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Abstract—Electron and X-ray interactions with matter can
be recorded as digital images, which are signal acquisition
mechanisms often used to investigate materials microstructure.
Recently, the ability to quickly acquire large datasets at high
resolution has created new challenges in areas that rely upon
image-based information. The proposed analysis schemes employ
Convolutional Neural Networks as the core algorithm in the
reconnaissance of expected events from data gathered in two
regimes: experimentally and by simulation. At the interface of
physical and digital datasets, we propose classification schemes
that exploit complex geometrical structure from scientific images
through different machine learning packages, such as MatCon-
vNet and TensorFlow. Our results show correct classification rates
over 90% considering thousands of samples from four image
modalities: cryo-electron microscopy, X-ray diffraction, X-ray
scattering and X-ray microtomography. Our main contributions
are: (a) developing algorithms designed for data that stem from
physical experiments; (b) building new software to constrain pa-
rameter space, particularly given new hardware; and (c) testing
different CNN models for classification of scientific images1.

I. INTRODUCTION

Recent estimates for daily data production are around
2.5 quintillion (1018) bytes, with approximately 90% of
the world’s data having been generated over the past two
years [1]. For example, instrument upgrades with new ac-
celerator and signal detector technologies at DOE national
laboratories’ experimental facilities such as synchrotrons and
neutron sources [2] have led to an unprecedented increase in
the quantity and complexity of output data.

This increase poses a significant challenge to experimental
scientists who need to analyze and interpret these data to gain
scientific insights and understand of a variety of phenomena.
Over the last few decades, scientists have accumulated a great
deal of experience in data analysis, however this experience
has yet to be turned into analytical software tools. Machine
learning through artificial neural networks is one way to en-
code the experience and knowledge scientists have developed
into a flexible machinery that can be used to analyze new
data and observations. This type of inferential engine can be
constantly updated as new experience or knowledge is gained.

Some of the experimental data generated at DOE facilities
are in the form of images, which are particularly well-suited

1U.S. Government work not protected by U.S. copyright

for convolutional neural networks (CNN). CNN goes beyond
conventional computer vision approaches [3, 4, 5] to address
the semantic gap between signal acquisition and image inter-
pretation [6]. The major challenge in using CNN is to come
up with appropriate labels and descriptors for existing data
that have been processed, and to construct CNNs that learn
from these labeled datasets to make intelligent predictions
and characterization of new data to be collected in future
experiments.

In this paper, we describe several different types of image
analysis problems arising from DOE experimental facilities
that can benefit from the use of CNN. Table I summarizes
the use-cases reported in this paper, which consists of cryo-
electron microscopy, X-ray diffraction, X-ray scattering and
X-ray microtomography. We will describe the sources and
characteristics of the image data, which are quite different
from handwriting recognition or web images, and discuss
how these data are labeled. We present preliminary results
on how CNNs are constructed and trained for these datasets,
which software packages we have used, and how the CNNs
constructed with these tools perform for the type of analysis
required by experimentalists.

Ideally, deep learning capabilities could be built into the
instruments so that data acquisition and analysis can be
combined in a seamless fashion. In addition to using conven-
tional CPUs or GPUs, which typically consume a tremendous
amount of power, we have explored the use of light weight
processors that are power efficient. One way to achieve power
efficiency is to lower the precision requirement of the input
data and CNN parameters. We describe a quantization algo-
rithm to achieve this goal. We also discuss work on using
the IBM TrueNorth chip, which embodies a neuromorphic
architecture that is drastically different from the traditional
Von Neuman architecture used in existing CPUs and GPUs.

The use-cases reported in this paper focus on scientific
images coming from instruments based on cryo-electron mi-
croscopy and different X-ray-based imaging techniques, as
described in Section II, and also summarized in Table I.
Section III discusses the algorithms and software packages that
support the implementation of pattern recognition processes,
and Section IV presents details about parameters and accuracy
results associated to each use-case. Section VI explains the
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Fig. 1: CNN for Experimental and Observational Data

TABLE I: Scientific data under scrutiny with CNN: specifications and methods

Specimen Scale range Image
modality

Imaging
mechanism

Data analysis for quantitative microscopy

Transcription
factor (TFIID)

10 – 100 nm cryo-EM electron scattering Inspection of molecular structure with 2D orientation classification
using MatConvNet. Sec. II-A. Fig. 2.

Photosystem II 1-10 nm crystallography X-ray diffraction Identify diffraction images that contain Bragg peaks using Mat-
ConvNet. Sec. II-B1. Fig. 8.

Thin films 1.64 nm GISAXS X-ray scattering Classification of crystal lattice structure using MatConvNet.
Sec. II-B2. Fig. 5.

