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Abstract

Replicated Versioned Data for the Internet of Things (IoT)

by

Nazmus Saquib

Modern Internet of Things (IoT) deployments are geo-distributed and comprise var-

ious devices and architectures. The ever-increasing pervasiveness of IoT has led to the

popularity of multi-tier (cloud/edge/sensor) architectures. However, the data interac-

tion among the devices of the different tiers is fraught with various and often related

challenges. For starters, these devices are vastly heterogeneous. On one end, we have

cloud devices with high computing and storage capacities; on the other, we have resource-

constrained microcontrollers and sensors. Due to the nature of the deployment of end

devices, i.e., microcontrollers and sensors, stable network connectivity is often inaccessible

to them. Unreliable power sources add complexity to the already challenging environ-

ment of end devices. Hence, we need novel approaches to create robust, fault-tolerant

IoT deployments by negotiating these challenges.

To that end, we employ a three-pronged approach to make distributed IoT systems

reliable and fault-tolerant. First, we propose leveraging versioned data structures to track

the evolution and efficient querying/modification of data. As versioned data structures

retain the past states, we can record the data lineage, which we can later use for system

debugging and root cause analysis. Second, we propose a novel replication method that

reduces coordination overhead. As IoT environments are failure-prone, protocols requir-

ing more coordination can result in multiple stop-start scenarios, thus wasting energy

in environments already in short supply. Finally, we explore an energy-efficient, energy-

conscious way of making data tamper-proof. Tamper-proofing gives us confidence in the
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veracity of data and provides a way to detect faulty or malicious devices in the system.

We empirically evaluate our methodology through various real-world IoT applica-

tions. Our results show that data versioning can lead to efficient temporal queries and

historical data retention that is useful for debugging IoT applications and deployments.

Moreover, experimental results on replicating versioned data using our proposed protocol

demonstrate better throughput and overall better latency than existing protocols with

similar consistency guarantees. Finally, our proof-of-concept system for tamper-proof

data management shows it is feasible to create a renewable-energy-aware system that

ensures data trustworthiness in an energy efficient way. Hence, we conclude that we

can leverage data versioning and replication to create the next generation of distributed,

reliable, fault-tolerant IoT systems.
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Chapter 1

Introduction

Over the past decades, hardware design and fabrication technology advancements have

made low-cost, low-power, and low-energy computing devices feasible. These advance-

ments, in turn, have propelled the ubiquity of the Internet of Things (IoT). In a nutshell,

IoT is a rapidly growing and continuously evolving set of technologies where things, i.e.,

devices, communicate with each other over the Internet. IoT makes it possible to glean

insights from our surroundings through sensors and perform actions through actuators

to respond to the collected information. Consequently, IoT applications have been seam-

lessly integrated into our daily lives, ranging from compact wearables like smartwatches

to larger industry-standard devices that monitor and regulate supply chain management

systems.

As this technology permeates the world around us, we are experiencing an explosion

of data due to advancements in sensing, data storage, analytics, and artificial intelligence.

This massive amount of data, coupled with advancements in data analytics and artificial

intelligence, has allowed us to gather actionable insights. The potential of such insights

have in turn resulted in a wide range of IoT applications that are increasingly data driven.

Data-driven IoT makes it possible to collect, mine, analyze, and actuate using infor-
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Introduction Chapter 1

mation from physical objects across geographical locations. IoT applications amalgamate

clouds, edge devices, and sensors as ensemble deployments implementing automation, de-

cision support, and control for objects, devices, and systems in the environment. As a

result, IoT deployments are geo-distributed and compose a vast diversity of devices,

architectures, resource constraints, and communication systems with highly variable per-

formance, failure, and availability characteristics.

Although IoT has tremendous potential for positively impacting society, it also has

its unique challenges which center around its heterogeneity. Modern IoT deployments

are multi-tiered and comprise resource-constrained devices at the end tier, moderately

capable devices at the edge tier, and devices with high computing power and ample

space at the cloud tier. This results in a vast range of devices with different scales and

capabilities. Moreover, the mode of communication these devices use can vary among

cloud/edge/end and even within the same tier. There is no unifying set of programming

abstractions designed to span resource scales of heterogeneous devices — from resource-

restricted IoT end devices (e.g., microcontrollers) to the extensive resource pools available

from public clouds.

In part because of this heterogeneity, IoT deployments are inherently failure-prone.

IoT deployments place end devices in environments lacking stable network connectivity

or a reliable power source. Hence, many multi-tier applications must tolerate frequent

communication disruptions, outages, and failures when operating across tiers. In the

case of a crash, a device must be able to retain the stored data and resume operation

upon successful restart. Moreover, if a change in some system component causes the

failure, tracking the evolution of the impacted data, i.e., the data lineage, can facili-

tate debugging. One way to efficiently capture data lineage is through data versioning.

In particular, versioned data structures provide a semantically uniform interface across

interacting devices. In the case of communication disruption between any two devices,

2



Introduction Chapter 1

there must be a way to resume communication and make progress once the network is up.

However, frequent communication drops can lead to unnecessary overhead if machines

must retransmit messages often, thus making the system energy inefficient. Hence, we

require new protocols that minimize message transmission.

A prime example of a case where communication overhead can have a significant ad-

verse performance impact is replication. Distributed systems such as IoT often replicate

data for low latency and high availability. The replicas maintain shared state among

themselves according to different system and data models. For example, strong con-

sistency requires a machine to coordinate with other devices to execute an operation.

Coordination increases latency, and the execution may fail due to a network partition,

preventing the necessary communication between replicas. Moreover, dropped messages

may lead to frequent start-stop of iterations within a consensus protocol, making the

deployment energy inefficient. Weaker consistency models, such as eventual consistency,

enable a replica to execute an operation locally and asynchronously propagate it to oth-

ers. This results in lower latency and communication overhead but causes a temporary

divergence in replica views. The devices must eventually reconcile this temporary diver-

gence. Fortunately, many IoT applications can sacrifice strong consistency in favor of

high availability and partition tolerance. The adoption of a weaker consistency model, in

turn, can result in an energy-efficient deployment due to lower communication overhead.

As the world becomes data-driven, applications must also ensure that the data they

use is trustworthy if it is to be useful for responsible decision-making. Falsified or fab-

ricated data can result in undesirable consequences. A popular method to ensure the

trustworthiness of data is to use a blockchain. Blockchains are decentralized, eventu-

ally consistent, tamper-proof ledgers. Traditionally, blockchain protocols involve solving

mathematically complex puzzles that are resource-intensive and energy inefficient. As

a result, they are only suitable for the cloud tier containing devices with high compute

3



Introduction Chapter 1

and storage capabilities and uninterrupted access to grid power. Although less resource-

intensive alternatives exist for some protocols, there remains an opportunity to optimize

them further to take advantage of renewable energy sources when available.

Given the current limitations, opportunities, and requirements of multi-tier IoT de-

ployments, we pose the following Thesis question:

Can we leverage data versioning and replication to make distributed IoT

systems reliable, fault-tolerant, and trustworthy?

To address the Thesis question, we explore the following topics in the domain of

multi-tier IoT deployments:

• An approach to extending data services with a well-defined versioning scheme that

allows us to capture the evolution of data and facilitates efficient storage and query,

• A replication protocol that minimizes coordination overhead while being able to

retain versioning information, and

• An energy-aware blockchain system for providing tamper-proof IoT data.

We initiate our exploration with versioned data structures. Versioned data structures

can efficiently store and query their past states while exposing a simple interface where

end users can interact. Hence, if application data is versioned, its evolution, i.e., lin-

eage, is inherently preserved rather than capturing this lineage being an afterthought.

Versioning facilitates monitoring changes in data and, in turn, system debugging. Al-

though past research on versioned data structures exists, these works were constrained

to in-memory and single-machine data structures. However, IoT deployments are dis-

tributed and failure-prone. Hence, to employ versioned data structures for multi-tier IoT

deployments, we must extend it with persistent storage and distributed programming.

To this end, we propose PEDaLS, our approach to combine storage persistence and

data structure versioning. PEDaLS is a language and runtime extension set that provides

4



Introduction Chapter 1

new abstractions for program data structures to simplify and expedite software devel-

opment for event-triggered and failure-prone settings. It stores program data structures

transparently in non-volatile storage to survive unexpected program termination, system

failure, and power outages. PEDaLS uses append-only logs as the underlying storage ab-

straction to facilitate failure recovery and data structure versioning. We use append-only

logs for storage as it provides immutability, which, in turn, offers robustness [1] and helps

in debugging systems [2], both of which are highly desirable features in a distributed envi-

ronment. Using append-only logs as the backing store introduces new challenges, as any

modification of a node in a data structure must be recorded using an append rather than

an in-place update. PEDaLS addresses these challenges while maintaining the same time

and space complexity of the original single-machine, in-memory versioning algorithm and

facilitating distributed storage persistence. Moreover, using append-only logs enables the

integration of PEDaLS with several existing logging systems [3, 4, 5, 6, 7, 8].

While data versioning facilitates system debugging and crash recovery, replication

adds availability and robustness to the system. Replication makes program data struc-

tures durable, highly available, and concurrently accessible despite resource failures.

Although PEDaLS provides storage persistence and distributed programming, it can-

not independently replicate the underlying data structures. However, multi-tier deploy-

ments pose unique challenges, which make many existing replication protocols inappli-

cable. First, these deployments include many heterogeneous devices, including resource-

constrained systems such as microcontrollers and single-board computers. Thus, pro-

tocols requiring significant memory or complex computation are unsuitable for them.

Second, these devices are commonly battery-powered and connect via unstable networks.

Protocols requiring frequent coordination among replicas can experience repeated failure

and resumption of the replication procedure in such settings. Due to these reasons, pro-

tocols that require a quorum through multiple messages among the replicas are precluded
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for many IoT devices. Although protocols exist that forego frequent coordination at the

cost of stronger consistency semantics, they often come with conditions that limit the

applicability of the system. Hence, we must introduce new replication protocols that can

address these challenges and thus are better suited for multi-tier IoT deployments.

To employ a replication protocol well suited for multi-tier IoT deployments, we next

introduce Log-Structured CRDTs (LSCRDTs) – a new form of Conflict-Free Replicated

Data Types [9, 10, 11] that is better suited for use in multi-tier cloud deployments than

its antecedents. CRDTs enable program data types to be distributed, shared (concur-

rently modified), replicated, and made consistent (via clever update merging). Specif-

ically, CRDT employs Strong Eventual Consistency (SEC) [9], which guarantees that

two replicas reach the same state if they receive the same set of updates (possibly in

different orders). These features facilitate robustness, high availability, and coordina-

tion avoidance [1], which makes them suitable for failure-prone settings. However, many

existing CRDT designs impose limitations that make them difficult to use in multi-tier

cloud deployments. In particular, previous CRDT formulations do not support operation

reversal, i.e., reverting a data type to an earlier state.1 They do not readily support

non-commutative operations, and for operation-based CRDTs, they cannot tolerate out-

of-order operation delivery.

LSCRDT uses distributed logs to overcome these limitations. As logs are append-

only, our approach can use them to further reduce the coordination required to merge

inconsistent replicas. LSCRDT guarantees that replicas execute operations in the same

order, irrespective of data type, thus removing the need for commutability. LSCRDTs

also avoid the complex networking required to guarantee exactly-once, causal delivery of

operations needed by operation-based CRDTs. Finally, LSCRDT provides programmatic

access to data structure versions, which helps with debugging, history-based program-

1Note that operation reversal is distinct from the undo operation [12], which may have side effects.
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ming [13], and data replay and repair [14]. We extend PEDaLS with LSCRDT to provide

replication of versioned program data structures.

Data versioning and replication are desirable features in multi-tier IoT deployment

from a system perspective. In this data-driven era of IoT, end-users are placing increasing

importance on the security and trustworthiness of data, which is the third crucial feature

to consider. Recent years have seen a rise in the popularity of blockchain, which can act

as a decentralized, tamper-resistant database. Blockchains possess inherent resistance to

data tampering, due to which it is practically impossible to modify data retroactively once

they record a transaction. However, most blockchain systems are notoriously resource

intensive. Many traditional blockchain deployments consume massive amounts of energy

for their operations, adversely impacting our environment. Although there has been a

recent drive towards increasing the utilization of renewable energy, existing blockchain

systems need a way to ensure the participating nodes are using them.

To incorporate security and trustworthiness provided by blockchain into multi-tier

IoT deployments in an energy-efficient and energy-conscious way, we propose GreenCoin.

GreenCoin is a cryptocurrency that marks each crypto coin with an indelible measure

of the renewable energy that a blockchain node used to create it. GreenCoin relies on

a novel Proof-of-Stake (PoS) protocol called Green Proof-of-Stake (GPoS). As PoS is

significantly less power intensive than its famous counterpart Proof-of-Work (PoW), we

choose to base our protocol on PoS. GPoS attaches a “green score” denoting the fraction

of available energy from renewable sources to each crypto coin. It employs an incentive

system that favors, i.e., attaches a greater value to greener coins. Further, GreenCoin

and GPoS permit the formulation of “green” smart contracts that specify a minimum

greenness score that must be presented to execute the contract. Note that we define

GPoS as a PoS protocol as we believe future protocols will likely take this form, but the

fundamental tenets of GreenCoin apply to PoW protocols as well.
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To summarize, we address the thesis question in a three-pronged fashion. First, we

introduce a set of language and runtime extensions called PEDaLS to efficiently version,

persist, and query program data structures for multi-tier IoT deployments. Second, we

formulate a novel replication protocol based on CRDT, called LSCRDT , that is well-

suited for failure-prone environments without complex requirements from the underlying

network or application constraints. Finally, we provide data security, reliability, and

trustworthiness through a novel, renewable energy-aware cryptocurrency called Green-

Coin.

We structure the remaining of this dissertation as follows. Chapter 2 presents exist-

ing technologies and research relevant to our work. In Chapter 3, we put forth PEDaLS,

our approach to making program data structures storage persistent along with retaining

versioning information. Chapter 4 explores LSCRDT, a replication protocol suitable for

multi-tier IoT deployments. At the same time, we explain how LSCRDT and PEDaLS

can provide both versioning and replication of data. Chapter 5 describes how we can

add trust to our data and its operations through a renewable energy-aware cryptocur-

rency system called GreenCoin. Finally, we conclude our learning outcomes and present

possible future research directions in Chapter 6.
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Chapter 2

Background

The IoT paradigm is becoming increasingly ubiquitous and often employs a multi-tier

(cloud/edge/device) architecture. Many modern IoT deployments require efficient com-

putation and storage solely on the cloud tier and seamless integration of computation-

al/storage concepts on the edge and the device tier. Edge servers must communicate

with high-end cloud servers while overseeing IoT devices at the same time. Unfortu-

nately, the technologies that guarantee failure resilience and robustness on the cloud do

not translate directly to the edge/device layer due to resource constraints and unstable

network connectivity. Thus, new programming support and data abstractions are needed

to manage this complexity and automatically enhance the robustness and efficiency of

multi-scale IoT deployments.

The next generation of IoT can benefit from versioned data, as it facilitates debugging

and can make applications experiencing frequent temporal queries efficient. Although

replicated data is not a new concept, data replication in multi-tier IoT deployments

requires ways to counter its inherent challenges of heterogeneity, unstable network, and

unreliable power sources. Finally, in this age of data explosion, end users often desire

tamper-proof data to ensure data integrity and trustworthiness. This chapter provides
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background on these three seemingly disparate but related topics that are key to making

future IoT deployments reliable and fault-tolerant.

2.1 Versioned Data

Versioned data structures preserve their past states. Modifying such a data structure

creates a new version while keeping the past versions accessible. Versioned data structures

are also known as persistent data structures in the literature, as coined by Driscoll,

Sarnak, Sleator, and Tarjan [15]. In this context, persistence does not imply storage

persistence (i.e., in a system context, the ability to persist data during a power-off state);

rather, it denotes that the data structures retain the previous versions (i.e., states). The

formulation of Driscoll et al. is for single-machine, in-memory program data structures.

Persistent data structures come in multiple forms. Data structures for which all

versions can be accessed, but only the latest/newest can be modified, are called partially

persistent. Those for which all versions can be accessed and modified are called fully

persistent. A confluently persistent [16] data structure can merge different versions into

one. Data structures without versioning support are called ephemeral. We focus on

partially persistent data structures in our work because version histories are immutable

and data structures are append-only – properties that are desirable in highly concurrent

and failure-prone distributed settings. We refer to partially persistent data structures

simply as PDSs throughout this dissertation.

PDS update operations result in a new version of the structure. PDSs achieve algorith-

mic efficiency (in both space and time) by (i) embedding the versions within the original

data structure and sharing unmodified sections of the data structure among versions, (ii)

by implementing this embedding using mutable, pointer-based memory structures behind

the scenes, and (iii) by optimizing accesses and updates to versions [15, 17, 18, 16, 19, 20].
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PDSs enable a wide range of programming support, including debugging [21], history pro-

gramming [22, 23], undo and replay [24, 25], lock avoidance [26], referential transparency,

and functional programming [27, 28, 29, 30]. Although most works on PDSs are related

to theoretical computer science, PDSs also have applications in distributed systems. For

example, sensors in an IoT environment can often malfunction and generate erroneous

values. If we have a PDS deployed in the system, we can query the past versions of it

to determine at what point we started receiving faulty values and perform further anal-

ysis (e.g., what trend in data it resulted, how it affected the other components of the

system that depend on this data, etc.). Systems that experience a high volume of tem-

poral queries, such as the location of items of interest (e.g., delivery tracking, livestock

tracking, etc.) throughout the day, can also benefit from PDSs.

A technology related to data versioning is git [31]. Git is a version control system

typically used for text documents with some support for binary documents. GitHub [32]

is an online platform for hosting git repositories. A primary difference between persistent

data structures and git is that the former is used for program data, whereas the latter

is used mostly for source codes or files. Git provides support for exploring the difference

between two versions, working on different versions (similar to fully persistent data struc-

tures), and merging different versions (similar to confluently persistent data structures),

among others.

2.2 Replicated Data

Distributed systems replicate data to ensure the availability and robustness of the sys-

tem. However, multi-tier deployments pose unique challenges which make many existing

replication protocols inapplicable. First, these deployments include a vast range of het-

erogeneous devices including resource-constrained systems such as microcontrollers and
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single-board computers. Thus, protocols which require significant memory or complex

computation are not suitable for them. Second, these devices are commonly battery-

powered and are connected via unstable networks.

Protocols that require frequent coordination among replicas can experience repeated

failure and restart of the replication procedure in such settings. Due to these reasons,

protocols such as Paxos [33] and Raft [34] that provide strong consistency and require

a quorum through multiple messages among the replicas are precluded for many IoT

devices. Multiple works in the literature suggest resorting to a weaker consistency model

in favor of availability [35, 36, 37, 38, 39]. Fortunately, many IoT use cases do not require

strong consistency semantics and instead can tolerate weaker consistency models (with

lower coordination requirements) such as eventual consistency [40, 41, 42]. Thus we

can trade off strong consistency for high availability (which many of these use cases do

require) in the face of network partitions [43].

Motivated by the various limitations of Paxos, researchers have proposed multiple

variations over the years. In Paxos, the leader performs a disproportionately large amount

of communication compared to followers. PigPaxos [44] attempts to reduce the load of

the leader by distributing some communication responsibilities to follower nodes, called

relays. However, for write-heavy workloads (e.g. for sensor-driven IoT applications), the

communication load is inherently distributed, limiting PigPaxos’ advantage. Moreover,

PigPaxos only redistributes the communication workload among nodes; it does not neces-

sarily reduce the total amount of required communication (versus Paxos). Additionally,

in failure-prone, heterogeneous environments such as IoT, replicas running Paxos-based

protocols often must give up on current progress and start fresh if a quorum is not met.

A quorum might not be met for many reasons including multiple contending writers, de-

vice/power failure, network latency, etc. Hence the overhead of Paxos-based algorithms

is compounded in such scenarios. On the other hand, eventual consistency-based proto-
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cols can progress even in failure-prone environments in presence of multiple writers, as

each replica is able to execute its operation immediately and incorporate the rest of the

operations when the other devices become reachable.

DPaxos [45] proposes a dynamic allocation of quorums to avoid unnecessary wide-

area communication. The communication reduction of DPaxos is heavily dependent on

the premise that leader election is infrequent. However, if a leader-based protocol is used

for write-heavy workloads, the leader election phase will be more frequent. Moreover, in

the case of multiple writes, the dynamic allocation of quorums can be prolonged multiple

times; effectively being computationally more complex than Paxos without providing any

additional advantage. Hence we employ strong eventual consistency for the write-heavy

edge deployments to reduce overall communication overhead.

2.3 Tamper-Proof Data

With technological advancements such as big data, data analytics, and artificial in-

telligence, data has become a pivotal component of many applications. However, the

continued growth of data has also given rise to many questions, one of which is data

trustworthiness and reliability.

A blockchain is a distributed, peer-to-peer, immutable digital ledger consisting of

blocks. Due to blockchain’s inherent tamper-resistance, it has become a popular mode of

ensuring data has not been tampered with. Each block contains one or more transactions

along with a hash of these transactions. These blocks are mined (i.e., added to the

chain) by solving cryptographically complex problems requiring significant computational

power. High-end devices that are used to solve these problems are called miners. There

are generally multiple miners in a blockchain forming a peer-to-peer network.

The ordering of blocks in a blockchain is achieved using a consensus algorithm. Each
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block contains a hash of the previous one, meaning the entire chain can be traversed

and validated from any block up to the first one (called genesis). The cryptographic

algorithms are designed in such a way that for an adversarial entity to tamper with

a block and still get validated would require an impractical amount of computational

power. A blockchain provides multiple features that are desirable to ensure privacy and

security:

• Decentralization: As a blockchain is a peer-to-peer system, users need not rely on

an untrusted third party to store their data.

• Immutability : A blockchain can ensure the integrity of transactions through its im-

mutable ledger. Transactions performed between two parties using the blockchain

cannot be disputed.

• Transparency : A transaction mined in one node is propagated to multiple nodes in

the blockchain. Moreover, these transactions are validated by the receiving nodes.

This adds to the confidence of the involved parties regarding the correctness of the

transactions.

While versioned data structures provide immutability from a programming construct

and blockchains provide cryptographic guarantees to ensure the same, append-only logs

can offer a different layer of immutability from a storage perspective. Due to a decline

in storage costs, append-only logs are used widely in distributed and cloud computing

systems to facilitate immutability, robustness, and scalability. Examples of log-based

systems include cloud object stores [4, 6], event systems [46], distributed databases and

file systems [47, 48, 49, 50, 51], log-based transaction systems [52, 53, 54], and popular

messaging and streaming services [55, 7, 8].

Immutability facilitates robustness and coordination avoidance [1, 56] as well as high

availability (through eventual consistency) for cloud storage, gossip protocols, collab-
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orative editing, and revision control, among others [57, 58, 5]. While data versioning

provides immutability from a software level, append-only logs provide immutability from

a storage level. Entries in a log are ordered, and most log storage systems offer a form

of sequence number (e.g., Kafka [59] provides offsets, and Facebook LogDevice [60] pro-

vides log sequence numbers) that reflects the log order. Log storage systems typically

provide a simple API for creating a log, appending to a log, and retrieving entries from

specific sequence numbers in a log. This generic API facilitates communication among

heterogeneous devices.

While blockchain has cryptographic backing to ensure the integrity of each added

block, append-only semantics of logs are only guaranteed through their exposed inter-

faces. That is, if a malicious user were to change data previously appended to a log

through some means, there is no feasible way to detect this anomaly. On the other

hand, any such attempt in a blockchain would reveal this modification through crypto-

graphic algorithms. The downside is that, in addition, blockchain is resource-intensive.

