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ABSTRACT OF THE DISSERTATION 

 

Characterizing the transcriptomic and genomic signatures of immune cell infiltration in 

undifferentiated sarcoma 

 

by 

 

Danielle Graham 

Doctor of Philosophy in  

Molecular, Cellular & Integrative Physiology 

University of California, Los Angeles, 2022 

Professor Thomas G. Graeber, Chair 

 

 

There is a critical need for more effective systemic therapies for the treatment of soft 

tissue sarcoma and, specifically, undifferentiated sarcoma. Immunotherapy has shown signs of 

efficacy for the treatment of soft tissue sarcoma, particularly in undifferentiated sarcoma, though 

selecting the patients who will benefit from immunotherapy remains difficult and unclear. 

Further studies are needed to characterize the immune landscape of soft tissue sarcoma and to 

develop strategies to identify patients that are likely to benefit from immunotherapy. 

In this study, I investigated the immunologic heterogeneity and identify transcriptomic 

and genomic correlates of immune cell infiltration in undifferentiated sarcoma. In doing so, I 

determined the immune cell landscape, the optimal high-throughput tools, and the transcriptomic 
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and genomic changes associated with high and low immune cell infiltration in soft tissue 

sarcoma.  

This study synthesized many datasets and data types for a comprehensive analysis of the 

immune landscape in soft tissue sarcoma. I first characterized the immune cell landscape in soft 

tissue sarcoma using flow cytometry data from fresh operative samples (n=105) of multiple soft 

tissue sarcoma subtypes. I then generated a tissue microarray with matched RNA sequencing 

data from 60 samples of untreated undifferentiated sarcoma to determine the optimal method of 

in-silico immune deconvolution, which allows for the expansion of this analysis to other next 

generation sequencing data. Finally, I synthesized multiple publicly available datasets containing 

next generation sequencing data (RNA sequencing and whole exome sequencing) from 

undifferentiated sarcoma samples. This data is combined with data from the aforementioned 

samples for a total of 193 samples and is used to determine the transcriptomic and genomic 

correlates of immune cell infiltration in undifferentiated sarcoma. 

In the analysis of the flow cytometry data, I found that undifferentiated sarcoma tumors 

are characterized by a myeloid predominance and a relative abundance of suppressor cells, such 

as Treg cells and CD11b cells. I additionally found that the immune composition of peripheral 

blood was associated with intratumoral leukocyte infiltration, and specifically that myeloid-

predominant tumor and lymphocyte-predominant blood are mutually exclusive. I then 

determined the optimal in-silico immune deconvolution tool in undifferentiated sarcoma by 

determining the correlation between mIF and in-silico immune deconvolution scores. Based on 

these findings, I suggest the following practices when applying in-silico immune deconvolution 

tools to undifferentiated sarcoma: (1) Use TIMER to define overall immune cell infiltration. (2) 

Use MCP counter to define monocyte infiltration or use CIBERSORTx, EPIC, quanTIseq, 
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TIMER, or xCell to define macrophage infiltration. (3) Use caution when using in-silico immune 

deconvolution tools to define CD8+ T cell infiltration. CIBERSORTx most accurately defines 

CD8+ T cell immune infiltration, however, there are still many instances when tumors with high 

CD8+ T cell infiltration will be missed using this technique. (4) Avoid applying in-silico 

immune deconvolution results to define B cell or CD4+ T cell immune infiltration. Finally, I 

found that increased copy number changes were associated with low immune cell infiltration in 

undifferentiated sarcoma. These findings were suggested in both transcriptomic and genomic 

analyses. Interestingly, this association between CNA and immune invasion were unique to the 

UPS and DDLPS subtypes of STS, but it was not seen in other subtypes of STS. The 

mechanisms underlying this association are not clear and warrant further study.  

These insights provide necessary information to understand which patients may benefit 

from immunotherapy and guide future studies to further the treatment of soft tissue sarcoma. 

These studies provide the groundwork for further investigation in this study of immune cell 

infiltration in soft tissue sarcoma and provide insights into how we may be able to improve 

outcomes in this rare and devastating disease. The mechanisms underlying these findings remain 

unclear and warrant further investigation. A deeper understanding of the drivers of immune cell 

infiltration, the unique tumor microenvironment in soft tissue sarcoma, and role that 

chromosomal instability plays in soft tissue sarcoma will hopefully ultimately lead to insights to 

new, and much-needed, treatments for this disease. 
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CHAPTER 1 

Introduction 

 

1.1   Overview of sarcoma 

 

Sarcoma is a rare, diverse, and aggressive group of malignancies, with over 60 subtypes, 

presumed to be of mesenchymal origin1–4. The two primary categorizations of sarcoma are 

osteosarcoma and soft tissue sarcoma (STS) and, together, they comprise only one percent of 

adult cancers and 15-20 percent of pediatric cancers5. Adult STS, and more specifically 

undifferentiated sarcoma (USARC), will be the primary focus of this study.  

 

Undifferentiated sarcoma is one of the most common subtypes of STS. This rare tumor is 

difficult to characterize and is often a diagnosis of exclusion, specifically, it is a group of 

sarcomas that can’t otherwise be classified. There is no classical immunohistochemistry (IHC) 

staining pattern. Rather, they are defined as “undifferentiated” because they do not fit another 

sarcoma profile6,7. Further, there are multiple different subtypes of undifferentiated sarcoma, 

including pleomorphic, epithelioid, and spindled, or any combination of these7. The nuances in 

diagnosis coupled with the rarity of this tumor pose significant challenges when studying 

USARC. As such, the underlying tumor biology of USARC remains poorly understood. Yet, 

there appears to be tumor behavior that links these tumors together.  

 

1.2   Clinical considerations in the treatment of soft tissue sarcoma 
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Most patients with STS are treated with surgery with or without radiation and/or chemotherapy. 

Despite aggressive local therapy, median survival is approximately five years for patients with 

localized disease and approximately two to three years for patients with metastatic disease8–15. 

The efficacy of chemotherapy and radiation in the treatment of STS remains unclear. As such, 

there is wide variation in treatment patterns throughout the country. Overall in the United States, 

approximately 20% of patients with STS are treated with chemotherapy and/or radiation, and 

there is no clear association between the use of systemic therapy and survival in STS overall16,17. 

Undifferentiated sarcoma, in particular, has no widely successful systemic therapies. The 

prognosis for patients with advanced or metastatic disease is notably poor, with a median 

survival of less than one year3. There is a critical need for more effective systemic therapies for 

the treatment of STS. 

 

1.3   The role of immunotherapy in the treatment of soft tissue sarcoma 

 

Immune-based therapies have dramatically changed the treatment of many cancers in recent 

decades. These include blockade of immune checkpoint molecules such as PD-1/PD-L1 and 

CTLA-4, cellular therapies using chimeric antigen receptor or T-cell receptor modified T-cells, 

and emerging therapies modulating tumor-associated macrophages. While early studies of 

immunotherapy in STS have not had broad success, there are signals of efficacy that warrant 

further exploration18–21. The SARC028 study evaluated the efficacy of the anti-PD1 antibody 

pembrolizumab in patients with advanced sarcoma, and identified the undifferentiated 

pleomorphic sarcoma (UPS) subtype as the most responsive to anti-PD1 immunotherapy, with 

40% of patients demonstrating complete or partial response20. This was notable given that UPS, 
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unlike most tumors that are most responsive to immune checkpoint blockade, have a low 

mutational burden.  

 

Why a fraction of patients with UPS and other tumors with low mutational burden instigate an 

anti-tumor immune response is unclear. At the same time, 60% of patients with UPS in this study 

did not respond to anti-PD1 therapy, suggesting that within UPS there are drivers of immune 

evasion. For instance, UPS can arise from mesenchymal stem cells, which are characterized by 

immunosuppressive features that may persist in the malignant state. Furthermore, chromosomal 

instability is a hallmark of UPS and other STS, which has been associated with immune evasion 

in other tumor types. 

 

In order to stratify the patients with STS that may benefit from immunotherapy, we need 

alternate strategies to study sarcoma in a high throughput fashion. For STS, alternatives to 

categorizing patients based on “response” versus “non-response” to immunotherapy are needed, 

as this disease is extremely rare and large studies of immune checkpoint blockade are not readily 

available as in other disease18–27. In order to guide further studies and to develop optimal 

immunotherapy strategies for patients with STS, we must first understand the landscape of 

immune cell infiltration and the associated genomic changes associated with immune evasion in 

this disease.  

 

1.4 The association between chromosomal instability and immune cell infiltration 
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A comprehensive study of sarcoma using the TCGA demonstrated the landscape of 

chromosomal instability, specifically referring to copy number changes, in soft tissue sarcoma. 

STS is, overall, characterized by a paucity of mutations. Some STS subtypes, such as UPS, MFS, 

DDLPS, and MPNST are characterized by particularly high numbers of copy number mutations. 

In fact, even compared to many other types of cancer, these subtypes of sarcoma are uniquely 

characterized by low mutations and high copy number changes6.  

 

Prior studies have demonstrated an association between copy number changes and immune 

evasion, specifically demonstrating that high copy number change is associated with low 

immune cell infiltration in multiple tumor types. There are multiple hypotheses explaining this 

association, including immunoediting, loss of antigen presenting machinery, silencing of 

neoantigen promotors, and the activation of cGAS-STING pathway28–35. Yet, despite the 

examination of this association in other tumor types, the association between copy number 

changes and immune cell infiltration has not been described in STS and warrants further study. 

  

1.5   Dissertation overview 

 

In this study, I aim to investigate the immunologic heterogeneity and identify transcriptomic and 

genomic correlates of immune evasion in undifferentiated sarcoma. In doing so, I will determine 

the immune cell landscape, the optimal high-throughput tools, and the transcriptomic and 

genomic changes associated with high and low immune cell infiltration in STS. These insights 

will provide needed information to understand which patients may benefit from immunotherapy 

and guide future studies to further the treatment of this disease.  
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Specific Aim 1: Characterize the landscape of immune cell infiltration in soft tissue sarcoma. My 

goal is to determine the overall immune cell landscape and the association between clinical and 

treatment factors and immune cell infiltration in STS. (Project 1, Chapter 2) 

 

Specific Aim 2: Develop and apply an optimal in-silico immune deconvolution technique for 

sarcoma. My goal is to assess the concordance between various immune deconvolution 

techniques and compare their ability to recapitulate the results of immunohistochemistry on 

paired USARC specimens. (Project 2, Chapter 3) 

 

Specific Aim 3: Define transcriptomic signatures and genomic changes associated with immune 

cell infiltration in undifferentiated sarcoma. I hypothesize that tumors with low levels of immune 

cell infiltration are characterized by high copy number changes. (Project 3, Chapter 4) 

 

A summary of the experimental design addressing these specific aims is shown in Figure 1-1. 

The details of the experimental methods used in each project are described in detail in the 

corresponding chapters. 

 

1.6   Figures 
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Figure 1-1: Overview of experimental design. Aim 1 characterizes the landscape of immune cell 

infiltration in soft tissue sarcoma using flow cytometry data generated from 105 fresh tumor 

samples. Aim 2 determines the optimal in-silico immune deconvolution technique for sarcoma 

by comparing in-silico and mIF results from 60 untreated undifferentiated sarcoma samples. Aim 

3 defines transcriptomic signatures and genomic changes associated with immune cell infiltration 

in undifferentiated sarcoma using RNA-Seq and WES or WGS data from four datasets, 

ultimately including 188 unique undifferentiated sarcoma samples. 
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CHAPTER 2 

Local and systemic immune survey of surgically resected soft tissue sarcoma 

 

2.1 Abstract 

 

Immune-based therapies have revolutionized cancer therapy. However, early studies 

immunotherapy in soft tissue sarcoma (STS) have not had broad success. Yet, there are signals 

of efficacy of immunotherapy in STS that warrant further exploration1–3. A comprehensive 

understanding of immune cell infiltration in STS will likely provide insights into the diverse 

responses to immune checkpoint blockade. Yet, the immune cell landscape in STS remains 

poorly understood.  In this study, we aim to characterize the landscape of immune cell 

infiltration in soft tissue sarcoma and to determine the association between clinical and treatment 

factors and immune cell infiltration in soft tissue sarcoma. We conducted multiparametric flow 

cytometry of tumor and peripheral blood specimens from patients undergoing surgical resection 

for STS at our institution and compared these variables across various patient, tumor, and 

treatment factors. We found that USARC tumors are characterized by a myeloid predominance 

and a relative abundance of suppressor cells, such as Treg cells and CD11b cells. We found 

similar trends when comparing the subtypes of STS that characteristically have high numbers of 

copy number alterations (CNA) (DDLPS, USARC, and MFS), compared to those that typically 

have low numbers of CNA (MLS, LMS, SS, and GIST)4. We additionally found that the immune 

composition of peripheral blood was association with intratumoral leukocyte infiltration, and 

specifically that myeloid-predominant tumor and lymphocyte-predominant blood are mutually 

exclusive. Finally, we observed that the effects of radiotherapy on the tumor microenvironment 
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evolve over time and ultimately yield a CD8 predominant phenotype. These findings warrant 

further study, though they may provide the basis for new treatment paradigms in STS. 

 

2.2 Introduction 

 

Soft tissue sarcoma (STS) is a rare and diverse group of malignancies with over 60 subtypes, 

presumed to be of mesenchymal origin. Patients with localized STS are managed with surgery 

with or without radiation5–7. Despite aggressive local therapy, up to 50% of patients with high-

risk (≥ 5cm, high-grade) primary STS develop metastases, highlighting the critical need for more 

effective systemic therapies8–15. 

 

Immune-based therapies have dramatically changed the treatment of many cancers in recent 

decades. These include blockade of immune checkpoint molecules such as PD-1/PD-L1 and 

CTLA-4, cellular therapies using chimeric antigen receptor or T-cell receptor modified T-cells, 

and emerging therapies modulating tumor-associated macrophages. While early studies of 

immunotherapy in STS have not had broad success, there are signals of efficacy that warrant 

further exploration1–3,16. 

 

Immune cell infiltration has been shown to be associated with response to immunotherapy in 

various cancers. Infiltration by T cells and a cytolytic T cell signature have been shown to be 

biomarkers for response to immune checkpoint blockade in cancers such as melanoma17,18. 

Petitprez et al. demonstrated that B cell infiltration is associated with improved survival and 

immunotherapy response in sarcoma19. A comprehensive understanding of immune cell 
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infiltration in soft tissue sarcoma (STS) will likely provide insights into the diverse responses to 

immune checkpoint blockade. Yet, the immune cell landscape in STS remains poorly 

understood.   

 

In this study, we aim to characterize the landscape of immune cell infiltration in soft tissue 

sarcoma and to determine the association between clinical and treatment factors and immune cell 

infiltration in soft tissue sarcoma. 

 

2.3 Materials and Methods 

 

2.3.1 Human Tissue Sample Collection  

 

Patients with planned surgical resection or core needle biopsy for soft tissue sarcoma at our 

institution between April 10, 2017 through November 25, 2020 were identified and consented to 

an IRB approved blood and tissue collection protocol. A subset of patients was consented to a 

separate IRB approved prospective clinical trial, as a part of which blood and tissue were 

collected. At the time of surgery or core needle biopsy, tumor and blood specimens were 

obtained from enrolled patients. Fresh tumor samples were placed into RPMI on ice and blood 

was collected in tubes containing EDTA and transported for processing and analysis.  

 

2.3.2 Clinicopathologic Data and Study Population 
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Patient and tumor clinical-pathologic data, including age, sex, tumor pathology, tumor size, and 

treatment duration and type, was collected for each enrolled patient. Tumors with final pathology 

demonstrating no residual tumor, final pathology demonstrating low-grade disease, and 

histologies with n<2 were excluded from the final analysis.  

 

2.3.3 Tumor and blood processing and antibody staining 

 

Tumor samples were minced and up to 1 gram of tumor was placed in a GentleMACS C tube 

with RPMI, Collagenase D (1 mg/mL), and DNase I (0.3mg/mL). Tumors were dissociated using 

a GentleMACS Octo Dissociator for 1h at 37C. Cells were washed and filtered through a 100 

micron strainer to obtain a single cell suspension, which were then treated with red blood cell 

lysis buffer (BD RBC Lysing Buffer). Cells were stained with viability stain, and then divided 

into two samples to be stained with each antibody panel (Table 2-1, myeloid panel; Table 2-2; 

lymphocyte panel). Cells were stained for 30 mins on ice, washed, and analyzed on a BD LSR 

Fortessa flow cytometer. Fresh blood samples were directly incubated with staining antibodies 

for 30 mins on ice (no viability stain), followed by incubation with red blood cell lysis buffer for 

10 mins at room temperature. Cells were washed and analyzed on a BD LSR Fortessa flow 

cytometer. The gating strategy for the lymphoid and myeloid cells is shown in Figure 2-7. The 

following lists contain the following information: antigen, fluorochrome (company, catalog#) or 

reagent (company, catalog#). 

 

Lymphoid Panel 

Live/dead (tumor only), FVS 510 (BD, 564406) 
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CD3, BV711 (BD, 563725) 

CD8, Alex700 (BD, 557945) 

CD4, FITC (BD, 555346) 

PD-1, BV421 (Biolegend, 329920) 

CD45RA, APC (Biolegend, 304112) 

CCR7, BV605 (Biolegend, 353224) 

CD25, PE (BD, 555432) 

CD127, PE-Cy7 (BD, 560822) 

CXCR3, PE-CF594 (BD, 562451) 

CCR6, BV650 (BD, 563922) 

PD-L1, PerCP-Cy5.5 (Biolegend, 329738) 

CD45, APC-H7 (BD, 650178) 

 

Myeloid Panel 

Live/dead, FVS 510 (BD, 564406) 

CD3, BV711 (BD, 563725) 

HLA-DR, FITC (BD, 555811) 

CD11b, PerCP-Cy5.5 (Biolegend, 301328) 

CD14, PE (BD, 562691) 

CD16, BV650 (BD, 563692)  

CD56, PE-CF594 (BD, 562289) 

CD19, APC-H7 (BD, 641395) 

CD15, APC (BD, 551376) 
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CD11c, Alex-700 (BD, 561352) 

PD-L1, BV421 (BD, 563738) 

CD45, BV605 (BD, 564047) 

CD68 (tumor only), PE-Cy7 (BD, 565595) 

CD163 (tumor only), BV786 (Biolegend, 333632) 

CD66b (blood only), PE-Cy7 (Biolegend, 305116) 

CD33 (blood only), BV786 (Biolegend, 303428) 

 

Additional Reagents: 

Collagenase (Sigma, 11088866001) 

DNaseI (Roche, 10104159001) 

 

2.3.4 Multiplex Immunofluorescence  

 

Formalin-fixed paraffin embedded tissue sections were generated from tumors from a subset of 

patients. The TSA‐based Opal method was used for immunofluorescence (IF) staining (Opal 

Polaris 7‐Color Automation IHC Kit; Akoya Biosciences, Marlborough, MA, USA; Catalogue 

No. NEL871001KT). Because TSA and DAB oxidation are both peroxidase‐mediated reactions, 

the primary antibody conditions and order of staining determined using DAB detection were 

directly applied to the fluorescent assays. Unlike conventional IHC in which a chromogenic 

peroxidase substrate is used for antigen detection, each antibody is paired with an individual 

Opal fluorophore for visualization. The Opal fluorophores were used at a 1 in 150 dilution, as 

recommended by Akoya when using the Leica BOND RX. As such, a fluorescent singleplex was 
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performed for each biomarker and compared to the appropriate chromogenic singleplex to assess 

staining performance.  