Fiber beds 0.65 to 1.3 microCT X-ray attenuation
contrast

Detection of fiber profiles from 3D cross-sections using Tensor-
Flow. Sec. II-B3. Fig. 6.

main contributions of our investigation, which includes new
algorithms to leverage and/or create data based on Physics,
building new software to constrain parameter space, particu-
larly given new hardware, and testing different CNN models
for scientific images.

II. RECORDING AND SIMULATING SCIENTIFIC DATA

While expected growth in data size and rates vary among
science areas, recent reports [2] suggest that several imaging
facilities will soon be struggling with 1 to 50 petabytes worth
of data generated per year. This much data poses several
challenges: (a) inadequate or insufficient meta-data describ-
ing experimental records; (b) the impracticality of manually
curation of massive datasets; and (c) the lack of tools adapted
to new data acquisition modes.

In order to address scalable solutions to scientific data that
goes beyond deploying one-off tools, we have explored deep
learning to tackle different scientific images, as described in
following sections. The imaging techniques are quite different
in their electromagnetic wave interaction with the objects and
the range of applications, but all require nontrivial mathemat-
ical methods to recover and understand the resulting images
composition and microstructure.

A. Case I: Cryo-EM

Cryo-electron microscopy (cryo-EM) is a technique for
elucidating three-dimensional structures of macromolecules
and molecular complexes. In a cryo-EM experiment, a large
number of isolated biomolecules in the same conformational
state are placed in a thin layer of vitreous ice. The prepared
specimen is then placed into an electron microscope that
produces a number of two-dimensional (2D) projected views
of the molecules through weak phase electron scattering.
Because molecules take random orientations when prepared in
a sample, the relative orientation of the 2D views are unknown
at the time of imaging. They must be determined computation-
ally together with the 3D structure of the molecule. Because
this technique does not require molecules to be prepared
in crystallized form, it is also referred to as single-particle
method.

Figure 2 (a) shows a typical micrograph collected from a
cryo-EM experiment. The micrograph contains a number 2D
views of the molecular specimen. Because the electron dose of
the microscope has to be sufficiently low in order to prevent
the samples from being damaged by radiation, the signal-to-
noise ratio (SNR) in the cryo-EM image is extremely low.
As a result, one can barely distinguish the particle from the



(a) A cryo-EM micrograph containing projected
views of macromolecules.

(b) 2D projected views of a TFIID molecule.

Fig. 2: Examples of cryo-EM images.

background, as seen in Figure 2.
One of the first tasks in processing the cryo-EM images

consists in isolating the particles from the background in
each micrograph, a step known as particle picking or boxing.
Although a number of techniques have been developed in the
last thirty years to perform this task in an automated fashion,
none of the existing algorithms is completely satisfactory or
reliable. Human intervention is often required in order to
discard sub-images that do not contain particles, a painstaking
process.

In addition to particle picking, a CNN can be used to
perform a more complex step which involves classifying boxed
particle images into distinct projection orientation classes. By
averaging images within the same class, we will show that
class averages with higher SNRs can be used to construct
an initial low resolution 3D structure of the macromolecule.
Such a low resolution model can subsequently be refined in a
nonlinear iterative optimization procedure [7].

Figure 3b shows nine distinct projected views of the macro-
molecule transcription factor IID (TFIID). These views are
generated by computationally projecting a previously recon-
structed 3D density map of TFIID, as shown in Figure 3a
along nine uniformly distributed projection directions, defined
by the set of Euler angles shown in Table II. In practice,
the 2D images contain much more noise. Figure 2(b) shows
some of the experimental images produced by a particle
picking program. These images also contain a background that
corresponds to the projected density of substrate (ice).

Multivariate statistical analysis tools such as principle com-
ponent analysis (PCA) and K-means are popular algorithms
for solving the 2D classification problem. However, because
it is difficult to quantify the image formation model, these
tools lack sufficient accuracy to account for variations of the
2D images due to differences in imaging conditions. In many
cases, 2D images placed in the same class need to be visually

TABLE II: Euler angles used to generate projected views of
a previously reconstructed TFIID molecule.

Ψ ↓i Θ ↓i φ ↓i
0.00 0.0000 0.0000
0.00 45.000 0.0000
0.00 45.000 89.975
0.00 45.000 179.95
0.00 45.000 269.92
0.00 90.000 0.0000
0.00 90.000 59.983
0.00 90.000 119.97
0.00 90.000 178.95

examined and outliers that do not belong to that class must be
removed.

In this paper, we test the ability of a CNN to provide a mech-
anism to encode both multivariate statistical analysis based
classification techniques and human vision based classification
skills in a single machinery that can be constantly updated by
labeled image data coming from simulation and experiments.

(a) A previously recon-
structed 3D electron den-
sity map of a TFIID
molecule.

(b) Nine distinct 2D pro-
jection views of the TFIID
molecule.

Fig. 3: Simulated cryo-EM projection images from a previ-
ously reconstructed 3D model of the TFIID molecule.