Blockchain is inherently decentralized, with algorithms that add to its integrity through

this decentralization.
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Chapter 3

PEDaLS: Persisting Versioned Data

Structures

The Internet of Things (IoT), Big Data, and artificial intelligence are coalescing to trans-

form the world around us, making it possible to collect, mine, analyze, and actuate

using information from physical objects across geographical locations. To do so, IoT

applications amalgamate clouds, edge devices, and sensors as ensemble deployments im-

plementing automation, decision support, and control for objects, devices, and systems

in the environment. As a result, IoT deployments are geo-distributed and compose a

vast diversity of devices, architectures, resource constraints, and communication systems

with highly variable performance, failure, and availability characteristics. This massive

influx of data, coupled with the heterogeneity of the devices, demands efficient ways

to store, communicate, and analyze data. We start our endeavor to make distributed

IoT systems reliable and fault-tolerant by introducing data versioning. Versioned data

structures can efficiently store the evolution of data, make the application data reliable

and fault-tolerant, and provide a standard interface for the heterogeneous devices to

communicate with each other.
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Many popular and important cloud-based services for durable data management and

data-driven computation (e.g. AWS S3 [5], HDFS [48], CORFU [52], Kafka [59], AWS

Lambda [61], etc.) appear at first to provide the scale and fault-resiliency required for

IoT. However, in practice, these services turn out to be ill-suited for IoT deployments

because they assume “resource-rich” (e.g. machines with large memories and high clock

speeds), cloud-based, and comparatively homogeneous infrastructure connected via high

quality and large-capacity networks.

In this chapter, we consider how to evolve and extend data services for IoT appli-

cations that target tiered edge-and-cloud IoT deployments. Our goal is to tame the

heterogeneity of such deployments via new programming abstractions in the form of so-

phisticated program data structures that simplify and expedite software development for

event-triggered and failure-prone settings. Our approach, called PEDaLS, combines stor-

age persistence and data structure versioning. First, we transparently store program data

structures in non-volatile storage so that they survive unexpected program termination,

system failure, and power outage. Second, we use an append-only log as the underly-

ing storage abstraction to facilitate failure recovery as well as data structure versioning

and immutability. Doing so enables integration with several existing distributed logging

systems [3, 4, 5, 6, 7, 8].

In this chapter, we focus on persisting versions of linked program data structures

(e.g. linked lists and trees). To do so efficiently, we base our design on algorithmically

efficient in-memory, mutable algorithm implementations from Driscoll, Sarnak, Sleator,

and Tarjan [15], which embed versions (i.e. nodes and edges) within the original data

structure. Note that while the above work proposes a versioning scheme for single-

machine, in-memory data structures, our work formulates a versioning scheme for storage

in persistent data structures which can span multiple machines in a distributed setting.

We use append-only logs for storage as it provides immutability, which in turn provides
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robustness [1] and helps in debugging systems [2], both of which are highly desirable

features in a distributed environment. The use of append-only logs as the backing store

introduces new challenges, as any modification of a node in a data structure must be

recorded using an append rather than in-place modification. PEDaLS addresses these

challenges while maintaining the same time and space complexity of the original work

and facilitating distributed storage persistence.

In addition to this new distributed formulation of persistent versioning, we describe

a working “real world” implementation of PEDaLS for cloud and IoT settings. We pro-

totype our approach using an open-source, distributed runtime system [3] that supports

distributed logs as a first-class storage abstraction. We use this prototype to evaluate

empirically the various overheads associated with versioning and persistence for operation

workloads on linked lists and binary search trees, and investigate the effect of failures on

the logging process. Our results show that PEDaLS maintains the algorithmic complexi-

ties of in-memory versioning, and enhances the robustness of distributed data structures

with low overhead.

3.1 Related Work

We first provide background, related work, and context for the contributions we

describe in the sections that follow. Specifically, we overview mutable, in-memory ver-

sioned data structures (referred to as partially persistent data structures (PDSs) in the

literature), non-volatile program object storage, and append-only storage advances that

enhance the robustness of distributed systems.
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3.1.1 Partially Persistent Data Structures (PDSs)

PDSs track version histories for in-memory, program data structures such that ver-

sions can be accessed programmatically [15]. Data structures for which all versions can

be accessed, but only the latest/newest can be modified, are called partially persistent.

Those for which all versions can be accessed and modified are called fully persistent.

Data structures without versioning support are called ephemeral. We focus on par-

tially persistent data structures in this work because version histories are immutable and

data structures are append-only – properties that are desirable in highly concurrent and

failure-prone, distributed settings. We refer to partially persistent data structures simply

as PDSs throughout this dissertation.

PDS update operations result in a new version of the structure. PDSs achieve algorith-

mic efficiency (in both space and time) by (i) embedding the versions within the original

data structure and sharing unmodified sections of the data structure among versions, (ii)

by implementing this embedding using mutable, pointer-based memory structures behind

the scenes, and (iii) by optimizing accesses and updates to versions [15, 17, 18, 16, 19, 20].

PDSs enable a wide range of programming support including debugging [21], history pro-

gramming [22, 23], undo and replay [24, 25], lock avoidance [26], referential transparency

and functional programming [27, 28, 29, 30]. Although most works on PDSs are related

to the field of theoretical computer science, PDSs have applications in distributed sys-

tems as well. For example, sensors in an IoT environment can often malfunction and

generate erroneous values. If we have a PDS deployed in the system, we can query the

past versions of it to determine at what point we started receiving erroneous values and

perform further analysis (e.g. what trend in data it resulted, how it affected the other

components of the system that depend on this data, etc.). Systems that experience a

high volume of temporal queries, such as the location of items of interest (e.g. delivery
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tracking, livestock tracking, etc.) throughout the day can also benefit from PDSs.

PEDaLS brings PDS support to programs in a new way, using efficient algorithms that

are backed by append-only disk storage exported via logs. For IoT, these efficiencies are

necessary to enable battery-powered, resource-restricted platforms (e.g. IoT devices) to

use as little power as possible. Often, power consumption is proportional to computation

duration and storage access frequency. Append-only semantics are also attractive in

this context to mitigate component failures, particularly in the form of communication

network partitions.

3.1.2 Object Storage

The term persistence is also used in computer science to describe the long-term, non-

volatile storage of data (e.g. in files or databases on disk), i.e. enabling data to exceed

the lifetime of any particular program activation. Related work has investigated (i) tools

and language support that automate the process of persisting program (in-memory)

data structures and objects to disk (and more recently to non-volatile memory), and

(ii) ways of unifying the treatment of transient and persistent objects in programs to

simplify programming [62, 63, 51, 64, 65, 66, 67, 68, 69, 70, 71, 72]. These advances

are referred to as persistent storage, persistent object storage, persistent object systems,

orthogonal persistence, and persistent programming in the literature. PEDaLS pursues

both automation and unification of persistent object storage, but is unique in that it

persists versioned data structures (i.e. PDSs) to local or remote append-only disk storage.

Doing so enables both program data structures and their versions to survive program

termination and be accessed by distributed clients.
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3.1.3 Append-Only Storage Systems

Append-only storage is employed in distributed and cloud computing systems to

facilitate immutability, robustness, and scalability, as storage costs have plummeted [1].

It is used by cloud object stores [4, 6], event systems [46], distributed databases and

file systems [47, 48, 49, 50, 51], log-based transaction systems [52, 53, 54], and popular

messaging and streaming services [55, 7, 8].

Immutability facilitates robustness and coordination avoidance [1, 56] as well as high

availability (through eventual consistency) for cloud storage, gossip protocols, collabora-

tive editing, and revision control, among others [57, 58, 5]. In particular, versioning in

distributed systems allows applications to make progress from the last available consis-

tent state [73]. While our evaluation implementation uses the versioning features of a

storage system specifically designed for IoT [3], PEDaLS can use any append-only storage

system that exports ordered, version information (e.g. sequence numbers) as its backing

store for program-level, versioned data structures.

3.2 PDS Node-Copy Method

Driscoll et. al. introduced a node-copy method to version linked data structures (with

constant in-degree) by embedding versions efficiently within the structure itself [15].

PEDaLS extends this method using append-only logs. We first overview the original

approach and then describe our advances.

Using the node-copy method, a versioned linked data structure consists of nodes and

edges, and each node contains a constant value and 1+ edges (i.e. pointer fields). The

method adds a fixed number of extra pointer fields beyond those required by the original

structure. For example, in the case of a binary search tree (BST), a node contains fields

for its value and left and right pointer. Additional pointer fields represent versions – i.e.
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Figure 3.1: Partially persistent binary search tree using the node-copy method with
one extra pointer. Circles denote node with information field within. Arrows with
labels denote pointers with version stamps. Dashed arrows/circles denote that a node
has been copied. AP is the access pointer list. ϕ denotes the null node.

updates to the left or right pointer of the node.

Once all of the extra fields have been used to accommodate update operations, the

method makes a copy of the node with only the most recent pointer fields – creating a new

set of extra pointer fields for use in future updates. Moreover, the predecessor of the node

stores a pointer to this new copy. This way, the method avoids walking through chains

of copies of the same node to locate a particular version. Note that if the predecessor

runs out of extra pointer fields while pointing to a new copy of a node, the predecessor

is copied as well. In the worst case, this copying operation and chaining continue to the

root node. The method also maintains a list of root nodes indexed by version stamps

called the access pointer (AP) list. The AP facilitates constant time lookup of the root

node for any version.

The number of extra pointers used by the method is a tunable parameter. If the

number of extra pointers is small, the time to scan them is short but the number of

copies generated may increase, resulting in a higher time and space overhead. If the
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number of extra pointers is large, it takes more time to scan all the pointers but fewer

copies will be needed. We explore this time-space tradeoff for PEDaLS in Section 3.4.

To illustrate how the node-copy method works for linked data structures, consider

the binary search tree as shown in Figure 3.1. We assume that the number of extra

pointers is one. We start with the empty tree and insert 7. Both the left and right

pointer of the node containing 7 points to null. Assuming version stamps start at one

and monotonically increase thereafter, we stamp these pointers with version 1. We also

update the AP list (assuming indexing starts at 1) to point to this newly created node.

Next, we insert 2 in the same way. Because 2 is less than 7, we install a new left

pointer in the BST using the extra pointer in the node containing 7 and stamp it with

the current version (2). The type of the extra pointer (i.e. left or right – in this case,

left) is recorded (not shown in the figure for brevity). As the root node does not change,

index 2 of AP list points to the same node as AP index 1.

Next, we insert 5 which follows similar insertion steps. Finally, we delete 2. To do

this, the node containing 7 must point to the node containing 5 (using a left pointer)

and the null node (using a right pointer). However, the node containing 7 has run out

of extra pointers and thus must be copied. The original left pointer of this new copy is

set to point to the node containing 5 and is stamped with version 4. The original right

pointer need not be updated and thus still points to the null node. The extra pointer of

this new copy remains unused and is available for future updates. Note that as the node

originally containing 7 has been copied, index 4 (i.e. the current version stamp) of the

AP list points to the copied node rather than to the original node.

Access operations (i.e. find/search) for a particular version stamp vs traverse pointers

with the greatest version stamp less than or equal to vs at each node. Instead of spec-

ifying only a value (find(val)), a PDS find operation can also include a version stamp

(find(val, vs)). As an example, consider the operation find(2, 3) – find 2 in version

23



PEDaLS: Persisting Versioned Data Structures Chapter 3

stamp 3, after the execution of all the operations in Figure 3.1. That is, the current BST

is represented by the last column of Figure 3.1.

The access operation starts from index 3 in the AP list, which points to the node

containing 7. As 2 is less than 7, we find the left pointer with the largest version stamp

that is less than or equal to 3. In this case, there are two left pointers – one with a

version stamp 1 and the other with a version stamp 2. As both are less than the target

version stamp 3, we follow the larger one. This leads us to the node containing 2, i.e., 2

is present in version stamp 3. Note that if we search for 2 in version stamp 4 instead, we

eventually end up with the null node, indicating that 2 is not present in version stamp 4.

The amortized time complexity for insert and delete using the node-copy method is

constant per operation step, where an operation step is defined as the traversal from one

node to another [15]. The worst-case time complexity for access using this method is also

constant per operation step. Moreover, the worst-case space complexity for insert and

delete using the node-copy method is constant per operation step.

3.3 PEDaLS

PEDaLS is a set of language and runtime extensions that

• Transparently store immutable and versioned linked data structures in distributed,

non-volatile, log-based storage;

• Expose data structure versions to developers for use in dependency tracking and

program analysis [74, 75, 76], history-aware programming [22, 13], and repair and

replay [14, 2, 77, 78, 79] in distributed settings; and

• Enables portability across heterogeneous deployments by requiring only a limited

“generic” functionality for generating and accessing storage-persistent logging sys-
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tems (e.g. [4, 5, 6, 59, 60]) in a distributed setting.

As a result, PEDaLS data structures are able to support versioning and immutability end-

to-end as distributed application and systems properties, which are desirable in highly

concurrent and failure-prone settings [1, 80].

To enable this, we develop a methodology for realizing PDSs using generic, distributed

log structures to facilitate integration with existing systems. A PEDaLS log must

• support append-only updates with ordered entries,

• be network addressable so that they can be co-located or remote relative to the

process accessing them, and

• have some mechanism for controlling log length (e.g., size or log entry/element

lifetime for automatic garbage collection).

In addition, log elements can be of any type and must be accessible via a comparable

index (e.g. a sequence number).

The API functions that PEDaLS expects the storage system to support (or compose

to support) are:

• createLog(log_name): create a log with the name log_name. Upon completion,

this call returns a value that indicates whether or not the log was successfully

created.

• put(log_name,elem): append the element elem to the log named log_name, as-

signing it the next available sequence number, and return the sequence number to

the caller (or an error value if the operation fails).

• get(log_name,seq_no): return the element at sequence number seq_no in the log

(or an error value if the operation fails or seq_no does not exist).
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• getLatestSeqNo(log_name): return the latest sequence number of the log named

log_name (or an error value if the operation fails or the log is empty).

Example systems that support these persistent storage functionalities directly include

Kafka [59], Facebook LogDevice [60], and CSPOT [3] among others. Most cloud object

stores also support versioning (e.g. Amazon S3 [4] and Google Cloud Storage [6]) and can

be integrated into PEDaLS with some additional bookkeeping (e.g. combining version

IDs with their timestamp to maintain order). To map PDSs to these distributed storage

systems, PEDaLS must overcome multiple challenges that we describe in the subsection

that follows.

Figure 3.2 provides a high-level overview of our approach, which models the PDS

node-copy method described previously, using persistent logs. Each node and original

field has a version stamp (vs) that denotes the version at which the node was created.

Each node also has a constant number of extra fields (1 is used/shown in the figure), which

hold version stamps that track the version at which original field updates occur in each

node. As in the original method, we assume that information (value) fields are constant

and that pointer fields (e.g. the next pointer of a linked list) can change across versions.

End-users interact with the data structure using library calls as shown in the top left

corner of Figure 3.2. Any modification to a data structure node is translated to low-level

API functions of the underlying log storage, possibly affecting multiple geographically

distributed logs. PEDaLS hides this translation from the end-user.

3.3.1 Challenges Using Logs to Implement Node-Copy

To map node-copy to logs, we must preserve the original time and space complexity

of the original, in-memory, algorithm. Although the AP list of the node-copy method

(cf. Section 3.2) can be modeled as a separate log for efficiency, doing so imposes undue
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Figure 3.2: High-level architecture of PEDaLS that uses node-copy to version linked
data structures. The top left shows user code using PEDaLS library operations. Each
node in this list (e.g. top right) has an integer value and next pointer as original
(developer-defined) fields. PEDaLS embeds versions/modifications within a single
data structure using “extra” fields in each node. Also, each node and field has a
version stamp representing their creation “time”. The PEDaLS AP represents the
access pointer and indexes the root node of each version for fast access. PEDaLS
persists the structure and its versions using 1+ non-volatile, append-only, distributed
logs.
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complexities. First, it is not clear how to represent both the information field and pointer

fields of a node using logs. Moreover, logs are append-only – pointer manipulations must

be expressed as appends (e.g. we cannot have an entry representing a pointer to a null

node and later update that entry to point to a different node).

This leads to a challenge that is even more intricate – if we represent an updated node

link by appending to a single log repeatedly, we potentially require a full log scan to find

an arbitrary link – defeating our goal of maintaining the original time complexity of

node-copy. To avoid this, we use multiple logs to represent nodes and their connections.

This, however, leads to a new challenge – although an append to a single log is atomic,

appends to multiple logs are not. Moreover, logs can be distributed across a network,

so a network failure could potentially leave an underlying data structure semantically

inconsistent.

To summarize, there are four primary challenges in implementing versioning via node-

copy using logs:

• C1 : Logs are append-only and thus we cannot perform any updates in place (as

we do for in-memory structures as described above – specifically, creating links on

the fly).

• C2 : A scan of a log with an arbitrary number of entries will violate the amortized

and the worst case time complexity of the operations guaranteed by the node-copy

method.

• C3 : Updates to a single log are atomic, however, PEDaLS must also guarantee

that multi-log updates are also atomic if used to manage versioning.

• C4 : Because the persistent backing store can be local to the function or on a host

across a network, we must consider the impact of failures in our algorithms and
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Table 3.1: Logs used by PEDaLS .
Log Field Description

DataLog
vs version stamp during node creation
val information field of the node
link name of link log for the node

LinkLog

vs version stamp during pointer creation

dseq
DataLog seq. no. where the information field of the
node being pointed to is stored

lseq
LinkLog seq. no. of the node being pointed to
where the first pointer among the contiguous
pointers of the required copy is stored

rem
number of extra pointers remaining after the
insertion of the current pointer

type type of pointer, e.g., left/right for binary search tree

APLog
vs version stamp of the data structure

dseq
DataLog seq. no. where the root node’s information
field is stored

lseq
LinkLog seq. no. of the root node where the first
pointer of the required copy is stored

analyses.

We next describe a design that allows us to efficiently implement node-copy using logs

while addressing these challenges.

3.3.2 Implementing Node-Copy Method using Logs

Our log mapping design, which avoids log scans (addressing C2 ), derives from two

primary observations. First, data structure updates modify node pointers and these

updates can be interleaved. We thus use a separate log per node to avoid scanning

entries from unrelated updates. Second, when we copy a node (when it runs out of

extra pointers), the information (e.g. value) does not change. We thus use a shared

log (across nodes) to hold node information. This combination allows versioned data

structure updates to occur independently, while maintaining the efficiency of find/search

operations, avoiding copy overhead, and conserving space.
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Specifically, PEDaLS represents a node in a linked data structure by a pair of log

sequence numbers: one for the shared information log – the DataLog, and another for the

node-specific pointer log – a LinkLog. When a pointer is added to a node, we append an

entry to the LinkLog of the node (addressing C1 ). The second sequence number is used

to distinguish node copies.

The efficiency of the in-memory node-copy method lies in the fact that every prede-

cessor node points to the required copy of the successor node. To traverse a copy of a

node we need only scan a fixed number of pointers. That is, we scan (p = o + e) point-

ers, where o is the number of original pointers and e is the number of extra pointers.

Therefore, to achieve similar time complexity, we must restrict (i.e. fix) the number of

entries in the LinkLog that we need to scan in order to traverse a node. This is relatively

straightforward to do: because copies of a node are not interleaved (i.e. a node is copied

only when the previous copy becomes full), we can use contiguous log entries of a LinkLog

to represent a particular copy.

Initially, it appears that we can use contiguous p LinkLog entries to store a copy of

a node and denote a copy using the first sequence number among these entries. That is,

for the n-th copy of a node (considering the original node to be the “first” copy), the p

entries starting from the sequence number ((n−1)∗p+1) store that copy. This is indeed

the case – in absence of network failures.

However, failures alter the situation. We consider two types of failures. (i) Type 1 : an

append to a log fails. (ii) Type 2 : an append to a log succeeds, but the acknowledgment

(which returns the sequence number where the entry was appended) is lost. In both cases

PEDaLS retries. However, note that Type 2 failures violate the boundary conditions

discussed above. Copies of a node do not strictly end at multiples of p anymore. This

implies that we must embed the information regarding where a copy ends within an entry

of the LinkLog.
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To account for failures, we record the number of extra pointers left after the insertion

of that entry in a dedicated field in the LinkLog. This way, once this field reads 0 while

scanning entries of a copy in the LinkLog, we know we have reached the end of the current

copy.

In general, we embed sufficient information in an entry of a log so that append to

that log becomes idempotent (this addresses C4 ). Note that in presence of failures the

number of entries we need to scan is bounded by the number of failures f (p = o+e+f).

Next, the node-copy method uses an AP list for constant time access to the root node

of a particular version of the data structure. Similarly, PEDaLS maintains an APLog

to store version root nodes for the data structure. PEDaLS writes the APLog last (the

order of write is DataLog>LinkLog(s)>APLog). Therefore, an append to the APLog

denotes the successful completion of a version.

That is, APLog acts as a checkpoint denoting the complete versions currently present

in the data structure. This design choice addresses C3 : if there are rogue entries in

LinkLogs/DataLog with version stamps vs that are greater than the latest version stamp

recorded in the APLog (this can be identified after a system crash or network failure), we

know that the last operation did not complete and can either trim these entries or retry

the operation (we log requested operations before we start execution for the latter).

Table 3.1 summarizes the different types of logs used by PEDaLS along with a de-

scription of the fields stored in each of their entries. Note that type field in LinkLog is

used for the sake of generalization; data structures that have only one type of entry (e.g.

singly linked list) ignore this field.

Most log storage systems have some form of built-in retention policy which prevents

logs from growing without bounds. For example, Kafka [59] provides retention policies

based both on time (messages older than a configured time are deleted) and on space (once

a log reaches a configured space limit messages are deleted from the end). CSPOT [3]
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provides rollover where once a log reaches a specified number of entries, newer entries start

overwriting the older ones. Therefore, to ensure all the required versions are preserved

in their entirety, an end-user has to specify the number of versions K he/she wants to

retain. PEDaLS then allocates enough log space for each type of log based on the value of

K. Currently, PEDaLS refuses update operations once it reaches K versions. This sort

of policy where service is refused based on the unavailability of space is not uncommon

(e.g. Redis [81]). Note that PEDaLS continues to service read operations even after it

reaches K versions.

3.3.3 Node-Copy using Logs: Step by Step Example

Figure 3.3 shows the contents of the different logs used by PEDaLS across multiple

operations on a PEDaLS binary search tree (BST). As in Figure 3.1, we start with the

empty BST and assume the number of extra pointers is 1. For the simplicity of exposition,

we name the LinkLog of a node as link val, where val is the node value (information).

To insert(7), we append the entry (1,7,link 7) to the DataLog which returns the

sequence number 1. This sequence number will be used later to record the root in the

APLog. We append two entries in link 7, one for the BST left pointer and one for the

right pointer. Note that for both of these entries, the rem field is 1, denoting the number

of extra pointers after the insertion. As both of these pointers point to the null node,

we use an invalid sequence number (0) for dseq and lseq. The first append to LinkLog

returns the sequence number 1. Therefore, we conclude the insertion of 7 by recording

the tuple (1,1,1) in the APLog.

