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Abstract

Population based linkage disequilibrium genome screens represent one of the most recent approaches for the lo-

calization of genes responsible for complex diseases. One open problem in this context is represented by the definition

of an appropriate significance threshold that takes into account the multiple comparison problem. We explore the con-

ceptual and practical implications of the multiple testing procedure known as False Discovery Rate (FDR). We argue

that controlling the FDR better represents the interest of researcher in this area than more traditional approaches. We

then explore the applicability of the Benjamini-Hochberg (BH) FDR controlling procedure in the specific context of

association mapping from case-control data. We analyze the nature of dependency between the test statistics with an-

alytic work and simulations and we conclude that the BH rule effectively controls FDR in our context of interest. The

dependency between test statistics translates into a decrease of power, which highlights the necessity of developing

resampling based rules to control FDR.

Keywords

Significance cut-off, linkage mapping, linkage disequilibrium, association mapping, Bonferroni, Family Wise

Error Rate.

I. I NTRODUCTION

Association studies have been proposed multiple times as a viable mapping strategy for complex

diseases (see for ex. Risch and Merikangas, 1996). Some of the most recent work describing the

patters of recombination in chromosomes (Daly et al. 2001) suggest that there are blocks of highly

conserved haplotypes. A mapping strategy for the future could be based on studies designed to

analyze the association between disease traits and SNPs representative of each of these blocks.

These collection of SNPs would be on the order of hundred of thousands. Even before such high-

resolution genotyping becomes possible, it is clear that a successful association mapping procedure

has to be able to deal with the problem of multiple comparisons across thousands of tests. Our first

goal is to analyze the potential of relatively new paradigm for multiple testing in the context of

genemoscreen association studies. In 1995 Benjamini and Hochberg proposed to control, when

correcting for multiple comparisons, the proportion of wrongly rejected null hypothesis over all

the rejections. They named this quantity False Discovery Rate and they gave a simple step-wise

rule that selects significant results, guaranteeing a FDR of a specified level, among independent

tests. In 1998 Weller et al. proposed the application of this procedure in a mapping context with

reference to the QTL methodology and simultaneous investigation of multiple traits. In the most
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recent years the theoretical understanding of the FDR rule described by Benjamini and Hochberg

has considerably improved. In particular, it has become apparent that the same rule controls FDR

when the test statistics are dependent. This makes it applicable to a much wider set of problems,

including complex disease mapping based on association tests—which will be the focus of our

investigation.

In section 1 we introduce the problem of multiple comparison in the context of gene localization,

with specific reference to the well studied case of linkage mapping. In section 2 we give some

background on general statistical approaches to multiple comparison; we formally introduce the

notion of FDR; we describe Benjamini and Hochberg (BH) step-wise rule; and we discuss why

we believe this approach to multiple comparison to be particularly suitable for the mapping of

complex diseases. In section 3 we analyze the applicability of the BH procedure in the context of

genome screens, and in particular population based association studies. We study to the nature of

dependence between the various test-statistics and its implications. Section 4 describes the results

of a simulation study that confirms our results of section 3 and allows us to compare the power of

different correction procedures. We conclude that the BH procedure effectively controls FDR in

association studies. It results in a significant power increase with respect to procedures that control

family-wise error rates. However, it is also apparent that FDR rules constructed taking into account

the existing dependency would result in further a increase of power.

II. T HE PROBLEM OF SIGNIFICANCE CUT-OFFS IN GENE MAPPING STUDIES

In order to understand the parameters of our problem, it is useful to review the approaches to

establish significant cut-off values in the well-studied linkage analysis for monogenic diseases. As

the type of data-sets available for mapping have evolved, so have the criteria used to assess the

significance level.

Morton popularized the the cut-off value of 3 for the lod-score in a world where few markers

were available. In such a context, a stringent cut-off was required in view of the considerably

small chance that one of the few markers available could turn out to be close to the locus under

investigation. Formally, assuming a prior probability of 0.2 for an analyzed marker to be actually

linked to the disease under study, Morton concluded that one could stop collecting families where

the lod score reached 3. The same Bayesian argument can be applied to a non sequential procedure
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and translates, again, to a cut of significance level of 3.

As the number of markers available for analysis increased substantially, the perspective changed.