 

Once each target was optimized using uniplex slides, the Opal 6 multiplexed assay was used to 

generate multiple staining slides. We applied primary antibodies to normal human tonsil 

specimens as controls at optimized concentrations previously determined on the uniplex control 

tissues. TMA slides Staining was performed consecutively Leica BOND RX by using the same 

steps as those used in uniplex IF, and the detection for each marker was completed before 

application of the next antibody.  

 

All fluorescently labelled slides were scanned on the Vectra Polaris (Akoya Biosciences) at 40× 

magnification using appropriate exposure times. The data from the multispectral camera were 

analyzed by the imaging InForm software (Akoya Biosciences).  

 

Regions of tumor tissue confirmed by corresponding H&E slide were selected using Phenochart 

1.0.12 (Akoya Bioscience), exported as multi-layer TIFF images using inForm 2.4.10 (Akoya 

Bioscience), and stitched in HALO v3 (Indica Labs) for quantitative image analysis. Cell 

inclusion and segmentation criteria were optimized using the "real-time tuning" feature to define 

the nuclear contrast threshold, minimum nuclear intensity, nuclear segmentation aggressiveness, 

and maximum cytoplasmic radius. For each marker, specific positivity thresholds were defined 

based on a human tonsil positive control. The entire image was analyzed using these parameters 

and the generated data included the percentage of cells positive for each marker, expressed as a 
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percentage of all nucleated cells.  The list below contains the following information regarding 

the materials used: antibody (company, catalog number), clone/lot (when available), opal dye. 

 

Antibodies: 

CD4 (Dako, M7310), Opal 570 

CD8 (Dako, M7103), C8/144B, Opal 620 

CD163 (Cell Marque, 163m-16), Opal 480 

CD68 (Dako, m0876), PG-M1, Opal 520 

CD45 (Dako, M0701), 2B11+PD7/26, Opal 690 

 

2.3.5 Statistical Analysis 

 

Clinical and flow data comparisons were performed using Wilcoxon rank sum test or chi squared 

test, as appropriate. Correlations between continuous variables were determined using a linear fit 

model, with Pearson correlation coefficients shown. The correlation plots shown depict 

Spearman correlation coefficients using complete observations. Heatmaps were scaled across the 

rows. Clustering results, when shown, were calculated using Euclidean distances. In the flow 

data heatmaps, missing values were set to the row median such that they appear white on the 

graph. Missing data per sample and per variable was analyzed and summarized in Figure 2-8. 

Linear regression models were used to determine the association between histology group (copy 

number high versus low) and select intratumoral leukocyte populations. The leukocyte 

populations that were investigated using multivariate linear regression models were those that 

were statistically significant in the univariate models. The covariates selected in the models were 
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the clinical variable that were statistically significant in the univariate analysis and those that are 

standard in the literature. Throughout the study, multiple hypothesis testing was performed using 

Bonferroni correction and is noted where applicable. 

 

2.3.6 Software 

 

The majority of statistical analyses and data visualizations were performed and generated in R 

(Version 4.0.5). 

 

2.3.7 Approval 

 

This study was approved by the UCLA Institutional Review Board (IRB #10-001857). 

 

2.4 Results 

 

2.4.1 Characteristics of study cohort 

 

Of 125 patients from which specimens and data were collected, we excluded patients from whom 

no residual tumor was observed on pathology (n=2), patients with low-grade tumors (n=9) and 

patients with poorly represented (n≤2) sarcoma subtypes (n=9; Figure 2-1A). The characteristics 

of the final study cohort (n=105) are summarized in Table 2-1. The majority of patients 

underwent resection of primary tumors (n=62), though locally recurrent (n=17) and metastatic 

(n=26) tumors were also represented. Except for one lung metastasis, tumors were located in 
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either the extremity/trunk (n=72), or retroperitoneum (including abdomen/pelvis, n=32). 

Undifferentiated sarcoma (USARC, n=45), was the predominant histologic subtype, followed by 

myxoid liposarcoma (MLS, n=16), dedifferentiated liposarcoma (DDLPS, n=14), 

leiomyosarcoma (LMS, n=13), myxofibrosarcoma (MFS, n=8), synovial sarcoma (SS, n=5) and 

GIST (n=4) (Figure 2-1B).  

 

Thirty-one patients were treatment-naïve, and the remainder received preoperative radiation 

(n=35), systemic therapy (n=21), or a combination of systemic therapy and radiation (n=18). 

Systemic therapy included cytotoxic chemotherapy, tyrosine kinase inhibitors, and 

immunotherapy. Radiation therapy included conventionally fractionated radiation (2 Gy per 

fraction, 50 Gy total) or hypofractionated radiation (6 Gy per fraction, 30 Gy total) (Figure 2-

1B).  

 

Aside from histologic grouping, sarcoma subtypes were grouped according to putative biological 

subtypes. Although most STS subtypes have low mutational burden, they can be categorized 

according to high and low prevalence of copy number alterations (CNA), with DDLPS, USARC, 

and MFS categorized as CNA-high (n=67) and MLS, LMS, SS, and GIST as CNA-low (n=38)4. 

Alternatively, soft tissue sarcomas can be categorized by the presence or absence of simple 

genomic driver events (e.g. fusion event or mutation), as observed in synovial sarcoma (SYT-

SSX fusion), myxoid liposarcoma (FUS-DDIT3 fusion) and GIST (KIT or PDGFRA mutants) 

(Figure 2-1B)20.   

 

2.4.2 Validation of multiparametric flow cytometry data from tumor samples 
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To assess the internal validity of the flow cytometry data from digested tumor samples, we 

examined the association between pathologic treatment effect and the proportion of live cells as 

assessed by flow cytometry. There was a significant negative correlation between treatment 

effect scores and live cell content of single cells from tumor digests, whether assessed as a 

continuous or categorical variable. The effect was most prominent at the extremes, in which 

single cells from samples with pathologic treatment effect ≥90% had substantially lower viability 

by flow cytometry than those from samples with pathologic treatment effect ≤10% (Figure 2-

1C). Incidentally, we also observed a significant correlation between tumor size and treatment 

effect, which we hypothesize may be related to the increased necrosis in large tumors (Figure 2-

1D).  

 

To evaluate the validity of the immunologic content as assessed by flow cytometry, we 

compared immune content assessed by multiplex immunohistochemistry (mIHC) in a subset of 

24 samples. We did not observe a significant correlation between CD45+ cells as a percentage of 

total cells between mIHC and flow cytometry (R = 0.2, p = 0.38). This as expected, given that 

identification of live CD45- non-immune cells by flow cytometry can be challenging. This is 

also consistent with the presence of samples with high CD45 content by flow cytometry that was 

not captured by mIHC, where there were no samples with high CD45 content by mIHC and low 

CD45 content by flow cytometry. We did observe a statistically significant correlation between 

CD8 T cell content as a percentage of CD45+ cells between flow cytometry and mIHC results (R 

= 0.56, p = 0.008). Similarly, we observed a correlation between myeloid cell content as assessed 

by flow cytometry and CD163+ cells as a percentage of CD45+ cells by multiplex IHC, though 
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this did not reach statistical significance (R = 0.48, p = 0.061). And while we did not find a 

statistically significant correlation between CD4 T cell content across mIHC and flow cytometry 

datasets (R = 0.27, p = 0.26), in both datasets the proportion of CD4 T cells among CD45+ cells 

was <20% (Figure 2-1E).  

 

2.4.3 Overview of intratumoral leukocyte populations in soft tissue sarcoma 

 

Myeloid cells are the predominant immune cell in soft tissue sarcoma, comprising an average of 

52.9% of the leukocyte population in the samples in our study. CD8 T cells and CD4 T cells 

comprise 19.4% and 16.2% of the immune cell infiltrates, respectively. There is a paucity of B 

cells, 1.9% (Figure 2-2A). Of the myeloid cells, the plurality of the cells are macrophages 

(21.7%), granulocytic myeloid derived suppressor cells (gMDSCs; 21.4%), intermediate 

monocytes (19.9%), and classical monocytes (15.3%) (Figure 2-2B). Of the CD4 and CD8 T cell 

populations, the majority of the cells are CD4 T effector memory (61.0%) and CD8 T effector 

memory (54.9%) cells, respectively. The minority of the CD4 and CD8 T cell populations are 

CD4 naïve (5.0%) and CD8 naïve (6.3%) cells, respectively (Figure 2-2C & 2D). 

 

Figure 2-2E summarizes the correlation between the lymphocyte and myeloid populations of the 

tumors. In general, the myeloid and lymphoid populations, measured as a percentage of total 

CD45 positive cells, are inversely correlated, as expected. We further examined the correlation 

between lymphocytes (as a percent of total CD45) and the subpopulations of myeloid cells (as a 

percent of myeloid cells) to further understand the associations between various cell types. The 

results are summarized the correlation plot in Figure 2-2F. This correlation plot highlights that 
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lymphocytes (as a percent of CD45) are in fact positively correlated with myeloid dendritic cells 

(as a percent of myeloid cells) (R = 0.38, p <0.001). When examining the correlation between 

myeloid cells and lymphoid cell subpopulations in a similar manner, we found that NK cells (as 

a percent of lymphocytes) and CD8 Temra cells (as a percent of CD8 T cells) were positively 

correlated with myeloid cells (as a percent of CD45), R = 0.27 (p = 0.012) and R = 0.23 (p = 

0.024), respectively (Figure 2-2G). Tables 2-4 & 2-5 summarize the correlation values depicted 

in Figure 2-2F & 2-2G, respectively. Figure 2-10 depicts an expanded correlation analysis, 

including all tumor and blood samples. 

 

2.4.4 CNA-high tumors have a more prominent immune infiltrate characterized by higher 

myeloid cells 

 

Although most STS subtypes have low mutational burden, they can be categorized according to 

high and low prevalence of copy number alterations (CNA). DDLPS, USARC, and MFS 

categorized as CNA-high (n=67) and MLS, LMS, SS, and GIST as CNA-low (n=38)4. The 

CNA-high tumors have more intratumoral leukocytes overall, with higher CD45 cells as a 

percent of live cells (Figure 2-3A). On further examination, this difference appears to be driven 

by a higher proportion of myeloid and suppressor cells (Figure 2-3B-F). Specifically, there is a 

higher myeloid to lymphoid ratio,  more CD11b+ cells, and more T regulatory cells in the CNA-

high tumor group when compared to the CNA-low tumor group (Figure 2-3B & 2-3D). 

However, there are fewer CD4+ T cells and NK cells in the CNA-high tumor group when 

compared to the CNA-low tumor group (Figure 2-1C). Further analysis of the association 

between each subtype of sarcoma is depicted in Figure 2-11.  
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Multivariate linear regression analyses were performed to determine association between various 

intratumoral leukocyte population and CNA histology groups (as defined above). Cell types 

(dependent variables) included in this analysis included CD11b (% of CD45), myeloid cells (% 

of CD45), CD8 T cells (% of CD45), CD8PD1 cells (% of CD8), CD4 (% of CD45), CD4PD1 

(% of CD4), and Treg (% of CD4). Independent variable included in the model were CNA 

histology group, XRT, chemotherapy, and lesion type (primary, recurrence, metastasis). The 

results of these models are summarized in Table 2-2 and show that CNA-high tumors are 

associated with increased CD11b (% of CD45), myeloid cells (% of CD45), CD4 (% of CD45), 

and Treg (% of CD4) populations when compared with the CAN-low histology group tumors. 

Sensitivity and subgroup analyses of these multivariate models are shown in Tables 2-6 through 

2-8. 

 

2.4.5 The lymphocyte content of tumors is positively correlated with the proportion of 

lymphocyte among peripheral blood leukocytes, and myeloid-rich tumor and lymphocyte-rich 

blood are mutually exclusive 

 

Figure 2-4 depicts the associations between intratumoral and peripheral immune states in patients 

with soft tissue sarcoma. The proportion of lymphocytes among peripheral blood leukocytes is 

positively correlated with the lymphocyte content of tumors (R = 0.25, p = 0.037; Figure 2-4A) 

and negatively correlated with the myeloid content of tumors (R = -0.25, p = 0.035; Figure 2-

4B). The associations between tumor lymphocytes and tumor myeloid cells and peripheral 

granulocytes and monocytes are not statistically significant.  
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Heatmaps of flow cytometry results from blood samples (n= 72; Figure 2-4C) and tumor samples 

(n = 100; Figure 2-4D) from patients with STS highlight three patterns of immune composition: 

lymphocyte-predominant, myeloid-predominant, and other. The alluvial plot in Figure 2-4E 

depicts the associations between these groups in the paired blood and tumor samples in this 

study. Lymphocyte-predominant peripheral samples were associated with either lymphocyte 

predominant or unclassified paired tumor samples. Lymphocyte-predominant peripheral samples 

were never paired with a myeloid predominant tumor sample. Myeloid-predominant and 

unclassified peripheral blood samples were paired with lymphocyte-predominant, myeloid-

predominant, and unclassified tumor samples. In summary, myeloid-predominant tumor and 

lymphocyte-predominant blood were mutually exclusive. 

 

2.4.6 Neoadjuvant therapy results in subtle effects on tumor-infiltrating leukocytes 

 

Figure 2-5 summarizes the association between neoadjuvant therapy and intratumoral leukocytes 

in soft tissue sarcoma. In each comparison, no neoadjuvant therapy is used as the reference 

group. Overall, neoadjuvant therapy results in subtle effects on tumor-infiltrating leukocytes. 

Notably, there was no significant association between CD45+ content, CD11b+ myeloid content, 

or myeloid/lymphoid ratio and neoadjuvant therapy (Figure 2-5A & 2-5B). There was a 

significant decrease in B cells and an increase in CD8 T cell content associated with the 

combination of systemic therapy and radiation when compared with no neoadjuvant therapy 

(Figure 2-5C). However, the composition of the myeloid cells, CD8 T cells and CD4 T cells 

remained largely the same, except for a decrease in the proportion of naive CD4 T cells that was 
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associated with the combination of systemic therapy and radiation (Figure 2-5D-F). Patient who 

underwent immunotherapy treatment were excluded from the analysis in Figure 2-5D-F. 

Additional analyses exploring the association between treatment status and intratumoral 

leukocyte populations are depicted in Figure 2-18 through 2-21. 

 

2.4.7 Effects of radiotherapy on the tumor microenvironment evolve over time, and ultimately 

yield a CD8 predominant phenotype 

 

Overall, there were only subtle differences in the intratumoral leukocyte populations associated 

with treatment. However, on further examination of the association between radiotherapy and 

intratumoral leukocytes, we found that the tumor microenvironment evolved over time. We 

examined the association between XRT-surgery interval (days between radiotherapy and surgery 

or tumor sample acquisition) and the intratumoral leukocyte populations in a subset of 51 

patients. There were 53 patients who underwent neoadjuvant radiotherapy, and of these patients, 

2 outliers were excluded as they underwent XRT more than 19 weeks prior to surgery (Figure 2-

9). The results of this analysis are shown in Figure 2-6A-D. Notably, there was a positive 

association between CD8 T cells and XRT-surgery interval (R = 0.48, p <0.001) and between 

CD8/CD4 T cell ratio and XRT-surgery interval (R = 0.48, p <0.001). We then validated these 

findings from our flow cytometry data in a subset of tumors using IHC. These results are 

summarized in Figure 2-6E & 2-6F and show that there is an increase in CD8 T cell infiltration 

associated with increased XRT-surgery interval. 

 

2.5 Discussion 
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Although soft tissue sarcoma (STS) encompasses a broad set of clinically and biologically 

diverse malignancies, most subtypes lack the typical features associated with response to 

immune checkpoint blockade therapy. That is, most STS subtypes have a low mutational burden, 

are mismatch repair proficient, lack UV- or carcinogen-induced mutational signatures, and are 

not associated with viral infections4,21,22. However, the absence of these features does not 

preclude response to immune checkpoint blockade (ICB), especially among specific histologic 

subtypes of sarcoma such as undifferentiated pleomorphic sarcoma (UPS)3. Early evidence 

indicates that STS subtypes responding to ICB have higher levels of tumor-infiltrating immune 

cells at baseline, consistent with observations in patients with other malignancies4,19,23–26. 

However, the clinical and biological determinants of tumor immune infiltration in STS are not 

well understood.  

 

In this study, we characterize the landscape of immune cell infiltration in soft tissue sarcoma and 

to determine the association between clinical and treatment factors and immune cell infiltration 

in soft tissue sarcoma. We conducted multiparametric flow cytometry of tumor and peripheral 

blood specimens from patients undergoing surgical resection for STS at our institution. Most 

existing studies of immune composition of STS, a rare tumor, have utilized large publicly 

available datasets like the TCGA, from which tumor immune profiles are estimated using 

immune deconvolution of bulk transcriptomic data. While informative, immune deconvolution is 

limited in its ability to define precise cellular contributions within the tumor microenvironment, 

especially for low frequency cell types. Furthermore, immune deconvolution methods have not 

been trained or validated in the context of sarcoma, in which tumor cells are known to share gene 
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expression profiles with myeloid cells. Lastly, analyses restricted to the tumor do not capture the 

effects of a tumor on the systemic immune state of a patient.   

 

In this study, we summarize the intratumoral and peripheral immune profiles of tumors from our 

institutional cohort patient with STS. Our findings indicate that USARC tumors are characterized 

by a myeloid predominance and a relative abundance of suppressor cells, such as Treg cells and 

CD11b cells. A similar trend was seen when comparing all tumor subtypes that are classified as 

having high levels of copy number alterations overall (DDLPS, USARC, and MFS; n=67) versus 

those that are characterized as having low levels of copy number alterations (MLS, LMS, SS, 

and GIST as CNA-low (n=38)4. These findings may provide the basis for insights into improving 

systemic treatment strategies in sarcoma. Macrophage depletion and macrophage reprogramming 

are two proposed mechanisms for overcoming immunotherapy resistance27–31. It is likely that 

myeloid-targeted strategies such as these would be more relevant for tumors that are more 

myeloid-rich. It is possible that these strategies should be considered in STS tumors and this 

topic warrants further study. 