Operation insert(2) follows a similar approach with two added steps. First, we find

the current version of the data structure. To do this, we read the tail of the APLog. This

reveals that the latest version is 1 (this is the first field of the last entry in the APLog
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seq vs val link

1 1 7 link_7

DataLog

vs dseq lseq

1 1 1

APLog

seq vs dseq lseq rem type

1 1 0 0 1 L

2 1 0 0 1 R

LinkLog: link_7

i. insert(7)

seq vs val link

1 1 7 link_7

DataLog

vs dseq lseq

1 1 1

APLog

seq vs dseq lseq rem type

1 1 0 0 1 L

2 1 0 0 1 R

LinkLog: link_7

ii. insert(2)

2 2 2 link_2

2 1 1

seq vs dseq lseq rem type

1 2 0 0 1 L

2 2 0 0 1 R

LinkLog: link_2

3 2 2 1 0 L

seq vs val link

1 1 7 link_7

DataLog

vs dseq lseq

1 1 1

APLog

seq vs dseq lseq rem type

1 1 0 0 1 L

2 1 0 0 1 R

LinkLog: link_7

iii. insert(5)

2 2 2 link_2

2 1 1

seq vs dseq lseq rem type

1 2 0 0 1 L

2 2 0 0 1 R

LinkLog: link_2

3 2 2 1 0 L

seq vs dseq lseq rem type

1 3 0 0 1 L

2 3 0 0 1 R

LinkLog: link_5

3 3 3 1 0 R

3 3 5 link_5

3 1 1

seq vs val link

1 1 7 link_7

DataLog

vs dseq lseq

1 1 1

APLog

seq vs dseq lseq rem type

1 1 0 0 1 L

2 1 0 0 1 R

LinkLog: link_7

iv. delete(2)

2 2 2 link_2

2 1 1

seq vs dseq lseq rem type

1 2 0 0 1 L

2 2 0 0 1 R

LinkLog: link_2

3 2 2 1 0 L

seq vs dseq lseq rem type

1 3 0 0 1 L

2 3 0 0 1 R

LinkLog: link_5

3 3 3 1 0 R

3 3 5 link_5

3 1 1

4 1 0 0 1 R

5 4 3 1 1 L

4 1 4

seq

1

seq

1

2

seq

1

2

3

seq

1

2

3

4

Figure 3.3: A versioned binary search tree (BST) using node-copy with one extra
pointer implemented on logs (this mirrors the in-memory tree in Figure 3.1). 0 is
assumed to be an invalid sequence number and hence is used to denote null nodes.
DataLog sequence numbers are color-coded to represent the links. LinkLog sequence
numbers are color-coded only if the entry denotes the start of a root node.
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in the top left corner of Figure 3.3), so the current working version is 2. Second, we add

a pointer from the node containing 7 to the node containing 2. As the data for the node

containing 2 was inserted at sequence number 2 of the DataLog and the first pointer of

the node was inserted at sequence number 1 of its LinkLog, dseq and lseq values of this

pointer are 2 and 1 respectively.

After recording this pointer, we decrement the number of extra pointers (recorded as

0 in the rem field). The value to be decremented comes from the tail of link 7, which is

1 at this point. Note that the APLog entry for version 2 is identical to that of version 1,

as the root node does not change. Execution of insert(5) follows similar steps.

Execution of delete(2) involves some additional steps, as no more extra pointers are

left in the node containing 7 but we need to add 5 to the left of 7. Therefore, we make

a copy of the node containing 7. Since the right pointer does not change, we copy over

only the latest right pointer. This is done in sequence number 4 of link 7 (bottom right

corner of Figure 3.3). Next, we install the new left pointer with dseq and lseq values set

to 3 (5 was inserted in sequence number 3 of DataLog) and 1 (node containing 2 pointed

to 5 using lseq value of 1), respectively. As the root node is copied in this case, we record

the node in the APLog by appending (4, 1, 4).

Note that for update operations, the crux of the algorithm is in node connectivity.

We present the AddNode routine for BST in Algorithm 1 (the routine for linked list is

similar and simpler as there is only one original link and hence no link must be copied

during node copy). The routine adds a child node (cNode) to the desired parent node

(pNode). As successive predecessors may run out of extra pointers to accommodate this

addition (cf. Section 3.2), the full path from the root of the tree to the desired parent

node is supplied to the routine. We assume the node representation in the algorithm is

a structure containing dseq, lseq, and the link fields (cf. Table 3.1). The last entry in a

log L is represented by tail(L), the entry at sequence number i in log L is represented by
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L[i], and a field f in an entry e of a log is e.f . Note that the versions of a data structure

are strictly ordered and a new version is obtained by modifying the previous version.

Therefore, we need to know the previous version in its entirety before we can generate

the next version of a data structure. Thus, PEDaLS does not allow concurrent updates.

Access operations follow a similar pattern to that of node-copy. As an example,

we consider the operation find(2, 3) – find 2 in version stamp 3, after executing the

above operations (i.e. BST has the representation shown in the bottom right corner of

Figure 3.3). We start by first locating the root node for version 3 from the APLog. In

this case, the root node for version 3 is recorded in the entry at sequence number 3 in

the APLog. From this entry, we know that the root node’s data is stored in sequence

number 1 (dseq = 1) of the DataLog.

The entry at sequence number 1 of DataLog provides us with the name of the LinkLog.

As lseq = 1 in the APLog entry, we start scanning link 7 from sequence number 1.

Scanning the top three entries is enough to fully traverse the current copy of the node

(as the third entry has rem = 0, denoting the end of the current copy). This reveals two

left pointers, one with version stamp 1 and the other with version stamp 2. As 1 < 2, we

follow the latter one, i.e., the link at sequence number 3 of link 7. This leads to the node

whose information is stored in the entry at sequence number 2 of the DataLog. Reading

this entry reveals the value stored here is indeed 2, completing the access operation.

3.4 Evaluation

In this section, we empirically evaluate the performance of PEDaLS. We implement

PEDaLS over CSPOT [3], an open-source, distributed runtime system that runs on edge,

cloud, and sensor systems, and uses memory-mapped files for its log abstraction. We use

this implementation of PEDaLS to run microbenchmarks in Section 3.4.2. To demon-
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Algorithm 1 Node Copy: AddNode (BST)
Require: childNode cNode; stack of nodes leading from root of BST to parent of cNode, S;

number of links per node linksPerNode; working version stamp vs
Ensure: cNode is added to its parent
1: while S ̸= ϕ do
2: pNode← S.pop()
3: lastLink ← tail(pNode.link)
4: newLink ← {}
5: newLink.vs← vs
6: newLink.dseq ← cNode.dseq
7: newLink.lseq ← cNode.lseq
8: childType← getType(pNode.dseq, cNode.dseq) ▷ getType returns type of link i.e. left

or right
9: if lastLink.rem > 0 then ▷ node not full
10: newLink.rem← lastLink.rem− 1
11: pNode.link.append(newLink)
12: break
13: else
14: leftLink ← {}
15: rightLink ← {}
16: i = pNode.leq
17: iteratorLink ← pNode.link[i]
18: while iteratorLink ̸= ϕ & iteratorLink.rem ≥ 0 do
19: if iteratorLink.type = L then ▷ iterator is a left pointer
20: leftLink ← iteratorLink
21: else
22: rightLink ← iteratorLink
23: end if
24: i← i+ 1
25: iteratorLink ← pNode.link[i]
26: end while
27: if childType = L then ▷ copy right child
28: linkLogSeq ← pNode.link.append(rightLink)
29: else
30: linkLogSeq ← pNode.link.append(leftLink)
31: end if
32: newLink.rem← linksPerNode− 2
33: pNode.link.append(newLink)
34: end if
35: cNode.dseq ← pNode.dseq
36: cNode.lseq ← linkLogSeq
37: cNode.link ← pNode.link
38: end while
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strate PEDaLS is agnostic of the underlying log storage system, we implement it using

only memory-mapped files as well without the extra features provided by CSPOT. We

use this implementation of PEDaLS for end-to-end applications in Section 3.4.5. We

evaluate linked lists and binary search trees (BST) as representative linked data struc-

tures since both are used by developers as building blocks for more complex structures

(e.g. stacks, queues, ordered collections, etc.). We present an example application where

linked lists are used as queues in Section 3.4.5. Unless otherwise specified, we perform our

experiments using a virtual machine instance in a private cloud running Eucalyptus [82].

The instance has two 2GHz CPUs and 2GB of memory.

3.4.1 Experimental Methodology

To evaluate PEDaLS, we have devised a set of update (insert/delete) workloads for

linked lists and BSTs. We execute insert for linked lists at the end of the list. We present

average workload time, which includes scan/find time (for both linked list and BST). We

construct 100 different workloads (combinations of insert and delete operations), each

with 1000 operations.

Our workload generator uses a uniform probability distribution to select operations.

For insertion, the generator randomly chooses an integer between 1 to 100 with uniform

distribution. If the integer is already present, it selects the next integer not already

present in the data structure. For deletion, the generator randomly chooses an integer

already present in the data structure with uniform distribution. This way the generator

guarantees all operations will execute to completion. 1 Unless otherwise specified, our

results present the average across 100 workloads.

In addition to microbenchmarks, we empirically evaluate the overhead associated

1Our workloads are available (for reproducibility purposes) as part of our open-source release of
PEDaLS at https://github.com/MAYHEM-Lab/PEDaLS.
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with introducing versioning to in-memory ephemeral data structures and subsequent

integration of in-memory logs to represent versioning. Note that only this experiment is

conducted completely in memory.

Next, we present a sample application of an image server using PEDaLS. The appli-

cation (presented in Section 3.4.4) implements a simple clone of Amazon Simple Storage

Service (S3) for storing and serving images using PEDaLS.

Moreover, we describe a number of end-to-end applications that leverages the ef-

ficiency of PEDaLS in answering complex temporal queries in Section 3.4.5 including

comparison with popular data storage systems. To demonstrate that PEDaLS is agnos-

tic of the underlying log storage as long as it provides functionalities to create, append to,

and read from logs, we use memory-mapped files as the logs for this set of experiments.

Finally, we present a probabilistic study on bounding log sizes to ensure a user pro-

vided minimum number of versions can be fully recorded by PEDaLS in Section 3.4.6.

3.4.2 Microbenchmarks

To the best of our knowledge, no other system provides general-purpose versioning and

storage persistence of program data structures. Moreover, we want to explore the cost of

providing versioning and storage support to systems relying on in-memory ephemeral data

structures. Thus, we compare PEDaLS data structures against in-memory ephemeral

and in-memory persistent data structures (denoted as simply ephemeral and persistent

in the results). We use memory-mapped files as a backing store for the in-memory data

structures.

To evaluate the trade-off in space and time using extra pointers, we consider 1, 5,

and 10 extra pointers for PDSs (both in-memory and PEDaLS). We refer to the PEDaLS

implementation using n number of extra pointers as PEDaLS-n. Similarly, we refer to the
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in-memory persistent implementation using n number of extra pointers as persistent-n.

Unless otherwise specified, we co-locate the logs and workload for this study.

Space Analysis

We first evaluate PEDaLS space usage. Figures 3.4a and 3.4b show the average space

in bytes used by linked list and BST respectively to execute 1 to 1000 operations. The

results show that PEDaLS space requirements are linear with respect to the number

of operations for versioned data structures (persistent-n and PEDaLS-n). The space

requirements for ephemeral data structures are linear in the number of nodes present at

any instant of time (due to scaling it appears to be constant in Figure 3.4).

We expect that when the number of extra pointers is small, the node-copy method

will copy more nodes (and consume more space). This is evident in the results. The

average slope of the lines for PEDaLS-1 BST, PEDaLS-5 BST, and PEDaLS-10 BST

are respectively 352, 300, and 296 (Figure 3.4b). This implies that, on average, each

update operation in PEDaLS-1 BST requires 352 bytes, whereas each update operation

in PEDaLS-10 BST requires 296 bytes.

Note that although the difference in average slope between PEDaLS-10 BST and

PEDaLS-1 BST is more than 50, this difference reduces to 4 when considering PEDaLS-5

BST and PEDaLS-10 BST. That is, we only reduce space consumption via extra pointers

up to a point. For linked list PEDaLS-10 saves roughly one byte of space per operation

as compared to PEDaLS-5. When compared to persistent-n BSTs, PEDaLS-n BSTs

require 1.50x, 1.75x, and 1.80x more space for n = 1, 5, and 10 respectively. That is, the

space overhead to map the in-memory node-copy method to logs is quite low.

Similar observations for linked list from Figure 3.4a reveal space overhead is as low

as 2.00x. Ephemeral data structures can free the corresponding memory once a node

is deleted. Moreover, they do not have to perform bookkeeping related to maintaining
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Figure 3.4: Average space usage.
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versioning information. Therefore, we expect their space requirement to be lower. Un-

surprisingly, the space overhead to maintain PEDaLS-10 BST as opposed to ephemeral

BST is 178x. The same overhead is 202x for linked list.

Time Analysis

We next consider the additional time needed for versioning and disk persistence.

Figure 3.5 shows the average time taken by the different data structures to execute a

number of operations ranging from 1 to 1000. The time requirements (shown on the

y-axis) are linear with respect to the number of operations (shown on the x-axis).

For ephemeral linked list, the average time taken to execute an update operation is

3.30 milliseconds. This value is 4.11 milliseconds, 4.47 milliseconds, and 4.51 milliseconds

for PEDaLS-1 linked list, PEDaLS-5 linked list, and PEDaLS-10 linked list respectively.

That is, even the slowest PEDaLS-n linked list implementation introduces only 1.35x

overhead. The persistent-n implementations are the slowest, requiring 28.85 milliseconds,

18.28 milliseconds, and 18.18 milliseconds for n = 1, 5, and 10 respectively.

These results are surprising. We expect the performance order would be ephemeral

>persistent-n >PEDaLS-n. However, in the case of linked list the experiments show

PEDaLS-n has a better performance than persistent-n. Moreover, the small overhead in

PEDaLS-n when compared to ephemeral, shows that it is possible to use a log-based ap-

proach to implement storage-persistent PDS linked list without a significant performance

penalty, relative to the standard, mutable, and un-versioned pointer-based implementa-

tions.

These experiments indicate that the performance of the memory allocator plays a key

role in the performance of versioned persistence. The underlying memory allocator that

CSPOT (runtime system over which PEDaLS is currently implemented) uses is trivial:

it simply appends to a fixed-size, pre-allocated, circular log buffer that is mapped to a
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Figure 3.5: Average execution time.
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Linux file. Further, there is no deallocation – the log “wraps” to automatically garbage

collect log entries [3]. For the ephemeral and persistent implementations, the memory

allocator uses a first-fit dynamic allocation algorithm with eager coalescing of adjacent

free blocks on deallocation. Thus, the implementations that use a dynamic allocator

cause it to “chase” an internal free list of blocks from time to time during allocation and

coalescing.

Additionally, both allocators flush a modified memory region to the backing store

(i.e. a Linux file) to prevent corruption in case of a system crash. The dynamic allocator

versions (ephemeral and persistent) use the Linux msync() system call to write back

modified mapped memory. For CentOS 7, this call causes either one or two (due to

alignment) 8 kilobyte pages to be flushed to the backing file. Moreover, it must flush the

modified memory to the backing store (i.e. a Linux file) each time the data changes in

an allocated buffer or in the internal memory allocated data structures.

A cursory examination of the CSPOT source code 2 shows that it unmaps each storage

log after each append operation, causing dirty pages to be flushed back. Thus it is likely

that ephemeral performance is dominated by backing-store synchronization traffic. As

a result, the additional computational overhead associated with versioning using the

node-copy method is negligible.

Figure 3.5b shows the average time taken by the different implementations of BST

to perform the workloads. The time requirements are again linear with respect to the

number of operations. Ephemeral BST requires 3.82 milliseconds to execute an operation.

PEDaLS-n BSTs require slightly lower – 2.88 milliseconds, 3.04 milliseconds, and 3.24

milliseconds for n = 1, 5, and 10 respectively.

The additional complexities inherent in a PDS implementation of BST put additional

performance pressure on the dynamic memory allocator. This is reflected in the per-

2https://github.com/MAYHEM-Lab/cspot
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operation times for persistent-n, which are 106.71 milliseconds, 88.48 milliseconds, and

81.26 milliseconds for n = 1, 5, and 10 respectively. That is, persistent-n can have an

overhead of as much as 28x when compared to ephemeral.

Search Performance

Note that update operations (insert/delete) require traversals of existing nodes (e.g.

to find leaf node to which a new node is inserted). We next break out the time to

perform access (find/search) operations alone, i.e. data structure traversal. We consider

different access operations for the two data structures: (i) finding the last node in linked

list (Figure 3.6a) and (ii) finding the maximum value in BST (Figure 3.6b). Figure 3.6

shows traversal time as a function of the number of nodes.

Note that although many workloads resulted in having > 10 nodes in linked list, We

do not show the complete results for the sake of visual comparability (e.g. no workload

resulted in a depth of > 10 BST nodes). Because we search from the latest version, we

simply follow the last link (i.e. at most 2 links for BST) of each node. We find that

varying the number of extra pointers for this experiment has no significant performance

difference.

Figure 3.6 shows that the access time is linear in the number of nodes for PEDaLS.

On average, PEDaLS requires 0.23 milliseconds and PEDaLS BST requires 0.29 millisec-

onds. Both the persistent and ephemeral data structures are three orders of magnitude

faster than PEDaLS for access, with no significant difference between each other. This

again emphasizes the importance of the performance of the memory allocator. For up-

dates, PEDaLS is faster than persistent for both linked list and BST and is on par with

ephemeral.
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Figure 3.6: Access (node traversal) time vs number of nodes traversed.
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3.4.3 Versioning Overhead

In this experiment, we investigate the overhead associated with making in-memory

ephemeral data structures versioned, i.e. in-memory persistent. We also investigate the

overhead associated with implementing versioned data structures using in-memory logs

(i.e., same as PEDaLS but without storage persistence), which we term as log-persistent.

Note that in this experiment we are concerned exclusively with the overhead in these two

cases: (i) making data structures versioned (i.e. persistent as described in [15]) and (ii)

making data structures persistent using logs as described in Section 3.3.2. Hence we keep

the storage (in this case, main memory) the same for all three types of data structures:

ephemeral, persistent, and log-persistent. Moreover, we design the experiment to retain

how a storage persistent log implementation would perform – by making an extra copy

from a data structure node to the in-memory log. While the previous set of experiments

in Section 3.4.2 use memory-mapped files for storage of all types of data structures, the

experiments in this section store all types of data structures solely in memory. Our

results show that log-persistent algorithms preserve the same time and space complexity

as persistent algorithms.

We choose linked list and binary search tree (bst) as representative linked data struc-

tures for this experiment since both are used by developers as building blocks for more

complex structures, e.g., stacks, queues, ordered collections, etc. Note that the original

work on persistent data structures [15] provides space/time complexity guarantees only

for linked data structures having constant in-degree. Hence, although a similar mecha-

nism can be employed for other data structures, a similar space/time complexity is not

guaranteed. We use CityPulse [83] temperature dataset containing 12579 data points

collected from the city of Aarhus in Denmark between February-June 2014 for this ex-

periment. In case of bst, we use the UNIX timestamp at the time of the collection of
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Figure 3.7: Average space and time requirement for bst and linked list. Both the
space and the time requirements are linear with respect to the number of operations
for the two data structures.
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data point as the key and the temperature as the value, whereas linked list stores both

as the value.

We present the space requirements for storing these data points in Figure 3.7a and

Figure 3.7b. Note that this space is for the storage of the data structure, i.e. any auxiliary

storage used (and subsequently freed) for intermediate computation is not included.

As evident from the figures, the space complexity is linear in number of operations

for all three types of data structures – and differ only in the value of the constant.

This signifies that log-persistent data structures are able to maintain a similar space

complexity as persistent data structures. As expected, log-persistent and persistent data

structures require more space than ephemeral data structures due to their retainment

of information regarding past versions. In case of bst, persistent and log-persistent data

structures require 6.55x and 4.60x space respectively of that of ephemeral data structure.

In case of linked list, this overhead is 3.25x for both persistent and log-persistent data

structures.

Interestingly, log-persistent bst requires less space than persistent bst. This is because

copying a node in persistent data structures involves copying both the data field and

pointer fields [15]. On the other hand, copying a node in log-persistent data structures

(as in PEDaLS) involves copying only the pointer fields. In the case of linked list, both

the persistent and log-persistent versions require the same amount of space. This is

because in this experiment we are only inserting values in our linked list at the head,

which never triggers copying of a node, thus keeping the storage space the same for both

persistent and log-persistent data structures.

We present the time requirements of storing the temperature data in Figure 3.7c and

Figure 3.7d. We see that the time complexity is also linear in the number of operations,

signifying that log-persistent data structures are able to maintain a similar time com-

plexity as their in-memory counterparts (persistent data structures). Log-persistent and
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Figure 3.8: Average upload and download time per image for the Amazon S3 and
PEDaLS image servers.

persistent data structures require more time than ephemeral data structures due to their

relatively complex traversal rules. In the case of bst, persistent and log-persistent data

structures require 5.17x and 13.44x times that of ephemeral data structure, respectively.

In the case of linked list, these overheads are 1.42x and 9.38x for persistent and log-

persistent data structures, respectively. The greater time required by log-persistent data

structures is expected, as it involves additional non-trivial steps in its operations, such

as complex methods to find boundaries among copies of nodes instead of having direct

pointers to those copies.

3.4.4 Sample Application: Image Server

We evaluate the use of PEDaLS for a sample application commonly found in IoT

settings, e.g. [84]. The program implements an image server, which sensors and/or users

can use to upload and download images for analysis.

We compare two different implementations of this image server. For the first imple-

mentation, we use an Amazon S3 bucket located in the us-west-2 region as the server.
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The client process is located in a private cloud in UCSB and interacts with the bucket

using the boto3 library (the instance has the same specifications as the ones used so far –

2GHz CPU, 2GB RAM). For the second implementation, we use a t3.small (2GHz CPU,

2GB RAM) EC2 instance, also located in the us-west-2 region. We employ a PEDaLS

-1 BST in this instance that acts as an image indexer. The average RTT between the

client instance and the EC2 instance that we observe is approximately 30 milliseconds.

Note that our goal is not to outperform the S3 image server, rather explore the utility of

PEDaLS in an IoT setting.

For this experiment, we first upload 500 images (256 KB each) to the server, followed

by the retrieval of the images from the server. Surprisingly, PEDaLS based server out-

performs s3 based server in both upload time and download time. Figure 3.8 shows the

average upload and download times per image for the two servers. The average upload

time is 153 milliseconds for the S3 based server, whereas this value is 144 milliseconds for

PEDaLS. That is, the latter is 1.1x faster. The average download time is 146 milliseconds

for S3 based server, whereas this value is 83 milliseconds for PEDaLS based server. In

this case, PEDaLS is 1.8x faster.

3.4.5 End-to-End Applications: Comparison with Popular Stor-

age Systems

In this section, we evaluate the performance of PEDaLS for three different applica-

tions: (i) banking queue monitoring, (ii) room occupancy detection, and (iii) livestock

tracking. We compare the performance of PEDaLS with a relational database (Post-

greSQL) and a NoSQL database (MongoDB) for each of the above-mentioned applica-

tions. We summarize these results in Table 3.2 and provide a visual representation of the

results in Figure 3.9.
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Table 3.2: The mean update and query execution time for different end-to-end appli-
cations. The standard deviation is shown in parentheses. The best (fastest) execution
time for each type of operation for each application is presented in bold. PEDaLS
outperforms the other two storage systems in regard to query execution time for all
applications.