Since a considerable number of markers are spread around the genome, the prior probability that

one of them is linked to the disease is high. However, conducting multiple tests makes it necessary

to worry about multiple comparisons. Even if the disease was not genetic and all the null hypothe-

ses of no linkage to each of the considered markers were true, the simple fact of looking at many

markers increases the probability of finding one that shows a significant pattern. To address this

issue, two simplifying hypotheses on the marker structure have been made, corresponding to the

idea of a “sparse map” and a “dense map” (Lander and Botstein, 1989). In the first case, markers

are assumed to be independent, in the second case, markers are assumed to cover the entire genome

so that the lod scores observed are actually a continuous process. In both these frameworks, lod-

score values of 3-3.5 appear to produce good evidence for linkage. In the sparse map assumption,

consider a typical genome screen with 400 markers. Then one can apply Bonferroni correction and

obtain that to have an overall level of significance of 0.05, one need an individual p-value lower

than 0.0001, corresponding to a lod-score of 3.3. This approximation is not valid as we further

increase the number of markers, as the assumption of independence between the markers becomes

increasingly unrealistic and would lead to an unnecessary loss of power. In this context, the dense

map approximation is useful as the tests for linkage can be shown to follow a Ornstein-Uhlenbeck

process and extremal probabilities from this process can used to define the level of significance

(Feingold et al, 1993), and obtaining results comparable to the 3.3 cut-off value.

A further parameter that has been introduced over time in the discussion on the appropriate cut-

off values for a mapping study is the increased interest in complex diseases, where more than one

locus is expected to be involved. In the context of linkage studies, Lander and Botstein (1986) and

Depuis, Brown and Siegmund (1995) compared the performances of marginal search (focusing

on one locus at the time), and simultaneous and conditional search that are carried out under the

explicit assumption that more than one locus should be involved. From a practical standpoint, the

conclusion of these studies has been that even if conditional and simultaneous search are potentially

more powerful, they require such high levels of corrections for multiple comparison that they are

often not worth pursuing. Certainly marginal search plays the leading role in practical applications.
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On this background, the following statements can be made about the specific characteristics of

Linkage Disequilibrium (LD) mapping.

• The sparse map assumption of independent markers appears not realistic. LD studies are based

on thousand of markers and the distance between then is such that often they are in linkage dise-

quilibrium in a random sample of individuals (see Service et al. 2001)

• So far a continuous process approximation of LD tests has not been obtained and it seems difficult

to do so, given the indirect nature of LD tests (which are not based on counting recombination

events or sharing), the variability of the LD patterns across the genome, and the dependence of the

test statistics on auxiliary variables—as the number of alleles at a given marker or their distribution.

• LD studies are almost exclusively considered in the context of complex diseases, where more

than one locus is expected to play a role.

In reference to the first two points, we are going to consider the discrete model that studiesn tests

corresponding ton locations in the genome. Let thenT1, . . . , Tn be a set of test statistics for testing

the hypotheses{H1, . . . , Hn}, whereHi is true if markeri is not linked to a disease locus. We are

not going to assume thatTi are independent. In order to develop a procedure that corrects for

multiple comparison but is also reasonably sensitive to signal associated to different markers we

propose to adopt the FDR viewpoint. We devote the following section to a description of the issues

involved in selecting a multiple comparison procedure and the specific characteristics of FDR. In

order to provide a vivid illustration of the various methodologies reviewed we will often refer to

their implications in linkage mapping.

III. M ULTIPLE COMPARISON PROCEDURES AND CONTROL OF THEFALSE DISCOVERY RATE

Let thenT1, . . . , Tn be a set of test statistics for testing the hypotheses{H1, . . . , Hn}, where

Hi is true if markeri is not linked to a disease locus. LetH0 be the hypothesis that corresponds

to each of theHi being trueH0 = ∩ni=1Hi. When we conduct tests of these hypotheses, we try

to answer two types of questions: (1) canH0 be rejected? (2) IfH0 is rejected, which of the

Hi should be rejected? The statistical technique used to answer the first question is called global

test, while the one addressing the second is named multiple test procedure. Note that in the case

of a disease whose genetic component is well established, the goal of a global test is really to

determine if the sample size and the available genotypes are enough to resolve the location of the
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susceptibility genes. When the disease is monogenic, a positive answer to this question coincides

with the identification of the disease locus. When, instead, multiple genes are known to play a

role, addressing question (2) is a really different problem. The well known Bonferroni procedure

offers an easy answer to both problems. Letp1, . . . pn be the p-values associated with each of

the tests statistics and letp(1), . . . , p(n) be their ordered counterpart. According to Bonferroni,

one can rejectH0 if p(1) < α/n, whereα is the desired level for the test ofH0. As for the second

question, the hypothesisHi for whichpi < α/n will be rejected. This, as illustrated in the previous

section, is equivalent to rejectingHi for which the lod-score be larger than 3.3. The idea behind

the Bonferroni correction is very simple. Suppose each hypothesis is tested at theα/n level