(a) Hit (b) Miss

Fig. 4: Two examples of X-ray diffraction images. the image
on the left does not contain any visible Bragg spots probably
due to X-ray beam missing the sample. The one on the right
contains Bragg spot which can be seen in the zoom-in image.

B. Imaging Techniques based on X-ray

Synchrotron radiation relies on a charge moving at rela-
tivistic speeds, and following a curved trajectory [8]. The x-
ray experimental data used in this article was acquired at the
Advanced Light Source, which is a Department of Energy-
funded facility that provides users from around the world
access to the brightest beams of soft x-rays, together with hard
x-ray and infrared light, for scientific research and technology
development in a wide range of disciplines [9].

1) Case II: X-ray diffraction and Bragg peaks: X-ray crys-
tallography is a technique for determinating the 3D structure
of biomolecules when these molecules can be crystallized. The
diffraction of X-ray beams off a crystal sample produces an
image with many bright spots that are often called Bragg
spots or peaks. These spots correspond to the intersection
of a so called Ewald sphere and the reciprocal space lat-
tice. Identifying the positions of these Bragg spots enables
characterization of the crystal type and lattice parameters.
The quality of the diffraction image depends on a number
of experimental factors and how well the sample is prepared.
In many cases, diffraction images lack clear Bragg spots,
therefore these images are often discarded. Other scenarios in
which the image is unusable because bright spots are artifacts
instead of real Bragg spots.

Although domain scientists can recognize the presence of
Bragg peaks in most cases by human vision, going through
all images manually has been a serious constraint. Current
automated tools available in the community provide limited
reliability. Training a CNN with labeled images may be an
alternative to several of the cases in which we have enough
data to separate images with clear Bragg spots from others
that lack good quality spots.

2) Case III: X-ray scattering and GISAXS: Scattering tech-
niques enable probing micro and nano-structures with a high
degree of statistical relevance. The most prominent techniques

are small angle X-ray and neutron scattering (SAXS and
SANS) for the detection of mesoscale structures as well as
wide angle X-ray and neutron scattering (WAXS and WANS)
for the investigation of the structure down to the molecular
scale. Prominent examples are thin films of conductive poly-
mers, organic electronics, or thin films of nano-particles, which
receive high interest for energy relevant materials such as
organic photovoltaics. Morphological characterization of thin
films is challenging, and substantial advancements have been
accomplished through research efforts on new experimental
geometry setups for scattering. Unfortunately, these have not
been enough to provide the required data reduction and analy-
sis that is fundamental for giving domain scientist access to use
advanced grazing incidence techniques and getting the most
relevant information out of their experiments. In particular in-
situ analysis is far from possible at the given time.

As a first step towards using machine learning for GISAXS
analysis, we address the problem of identifying one useful
property of certain types of samples - the type of crystal
structure corresponding to the measured scattering pattern.

We propose a supervised classification approach to identify
the crystal lattice types from a Grazing Incidence Small Angle
X-ray Scattering (GISAXS) image. GISAXS, an important
reciprocal-space imaging modality, provides statistical infor-
mation about a sample in 3-D. GISAXS is widely used for
studying thin films that play a vital role as building blocks
for the next generation of renewable energy technology. One
challenge in GISAXS imaging is to accurately infer the
crystal lattice corresponding to the sample from a single 2-
D diffraction/scattering pattern.

As a first step towards understanding crystal configurations,
we used the HiPGISAXS [10] simulation package to gener-
ate a large collection of sample images from each class of
possible crystal structures and test the algorithm performance
under multiple simulated test images. Inspired by the recent
successes of deep-learning approaches for natural image clas-
sification, we tested CNN as the method to carry out the
classification of large physically realistic synthetic datasets.

Our peak-position detection exploration from image datasets
retrieve information about the lattice and orientation of the
material. A typical image from the ALS beamline 7.3.3
presents shapes used as input to derive the underlying structure
of the sample. The location, shapes and position of these
structures, while yielding useful information, can also be used
as an input to simulation tools. Shapes vary among rings, arcs,
peaks and lines. In case of time resolved or multi-energy data,
the features become three or more dimensional, e.g., peaks
become rods and lines become planes.

3) Case IV: X-ray attenuation contrast and microtomogra-
phy: Another example of high-throughput data collection is
hard X-ray microtomograph (microCT) imagery, acquired for
the structural investigation of dense materials, such as ceramic
matrix composites (CMC). These hierarchical materials consist
of many individual strands, bundled within a matrix to achieve
high-strength mechanical properties and durability. In order
to test the operating conditions for which these materials are



(a) BCC100 (b) BCC110 (c) Cubic100

(d) Cubic110 (e) FCC100 (f) FCC110

(g) HCP

Fig. 5: GISAXS scattering patterns corresponding to seven
different crystal classes generated using a simulation software.
We use such simulated data to design a classifier for the seven
crystal types.

designed, they are heated to nearly 2,000 degrees and then
stressed, causing several deformations [11, 12]. Currently,
several materials scientists collect a series of 3D images as
a function of time, using a hot cell to vary temperature
and tensile forces. After performing dynamical experiments
(3D+time), the 3D images are examined manually, slice by
slice (2D), looking for the individual defects that the material
may form, which one can correlate with decreased perfor-
mance.