Banking Queue Room Occupancy Livestock Tracking
update in ms query in ms update in ms query in ms update in ms query in ms

PostgreSQL 0.335 (0.026) 8.734 (0.045) 0.354 (0.039) 0.460 (0.003) 0.342 (0.022) 5.186 (0.141)
MongoDB 0.357 (0.006) 45.184 (0.295) 0.359 (0.007) 2.255 (0.019) 0.355 (0.007) 11.687 (0.222)
PEDaLS 0.092 (0.002) 1.078 (0.022) 0.468 (0.017) 0.124 (0.003) 0.553 (0.014) 2.333 (0.083)

Our results show that PEDaLS outperforms the other two storage systems when it

comes to answering complex temporal queries for all applications. Although PEDaLS

is outperformed by the other two storage systems for update operations in two appli-

cations, the speedup provided by PEDaLS in executing temporal queries far outweighs

the slowdown in updates. Moreover, PEDaLS provides programmatic access to versioned

data, while other systems do not. In essence, PEDaLS makes a tradeoff between update

performance and version accessibility in the favor of the latter.

Banking Queue Monitoring

In mathematics, queuing theory involves the analysis of several related events such as

arriving at a queue, the wait time at a queue, and departure from the queue. The models

created through such analysis can be used to make decisions regarding increasing servers,

optimizing queue length, and approximating heavy and light traffic [85]. One practical

example of the application of these mathematical concepts is to determine the efficiency

of a system as indicated by the average wait time of a request/person in a queue. Data

related to physical queues can also help in providing location information for individuals

(e.g. was a person in the queue at a certain time) and describing individual behavior

(e.g. when does a person generally show up for a service).

In [85], authors provide a queue dataset for three banks in Ogun State of Nigeria
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(a) Banking queue.
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(b) Room occupancy.
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(c) Livestock tracking.

Figure 3.9: The mean update and query execution time for different end-to-end appli-
cations as presented in Table 3.2. As the execution time varies in order of magnitude
among the different applications, we present the execution time in log scale for a better
and uniform visualization.
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SELECT userid 
FROM bankingqueue 
WHERE ts <= X 
AND op = 1 
AND userid NOT IN ( 
SELECT userid 
FROM bankingqueue 
WHERE ts <= X 
AND op = 0)

db.bankingqueue.find({
'ts': {'$lte': X},
'op': 1,
'userid': {
'$nin': db.bankingqueue.distinct(
'userid',
{'ts': {'$lte': X}, 'op': 0}
)}},
{ 'userid': 1, '_id': 0 })

Figure 3.10: SQL (left) and NoSQL (right) queries to find the set of users in the
queue at time X. Here ts stands for timestamp and op stands for enqueue/dequeue
operation. Note that distinct is not necessary for the NoSQL query to get the correct
result as a user is issued a unique ID during each entrance to the queue. However,
it is faster than the alternative which involves converting the subquery result into an
array and subsequently mapping it to a function that picks out each user ID in the
array from the JSON object enclosing it. The distinct function extracts the value
from the JSON object automatically and presents an array readily usable with the
not in (nin) operator.

collected over four weeks for each bank. The dataset contains the wall-clock time when a

user enters the bank and the time in minutes for the user to reach the front of the queue.

The dataset assigns a monotonically increasing integer as a user ID to every user entering

the bank each day (starting with 1) but does not contain the information whether a user

ID x of one day corresponds to the same person having user ID y on some other day.

Hence, for the purpose of this experiment, we assume every user is assigned a new ID upon

each entry. We select the data for one bank and augment it by calculating the timestamp

of departure by adding the wait time in queue to the timestamp of arrival. Thus each

data point contains three information: a user id, a timestamp, and an operation (enqueue

or dequeue). This information is recorded in a storage system every time a user enters

and leaves the queue. The final dataset contains 35534 data points.

We assume we want to answer the query Q1: “which users are present in the queue at

time X”? This is an example of a temporal query that can be efficiently answered using

a versioned queue. Although the storage of the data is simple for both of the databases
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under consideration (i.e., a single insertion for both PostgreSQL and MongoDB) and

PEDaLS queue (i.e., a single enqueue or dequeue operation with the timestamp as the

version and user ID as the value), answering Q1 requires complex queries on part of the

databases as shown in Figure 3.10. On the other hand, PEDaLS only requires a versioned

traversal of the queue to answer Q1.

Our results show that the average update times for PostgreSQL, MongoDB, and

PEDaLS are 0.335ms, 0.357ms, and 0.092ms respectively. That is, PEDaLS is 3.64x as

fast as PostgreSQL and 3.88x as fast as MongoDB in regard to updates for the appli-

cation under consideration. Our results further reveal that the average query time for

PostgreSQL, MongoDB, and PEDaLS are 8.734ms, 45.184ms, and 1.078ms respectively.

That is, PEDaLS is 8.10x as fast as PostgreSQL and 41.91x as fast as MongoDB in regard

to queries for the application under consideration.

Several works in the literature suggest that NoSQL databases can outperform SQL

databases in the case of a high volume of unstructured data [86, 87]. SQL databases

need complex design and multiple writes at different tables for unstructured data, mak-

ing the updates slower. On a similar note, NoSQL databases can store denormalized

data resulting in many cases in a simple single query to retrieve relevant information.

However, the data under consideration is structured and the query, although complex,

does not involve reading from multiple tables. Hence we do not observe the advantages

generally associated with NoSQL databases over SQL databases for the application un-

der consideration. This is supported by the similar update time for both PostgreSQL

and MongoDB. However, the query time for MongoDB is higher than PostgreSQL. This

is expected, as the MongoDB aggregation pipeline [88] (i.e., the pipeline responsible for

processing documents in stages such as matching, grouping, projection, etc.) is still rel-

atively immature and thus is not as well performant as the query engine of PostgreSQL.

In fact, the aggregation pipeline is not as expressive as SQL queries either, which is ap-
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parent from the complex query of Figure 3.10. PEDaLS on the other hand is the fastest

for both update and query. During update, PEDaLS must either add a node to the end

of the queue or delete a node from the head of the queue. As the queue records both

the head and the tail, both of the above operations can be performed efficiently. More-

over, none of these operations result in copying of a node, as a node can have at most

one child which can be deleted at most once. As a result, the update performance of

PEDaLS is better than both PostgreSQL and MongoDB. To answer Q1, PEDaLS must

perform versioned traversal of the queue, which is inherently fast due to the node-copy

method. In contrast, both PostgreSQL and MongoDB has to perform complex queries

(cf. Figure 3.10). Hence PEDaLS outperforms the others in regard to read as well.

Room Occupancy Detection

Indoor positioning systems are used to locate, track, and identify individuals/objects

in indoor settings where technologies like GPS cannot perform with desired precision. A

common application of such a system is to detect the occupancy of a room at different

times of the day. Apart from eliciting information pertinent to security (e.g., was user

x present in room y during some event z), it can also provide historical data to aid in

scheduling of events depending on the occupancy of different rooms throughout different

times of the day.

SmartBench [89] is a benchmark focusing on queries resulting from (near) real-time

applications and longer-term analysis of IoT data. For this experiment, we use the data

generation tool of SmartBench to generate room occupancy dataset based on seed data

collected from a real system. The generated dataset contains periodic location data

including the room in which a user is. However, the data does not contain the explicit

timestamp at which a user leaves a room. Hence, we augment the data with information

that denote a user has left the old room by inserting a new record with a timestamp
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SELECT room 
FROM roomoccupancy 
WHERE ts <= X AND 
userid = uid 
ORDER BY ts  
DESC LIMIT 1

db.roomoccupancy.find(
{'ts': { '$lte': X }, 'userid': uid },
{ 'room': 1, '_id': 0 }
).sort('ts', -1).limit(1)

Figure 3.11: SQL (left) and NoSQL (right) queries to find the room at which user
with ID uid is at time X. Here ts stands for timestamp.

that falls between the timestamp when the user was last seen in the old room and the

timestamp when the user was first seen in the new room. We assign an invalid room

number for such records, which essentially denotes the user is on its way from the old

room to the new room. The preprocessed dataset contains 4002 timestamped data points

with information regarding the location (i.e., room numbers) of users at different times

of the day.

The storage of this data for databases involves the insertion of a single row containing

the timestamp, user ID, and the location of the user at that timestamp. For PEDaLS,

we maintain a bst with user IDs as the keys and room numbers as the values. We treat

the timestamp as the version stamp for the bst. A record in the dataset containing an

invalid room number corresponds to a deletion from the bst and an insertion into the

bst otherwise. We assume we want to answer the query Q2: “what is the location of

user with ID uid at time X”? PEDaLS bst performs a simple versioned search with X

as the timestamp and uid as the key to answer this query. However, PostgreSQL and

MongoDB require complex queries as shown in Figure 3.11.

Our results show that the average query time for PostgreSQL, MongoDB, and PED-

aLS are 0.460ms, 2.255ms, and 0.124ms respectively. That is, PEDaLS is 3.71x as fast as

PostgreSQL and 18.19x as fast as MongoDB in regard to queries for the application under

consideration. As in the banking queue application of Section 3.4.5, MongoDB does not

demonstrate any advantage over PostgreSQL for structured data of the application under
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consideration. PEDaLS must perform a versioned search of a key in the bst to answer

Q2. This is relatively simpler than the complex queries required by PostgreSQL and

MongoDB as presented in Figure 3.11. Hence PEDaLS outperforms both PostgreSQL

and MongoDB in regard to read for this application as well. Our results also indicate

that both PostgreSQL (0.354ms) and MongoDB (0.359ms) perform better than PEDaLS

(0.468ms) for update operations (approximately 1.32x times). This is expected, as the

databases need only to insert a single entry to record an update, whereas PEDaLS has to

search the tree for the appropriate position of a new node to be inserted or an old node

to be deleted. In contrast, PEDaLS queue for Section 3.4.5 did not require an extra read

per update operation to find the existence and/or position of a data structure node. This

explains the superior performance of PEDaLS update in the banking queue monitoring

application.

Livestock Tracking

Livestock tracking is a popular application of IoT in smart farms to study animal

behavior and animal-ecosystem interaction [90, 91]. In a livestock tracking system, each

animal is fitted with a tracking device (e.g., a GPS collar) that records the location

information at a pre-defined regular interval. This information can then be used to

analyze different behavior of the cattle, such as grazing patterns. As the tracking and

data processing devices are typically battery-powered in these deployments, we must

minimize the number of times a location is recorded/communicated over the network;

without losing valuable information.

In [90], the authors provide a dataset containing daytime (approx. 8 hours per day)

grazing locations of cattle collected from 6 Alpine farms in the summer of 2011. 2 to 4

cows from each of these farms (in total 15) were equipped with a GPS collar and a logger

box. Although data were collected at 20 seconds interval in this work, an analysis of the
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Table 3.3: Average distance between the locations at the start and the end of an
interval for an individual cow.

interval (seconds) distance (meters)
20 1.62
60 4.31
100 6.81
140 9.22
180 11.56

dataset shows that even a larger interval of 3 minutes shows an average movement (i.e.

distance between the locations at the beginning and at the end of the interval) of 12

meters for a cow (cf. Table 3.3). Depending on the use case, this might be an acceptable

distance.

We consider a scenario where a new patch of land B is opened up for grazing beside

an old patch of land A. We want to know which are the cows that prefer the new patch of

land B, along with at what time of the day. Specifically, we want to answer the query Q3:

“which cows are present in B at time X”? This is an example of a temporal query that

can be efficiently answered using a versioned bst. As the dataset in [90] contains data for

at most 4 cows from any one farm, we use synthetic data generated using random walk

for 100 cows. The one-dimensional random walk starts from 0. Whenever the random

variable has a value >= 0, we assume the location is in land B, otherwise land A. As

in [90], we assume each cow is equipped with a GPS collar.

From Table 3.3, we see that the point-to-point distance covered by a cow on average

is approximately only 12 meters for a 3 minute interval. Hence, for energy-efficiency we

assume the GPS collar collects location information at 3 minutes (180 seconds) interval

instead of 20 seconds over the duration of 8 hours (8 ∗ 60/3 = 160 data points for each

cow). We further assume the timestamped location data is sent to a nearby edge server

for storage in two methods. In the first method, as common to many IoT deployments,

the server stores each location data into a database upon reception. Each data point
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SELECT lt1.cattle_id  
FROM livestocktracking AS lt1 
JOIN
(SELECT cattle_id, MAX(ts) as
maxts
FROM livestocktracking 
WHERE ts <= X 
GROUP BY cattle_id) AS lt2 
ON lt1.cattle_id = lt2.cattle_id 
AND lt1.ts = lt2.maxts 
WHERE lt1.pos >= 0

db.livestocktracking.aggregate([
{'$match': {'ts': {'$lte': X}}},
{'$sort': {'ts': -1}},
{'$group':{
'_id': '$cattle_id',
'maxTS': {'$max': '$ts'},
'currentPos': {'$first': '$pos'}
}},
{'$match': {'currentPos': {'$gte': 0}}},
{'$project': { '_id': 1}}
])

Figure 3.12: SQL (left) and NoSQL (right) queries to find the set of cows present in
plot B at time X. Here ts and pos stand for timestamp and position respectively.

contains a cattle id and its position at the time the data was collected. Note that in

this kind of setup, the collection of data is fast as it involves only a single insertion to

a database table. However, retrieving answers to complex queries such as Q3 can be

time-consuming. We present the SQL and NoSQL queries to answer Q3 in Figure 3.12.

In the second method, the server maintains a PEDaLS bst to store the IDs of cows

that are in land B using timestamps as the version stamps. Although this requires some

preprocessing during insertion to determine whether a cow is already in land B, this

makes query Q3 faster compared to the former method; as we can now perform a tree

traversal at version X in the bst to retrieve the full set of cows present in land B. This

also removes the onus on part of the developer to write complex queries, as the relevant

information is readily available through a versioned access operation (in this case, tree

traversal) in PEDaLS bst.

As described above, there are 160 data points for each cow, i.e., 160 unique times-

tamps. We perform 160 ∗ 100 insertions and 160 queries (one for each unique times-

tamp) in one iteration of the experiment. The average update times for PEDaLS and

PostgreSQL are 0.553ms and 0.342ms respectively, whereas the average query times are

2.333ms and 5.186ms respectively. That is, although for insertion PostgreSQL is 1.62x

as fast as PEDaLS, for query PEDaLS is 2.22x as fast as PostgreSQL. From a power
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consumption perspective, as long as the number of updates to the number of queries

ratio is less than (5.186− 2.333)/(0.553− 0.342) = 13.52, PEDaLS is more efficient than

PostgreSQL. The higher time requirement for PEDaLS update is expected, as every up-

date operation involves searching for a node in the bst as well. On the other hand, the

databases only have to insert a single row for an update. However, due to the efficient

versioning scheme of PEDaLS bst, answering query Q3 simply amounts to traversing a

particular version of the bst. In contrast, the databases have to perform complex queries

as presented in Figure 3.12. Hence PEDaLS outperforms both PostgreSQL and Mon-

goDB in regard to read. Although the update time (0.355ms) for MongoDB is comparable

to that of PostgreSQL, much like Section 3.4.5 and Section 3.4.5, MongoDB requires sig-

nificantly more time for reads (11.687ms). This is again due to the inefficient aggregation

pipeline of MongoDB.

3.4.6 Bounding Log Size

One challenge with PEDaLS is that the underlying append-only, persistent backing

storage abstraction may have a size limit due to host resource constraints or storage

service design. For example, CSPOT implements logs of fixed size as a circular buffer [3].

Although this approach provides fast and automatic garbage collection of log entries, if a

PEDaLS log “wraps” it may lose entries that it requires to maintain a particular version

in the version history. A PEDaLS user specifies the maximum number of data structure

versions (i.e. the version history) she wishes to maintain. PEDaLS ensures that at least

this length of version history is available.

To do so, PEDaLS provides a probabilistic guarantee that a program never accesses

a version for which only partial information is available due to log wrap. It uses the

probability that it must maintain a given history length to compute the log sizes that are
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necessary to ensure that this guarantee is met. In the case where this size is attempted to

be exceeded due to an update operation performing a log append, PEDaLS refuses further

update operations. This practice of refusing update requests in absence of adequate space

is not uncommon (e.g. Redis [81]). However, read requests can still be serviced.

Our failure model assumes that storage failures occur only during log-append op-

erations and these failures take two forms. Either the data is not written at all, or it

is written but the sequence number associated with the write is not returned. In both

cases, PEDaLS assumes that the failure can occur silently and thus must be remediated

by a timeout and a retry. As stated in Section 3.3.2, we term the first type of failure as

a Type 1 failure and the second a Type 2.

As node copy is most frequent when the number of extra pointers e is one, we consider

the required log size for the different logs when e = 1. Then for any case where e > 1,

the required log sizes will not be greater than the ones calculated for e = 1. We begin by

determining the log sizes assuming a fault-free system and then consider a distributed

system with failures. Let K be the maximum number of versions in the version history

specified by the PEDaLS user, Ki the number of inserts, and Kd the number of deletions

(K = Ki + Kd). The APLog which tracks all operations (each one creating a version)

thus requires K entries while the DataLog only grows as a result of insert operations and

thus it must minimally contain Ki entries. However, worst case, all of the operations are

inserts so the DataLog must contain K entries.

We consider the required size of the LinkLog separately for linked list and BST. In

the case of linked list insert or delete, PEDaLS requires one new link. As linked list has

only one type of pointer, even if PEDaLS must copy a node, it only introduces one new

link. Therefore, we require the log size for the LinkLog for linked list to be at most K.

Even in the worst-case scenario when we are inserting to and deleting from the end of

the same node K times, a LinkLog of size K will not experience rollover and wrap.
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In the case of BST insert, PEDaLS adds one new link to a node. However, this might

result in node copying. Unlike linked list, for BST, PEDaLS must copy both pointers in

a node during node copy. That is, if we are changing the left (or right) pointer, PEDaLS

must copy over the old right (or left) pointer apart from introducing the new left (or

right) pointer. Thus every second modification of a node forces it to make one extra

entry into the LinkLog. Aside from the fact that the first version of a node requires two

entries in the LinkLog, the number of links in the LinkLog is at most 1.67 times that

of the number of versions K when all operations are inserts. In practice, this factor is

much lower. As an example, over 100 iterations of 12579 insertions (different order for

each iteration) for the CityPulse temperature dataset used in Section 3.4.3 revealed the

maximum links required by any LinkLog is only 26, i.e. 0.002 times of K(12579).

However, in the case of BST delete, PEDaLS might have to introduce at most two

entries to the same node when the deleted node has two children. If node copying is

necessary (the additional node pointer is occupied), the total number of new links to be

introduced is three. Therefore, assuming the worst-case scenario where every operation

is a deletion and where the target node has both of its children present, we can say that

the number of entries at each LinkLog will not exceed 3K. Thus PEDaLS can preserve

K versions of BST when the LinkLog is set to 3K in the absence of Type 2 log failures.

Now that we have set a baseline for the size of the history of each log in absence of

failures, we next consider how this changes with the introduction of our failure modes.

We are specifically concerned about Type 2 failures where an entry is appended but the

resulting log sequence number is lost (since a Type 1 failure does not grow any log).

Let us assume that a log append fails with probability q and that the probability

of any such failure is independent of any other. Given that we need to insert i entries

into a log (i = K for APLog, i = K for DataLog, i = K for linked list LinkLog, and

i = 3K for BST LinkLog) and we must tolerate at most F failures (i.e. F additional
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entries are needed in each log), the total number appends that we can make is i+F . As

an append either fails or succeeds, we can model the probability of failure of f failures

in at most i + F appends as a binomial distribution having a probability mass function

λ parameterized by the failures f :

λ(f) =

(
i+ F

f

)
qf (1− q)i+F−f (3.1)

Given that we set the log size to i+F , rollover happens only when f > F . Thus, the

probability of rollover is 1.0 minus the probability that f ≤ F expressed as:

Prollover = 1−
f=F∑
f=0

λ(f) (3.2)

Given probability q that any append fails and a history version size i, we can program-

matically find the number of additional entries F (in turn the size of a log) required to

make the probability of rollover arbitrarily low. As a worst-case example, for an append

failure probability q = 0.5 and a version history of K = 1000 versions, the APLog and

DataLog for BST would need to contain 2223 entries each and the LinkLog would require

6379 entries to make the rollover probability for any of these logs < 0.0000001. That is,

with a failure probability of 0.5 the APLog, DataLog, and LinkLog are approximately

2.2 times as large as they would be without failures.

This overhead decreases with failure probability. For example, when the append

failure probability is q = 0.1 this overhead reduces to a factor of 1.2 compared to the

failure-free case, and when q = 0.001 the overhead factor is 1.009 (9 extra entries in

APLog and DataLog and 14 extra entries in the LinkLog). As a practical matter, the

failure probability q for any given append is almost certainly well below 0.001 (e.g. we

observed no failures in tens of millions of distributed logging events over the several
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Table 3.4: Required Log size to keep the probability of roll over below 0.000001. i
denotes the required number of successful appends, F denotes the maximum allowable
number of unsuccessful appends, and q denotes the probability of failure of an append.
The overhead is calculated as i+F

i .

i q i+ F overhead

1000

0.1 1168 1.168
0.2 1339 1.339
0.3 1553 1.553
0.4 1834 1.834
0.5 2223 2.223

2000

0.1 2301 1.151
0.2 2624 1.312
0.3 3030 1.515
0.4 3566 1.783
0.5 4311 2.155

3000

0.1 3429 1.143
0.2 3901 1.300
0.3 4496 1.499
0.4 5283 1.761
0.5 6379 2.126

months [92] was in preparation) making the additional space required to tolerate failures

in a real-world setting negligible. Table 3.4 shows the log size required to keep the

probability of rollover below 0.000001 for different values of q.

3.5 Summary

Both partially persistent data structures (PDSs) and append-only storage systems

provide immutability and history-based programming – albeit at different “levels” (pro-

gram versus systems). These features are useful at both levels in distributed, large-scale,

and failure-prone contexts such as those for heterogeneous and pervasive Internet of

Things (IoT) deployments. In this chapter, we investigate how to combine the two so

that high-level, linked program data structure operations with versioning support, auto-

matically and transparently map to append-only persistent storage – enabling, for the
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first time, survivability and programmatic access by distributed clients to both the data

structures and their version histories.

To enable this, we present a new approach for efficiently supporting versioned, linked

data structures in programs by leveraging algorithmic advances from partially persistent

data structures. We use these methods to design a mapping and library implementation

of version-aware data structure operations that are backed by append-only storage. We

implement this approach using an append-only storage abstraction from a portable, open-

source event system for IoT. We use this system to evaluate the algorithmic complexities

and performance overhead for operation workloads for linked list and binary search tree

(BST) structures as well as end-to-end using multiple different applications. Our results

show that we are able to achieve the algorithmic complexities of the original PDSs and

low overhead for storage-persistent versioning.
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Chapter 4

LSCRDT: Log-Based CRDT for

Multi-Tier IoT

The present cloud computing paradigm is becoming increasingly ubiquitous and often

employs a multi-tier (cloud/edge/device) architecture. Many modern conventional cloud

deployments not only require efficient computation and storage solely on the cloud tier,

but also seamless integration of computational/storage concepts on edge and device tier.

A prime example of these are edge applications, where the edge servers must communicate

with high-end cloud servers while overseeing Internet of Things (IoT) devices at the

same time. Unfortunately, the same technologies used to guarantee failure resilience and

robustness on the cloud do not translate directly to the edge/device layer due to resource-

constraints and unstable network connectivity. Thus, new programming support and

data abstractions are needed to manage this complexity and automatically enhance the

robustness and efficiency of multi-scale cloud deployments.

A common approach to providing fault tolerance and robustness to distributed sys-

tems is introducing data replication. When we replicate data to multiple nodes, we can

access the data from other nodes even when some fail. Replication also facilitates data
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availability by allowing us to retrieve data from the nearest or most updated functioning

node. However, traditional replication protocols are often unsuitable for IoT deployments

due to unstable network connectivity, unreliable power source, and resource-constrained

devices. Hence we must devise and employ new protocols more suited for IoT applica-

tions. The previous chapter discussed how data versioning can make IoT applications

reliable and fault-tolerant. In this chapter, we introduce data replication for IoT applica-

tions and explain how versioning and replication can work together to make distributed

IoT systems reliable and fault-tolerant. We propose a replication protocol that inherently

records versioning information during replication.