Pr(RejectH0|(whenH0 is true) = Pr(p(1) ≤ α/n|H0) ≤
n∑
i=1

Pr(pi ≤ α/n|H0),

which, assuming that thepi are uniform underH0–which is true when theT are continuous,pi are

exact and can be very far from true when they are approximated–, is equal toα. It is clear that the

procedure is conservative, as based on an inequality. It is difficult to improve on a general level

such procedure, and there is a vast literature in statistics on this topic that we cannot consider here.

However, there are three aspects that are important for our problem.

(1) If the test statistics are positively correlated, the Bonferroni procedure is much too conserva-

tive. This is best exemplified by looking at the extreme case where all the tests are the same

Pr(RejectH0|(whenH0 is true) = Pr(p(1) ≤ α/n|H0) = Pr(p1 ≤ α/n|H0) = α/n.

The actual level of the test is nowα/n; in other words, we did not need any correction. In general, it

is known that if the tests statistics are positively dependent, the correction proposed by Bonferroni

is too strong. It is however very difficult to construct rules that take into account a general form

of dependence. In most cases, the literature resorts to re-sampling techniques to estimate the

distribution ofp(1) given the particular structure of the data.

(2) The other characteristic of the Bonferroni procedure that reduces its power is that it is a single

step method, that is all the p-values from the various statistics are compared to the same benchmark

value. In contrast to this, step-wise methods generally work on ordered set of p-values and have

a different cut-off value for eachp(i). One of the first procedures of this kind was developed by
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Holm. The idea behind these methods is that once theHi corresponding top(1) has been rejected,

we should believe that it is false and then we are now fishing among onlyn− 1 hypothesis, so that

the appropriate cutoff for the second significant result should beα/(n− 1). Indeed, the following

procedure is an acceptable alternative to Bonferroni:

(FWER)Start withi = 1. If p(i) > α/(n− i+ 1) acceptH(i), . . . , H(n) and stop. Otherwise, reject

H(i) and continue.

If we applied this criteria to the sparse map approximation for the linkage genome screen, we

would obtain that the first significant locus has to give a lod-score of 3.2868, the second a lod score

of 3.2860, etc, as illustrated in figure 1. Clearly, this is not a terribly interesting modification of the

procedure, as the variation of the cut-off values in the range of interest is practically nonexistent.

A much different picture can be obtained if we consider the following rule:

(BH) Proceed fromi = n to i = n− 1 et cetera, until, for the first time,p(i) ≤ iα/n. Denote that

i by k and reject allH(i) with i = 1, . . . , k.

If, once again, we report this to the sparse map assumption, and monitor the implied cut-off values

in term of lod-score we get the situation illustrated in Figure 1.

[Figure 1 about here.]

Clearly, now, we have a significant departure from the request of a uniform cut-off of 3. This

procedure has appeared a number of times in the multiple comparison literature with out becoming

really successful, as it does not control the same error measure that is controlled by Bonferroni.

In particular, it behaves as Bonferroni in terms of global test, but not as a multiple comparison

procedure.

(3) The Family Wise Error Rate (FWER) is defined as the probability to wrongly reject at least

oneHi. The idea to control the FWER has been, for a long time, the dominating paradigm in

statistics for analyzing the problem of multiple comparisons. There are two precise definitions of

FWER: as the probability of rejecting at least one hypothesisHi when they are all true, or the

probability or rejecting at least one of the true hypotheses, regardless which these are. A method

that controls the FWER in the first definition is said to control it in a weak sense and a method that

controls the FWER as defined in the second way is said to control it in the strong sense. The FWER

is a somewhat natural extension of the significance level of a single test to the context of multiple
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tests. In some sense, it represents the “p-value of the p-value”: it gives the probability of observing

a p-value as low as the minimum one when all the null hypothesis are true. Certainly this similarity

with the familiar p-value concept has contributed to the popularity of such a conservative criteria,

at least on a theoretical level. From the practical standpoint, however, its short-comings have been

noted a number of times (a nice discussion can be found in Benjamini and Yekutieli, 2001): Lander