 

We further explored the association between intratumoral and peripheral immune profiles of 

tumors with clinical features and preoperative exposures, including RT. We found that standard 

preoperative cytotoxic therapy is only modestly associated with the STS immune composition, 

but this association appears to be time-dependent. Specifically, we found that an increase in the 

time from XRT to surgery was associated with an increase in the CD8 composition of 

intratumoral leukocytes. These findings suggest a dynamic association between XRT and the 

tumor immune microenvironment, and perhaps suggest that waiting longer between XRT and 
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surgery should be considered to derive the optimal immunomodulatory effects. Though, further 

studies are warranted. 

 

Limitations of this study include the small sample size overall and the imbalance in various 

histologies. Further, there were very small sample sizes of each of the comparison groups of the 

various treatment factors. This study was an exploratory and descriptive analysis, and further 

studies validating and confirming the findings in this study are needed. 

 

2.6 Conclusion 

 

In this study, we characterized the landscape of immune cell infiltration in soft tissue sarcoma 

and determined the association between clinical and treatment factors and immune cell 

infiltration in soft tissue sarcoma. We found that USARC tumors are characterized by a myeloid 

predominance and a relative abundance of suppressor cells, such as Treg cells and CD11b cells. 

We found similar trends when comparing STS subtypes with high levels of copy number 

alterations overall (DDLPS, USARC, and MFS; n=67) versus those that are characterized as 

having low levels of copy number alterations (MLS, LMS, SS, and GIST) as CNA-low (n=38)4. 

We additionally found that the immune composition of peripheral blood was associated with 

intratumoral leukocyte infiltration, and specifically that myeloid-predominant tumor and 

lymphocyte-predominant blood are mutually exclusive. Finally, we observed that the effects of 

radiotherapy on the tumor microenvironment evolve over time and ultimately yield a CD8 

predominant phenotype. These findings warrant further study, though they may provide insights 

into new treatment paradigms for STS. First, it is possible that macrophage depletion and 



 31 

macrophage reprogramming may be promising in the treatment of these myeloid-rich tumors. It 

may also be possible to identify which tumors are particularly myeloid-rich by examining 

peripheral blood. Finally, waiting longer between XRT and surgery may derive the optimal 

immunomodulatory effects.  

 

2.7 Figures 
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Figure 2-1: Clinical characteristics of study cohort of patients with soft tissue sarcoma. (A) 

Consolidated Standards of Reporting Trials (CONSORT) diagram showing definition of study 

cohort from a single institution. (B) The distribution of select characteristics, including tumor 

histologies, lesion type (primary versus recurrence versus metastasis), preoperative radiation 

fractionation, CNA histology group, genomic histology group, and neoadjuvant therapy type. (C) 

The association between live cells (% of total) and treatment effect (%). (D) The association 

between treatment effect (%) and tumor size (cm). (E) The association between flow cytometry 

and mIHC results for cell types as labeled. Significance testing for categorical data was 

performed using Wilcoxon test with treatment effect <10% or tumor size <5cm as the reference 
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group. Regression lines for continuous data demonstrate linear models fit to data. *, P < 0.05; **, 

P < 0.01; ***, P < 0.001 ; ****, P < 0.0001.  
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Figure 2-2: Overview of the immune composition of soft tissue sarcoma. Soft tissue sarcomas 

demonstrate a myeloid predominance. (A-D) The relative amounts of select subsets of immune 

cells are summarized – lymphoid cells (A), myeloid cells (B), CD4+ T cells (C), and CD8+ T 

cells (D) in STS tumor samples. (E) Correlation plot depicting the correlation between 

intratumoral leukocyte populations in STS tumor samples. (F) Correlation plot depicting the 

association between intratumoral lymphocytes (% of CD45) and subpopulations of myeloid cells. 

These results highlight the positive association between lymphocytes (% of CD45) and mDCs 

(% of myeloid cells). (G) Correlation plot depicting the association between intratumoral 

myeloid cells (% of CD45) and subpopulations of lymphocytes. These results highlight the 

positive association between myeloid cells (% of CD45) and NK cells (% of lymphocytes) and 

between myeloid cells (% of CD45) and CD8 Temra (% of CD8 T cells). Spearman correlation 

coefficients are depicted in the correlation plots. Regression lines for continuous data 

demonstrate linear models fit to data. *, P < 0.05; **, P < 0.01; ***, P < 0.001 ; ****, P < 

0.0001.  
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Figure 2-3: Summary of immune cell infiltrates across CNA histology groups of STS tumor 

samples. CNA-high histology group tumors have a more prominent immune infiltrate, which is 

characterized by higher myeloid cells and fewer CD4 T and NK cells when compared to CNA-

low histology group tumors. Among tumor-infiltrating CD4 T cells, Tregs are more prominent in 

CNA-high tumors. (A) The proportion of CD45 (% of live) cells and (B) the myeloid/lymphoid 

ratio and CD11b quantities across CNA histology groups in STS tumor samples. Values shown 

are log2(myeloid/lymphoid ratio). The relative abundances of various cell populations as a % of 

lymphocytes (C), % of CD4+ T cells (D), % of CD8+ T cells (E), % of myeloid cells (F) across 

CNA histology groups. Significance testing was performed using Wilcoxon test with CNA-low 



 39 

histology group as the reference group. Using Bonferroni correction, statistical significance is 

defined as <0.002. *, P < 0.05; **, P < 0.01; ***, P < 0.001 ; ****, P < 0.0001. 
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Figure 2-4: Associations between intratumoral and peripheral immune states in patients with 

STS. The lymphocyte content of tumors is associated with the proportion of lymphocyte among 

peripheral blood leukocytes. (A & B) The association between cell types in paired tumor and 

blood samples from patients with STS (n = 72). Pearson correlation coefficients are shown. (C & 

D) Heatmaps of flow cytometry results from blood samples (n= 72) (C) and tumor samples (n = 

100) (D) from patients with STS highlight three patterns of immune composition: lymphocyte-

predominant, myeloid-predominant, and unclassified. Heatmap values are scaled across rows. 

Missing data is set to the median value of the row and is white on the heatmap. (E) The alluvial 

plot shows the association between these defined blood and lymphocyte clusters in paired STS 

samples (n = 72). These findings show that myeloid-predominant tumor and lymphocyte-

predominant blood are mutually exclusive. 
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Figure 2-5: Summary of immune cell infiltrates across neoadjuvant therapy types STS tumor 

samples. There was no significant change in CD45+ content, CD11b+ myeloid content, or 

myeloid/lymphoid ratio across the groups. There was a decrease in B cells and an increase in 

CD8 T cell content after combination of systemic therapy and radiation. However, the 

composition of the myeloid cells, CD8 T cells and CD4 T cells remained largely the same, 

except for a decrease in the proportion of naïve CD4 T cells. (A) The proportion of CD45 (% of 

live) cells and (B) the myeloid/lymphoid ratio and CD11b quantities across neoadjuvant 
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treatment groups in STS tumor samples. Values shown are log2(myeloid/lymphoid ratio). The 

relative abundances of various cell populations as a % of lymphocytes (C), % of CD4+ T cells 

(D), % of CD8+ T cells (E), % of myeloid cells (F) across neoadjuvant groups. Significance 

testing was performed using Wilcoxon test with no neoadjuvant treatment group as the reference. 

Using Bonferroni correction, statistical significance is defined as <0.002. *, P < 0.05; **, P < 

0.01; ***, P < 0.001 ; ****, P < 0.0001. 
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Figure 2-6: Effects of radiotherapy on the tumor microenvironment evolve over time, and 

ultimately yield a CD8 predominant phenotype. (A-D) The association between XRT-surgery 

interval (in days) and the relative abundances of various cell populations as a % of lymphocytes 

(A), % of CD4+ T cells (B), % of CD8+ T cells (C), % of myeloid cells (D). Outliers with XRT-

surgery interval 19 weeks were excluded from the analysis. (E) There is an increase in CD8 

population of immune cells after XRT, and this increase in CD8 T cells is positively correlated 

with XRT-surgery interval. These associations are shown in the graphs and IHC figures. 
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Regression lines for continuous data demonstrate linear models fit to data with Pearson 

correlation coefficients shown. 

 
2.8 Tables 
 
  n or median % or range 
Total 105  
Sex   
 F 42 40.0 
 M 63 60.0 

Age (years) 63 18-91 
Tumor size (max dimension, cm)   
 <5cm 28 26.7 
 5-10cm 42 40.0 
 >10cm 35 33.3 

Grade   
 Intermediate 22 20.9 
 High 60 57.1 
 Missing 23 21.9 

Tumor Site   
 Lung 1 1.0 
 Extremity/Trunk 72 68.6 
 RP/Abdomen/Pelvis 32 30.5 

Histology   
 GIST 4 3.8 
 LMS 13 12.4 
 SS 5 4.8 
 MLS 16 15.2 
 DDLPS 14 13.3 
 MFS 8 7.6 
 USARC 45 42.9 

Lesion Type   
 Primary 62 59.0 
 Locally Recurrent 17 16.2 
 Metastatic 26 24.8 

CNA Group   
     CNA-High 67 63.8 
     CNA-Low 38 36.2 
Genomic Type   
     Simple 25 23.8 
     Complex 80 76.2 
Preoperative Radiation   
 Hypofractionated 33 31.4 
 Conventional 20 19.0 
 None 52 49.5 

Radiation-Surgery Interval (Days)   
 <1 day 2 1.9 
 2-4 weeks 25 23.8 
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 5-8 weeks 22 21.0 
 9-11 weeks 2 1.9 
 >19 weeks 2 1.9 
 NA 52 49.5 

Preoperative Systemic Therapy   
 Cytotoxic 25 23.8 
 Immunotherapy 10 9.5 
 TKI 4 3.8 
 None 66 62.9 

Treatment Effect    
 <10% 14 13.3 
 10-50% 20 19.0 
 51-89% 18 17.1 
 >90% 14 13.3 
 NA 39 37.1 

TIL Growth   
 0 38 36.1 
 1 21 20.0 
 2 26 24.8 
 NA 20 19.0 

Treatment Status   
 Untreated 31 29.5 
 Treated 74 70.5 

Treatment Type   
 None 31 29.5 
 Systemic Therapy  21 20.0 
 XRT 35 33.3 
 Systemic Therapy + XRT 18 17.1 

 
Table 2-1: Clinical characteristics of study cohort of patients with soft tissue sarcoma.  
 

Cell Type Estimate (95% CI) SE p value 
CD11b (% of CD45) -21.45 (-32.34, -10.57) 5.47 <0.001 
Myeloid (% of CD45) -11.53 (-21.75, -1.31) 5.15 0.02 

CD8 (% of CD45) 1.23 (-5.81, 8.28) 3.55 0.73 
CD8PD1 (% of CD8) -8.10 (-18.17, 1.97) 5.07 0.11 

CD4 (% of CD45) 5.30 (0.31, 10.29) 2.57 0.04 
CD4PD1 (% of CD4) -7.48 (-17.78, 2.82) 5.18 0.15 

Treg (% of CD4) -13.75 (-19.89, -7.61) 3.09 <0.001 
 
Table 2-2: Summary of results of multivariate linear regression analyses examining the 

association between various intratumoral leukocyte population and CNA histology groups. Cell 

types (dependent variables) included are listed on the left. Independent variables included in the 

model were CNA histology group, XRT, chemotherapy, and lesion type (primary, recurrence, 
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metastasis). The results of the CNA histology groups resulting from these models are listed. 

CNA-high tumors are associated with increased CD11b (% of CD45), myeloid cells (% of 

CD45), CD4 (% of CD45), and Treg (% of CD4) populations when compared with the CNA-low 

histology group tumors. The complete models and additional sensitivity results and subgroup 

analyses are shown in Tables 2-6 through 2-8. 

 

2.9 Appendix to Chapter 2 

 

2.9.1 Myeloid and lymphoid gating strategies for tumor and blood samples  

 

The gating strategy for this study is summarized in Figure 2-7. Figure 2-7A depicts the lymphoid 

gating strategy for both tumor and blood samples. We identified immune cells using CD45 and T 

cells using CD3, CD4, and CD8. Within the T cell subtypes, we defined regulatory T cells with 

CD25 + CD127 expression. Notably, we did not use FoxP3 to define Tregs, as this requires 

intracellular staining and is challenging when performing high throughput studies. We defined 

naïve and memory subsets, including central memory, effector memory, and TEMRA, using 

CD45RA and CCR7. We also defined PD1 expression on CD4 and CD8. Figure 2-7B describes 

the myeloid gating strategy. Immune cells were again identified using CD45. The absence of 

CD3 was used to identify myeloid cells. CD19 and CD56 were used to identify B and NK cells, 

respectively. Macrophages were identified using CD11b and CD68, with subtypes of 

macrophages identified using CD163. HLA DR was used to further subset the myeloid 

population. Of the HLA DR high cells, CD14 and CD11c were used to identify myeloid 

dendritic cells and CD16 and CD14 were used to identify subsets of monocytes. Finally, of the 
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HLA DR low cells, CD14 and CD11b and CD15 without CD14 defined monocytic and 

granulocytic myeloid derived suppressor cells, respectively. 

 

A  
 

B  
 
Figure 2-7: The gating strategy used in this study. (A) The gating strategy for lymphoid 

populations for tumor and blood samples. (B) The gating strategy for myeloid populations for 

tumor and blood samples. 
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2.9.2 Summary of missing flow data from blood and tumor samples 

 

Below is a summary of the missing data in this study. The data is depicted both as missing data 

per blood sample and missing data per flow variable in each blood sample (Figure 2-8A & 2-8B) 

as well as missing data per tumor sample and missing data per flow variable in each tumor 

sample (Figure 2-8C & 2-8D).  

 

A    
 
 
 

B   
 

Number of 
missing flow 

variables
Frequency

0 61
1 1
2 6
4 4
10 1
25 5

Number of 
missing samples 

per variable
Frequency

1 9
2 1
5 21
9 2

15 2
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C   
 

D    
 
Figure 2-8: Summary of missing data. Bar graphs and tables represent (A) missing data per 

blood sample, (B) missing data per flow cytometry variable from blood samples, (C) missing 

data per tumor sample, and (D) missing data per flow cytometry variable from tumor samples. 

 

2.9.3 Additional analysis of clinical characteristics of study cohort 

 

We examined select clinical variables, specifically XRT-surgery interval and treatment effect, in 

additional detail. Both of these variables were originally continuous variables from which 

categorical variables were created. Figure 2-9A is a of the XRT-surgery interval (in days). 

Number of 
missing flow 

variables
Frequency

0 55
5 28
6 1

35 11
43 1
48 1
69 1
78 2
92 5

Number of 
missing samples 

per variable
Frequency

5 4
6 10
10 42
11 1
18 19
19 11
49 5
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Patients with XRT-surgery interval (defined as days from end of XRT to surgery date) >133 days 

(19 weeks) were determined to be outliers and excluded from analyses of XRT-surgery interval 

when noted and as applicable. Categories were <1 day, 2-4 weeks, 5-8 weeks, 9-11 weeks, and 

>19 weeks, and were made based on clinical significance. Figure 2-9B depicts the histogram for 

treatment effect (%). Categories were <10%, 10-50%, 51-89%, and >90%, as these were 

approximately quartiles of the data. Finally, the table in Table 2-3 displays how various anatomic 

sites were recoded for this analysis. 

 

A  B   
 
Figure 2-9: Additional analysis of clinical characteristics of study cohort. (A) Histogram 

summarizing XRT-Surgery interval in days. (B) Histogram summarizing treatment effect (%).  

Anatomic Site (original) n Anatomic Site (new) 
Abdomen 7 RP/Abdomen/Pelvis 

Abdomen/Pelvis 4 RP/Abdomen/Pelvis 
Abdomen/RP 4 RP/Abdomen/Pelvis 

Extremity 58 Extremity/Trunk 
Extremity/Groin 2 Extremity/Trunk 
Flank / Gluteus 1 Extremity/Trunk 

Gluteal 4 Extremity/Trunk 
Gluteus 2 Extremity/Trunk 
Groin 3 Extremity/Trunk 
Lung 1 Chest 
Pelvis 4 RP/Abdomen/Pelvis 
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Table 2-3: Table summarizing the recoding of anatomic site variables. 
 
 
2.9.4 Correlation analysis of various intratumoral leukocyte populations 

 

Below is additional correlation analysis of myeloid cells with various lymphocyte 

subpopulations (Table 2-4) and of lymphoid cells with various myeloid subpopulations (Table 2-

5). Values shown are Spearman correlation coefficients. Figure 2-10 shows the correlation 

between all measured cell types from blood and tumor samples included in this survey. 

 

% of Myeloid Cells Correlation (R) with 
lymphocytes (% CD45) 

mDCs 0.38 
HLA DR 0.10 

Classical monocytes -0.01 
Intermediate monocytes -0.05 
Nonclassical monocytes -0.06 

gMDSCs -0.14 
Macrophages -0.15 
moMDSCs -0.23 

CD11b+ -0.47 
 
Table 2-4: Correlation between lymphocytes (% of CD45+ cells) and the subsets of myeloid 

cells (% of myeloid cells). Myeloid cell types are ordered by descending Spearman correlation 

coefficient (R) with lymphocytes. This table corresponds with Figure 2-2F.  

 

Lymphocyte populations 
Correlation (R) 

with myeloid cells 
(% CD45) 

CD8 Temra (% of CD8) 0.24 

Pelvis/Groin 1 RP/Abdomen/Pelvis 
Pelvis 1 RP/Abdomen/Pelvis 

RP 18 RP/Abdomen/Pelvis 
RP/Abdomen 3 RP/Abdomen/Pelvis 

Trunk 10 Extremity/Trunk 
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NK Cells (% of lymphocytes) 0.19 
Treg (% of CD4) 0.08 

CD4 Tem (% of CD4) 0.07 
CD4 Temra (% of CD4) 0.05 
CD4 PD1 (% of CD4) 0.01 

CD4 T Cells (% of lymphocytes) -0.01 
CD4 Naïve (% of CD4) -0.04 
CD4 Tcm (% of CD4) -0.08 

CD8 Naïve (% of CD8) -0.08 
CD8 Tcm (% of CD8) -0.08 
CD8 PD1 (% of CD8) -0.12 
CD8 Tem (% of CD8) -0.13 

B Cells (% of lymphocytes) -0.19 
CD8 T Cells (% of lymphocytes) -0.37 

 
Table 2-5: Correlation between myeloid cells (% of CD45+ cells) and the subpopulations of 

lymphocytes. Lymphocyte cell types are ordered by descending Spearman correlation coefficient 

(R) with myeloid cells. This table corresponds with Figure 2-2G. 
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Figure 2-10: The correlation between immune cell types in blood and tumor samples of patients 

with STS. The Spearman correlation coefficient between each pair of cell types is depicted in the 

correlation plot.  

 

2.9.5 Correlation between histology and genomics and intratumoral leukocyte composition 

 

Undifferentiated sarcomas are characterized by myeloid predominance and a relative abundance 

of suppressor cells. We examined the intratumoral leukocyte populations in each of the subtypes 
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of soft tissue sarcoma included in our study. The plurality of tumor samples in our study were 

undifferentiated sarcoma. In all comparisons, undifferentiated sarcoma is the reference group. 