In this chapter, we introduce Log-Structured CRDTs (LSCRDTs) – a new form of

Conflict-Free Replicated Data Types [9, 10, 11] that is better suited for use in multi-tier

cloud deployments than its antecedents. In general, CRDTs enable program data types

to be distributed, shared (concurrently modified), replicated, and made consistent (via

clever update merging). Specifically, CRDT replicas employ Strong Eventual Consistency

(SEC) [9], which guarantees that two replicas reach the same state if they receive the

same set of updates (possibly in different orders). These features facilitate robustness,

high availability, and coordination avoidance [1], which makes them suitable for failure

prone settings.

However, many existing CRDT designs impose limitations that make them difficult

to use in multi-tier cloud deployments. In particular, previous CRDT formulations do

not support operation reversal – the process of reverting a data type to a previous state

for operations that are not executed.1 They do not easily support non-commutative

operations, and (for operation-based CRDTs) they cannot tolerate out of order operation

delivery.

LSCRDT uses distributed logs to overcome these limitations. As logs are append-

1Note that operation reversal is distinct from the undo operation [12], which may have side effects.
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only, our approach is able to use them to further reduce the coordination required to

merge inconsistent replicas. LSCRDT guarantees that replicas execute operations in

the same order, irrespective of data type thus removing the need for commutability.

LSCRDTs also avoid the complex networking required to guarantee exactly-once, causal

delivery of operations required by operation-based CRDTs. Finally, LSCRDT provides

programmatic access to data structure versions, which is useful for debugging, history-

based programming [13] and data replay and repair [14].

In this chapter, we describe the design and implementation of LSCRDT and provide

a comparative study of LSCRDT and δ-CRDT [93] – a popular category of CRDT that

combines the advantages of a wide range of CRDT implementations. We evaluate latency

and throughput using three, extensively studied, CRDT data types – register, counter,

and set [94, 95, 96, 97, 98]. Our results show that, apart from providing the aforemen-

tioned properties, LSCRDT outperforms δ-CRDT in terms of write latency. Moreover,

for update-heavy workloads (typical of sensor-driven edge applications), LSCRDT ex-

hibits up to 1.8x higher throughput than δ-CRDT.

4.1 Related Work

Conflict-Free Replicated Data Types (CRDTs) are abstract data types that provide

a principled approach for the asynchronous reconciliation of divergent data resulting

from concurrent updates [9]. CRDTs provide strong eventual consistency (SEC), which

guarantees that whenever two replicas receive the same set of updates, they reach the

same state. Broadly, there are two types of CRDTs: state-based and operation-based (or

op-based) [9]. In state-based CRDTs, an operation is executed on the local replica state.

A replica periodically propagates its state to other replicas to achieve consistency. A

disadvantage of this approach is the communication overhead associated with shipping
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the full state, which can be large. In op-based CRDTs, an operation is executed on the

local replica and the operation is asynchronously propagated to other replicas. Although

operation-based CRDTs do not communicate state, they require exactly-once causal

broadcast. Delta State CRDTs (δ-CRDTs) [93] combine the advantages of state-based

and op-based CRDTs. Like state-based, δ-CRDTs can tolerate unreliable networks and,

in particular, do not require exactly-once causal broadcast as a communication network

property. However, like the op-based approach, they do not require that the full replica

state be communicated, but rather, they communicate only state changes or “deltas”.

Most CRDT studies are evaluated using the foundational data types, register, set,

and counter [94, 95, 96, 97, 98, 99, 100]. CRDTs for JSON data [101] allow programmers

to create custom data types by nesting maps and lists into new CRDTs. Although this

approach adds a new dimension to the foundational data types, it is still insufficiently

generic (e.g., we can not create a self-balancing tree with JSON). Other works discuss

replicated trees capable of executing arbitrary concurrent move operations [102], where

a log of move operations is maintained, possibly involving rollback and replay. As we

describe in Section 4.5, LSCRDT uses a similar approach. Strong eventually consistent

replicated objects (SECROs) [103] are general-purpose data types that implements SEC

without placing any restriction on operations, i.e., operations can be non-commutative.

SECROs find a conflict-free ordering of concurrent operations depending on application-

specific information. However, to ensure that the application-specific conditions are not

violated, SECROs at times must give up on a computation path and backtrack to a

previous state, thus imposing significant computational load.
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4.2 Motivation

In this section, we motivate the integration of logs and general purpose, operation-

based CRDTs for use at the edge. Many edge applications do not require strong con-

sistency (e.g., smart locks [40], energy management [41], temperature prediction [42],

etc.) and can choose a weaker consistency model in favor of increased availability, lower

coordination overhead, and better energy efficiency. Due to their ability to provide these

advantages, CRDTs are suitable for many edge deployments. Although CRDTs are not

new, they have been employed mostly for collaborative editing [104, 105, 106, 107, 108].

Edge deployments impose new environmental characteristics that past research does not

fully address. Specifically, edge applications often coordinate among devices deployed in

an environment with poor and unreliable network connectivity. They consist of hetero-

geneous, resource-constrained devices (with regards to computation, space, and power).

Moreover, data-driven applications also demand data resilience, availability, and the abil-

ity to audit data lineage. Finally, the ubiquity of edge applications makes a generalized

abstraction approach to storing and manipulating data desirable [109].

Past works attempt to address different aspects of these challenges, but none provide

a holistic approach within a single system. For example, δ-CRDT can tolerate unreliable

networking but does not provide a general approach to merge/join deltas (e.g., joining

deltas for counters is different than that for sets). Moreover, in many cases, δ-CRDTs

must resort to using a variant of the data type rather than the original one (e.g., using

a 2P set instead of a conventional set).

LSCRDT can both tolerate unreliable networking and manage arbitrary data type

without the need for data type-specific join algorithm. In LSCRDT, each replica logs the

executed operation along with a unique version stamp (allowing detection of duplicates)

in causal order. Each replica periodically reads from other replicas’ logs in log order (e.g.
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similar to what is done in Kafka [59] logs: each replica reads monotonically increasing

offsets). LSCRDT maintains causal order by ensuring log order is maintained during

reads.

Logs also provide immutability, which can be used to aid data lineage tracking and

versioning [92], data availability and robustness, and application debugging. For example,

efficient versioning is critical for temporal queries (typical in stream-based edge applica-

tions), and for operation reversal and rollback, and replay of applications and analyses,

in the face of errors and malfunctioning sensors and services (which are common occur-

rences in large scale multi-tier IoT deployments) [14]. Moreover, logs aid interoperability

of heterogeneous devices via the use of a simple interface.

Finally, our LSCRDT design is operation based to facilitate generality (i.e. to be

agnostic to the data structure type and operation implementation). Many CRDTs require

type-specific merge/join algorithms [10]. LSCRDT instead forms a consistent order of

operations, irrespective of the underlying data type. As we will see in Section 4.5, agreeing

upon a consistent order of operation is not type-specific in LSCRDT, making it more

generic and extensible than existing approaches.

4.3 System Model and Overview

We consider a distributed system of N replicas. Each replica is assigned a node

ID from a set S. We represent a replica as Xs, s ∈ S. The underlying network is

asynchronous and unreliable; messages may be dropped, duplicated, or reordered. The

network may partition and eventually recover. Each replica has local durable storage.

We assume replicas may face non-byzantine failures; a replica may crash but will have

access to the information recorded in durable storage upon recovery.

Over time replicas may diverge from each other due to update requests from clients
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(i.e., processes that can mutate or query a data type by sending requests to any replica).

To reconcile this divergence each replica periodically performs a round of merge steps

with the other replicas. A merge step is always between a pair of replicas. Therefore,

in a round, there are at most N − 1 merge steps. In a merge step, one replica (known

as the reader) reads entries in the log of operation from another replica (known as the

source). The goal of the merge step is for the reader to identify and incorporate operations

“unknown” to it (i.e. not previously executed at the reader) that the source has already

executed. The reader ensures that the causality relationship among the operations is

retained while creating this merged list of operations and subsequently executing them.

We present the details of the LSCRDT merge step in Section 4.5. Note that during a

merge step, a reader may have to rollback some operations and re-execute them along

with new operations. As long as the replicas execute operations in the same log order,

replicas will converge irrespective of operation commutativity, similar to the replicated

state machine concept used in Raft [34].

Although our approach requires log rollback to maintain the order of operations, it

does not require any locking mechanism among replicas to agree upon a unique order

of operation execution. This order can be determined from the timestamped operations

of the source as described in Section 4.5. Any partial order formed during merge steps

maintains the causal order observed within the total order. Rollbacks provide two capa-

bilities to LSCRDTs: (i) implementing arbitrary non-commutative data types and (ii)

maintaining a global version history consistent among all replicas. Note that as an op-

timization (not explored in this work) if the underlying data type is commutative and a

global version history is not needed LSCRDT can store state deltas (like δ-CRDTs) and,

thus, remove rollbacks (and their performance impact) altogether.

Various algorithms have been proposed to maintain order in list or sequence CRDTs

such as Logoot [104], LSEQ [105], RGA [106], Treedoc [110], and WOOT [111]. Our
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method to maintain order among logs of operations is an adaptation of [101], which is

based on RGA [106]. This approach provides us a uniform way to create a replicated

data type irrespective of the operations supported by it; once we establish a common

order of operations among all the replicas our system will converge. Although RGA-

based approach has been used in other data types such as JSON [101], the use of logs

introduces a new performance challenge – avoiding log scans. We explain how we can

avoid full log scans in Section 4.5.

4.4 Data Type Using Logs

We next explain how LSCRDTs are stored using logs. We overview the replication

process in Section 4.5. We choose three data types widely studied in CRDT literature for

this exposition: registers, counters, and sets [94, 95, 96, 97, 98]. Our approach is agnostic

of the underlying log storage system. We assume entries in a log can be addressed by

monotonically increasing sequence numbers (e.g. offsets in the case of Kafka [59], LSN s

in the case of Facebook LogDevice [60], and sequence numbers in the case of CSPOT [3]).

We further assume the log storage system exposes functionalities (i) to create logs with

a given name, (ii) to write to a specified log and get the sequence number corresponding

to the write on success, (iii) to read from a specified log at a given sequence number, (iv)

to retrieve the latest sequence number of a specified log, and (v) to trim the log up to

a specified sequence number i.e. all entries with greater sequence numbers are removed.

As long as these criteria are met, we can use any log storage system.

LSCRDTs tag each operation performed on a data type with a version stamp (Lam-

port timestamp [112]), which is a concatenation of a counter and a node ID drawn from S.

We represent the counter and node ID of a version stamp vs as vs.counter and vs.nodeID,

respectively. We say version stamp vsa is less than version stamp vsb (vsa < vsb) if (i)
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the counter of vsa is less than that of vsb, or (ii) both the counters are same but node ID

of vsa is less than that of vsb. When replica Xs executes a new operation in response to

a client request, it tags it with version stamp vs (vs.nodeID = s), which is greater than

all other version stamps it has observed so far (operations that happened before). Thus

if operation opa happens before opb, vsa < vsb where vsa and vsb are the version stamps

of operations opa and opb, respectively.

Version stamps of concurrent operations can be ordered arbitrarily but determinis-

tically. Throughout the rest of the chapter, we use version stamps to refer both to the

version stamp itself and to the operation it tags. The intended use will be clear from

the context. We say vs is an operation of Xs (alternatively, Xs is the originator of vs) if

vs.nodeID = s.

4.4.1 Register

The register data type maintains a single value (e.g. an integer, an object, etc.). It

supports two operations, assign to set a value and retrieve to get a value. We introduce

OpLog to store all the update operations, in this case, assigns. There is one OpLog per

replica. We represent the OpLog of the replica Xs as OpLog(Xs). As all the update

operations are recorded in the OpLog, a data type can be reconstructed up to a certain

version if required. Replicas can read each other’s OpLogs to create a merged list of all

the update operations. As the retrieve operations do not update the register, we do not

have to record those. Each entry in an OpLog is the tuple (vs,op,val). vs is the version

stamp of the operation, op is the type of update operation (in case of register there is

only one, i.e., assign), and val is the operand of op.

To execute an assign operation a replica writes the appropriate entry to its OpLog.

For example, suppose a request to assign the value 5 to a register comes to XA. We
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further assume the greatest counter value among all the version stamps XA has seen so

far is 2. Then XA writes the entry (3A, assign, 5) to its OpLog to execute the operation.

To respond to a retrieve request, XA simply returns the val field of the last entry in

its OpLog. If some previous version stamp vsi is supplied as an argument of value, the

replica can search the OpLog for the entry with the vs field equal to vsi.

To make this search efficient, LSCRDT maintains an in-memory map from version

stamps to sequence numbers in OpLog. This approach has been used in other log-based

systems as well, such as Riak Bitcask [113]. Note that this is an optimization and not

necessary for the correctness of the system. This in-memory map is populated at startup

and can be reconstructed at any time. Any update to the register is first appended to

the log and then a map entry is created.

4.4.2 Counter

The counter data type supports increment (inc), decrement (dec), and retrieve oper-

ations. Like register, a counter also has an OpLog. However, it maintains one additional

field per entry for the cumulative sum to avoid log scans while computing the counter

value corresponding to a version. For example, assuming the initial value of a counter is

0, if replica A first increments the counter by 5, next decrements the counter by 2, and

finally increments it by 1, the entries of the OpLog will be (1A, inc, 5, 5), (2A, dec, 2, 3),

and (3A, inc, 1, 4). To find the latest value of the counter, the replica can now return the

value in the last field of the last entry in the OpLog. Similar to register, an in-memory

map can expedite the response to a retrieve request corresponding to an earlier version.
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4.4.3 Set

Our set data type supports add and remove update operations and in and all read

operations. Note that although CRDTs resort to using some variant of sets such as

two-phase set (2P-set [9]), grow-only set (G-set [10]) etc; LSCRDT set works like a

conventional set due to its capability to find a consistent ordering of non-commutative

operations. The structure of OpLog of set is similar to that of register. However, set is

different from register and counter in that each version is a collection of elements rather

than a single value. Note that to reconstruct a set up to the latest version, we must scan

the OpLog from the top. To avoid such expensive operations, we cache the elements in

the set after every cp interval number of operations using a second log. To make the

search for the latest version fast, we also keep a copy of the latest operations that have

not yet been checkpointed in memory. This in-memory list of operations is purged every

time we checkpoint our progress. Therefore, we have at most cp interval− 1 operations

cached in memory at a time (which users can set). Setting the cp interval to a low value

makes queries faster but uses more space. Doing so may also decrease write throughput

due to more frequent checkpointing.

Note that to query a previous version of the set, we might need to access OpLog. For

example, suppose cp interval is set to 100, we have already executed 400 operations and

we want to query the 257th version of the set. In this case, we first need to read the

entry that was checkpointed after the 200th operation and then read the 57 following

operations from the OpLog to reconstruct the desired version of the set. A version of

a data type might change due to updates from other replicas (cf. Section 4.5). In that

case, the checkpoint that contains that version and the following checkpoints must be

overwritten.
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4.5 Merge Step

Many data types have operations that do not commute (e.g., add and remove of the

same element in a set). To achieve a consistent state for replicated data types, we must

impose a total order on the execution of operations [103]. An alternative to imposing a

total order for arbitrary non-commutative data types is to switch between stronger and

weaker form of consistency [114, 115, 116, 117]. However, as discussed in Section 4.3, a

total order also helps us maintain a consistent version history among all replicas. In our

work, we model the history of operations (OpLog) as a list CRDT and use an adaptation

of the method used in [101] which is based on RGA [106] for maintaining order in the

list i.e. the OpLog, as explained next.

When a replica XA executes an operation as a direct request from a client, it appends

the operation at the end of OpLog(XA). Apart from direct client requests, replicas also

execute operations that are unknown to them from other replicas’ OpLogs. Assume vsnew

is an operation in OpLog(XB) that XA has not yet executed. We denote the operation

immediately preceding vsnew in OpLog(XB) as vspred. As the intention is to maintain a

consistent order of operations, XA tries to place vsnew in its own OpLog after vspred as

well. Therefore, to incorporate the unknown operation vsnew, XA first locates vspred in

OpLog(XA). Let us denote the operation in OpLog(XA) immediately succeeding vspred

as vssucc. That is, vsnew and vssucc are concurrent operations. Now XA inserts vsnew

in OpLog(XA) immediately after vspred if vsnew > vssucc. Otherwise, XA skips over all

contiguous version stamps that are greater than vsnew and then places vsnew. Of course,

it might happen that vspred is not present in XA to begin with. In that case vspred

must be inserted first. This implies that XA should start reading OpLog(XB) from the

earliest sequence number that contains an operation unknown to it. We express this

whole procedure of inserting operation vsnew after vspred as insert(vsnew, vspred).
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(b) XB merges with XA then XA merges with XB .

Figure 4.1: Change in OpLogs as replicas merge with each other. We notice the two
different sequence of merge steps results in the same consistent state at the end.

To illustrate how insert works, we refer to the OpLogs in Figure 4.1 (only the sequence

numbers and version stamps are shown for brevity). We consider two replicas in our

system, XA and XB. Let us assume XA executed operation 1A that XB became aware of

during the latter’s merge step. At this point, both XA and XB executed one operation

independently but concurrently, operation 2A and 2B respectively. Now we consider

two different scenarios. (i) Figure 4.1a. XA (reader) merges with XB (source). For

now, we assume readers start comparing the two OpLogs from the beginning (we show

in Section 4.5.2 how full log scans can be avoided). Both OpLogs have 1A as the first

entry, so no action is needed. However, XB has 2B in the second entry whereas XA

has 2A. This is equivalent to the insert operation insert(2B, 1A) i.e. insert 2B after

1A in OpLog(XA) (as 2B comes after 1A in OpLog(XB)). We note how the insertion

operation is implicitly embedded in the log order. As XA currently has 2A after 1A and

2B > 2A, it can place 2B after 1A. “Placing 2B after 1A” is a multi-step process: XA

trims its OpLog up to sequence number 1, appends the entry containing 2B, and finally
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re-appends the entry containing 2A. Additionally, it trims/(re-)appends to any logs used

by the underlying data type. When XB (reader) merges with XA (source) after this, XB

can simply append 2A after 2B in its OpLog. (ii) Figure 4.1b. XB (reader) merges with

XA (source). Starting comparison from the top of the OpLogs as before reveals different

entries in the second entry: OpLog(XA) has 2A as the second entry whereas OpLog(XB)

has 2B. This translates to the operation insert(2A, 1A) to be executed in OpLog of XB.

As the version stamp after 1A at XB is 2B and 2A < 2B, 2A is placed after 2B. Merging

the other way follows the steps similar to the previous scenario. We see that in both

scenarios we end up with the same final state in both the replicas.

Note that we could have forgone this relatively complex ordering following [101] and

instead chosen a strict ascending order of version stamp counters, breaking ties through

lexicographical order of node IDs. However, this approach would have resulted in in-

terleaving sequences of operations made by different replicas concurrently. Our current

choice of the method in [101] on the other hand makes sure concurrent sequence of op-

erations executed by different replicas are not interleaved. Also note that to break tie

between concurrent operations we choose the greater version stamp to take precedence

over the smaller one (e.g. 2B appears before 2A) to maintain similarity with existing

work [101]. In practice, we could have chosen the reverse.

Proof of convergence of insert : To understand how insert converges, we note a

few points. First, the order of an operation in an OpLog either remains unchanged or is

pushed down, but never pulled up. This is due to how insert works: it either appends a

new operation at the end, in which case there is no change in the order of operations; or it

inserts an operation in between existing operations, effectively pushing all the operations

that follow down by one. This also implies that the relative order of two operations

in a log once set remains the same. Second, insert breaks tie between two concurrent

operations arbitrarily but deterministically (the two concurrent operations are the new
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operation from the source and the current successor of the intended predecessor in the

reader). To see this, let us consider two concurrent operations vsa and vsb. Without the

loss of generality, let us assume vsa > vsb. Now if vsa has already been executed (i.e.

vsa is the successor of the intended predecessor in reader), vsb skips over vsa. Therefore

vsa comes before vsb. On the other hand, if vsb has already been executed (i.e. vsb is the

successor of the intended predecessor in reader), vsa can be placed in its place, effectively

pushing down vsb. Therefore, vsa comes before vsb in this case as well. Finally, a reader

always reads the operations unknown to it from the source in monotonically increasing

sequence numbers. This means even when a reader has not observed all the operations

executed by the different replicas in the system, its OpLog contains a partial order of the

total order formed by all the operations (due to the first and the second points). Hence

once the replicas observe all the operations, the system achieves consistency.

In a merge step between a reader Xi and a source Xj, the reader performs two tasks:

(i) Conflict detection: The reader detects whether it is in conflict with the source, i.e.

whether the source has operations that the reader does not know of. Note that we are

concerned with unidirectional conflict, i.e. if the reader has operations that are unknown

to the source no extra steps are taken (this is resolved during some other merge step

when the current source becomes a reader). (ii) Conflict resolution: In case of conflict,

the reader resolves this conflict, possibly by reordering the operations which require

rollback and replay of some operations. The conflict detection stage finds the sequence

numbers of the two OpLogs from where the comparison should be started (readerstart

and sourcestart for OpLog of the reader and the source respectively) to guarantee that

the reader encounters all the operations it has not seen that have been already executed

by the source. These two sequence numbers are used by the conflict resolution stage to

incorporate all the unknown operations in the reader’s OpLog.

We next introduce a new log that helps us to avoid full log scan (Section 4.5.1). We
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show how the conflict detection stage uses this log to detect the presence and point of

conflict (Section 4.5.2). Section 4.5.3 then describes how the conflict resolution stage

takes this information and uses insert operations to execute a list of ordered operations.

4.5.1 KnowledgeLogs

OpLogs grow over time and the merge steps become costly if we must scan from the

top. To avoid a full scan of the OpLog of the source by the reader, a replica maintains

a map of the last observed version stamp from each replica to a sequence number in its

OpLog using one KnowledgeLog for each replica. Each entry in a KnowledgeLog contains

the tuple (vs, op seq). vs denotes the version stamp of the operation. op seq denotes

the sequence number of OpLog where the operation with vs was first appended. More

precisely, each entry of KnowledgeLog Kj
i on host Xi contains tuples that map each

version stamp vs whose node ID is j to a sequence number in OpLog(Xi). Although the

position of a version stamp might change due to later merge steps, note that a version

stamp can only be pushed down in order but never pulled up due to the way insert

works. Thus, the sequence numbers stored in KnowledgeLogs provide us a starting

point to search for a version stamp. The version stamp might be at that sequence

number, or at a later one, but never at an earlier one. For improved performance, we can

also opt to cache a fixed number of entries from the end of KnowledgeLog in memory.

As all the information needed to maintain a KnowledgeLog are present in the OpLog,

KnowledgeLogs can be reconstructed after a system crash.

We refer to Figure 4.2 as an example of interactions among OpLogs and Knowl-

edgeLogs. Operation 1A is inserted in OpLog(XA) at sequence number 1. To record

the mapping from version stamp 1A to sequence number 1, XA appends (1A, 1) to KA
A .

Similarly, XA appends (2A, 2) to KA
A to record that the operation with version stamp 2A
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XA merges with XBXA executes 2AXA executes 1A

Figure 4.2: Mapping from version stamps to sequence number of OpLog in KnowledgeLogs.

was inserted in OpLog(XA) at sequence number 2. A merge step with XB results in the

operation with version stamp 2A to be pushed down in order i.e., at sequence number 3.