and Kruglyak (1995), for example, resort to the mythological analogy of “choice between Shylla

and Charybdis” to describe the difficult balance between FWER and power. FWER is an appro-

priate measure of error when we strongly desire not to make any wrong rejections. However, it

does not necessarily reflect the attitude of researchers, who often are interested in measuring the

overall error of multiple tests, in a framework that is similar to a classification procedure, where

of main relevance is the percentage of errors, rather that the presence of at least one of them. So,

even if a wrong rejection of the null hypothesis is the error that one wants to control, as in classical

testing, what matters is the fraction of wrongly rejected hypotheses rather than on their absolute

number. In general, it is perceived as a less serious problem to falsely reject oneHi if we correctly

rejected 100, than if it is the only rejected one. Specifically to model this behavior, Benjamini and

Hochberg in 1995 introduced a new paradigm for approaching the problem of multiple compar-

isons, which is now receiving a considerable amount of attention in the statistics and data mining

literature. They suggest shifting the attention from the probability of wrongly rejecting at least

one null hypothesis to the expected fraction of mistakes among the rejected hypothesis, which they

call False Discovery Rate. If all theHi are true, the two approaches coincide, so that FDR and

FWER lead to similar global test conclusions. Their difference is really as multiple comparison

procedures. In general, if one controls FWER, FDR is also controlled, but not viceversa. As FDR

is a less stringent criteria, it is also more powerful. In particular, the step-down procedure leading

to the lod-score cutoffs of figure 1 controls FDR. We believe that this paradigm is particularly rele-

vant in the case of complex disease mapping. It is becoming clearer that genome-wide studies have

to be considered precisely as screening tools, rather than experiments that will immediately lead

to the identification of the disease gene. Because of the complex nature of the disease, we expect

that more than one locus in the genome may be implicated, so that we are effectively interested in

multiple hits. In this context, one wants to be able to follow all the good leads that may result in
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the identification of a disease locus. While too many wrong clues are to be avoided as costly, what

really matters is the proportion of these over the total number of clues that are warranted further

investigation.

Before turning to consideration of the association genome screens, we want to point out an other

application of the FDR principle in the context of linkage study that illustrates its potential. The

(BH) rule we presented applies to independent tests, so that its immediate application in linkage

screens is under the sparse map assumption. However, one can also adopt the FDR approach under

the continuous map hypothesis. Consider the Grandparent-Grandchild model of Feingold et al.

(1993). The Ornstein-Uhlenbeck process offers a good approximation of the dependence structure

between test statistics on one chromosome. Markers on different chromosomes are independent.

Indeed, in Feingold et al. (1993) the cut-off value is obtained by setting the per-chromosome

significance level to 0.05/25 (they are looking at the mythical unicorn that has 25 chromosomes of

equal length). If we follow FDR approach, while using the same extremal probabilities to correct

for multiple comparisons within a chromosome, we can increase our power on the independent

comparisons. The simplest way is to consider the 25 hypothesis of linkage to any locus in each of

the chromosomes. We can calculate the p-value for each of these using the Ornstein-Uhlenbeck

based approximation of Feingold et al. We would then reject the hypothesis of no linkage using the

FDR threshold that we have repeatedly presented: this would lead to cut-off values for subsequent

chromosomes ordered in terms of decreasing evidence for linkage reported in Figure 2.

[Figure 2 about here.]

To then determine which are the locations that are associated with linkage in the previous chro-

mosomes, we would look at the locations where the maximum of the lod-scores is higher than the

lod-score associated withp∗, wherep∗ is the p-value of the largesti for whichpi < α25/i. This is

an example of exploiting the specific dependence-independence structure to construct a multiple

comparison procedure that is based on the FDR approach and increases the power of traditional

constructions.

May 8, 2002 UCLA STAT. PREPRINT



10

IV. CONTROLLING FDR IN POPULATION BASEDLD GENOME-SCREENS

We are now going to explore how the FDR control can be applied in the case of population

based LD genome screens for the mapping of complex disease. The clear interest of the FDR

controlling strategy is in its increased power in circumstances where more than one of the null

hypothesis is false, which is what one expects if there is more than one gene influencing the disease.

The step-down procedure that we have described in the previous section controls FDR if the test

statisticsT1, . . . Tn are independent, which is what is assumed in the sparse-map approximation.

However, the data collected so far on the levels of background LD suggest that this is not a realistic

hypothesis in the case of tests of association between a disease and a set of finely spaced markers.