This process is prone to error and very time-consuming.
Alternatively, we would like to automate this task by designing
“virtual inspectors”, i.e., algorithms that detect mechanical
deformations from microCT automatically, and then point out
which of the experimental instances (image stacks) present
the structures of interest, e.g., matrix cracks. Being able to
detect these properties in real time will add an entirely new
level of experimental capability. Tying this capability to the
control systems at the beamlines may allow the experiment
to be steered by the machine in response to specific struc-
tures present in the sample. For example, when a feature of
interest is identified, the imaging process may be temporarily
enhanced, so that a magnified image is collected from the
region of interest, before resuming the process. Currently,
a major challenge is the inability of adjusting experimental
parameters fast enough for optimal data collection, therefore
the users cannot manage the acquisition of detailed features
of interest.

(a) Stack cross sections ( 500µm) (b) Fiber profiles

Fig. 6: MicroCT of ceramic matrix composite cross-sections .

Figure 6 illustrates CMC sample cross-sections, containing
sample about the size of a long-rice grain, with 1mm diameter
and 55mm length, reinforced with 500 Hi-Nicalon fibers of
approximately 10µm diameter, bounded together by a chem-
ical vapor infiltrated SiC matrix. Each fiber is coated with a
boron nitride (BN) layer through chemical deposition prior to
chemical vapor infiltration of the SiC matrix. The BN layer
acts as a weak interface for the matrix cracks to deflect and
to ease fiber sliding. Due to the BN layer around the fibers,
which has a lower X-ray absorption coefficient, fiber profiles
appear as dark rings. Figure 6(b) emphasizes several fiber
profiles, commonly used as a guiding pattern to detect other
fiber cross-sections. A major demand is the ability to perform
pattern ranking mechanisms, which can steer algorithms such
as template matching [12, 13], and improve data management
by beamline scientists.

Among these labeled images, 200,000 contain fibers and
100,000 images present areas with no fibers. All the labeled
samples passed through a triage consisting of two steps: au-
tomated segmentation methods based on traditional computer
vision [14, 11, 12] and visual inspection by more than three
domain scientists. To the best of our knowledge, all the images
contain 100% accurate labels, which are used to determine the
success rate of the CNNs.

III. CONVOLUTIONAL NEURAL NETWORKS

Synapses enable nerve cells to connect to thousands of other
neurons, combine signals, and push the integrated information
forward. Early research by Hubel and Wiesel [15] on the
cats visual cortex showed that neurons propagate information
through complex cell organizations called receptive fields [16].
These fields work similarly to filters for the stimuli coming
from previous retinal layers, and allow information from
125 million photoreceptors to be successfully processed and
pushed forward to 1 million ganglion cells along the visual
processing path. These biological filters can be framed into
algorithmic motifs that exploit the strong spatially local cor-
relation present in digital images for the purpose of learning
tasks.

Artificial neural networks (NN) provide approximation
methods to better understand many complex real-world sensor
data through learning of real-valued, discrete-valued, and/or



vector-valued functions from data [17]. In 1982, NN emerged
as a computational procedure that combine simple compo-
nents, similar to neurons, capable of representing physical
meaning of content-addressable memory [18].

As an example of NN algorithms, convolutional neural
networks have been successfully used in pattern recognition
because CNN can learn a hierarchy of image-based features
by building high-level patterns from primitive ones, thereby
automating the process of feature construction, much different
from traditional descriptor design. The ability to auto-tune
kernels parameters through back-propagating errors is one of
the reasons CNN turned into the most popular algorithm for
computer vision applications [19].

Convolution is an operation that combines two functions,
by providing the summation of pointwise products of function
values, subject to traversal [4, 20]. The idea of convolution
permeates CNN definitions, in which signals/images pass
through multiple layers of non-linear operations to produce the
pattern classification result. However the operation performed
on image inputs with CNNs is not strictly a convolution,
but rather its counterpart called cross-correlation [4, 21, 22].
Typically, convolutional kernels are real-value matrices smaller
than the input image, responsible for transforming images into
activation maps.

Four main types of layers are typically used to build
CNNs: convolutional, ReLu (Rectified Linear Unit), pooling
and fully connected. This layered architecture relies on well-
established calculus, the chain-rule, to adjust layer weights
using error minimization, through optimization techniques
such as stochastic gradient descent.

A number of tools for constructing CNN are available. We
will describe some of these tools that we have used to analyze
the data in Section II.