As we have already recorded 2A in KA
A and we can reach 2A in OpLog(XA) even if we

start scanning from the recorded op seq value (in this case 2), we can keep it unchanged.

We only append the entry (2B, 2) to KB
A . Now if XA (reader) performs a merge step

with an arbitrary replica Xs (source) and wants to know whether Xs has any operation

originating from replica XB that the reader does not know of, it can simply compare

the tails of KB
A and KB

s . If the last entry of KB
A contains a version stamp that is less

than that of the version stamp contained in the last entry of KB
s , then Xs has operation

originating from XB that XA does not know of (as two version stamps with same node ID

follow happens-before relationship and version stamps are written to the KnowledgeLog

in increasing order). This process is explained in detail in the next section.
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4.5.2 Conflict Detection

In the conflict detection stage during a merge step between reader Xi and source Xj,

the reader Xi compares the last entries of Km
i and Km

j , ∀m ∈ S. We represent the last

entry of a log L by tail(L) and a field f in entry e by e.f . If tail(Km
i ).vs < tail(Km

j ).vs,

this means Xj (source) has executed operations that Xi has not. This holds as the

operations in a KnowledgeLog have the same node ID and are executed in increasing

order of their counter. The counter captures the happens-before relationship between

two version stamps with the same node ID. We say Xi lags behind Xj with respect to

Xm when tail(Km
i ).vs < tail(Km

j ).vs. Xi might lag behind Xj with respect to more than

one replica. Let us represent the set of all replicas with respect to which Xi lags behind

Xj as Xlag.

We represent the set of node IDs of the replicas in Xlag as Slag. We find the replica

Xp in Xlag such that tail(Kp
j ).op seq < tail(K l

j).op seq,∀l ∈ Slag ∧ l ̸= p. That is, Xp

is the replica whose operation is at the earliest point of conflict between Xi and Xj.

However, Xi might not know about operations of Xp that have version stamps less than

tail(Kp
j ).vs. To ensure Xi can detect all unknown operations, it scans backward from

the tail of Kp
j until it finds the entry e such that the entry before it has a version stamp

equal to tail(Kp
i ).vs. Then e.op seq is the sequence number from which the reader starts

scanning the source’s OpLog (i.e. sourcestart = e.op seq). In other words, e.vs is the

earliest operation in OpLog(XB) that XA has not yet executed.

Proof that a reader can identify all operations unknown to it during conflict

detection: Reader Xi will identify all the operations unknown to it if there are no

operations in OpLog(Xj) before the sequence number sourcestart that Xi does not know

of (as Xi starts reading OpLog(Xj) from the sequence number sourcestart). We can prove

this by contradiction. Let us assume there is indeed a version stamp vs in OpLog(Xj)
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at sequence number source
′
start such that source

′
start < sourcestart and vs.nodeID = q.

That would mean one of the following: (i) p ̸= q. That is, the tail of Kq
j contains an

entry with op seq value that is smaller than all other op seq values of knowledge logs

with respect to which Xi lags Xj. However, this is not possible, as we are taking the

minimum of op seq values of the tails of the relevant knowledge logs to find p. (ii) p = q.

In that case, there must be an entry in Kp
j with vs greater than tail(Kp

i ).vs and op seq

less than sourcestart. However, this is not possible either, as we scan back to make sure

we find the earliest version stamp in Kp
j that Xi has not seen. Hence we arrive at a

contradiction and the reader must be able to identify all operations unknown to it during

conflict detection.

Let the version stamp of the sequence number sourcestart−1 in OpLog(Xj) be vsprev.

To incorporate e.vs, Xi executes insert(e.vs, vsprev) in OpLog(Xi). To do this, Xi first

finds the sequence number of e.vs in OpLog(Xi) – the value of readerstart is this sequence

number plus one. Note that all operations in OpLog(Xj) from sequence number 1 to

sourcestart−1 must be present in OpLog(Xi), otherwise there is some operation between

these two sequence numbers in OpLog(XB) that XA has not seen, and the value of

sourcestart found by the previous steps would have been different. Therefore, readerstart

must be greater than or equal to sourcestart. To find the value of readerstart, Xi starts

scanning OpLog(XA) from the sequence number sourcestart − 1. It stops scanning if

the currently scanned entry’s version stamp is equal to vsprev. The required value of

readerstart is the sequence number where we stop scanning plus one.

To illustrate the conflict detection stage, we consider the scenario in Figure 4.3. Let

us assume there are three replicas in our system, XA, XB, and XC . The OpLog of XA

has 1A and 2A, whereas the OpLog of XB has 1A, 2B, 3B, 4C, and 2A. One possible

sequence of actions that might lead to this state: XA executed operation 1A. XB merged

with XA, and then executed two operations 2B and 3B. XC (not shown in the figure)
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Figure 4.3: OpLogs and KLogs of replicas XA and XB in a system with three replicas.
Dashed entries represent placeholders used during computation when a knowledge log
is empty. During conflict detection, the reader XA compares the same colored entries
with each other to find the earliest possible point of conflict. The arrow from the
second entry to the first entry of KB

B , represents XA’s backward scan to find the
earliest version stamp with node ID B that it does not know of.

merged with XB and executed 4C. XB merged with XC . XA executed operation 2A.

Finally, XB merged with XA again. Now let us consider XA performs a merge step with

XB. Comparing the tails of Km
A and Km

B , m ∈ {A,B,C}, we see that XA lags behind XB

with respect to XB and XC , i.e., Xlag = {XB, XC} (we assume the absence of entry in a

KnowledgeLog to be equivalent to having a placeholder entry with a version stamp with

minimum possible invalid counter value, in this case, 0). As the op seq value of tail(KB
B )

(i.e. 3) is smaller than that of tail(KC
B ) (i.e. 5), Xp = XB. However, XA is not yet certain

tail(KB
B ).vs is the earliest unknown version stamp. XA scans KB

B backwards to find the

earliest unknown version stamp, which in this case is 2B. The corresponding op seq

value is 2, therefore sourcestart = 2. The entry immediately preceding 2B in OpLog(XB)

has the version stamp 1A. XA reads the entry at sequence number source start− 1 = 1

in OpLog(XA) and finds that the entry contains 1A. Therefore reader start is equal to
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1 + 1 = 2 as well. The conflict detection algorithm is presented in Algorithm 2.

4.5.3 Conflict Resolution

Conflict resolution is triggered when a conflict is detected, to find and execute a

merged order of operations between the reader and the source. When there are one or

more conflicts between the reader and the source, it rolls back the OpLog of the reader

to the earliest point where the reader does not lag behind the source with respect to

the version stamps before it and then replays the operations at the reader (adjusting the

OpLog of the reader) to reflect the merged order. At the start of conflict resolution, Xi

knows both sourcestart and readerstart, i.e., the sequence number of OpLog(Xi) and the

sequence number of OpLog(Xj) at which Xi should start comparing the two OpLogs. Xi

creates an ordered list, Ri, of the operations in OrdLog(Xi) starting from the sequence

number readerstart up to its latest sequence number. Xi creates a second ordered list,

Rj, of the operations in OrdLog(Xj) starting from the sequence number sourcestart up

to its latest sequence number.

To incorporate the operations unknown to itself, Xi first includes those operations

from Rj to Ri by invoking insert procedures: for each entry e in Rj, Xi first finds the

entry epred in Ri which contains the version stamp immediately preceding e in Rj. If

the version stamp of the entry following epred in Ri is smaller than e.vs, Xi inserts e

immediately after epred (provided e is not already present there). Otherwise, it skips over

all contiguous entries where the version stamp is greater than e.vs, and then inserts e

(provided that e is not already present there). OnceXi has all the operations in Ri, it rolls

back, i.e., prunes, OpLog(Xi) starting from readerstart and then replays all operations in

Ri at OpLog(Xi). The conflict resolution algorithm is presented in Algorithm 3.
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Algorithm 2 Conflict Detection
Require: reader replica Xi, source replica Xj , and set of node IDs S
Ensure: earliest point of conflicts sourcestart and readerstart
1: Xlag ← ϕ
2: for m ∈ S do
3: if tail(Km

i ).vs < tail(Km
j ).vs then

4: Xlag ← Xlag ∪ {Xm}
5: end if
6: end for
7: if Xlag = ϕ then
8: return
9: end if
10: Slag ← ϕ
11: for Xm ∈ Xlag do
12: Slag ← Slag ∪ {m}
13: end for
14: p← argmin

m
(tail(Xm

j ).op seq),m ∈ Slag

15: idx← latest seq(Xp
j )

16: while idx > 0 do
17: if tail(Kp

i ).vs < Kp
j [idx].vs then

18: sourcestart ← Kp
j [idx].op seq

19: idx← idx− 1
20: else
21: break
22: end if
23: end while
24: vsprev ← OpLog(Xj)[sourcestart − 1].vs
25: idx← sourcestart − 1
26: while idx ≤ latest seq(OpLog(Xi)) do
27: if OpLog(Xi)[idx].vs = vsprev then
28: readerstart ← idx+ 1
29: break
30: else
31: idx← idx+ 1
32: end if
33: end while
34: ResolveConflict(readerstart, sourcestart)
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4.6 Handling Bounded Log Sizes

Logically, logs are append-only storages to which we can continuously append. Prac-

tically, we are bounded by the physical storage of our devices. Therefore, we can not

record an unbounded number of versions of our data types. In this section, we describe

how we can safely retain the last K versions of our data type by removing old entries

from OpLog. We make two underlying assumptions: (i) our physical storage has the

capacity to store more than K versions and (ii) the replicas merge among themselves at

a rate such that there is at least one version common at the top of the OpLogs among

all replicas before any replica runs out of space.

The major challenge in keeping a history of at least the last K versions is that this

set of last K versions is constantly changing due to updates from different replicas. So

instead, we identify versions that we know for certain are not in the set of last K versions.

Consider an arbitrary version vs. Referring back to how our insert operation of

Section 4.5 works, we know vs in the OpLog of a reader can be pushed down in order

due to a merge step involving an unknown operation that the reader has not seen before.

This essentially means that even if vs was not in the set of last K versions, it may become

so. However, if all replicas in our system have observed all the same operations from the

start up to vs, we know the positions of those versions will not change.

This means that a replica Xi can safely remove n operations from the top of its OpLog

while preserving at least the last K versions if: (i) all the other replicas in the system

have those n operations in the top n entries of their respective OpLogs and (ii) the replica

has already seen at least K more new operations after those n operations. Note that

Xi need not check whether the other replicas have received K more new operations to

trim its own OpLog. It just has to make sure there is a set of operations from the top

that all the replicas have executed in the same order. This trimming operation can be
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triggered after a user-defined number (> K) of versions have been recorded. However,

if this number is near K, trimming will be frequent and may adversely affect system

performance.

A replica Xi need not scan the top of each replica’s OpLog to find the entries that can

be trimmed. Instead, it consults the tails of KnowledgeLogs. For each node ID s ∈ S,

Xi reads the tails of the N KnowledgeLogs Ks
u(u ∈ S) and identifies the smallest version

stamp. We denote this set of N versions as C. Then C contains one version vs for each

originator Xs such that vs is the greatest version with node ID s that all the replicas

have seen.

Next, Xi locates the earliest sequence number in its log where such a version is present.

Let this sequence number be seq. Note that any version in an entry preceding the entry

at seq in OpLog(Xi) must be present in all the other replicas. Therefore, Xi can trim

all the entries up to seq provided that there are at least K versions following it. If not,

it can backtrack the required number of entries to meet this condition and then proceed

with trimming.

There are some caveats to this approach that we must overcome. First, although the

earliest n versions trimmed in this approach are not part of the latest K versions, we may

still need the last version of the earliest n versions as an anchor point for future insert

operations. This can happen if there is at least one replica such that it had exactly n

versions at the time Xi trimmed its OpLog. Hence, we must record the last version in the

set of trimmed versions every time we perform this operation. We can safely overwrite

this record every time we trim the log. Second, the mappings in KnowledgeLogs will

be off by n whenever n operations are trimmed. To counter this, we introduce Virtual

Sequence Numbers (VSN). VSN of an entry in a log represents the sequence number

the entry would have if the log was never trimmed. Therefore, we must track an offset

(initially zero) that is updated every time we trim an OpLog from the top (incremented
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by the number of entries trimmed). Then to get the VSN of an entry, we can simply add

its sequence number to the offset. KnowledgeLogs now store VSNs instead of sequence

numbers. While trimming the OpLog, we can trim the corresponding KnowledgeLog

entries as well. Just like OpLogs, we track the last entry removed from a KnowledgeLog

to notify the readers of the trimmed operations. Third, if a new replica joins the cluster

with an initially empty state, it can force a change in the order of operations. This can be

overcome in two ways: we can copy the initial state of the new replica from an arbitrary

existing replica, or we can assign an ID to the new replica that is smaller than all the

existing replicas. A smaller ID will force the new replica to put its entries at the end of

all the existing versions and thus, not alter the current order.

4.7 Evaluation

In this section, we empirically evaluate the performance of LSCRDT. As LSCRDTs

combine the advantages of both op-based and state-based CRDTs much like δ-CRDTs [93],

we compare the performance of LSCRDTs with that of δ-CRDTs. We implement both

LSCRDT and δ-CRDT in C and use memory-mapped files for persistent storage, includ-

ing logs. Note that our goal is not to outperform δ-CRDTs, but to explore the feasibility

of LSCRDT while providing all the advantages associated with using logs.

We conduct our experiments using the foundational data types register, counter, and

set widely studied in CRDT literature. We use the last-writer-wins (LWW) variant of

register and positive-negative (PN) variant of counter for both δ-CRDT and LSCRDT.

We use two-phase (2P) variant of set for δ-CRDT (an element cannot be added again once

removed) whereas LSCRDT set works in the conventional way. We follow the δ-CRDT

implementation of [118] for the data types.

In our results we focus on: (i) how much extra time is introduced for a single operation
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Figure 4.4: Comparison of latency between LSCRDTs and δ-CRDTs on operations
executed at a single replica.

to execute due to the introduction of logs to store the data types, (ii) what is the effect of

logs on scalability, and (iii) how time-consuming is versioned read compared to reading

the latest value. We run each experiment ten times and show the average result. We

reset each data type to its initial state before each run.

Moreover, to demonstrate the versatility of the replication protocol used in LSCRDT,

we use it to replicate PEDaLS and present the results in Section 4.7.4. In addition, we

explore the effect of Knowledge logs on the time to detect conflict in Section 4.7.5.

We perform the replication experiments with a cluster of three replicas and one client.

Many cloud-based storage systems such as Amazon S3 use three nodes for replication.

Although edge/device tier do not have the same level of reliability as cloud servers, it is

not uncommon for edge applications to have a replication factor of three as well [119, 3,

40]. All of the machines are running the CentOS 7 Linux operating system each with

two dedicated 2GHz vCPUs and 2GB of memory. The machines communicate among

themselves using 1Gb/second Ethernet. The average latency among the machines is

observed to be 0.45ms. In the case of LSCRDTs, each replica executes a merge step
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Figure 4.5: Scalability of LSCRDTs.
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Figure 4.6: Comparison of throughput between LSCRDTs and δ-CRDTs using three replicas.
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with another replica in round-robin fashion at one second intervals. In case if δ-CRDTs,

deltas are queued for propagation immediately after local execution.

4.7.1 Single Node Latency

To evaluate latency, we send 10000 randomly generated operations (half reads, half

updates) sequentially from the client to a replica and measure the average latency. The

arguments of the update operations are randomly generated integers between 1 and 1000.

Read operations read the latest versions of respective data types in the case of LSCRDT.

Figure 4.4 shows the read and update latencies for the three data types. In case of

all three data types, LSCRDT shows a lower update latency than δ-CRDT counterparts.

Specifically, LSCRDT is 1.17x, 1.12x, and 1.39x faster than δ-CRDT for register, counter,

and set respectively. There is no significant difference in read latencies between LSCRDT

and δ-CRDT for register and counter. However, δ-CRDT set provides faster read than

LSCRDT set. Specifically, the read latency of δ-CRDT set is 0.668ms whereas that of

LSCRDT set is 1.151ms. That is, δ-CRDT reads are 1.72 times faster than LSCRDT

for set. This difference in read latency is expected. Recall that although LSCRDT set

works in the conventional way, the variant of δ-CRDT set we are using (i.e., 2P-set) does

not allow an element to be added again once it has been removed. That is, the query in

2P-set can be performed faster by first looking at the list of elements marked as removed.

On the other hand, LSCRDT set has to first read the last checkpointed state from a log

and take into account all the operations that have been performed since that checkpoint.

Although the read latency of LSCRDT set is higher than that of δ-CRDT set, we will see

in Section 4.7.2 that the former has higher throughput in the presence of high volume

of updates. As devices at the edge are generally write-heavy, LSCRDT is thus a better

option than δ-CRDT for edge applications.
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4.7.2 Scalability

To evaluate the scalability of LSCRDT, we randomly generate workloads of 10000

operations. As updates are more expensive than reads in general, we vary the percentage

of update (read) operations among 10(90), 25(75), 50(50), 75(25), and 90(10) to observe

the impact of workloads with different update/read composition on scalability. We also

vary the number of replicas the client sends requests to among 1, 2, and 3. All 3 replicas

are live and perform merge (LSCRDT) or join (δ-CRDT) even if the client sends requests

to fewer than 3 replicas. A client evenly distributes operations across replicas using

round-robin without delay.

Figure 4.5 shows the throughput of the system in operations per second. For LSCRDT

registers, throughput nearly doubles as the number of replicas is increased from one to

two for most workloads. This increase is around 2.8 times when the number of replicas

is increased from 1 to 3 for all workloads except that with 10% updates. The increase in

throughput with the increase in the number of replicas indicates that LSCRDT registers

are scalable, although this increase is not strictly linear. This is due to the processing

required for background merge steps. Figure 4.5b reveals a similar increase in throughput

for counter as the number of replicas increases. We can observe a similar trend in increase

in throughput for set for workloads with a higher percentage of update from Figure 4.5c.

The increase in throughput is not as pronounced for workloads with a lower percentage

of update due to the higher read latency of LSCRDT set.

Figure 4.6 compares LSCRDT throughput with that of δ-CRDT for the data types

using three replicas. As the percentage of update is increased, LSCRDT data types

start showing higher throughputs than δ-CRDT counterparts. Specifically, LSCRDT

register and counter show 1.1x, 1.2x, 1.3x, and 1.3x higher throughput than δ-CRDT

counterparts for workloads with 25, 50, 75, and 90 percentage of update respectively.
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Figure 4.7: Comparison of average latency in milliseconds between 5000 non-versioned
reads (i.e. reads to the latest version after each update) and 5000 versioned reads (one
read per version after all updates).

In the case of LSCRDT set, the increase in throughput is 1.1x, 1.4x, 1.7x, and 1.8x

than its δ-CRDT counterpart for workloads with 25, 50, 75, and 90 percentage of update

respectively. Note that LSCRDT set has a higher read latency but a lower write latency

than δ-CRDT set. The lower write latency along with the efficient lock-free merge step

of LSCRDT results in a higher throughput in LSCRDT set for workloads with a high

volume of updates. As edge applications are typically write-heavy, LSCRDT presents

itself as the better option.

4.7.3 Versioned Reads

Maintaining version history is a unique feature of LSCRDTs not available in CRDTs.

To understand the overhead associated with querying earlier versions, we send 5000

update requests to a data type. We send two sets of 5000 read requests: (i) we send

one read request after each update request for non-versioned read, and (ii) we send 5000
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Figure 4.8: Scalability of PEDaLS using LSCRDT’s replication protocol.

read requests after all the update requests for versioned read (one for each version). We

show the average latency of the non-versioned and versioned reads in Figure 4.7. The

latencies for versioned and non-versioned reads for both counters and registers are similar.

However, set presents us with a different scenario. The latest operations are cached in

memory and can be used for non-versioned read, whereas versioned reads might require

reading the OpLog as described in Section 4.4.3. Due to this extra read from the OpLog,

versioned reads (1.29ms) experience higher latency than non-versioned (1.17ms) reads on

average.

4.7.4 PEDaLS Replication and Scalability

To evaluate the scalability of PEDaLS when replicated using LSCRDT’s protocol,

we use a subset of the CityPulse temperature dataset used in Section 3.4.3. As updates
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are more expensive than reads in general, we augment the subset with random reads

to capture the performance of PEDaLS under diverse workloads consisting of different

percentages of update and read operations. We consider update percentages (read %

is in parenthesis) of 1(99), 25(75), and 50(50) to observe the impact of workloads with

different update/read compositions on scalability over 10000 operations (update+read).

We also vary the number of replicas the client sends requests to among 1, 5, and 10.

The round trip latency among the instances (replicas+client) as determined through the

ping utility varies between 0.53ms to 0.93ms asymmetrically on average. The network

bandwidth among the instances is approximately 1Gbits/second. To simulate the effect

of horizontal scaling where clients located in different regions access different replicas,

a client process evenly distributes operations across replicas using round-robin without

delay.

Figure 4.8 shows the throughput of the system in operations per second for PEDaLS

bst. As evident from the figure, throughput decreases with the increase in write percent-

age. This is expected, as update operations involve appends to multiple logs in addition

to searching for a value. Moreover, we observe that although throughput of PEDaLS

increases with an increase in the number of instances, this increase is not linear. This is

due to the processing required for background merge steps.

4.7.5 Effect of Knowledge Logs in Conflict Detection

To reduce the time required for conflict detection, LSCRDT uses Knowledge logs.

In this section, we explore the time benefit provided by Knowledge logs by isolating

the time to detect conflict between two replicas. Specifically, we run two different sets

of experiments. In one set of experiments, as has the case been so far, LSCRDT uses

Knowledge logs to optimize conflict detection. In the other set of experiments, LSCRDT
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Figure 4.9: Conflict detection with and without Knowledge logs.

performs naive conflict detection, i.e., reads the OpLogs of the reader and the source

from the top until a point of mismatch is found or one of the logs is exhausted.

For this experiment, we vary the number of update operations among 100, 200, and

300. We send half of the operations to one replicaXA and the other half to another replica

XB, both chosen from the pool of replicas used in Section 4.7.4. As the execution time of

conflict detection can depend on the role (source or reader) of a replica, we calculate the

time for conflict detection in both ways and take the average. The number of operations

already present in a replica can affect the time for conflict detection as well. Hence, we

consider four cases: (i) both XA and XB each have half of the operations, (ii) XA has

half of the operations and XB has all of the operations (due to a merge step), (iii) XA

has all of the operations and XB has half of the operations, and finally (iv) both XA and

XB have all of the operations.
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We show the total time taken for conflict detection for different workloads in Fig-

ure 4.9. Our results show that conflict detection with Knowledge log can be 11.34x as

fast as conflict detection without Knowledge log for 300 update operations. In general,

irrespective of whether Knowledge log is used or not, the time for conflict detection

increases with the number of update operations. This is expected, as more update oper-

ations result in more entries in both OpLog and Knowledge log, which in turn leads to

more log scans.

4.8 Summary

In this work, we introduce LSCRDTs to integrate the benefits of distributed causal

logging into operation-based CRDTs. By doing so, LSCRDT can provide a robust and

uniform way to reverse operations for arbitrary data types. In addition, LSCRDT over-

comes the restrictions of commutative data types, exactly-once causal delivery, operation

idempotence, and data type-specific join operations (a side effect of state-based CRDTs).