There are two implications coming from the departure from independence. The first one that the

step-down procedure may not control FDR for tests with generic dependence. The second one

is a consideration similar to the one already discussed for the Bonferroni procedure: the cut-off

value ofα/n for p(1) may be excessively conservative if the tests are positively associated. We

have already commented on the second implication of dependence among the test statistics, while

the first may appear contradictory. Indeed, loss of power is generally associated withpositive

dependence, while increased error rates withnegativedependence. For illustration, one may want

to consider the example of Hochberg and Rom (1996): two normally distributed test statistics with

negative correlation and the BH rule lead to FEWR larger thanα.

The rest of the paper will deal to the investigation of how these two issues can be dealt with in

the context of LD mapping.

Controlling FDR under dependency: Recent work of Benjamini and Yekutieli shows that

under some forms of dependence (Positive Regression Dependency on each one from a Subset

- PRDS), the procedure described in (BH) controls FDR. If the tests statistic under association

satisfy this requirement, then, we can use the presented step-down procedure and be reassured that

it will control the overall FDR. Technically the definition of PRDS is as follows. The setD is

called increasing ifx ∈ D andy ≥ x imply thaty ∈ D as well. The random variablesX1, . . . , Xn

are PRDS onI0 if, for any increasing setD, and for eachi ∈ I0, P (X1, . . . , Xn ∈ D|Xi = x)

is non-decreasing inx. Benjamini and Yekutieli (2001) were able to prove that the procedure

May 8, 2002 UCLA STAT. PREPRINT



11

illustrated for independent tests, also control the FDR at a leveln0/nα, wheren0 is the number

of false null hypotheses, if the joint distribution of the tests statistics are PDRS on the subset of

test statistics corresponding to the true null hypothesis. The definition of PRDS may seem rather

arcane. However, one illustration with reference to linkage should serve to clarify the nature of this

hypothesis and illustrate its adaptability to the mapping context. Benjamini and Yekutieli (2001)

show that PDRS translates in the following requirement for multivariate normal tests statistics.

ConsiderX ∼ N(µ,Σ), a vector of test statistics, each testing the hypothesisHi that µi = 0

against the alternativeµi > 0, for i = 1, . . .m. For i ∈ I0, the true set of null hypothesis,µi = 0;

otherwiseµi > 0. If for eachi ∈ I0, and for eachj 6= i, σij ≥ 0, then the distribution ofX is

PRDS overI0. If we now consider the Gaussian models for genetic linkage analysis proposed by

Feingold et al. (1993), it is easy to see that they satisfy this condition. Consider the model proposed

for Grandparent-Grandchild pairs. If we restrict our attention to a finite subset of genome locations

we get a multivariate Gaussian. The mean values of the test statistics at each un-linked location is

0 and it is positive for linked loci. The covariance between two test-statistics are non negative and

a function of the recombination fraction across loci. Because the covariances are non negative, we

can conclude that the tests are PRDS onI0 and hence the cutoff values illustrated in Figure 1 are

actually guaranteed to control the FDR, even when we relax the independence assumption.

It should be clear by know that PRDS is a property that is likely to hold also for linkage disequi-

librium test statistics in the sense that if two markers are in LD and one happens to show random

association to the disease, the other marker in LD would have increased chances of showing asso-

ciation higher than a given threshold. Because we do not have a general model for the dependency

between tests of association, nor there is likely to be a realistic one in the near future, it is diffi-

cult to translate this intuitive idea in a precise general statement. However, we can consider some

specific cases that capture the essence of the dependence between test of association involving

markers in LD. The detail study of these simplified cases will shed some light on general patterns

and illustrate the meaning of the PRDS condition.

Consider the situation in which one examines the association between a series of SNP and a

disease in a case-control study, whereN disease andN control haplotypes are sampled. If the

SNPs are in linkage equilibrium, the tests statistic will be independent, while if they are in LD they
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are not. In the following analysis, we will focus on the dependence between the test of association

originated by two SNPs, between which there is a specified amount of LD. This is representative

of the joint distribution of any set of SNPs when one assumes a Markovian structure of the first

order for the LD between SNPs.