A. Matconvnet

MATLAB has several implementations of CNNs included
in the MatConvNet toolboxes used in computer vision and
pattern recognition tasks. It is simple to learn, efficient, and
permits testing state-of-the-art CNNs quickly. MatConvNet
can be used to train models, typically by using a form
of stochastic gradient descent and back-propagation. Several
examples of CNNs can be found in the public repository[23],
which enable image classification and encoding [24] through
optimized implementations in MATLAB code. We deployed
such codes leveraging architectures previously designed for
known datasets, such as MNIST, CIFAR and ImageNet, but
here refactored to recognize patterns from scientific images
from Section II.

Independently of the toolbox, the architecture of CNNs
depends on a large number of data-driven parameters, such as
weights derived during a broad search over the hyperparameter
space. The memory footprint to compute and store CNN
models motivated our team to investigate methods to adapt
CNN to energy efficient devices. Among several CNN designs,
this paper also reports on data reduction schemes and net
weight representations in order to accurately classify scientific

data from simulations, aiming to port code to neuromorphic
chips.

B. Neuromophic computation

Merolla et al. [25] reported promising results on weight
binarization and other non-linear distortions as part of schemes
to port neural networks to neuromorphic chips. More recently,
Esser et al. [26] discussed mechanisms to model CNNs by go-
ing beyond contemporary networks, which use high precision
(32-bit and higher) neurons and synapses to support gradient
learning based on back-propagation. Instead, neuromorphic
designs explore one-bit spikes for event-based computation
and communication, then using low-precision synapses and
colocating memory with computation – this new conception
enables deployment of hardware that consumes a fraction of
the energy otherwise necessary. Recent results [26] confirm
that arrays of IBM TrueNorth chips are capable of 1,200 to
2,600 frames/s and using between 25 and 275 mW (effectively
more than 6,000 frames/s per Watt).

With a unique energy-efficiency chip architecture based on
spiking neurons, neuromorphic computation using the IBM
TrueNorth [27] has enabled neural network algorithms to rep-
resent connections with low precision and guarantee scalable
communication pathways.

The IBM TrueNorth chip contains 4,096 cores, 256 axons,
2562 synapse cross-bars and 256 spiking neurons, with average
neuron spiking rate at 8.1 Hz. While the algorithmic design
occurs within the Matlab environment, an external workflow
called Eedn couples the energy efficiency of IBM TrueNorth
with the versatility of deep learning. Eedn stands for energy-
efficient deep neuromorphic networks [26], and consists of a
powerful set of codes for speeding up the process of creating
CNNs adapted to this energy-efficient chip. The job of a
TrueNorth programmer is to translate a desired computation
into a specified network of neurosynaptic cores, mapping
inputs into outputs through corelets.

C. TensorFlow

TensorFlow is an open source software library for express-
ing machine learning algorithms. Nodes in the graph represent
mathematical operations, while the graph edges represent the
multidimensional data arrays (tensors) intercommunication.
The flexible architecture allows you to deploy computation to
a wide variety of heterogeneous systems, including large scale
systems based on one or more CPUs or GPUs with a single
API. TensorFlow was originally developed by researchers
and engineers working on the Google Brain Team within
Google’s Machine Intelligence research organization for the
purposes of designing inferential mechanisms based on deep
neural networks, and applicable to several domains, such
as speech recognition, computer vision, robotics, information
retrieval, natural language processing, geographic information
extraction, and computational drug discovery [28, 29].

Our paper reports on preliminary results using TensorFlow
to create CNN-based algorithms using the AlexNet [30] ar-
chitecture. Here, we designed a CNN with two convolutional



TABLE III: Case I: The architecture of the CNN used for
CryoEM image classification

Layer No. Layer Type Output Size Filter Size

1 Input 64 x 64 x 2000 —
2 Convolutional 18 x 18 x 100 11 x 11
3 Max-pooling 6 x 6 x 100 3 x 3
4 ReLU 6 x 6 x 100 —
5 Convolutional 1 x 1 x 84 6 x 6
6 Fully connected 84 x 1 —

layers, two pooling layers and two fully connected layers.
The two convolutional layers contain 64 filters with size 5x5,
working with strides of size 1 and no zero padding. Two layers
of max pooling immediately follow the first two convolutional
layers, with size 2x2 and and stride 2. The last two layers
are fully-connected with 382 and 192 neurons, respectively.
The last fully-connected outputs a feature vector, which is
ultimately used as signature to retrieve images by similarity,
as illustrated in Figure 10.

IV. RESULTS

This section follows the methodology proposed in Figure 1,
organizing the four science domains into subsections, similarly
to Sec. II, including descriptions of the CNN adopted for each
one of these science domains.