These findings highlight the relative myeloid predominance of undifferentiated sarcoma. 

Specifically, Figure 2-5A demonstrates that undifferentiated sarcoma samples showed a trend 

toward having the highest myeloid/lymphoid ratio of all the subtypes included in this study 

(values depicted are log2 of the myeloid to lymphoid ratio). Other notable findings from Figure 

2-11B-E are the relative abundance of suppressor cells, such as T regulatory cells, CD11b+ cells, 

and monocytic myeloid derived suppressor cells (moMDSCs). Figure 2-12 demonstrates 

additional analyses, including subgroup analyses, exploring the myeloid predominance of 

undifferentiated sarcoma cells as well as the association between myeloid/lymphoid ratio and 

tumor size by histology.  

 

We similarly examined the intratumoral leukocyte populations between histology groups 

classified by simple versus complex genomics. Sarcomas with simple genomic driver events 

(e.g. fusion event or mutation) include synovial sarcoma (SYT-SSX fusion), myxoid liposarcoma 

(FUS-DDIT3 fusion) and GIST (KIT or PDGFRA mutants). Samples in this study were 

categorized as simple genomics (n = 25, 23.8%) or complex genomics (n = 80, 76.2%). The 

intratumoral leukocyte populations are summarized in Figure 2-13 below. 
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C   
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E  
 
Figure 2-11: Undifferentiated sarcomas are characterized by myeloid predominance and a 

relative abundance of suppressor cells. (A) The myeloid/lymphoid ratio across STS histologies. 

Values shown are log2(myeloid/lymphoid ratio). The relative abundances of various cell 

populations as a % of lymphocytes (B), % of CD4+ T cells (C), % of CD8+ T cells (D), % of 

myeloid cells (E) across STS histologies. Significance testing was performed using Wilcoxon 
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test with undifferentiated sarcoma as the reference group. Using Bonferroni correction, statistical 

significance is defined as <0.002. *, P < 0.05; **, P < 0.01; ***, P < 0.001 ; ****, P < 0.0001. 

 

A    
 

B   
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C   
 
Figure 2-12: Additional overview of the immune cell infiltration landscape in tumor samples 

from patients with STS. (A) The relative abundances of myeloid and lymphoid cells across 

histologies. (B) The relative abundances of myeloid and lymphoid cells as well as the 

myeloid/lymphoid ratio across STS histologies in patients not treated with XRT. Myeloid and 

lymphoid values shown are % of CD45+ T cells. Myeloid/lymphoid ratio values shown are 

log2(myeloid/lymphoid ratio). (C) The association between myeloid/lymphoid ratio and tumor 

size (cm). Percentages shown are mean values across all STS samples. Significance testing was 

performed using Wilcoxon test with undifferentiated sarcoma as the reference group. Regression 

lines for continuous data demonstrate linear models fit to data. *, P < 0.05; **, P < 0.01; ***, P < 

0.001; ****, P < 0.0001.  
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C   
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E    
 
Figure 2-13: An overview of the immune cell infiltration landscape in tumor samples from 

patients with STS categorized by genomic subtype. (A) The myeloid/lymphoid ratio by genomic 

subtype; values shown are log2(myeloid/lymphoid ratio). (B-D) relative abundances of 

lymphocyte populations (B), CD4+ T cell subsets (C), and CD8+ T cell subsets (D) as a 

percentage of the parent population, grouped by genomic subtype. (E) Relative abundance of 

myeloid subsets grouped by genomic subtype. Significance testing was performed using 

Wilcoxon test with “Simple” genomic subtype as the reference group. Using Bonferroni 
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correction, statistical significance is defined as <0.002. *, P < 0.05; **, P < 0.01; ***, P < 0.001 ; 

****, P < 0.0001.  

 

2.9.6 Multivariate linear regression examining the correlation between CNA and intratumoral 

leukocyte populations 

 

Multivariate linear regression analyses were performed to determine association between various 

intratumoral leukocyte population and CNA histology groups (as defined above). The CNA low 

group was associated with lower CD11b (% of CD45), myeloid cells (% of CD45), and Treg (% 

of CD4) and there was a trend toward association with higher CD4 (% of CD45) in all tumor 

samples and was associated with lower CD11b (% of CD45) and Treg (% of CD4) in samples 

from patient’s who underwent pre-operative XRT.  

 

The cell types (dependent variables) included in this analysis included CD11b (% of CD45), 

myeloid cells (% of CD45), CD8 T cells (% of CD45), CD8PD1 cells (% of CD8), CD4 (% of 

CD45), CD4PD1 (% of CD4), and Treg (% of CD4). Independent variable included in the model 

were CNA histology group, XRT, chemotherapy, and lesion type (primary, recurrence, 

metastasis). A subgroup analysis of patients who underwent XRT was performed. In this 

analysis, XRT-Surgery interval was included as an additional co-variate in the model. All models 

are described in the tables below. 
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Table 2-6: Summary of multivariate linear regression analyses investigating the association 

between various intratumoral leukocyte population and CNA histology groups. Dependent 

variables and covariates were selected based on the variables that were statistically significant on 

univariate analyses, as described above. The dependent variable for each model is noted at the 

top of each model. All models containing the XRT-surgery interval are the subgroup analyses 

that included only patients who underwent XRT. 

 

Covariate Estimate (95% CI) p Estimate (95% CI) p Estimate (95% CI) p 
CNA low (vs CNA high) -21.45 (-32.34, -10.57) 1.84E-03 -11.53 (-21.75, -1.31) 0.02 1.23 (-5.81, 8.28) 0.73

Systemic tx (vs no systemic tx) 0.85 (-10.61, 12.31) 0.88 -5.5 (-15.95, 4.95) 0.30 5.82 (-1.39, 13.02) 0.11
XRT (vs no XRT) -1.95 (-14.45, 10.55) 0.76 1.05 (-10.76, 12.85) 0.86 4.08 (-4.06, 12.21) 0.32
Primary (of PRM) 6.57 (-7.62, 20.76) 0.36 5.86 (-7.08, 18.80) 0.37 -4.58 (-13.50, 4.34) 0.31

Recurrence (of PRM) 7.83 (-9.24, 24.90) 0.36 15.76 (-0.08, 31.61) 0.05 -9.55 (-20.48, 1.37) 0.09

Covariate Estimate (95% CI) p Estimate (95% CI) p Estimate (95% CI) p 
CNA low (vs CNA high) -8.1 (-18.17, 1.97) 0.11 5.3 (0.31, 10.29) 0.04 -7.48 (-17.78, 2.82) 0.15

Systemic tx (vs no systemic tx) -10.25 (-20.62, 0.12) 0.05 1.02 (-4.09, 6.12) 0.69 -7.44 (-18.04, 3.16) 0.17
XRT (vs no XRT) 13.43 (1.73, 25.13) 0.03 -1.41 (-7.17, 4.36) 0.63 10.355 (-1.61, 22.32) 0.09
Primary (of PRM) -11.24 (-24.21, 1.73) 0.09 -1.71 (-8.03, 4.60) 0.59 -8.12 (-21.38, 5.14) 0.23

Recurrence (of PRM) -14.04 (-29.71, 1.63) 0.08 -5.35 (-13.09, 2.39) 0.17 -15.25 (-31.28, 0.77) 0.06

Covariate Estimate (95% CI) p 
CNA low (vs CNA high) -13.75 (-19.89, -7.61) 2.47E-05

Systemic tx (vs no systemic tx) 0.61 (-5.70, 6.93) 0.85
XRT (vs no XRT) 5.8 (-1.31, 12.90) 0.11
Primary (of PRM) -6.72 (-14.60, 1.16) 0.09

Recurrence (of PRM) -2.14 (-11.69, 7.42) 0.66

%Treg of CD4

%CD11b of CD45 %Myeloid of CD45 %CD8 of CD45

%CD8PD1 of CD8 %CD4 of CD45 %CD4PD1 of CD4
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Table 2-7: Summary of multivariate linear regression analyses investigating the association 

between various intratumoral leukocyte population and CNA histology groups within the 

subgroup of patients who received XRT. As in Table 2-6, dependent variables and covariates 

were selected based on the variables that were statistically significant on univariate analyses, as 

described above. The dependent variable for each model is noted at the top of each model. XRT-

surgery interval was added as a covariate in this analysis. 

 

 
 
Table 2-8: Summary of model statistics from models described in Tables 2-6 & 2-7.  

Covariate Estimate (95% CI) p Estimate (95% CI) p Estimate (95% CI) p 
CNA low (vs CNA high) -20.25 (-34.95, -5.55) 8.19E-03 -9.08 (-23.51, 5.35) 0.21 1.31 (-7.88, 10.49) 0.78

Systemic tx (vs no systemic tx) -1.91 (-18.29, 14.46) 0.81 -6.61 (-22.24, 9.03) 0.40 4.87 (-5.08, 14.82) 0.33

RT-Surgery Interval (days) -0.18 (-0.43, 0.07) 0.16 -0.21 (-0.46, 0.04) 0.10 0.33 (0.16, 0.49) 1.85E-04

Primary (vs metastasis) 3.4 (-18.84, 25.63) 0.76 6.29 (-14.26, 26.83) 0.54 -1.91 (-14.99, 11.17) 0.77

Covariate
CNA low (vs CNA high) Estimate (95% CI) p Estimate (95% CI) p Estimate (95% CI) p 

Systemic tx (vs no systemic tx) -11.49 (-24.73, 1.74) 0.09 3.09 (-3.68, 9.85) 0.36 -8.84 (-21.02, 3.34) 0.15

RT-Surgery Interval (days) -4.75 (-18.85, 9.34) 0.50 4.01 (-3.31, 11.34) 0.28 0.53 (-12.44, 13.50) 0.94

Primary (vs metastasis) 0.17 (-0.06, 0.41) 0.14 -0.1 (-0.22, 0.02) 0.09 -0.0557 (-0.27, 0.16) 0.60

-2.53 (-22.59, 17.53) 0.80 -3.83 (-13.46, 5.80) 0.43 -2.206 (-20.67, 16.26) 0.81

Covariate Estimate (95% CI) p 
CNA low (vs CNA high) -17.24 (-25.50, -8.99) 1.29E-04

Systemic tx (vs no systemic tx) 3.21 (-5.59, 12.00) 0.47

RT-Surgery Interval (days) -0.11 (-0.25, 0.04) 0.14

Primary (vs metastasis) -7.62 (-20.13, 4.89) 0.23

%CD11b of CD45 %Myeloid of CD45 %CD8 of CD45

%CD8PD1 of CD8 %CD4 of CD45 %CD4PD1 of CD4

%Treg of CD4

Cell type Model p R2 (adjusted)
%CD11b of CD45 All samples 0.0049 0.134
%CD11b of CD45 Subgroup (XRT only) 0.031 0.154
%Myeloid of CD45 All samples 0.0329 0.073
%Myeloid of CD45 Subgroup (XRT only) 0.0599 0.104

%CD8 of CD45 All samples 0.134 0.036
%CD8 of CD45 Subgroup (XRT only) 9.07E-05 0.344

%CD8PD1 of CD8 All samples 0.0075 0.113
%CD8PD1 of CD8 Subgroup (XRT only) 0.201 0.0471

%CD4 of CD45 All samples 0.151 0.032
%CD4 of CD45 Subgroup (XRT only) 0.403 0.0023

%CD4PD1 of CD4 All samples 0.031 0.078
%CD4PD1 of CD4 Subgroup (XRT only) 0.6549 -0.0347

%Treg of CD4 All samples 0.00038 0.181
%Treg of CD4 Subgroup (XRT only) 0.00145 0.2736
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2.9.7 Additional data from the analysis of associations between intratumoral and peripheral 

immune states in patients with STS 

 

In Figure 2-4 we examined the associations between intratumoral and peripheral immune states 

in patients with STS. Intratumoral leukocyte populations (as a percent of CD45) were compared 

to peripheral immune cells. The intratumoral leukocyte populations (as a percent of live cells) 

were also examined, and the heatmap summarizing this data is shown below. Similar distinct 

groups were seen in this data – leukocyte-predominant, myeloid-predominant, and unclassified. 

 

 
 
Figure 2-14: Heatmap of flow cytometry results as a percent of live cells from tumor samples 

(n=99) from patients with STS. Values are scaled across rows. Missing data is set to the median 

value of the row and is white on the heatmap. Rows are ordered based on unsupervised 

hierarchical clustering using Euclidean distances.  
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2.9.8 Additional analysis of the correlation between treatment and intratumoral leukocyte 

populations 

 

In addition to exploring the association between variables such as histology, CNA histology 

group, and genomic histology group, as described above, we examined the associations between 

various treatment factors and immune cell infiltration. Overall, there were no consistent 

significant changes in the intratumoral leukocytes associated with various treatments, including 

treatment status (treated, untreated), XRT type (none, hypofractionated, conventional), systemic 

therapy type (none, TKI, cytotoxic, immunotherapy), and XRT (yes, no).  

 

The use of XRT was associated with reduced B cells (% of CD45); increased CD4PD1 (% of 

CD4) and CD8PD1 (% of CD8) cells. XRT had no effect on overall immune infiltration, 

myeloid/lymphoid balance, or composition of myeloid cells. The association between XRT and 

increased CD8 PD1 was consistent in both standard and hypofractionated XRT groups. 

 

A B  C    
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Figure 2-15: The association between immune cell infiltration and treatment status in patients 

with STS. (A) The myeloid/lymphoid ratio by treatment status; values shown are 

log2(myeloid/lymphoid ratio). (B-D) relative abundances of lymphocyte populations (B), CD4+ 

T cell subsets (C), and CD8+ T cell subsets (D) as a percentage of the parent population, grouped 

by treatment status. (E) Relative abundance of myeloid subsets grouped by treatment status. 

Significance testing was performed using Wilcoxon test with “untreated” as the reference group. 

Using Bonferroni correction, statistical significance is defined as <0.002. *, P < 0.05; **, P < 

0.01; ***, P < 0.001 ; ****, P < 0.0001.  

 
 

A B  C   
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Figure 2-16: The association between immune cell infiltration and XRT type in patients with 

STS. (A) The myeloid/lymphoid ratio by XRT type; values shown are log2(myeloid/lymphoid 

ratio). (B-D) relative abundances of lymphocyte populations (B), CD4+ T cell subsets (C), and 

CD8+ T cell subsets (D) as a percentage of the parent population, grouped by XRT type. (E) 

Relative abundance of myeloid subsets grouped by XRT type. Significance testing was 

performed using Wilcoxon test with “none” as the reference group. Using Bonferroni correction, 

statistical significance is defined as <0.002. *, P < 0.05; **, P < 0.01; ***, P < 0.001 ; ****, P < 

0.0001. 

 

A B  C  
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Figure 2-17: The association between immune cell infiltration and systemic therapy type in 

patients with STS. (A) The myeloid/lymphoid ratio by systemic therapy type; values shown are 

log2(myeloid/lymphoid ratio). (B-D) relative abundances of lymphocyte populations (B), CD4+ 

T cell subsets (C), and CD8+ T cell subsets (D) as a percentage of the parent population, grouped 

by systemic therapy type. (E) Relative abundance of myeloid subsets grouped by systemic 

therapy type. Significance testing was performed using Wilcoxon test with “none” as the 

reference group. Using Bonferroni correction, statistical significance is defined as <0.002. The 

association between immune cell infiltration and systemic therapy type. Treatment with anti-PD1 

immunotherapy blocks the ability to detect PD1 on the surfaces of cells. Thus, the differences in 

PD1 demonstrated are likely due to technical artifact. *, P < 0.05; **, P < 0.01; ***, P < 0.001 ; 

****, P < 0.0001. 
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Figure 2-18: The association between immune cell infiltration and XRT status in patients with 

STS. (A) The proportion of CD45 (% of live) cells and (B) the myeloid/lymphoid ratio and 

CD11b quantities across XRT status in STS tumor samples. Values shown are 

log2(myeloid/lymphoid ratio). The relative abundances of various cell populations as a % of 

lymphocytes (C), % of CD4+ T cells (D), % of CD8+ T cells (E), % of myeloid cells (F) across 

XRT status. Significance testing was performed using Wilcoxon test with “no XRT” as the 

reference group. Using Bonferroni correction, statistical significance is defined as <0.002. *, P < 

0.05; **, P < 0.01; ***, P < 0.001 ; ****, P < 0.0001.  

 

2.9.9 Additional analysis of the evolution of TME with time after XRT 

 

Figure 2-6 demonstrates the analysis of the change in the intratumoral leukocyte population over 

time after the treatment with XRT. We found that the effects of radiotherapy on the tumor 

microenvironment evolve over time, and ultimately yield a CD8 predominant phenotype. Figure 
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2-19 below summarizes additional analyses performed. Specifically, we examined the 

association between the XRT-surgery interval (in days) and the proportion of CD45 (% of live) 

and CD11b (% of CD45) cells as well as the myeloid/lymphoid ratio (log2(value)). We also 

examined the association between treatment effect (%) and XRT-surgery interval. There was no 

association between the intratumoral leukocyte variables listed and XRT-Surgery interval. There 

was a trend toward a positive association (R = 0.27) between treatment effect with increased 

XRT-Surgery, however, this did not reach statistical significance (p = 0.062).  

A    B    
 

C    D     
 
Figure 2-19: Summary of additional analysis examining the time-dependent effects of XRT. (A-

C) Graphs depict the association between XRT-Surgery interval (days) and various intratumoral 

leukocyte populations: (A) CD45 (% of live), (B) CD11b (% of CD45), and (C) 

myeloid/lymphoid ratio (values depicted are log2 of the ratio). (D) The association between 
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treatment effect (%) and XRT-surgery interval (days). Regression lines for continuous data 

demonstrate linear models fit to data. 

 

2.9.10 Factors associated with TIL growth in patients with STS 

 

Ex vivo tumor infiltrating lymphocyte cultures (TILs) were generated from patient tumor 

samples. Small tumor fragments (2-3mm3) were collected from a larger tumor sample and placed 

individually in wells of a 24-well non-tissue culture treated plate with 2 mL of TIL media. TIL 

media consists of XVIVO with human IL2 at a concentration of 6000 U/mL TIL fragments were 

monitored three times a week (Monday, Wednesday, and Friday). On day five after plating, TIL 

media was changed for the first time. 1mL of media is removed carefully and 1mL of fresh 

media is added back. After day five, media was changed three times a week (Monday, 

Wednesday, and Friday). Once TILs were identified and began growing, they were transferred to 

additional wells in order to expand. TILs were collected and frozen in FBS with 5% DMSO once 

sufficiently expanded. 