Let’s then consider two SNPs, their joint distribution can be represented as follows:

M1 \M2 1 2

1 pq + δ p(1− q)− δ p

2 (1− p)q − δ (1− p)(1− q) + δ 1− p

q 1− q 1

,

where the parametersp andq represent the population frequencies of the 1 alleles in the two SNPs

andδ the amount of association existing between them. LetX1 be the total number of allele 1

associated with disease in the first marker, andY1 the total number of allele 1 associated with

control in the same marker. Suppose there is no association between the SNPs under consideration

and the disease. ThenX1 ∼ Binom(p,N) andY1 ∼ Binom(q,N), which entirely specifies the

distribution of the contingency tableT1, collecting allele counts for SNP 1 and disease status.

T1 =

Dis. \M1 1 2

D X1 N −X1 N

ND Y1 N − Y1 N

X1 + Y1 2N −X1 − Y1 2N

T2 =

Dis. \M2 1 2

D X2 N −X2 N

ND Y2 N − Y2 N

X2 + Y2 2N −X2 − Y2 2N

In order to evaluate the distribution ofT2|T1, it is sufficient to calculate the distribution ofX2, Y2

(number of allele 1 in the second SNP associated with disease and control) givenX1 andY1, is such

that both can be viewed as the sum of two independent binomial components:X2 ∼ Binom(q +

δ/p, x1) + Binom(q − δ/p,N − x1) andY2 ∼ Binom(q + δ/p, y1) + Binom(q − δ/p,N − y1).

Using this expression for the joint distribution ofT1 andT2, we can evaluate some properties of

the dependence between the p-values of tests of association that are relevant to establish if they

are PRDS. As an example, we generated 5000 tables using two SNPs, each with allele frequency

.5 and a background linkage disequilibrium parameterδ = .2(−.2). There was no association

between disease locus and the considered SNPs. Figures 3 and 4 report the observations forX1

andX2, the scatter plot of the p-values for association tests based on tablesT1 andT2 (p1 andp2)

and the empirical equivalent ofPr(p2 > a|p1 = b), for a = 0.3, 0.5, 0.7, 0.9 andb = 0.1, . . . , 0.9,
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calculated binning the values ofp1 andp2 in equally spaced intervals between 0 and 1.

[Figure 3 about here.]

[Figure 4 about here.]

The latest probability is at the base of the definition of PRDS. In order to check that the p-values of

association tests satisfy the PRDS on the collection of true null hypothesis, we should verify that

non-decreasing relationships as the ones in figures 3(c) and 4(c) hold for any collection of tests

conditional on any p-value corresponding to a true null hypothesis. This task cannot, obviously, be

carried trough by systematic enumeration. What we have done is simply to verify numerically the

one-dimensional implications of the PRDS property. Additionally, we can observe that if the mark-

ers corresponding to the p-values whose probability is evaluated are in linkage equilibrium with the

table corresponding to the conditional p-value, the relation will necessarily be true. Moreover, one

can restrict one,s attention to the p-values of true null hypothesis, as the p-values corresponding to

Hc
0, should also be, by definition, independent from any p-value corresponding toH0.

Another source of dependency that plays an important role in determining the joint distribution

of p-values from association studies, is the fact that the same markers may be involved in the defi-

nition of different haplotypes, whose distribution in cases and controls may be the precise object of

comparison. We consider two models to describe the nature of this dependence. In order to distin-

guish it clearly from the one studied in the previous example, we assume that different markers are

in linkage equilibrium. The first model is really based on an approximation of haplotype and uses

χ2 tests. The second model relies again on Fisher’s exact test. Again suppose that each marker

is a SNP. To mimic the effect of considering haplotypes, one can think of adding theχ2 statistics

across the SNPs in a sliding window. This is less stringent than considering the chi-square table

deriving from the haplotype table, but mimics the consideration of historical recombination and

mutation that are incorporated in much of the haplotype methods. Consider the case where we

add the chi-square statistics from 3 adjacent SNPs. Assume that theχ2s are independent—this is

of interest only because we have already explored the effect of LD in the previous example. Let

Xi be the counts of allele 1 on disease chromosomes at markeri. Let Y = X1 + X2 + X3 and

W = X2 + X3 + X4. It is easy to check thatW is positively regression dependent onY , as long
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asY satisfies the null hypothesis. We have

P (W ≥ w|Y ≥ y) = P (X2 +X3 +X4 ≥ w|Y = y) =

P (
X2 +X3

Y
Y +X4 ≥ w|Y = y) = P (Ry +X4 ≥ w|Y = y),

whereR is distributed as a Beta of parameters 1/2 and 1, andX4 is independent fromY . This

probability is clearly increasing iny. Again, to fully check the PDRS condition we have to look at

joint conditional distributions.