A. Case I: Cryo-EM image classification

To test how well a CNN performs in tasks involving distinc-
tion among different 2D projection views of a macromolecule,
we first generated a set of 2,000 training images by projecting
the 3D density map of a previously reconstructed TFIID
model along different projection directions defined by Euler
angles (φi, θi, ψi). Each Euler angle is generated by randomly
drawing from 84 uniformly distributed projection directions
(with 15 degrees separation) defined by (φ̂j , θ̂j , ψ̂θj ) and
adding a small angular perturbation, i.e.,

φi = φ̂ji + ∆φi,

θi = θ̂ji + ∆θi,

ψi = ψ̂ji + ∆ψi,

where ji ∈ {1, 2, ..., 84}, ∆φi,∆θi,∆ψi ∈ [−5◦, 5◦]. Among
these 2,000 images, 1,600 are used for training and 400 are
used for validation. An additional 200 images are generated
in the same fashion for testing the success rate of our CNN.

We implemented the CNN using MatConvNet, leveraging
models used initially for MNIST. Table III gives the parame-
ters set for various layers of the CNN. Figure 7 shows the
objective and error curves for this particular data set, the
training process converges reasonably fast. When the trained
CNN is applied to the test images, the rate of successful
orientation prediction is 99.4%.

Fig. 7: Case I: Objective and Error curves from the training
process, both using the original (raw) and the quantized (in
eight levels) data, showing that the quantized data had very
similar accuracy to the original one.

B. Case II: X-ray diffraction

To test the viability of using CNN to identify X-ray diffrac-
tion images with visible Bragg spots, we use an experimental
data set collected at the Stanford Linac Coherent Light Source
(LCLS) that contains diffraction patterns of a number of
photosystem II crystals. The data set contains 7,066 images
total. These images have been previous labeled by beamline
scientists. Among them, 3,555 images present “good” Bragg
peaks, and 3,511 images do not contain clearly defined Bragg
peaks. Each diffraction pattern is represented by 1, 920×1, 920
pixel images.

To prepare the training data, we randomly selected 100
images from the set that contain Bragg peaks and 100 images
from the set that contains images with poor qualities. We
divide each image into 900 64 × 64 frames, and examined
and labeled each one of these images by hand. Because
Bragg spots are sparsely distributed in high quality diffraction
images. Many frames extracted from a high quality diffraction
image may not contain any Bragg spot.

The architecture of the CNN we use for training is shown
in Table IV. Due to relatively small size of the data, only
two convolution layers are used in this CNN. The training
process converges quickly. When applied to the rest of the
data, the CNN correctly identifies the presence and absence
of Bragg peaks in 96.3% of the 64×64 frames. If a diffraction
image contains at least 3 frames that contain Bragg spots, we
consider that image to contain a high quality diffraction pattern
with Bragg spots. By this metric, the CNN corrected identifies
100% images that contain Bragg spots.



(a) False negative (b) False positive

Fig. 8: Case II: Two 64×64 frames from the same diffraction
image. The one on the left contains Bragg spots and the one
on the right does not contain any visible Bragg spots.

TABLE IV: The architecture of the CNN used to identify X-
ray diffraction images that contain good Bragg spots

Layer No. Layer Type Output Size Filter Size

1 Input 64 x 64 x 1 —
2 Convolutional 18 x 18 x 100 11 x 11
3 Max-pooling 6 x 6 x 100 3 x 3
4 RELU 6 x 6 x 100 1 x 1
5 Convolutional 1 x 1 x 84 6 x 6
6 Fully connected 84 x 1 —

C. Case III: X-ray scattering

We address the problem of classifying GISAXS image
patterns of 7 different crystal lattices, whose classes we label
as: BCC 100, BCC 110, Cubic 100, Cubic 110, FCC 100,
FCC 111, and HCP. We generated 1,000 images for each class
(dataset 1), with dimensions of 100 × 100 pixels and variable
lattice parameters, including particle sizes (10nm - 20nm) and
spacings. The classifier is a four-layer CNN shown in Table VI.
We also tested the performance of the classifier on dataset 2,
which is generated with different simulation parameters, and
an extra synthetic dataset by corrupting images in dataset 1
with Poisson noise at a realistic level (see Figure 9). We ob-
tained test accuracy of 92% on dataset 1 and 82.6% on dataset
2, which indicates that the approach achieves generalization
under noisy conditions. Also, the trained model on noisy data
(dataset 2) will drop only 0.72% accuracy when used on
dataset 1. We also implemented a linear classifier with features
extracted by Histogram of Oriented Gradients (HOG) [31],
which has been widely applied in various computer vision
tasks. The CNN model outperforms HOG on all data sets,
especially on corrupted images. The obtained results are shown
in Table V. This is an encouraging result for further extending
the use of CNNs for GISAXS as well as other synchrotron
based scientific experiments.

We modified AlexNet network structure, but reduced the
number of fully-connected layers to accelerate training. Train-
ing was run on an Intel(R) Xeon(R) CPU E5-2630 2.40GHz
along with an Nvidia K-80 with 24GB of RAM and finished
within 10 minutes.