 

We explored the association between various clinical, tumor, and intratumoral leukocyte 

variables as demonstrated below. TIL growth was defined as 0, 1, and 2 (no growth, moderate 

growth, and strong growth, respectively). TIL growth was inversely associated with treatment 

effect. Specifically, samples with high TIL growth (Figure 2-20A). TIL growth was more 

effective from samples from patients that did not undergo neoadjuvant XRT. Figure 2-20B 

shows TIL growth from all samples, and Figures 2-21A & 2-21B demonstrate TIL growth from 

tumors from the subgroups of patients that did not and did undergo neoadjuvant XRT, 



 74 

respectively. Finally, Figures 2-20C & 2-21C demonstrate the associations between various 

intratumoral leukocyte populations and TIL growth. Increased CD4 (% of CD45) and CD4PD1 

(% of CD45) were associated with increased TIL growth.  

 

A        B    
 

C    
 
Figure 2-20: Factors associated with TIL growth in patients with STS. TIL growth is inversely 

associated with treatment effect. The highest TIL growth is seen in GIST tumors and the lowest 

in MLS. (A) The association between treatment effect (%) and TIL growth. (B) The association 
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between tumor histology and TIL growth. (C) Heatmap depicting the association between cell 

types in blood or tumor samples and TIL growth. Values are scaled across rows. Rows and 

columns are ordered based on unsupervised hierarchical clustering using Euclidean distances. 

Significance testing for categorical data was performed using Wilcoxon test with TIL growth 0 

as the reference group. P < 0.05; **, P < 0.01; ***, P < 0.001 ; ****, P < 0.0001. TIL Growth is 

defined as follows: 0, no growth; 1, moderate growth; 2, strong growth. 

 

A     B    
 

C  
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Figure 2-21: Factors associated with TIL growth in patients with STS. The association between 

tumor histology and TIL growth in patients who did not (A) and who did (B) undergo prior XRT. 

(C) The association between cell types in blood or tumor samples and TIL growth. Significance 

testing was performed using Wilcoxon test with TIL Growth 0 as the reference group. *, P < 

0.05; **, P < 0.01; ***, P < 0.001 ; ****, P < 0.0001. TIL Growth is defined as follows: 0, no 

growth; 1, moderate growth; 2, strong growth.  

 

2.9.11 Tables summarizing the data in the figures included in Chapter 2  

 Treatment Effect (%) 
Tumor Size n mean median min max sd p value 
Total 105      0.003 
<=5cm 28 25.00 7.50 0.00 100.00 32.54 Ref 
5-10cm 42 48.04 50.00 0.00 100.00 32.95 0.042 
>10cm 35 64.46 70.00 10.00 99.00 28.19 0.001 

 
Table 2-9: The association between treatment effect and tumor size (cm). Kruskal-Wallis test 

and Wilcoxon tests were used to determine the overall and pairwise differences between the 

groups, respectively.   

 
   Statistics for Cell Types Listed 
  n mean median min  max sd p  

All Patients        
MYELOID CELLS       
 Total 105      0.119 
 GIST 4 32.50 30.49 14.08 54.94 18.00 0.039 
 LMS 13 43.43 40.98 16.35 73.21 18.94 0.051 
 SS 5 39.38 22.91 13.87 93.30 33.66 0.110 
 MLS 16 49.07 51.41 12.29 80.70 20.79 0.130 
 DDLPS 14 51.96 63.95 7.83 73.83 23.70 0.320 
 MFS 8 53.28 56.37 17.81 92.07 25.21 0.480 
 USARC 45 60.18 61.50 14.35 97.84 25.76 Ref 

LYMPHOID CELLS       
 Total 105      0.083 
 GIST 4 67.33 69.51 45.06 85.26 17.78 0.035 
 LMS 13 56.75 59.02 26.79 83.49 19.08 0.041 
 SS 5 60.62 77.09 6.69 86.13 33.67 0.096 
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 MLS 16 50.72 48.59 19.30 87.71 20.72 0.100 
 DDLPS 14 48.32 36.05 26.17 92.17 23.43 0.223 
 MFS 8 45.46 40.76 7.93 82.19 25.25 0.462 
 USARC 45 39.03 34.76 2.16 85.65 25.67 Ref 

MYELOID/LYMPHOID RATIO (log2 value)     
 Total 105      0.099 
 GIST 4 -1.19 -1.23 -2.60 0.29 1.26 0.035 
 LMS 13 -0.43 -0.53 -2.35 1.45 1.21 0.043 
 SS 5 -0.59 -1.75 -2.63 3.80 2.68 0.103 
 MLS 16 -0.10 0.08 -2.83 2.06 1.39 0.112 
 DDLPS 14 0.00 0.83 -3.56 1.50 1.65 0.295 
 MFS 8 0.31 0.43 -2.21 3.54 1.84 0.493 
 USARC 45 0.93 0.74 -2.58 5.50 2.10 Ref 
         

Subgroup (no neoadjuvant XRT)     
MYELOID CELLS       
 Total 52      0.024 
 GIST 4 32.50 30.49 14.08 54.94 18.00 0.007 
 LMS 10 44.21 40.98 16.35 73.21 20.45 0.023 
 SS 2 14.75 14.75 13.87 15.63 1.24 0.013 
 MLS 4 57.06 58.30 45.00 66.64 10.57 0.249 
 DDLPS 12 49.07 63.95 7.83 73.83 24.65 0.089 
 MFS 3 53.10 46.44 20.80 92.07 36.10 0.359 
 USARC 17 68.55 67.26 23.04 97.84 21.51 Ref 

LYMPHOID CELLS       
 Total 52      0.009 
 GIST 4 67.33 69.51 45.06 85.26 17.78 0.003 
 LMS 10 56.01 59.02 26.79 83.49 20.62 0.012 
 SS 2 85.25 85.25 84.37 86.13 1.24 0.013 
 MLS 4 42.68 41.91 33.36 53.54 9.92 0.080 
 DDLPS 12 51.24 36.05 26.17 92.17 24.32 0.030 
 MFS 3 44.30 45.78 7.93 79.20 35.65 0.359 
 USARC 17 28.88 32.26 2.16 76.33 19.33 Ref 

MYELOID/LYMPHOID RATIO (log2 value)     
 Total 52      0.017 
 GIST 4 -1.19 -1.23 -2.60 0.29 1.26 0.005 
 LMS 10 -0.39 -0.53 -2.35 1.45 1.31 0.014 
 SS 2 -2.53 -2.53 -2.63 -2.43 0.14 0.013 
 MLS 4 0.43 0.48 -0.25 1.00 0.61 0.178 
 DDLPS 12 -0.20 0.83 -3.56 1.50 1.72 0.071 
 MFS 3 0.54 0.02 -1.93 3.54 2.77 0.359 
 USARC 17 1.67 1.05 -1.73 5.50 1.96 Ref 

 
Table 2-10: Table summarizing the myeloid lineage, lymphoid lineage, and myeloid/lymphoid 

ratio (log2 values shown) in all STS samples in this study as well as in the subset of patients who 
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did not undergo neoadjuvant XRT. Kruskal-Wallis test and Wilcoxon tests were used to 

determine the overall and pairwise differences between the groups, respectively. 

 
   Statistics for Cell Types Listed 

 
Tumor 
Size n mean median min max sd p value 

         
MYLEOID CELLS       
All STS 
Samples        
 Total 105      0.904 
 <=5cm 28 50.50 50.68 7.83 97.65 27.28 Ref 

 5-10cm 42 53.46 61.25 13.87 93.42 22.86 0.730 

 >10cm 35 54.07 51.41 12.29 97.84 25.63 0.660 
USARC 
Samples        
 Total 45      0.257 

 <=5cm 13 54.74 49.19 17.41 97.65 28.32 Ref 
 5-10cm 17 56.06 61.25 14.35 93.42 26.66 0.980 

 >10cm 15 69.20 67.71 27.73 97.84 21.52 0.150 
Non-USARC STS Samples       
 Total 60      0.399 

 <=5cm 15 46.86 54.59 7.83 92.07 26.85 Ref 
 5-10cm 25 51.45 55.86 13.87 80.70 19.87 0.670 

 >10cm 20 42.72 43.92 12.29 93.30 22.76 0.620 

         
LYMPHOID CELLS       
All STS 
Samples        
 Total 105      0.840 
 <=5cm 28 49.67 49.32 2.35 92.17 27.27 Ref 

 5-10cm 42 45.73 38.75 6.58 86.13 22.77 0.650 

 >10cm 35 45.49 45.68 2.16 87.71 25.76 0.570 
USARC 
Samples        
 Total 45      0.222 

 <=5cm 13 45.52 52.19 2.35 82.59 28.24 Ref 
 5-10cm 17 42.61 38.75 6.58 85.65 26.46 0.880 

 >10cm 15 29.79 32.24 2.16 75.15 21.32 0.130 
Non-USARC STS Samples       
 Total 60      0.380 

 <=5cm 15 53.22 45.41 7.93 92.17 26.94 Ref 
 5-10cm 25 48.14 42.14 19.30 86.13 19.78 0.640 

 >10cm 20 57.26 54.98 6.69 87.71 22.63 0.640 
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MYELOID/LYMPHOID RATIO      
All STS 
Samples        
 Total 105      0.877 
 <=5cm 28 0.10 0.04 -3.56 5.37 2.11 Ref 

 5-10cm 42 0.27 0.66 -2.63 3.83 1.61 0.680 

 >10cm 35 0.45 0.26 -2.83 5.50 2.09 0.640 
USARC 
Samples        
 Total 45      0.234 

 <=5cm 13 0.53 -0.08 -2.25 5.37 2.28 Ref 
 5-10cm 17 0.53 0.66 -2.58 3.83 1.97 0.910 

 >10cm 15 1.70 1.07 -1.44 5.50 2.00 0.140 
Non-USARC STS Samples       
 Total 60      0.405 

 <=5cm 15 -0.26 0.27 -3.56 3.54 1.97 Ref 
 5-10cm 25 0.08 0.35 -2.63 2.06 1.29 0.640 

 >10cm 20 -0.48 -0.32 -2.83 3.80 1.64 0.620 
 
Table 2-11: Table summarizing the association between myeloid lineage, lymphoid lineage, and 

myeloid/lymphoid ratio (log2 values shown) and tumor size (cm). The associations were 

determined in the overall study cohort of all STS samples as well as in the subgroup of USARC 

versus non-USARC samples. Kruskal-Wallis test and Wilcoxon tests were used to determine the 

overall and pairwise differences between the groups, respectively. 

 

   Statistics for Cell Types Listed 

 Histology n mean median min max sd p value 

         
MYELOID AND LYMPHOID LINEAGES     
Lymphoid Cells (% of CD45)       

 Total 105      0.083 

 GIST 4 67.33 69.51 45.06 85.26 17.78 0.035 

 LMS 13 56.75 59.02 26.79 83.49 19.08 0.041 

 SS 5 60.62 77.09 6.69 86.13 33.67 0.096 

 MLS 16 50.72 48.59 19.30 87.71 20.72 0.100 

 DDLPS 14 48.32 36.05 26.17 92.17 23.43 0.223 

 MFS 8 45.46 40.76 7.93 82.19 25.25 0.462 

 USARC 45 39.03 34.76 2.16 85.65 25.67 Ref 
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Myeloid Cells (% of CD45)       
 Total 105      0.119 

 GIST 4 32.50 30.49 14.08 54.94 18.00 0.039 

 LMS 13 43.43 40.98 16.35 73.21 18.94 0.051 

 SS 5 39.38 22.91 13.87 93.30 33.66 0.111 

 MLS 16 49.07 51.41 12.29 80.70 20.79 0.133 

 DDLPS 14 51.96 63.95 7.83 73.83 23.70 0.322 

 MFS 8 53.28 56.37 17.81 92.07 25.21 0.477 

 USARC 45 60.18 61.50 14.35 97.84 25.76 Ref 
Myeloid/Lymphoid Ratio (log2 value)      

 Total 105      0.099 

 GIST 4 -1.19 -1.23 -2.60 0.29 1.26 0.035 

 LMS 13 -0.43 -0.53 -2.35 1.45 1.21 0.043 

 SS 5 -0.59 -1.75 -2.63 3.80 2.68 0.103 

 MLS 16 -0.10 0.08 -2.83 2.06 1.39 0.112 

 DDLPS 14 0.00 0.83 -3.56 1.50 1.65 0.295 

 MFS 8 0.31 0.43 -2.21 3.54 1.84 0.493 

 USARC 45 0.93 0.74 -2.58 5.50 2.10 Ref 

         
LYMPHOCYTE LINEAGE       
B Cells (% of lymphocytes)       

 Total 105      0.453 

 GIST 4 1.71 2.31 0.27 2.56 1.25 0.232 

 LMS 13 1.77 0.80 0.11 6.42 2.32 0.445 

 SS 5 5.95 1.39 0.00 26.44 11.48 0.677 

 MLS 16 1.80 1.11 0.07 6.65 1.95 0.121 

 DDLPS 14 6.21 1.38 0.15 21.72 8.27 0.057 

 MFS 8 1.35 0.93 0.01 3.58 1.47 0.777 

 USARC 45 0.88 0.54 0.00 4.64 0.99 Ref 
CD4 T Cells (% of 
lymphocytes)       

 Total 105      0.342 

 GIST 4 41.09 35.44 32.20 61.26 13.55 0.283 

 LMS 13 41.27 43.86 27.76 62.98 10.58 0.065 

 SS 5 25.96 24.17 14.93 48.36 13.42 0.293 

 MLS 16 34.90 38.75 9.75 56.50 14.52 0.547 

 DDLPS 14 36.96 37.53 19.08 55.38 13.13 0.351 

 MFS 8 37.19 35.69 6.86 69.02 17.87 0.558 

 USARC 45 32.76 32.39 7.10 59.24 14.14 Ref 
CD8 T Cells(% of 
lymphocytes)       

 Total 105      0.122 
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 GIST 4 21.51 20.82 9.53 34.88 11.99 0.031 

 LMS 13 36.01 37.10 23.17 48.64 7.61 0.540 

 SS 5 51.17 55.35 14.86 79.35 25.23 0.375 

 MLS 16 33.87 30.14 3.59 74.44 19.35 0.150 

 DDLPS 14 31.73 32.01 15.04 48.34 9.97 0.093 

 MFS 8 40.53 39.47 12.35 86.66 21.26 0.852 

 USARC 45 41.92 38.45 16.32 84.85 17.91 Ref 
NK Cells (% of lymphocytes)       

 Total 105      0.043 

 GIST 4 28.42 27.09 18.88 39.29 10.27 0.006 

 LMS 13 13.53 12.23 2.07 33.30 8.92 0.097 

 SS 5 6.53 4.72 1.04 12.64 5.74 0.519 

 MLS 16 15.83 12.69 3.33 44.72 11.71 0.048 

 DDLPS 14 10.88 7.46 0.07 36.12 9.77 0.711 

 MFS 8 10.60 9.59 1.68 20.99 7.35 0.559 

 USARC 45 9.42 8.05 0.75 46.01 8.70 Ref 

         
CD4 T CELLS        
CD4PD1 (% of CD4)       

 Total 105      0.210 

 GIST 4 58.65 74.58 0.20 85.22 39.37 0.863 

 LMS 13 56.34 61.97 3.88 92.11 28.75 0.375 

 SS 5 77.49 89.94 55.79 93.52 19.74 0.211 

 MLS 16 60.01 64.79 10.95 90.72 23.15 0.333 

 DDLPS 14 68.04 68.02 30.63 93.08 19.05 0.925 

 MFS 8 81.54 83.22 53.50 96.19 13.90 0.042 

 USARC 45 65.05 71.01 0.97 94.87 25.34 Ref 
Treg (% of CD4)        

 Total       <0.001 

 GIST 4 16.41 18.62 11.01 19.61 4.70 0.239 

 LMS 13 17.33 14.62 4.95 45.81 11.79 0.036 

 SS 5 11.96 13.10 5.92 15.12 3.52 0.013 

 MLS 16 7.13 7.53 0.95 14.89 4.04 <0.001 

 DDLPS 14 15.64 11.98 2.23 38.23 10.56 0.015 

 MFS 8 33.26 29.20 8.61 67.49 17.61 0.344 

 USARC 45 27.53 25.63 1.47 64.30 16.21 Ref 
CD4 Naïve (% of CD4)       

 Total       0.372 

 GIST 4 2.17 1.34 0.15 5.84 2.63 0.735 

 LMS 13 7.53 3.17 0.33 44.85 12.93 0.179 

 SS 5 5.29 1.31 0.78 14.39 6.08 0.459 
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 MLS 16 9.08 2.41 0.66 66.34 17.15 0.060 

 DDLPS 14 6.07 2.59 0.63 35.07 9.63 0.164 

 MFS 8 3.29 2.02 1.35 12.33 3.71 0.351 

 USARC 45 3.25 1.40 0.00 21.67 4.60 Ref 
CD4 Tcm (% of CD4)       

 Total       0.650 

 GIST 4 25.77 22.44 4.71 53.49 20.50 0.803 

 LMS 13 30.27 33.18 9.08 69.61 16.88 0.565 

 SS 5 39.64 31.50 21.72 63.91 20.21 0.186 

 MLS 16 29.02 17.05 0.00 67.77 25.23 0.767 

 DDLPS 14 24.62 21.21 4.56 64.00 16.86 0.622 

 MFS 8 37.94 45.17 6.02 63.42 22.05 0.175 

 USARC 45 27.09 23.76 0.20 60.92 15.87 Ref 
CD4 Tem (% of CD4)       

 Total       0.136 

 GIST 4 69.97 70.92 46.28 91.76 18.98 0.832 

 LMS 13 58.05 57.29 16.91 87.24 22.04 0.318 

 SS 5 54.17 66.10 26.39 76.65 22.52 0.224 

 MLS 16 50.25 54.78 0.00 81.70 26.64 0.032 

 DDLPS 14 64.63 73.62 29.82 87.32 19.28 0.793 

 MFS 8 50.33 49.63 22.24 86.86 18.02 0.022 

 USARC 45 66.48 67.07 34.86 92.71 15.92 Ref 
CD4 Temra (% of CD4)       

 Total       0.149 

 GIST 4 2.10 2.45 0.08 3.41 1.52 0.921 

 LMS 13 4.14 0.56 0.34 26.65 7.98 0.591 

 SS 5 0.90 1.09 0.15 1.49 0.53 0.323 

 MLS 16 11.64 4.23 0.00 97.79 25.17 0.061 

 DDLPS 14 4.68 3.38 0.56 17.71 4.98 0.083 

 MFS 8 8.45 2.95 0.22 39.76 13.38 0.250 

 USARC 45 3.18 1.27 0.00 21.94 4.62 Ref 

         
CD8 T CELLS        
CD8PD1 (% of CD8)       

