
The gene sets shown in Fig. 1b were manually selected to reduce redundancy and
highlight diverse biological functions from among those with a Benjamini–
Hochberg adjusted p-value < 0.05 in at least one of the comparisons (i) SARS-CoV-
2 vs. no virus, and (ii) other virus vs. no virus. The gene sets shown in Supple-
mentary Fig. 2b were similarly selected from among those with an adjusted p-value
< 0.05 in the direct comparison of SARS-CoV-2 vs. other virus. Full GSEA results
are provided as Supplementary Data 3.
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Regression of gene counts against viral load. We performed robust regression of
the limma-generated quantile normalized gene counts (log2 scale) against
log10(rpM) of SARS-CoV-2 for all genes with a Benjamini–Hochberg adjusted p-
value < 0.001 in either the DE analysis of SARS-CoV-2 vs. no virus, or SARS-CoV-
2 vs. other virus (n= 3,636 genes). The samples included in the regression analysis
were those in the SARS-CoV-2 patient group with log10(rpM) ≥ 0 (n= 82 samples).

The analysis was performed using the R package robustbase54 (v. 0.93.6), which
implements MM-type estimators for linear regression55,56, using the
KS2014 setting and the model: quantile normalized counts (log2 scale) ~ gender+
age+ log10(rpM). Model predictions based on the marginal effects of log10(rpM)
were generated using the R package ggeffects (v. 0.14.3) and used for display in the
individual gene plots. Error bands represent normal distribution 95% confidence
intervals around each prediction. Reported p-values for significance of the
difference of the regression coefficient from 0 are based on a t-statistic and
Benjamini–Hochberg adjusted. Reported R2 values represent the adjusted robust
coefficient of determination57.

In silico analysis of cell-type proportions. Cell-type proportions were estimated
from bulk host transcriptome data using the CIBERSORT X algorithm58. We used
the human lung cell atlas dataset59 to derive the single-cell signatures. The cell
types estimated with this reference cover all expected cell types in the airway. The
estimated proportions were compared between the three patient groups using a
Mann–Whitney–Wilcoxon test (two-sided) with Bonferroni correction.

Classifier construction. We built sparse classifiers for COVID-19 status using a
combined lasso and random forest approach. For feature selection, we used the
logistic lasso (as implemented in the R package glmnet60, v. 4.0-2), and then
trained random forests on the selected features (using the R package random-
Forest61, v. 4.6-14). We used fivefold cross-validation to evaluate model error. For
each train-test split, we used a nested cross-validation within the training set to
select the lasso tuning parameter, using glmnet’s default “1se” rule (selecting the
highest lambda whose error was within one standard error of the optimum). For
the 10-gene and 3-gene models, we selected the smallest lambda with 10
(respectively, 3) nonzero coefficients, and evaluated the cross-validation errors at
that value of lambda. For the random forest, we used 100,000 trees, and left all
tuning parameters at their defaults. For the initial input features (before selection),
we used gene counts with a variance-stabilizing transform derived from the
training set only, using the R package DESeq2. Classifier performance was
benchmarked against the SARS-CoV-2 PCR results.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Human gene counts and metadata for the samples generated in this study can be
obtained at: https://github.com/czbiohub/covid19-transcriptomics-pathogenesis-
diagnostics-results. Gene counts have also been deposited under NCBI GEO accession
GSE156063. IDSeq metagenomic analysis reports are available at https://idseq.net/ under
project name “covid19_transcriptomics_pathogenesis_diagnostics”. Raw mNGS FASTQ
files, subtracted of human-mapping reads for privacy reasons, are available under NCBI
BioProject accession PRJNA633853. The independent NP swab mNGS dataset we re-
analyzed can be obtained according to the data availability statement in the original
publication27. The published human lung single-cell datasets59 used for cell-type
proportions analysis can be obtained through Synapse under accessions syn21560510
and syn21560511.

Code availability
Code for parsing the IDSeq reports and for the differential expression analyses, cell-type
proportions analysis and gene expression classifiers is available at: https://github.com/
czbiohub/covid19-transcriptomics-pathogenesis-diagnostics-results.
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