Finally, LSCRDT is the first CRDT system to track version histories of data structures

and provide programmatic access to them. Our results show that LSCRDT can result in

up to 1.8x higher throughput than δ-CRDT, making it suitable for update-heavy edge

workloads.
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Algorithm 3 Conflict Resolution
Require: reader replica Xi, source replica Xj , sourcestart and readerstart value obtained from

Conflict Detection stage
Ensure: Xi is not lagging behind Xj

1: procedure ResolveConflict(sourcestart, readerstart)
2: Ri ← {OpLog(Xi)[readerstart], . . . , tail(OpLog(Xi))}
3: Rj ← {OpLog(Xj)[sourcestart], . . . , tail(OpLog(Xj))}
4: for all e ∈ Rj do
5: epred ← the entry before e in Rj ▷ fixed dummy value assumed for first element
6: insert(e.vs, epred.vs) in Ri

7: end for
8: Prune OpLog(Xi) starting from sequence number readerstart
9: for all e ∈ Ri do
10: Replay/Execute e.op and append e to OpLog(Xi)
11: q ← sequence number of e in OpLog(Xi)
12: k ← e.vs.nodeID
13: if e.vs > tail(Kk

i ).vs then
14: append (e.vs, q) to Kk

i

15: end if
16: end for
17: end procedure
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Chapter 5

GreenCoin: A Renewable

Energy-Aware Cryptocurrency

The previous two chapters demonstrated how data versioning and replication can make

distributed IoT systems reliable and fault-tolerant. Data trustworthiness is paramount

in this era of data-driven IoT applications. While replicated and versioned data are sig-

nificant for a well-functioning system, tamper-proof data is desirable from the end user’s

perspective. The popularity of blockchain systems has resulted in their wide adoption for

making application data tamper-proof. However, most blockchain protocols are resource

intensive and can adversely affect the environment due to the massive energy required.

Moreover, the existing blockchain protocols do not differentiate between renewable and

non-renewable energy. Given that the world is moving towards renewable energy due to

its availability, affordability, and overall favorable impact on the climate, the next gen-

eration of blockchain protocols must make this distinction and preferably become more

energy-efficient. In this chapter, we propose a novel renewable energy-aware blockchain

protocol, GPoS, and describe how we can use this to drive an energy-efficient cryptocur-

rency, GreenCoin.
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Cryptocurrencies powered by blockchain have the potential to revolutionize society

along several dimensions, from commerce to political and corporate governance, to social

trust. These innovations and potential benefits carry environmental costs largely (but

not exclusively) accruing to the energy required by distributed cryptocurrency implemen-

tations. At a high level, a “crypto coin” (an unforgeable value-carrying token) represents

some amount of “work” associated with its production.

In the original formulations of cryptocurrencies (cf. [120, 121]) “miners” solved com-

putationally intensive or memory intensive [122] puzzles, the solutions they announced

to all participants, which could easily verify the solutions. These “proof-of-work” (PoW)

protocols created a consensus among all participants about the temporal order in which

puzzles were solved that could only be subverted by an adversary controlling a substan-

tial fraction [123] of all of the participants. By attaching a transaction to each puzzle

solution, then, the overall system could achieve consensus on transaction order in a way

that is difficult (or expensive) to subvert. In particular, it was possible to determine the

“earliest” transaction that achieved consensus thereby preventing one puzzle from being

used to represent multiple transactions. That is, the solution to a puzzle (termed the

“minting” of a crypto coin), could only be spent once.

PoW protocols are currently in use by many cryptocurrencies, e.g., Dogecoin [124],

Monero [125], Litecoin [122], and most notably Bitcoin [120]. Colored coin [126], a

cryptocurrency based on Bitcoin, proposes tracking the origin of a given bitcoin and color

a set of coins to distinguish it from the rest. However, they all require the computers

solving the puzzles (i.e., the “miners”) to expend much electrical energy on each puzzle

solution. Furthermore, puzzle solutions are deliberately made rare to prevent inflation.

Thus as solver technology improves (often due to greater energy expenditure), energy

consumption by miners increases.

To address the environmental concerns associated with PoW protocols, particularly
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concerning the use of fossil fuels to generate the electricity they require, cryptocurrencies

have been turning to new “Proof-of-Stake” (PoS) protocols that are far more energy

efficient. PoS protocols, unlike their PoW counterparts, rely on economic penalties to

incentivize truth-telling concerning transaction order and uniqueness. With these new

protocols, “miners” announce transactions without solving a puzzle associated with each.

Instead, each miner is “staked” to a hoard of crypto cash (that carries value) which can

be confiscated should a miner make a false announcement where veracity is determined

by consensus.

By eliminating the need to solve energy-consuming puzzles, PoS protocols are far more

energy efficient than corresponding PoW protocols. As a result, many current cryptocur-

rencies (c.f. [127, 128, 129]) have begun to use them, most notably Ethereum [130].

Regardless of whether a cryptocurrency uses a PoW protocol or a PoS protocol,

however, they require a distributed collection of computers to achieve consensus on a

global transaction order in a way that can be recorded (again by all participants) that is

tamper-proof. These computers must consume electrical power to implement the protocol

functionality.

In this chapter, we describe GreenCoin – a cryptocurrency that marks each crypto coin

with an indelible measure of the renewable energy that was used to create it. GreenCoin

relies on a new PoS protocol (GPoS) to attach a “green score” (that maps to renewable

energy available at the time of the transaction proposal) to each crypto coin in a way that

cannot be removed. Further, GreenCoin and GPoS permit the formulation of “green”

smart contracts that specify a minimum greenness score that must be presented to execute

the contract. Note that we have defined GPoS as a PoS protocol as we believe future

protocols are likely to take this form, but the fundamental tenets of GreenCoin apply to

PoW protocols as well.

Implementing GreenCoin and GPoS requires that we
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• develop a way to score each coin with a greenness score and to compose/decompose

scores from multiple coins when they are used to represent transactions,

• develop an incentive system that favors (i.e., attaches greater value to) greener

coins, and

• develop a system for securely determining the amount of renewable energy used

when minting a coin.

In this chapter, we describe research results addressing these three challenges. We de-

scribe a methodology for attaching a green score to each coin, each wallet (containing

multiple coins), and for transacting green scores. We also describe the use of Trusted

Execution Environments (TEEs) and attestation [131] to determine the location of each

machine proposing a transaction. This location information then indexes fuel mix data

by location either from a publicly available database such as the US Energy Informa-

tion Administration (EIA) database [132] or from energy utility records that must be

published in the ledger. In this work, we assume that fuel mix data by geographic re-

gion is available in real-time (or near real-time) from a trusted data source. We validate

these results using a prototype “permissioned” implementation of GreenCoin designed to

support Internet of Things (IoT) deployments comprising participants whose identities

are not anonymized. Our results indicate that GreenCoin feasibly captures and pub-

lishes into the ledger the relative renewable energy usage associated with each blockchain

transaction and also enables smart contracts that are contingent upon sufficient use of

renewable energy.
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5.1 Related Work

In this section, we provide a literature review on the basic building blocks of Green-

Coin. GreenCoin requires (i) an energy-efficient consensus protocol for blockchain, (ii) a

trusted and secure way to find the location of a blockchain node, and (iii) a method to in-

corporate a trusted source of fuel mix data for use by the system. Hence, we first compare

different protocols used in current cryptocurrency systems and explain our choice of PoS.

Next, we discuss the current state-of-the-art in location verification and justify our choice

of using trusted execution environments. Finally, we present sources of fuel mix data, re-

view methods to incorporate third-party data into blockchain, and introduce our chosen

system to do so, called Depot [133]. Depot is an open-source data lake that is designed to

allow community data contribution with contributor-defined access control policies and

shared hosting costs. Depot was developed as part of the RiPiT project (cf. [134, 135]) to

host carbon-emissions data from public sources and community-contributing researchers.

5.1.1 Consensus Protocols

Most cryptocurrencies use blockchain as the core underlying technology [136]. When

it comes to blockchain, there are multiple consensus protocols, such as proof of work

(PoW), proof of stake (PoS), proof of authority (PoA), proof of retrievability (PoR),

proof of elapsed time (PoET), etc. [137]. However, two of the most widely used protocols

are PoW and PoS [138].

In PoW, any node that wants to participate in mining, i.e., block generation must

solve a computationally complex problem to ensure the validity of the newly mined

block [139]. Although finding the solution to this problem is challenging, verifying the

solution is easy. The main criticism against PoW is its high energy consumption required

to solve these crypto puzzles. The Bitcoin network, which uses PoW, was estimated to
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consume 2.55 gigawatts of electricity in 2018 [140]. This consumption was projected to

reach 7.67 gigawatts, making it comparable to the energy consumption of entire countries

such as Ireland (3.1 gigawatts) and Austria (8.2 gigawatts) [140]. As of July 2021,

Bitcoin’s carbon footprint showed 64.18 megatons of CO2 emission, close to the emissions

by Greece and Oman [141]. This high CO2 footprint has led to a spike in research interest

in energy-efficient protocols.

In contrast, PoS does not involve computationally intensive crypto puzzles and hence

it is comparatively energy-efficient. In PoS, a blockchain node can opt to stake, i.e.,

set aside a portion of its coins as collateral. Instead of mining power as in PoW, the

probability of a node being selected as the proposer, i.e., the entity permitted to create

the next block (and hence earn the associated reward), is proportional to the stake. Just

as a node can receive a reward for honest behavior, it can be penalized for malicious

behavior. This penalty is executed in the form of slashing, i.e., taking away a portion of

the stake. Due to the energy efficiency of PoS over PoW, we base our protocol, Green

PoS (GPoS), on PoS.

5.1.2 Location Verification

Location-aware Internet applications commonly use IP addresses to determine the

location of a connected device [142]. There are two primary methods of IP geolocation:

(i) IP geolocation databases and (ii) active network measurements [143].

IP geolocation databases provide a mapping between an IP address and (lat, long)

coordinates [144]. These databases can be either proprietary [145] or public [146, 147].

Although the exact methods of constructing these databases are not always divulged to

the public, they are often based on a combination of whois services, autonomous system

(AS) numbers, DNS LOC records, etc. [143, 144]. While these databases can achieve
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country-level accuracy, discrepancies among databases are prevalent regarding city-level

accuracy [148]. The accuracy of these databases starts diminishing with increasing gran-

ularity. As the availability of renewable energy can vary even within the same city, IP

geolocation databases are inadequate for supporting GreenCoins.

Measurement-based geolocation algorithms heavily depend on a set of geographically

distributed landmarks with known locations [143, 142]. These landmarks measure differ-

ent network properties between them and the target IP, such as the delay and path taken

by traffic [149, 150]. However, the availability of such landmarks can be sparse [142], re-

sulting in lower geolocation accuracy. Moreover, studies suggest that an adversarial target

can falsify measurements without detection, thus advertising itself to be at a different

location than it truly is [143]. Hence, measurement-based geolocation algorithms are also

insufficient for our application.

A relatively accurate approach to determining the location of a machine is to equip

it with a GPS module [151]. However, having a tamper-proof GPS module does not

prevent a machine from falsifying its location. In addition, we must ensure that both the

process that retrieves data from the GPS device and the communication channel between

the process and the GPS device are tamper-proof. A prime candidate for such a system

is a trusted execution environment (TEE). Studies suggest that using TEEs coupled

with GPS devices can provide a secure and tamper-proof way of location verification

(cf. [152, 153, 154]).

Trusted Execution Environments: A trusted execution environment is an isolated

processing environment in which applications can be executed while precluding malicious

interventions of the host OS [155]. Examples of popular technologies used to provide

a TEE are Arm TrustZone [156] and Intel SGX [157]. A TEE provides isolation for

programs from the rest of the device, called the rich execution environment (REE).

REEs typically include an operating system, e.g., Linux, and user space applications.
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The TEE uses a combination of software and hardware-based security mechanisms to

ensure that applications running inside the TEE remain secure even when the REE is

compromised [158]. Figure 5.1a shows a high-level diagram of the interaction among

REE, TEE, and peripherals within a single device. Desired security features of a TEE

include isolated execution, secure storage, remote attestation, secure provisioning, and

trusted path [159]. Many TEEs provide most of these features, while some can be built

upon the existing functionalities provided by the TEE. For example, Intel SGX provides

built-in remote attestation, which verifies three things: (i) the identity of an application,

(ii) whether it is intact, i.e., that it has not been tampered with, and (iii) that it is

running securely inside the TEE [160]. Although Intel SGX does not provide a trusted

path between peripherals and itself out-of-the-box, multiple studies show it is possible to

establish secure paths between I/O devices and Intel SGX [161, 162].

Security Concerns of TEEs and Countermeasures: Despite the promising se-

curity features of TEEs, multiple studies have demonstrated that TEEs are susceptible

to some attacks [163, 164]. Many of these are side-channel attacks that compromise

the secure keys used for attestation, rendering the software running in these TEEs un-

trustworthy [158]. Cache-based side-channel attacks such as prime+probe [165] and

flush+reload [166] observe the timing differences of different measurements to identify

whether data is retrieved from the cache or the main memory, thereby allowing the

attacker to learn about the memory access patterns of the victim. Transient execution-

based side-channel attacks exploit branch misprediction leading to discarded instructions

after a pipeline flush [167]. SgxPectre [168] and Foreshadow [169] are examples of tran-

sient execution-based side-channel attacks capable of extracting secret keys from the vic-

tim TEE. One study suggests using a secure co-processor such as Google’s Titan M [170]

accessible by TEE but separate from the main processor can circumvent side-channel

attacks [158]. The study assumes a secure communication channel between the TEE and
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the co-processor, which makes the setup free of side-channel attacks. The co-processor is

entrusted with performing sensitive cryptographic operations and storing cryptographic

secrets.

5.1.3 Energy Mix Data

The total energy consumed in a given geographical region can be broken down by

primary energy sources. This mapping between what fraction of consumed energy is

generated by which source is known as fuel mix or energy mix [171]. Throughout this

chapter, we refer to the renewable energy portion of the energy mix as the energy mix

score. Thus the energy mix score can be between 0.0 (no fraction of energy was ob-

tained from renewable sources) to 1.0 (all consumed energy was obtained from renewable

sources). This is essentially a greenness score of a region at a given time. The higher this

score is, the more green the region is, i.e., the proportionally more the region has energy

generated by renewable sources.

Independent System Operations (ISOs) maintain renewable energy data for different

regions, e.g., California ISO [172] maintains renewable energy data for California. We

can query these data sources to get an estimate of renewable energy that was available

at a specific time and region. Hence, when minting a coin in GreenCoin the proposer can

query these sources and assign a score to the minted coin. GreenCoin uses an existing

system called Depot that pools multiple ISO data sources and exposes an API to query

the sources. Note that traditionally, third-party data is incorporated into blockchain

networks using oracles [173]. Due to the absence of a competing system providing data

similar to Depot, Depot itself acts as an oracle. In Section 5.2, we describe how Depot

and a blockchain node securely communicate with each other.
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5.2 GreenCoin System Architecture

In GreenCoin, the location of a blockchain node, i.e., a machine running the blockchain

protocol, plays a significant role. The system favors accounts maintained by nodes with

a higher fuel mix score when it comes to endowing rewards, e.g., for block creation, and

privileges, e.g., executing smart contracts. Hence, there is a strong coupling between a

blockchain node and a blockchain account. Although a blockchain node can maintain

multiple different accounts, for the simplicity of exposition, we assume there is a one-

to-one mapping between a blockchain node and a blockchain account. Throughout this

chapter, we use the terms node and account interchangeably.

Figure 5.1 shows the high-level system architecture for GreenCoin using Green PoS

(GPoS). As described in Section 5.1.2, each node runs a TEE. Each node is also equipped

with a tamper-proof GPS device. This GPS device is connected to the TEE through a

secure I/O channel. Blockchain nodes contact Depot to retrieve their fuel mix score. As

TEEs can be resource constrained, we opt to run only functions which need an extra

layer of security and trust on TEEs rather than the full blockchain system. There are

two cases when we execute operations inside a TEE: for (i) block proposal, and (ii) smart

contract execution.

At the time of block creation, a node must determine the fuel mix score for its location.

The location data must come from the TEE to ensure the node cannot advertise a false

location. Therefore, to retrieve the fuel mix score, the client application first requests

the trusted application running inside TEE to read the location data. In response, the

trusted application reads the location from the tamper-proof GPS device through the

secure I/O provided by the TEE, signs the location reading, and sends it back to the

client application. The client application itself cannot tamper with this location data

as the TEE signs it with a tamper-proof hardware key. Once it receives the location
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(a) Details of a single node running a TEE.
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Figure 5.1: High level system architecture of GreenCoin.
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Figure 5.2: Steps involved in retrieving fuel mix score for block creation.

data, it sends a request encapsulating the location data to Depot to retrieve the fuel mix

score. Depot can check the trustworthiness of the trusted application through remote

attestation. Once Depot verifies the program run by TEE, it decrypts the location data

and sends the signed fuel mix score to the client application. Upon receipt of the fuel

mix score, the client application finalizes the block by adding the signed fuel mix score to

the block and propagating it to other nodes. The other nodes do not need to execute any

extra verification steps, as they can simply decrypt the signed fuel mix score. Figure 5.2

delineates the steps involved in retrieving the fuel mix score as a part of the block creation

process.

Smart contracts in GreenCoin are also executed inside TEEs. GreenCoin imposes

single-node execution of a smart contract (cf. Section 5.3.6), where the smart contract is

executed only by the block proposer, which proposes the block containing the transaction

to execute that contract. Hence other nodes must have a mechanism to verify that the

proposer executed the intended contract along with the appropriate input and output.

GreenCoin uses TEEs to implement this trust mechanism. Whenever a proposed block

contains a transaction to execute a contract, the proposer executes the contract in the

TEE and propagates supplementary information along with the proposed block to other

nodes. The supplementary data includes a verifiable report of the code executed by the

TEE, along with its input and output.
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In this work, our primary focus is on the underlying blockchain protocol and not the

inner workings of off-the-shelf TEEs. Hence, we assume the nodes are running TEEs

and implement a proof of concept distributed system executing GPoS using Python. We

empirically evaluate GPoS-driven GreenCoin using multiple cloud instances and present

our findings in Section 5.4.

5.3 GPoS Implementation

This section describes the details of the GPoS building blocks. We first present how

coins are represented and how their greenness score is determined. Then, we define the

greenness score of a collection of coins, i.e., the wallet or balance of an account. Next, we

describe how stakes in GPoS differ from other PoS protocols. Following that, we present

how honest proposers are incentivized through block reward and malicious proposers

are disincentivized through slashing. Then, we explain the different aspects of a smart

contract. Finally, we wrap up this section with an overview of the cryptoeconomics of

GPoS-powered GreenCoin.

5.3.1 Coins

Each coin in GreenCoin is tagged with a greenness score, which signifies the per-

centage of renewable energy available during the time and at the site of coin generation.

Hence, in contrast to other cryptocurrencies, each coin in our system is represented by

two values – one to represent the greenness score of the coin and the other to represent

the amount of coin. Throughout this chapter, we use the tuple (score, amount) to rep-

resent a coin. For example, (0.5, 10.0) represents a coin of amount 10.0 having a score

of 0.5. The amount of a coin is divisible, but not the score. For example, the owner of

the above coin can decide to transfer half the amount of the coin to another account. In
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this case, the second account receives the coin (0.5, 5.0) and the first account is left with

(0.5, 5.0). However, the first account cannot send (0.25, 10.0) to the second account.

5.3.2 Wallet Score

Algorithm 4 getWalletScore
Require: list of coins in (score, amount) tuple format, C
Ensure: wallet score
1: sumDot← 0; sumAmount← 0;N ←length(C)
2: for k ← 1 to N do
3: c← C[k]
4: sumDot← sumDot+ c.score× c.amount
5: sumAmount← sumAmount+ c.amount
6: end for
7: if log(sumAmount) ≤ 0 or log(sumDot) ≤ 0 then
8: return 0
9: else
10: return log(sumDot)/log(sumAmount)
11: end if

Over time, an account may consist of an array of coins with different greenness scores.

We term the collection of coins owned by an account as its account balance or wallet and

represent it as a list of coins [(score1, amount1), . . . , (scoren, amountn)]. As our goal is

to favor accounts having greener coins, we need a metric to evaluate the overall greenness

score of an account, which we term the wallet score. We define wallet score as the ratio of

the logarithm of the dot product between the scores and amounts to the logarithm of the

sum of amounts. Algorithm 4 shows the wallet score calculation. Note that our choice

of wallet score calculation over a normalized dot product allows us to assign different

scores for wallets having coins with the same score but different amounts. For example,

two different wallets [(0.5, 10.0)] and [(0.5, 100.0)] have a score of 0.50 according to the

normalized dot product. However, our approach differentiates these two cases and assigns

the scores 0.70 and 0.84 to the two wallets, respectively. Our method, as evident from

115



GreenCoin: A Renewable Energy-Aware Cryptocurrency Chapter 5

line 7 of Algorithm 4, uses only non-negative wallet scores setting the value to 0 when

either logarithm is negative.

5.3.3 Stake

In PoS protocols, an account can “stake” or set aside a portion of its balance as

collateral. The higher the stake compared to other accounts, the greater the probability

of the account becoming a proposer. Malicious behavior by the account results in a

portion of the stake being lost, i.e., slashed (cf. Section 5.3.5). As our goal is to favor

accounts with higher greenness scores, stake in GPoS is not dependent only on the amount

of coins owned by an account but on the overall wallet score of the account. However,

an account can not selectively stake its balances, as this can give a false representation

of the greenness of an account. For example, the wallet score of an account with balance

[(0.1, 1000), (1.0, 10)] is 0.68. If the account had been able to stake a portion of its balance,

it could have chosen to stake [(1.0, 10)] and advertise itself as having a greenness score

of 1.0. Hence, GPoS does not allow an account to explicitly stake balances, instead, the

full wallet acts as the stake. Consequently, slashing impacts the full wallet of the account

rather than a portion of it.

5.3.4 Block Reward

A proposer generates a coin c as a reward when a block is successfully proposed

with approval from at least 51% of the nodes. The score of c is the fuel mix data

received from Depot. This data represents the fraction of energy that is renewable at

the time of generation of the coin and the location of the node on which the account is

running. The amount of c is the average score of the transactions within the proposed

block. Just as a coin has a score, so does a transaction. The score of a transaction
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Algorithm 5 endowBlockReward
Require: block with embedded signed fuel mix score from Depot, b

minimum reward amount for empty transactions, m
Ensure: none, ensures appropriate state change
1: amount← 0;N ←length(b.transactions)
2: for k ← 1 to N do
3: tx← b.transactions[k]
4: amount← amount+ tx.score
5: end for
6: amount← amount/N
7: if amount = 0 then
8: amount← m
9: end if
10: updateBalance(b.proposer, b.depotScore, amount) ▷ adds

the coin (b.depotScore, amount) to the block proposer’s balance, followed by updating its
wallet score.

depends on its type as presented in Table 5.1. Making the amount of c dependent on the

scores of the transactions incentivizes the proposers to include transactions with higher

scores in blocks, which in turn encourages all the nodes to maintain a high greenness

score throughout the GreenCoin deployment. If the proposed block contains an empty

transaction list, a predefined default value is used as the amount of c. Algorithm 5

presents the calculation of block reward.

5.3.5 Slashing

In PoS algorithms, slashing is used to discourage malicious behavior by taking away a

portion of the stake of the slashee, i.e., the node being slashed. At the same time, by re-

warding a portion of the stake to the slasher, i.e., the block proposer whose block included

the slashing transaction, nodes are encouraged to punish malicious behavior actively. In

GPoS, slashing performs a similar functionality. However, slashing is relatively complex

in GPoS due to the coin being not only a single value but an amount tagged by a score.