 Total       0.073 

 GIST 4 55.01 65.72 0.14 88.46 38.43 0.452 

 LMS 13 54.45 56.40 0.95 91.43 27.20 0.080 

 SS 5 75.03 82.52 49.96 97.00 21.87 0.560 

 MLS 16 64.44 63.40 17.77 98.15 23.46 0.599 

 DDLPS 14 65.15 64.86 24.58 90.66 16.25 0.338 

 MFS 8 80.35 84.38 50.04 98.59 18.42 0.175 
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 USARC 45 68.19 76.09 0.54 97.35 25.55 Ref 
CD8 Naïve (% of CD8)       

 Total       0.072 

 GIST 4 2.39 1.03 0.11 7.38 3.37 0.563 

 LMS 13 8.18 3.89 1.11 42.11 11.86 0.080 

 SS 5 11.61 6.55 0.57 42.52 17.56 0.306 

 MLS 16 11.99 7.75 0.00 47.33 13.06 0.008 

 DDLPS 14 6.78 2.99 0.30 30.46 8.81 0.198 

 MFS 8 6.68 4.91 0.28 18.21 6.15 0.120 

 USARC 45 3.35 2.51 0.00 13.80 3.42 Ref 
CD8 Tcm (% of CD8)       

 Total       0.461 

 GIST 4 11.50 10.31 0.50 24.90 11.58 0.536 

 LMS 13 13.71 10.62 1.92 52.88 14.03 0.982 

 SS 5 11.12 10.46 3.27 19.90 7.57 0.832 

 MLS 16 13.42 2.77 0.00 54.31 18.84 0.301 

 DDLPS 14 10.34 4.93 0.41 52.19 14.47 0.389 

 MFS 8 24.05 19.17 2.46 56.18 19.03 0.172 

 USARC 45 15.87 10.78 0.00 53.58 15.08 Ref 
CD8 Tem (% of CD8)       

 Total       0.021 

 GIST 4 66.61 68.64 54.86 74.31 8.28 0.475 

 LMS 13 49.88 46.47 18.42 80.49 22.81 0.129 

 SS 5 60.60 53.03 35.58 90.67 22.06 0.706 

 MLS 16 38.08 31.45 0.00 72.84 22.75 0.001 

 DDLPS 14 51.35 49.82 29.64 73.04 14.22 0.054 

 MFS 8 50.30 50.21 25.56 91.12 23.52 0.167 

 USARC 45 62.18 63.13 25.21 94.22 17.05 Ref 
CD8 Temra (% of CD8)       

 Total       0.032 

 GIST 4 19.50 23.52 0.69 30.28 13.19 0.631 

 LMS 13 28.22 26.32 7.19 76.84 21.55 0.089 

 SS 5 16.67 11.44 4.48 36.24 13.58 0.918 

 MLS 16 36.52 32.20 0.00 100.00 25.40 0.006 

 DDLPS 14 31.52 29.91 6.73 63.89 16.23 0.006 

 MFS 8 18.96 14.56 1.49 47.80 17.58 0.947 

 USARC 45 18.61 14.42 0.00 69.83 17.70 Ref 

         
MYELOID LINEAGE       
CD11B (% of myeloid)       

 Total       0.003 
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 GIST 4 49.42 47.95 35.98 64.31 14.22 0.108 

 LMS 13 65.58 68.33 43.71 86.34 14.76 0.274 

 SS 5 40.14 47.72 19.69 54.87 17.00 0.005 

 MLS 16 42.67 45.29 7.21 70.66 22.59 0.001 

 DDLPS 14 55.31 64.29 0.09 80.65 25.68 0.064 

 MFS 8 68.32 79.49 23.82 84.76 23.72 0.855 

 USARC 45 69.85 77.60 18.40 98.14 22.12 Ref 
HLA DR (% of myeloid)       

 Total       0.012 

 GIST 4 65.23 80.16 31.68 83.85 29.12 0.274 

 LMS 13 57.53 55.42 27.21 80.63 20.02 0.120 

 SS 5 65.24 64.23 38.86 85.40 17.47 0.101 

 MLS 16 37.76 32.41 9.26 84.56 22.34 0.557 

 DDLPS 14 67.61 71.32 0.00 89.90 25.84 0.015 

 MFS 8 71.27 73.85 30.75 95.55 21.71 0.036 

 USARC 45 44.99 42.53 3.03 96.60 27.21 Ref 
Macrophages (% of myeloid)       

 Total       0.115 

 GIST 4 25.34 25.34 24.63 26.04 1.00 0.870 

 LMS 13 29.96 33.94 1.86 45.73 13.38 0.349 

 SS 5 17.43 19.55 3.16 34.07 12.88 0.308 

 MLS 16 12.82 10.51 4.10 24.79 7.93 0.017 

 DDLPS 14 17.31 13.94 0.05 34.47 13.44 0.168 

 MFS 8 17.80 16.54 5.20 33.61 10.66 0.374 

 USARC 45 24.92 23.30 9.14 51.29 12.78 Ref 
mDCs (% of myeloid)       

 Total       0.006 

 GIST 4 19.18 21.62 11.48 24.43 6.81 0.001 

 LMS 13 5.82 4.60 0.99 13.59 3.75 0.154 

 SS 5 6.52 6.31 0.77 11.54 4.49 0.241 

 MLS 16 8.83 9.66 1.84 19.37 5.73 0.006 

 DDLPS 14 10.07 10.69 0.00 19.80 6.50 0.012 

 MFS 8 7.51 6.05 0.15 20.99 7.37 0.374 

 USARC 45 4.69 3.07 0.08 21.53 4.72 Ref 
gMDSCs (% of myeloid)       

 Total       0.563 

 GIST 4 11.04 5.36 1.16 26.60 13.64 0.457 

 LMS 13 24.61 21.51 0.52 54.67 20.29 0.910 

 SS 5 14.14 10.19 6.08 34.43 11.50 0.449 

 MLS 16 21.91 17.47 1.65 58.79 19.47 0.856 

 DDLPS 14 12.65 6.86 0.21 45.04 15.88 0.126 
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 MFS 8 13.21 13.72 0.49 21.90 7.28 0.393 

 USARC 45 26.10 20.59 0.01 94.54 24.27 Ref 
moMDSCs (% of myeloid)       

 Total       0.008 

 GIST 4 1.18 0.19 0.14 3.22 1.76 0.329 

 LMS 13 0.81 0.40 0.00 3.82 1.18 0.009 

 SS 5 1.13 0.22 0.03 4.95 2.14 0.061 

 MLS 16 1.62 0.41 0.00 13.07 3.51 0.016 

 DDLPS 14 0.62 0.32 0.00 2.15 0.70 0.003 

 MFS 8 0.61 0.68 0.02 1.28 0.46 0.035 

 USARC 45 3.12 2.35 0.00 14.16 3.41 Ref 
Classical Monocytes (% of myeloid)      

 Total       0.085 

 GIST 4 17.80 21.42 4.09 27.89 12.30 0.345 

 LMS 13 24.10 19.71 3.27 66.81 20.81 0.069 

 SS 5 15.08 11.94 3.64 37.91 13.73 0.519 

 MLS 16 6.84 5.53 0.82 29.75 7.65 0.225 

 DDLPS 14 19.88 12.66 0.00 50.94 19.59 0.328 

 MFS 8 23.52 28.25 4.84 36.98 13.81 0.047 

 USARC 45 13.07 7.12 0.34 78.89 16.31 Ref 
Intermediate Monocytes (% of myeloid)      

 Total       0.540 

 GIST 4 16.37 13.85 8.61 26.65 9.28 0.906 

 LMS 13 11.39 9.42 1.08 33.08 9.57 0.309 

 SS 5 17.48 5.73 4.95 54.39 21.22 0.840 

 MLS 16 15.17 10.89 0.50 53.39 17.35 0.474 

 DDLPS 14 29.07 27.37 0.00 76.39 25.36 0.339 

 MFS 8 28.16 21.46 7.11 60.30 22.27 0.305 

 USARC 45 20.20 14.28 0.12 71.72 19.31 Ref 
Nonclassical Monocytes (% of myeloid)      

 Total        
 GIST 4 7.84 3.12 1.28 19.12 9.81 0.345 

 LMS 13 7.44 7.00 0.24 20.40 6.66 0.058 

 SS 5 4.91 3.03 0.00 13.59 5.46 0.495 

 MLS 16 5.51 3.66 0.50 17.01 5.00 0.061 

 DDLPS 14 5.08 3.21 0.00 22.99 6.56 0.425 

 MFS 8 7.19 6.34 0.09 16.86 6.03 0.072 

 USARC 45 2.88 1.91 0.04 20.98 3.56 Ref 
 
Table 2-12: Table summarizing the association between immune cell infiltration and histology 

of STS tumor samples. Kruskal-Wallis test and Wilcoxon tests were used to determine the 
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overall and pairwise differences between the groups, respectively. USARC was the reference 

group for all pairwise comparisons. 

 

   Statistics for Cell Types Listed 

 
Treatment 
status n mean median min max sd p value 

         
MYELOID AND LYMPHOID LINEAGES      
Lymphoid Cells (% of CD45)       

 Untreated 31 46.73 41.68 2.35 92.17 25.78 0.979 
 Treated 74 46.64 46.60 2.16 87.71 24.68  

Myeloid Cells (% of CD45)       
 Untreated 31 52.29 56.04 7.83 97.65 25.94 0.851 
 Treated 74 53.14 51.95 12.29 97.84 24.56  

Myeloid/Lymphoid Ratio (log2 
value)       

 Untreated 31 0.28 0.35 -3.56 5.37 2.05 0.905 
 Treated 74 0.30 0.20 -2.83 5.50 1.86  
         

LYMPHOCYTE LINEAGE       
B Cells (% of lymphocytes)       

 Untreated 31 3.74 1.43 0.01 21.72 5.79 0.009 
 Treated 74 1.62 0.52 0.00 26.44 3.86  

CD4 T Cells (% of lymphocytes)       
 Untreated 31 36.20 36.09 6.86 59.24 13.55 0.463 
 Treated 74 34.40 34.80 7.10 69.02 14.30  

CD8 T Cells(% of lymphocytes)       
 Untreated 31 34.02 29.26 9.53 86.66 18.12 0.038 
 Treated 74 40.01 38.85 3.59 84.85 17.10  

NK Cells (% of lymphocytes)       
 Untreated 31 12.38 8.77 0.75 46.01 11.14 0.769 
 Treated 74 11.26 8.46 0.07 44.72 9.26  
         

CD4 T CELLS        
CD4PD1 (% of CD4)        

 Untreated 31 65.13 68.17 10.95 92.81 22.55 0.707 
 Treated 74 65.58 71.21 0.20 96.19 25.52  

Treg (% of CD4)        
 Untreated 31 18.31 13.22 2.23 63.37 13.29 0.328 
 Treated 74 22.20 18.55 0.95 67.49 16.20  

CD4 Naïve (% of 
CD4)        

 Untreated 31 9.83 3.00 0.15 66.34 15.57 0.017 
 Treated 74 3.12 1.92 0.00 18.09 3.78  

CD4 Tcm (% of 
CD4)        

 Untreated 31 26.98 26.09 4.38 60.92 15.14 0.751 
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 Treated 74 29.73 23.79 0.00 69.61 19.76  
CD4 Tem (% of 
CD4)        

 Untreated 31 56.91 56.88 16.91 84.25 18.25 0.124 
 Treated 74 62.65 68.79 0.00 92.71 20.79  

CD4 Temra (% of CD4)       
 Untreated 31 6.28 3.99 0.08 26.65 7.09 0.053 
 Treated 74 4.50 1.40 0.00 97.79 12.74  
         

CD8 T CELLS        
CD8PD1 (% of CD8)        

 Untreated 31 67.31 68.95 23.68 98.30 20.33 0.833 
 Treated 74 66.17 73.10 0.14 98.59 26.13  

CD8 Naïve (% of 
CD8)        

 Untreated 31 8.25 3.68 0.00 47.33 12.27 0.366 
 Treated 74 5.51 2.81 0.00 42.52 7.20  

CD8 Tcm (% of 
CD8)        

 Untreated 31 10.60 7.11 0.00 29.40 8.75 0.438 
 Treated 74 16.49 9.46 0.00 56.18 17.11  

CD8 Tem (% of 
CD8)        

 Untreated 31 53.24 56.87 9.95 91.12 21.79 0.726 
 Treated 74 55.61 55.97 0.00 94.22 20.00  

CD8 Temra (% of CD8)       
 Untreated 31 27.92 22.09 0.69 76.84 20.97 0.220 
 Treated 74 22.39 19.72 0.00 100.00 19.19  
         

MYELOID LINEAGE       
CD11B (% of 
myeloid)        

 Untreated 31 56.14 58.04 14.50 97.65 24.03 0.256 
 Treated 74 62.54 65.22 0.09 98.14 23.64  

HLA DR (% of myeloid)       
 Untreated 31 61.14 68.24 8.27 95.55 25.10 0.066 
 Treated 74 48.72 48.53 0.00 96.60 26.58  

Macrophages (% of myeloid)       
 Untreated 31 17.35 13.93 1.86 35.68 11.88 0.145 
 Treated 74 23.36 23.30 0.05 51.29 12.82  

mDCs (% of myeloid)        
 Untreated 31 8.37 8.01 0.15 21.62 6.80 0.345 
 Treated 74 6.45 4.24 0.00 24.43 5.60  

gMDSCs (% of myeloid)       
 Untreated 31 16.68 10.23 0.09 54.67 16.85 0.256 
 Treated 74 23.13 17.38 0.01 94.54 21.84  

moMDSCs (% of myeloid)       
 Untreated 31 1.16 0.63 0.00 5.08 1.46 0.231 
 Treated 74 2.23 0.80 0.00 14.16 3.25  

Classical Monocytes (% of 
myeloid)       
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 Untreated 31 20.82 13.65 0.49 78.89 20.05 0.068 
 Treated 74 13.26 6.97 0.00 66.81 14.48  

Intermediate Monocytes (% of myeloid)      
 Untreated 31 21.68 12.06 1.07 60.30 19.98 0.312 
 Treated 74 19.25 11.53 0.00 76.39 19.25  

Nonclassical Monocytes (% of myeloid)      
 Untreated 31 5.44 3.18 0.04 22.99 6.44 0.823 
 Treated 74 4.39 3.01 0.00 20.98 4.82  

 
Table 2-13: Table summarizing the association between immune cell infiltration and treatment 

status in STS tumor samples. Treatment was defined by the receipt of neoadjuvant chemotherapy 

or radiation. Wilcoxon test was used to determine the differences between the groups. 

 
   Statistics for Cell Types Listed 

 XRT Fractionation n mean median min max sd p value 
         

MYELOID AND LYMPHOID 
LINEAGES       
Lymphoid Cells (% of CD45)        

 Total 105      0.626 

 
Hypofractionated (5-
6Gy/fx) 33 44.43 38.50 2.96 87.71 24.51 0.776 

 Conventional (2-3.5Gy/fx) 20 50.82 53.33 6.58 85.65 26.26 0.419 
 None 52 46.39 40.50 2.16 92.17 24.81 Ref 

Myeloid Cells (% of CD45)        
 Total 105      0.652 

 
Hypofractionated (5-
6Gy/fx) 33 55.57 61.50 12.29 96.96 24.40 0.644 

 Conventional (2-3.5Gy/fx) 20 49.30 46.67 14.35 93.42 26.13 0.550 
 None 52 52.68 54.94 7.83 97.84 24.87 Ref 

Myeloid/Lymphoid Ratio (log2 value)       
 Total 105      0.644 

 
Hypofractionated (5-
6Gy/fx) 33 0.43 0.68 -2.83 5.03 1.83 0.709 

 Conventional (2-3.5Gy/fx) 20 0.07 -0.19 -2.58 3.83 1.97 0.491 
 None 52 0.30 0.42 -3.56 5.50 1.96 Ref 
         

LYMPHOCYTE LINEAGE        
B Cells (% of lymphocytes)        

 Total 105      0.008 

 
Hypofractionated (5-
6Gy/fx) 33 0.91 0.50 0.00 6.65 1.40 0.005 

 Conventional (2-3.5Gy/fx) 20 0.99 0.28 0.00 4.64 1.29 0.024 
 None 52 3.48 1.42 0.01 26.44 6.07 Ref 

CD4 T Cells (% of lymphocytes)        
 Total 105      0.683 

 
Hypofractionated (5-
6Gy/fx) 33 36.41 37.03 9.75 69.02 15.04 0.677 
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 Conventional (2-3.5Gy/fx) 20 32.89 33.08 7.10 62.98 15.10 0.491 
 None 52 34.81 35.17 6.86 61.26 13.14 Ref 

CD8 T Cells(% of lymphocytes)        
 Total 105      0.015 

 
Hypofractionated (5-
6Gy/fx) 33 36.39 32.85 3.59 74.85 17.43 0.072 

 Conventional (2-3.5Gy/fx) 20 48.25 47.40 20.13 84.85 17.11 0.752 
 None 52 35.44 32.85 9.53 86.66 16.57 Ref 

NK Cells (% of lymphocytes)        
 Total 105      0.036 

 
Hypofractionated (5-
6Gy/fx) 33 11.77 8.15 1.34 44.72 10.98 0.293 

 Conventional (2-3.5Gy/fx) 20 6.73 6.98 0.87 13.22 4.23 0.009 
 None 52 13.48 12.03 0.07 46.01 10.16 Ref 
         

CD4 T CELLS        
CD4PD1 (% of CD4)        

 Total 105      0.120 

 
Hypofractionated (5-
6Gy/fx) 33 72.82 76.09 25.69 96.19 18.38 0.047 

 Conventional (2-3.5Gy/fx) 20 69.62 70.79 10.18 93.52 20.00 0.258 
 None 52 59.57 64.77 0.20 92.81 28.06 Ref 

Treg (% of CD4)        
 Total 105      0.296 

 
Hypofractionated (5-
6Gy/fx) 33 24.89 22.05 1.92 67.49 17.70 0.190 

 Conventional (2-3.5Gy/fx) 20 20.34 19.87 0.95 45.81 11.27 0.267 
 None 52 19.21 14.44 1.47 64.30 15.53 Ref 

CD4 Naïve (% of CD4)        
 Total 105      0.066 

 
Hypofractionated (5-
6Gy/fx) 33 3.50 1.96 0.00 16.54 3.98 0.287 

 Conventional (2-3.5Gy/fx) 20 1.98 1.28 0.10 8.79 2.00 0.024 
 None 52 7.16 2.74 0.00 66.34 12.35 Ref 

CD4 Tcm (% of CD4)        
 Total 105      0.928 

 
Hypofractionated (5-
6Gy/fx) 33 30.47 28.74 0.00 67.77 21.39 0.780 

 Conventional (2-3.5Gy/fx) 20 29.84 23.77 6.37 63.91 17.88 0.764 
 None 52 27.72 24.50 0.20 69.61 17.35 Ref 

CD4 Tem (% of CD4)        
 Total 105      0.520 

 
Hypofractionated (5-
6Gy/fx) 33 58.02 59.00 0.00 86.86 22.01 0.705 

 Conventional (2-3.5Gy/fx) 20 65.76 68.89 33.73 87.15 17.28 0.352 
 None 52 60.73 63.03 16.91 92.71 20.26 Ref 