An other—more direct—way of looking at the distribution of haplotype tests is to study the case

of 2 overlapping SNPs haplotypes. We assume that there is no association with the disease and

that the markers 2 and 3 are in the same dependence relation above. The table of counts for the

association between disease and haplotypes of the first two markers is as follows:

T1 =

Dis. \H12 11 12 21 22

D X1 X2 X3 X4 N

ND Y1 Y2 Y3 Y4 N

X1 + Y1 X2 + Y2 X3 + Y3 X4 + Y4

,

where(X1, X2, X3, X4) and(Y1, . . . , Y4) are multinomials of parameters depending on the haplo-

type frequencies. Sliding down of one marker, the table counts will have the following shape:

T2 =

Dis. \H23 11 12 21 22

D X ′1 X ′2 X ′3 X ′4 N

ND Y ′1 Y ′2 Y ′3 Y ′4 N

X ′1 + Y ′1 X ′2 + Y ′2 X ′3 + Y ′3 X ′4 + Y ′4

,

with conditional distribution described byX ′1 ∼ Binom(q+ δ/p,X1 +X3),X ′2 = X1 +X3−X ′1,

X ′3 ∼ Binom(q − δ/p,X2 + X4),X ′4 = X2 + X4 − X ′3. Again, we used this joint distribution

of T1 andT2 to analyze the validity of the PRDS requirements on one dimensional distributions.

For example, we considered again 5000 tables, generated with SNPs with allele frequency 0.5. We

assumed independence across SNPs and with the disease and evaluated the p-value of association

tests between two overlapping haplotypes and the disease locus. The results are in figure 5: again,

PRDS seems a likely structure for this problem.
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[Figure 5 about here.]

The results in this section suggest that positive regression dependency from the subset of the

null hypothesis test statistics is likely to hold in the context of LD studies. However, we did not

prove theoretically this to be the case and we have made a series of simplifying assumptions. The

simulation study carried out in the following will contribute to clarify the scope of these results.

Power of BH procedure under dependency: If all the tests are perfectly dependent, we

should not correct for multiple comparisons: this is true for FDR as much as for FWER. The

best way to investigate the extent of the loss of power under these circumstances is the use of

simulations, which we will illustrate in the next section. The most effective way of correcting this

problem relies on developing a precise model for the dependency and incorporating it in the def-

inition of an FDR controlling procedure. This does not appear as an easily attainable goal, as the

collected evidence on distribution of LD across genome and populations shows a significant, un-

explained, variability. A more practical strategy relies, instead, on permutation-based evaluations

of FDR within the sample of interest. While there has been some work describing appropriate per-

mutation methods (Yakutieli and Benjamini and Storey and Tibshirani), the design of an efficient

resampling scheme that is practical for genome screen purposes is still needed. On this back-

ground, the BH rules remains very attractive as computationally inexpensive. We hence decided

to study its performance in presence of the dependence structure that characterizes the association

studies with a set of simulations.

V. SIMULATION STUDY: EMPIRICAL FDR AND POWER

Our simulation study had two goals: (1) to validate the conjectures of our previous section that

the BH rule control FDR in the case of association tests and (2) to assess the extent of the loss of

power that is due to dependency among the test statistics.

Because the multiple comparison procedures considered differ only when more than one null

hypothesis is false, as in the case of multiple genes influencing the diseases, we considered a situa-

tion where we have three susceptibility genes of equal importance and acting independently. These

genes are located on three different chromosomes. The total number of chromosomes is 22; they

are assumed of equal length for a total genome length of 3300 cM. The data analyzed to investigate
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association consist on a sample of 200 diseased aneuploid individuals and 200 control ones: that is,

for each individual, we analyzed 22 chromosomes. One third of the 200 diseased individuals was

a carrier of each of one of the three disease loci. To mimic a typical setting for association genome

screens, we assumed that 1100 SNPs, each 3cM a part, covered the genome. The haplotypes of

susceptibility genes carrying chromosomes was generated assuming one founding event (for that

location), 15 generations old. This determined the distribution of the closest recombination events

on the two sides of the disease locus. Outside the conserved region, the disease chromosome were

modeled as the control ones with a Markov process of the first order.