TABLE V: Case III: Crystals classification accuracy on dif-
ferent test datasets

Method dataset 1 dataset 2 dataset 1(noisy)

CNN 92.29 82.60 91.57
HOG 92.00 79.88 79.57

(a) A BCC 100 image without
noise

(b) The same image with noise

Fig. 9: Case III: Example of corrupting GISAXS images with
Poisson noise

D. Case IV: X-ray attenuation contrast

In order to evaluate the performance of a CNN when
classifying fiber profiles coming microCT images, we trained
an AlexNet model with 70% of the samples and tested on the
remaining 30%, given a dataset with 300,000 samples.

The features of the last layer, a fully-connected one, is
input for an image retrieval scheme based on a distance.
The number of parameters of all layers is 571,648 and the
number of parameters in the fully-connected layer corresponds
to 81.78% of the parameters to be estimated. Table VII shows
the TensorFlow architecture including the output and filter size
of each layer of the CNN, which was the architectural config-
uration of pyCBIR [32] version 1. pyCBIR is python package

TABLE VI: CNN architecture applied to X-ray scattering data.

Layer No. Layer Type Output Size Filter Size

1 Input 100 x 100 x 1 —
2 Convolutional 96 x 96 x 20 5 x 5
3 Max-pooling 48 x 48 x 20 2 x 2
4 Convolutional 44 x 44 x 20 5 x 5
5 Max-pooling 22 x 22 x 20 2 x 2
6 Convolutional 19 x 19 x 50 4 x 4
7 Fully connected 7 x 1 —

TABLE VII: TensorFlow CNN architecture applied to fiber
dataset.

Layer No. Layer Type Output Size Filter Size

1 Input 16 x 16 x 1 —
2 Convolutional 16 x 16 x 64 5 x 5
3 Max-pooling 8 x 8 x 64 2 x 2
4 Convolutional 8 x 8 x 64 5 x 5
5 Max-pooling 4 x 4 x 64 2 x 2
6 Fully connected 382 x 1 —
7 Fully connected 192 x 1 —



that offers a search engine for user-friendly exploration of
general image composition. The system enables image-based
query to digital imagery archives, returning the top-n pictures
that most resembles the query, for n defined by the user.
Given, we obtained 99.788623% accurately retrieved searches,
considering stratified training and tests sets, with 70% and
30% of the samples respectively.

Our search engine builds upon computer vision advances
made over the past decades, including both low-level feature
design and Alexnet CNNs. We demonstrate the applicability
to microCT by classifying fiber cross-sections, automatically
linking unseen results to known labeled patterns; it is also
capable of recognizing patterns from sketched cartoons of
fibers. Moreover, our pyCBIR [32] tools incorporate six feature
extraction methods, ten similarity criteria and numerous ways
to query and retrieve images. Ongoing and future extensions
of this image search system are expected soon, and future
developments appear in Section ??.

V. ENERGY EFFICIENT CNN AND NEUROMORPHIC
COMPUTING

Currently, CNNs are often used on high performance CPUs
and GPUs to solve a variety of data analytic problems.
Although the latest advances and availability of fast processors
and memory has made it possible to use machine learning
algorithms and large volumes of data to identify patterns and
perform classifications, the energy consumption required in
these tasks has become a major concern in applications that
require implementing CNN on digital devices or equipment.

One intriguing observation is that a CNN often produces a
rather simple answer (e.g, yes or no or a class number), and
yet the type of operations performed in CNN currently require
at least 32-bit arithmetic.

The IBM TrueNorth chip is built on a neuromorphic model
in which the processing unit and the memory are collocated.
The input data is represented as spiking trains and processed
in an event driven fashion. These features allow TrueNorth to
process thousands of images with several Watts power budget.

By lowering the precision of the operations performed in a
CNN, we are able to reduce the energy usage, and expect to
operate from neuromorphic chips. In this section, we discuss
the effect of input data and CNN weights quantization on the
success rate of a CNN tested on cryo-EM. Next, we present
preliminary results on using the IBM’s TrueNorth chip in
classifying microCT cross-sections.

A. Quantized CNN

To test the effect of limiting the precision of CNN opera-
tions, we took the CNN constructed for classifying 2D pro-
jection views of cryo-EM images in section III and quantized
the convolution weight parameters. For example, to quantize
a set of weights W into three levels l1, l2, and l3, we define

TABLE VIII: CNN success rate (%) using different levels of
quantization for data, weights, and biases

Quant. levels S. rate (%)

1 2,2
2 78,6
3 92,4
4 90,6
5 95,6
6 94,8
7 96,8
8 98,8

TABLE IX: CNN success rate (%) using different levels of
quantization for data, weights, and biases

Q. levels 20 21 22 23

20 2,2 1,4 1 1
21 2,2 78,6 94,8 96,8
22 2,2 65,4 90,6 98,8
23 2,2 71,6 88,8 98,8

δ1 and δ2 inside the range of W so that the quantized weights
Ŵ is defined by:

Ŵi =


l1 if Wi < δ1

l2 if δ1 ≤Wi < δ2

l3 if δ2 ≤Wi

The values of l1, l2, and l3 can be determined by using a
clustering algorithm to select a cluster centroid among all the
weights present in the CNN. We use K-means with Lloyds
optimization [33].