CD4 Temra (% of CD4)        
 Total 105      0.701 

 
Hypofractionated (5-
6Gy/fx) 33 8.01 2.09 0.00 97.79 19.61 0.691 

 Conventional (2-3.5Gy/fx) 20 2.42 1.23 0.32 16.77 3.59 0.403 
 None 52 4.39 1.77 0.00 26.65 5.82 Ref 
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CD8 T CELLS        
CD8PD1 (% of CD8)        

 Total 105      0.021 

 
Hypofractionated (5-
6Gy/fx) 33 74.44 79.28 17.77 98.59 19.32 0.013 

 Conventional (2-3.5Gy/fx) 20 71.39 78.83 2.50 94.85 24.44 0.050 
 None 52 59.98 61.30 0.14 98.30 25.78 Ref 

CD8 Naïve (% of CD8)        
 Total 105      0.365 

 
Hypofractionated (5-
6Gy/fx) 33 5.78 3.89 0.00 25.00 6.27 0.812 

 Conventional (2-3.5Gy/fx) 20 3.42 2.56 0.24 11.67 3.38 0.180 
 None 52 7.78 3.28 0.00 47.33 11.31 Ref 

CD8 Tcm (% of CD8)        
 Total 105      0.835 

 
Hypofractionated (5-
6Gy/fx) 33 18.98 6.60 0.00 56.18 20.46 0.643 

 Conventional (2-3.5Gy/fx) 20 13.34 10.49 1.21 42.17 10.78 0.617 
 None 52 13.08 7.46 0.00 54.31 13.46 Ref 

CD8 Tem (% of CD8)        
 Total 105      0.020 

 
Hypofractionated (5-
6Gy/fx) 33 48.97 43.79 0.00 93.86 21.85 0.315 

 Conventional (2-3.5Gy/fx) 20 65.79 65.13 29.18 94.22 16.21 0.033 
 None 52 53.77 55.87 9.95 91.12 19.82 Ref 

CD8 Temra (% of CD8)        
 Total 105      0.371 

 
Hypofractionated (5-
6Gy/fx) 33 26.27 21.09 0.00 100.00 24.48 0.774 

 Conventional (2-3.5Gy/fx) 20 17.45 14.50 0.79 42.78 12.57 0.138 
 None 52 25.37 21.25 0.00 76.84 19.03 Ref 
         

MYELOID LINEAGE        
CD11B (% of myeloid)        

 Total 105      0.456 

 
Hypofractionated (5-
6Gy/fx) 33 64.68 68.32 18.40 92.78 21.78 0.427 

 Conventional (2-3.5Gy/fx) 20 56.86 59.04 7.21 98.14 24.54 0.546 
 None 52 60.05 64.31 0.09 97.65 24.81 Ref 

HLA DR (% of myeloid)        
 Total 105      0.816 

 
Hypofractionated (5-
6Gy/fx) 33 52.96 50.40 10.55 96.60 25.84 0.878 

 Conventional (2-3.5Gy/fx) 20 48.75 50.50 3.03 94.58 26.14 0.536 
 None 52 53.07 54.60 0.00 95.55 27.78 Ref 

Macrophages (% of myeloid)        
 Total 105      0.720 

 
Hypofractionated (5-
6Gy/fx) 33 24.61 22.11 5.10 51.29 14.23 0.488 

 Conventional (2-3.5Gy/fx) 20 20.49 21.45 4.10 37.98 10.37 0.945 
 None 52 20.80 16.99 0.05 45.73 13.12 Ref 

mDCs (% of myeloid)        
 Total 105      0.213 
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Hypofractionated (5-
6Gy/fx) 33 7.97 5.63 0.61 21.53 5.91 0.413 

 Conventional (2-3.5Gy/fx) 20 4.75 3.53 0.77 11.54 3.45 0.367 
 None 52 7.32 4.95 0.00 24.43 6.69 Ref 

gMDSCs (% of myeloid)        
 Total 105      0.636 

 
Hypofractionated (5-
6Gy/fx) 33 18.25 16.04 0.01 58.79 17.90 0.601 

 Conventional (2-3.5Gy/fx) 20 24.52 14.91 1.50 94.54 23.93 0.515 
 None 52 21.90 12.96 0.09 73.82 21.07 Ref 

moMDSCs (% of myeloid)        
 Total 105      0.537 

 
Hypofractionated (5-
6Gy/fx) 33 2.72 0.64 0.00 14.16 4.20 0.376 

 Conventional (2-3.5Gy/fx) 20 1.71 1.36 0.02 5.28 1.62 0.380 
 None 52 1.55 0.65 0.00 12.07 2.27 Ref 

Classical Monocytes (% of 
myeloid)        

 Total 105      0.571 

 
Hypofractionated (5-
6Gy/fx) 33 12.66 6.50 0.38 60.10 13.83 0.315 

 Conventional (2-3.5Gy/fx) 20 12.55 9.59 0.91 37.91 11.55 0.536 
 None 52 18.14 9.57 0.00 78.89 19.23 Ref 

Intermediate Monocytes (% of myeloid)       
 Total 105      0.667 

 
Hypofractionated (5-
6Gy/fx) 33 23.21 19.66 0.50 76.39 20.16 0.378 

 Conventional (2-3.5Gy/fx) 20 20.21 10.77 0.12 71.72 22.43 0.931 
 None 52 17.80 11.43 0.00 60.30 17.64 Ref 

Nonclassical Monocytes (% of myeloid)       
 Total 105      0.842 

 
Hypofractionated (5-
6Gy/fx) 33 4.73 3.53 0.19 20.98 5.16 0.849 

 Conventional (2-3.5Gy/fx) 20 4.10 2.42 0.00 15.01 4.51 0.624 
 None 52 4.90 3.12 0.00 22.99 5.76 Ref 

 
Table 2-14: Table summarizing the association between immune cell infiltration and XRT 

fractionation in STS tumor samples. Kruskal-Wallis test and Wilcoxon tests were used to 

determine the overall and pairwise differences between the groups, respectively. No XRT was 

the reference group for all pairwise comparisons. 

 
   Statistics for Cell Types Listed 

 
Systemic 
Therapy n mean median min max sd p value 

         
MYELOID AND LYMPHOID 
LINEAGES      
Lymphoid Cells (% of CD45)       



 92 

 Total 105      0.507 
 Cytotoxic 25 51.45 49.30 6.69 87.71 23.38 0.192 
 Immunotherapy 10 45.34 40.21 2.16 79.98 30.88 0.916 
 TKI 4 56.83 54.91 32.24 85.26 26.81 0.382 
 None 66 44.37 39.11 2.35 92.17 24.48 Ref 

Myeloid Cells (% of CD45)       
 Total 105      0.398 
 Cytotoxic 25 48.62 50.70 12.29 93.30 23.44 0.258 
 Immunotherapy 10 54.85 59.64 19.93 97.84 30.59 0.916 
 TKI 4 38.42 37.87 14.08 63.86 22.55 0.192 
 None 66 55.18 60.89 7.83 97.65 24.55 Ref 

Myeloid/Lymphoid Ratio (log2 
value)       

 Total 105      0.452 
 Cytotoxic 25 -0.10 0.04 -2.83 3.80 1.68 0.231 
 Immunotherapy 10 0.61 0.58 -2.00 5.50 2.54 0.903 
 TKI 4 -0.66 -0.44 -2.60 0.84 1.67 0.253 
 None 66 0.45 0.64 -3.56 5.37 1.89 Ref 
         

LYMPHOCYTE LINEAGE       
B Cells (% of lymphocytes)       

 Total 105      0.034 
 Cytotoxic 25 1.77 0.23 0.00 26.44 5.70 0.010 
 Immunotherapy 10 2.81 1.51 0.19 15.05 4.70 0.618 
 TKI 4 1.38 1.42 0.38 2.31 0.86 0.600 
 None 66 2.35 0.91 0.00 21.72 4.25 Ref 

CD4 T Cells (% of lymphocytes)       
 Total 105      0.174 
 Cytotoxic 25 33.42 33.79 10.98 62.98 13.54 0.410 
 Immunotherapy 10 27.13 28.47 7.10 55.85 14.76 0.058 
 TKI 4 43.53 42.33 28.21 61.26 15.21 0.390 
 None 66 36.21 36.10 6.86 69.02 13.78 Ref 

CD8 T Cells(% of lymphocytes)       
 Total 105      0.099 
 Cytotoxic 25 43.59 40.81 14.86 74.44 17.30 0.035 
 Immunotherapy 10 44.45 40.58 20.13 84.85 17.94 0.087 
 TKI 4 34.74 35.18 13.47 55.13 17.57 0.946 
 None 66 35.47 32.01 3.59 86.66 17.20 Ref 

NK Cells (% of lymphocytes)       
 Total 105      0.907 
 Cytotoxic 25 10.08 8.37 1.04 33.30 7.98 0.665 
 Immunotherapy 10 12.17 12.77 0.07 27.09 9.42 0.847 
 TKI 4 12.62 12.41 4.15 21.51 8.84 0.691 
 None 66 11.99 8.57 0.75 46.01 10.69 Ref 
         

CD4 T CELLS        
CD4PD1 (% of CD4)        

 Total 105      <0.001 
 Cytotoxic 25 72.23 78.81 3.88 94.25 20.56 0.388 
 Immunotherapy 10 23.64 21.89 0.20 49.54 20.38 <0.001 
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 TKI 4 86.26 88.72 71.41 96.19 10.86 0.060 
 None 66 68.47 72.81 10.95 94.87 19.91 Ref 

Treg (% of CD4)        
 Total 105      0.035 
 Cytotoxic 25 16.55 14.00 2.67 46.46 12.40 0.262 
 Immunotherapy 10 28.09 27.34 1.47 56.81 18.25 0.217 
 TKI 4 44.98 46.90 18.62 67.49 24.59 0.032 
 None 66 20.21 18.12 0.95 63.37 13.97 Ref 

CD4 Naïve (% of 
CD4)        

 Total 105      0.195 
 Cytotoxic 25 3.26 1.64 0.00 18.09 4.50 0.118 
 Immunotherapy 10 2.32 1.41 0.00 7.55 2.52 0.098 
 TKI 4 1.75 1.68 1.35 2.28 0.46 0.374 
 None 66 6.48 2.52 0.00 66.34 11.41 Ref 

CD4 Tcm (% of 
CD4)        

 Total 105      0.953 
 Cytotoxic 25 28.86 20.96 6.37 69.61 19.06 0.905 
 Immunotherapy 10 27.04 31.55 0.20 60.55 20.28 0.785 
 TKI 4 33.50 32.21 14.21 55.36 20.12 0.610 
 None 66 29.00 26.45 0.00 67.77 18.36 Ref 

CD4 Tem (% of 
CD4)        

 Total 105      0.205 
 Cytotoxic 25 65.73 74.53 26.39 87.32 20.05 0.065 
 Immunotherapy 10 67.99 64.90 34.86 92.71 20.80 0.173 
 TKI 4 63.62 64.07 43.08 83.25 18.89 0.570 
 None 66 57.63 57.07 0.00 87.15 19.98 Ref 

CD4 Temra (% of CD4)       
 Total 105      0.095 
 Cytotoxic 25 2.14 1.01 0.00 16.77 3.46 0.049 
 Immunotherapy 10 2.65 2.20 0.47 6.88 2.00 0.654 
 TKI 4 1.14 0.46 0.22 3.41 1.52 0.149 
 None 66 6.89 2.41 0.00 97.79 14.27 Ref 
         

CD8 T CELLS        
CD8PD1 (% of CD8)        

 Total 105      0.004 
 Cytotoxic 25 70.69 74.83 0.95 98.15 21.18 0.880 
 Immunotherapy 10 31.17 28.96 0.14 92.62 31.26 <0.001 
 TKI 4 76.30 75.24 59.75 94.96 14.43 0.690 
 None 66 70.24 71.81 17.77 98.59 20.13 Ref 

CD8 Naïve (% of 
CD8)        

 Total 105      0.672 
 Cytotoxic 25 6.33 2.81 0.00 42.52 9.70 0.580 
 Immunotherapy 10 3.74 2.51 0.24 10.91 3.75 0.413 
 TKI 4 7.53 5.30 1.32 18.21 7.43 0.493 
 None 66 6.63 3.68 0.00 47.33 9.45 Ref 
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CD8 Tcm (% of 
CD8)        

 Total 105      0.484 
 Cytotoxic 25 12.72 6.28 1.21 54.31 15.72 0.505 
 Immunotherapy 10 19.96 22.95 0.21 42.17 14.87 0.279 
 TKI 4 24.37 23.89 3.27 46.44 22.63 0.374 
 None 66 14.12 9.21 0.00 56.18 14.82 Ref 

CD8 Tem (% of 
CD8)        

 Total 105      0.256 
 Cytotoxic 25 61.96 64.88 17.31 94.22 20.03 0.065 
 Immunotherapy 10 55.82 57.57 33.06 68.48 10.33 0.705 
 TKI 4 48.67 50.16 25.56 68.79 18.04 0.673 
 None 66 52.27 54.72 0.00 93.86 21.69 Ref 

CD8 Temra (% of CD8)       
 Total 105      0.661 
 Cytotoxic 25 18.99 15.30 0.00 38.37 12.36 0.311 
 Immunotherapy 10 20.48 17.29 0.79 64.46 18.90 0.374 
 TKI 4 19.43 18.21 6.04 35.25 13.84 0.738 
 None 66 26.98 21.09 0.00 100.00 22.39 Ref 
         

MYELOID LINEAGE       
CD11B (% of 
myeloid)        

 Total 105      0.351 
 Cytotoxic 25 58.52 64.57 18.40 87.23 21.76 0.746 
 Immunotherapy 10 66.29 76.31 0.09 95.75 31.18 0.348 
 TKI 4 75.18 81.79 47.95 89.18 18.64 0.184 
 None 66 59.64 62.31 7.21 98.14 23.65 Ref 

HLA DR (% of 
myeloid)        

 Total 105      0.015 
 Cytotoxic 25 57.67 54.60 20.74 96.50 20.87 0.606 
 Immunotherapy 10 24.13 15.33 0.00 94.58 29.11 0.005 
 TKI 4 60.05 60.35 37.69 81.82 24.21 0.585 
 None 66 54.12 54.51 3.03 96.60 26.15 Ref 

Macrophages (% of myeloid)       
 Total 105      0.561 
 Cytotoxic 25 23.82 24.79 6.03 45.73 13.19 0.544 
 Immunotherapy 10 17.06 16.47 0.05 35.80 11.38 0.578 
 TKI 4 27.30 27.18 16.54 38.31 9.13 0.315 
 None 66 21.24 21.15 1.86 51.29 13.31 Ref 

mDCs (% of myeloid)        
 Total 105      0.006 
 Cytotoxic 25 6.61 4.87 0.77 17.77 4.87 0.649 
 Immunotherapy 10 2.09 0.81 0.00 11.48 3.63 <0.001 
 TKI 4 9.09 4.74 2.45 24.43 10.38 0.864 
 None 66 7.80 7.08 0.15 21.62 6.05 Ref 

gMDSCs (% of myeloid)       
 Total 105      0.029 
 Cytotoxic 25 18.14 11.22 0.21 61.40 17.53 0.981 
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 Immunotherapy 10 42.09 45.04 1.50 73.82 21.20 0.004 
 TKI 4 27.93 29.93 1.16 50.70 25.34 0.408 
 None 66 18.61 12.96 0.01 94.54 19.86 Ref 

moMDSCs (% of myeloid)       
 Total 105      0.531 
 Cytotoxic 25 1.31 1.02 0.00 4.95 1.37 0.649 
 Immunotherapy 10 3.62 3.22 0.00 12.07 3.95 0.390 
 TKI 4 0.84 0.40 0.02 2.54 1.16 0.373 
 None 66 1.97 0.72 0.00 14.16 3.16 Ref 

Classical Monocytes (% of 
myeloid)       

 Total 105      0.061 
 Cytotoxic 25 20.80 11.94 1.25 66.81 19.19 0.157 
 Immunotherapy 10 5.98 4.09 0.00 20.00 6.42 0.089 
 TKI 4 17.61 17.72 7.10 27.89 10.36 0.310 
 None 66 14.60 7.14 0.38 78.89 16.27 Ref 

Intermediate Monocytes (% of myeloid)      
 Total 105      0.018 
 Cytotoxic 25 17.08 9.07 1.85 56.66 16.54 0.231 
 Immunotherapy 10 10.12 2.17 0.00 71.72 23.23 0.005 
 TKI 4 18.22 16.02 9.46 31.38 9.47 0.988 
 None 66 22.84 14.05 0.12 76.39 19.96 Ref 

Nonclassical Monocytes (% of myeloid)      
 Total 105      0.210 
 Cytotoxic 25 4.73 3.70 0.00 20.40 5.40 0.981 
 Immunotherapy 10 2.06 1.87 0.00 5.58 1.53 0.255 
 TKI 4 9.02 8.04 3.12 16.86 6.30 0.108 
 None 66 4.78 3.03 0.04 22.99 5.47 Ref 

 
Table 2-15: Table summarizing the association between immune cell infiltration and systemic 

therapy type in STS tumor samples. Kruskal-Wallis test and Wilcoxon tests were used to 

determine the overall and pairwise differences between the groups, respectively. No systemic 

therapy was the reference group for all pairwise comparisons. 