In order to cover an interesting range of settings, we considered three degree of LD among

adjacent SNPs and two levels of powers. The levels of LD are described by the parameterλ as in

Pr(SNPi = 1|SNPi−1 = 1) = Pr(SNPi = 1) + (1− λ)Pr(SNPi = 2)

Pr(SNPi = 1|SNPi−1 = 2) = Pr(SNPi = 1)− (1− λ)Pr(SNPi = 2)

Linkage equilibrium corresponds toλ = 0; we indicated as low LD a scenario whereλ varies

uniformly in [0,0.1]; medium LD is characterized asλ ∈ [0.2, .4]; and high LD toλ ∈ [0.8, 1].

The different power levels are achieved making differential assumptions on the frequencies of

the alleles associated with disease locus on the founder chromosomes. In analyzing the results we

considered both a single marker test and an haplotype test. Because of the intrinsic power differ-

ences in these approaches, it was instructive to use different parameter settings in the two cases

in order to achieve comparable power levels. In detail, for the single marker case, the high power

scenario corresponds to a frequency of the associated alleles on the ancestral disease chromosomes

that varies uniformly between 0.2 and 0.3; in the low power case such frequency varies uniformly

between 0.3 and 0.4. For the haplotype test, the frequency of the associated alleles on the ancestral

disease chromosomes varied uniformly between 0.3 and 0.4 for the high power case and 0.4 and

0.5 for the low power case.

The results of genome-scans for 200 diseased and two hundred controls individuals were sim-

ulated 1000 times for each of the described scenarios. Both in the single marker case and in the

two-markers haplotype test we used Fisher’s exact p-values for the association tests. Tables 1 and
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2 report three measures of power, the average FDR and the average FWER across replicates.

[Table 1 about here.]

[Table 2 about here.]

Here the false discovery rate is defined as

FDR =

 V
V+S

if V + S > 0

o otherwise
,

whereV are false rejections andS correct rejections of the null hypothesis. We considered as

true null hypothesis all theH0 relative to markers that are more than 3 SNPs away from the true

disease locus and that are on chromosomes that do not carry any disease locus. Attention has to be

paid to the fact that the variance of the results for high LD is considerably greater than in the other

scenarios, due to the high levels of dependency.

The first evident conclusion from the table is that the BH method achieves control of the FDR:

the average estimated FDR are below 0.05. (notice, incidentally, that the method only controls

expected FDR, so that in one replicate the FDR may actually be higher).

Secondly, it is evident that FDR leads to an increased power with respect to FWER. We measured

power in different ways. For each of the three disease locations we calculated the percentage of

times in which they are detected. Since these three locations are essentially identical in terms of

simulation parameters, we averaged their results in what is called “marginal power” column. To

emphasize the fact that the increased power of FDR is due to an increased power of detecting more

than one locus, we then also evaluated the percentage of time in which at least two locations were

detected and in which all three locations where detected with the three methods. The increase in

power ranges from 25% in the marginal power to over 100% for the three-hit power.

A third aspect worth noting is that the FDR (as FWER) seems to be controlled at a level lower

than 0.05, which is the cut-off we set. This is due to the dependency structure and results in a loss

of power. To quantify the extent of this power loss, for the single marker test, we considered the

power of an genome screen identical to the one of our simulations, but where all the marker are

independent—which is reported under the column of no LD. It can be seen that the loss of power

due to unaccounted positive dependence between test statistics is indeed significant for both FWER
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and FDR controlling methods, ranging from 10% to over 100%, in the extreme case of low power

and very high dependence. This result argues in favor of the necessity of developing adequate

resampling-based evaluation of FDR, so that the dependence between markers is incorporated to

increase the power of the study. This is the goal of a separate investigation.

VI. CONCLUSIONS

We have illustrated conceptually and with numerous references to linkage studies how control-

ling the False Discovery Rate is a most satisfying procedure for correcting for multiple compar-

isons and how it translates in substantial increase of power. We have then analyzed in particular the

case of genome screens with case-control data and the performance of the Benjaminin Hochberg

procedure in this setting.

The simple analytic models and the simulations results documented in this study suggest that

the BH methodology can be effectively used to correct for multiple comparison in the case of LD

genome screens. Additionally, it is evident that the development of other procedures that explicitly

take into account the dependency between tests would result in an increase of power. Further work

is needed to investigate the applicability in this context of re-sampling-estimates of FDR and the

development of novels multiple comparison procedures.
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SIMULATION RESULTS. SINGLE MARKER TESTS.
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SIMULATION RESULTS. TWO HAPLOTYPE TESTS.
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