GPoS slashes a faulty proposer so that its wallet score falls below half its pre-slashed
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Algorithm 6 slashAccount
Require: public key of slasher, pslasher

public key of slashee, pslashee
list of coins in (score, amount) tuple format owned by slashee, Cslashee

minimum amount of coin at or below which the amount is set to 0, m
factor by which amount of coin is reduced at each slashing step, f , (0.0 ≤ f < 1.0)

Ensure: none, ensures appropriate state change
1: sort(Cslashee) ▷ sorts Cslashee in descending order of score
2: Sc ← getWalletScore(Cslashee) ▷ current wallet score
3: St ← Sc × 0.5 ▷ target wallet score
4: N ←length(Cslashee)
5: Cinitial ←copy(Cslashee) ▷ creates a copy of Cslashee

6: Cdiff ← [] ▷ list of slashed coins is populated here
7: for k ← 1 to N do
8: while Sc > St and Cslashee[k].amount > 0 do
9: if Cslashee[k].amount < m then
10: Cslashee[k].amount← 0
11: else
12: Cslashee[k].amount← Cslashee[k].amount× f
13: end if
14: Sc ← getWalletScore(Cslashee)
15: end while
16: amount′ ← Cinitial[k].amount− Cslashee[k].amount
17: append(Cdiff , (Cslashee[k].score, amount′)) ▷ appends a coin to the list Cdiff

18: if Sc ≤ St then
19: break
20: end if
21: end for
22: assignBalances(pslashee, Cslashee) ▷ sets the balance of slashee to Cslashee, followed by

updating its wallet score
23: addBalances(pslasher, Cdiff ) ▷ adds the coins in Cdiff to the balance of slasher, followed

by updating its wallet score
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Table 5.1: Different types of transactions and their scores.
type description score
TRANSFER transfers a coin c

from
one account to
another

score of c

SLASH slashes an ac-
count

predefined de-
fault

PEN SLOW penalizes slow
node

predefined de-
fault

CREATE SC creates a smart
contract

product of score
and amount of
gas1

EXEC SC executes a smart
contract

product of score
and amount of
gas2

1,2 cf. Section 5.3.6

value. Potentially numerous combinations of coins can be taken away to achieve this

condition. However, GPoS starts slashing by taking away the coins with higher scores

first. At each iteration of slashing, GPoS takes away a portion of the amount of the

highest-scored coin and calculates the new wallet score. It stops if the new wallet score is

half of the initial score. Otherwise, it continues slashing a portion of the highest-scored

coin. If the amount of this coin falls to zero or a predefined minimum value, this coin is

completely removed from the account, and the process continues from the next highest

coin. Once the set of coins that must be deducted from the malicious node’s wallet is

determined, those coins are added to the wallet of the slasher as a reward. Algorithm 6

delineates the steps in slashing.

5.3.6 Smart Contract

Smart contracts are an integral part of any general-purpose blockchain which intends

to extend beyond the application of cryptocurrency. Traditionally, a smart contract is an
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executable piece of code that is immutable once created and executes on every node when

invoked. This is extremely wasteful but imperative when contract execution cannot be

verified by other nodes in the system. Conversely, since GreenCoin aims to be an energy-

aware blockchain and stipulates that each node is equipped with a TEE, GreenCoin is

capable of imposing a single-node execution model. In this, the account which invokes a

smart contract can set a minimum threshold for the executor’s energy mix score, and a

block proposer can only add the invocation transaction to a block if their energy mix score

is greater than or equal to the specified threshold. As discussed in Section 5.2, the block

proposer sends supplementary data containing a verifiable report of the code executed by

the proposer’s TEE along with its input and output during block propagation. The other

nodes in the system can verify the execution of the smart contract along with necessary

state changes from this supplementary data.

Algorithm 7 getMaxExecutionTime
Require: gas in (score, amount) format, g

upper range of execution time, tupper
lower range of execution time, tlower

Ensure: maximum execution time in seconds
1: if g.score× g.amount ≤ 1 then
2: return tlower

3: end if
4: n = log(g.score× g.amount)
5: d = log(g.amount)
6: return ⌈tupper × n/d⌉

Since the languages used to write smart contracts are expressive enough to be Turing

complete, they are susceptible to the halting problem. Therefore, smart contract sys-

tems generally use the concept of gas to ensure termination. Gas refers to the unit of

measurement for the computational effort required to execute a particular operation or

transaction. If a node executing a smart contract runs out of gas before the computation

finishes, the contract execution stops. Since only a finite amount of gas is made available
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to nodes, the execution is guaranteed to terminate.

In GreenCoin, Gas is an up-front remittance paid by a node R which requests the

execution of a smart contract. This is a fee paid by R for using resources on the executor’s

machine. Gas is represented as a single coin (score, amount). One unit of gas is essentially

a coin that is burnt, i.e., not paid to any particular entity but removed from the wallet

of R. At the time of execution, gas is used to calculate the CPU time allotted to the

contract for execution.

Algorithm 7 shows how we determine the amount of time that can be purchased with

a unit of gas. This procedure accepts a predefined range of time [tlower, tupper] and returns

a time within this range that can be purchased per unit of gas. If an execution runs out

of the time that it paid for, the execution is halted and any state changes that were made

are reverted. Given two different units of gas with the same value of (score× amount),

the unit with a higher score component yields a longer execution time according to

Algorithm 7. For example, consider the case in which [tlower, tupper] is [1, 10] and compare

gas (0.5, 10) to gas (0.8, 6.25). Both gas tuples generate the same product of amount and

score but the first can afford a maximum execution time of 7 seconds while the latter can

afford a maximum execution time of 9 seconds, when computed on line 6 of Algorithm 7.

Note that the conditional statement in line 1 of Algorithm 7 imposes a natural cutoff

for the combination of score and amount below which the unit can buy the minimum

execution time only.

In GreenCoin, contracts are effectively accounts, known as contract accounts, con-

trolled by the logic in their code rather than by cryptographic key pairs. Contracts

can receive coins and send coins programmatically from accounts and contract accounts.

Contracts also have access to some additional information: account balances, contract

account balances, the states of all contracts, and the invoking transaction’s details. This

allows contracts to act dynamically based on the current state of the blockchain.
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5.3.7 Cryptoeconomics

GreenCoin’s principal cryptoeconomic goal is to provide incentives that encourage

nodes to use renewable energy for every interaction in the system. We provide four key

incentives: (i) Given any two accounts with the same amount of coins, the account having

coins with a higher score has a greater probability of proposing blocks and generating

coins. (ii) Block rewards are generated based on the proposer’s energy mix score and

the average score of the transactions in the block. (iii) For this reason, nodes prefer

including transactions with higher scores in a block, resulting in a higher probability of

such transactions being included. (iv) Given any two units of gas with the same product

of score and amount, more execution time for contracts can be purchased for the unit

having a higher score.

We disincentivize nodes from exhibiting byzantine behavior by reducing their proba-

bility to participate in block proposition and, effectively, lowering their reputation. How-

ever, we acknowledge that slashing is a severe penalty as it halves wallet score, which has

severe implications on the likelihood of getting selected as a proposer. Thus, slashable

offenses must be provably attributable based on an invalid block proposal. An invalid

proposal consists of an invalid block number, timestamp, state hash, transaction set, or

signature. Additionally, to handle crash faults while disincentivizing being offline for

extended periods, nodes incur a minor penalty if they fail to propose a block when they

should.

Given these incentives and disincentives, the primary objective of GreenCoin is not to

be a medium of exchange, store of value, or unit of account. Instead, GreenCoin’s primary

objective is to act as a carbon reputation credit, where an account that possesses more

coins of a higher score is perceived as more reputable by the protocol. This reputation

is reflected in its privileges. As a node continues to act honestly and consume a high
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amount of renewable energy, its reputation and privileges increase over time. Conversely,

if a node exhibits negative behaviors, GreenCoin drastically reduces its reputation by

first removing coins with higher scores during slashing.

5.4 Evaluation

In this section, we evaluate multiple aspects of GPoS and their impact on individual

nodes in the GreenCoin environment. The prototype implementation of GreenCoin is de-

signed for permissioned deployment in regional settings where users are not anonymized.

That is, each user is authenticated into the system and only authenticated users may

participate.

This use case originates with Internet of Things (IoT) applications for ecology (cf. [174])

and agriculture (cf. [119, 175]) where regional participants (who are concerned about car-

bon footprint) wish to use a tamper-proof ledger (with attribution) to share data, but not

necessarily with an anonymized global community of users. Examples of data that these

users wish to share include data on pest infestations (agriculture), predator movement

(ecology), aquifer health, etc. Indeed, we plan to use the GreenCoin prototype with our

collaborators as part of ongoing field deployments of IoT applications [176, 177, 178].

We note, however, that GreenCoin and GPoS are not specific to these use cases; we have

developed this prototype implementation for these domains to facilitate “real world”

validation by and feedback from a user community.

To evaluate GreenCoin, we first study how fuel mix affects block rewards and in turn

wallet score of an account. To demonstrate the impact of slashing on wallet score, we

then present experimental results for running with both honest and malicious nodes.

Finally, we evaluate the impact of the fuel mix score of a region on the ability of a node

to execute smart contracts.
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Figure 5.3: Wallet scores after mining 1000 blocks. The red dashed line represents
the initial wallet score. Fuel mix range increases from node 1 ([0.00, 0.04]) to node 25
([0.96, 1.00]) at an increment of 0.04.

We perform our experiments using 25 virtual machine instances in a private cloud

running Eucalyptus [82]. Each instance has a 2GHz CPU and 4GB of memory. Each

instance is a node in a GreenCoin deployment. We assume that there are 25 accounts,

each tied to a different node for the duration of the experiments. Unless otherwise

specified, we perform each experiment 10 times and present the average values. We also

present the standard deviation along with the mean when applicable, as error bars.

5.4.1 Block Reward

To demonstrate how the fuel mix score of a region affects block reward, we assume

each of the 25 nodes is located in a region with a different fuel mix score. The node with

ID 1 has the lowest range of fuel mix scores ([0.00, 0.04]). Each subsequent node with

124



GreenCoin: A Renewable Energy-Aware Cryptocurrency Chapter 5

a higher ID has a range of fuel mix scores that is 0.04 higher than the previous node.

Hence, the node with ID 25 has the highest range of fuel mix scores ([0.96, 1.00]). We

manipulate the interface to Depot to get a random fuel mix score for each node within

the appropriate range. Irrespective of its location, each account starts with a collection

of 100 coins total – 10 of each score ranging from 0.1 to 1.0 at an increment of 0.1. This

amounts to a wallet score of 0.8702. We run the experiment until 1000 blocks are mined,

each block having a single transaction. In each of these transactions, a node sends a coin

with a score of 0.5 and an amount of 1.0 to the node with the next higher ID (the last

node sends the coin to the first node). We keep the score and the amount of transferred

coins constant so that the final wallet score is dependent exclusively on the fuel mix of a

region rather than the executed transactions.

Figure 5.3 shows the final wallet score of the nodes. The red dashed line represents

the initial wallet score. As expected, nodes situated in regions with higher fuel mix scores

experience an increase in their wallet score. The node with the highest range of fuel mix

score reaches a wallet score of 0.9533, an increase of 0.0831. Conversely, nodes situated

in regions with lower fuel mix scores experience a decrease in their wallet score. The

node with the lowest range of fuel mix score reaches a wallet score of 0.7709, a decrease

of 0.0993.

5.4.2 Account Slashing

To demonstrate the effect of slashing, we divide the nodes into two groups – 13 honest

nodes and 12 malicious nodes. We manipulate the interface to Depot to get random fuel

mix scores that fall within the same range for all the nodes ([0.96, 1.00]), so that any

change in the final wallet score is only due to the slashing of nodes without any effect

from disparate block rewards. All the nodes start with the same collection of coins as
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Figure 5.4: Effect of slashing on wallet score of a single malicious proposer. All the
nodes have the same range of fuel mix scores.

described in Section 5.4.1. One of the malicious nodes proposes multiple faulty blocks.

Each of the blocks contains a single transaction that transfers a coin with a score of 0.5

and an amount of 1.0 from the proposer to the next malicious node. The execution of

this small number of transactions itself does not change the wallet score of the proposer

significantly. All the malicious nodes vote dishonestly to declare the faulty blocks as valid

and any valid block proposed by the honest nodes as invalid. We run the experiment

until the wallet score of the faulty node drops below 0.2.

Figure 5.4 shows the wallet scores each time the faulty proposer is slashed. The red

line represents the wallet score of the faulty proposer. As described in Section 5.3.5, each

time an account is slashed its wallet score falls to half of its pre-slashed value or less. As

the faulty proposer starts with a wallet score of 0.8702, four slashing events are enough

to make the wallet score drop below 0.2. In this case, it drops to 0.0984. The wallet
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Figure 5.5: Deviation of wallet scores between honest nodes and malicious nodes over
a prolonged period. All the nodes have the same range of fuel mix scores.

scores of all other nodes remain relatively unchanged.

To understand how wallet scores of honest and malicious nodes stabilize over time,

we construct a second experiment with the same topology and seed account balance as

the previous experiment. As in the previous experiment, all malicious nodes vote falsely.

Additionally, whenever a malicious node becomes the proposer it proposes a faulty block.

This behavior is different from the previous experiment, where only one specific malicious

node was proposing faulty blocks and the other malicious nodes were following a more

passive approach by only voting falsely. We run the experiment until 1000 blocks are

generated. Figure 5.5 shows the deviation in wallet scores between the honest and the

malicious nodes. Wallet scores of honest nodes gradually creep up to ∼ 0.95 whereas

those of malicious nodes fall drastically down to ∼ 0.10.
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Figure 5.6: Percentage of smart contract execution by each node. The execution
threshold of each smart contract is set to 0.5. Nodes with ID 1 to 12 have fuel mix
scores falling below 0.5. Fuel mix scores of node with ID 13 straddles 0.5 while other
nodes have fuel mix scores higher than 0.5.

5.4.3 Smart Contract Execution

As an example of smart contract execution, we use GreenCoin to compute the Pear-

son correlation coefficient between two time series of meteorological measurements (air

temperature and humidity, in this example). For agricultural applications such as frost

prevention where the activation of (possibly expensive) frost prevention measures depends

on trustworthy meteorological data, we believe smart contracts will be useful.

We use the El Niño dataset (temperature and humidity) from UCI Machine Learning

repository [179] for this experiment. We assume that each participant in the GreenCoin

blockchain operates a set of local meteorological sensors and they use GreenCoin to

publish the sensor results (taken from the dataset in this fictitious example) to the ledger

via a local GreenCoin node.
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As in section 5.4.1, we start with all the nodes having a different range of fuel mix

scores but the same wallet score. One node creates a contract to log temperature data,

one node creates a contract to log humidity data, and another node creates a contract to

compute the correlation between temperature and humidity. To make sure all nodes end

up creating the same number and similar types of transactions, the other nodes also create

such contracts, although the experiment uses only three contracts. Each node creates a

transaction to log two temperature and two humidity values, resulting in 50 data points

each for temperature and humidity. Finally, each node creates a transaction to compute

the Pearson correlation coefficient between temperature and humidity. Therefore, there

are 125 transactions executing smart contracts. Each smart contract has an execution

threshold of 0.5, i.e., a blockchain node must have a minimum fuel mix score of 0.5 to

propose a block containing a transaction to execute a smart contract. As GreenCoin

allows execution of a smart contract by the proposer only, it means a node must have a

minimum fuel mix score of 0.5 to execute a smart contract. We run the experiment until

all the smart contracts have been executed. Each block contains zero or one transaction.

Figure 5.6 shows the percentage of smart contracts executed by each node. Nodes

with fuel mix lower than the execution threshold, i.e., 0.5 fail to execute any transac-

tion involving execution of smart contracts. All other nodes end up executing a varied

percentage of transactions involving execution of smart contracts as expected.

5.5 Summary

Cryptocurrencies provide new functionality that improves information trustworthi-

ness and integrity. Their energy efficiency is the subject of ongoing research and com-

mercial development. To this end, we have investigated GreenCoin – a cryptocurrency

that uses attested location to attach indelible attributes to each coin representing re-
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newable energy usage during its creation. GreenCoin relies on GPoS, which is a new

Proof-of-Stake protocol for marking each coin with a “greenness” score, determining

wallet score, slashing malicious behavior, and implementing smart contracts that only

execute computations when the coins that pay for them have green scores above a spec-

ified threshold.

We validate our assumptions using a permissioned prototype of GreenCoin. Our

results indicate that our approach effectively implements coin scoring, incentivizes both

truthful and “green” participation, and implements a smart contract with “computational

accountability” with respect to the use of renewable energy in cryptocurrency systems.

As part of our future work, we plan to deploy GreenCoin in IoT application deploy-

ments as part of ongoing collaborative work. We also plan to investigate its feasibility in

implementing renewable accountability for permissionless blockchains and cryptocurren-

cies.

130



Chapter 6

Conclusion and Future Work

The proliferation of IoT applications in recent years has made IoT increasingly pervasive

and ubiquitous. This has inevitably contributed to a data explosion. The availability of

a high volume of data, along with recent advancements in fields like data analytics and

machine learning, has made IoT applications data-driven. Due to their diverse nature

and requirements, modern data-driven IoT deployments follow a multi-tiered architec-

ture (cloud/edge/device). These IoT applications must tackle unique challenges such as

heterogeneity, unstable network connectivity, unreliable power source, etc. Due to these

challenges, we cannot make IoT deployments robust and fault-tolerant using the same

techniques we use for cloud deployments only.

In this thesis, we study multiple ways to make IoT deployments reliable, fault-tolerant,

and trustworthy. We present an overview of the current state-of-the-art technologies to

achieve these goals and their limitations. In light of our discussion, we pose the thesis

question: Can we leverage data versioning and replication to make distributed

IoT systems reliable, fault-tolerant, and trustworthy? Our answer is positive

After extensive system design, implementation, and evaluation. In particular, we identify

and practically apply three core concepts to seamlessly make the next generation of
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data-driven IoT applications robust, fault-tolerant, and trustworthy. First, we propose

using versioned data for efficiently tracking the evolution of data and facilitating system

debugging. Second, we put forth novel formulations for replicated data geared towards

availability that reduce coordination overhead. Finally, we propose a new energy-efficient

and renewable energy-conscious blockchain technology to ensure tamper-proof data.

PEDaLS is our approach to making linked program data structures versioned. It

translates an existing efficient versioning algorithm for single-machine, in-memory data

structures to an algorithm for a distributed, storage-persistent one. PEDaLS uses append-

only logs for its storage. Append-only logs provide additional robustness to the system

due to their inherent features, such as immutability, coordination avoidance, etc. As

PEDaLS exposes a simple API to the end-user, which is consistent across device scale, it

can run on a wide variety of heterogeneous devices. Our results indicate that PEDaLS

has the same space/time complexity as the original in-memory algorithm. Moreover,

PEDaLS outperforms popular database storage systems for applications involving a high

volume of temporal queries.

LSCRDT is our answer to the problem of efficiently replicating data in typical IoT en-

vironments where the network connections are unstable and power sources are unreliable.

In such environments, protocols that require extensive coordination are inefficient and

take longer to converge. LSCRDT prioritizes availability and efficiency over strong con-

sistency by reducing communication overhead. As many IoT applications require only

weaker consistency semantics, LSCRDT is favorable over other protocols. Moreover,

LSCRDT improves upon extant CRDT protocols and removes several of their limita-

tions. Our results suggest that in write-heavy workloads, LSCRDTs are favorable to

CRDTs.

GreenCoin is our solution to provide tamper-proof data to the end user. It uses a novel

renewable energy-aware PoS algorithm called GPoS which favors nodes located in regions
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with higher availability of renewable energy. Moreover, GreenCoin and GPoS allow us

to use green smart contracts, where a node must possess a minimum greenness score to

execute a contract. Our proof of concept implementation of a permissioned blockchain

system using GreenCoin and GPoS indicates that our approach can effectively implement

coin scoring, incentive, and slashing mechanisms.

In light of our research, we identify possible future work in each of the three fields

of versioned data, replicated data, and tamper-proof data. PEDaLS follows the origi-

nal in-memory algorithm for versioning linked data structures with constant in-degree.

Future works can be done to formulate algorithms for versioning linked data structures

with variable in-degree, e.g., graphs. Moreover, PEDaLS implements partially persistent

data structures. Possible extensions to PEDaLS include fully persistent and confluently

persistent data structures.

Although LSCRDT guarantees convergence of an arbitrary data structure by ordering

operations, convergence itself does not mean the user expectations on the semantics

are satisfied. As an example, the consistency of a conventional set can be achieved by

consistent ordering of operations. However, the consistency for the more constrained

OR-set following an add-wins strategy might violate the expected semantics, as a delete

can supersede a concurrent add if the former is ordered after the latter. In the future, we

plan to devise mechanisms to respect the expectations on the semantics of the underlying

data structure as well.

Our current proof of concept GreenCoin implementation is deployed as a permissioned

blockchain system. Although we envision the underlying principles of GreenCoin will also

apply to permissionless blockchain systems, future work can involve empirical studies to

either support or contradict this notion. Moreover, we plan to deploy GreenCoin at a

broader scale as part of our ongoing collaborative work [134, 135]. Finally, future work

on GreenCoin can comprise the deployment of GPoS in TEEs.
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Blockchain oracles: a framework for blockchain-based applications, in Business
Process Management: Blockchain and Robotic Process Automation Forum: BPM
2020 Blockchain and RPA Forum, Seville, Spain, September 13–18, 2020,
Proceedings 18, pp. 19–34, Springer, 2020.

[174] A. R. Elias, N. Golubovic, C. Krintz, and R. Wolski, Where’s the Bear? –
Automating Wildlife Image Processing Using IoT and Edge Cloud Systems, in
Internet-of-Things Design and Implementation (IoTDI), 2017 IEEE/ACM Second
International Conference on, pp. 247–258, IEEE, 2017.

147

https://archive.unescwa.org/energy-mix
https://www.caiso.com/todaysoutlook/Pages/supply.aspx


[175] N. Golubovic, A. Gill, C. Krintz, and R. Wolski, CENTAURUS: A Cloud Service
for K-means Clustering, in IEEE DataCom, Nov., 2017.

[176] C. Krintz, R. Wolski, N. Golubovic, B. Lampel, V. Kulkarni,
B. Sethuramasamyraja, B. Roberts, and B. Liu, SmartFarm: Improving
Agriculture Sustainability Using Modern Information Technology, in KDD
Workshop on Data Science for Food, Energy, and Water, Aug., 2016.

[177] “UCSB SmartFarm.” https://sites.cs.ucsb.edu/~ckrintz/projects/.
[Online; accessed 17-April-2023].

[178] “UCSB Edible Campus.” https://sustainability.ucsb.edu/ediblecampus.
[Online; accessed 17-April-2023].

[179] D. Dua and C. Graff, UCI machine learning repository, 2017.

148

https://sites.cs.ucsb.edu/~ckrintz/projects/
https://sustainability.ucsb.edu/ediblecampus

	Curriculum Vitae
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background
	Versioned Data
	Replicated Data
	Tamper-Proof Data

	PEDaLS: Persisting Versioned Data Structures
	Related Work
	PDS Node-Copy Method
	PEDaLS
	Evaluation
	Summary

	LSCRDT: Log-Based CRDT for Multi-Tier IoT
	Related Work
	Motivation
	System Model and Overview
	Data Type Using Logs
	Merge Step
	Handling Bounded Log Sizes
	Evaluation
	Summary

	GreenCoin: A Renewable Energy-Aware Cryptocurrency
	Related Work
	GreenCoin System Architecture
	GPoS Implementation
	Evaluation
	Summary

	Conclusion and Future Work
	Bibliography