A similar quantization scheme can be applied to the in-
put data also. Figure 11 shows how the success rate of
the quantized CNN changes with respect to the number of
quantized levels. We can see that with a 2-bit quantization,
i.e., representing each of the input pixel and CNN weigh by
a single bit, we can still achieve 70-75% success rate. If we
increase the number of levels to 8 (3-bit quantization), the
success rate of the prediction is over 95%.

Figure 12 and Table VIII give a more detailed look at
the effect of input data and CNN weight quantization on the
success rate of the CNN. It is clear from these figures that
we can indeed lower the precision of the input data and CNN
weights without affecting the predictability of the CNN.

However, we should point out that here we use a train-
then-constrain approach. The training process in which the
CNN weights are optimized is still performed on GPUs and
CPUs with full 32-bit floating point operations. It is only
the deployed CNN we quantize. The quantized CNN can be
represented by a few bits and a code book (a.k.a. lookup table.)



Fig. 10: Case IV: Using TensorFlow: Dataset with more than three hundred thousand samples, used to train a deep learning
algorithm in order to separate fiber profiles (left) from other regions (right).

Fig. 11: Relation between the number of quantization levels
and the success rate using cryo-EM images.

B. Experience with IBM TrueNorth

Through Matlab, MatConvNet and Eedn, we deployed algo-
rithms that could be trained on GPU clusters (≈ 15minutes
on a TITAN GPU card, with 0.2 seconds per iteration), which
produced a model that was ported to the IBM TrueNorth chip.
By using the IBM TrueNorth ns1e at 240 ticks/frames, we
achieved the following performance results in two different

Fig. 12: CNN success rate (%) using different levels of
quantization; colors are proportional to the accuracy rate.

scenarios: (a) the run-time for 240 ticks was 0.250299 sec.,
and it takes 1.04 milliseconds to classify each frame/image;
(b) by trying to overclock the chip to investigate if it can run
even faster, we obtained 0.125363 sec run-time for 240 ticks,
which takes up to 0.5 milliseconds per frame/image.

Preliminary results using the neuromorphic chip IBM
TrueNorth utilized ≈3,200 cores, which corresponds to less
than the amount of cores in one chip (4096 cores). The



classifications results showed accuracy of 99.788623% for
70% samples used in training and 30% for testing.

Other important specifications associated to our tests are:
(a) the Corelet Programming Environment CPE Version
2.2.160518; (b) dataset with 216,650 fiber samples and
105,120 non-fiber samples, each sample consisting of 16x16
uint8 images.

VI. CONCLUSION AND DISCUSSIONS

This paper presented encouraging results towards the use of
CNNs for classification of cryoEM and X-ray-based patterns.
Since specialized imaging facilities like those at national
laboratories collect vasts amounts of data, the use of CNNs for
pattern recognition automation offers an opportunity to learn
tasks from previously curated data sets. For example, CNN
supported the analysis and inversion of new scattering patterns,
otherwise a time consuming process that requires significant
human expertise.

The use of CNNs as a core algorithm, as explored here, can
automate much of the data analysis processing and accelerate
the pace of scientific discovery. In addition, we realize that
this algorithm works well in the reconnaissance of expected
events, however it currently lacks the ability to detect outliers,
which may be key to answer science questions about unique
events buried in experimental observational data or simulation.

We notice that image representation can be arbitrary among
different packages, i.e. the order in which the image dimen-
sions appear varies. While testing different CNN architectures
to different imaging modalities, we also noticed that the num-
ber of deep layers were proportional to the image resolution
and complexity of the patterns. The ability to process higher
resolution data demands larger convolutional layers as well
as an increased number of them (deep), which constrain
many CNN designs computationally because they require more
memory as well as more computing time.

Exploration of new computer architectures with neuromor-
phic microelectronic promises to enable very efficient chips
that can bring low-power computation closer to the data
sources. We expect that predictive analytics will steer data
collection, therefore providing more efficient data storage, i.e.,
data with high SNR remains, otherwise discarded early in
the process. By having recognition closer to the detector, we
expect to obtain higher resolution data in specific regions, or
more time points during a transition of interest.

We will continue developing these software tools for the
recognition of the scientific data collected at imaging facilities,
including other modalities and materials [34], seeking to better
categorize geometrical motifs present in images. The task
of extracting morphological structures and representing them
through features maps will have similarities to traditional pat-
tern recognition, and we intend to build analogies and extend
concepts to 3D imaging modalities. Advanced recognition will
significantly accelerate the model development for abstract
patterns, which are often hard to describe visually.
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