 
   Statistics for Cell Types Listed 

 Treatment Type n mean median min max sd p value 
         

MYELOID AND LYMPHOID 
LINEAGES       
Lymphoid Cells (% of CD45)        

 Total 105      0.285 
 None 31 46.73 41.68 2.35 92.17 25.78 Ref 
 Systemic Therapy 21 45.94 38.75 2.16 85.26 24.08 0.849 
 XRT 35 42.43 38.26 2.96 82.59 23.57 0.487 
 Systemic Therapy + XRT 18 55.93 56.57 6.69 87.71 26.49 0.196 

Myeloid Cells (% of CD45)        
 Total 105      0.307 
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 None 31 52.29 56.04 7.83 97.65 25.94 Ref 
 Systemic Therapy 21 53.21 52.48 14.08 97.84 23.99 0.834 
 XRT 35 57.56 61.74 17.41 96.96 23.47 0.395 
 Systemic Therapy + XRT 18 44.21 43.43 12.29 93.30 26.36 0.280 

Myeloid/Lymphoid Ratio (log2 value)       
 Total 105      0.298 
 None 31 0.28 0.35 -3.56 5.37 2.05 Ref 
 Systemic Therapy 21 0.32 0.63 -2.60 5.50 1.88 0.820 
 XRT 35 0.60 0.69 -2.25 5.03 1.77 0.450 
 Systemic Therapy + XRT 18 -0.33 -0.38 -2.83 3.80 1.98 0.250 
         

LYMPHOCYTE LINEAGE        
B Cells (% of lymphocytes)        

 Total 105      0.004 
 None 31 3.74 1.43 0.01 21.72 5.79 Ref 
 Systemic Therapy 21 3.15 1.23 0.11 26.44 6.55 0.380 
 XRT 35 1.16 0.66 0.00 6.65 1.53 0.021 
 Systemic Therapy + XRT 18 0.54 0.20 0.00 2.69 0.77 0.001 

CD4 T Cells (% of 
lymphocytes)        

 Total 105      0.683 
 None 31 36.20 36.09 6.86 59.24 13.55 Ref 
 Systemic Therapy 21 32.96 33.91 13.29 61.26 12.67 0.330 
 XRT 35 36.21 36.82 9.75 69.02 14.19 0.890 
 Systemic Therapy + XRT 18 32.66 32.77 7.10 62.98 16.69 0.410 

CD8 T Cells(% of 
lymphocytes)        

 Total 105      0.021 
 None 31 34.02 29.26 9.53 86.66 18.12 Ref 
 Systemic Therapy 21 37.34 39.14 13.47 69.42 14.47 0.180 
 XRT 35 36.70 33.55 3.59 74.85 16.57 0.280 
 Systemic Therapy + XRT 18 49.73 51.30 20.13 84.85 18.32 0.003 

NK Cells (% of lymphocytes)        
 Total 105      0.022 
 None 31 12.38 8.77 0.75 46.01 11.14 Ref 
 Systemic Therapy 21 14.88 16.05 0.07 33.30 8.86 0.180 
 XRT 35 11.66 8.20 0.87 44.72 10.49 0.760 
 Systemic Therapy + XRT 18 5.93 5.52 1.04 12.61 3.49 0.047 
         

CD4 T CELLS        
CD4PD1 (% of CD4)        

 Total 105      0.164 
 None 31 65.13 68.17 10.95 92.81 22.55 Ref 
 Systemic Therapy 21 52.43 55.79 0.20 92.11 33.08 0.247 
 XRT 35 71.48 72.81 25.69 94.87 17.04 0.313 
 Systemic Therapy + XRT 18 71.41 80.75 10.18 96.19 22.47 0.364 

Treg (% of CD4)        
 Total 105      0.477 
 None 31 18.31 13.22 2.23 63.37 13.29 Ref 
 Systemic Therapy 21 20.44 15.01 1.47 64.30 18.41 1.000 
 XRT 35 21.93 21.62 0.95 56.72 14.56 0.360 
 Systemic Therapy + XRT 18 24.77 21.20 5.92 67.49 16.88 0.160 

CD4 Naïve (% of CD4)        
 Total 105      0.029 
 None 31 9.83 3.00 0.15 66.34 15.57 Ref 
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 Systemic Therapy 21 3.72 2.14 0.00 18.09 4.65 0.152 
 XRT 35 3.46 2.09 0.00 16.54 3.79 0.105 
 Systemic Therapy + XRT 18 1.78 1.26 0.10 8.79 2.04 0.004 

CD4 Tcm (% of CD4)        
 Total 105      0.980 
 None 31 26.98 26.09 4.38 60.92 15.14 Ref 
 Systemic Therapy 21 28.68 23.76 0.20 69.61 20.18 0.890 
 XRT 35 30.82 28.93 0.00 67.77 20.93 0.710 
 Systemic Therapy + XRT 18 29.11 20.19 6.37 63.91 18.10 0.870 

CD4 Tem (% of CD4)        
 Total 105      0.194 
 None 31 56.91 56.88 16.91 84.25 18.25 Ref 
 Systemic Therapy 21 65.65 72.51 26.39 92.71 22.06 0.115 
 XRT 35 58.27 61.70 0.00 87.15 21.71 0.573 
 Systemic Therapy + XRT 18 66.67 74.33 33.73 85.78 16.83 0.074 

CD4 Temra (% of CD4)        
 Total 105      0.157 
 None 31 6.28 3.99 0.08 26.65 7.09 Ref 
 Systemic Therapy 21 1.95 1.52 0.00 6.88 1.81 0.061 
 XRT 35 7.45 2.20 0.00 97.79 18.64 0.303 
 Systemic Therapy + XRT 18 2.44 0.97 0.08 16.77 4.01 0.056 
         

CD8 T CELLS        
CD8PD1 (% of CD8)        

 Total 105      0.009 
 None 31 67.31 68.95 23.68 98.30 20.33 Ref 
 Systemic Therapy 21 50.55 56.40 0.14 98.15 29.30 0.041 
 XRT 35 72.87 79.04 17.77 98.59 19.92 0.290 
 Systemic Therapy + XRT 18 73.64 78.92 2.50 94.96 24.55 0.171 

CD8 Naïve (% of CD8)        
 Total 105      0.739 
 None 31 8.25 3.68 0.00 47.33 12.27 Ref 
 Systemic Therapy 21 7.17 2.71 0.00 42.52 10.22 0.625 
 XRT 35 5.18 3.29 0.00 25.00 5.74 0.492 
 Systemic Therapy + XRT 18 4.06 2.92 0.24 18.21 4.58 0.315 

CD8 Tcm (% of CD8)        
 Total 105      0.883 
 None 31 10.60 7.11 0.00 29.40 8.75 Ref 
 Systemic Therapy 21 16.28 7.80 0.21 54.31 17.53 0.580 
 XRT 35 17.29 10.85 0.00 56.18 18.26 0.480 
 Systemic Therapy + XRT 18 15.33 9.71 1.21 46.44 15.30 0.600 

CD8 Tem (% of CD8)        
 Total 105      0.221 
 None 31 53.24 56.87 9.95 91.12 21.79 Ref 
 Systemic Therapy 21 54.46 54.19 17.31 82.28 17.46 984.000 
 XRT 35 51.40 50.99 0.00 93.86 21.93 0.709 
 Systemic Therapy + XRT 18 64.48 64.92 25.56 94.22 17.43 0.118 

CD8 Temra (% of CD8)        
 Total 105      0.417 
 None 31 27.92 22.09 0.69 76.84 20.97 Ref 
 Systemic Therapy 21 22.09 20.38 0.00 64.46 16.11 0.421 
 XRT 35 26.13 20.85 0.00 100.00 23.92 0.562 
 Systemic Therapy + XRT 18 16.14 14.42 0.79 36.24 10.60 0.083 
         

MYELOID LINEAGE        
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CD11B (% of myeloid)        
 Total 105      0.584 
 None 31 56.14 58.04 14.50 97.65 24.03 Ref 
 Systemic Therapy 21 64.98 73.64 0.09 95.75 25.55 0.220 
 XRT 35 62.54 63.01 7.21 98.14 23.34 0.320 
 Systemic Therapy + XRT 18 59.44 65.22 18.40 88.42 22.98 0.720 

HLA DR (% of myeloid)        
 Total 105      0.160 
 None 31 61.14 68.24 8.27 95.55 25.10 Ref 
 Systemic Therapy 21 42.88 39.81 0.00 89.90 28.26 0.054 
 XRT 35 48.30 47.07 3.03 96.60 25.99 0.091 
 Systemic Therapy + XRT 18 56.93 53.72 15.33 96.50 25.15 0.578 

Macrophages (% of myeloid)        
 Total 105      0.363 
 None 31 17.35 13.93 1.86 35.68 11.88 Ref 
 Systemic Therapy 21 24.79 29.73 0.05 45.73 13.80 0.160 
 XRT 35 24.67 23.30 4.10 51.29 13.88 0.180 
 Systemic Therapy + XRT 18 19.64 16.54 7.86 37.98 9.96 0.570 

mDCs (% of myeloid)        
 Total 105      0.327 
 None 31 8.37 8.01 0.15 21.62 6.80 Ref 
 Systemic Therapy 21 5.98 4.24 0.00 24.43 6.48 0.219 
 XRT 35 7.33 5.15 0.61 21.53 5.42 0.908 
 Systemic Therapy + XRT 18 5.35 3.04 0.77 17.77 4.82 0.234 

gMDSCs (% of myeloid)        
 Total 105      0.461 
 None 31 16.68 10.23 0.09 54.67 16.85 Ref 
 Systemic Therapy 21 28.49 26.60 0.21 73.82 24.31 0.161 
 XRT 35 20.20 14.62 0.01 94.54 22.21 0.703 
 Systemic Therapy + XRT 18 22.01 15.34 0.31 61.40 17.56 258.000 

moMDSCs (% of myeloid)        
 Total 105      0.508 
 None 31 1.16 0.63 0.00 5.08 1.46 Ref 
 Systemic Therapy 21 2.04 1.02 0.00 12.07 2.97 478.000 
 XRT 35 2.65 0.80 0.00 14.16 3.97 0.108 
 Systemic Therapy + XRT 18 1.64 1.18 0.00 5.28 1.79 0.862 

Classical Monocytes (% of myeloid)       
 Total 105      0.038 
 None 31 20.82 13.65 0.49 78.89 20.05 Ref 
 Systemic Therapy 21 14.76 6.61 0.00 66.81 18.09 0.161 
 XRT 35 9.46 5.55 0.38 34.58 10.04 0.014 
 Systemic Therapy + XRT 18 18.71 11.94 1.25 60.10 15.54 0.966 

Intermediate Monocytes (% of myeloid)       
 Total 105      0.198 
 None 31 21.68 12.06 1.07 60.30 19.98 Ref 
 Systemic Therapy 21 12.91 8.61 0.00 38.89 13.08 0.089 
 XRT 35 23.80 19.47 0.12 76.39 20.24 0.922 
 Systemic Therapy + XRT 18 18.48 7.44 1.36 71.72 22.46 0.230 

Nonclassical Monocytes (% of myeloid)       
 Total 105      0.995 
 None 31 5.44 3.18 0.04 22.99 6.44 Ref 
 Systemic Therapy 21 4.21 3.12 0.00 20.40 4.85 0.894 
 XRT 35 4.24 3.01 0.19 20.98 4.56 0.797 
 Systemic Therapy + XRT 18 4.94 2.75 0.00 16.86 5.54 0.943 
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Table 2-16: Table summarizing the association between immune cell infiltration and 

neoadjuvant treatment type in STS tumor samples. Kruskal-Wallis test and Wilcoxon tests were 

used to determine the overall and pairwise differences between the groups, respectively. No 

neoadjuvant therapy was the reference group for all pairwise comparisons. 

   Statistics for Cell Types Listed 
 XRT n mean median min max sd p value 
         

MYELOID AND LYMPHOID LINEAGES     
Lymphoid Cells (% of CD45)       

 No XRT 52 46.39 40.50 2.16 92.17 24.81 0.830 
 XRT 53 46.93 48.83 2.96 87.71 25.15  

Myeloid Cells (% of CD45)       
 No XRT 52 52.68 54.94 7.83 97.84 24.87 0.990 
 XRT 53 53.11 51.17 12.29 96.96 25.03  

Myeloid/Lymphoid Ratio (log2 value)      
 No XRT 52 0.30 0.42 -3.56 5.50 1.96 0.920 
 XRT 53 0.29 0.07 -2.83 5.03 1.87  
         

LYMPHOCYTE 
LINEAGE       
B Cells (% of lymphocytes)       

 No XRT 52 3.48 1.42 0.01 26.44 6.07 0.002 
 XRT 53 0.94 0.38 0.00 6.65 1.34  

CD4 T Cells (% of lymphocytes)      
 No XRT 52 34.81 35.17 6.86 61.26 13.14 0.940 
 XRT 53 35.00 35.35 7.10 69.02 15.01  

CD8 T Cells(% of lymphocytes)      
 No XRT 52 35.44 32.85 9.53 86.66 16.57 0.086 
 XRT 53 41.13 38.33 3.59 84.85 18.10  

NK Cells (% of lymphocytes)       
 No XRT 52 13.48 12.03 0.07 46.01 10.16 0.032 
 XRT 53 9.66 7.58 0.87 44.72 9.08  
         

CD4 T 
CELLS        
CD4PD1 (% of CD4)       

 No XRT 52 59.57 64.77 0.20 92.81 28.06 0.049 
 XRT 53 71.46 72.82 10.18 96.19 18.94  

Treg (% of CD4)       
 No XRT 52 19.21 14.44 1.47 64.30 15.53 0.130 
 XRT 53 22.95 21.20 0.95 67.49 15.32  

CD4 Naïve (% of CD4)       
 No XRT 52 7.16 2.74 0.00 66.34 12.35 0.049 
 XRT 53 2.85 1.65 0.00 16.54 3.34  
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CD4 Tcm (% of CD4)       
 No XRT 52 27.72 24.50 0.20 69.61 17.35 0.720 
 XRT 53 30.20 23.82 0.00 67.77 19.77  

CD4 Tem (% of CD4)       
 No XRT 52 60.73 63.03 16.91 92.71 20.26 0.800 
 XRT 53 61.31 67.07 0.00 87.15 20.30  

CD4 Temra (% of CD4)       
 No XRT 52 4.39 1.77 0.00 26.65 5.82 0.460 
 XRT 53 5.63 1.31 0.00 97.79 15.18  
         

CD8 T 
CELLS        
CD8PD1 (% of CD8)       

 No XRT 52 59.98 61.30 0.14 98.30 25.78 0.006 
 XRT 53 73.14 78.92 2.50 98.59 21.44  

CD8 Naïve (% of CD8)       
 No XRT 52 7.78 3.28 0.00 47.33 11.31 0.370 
 XRT 53 4.77 2.92 0.00 25.00 5.32  

CD8 Tcm (% of CD8)       
 No XRT 52 13.08 7.46 0.00 54.31 13.46 0.550 
 XRT 53 16.58 9.71 0.00 56.18 17.11  

CD8 Tem (% of CD8)       
 No XRT 52 53.77 55.87 9.95 91.12 19.82 0.630 
 XRT 53 56.13 56.81 0.00 94.22 21.19  

CD8 Temra (% of CD8)       
 No XRT 52 25.37 21.25 0.00 76.84 19.03 0.310 
 XRT 53 22.52 19.43 0.00 100.00 20.58  
         

MYELOID LINEAGE       
CD11B (% of myeloid)       

 No XRT 52 60.05 64.31 0.09 97.65 24.81 0.830 
 XRT 53 61.48 63.60 7.21 98.14 23.00  

HLA DR (% of myeloid)       
 No XRT 52 53.07 54.60 0.00 95.55 27.78 0.660 
 XRT 53 51.24 50.50 3.03 96.60 25.74  

Macrophages (% of myeloid)       
 No XRT 52 20.80 16.99 0.05 45.73 13.12 0.690 
 XRT 53 22.70 21.78 4.10 51.29 12.54  

mDCs (% of myeloid)       
 No XRT 52 7.32 4.95 0.00 24.43 6.69 0.940 
 XRT 53 6.65 4.41 0.61 21.53 5.25  

gMDSCs (% of myeloid)       
 No XRT 52 21.90 12.96 0.09 73.82 21.07 1.000 
 XRT 53 20.82 14.98 0.01 94.54 20.55  

moMDSCs (% of myeloid)       
 No XRT 52 1.55 0.65 0.00 12.07 2.27 0.280 
 XRT 53 2.31 0.80 0.00 14.16 3.40  
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Classical Monocytes (% of myeloid)      
 No XRT 52 18.14 9.57 0.00 78.89 19.23 0.300 
 XRT 53 12.61 8.13 0.38 60.10 12.81  

Intermediate Monocytes (% of myeloid)      
 No XRT 52 17.80 11.43 0.00 60.30 17.64 0.580 
 XRT 53 21.99 13.82 0.12 76.39 20.92  

Nonclassical Monocytes (% of myeloid)      
 No XRT 52 4.90 3.12 0.00 22.99 5.76 0.899 
 XRT 53 4.48 2.88 0.00 20.98 4.86  

 
Table 2-17: Table summarizing the association between immune cell infiltration and 

neoadjuvant XRT in STS tumor samples. Wilcoxon test was used to determine the differences 

between the groups. 

   Statistics for Cell Types Listed 
 Genomics n mean median min max sd p value 
         

MYELOID AND LYMPHOID LINEAGES     
Lymphoid Cells (% of 
CD45)       

 Simple 25 55.55 53.83 6.69 87.71 23.34 0.030 
 Complex 80 43.86 38.37 2.16 92.17 24.81  

Myeloid Cells (% of CD45)       
 Simple 25 44.29 44.58 12.29 93.30 23.38 0.038 
 Complex 80 55.62 59.90 7.83 97.84 24.79  

Myeloid/Lymphoid Ratio (log2 value)      
 Simple 25 -0.39 -0.28 -2.83 3.80 1.68 0.033 
 Complex 80 0.51 0.64 -3.56 5.50 1.94  
         

LYMPHOCYTE 
LINEAGE       
B Cells (% of lymphocytes)       

 Simple 25 2.82 1.34 0.00 26.44 5.79 0.280 
 Complex 80 2.02 0.65 0.00 21.72 4.13  

CD4 T Cells (% of lymphocytes)      
 Simple 25 34.03 36.08 9.75 61.26 14.38 0.710 
 Complex 80 35.17 35.12 6.86 69.02 14.03  

CD8 T Cells(% of 
lymphocytes)       

 Simple 25 35.48 31.94 3.59 79.35 21.21 0.230 
 Complex 80 39.18 36.80 12.35 86.66 16.29  

NK Cells (% of lymphocytes)       
 Simple 25 15.39 12.63 1.04 44.72 12.04 0.100 
 Complex 80 10.42 8.28 0.07 46.01 8.75  
         

CD4 T CELLS        
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CD4PD1 (% of CD4)       
 Simple 25 63.57 70.20 0.20 93.52 25.60 0.690 
 Complex 80 66.05 71.73 0.97 96.19 24.42  

Treg (% of 
CD4)        

 Simple 25 9.50 9.43 0.95 19.61 5.16 5.60E-06 
 Complex 80 24.62 21.85 1.47 67.49 15.83  

CD4 Naïve (% of CD4)       
 Simple 25 7.05 2.21 0.15 66.34 13.75 0.380 
 Complex 80 4.38 2.12 0.00 44.85 7.35  

CD4 Tcm (% of CD4)       
 Simple 25 30.77 22.43 0.00 67.77 23.07 0.980 
 Complex 80 28.37 25.49 0.20 69.61 16.98  

CD4 Tem (% of CD4)       
 Simple 25 54.53 66.30 0.00 91.76 24.81 0.130 
 Complex 80 63.09 65.17 16.91 92.71 18.17  

CD4 Temra (% of CD4)       
 Simple 25 7.65 2.08 0.00 97.79 20.02 0.570 
 Complex 80 4.16 1.57 0.00 39.76 6.72  
         

CD8 T CELLS        
CD8PD1 (% of CD8)       

 Simple 25 65.10 63.41 0.14 98.15 25.59 0.820 
 Complex 80 66.94 70.68 0.54 98.59 24.33  

CD8 Naïve (% of CD8)       
 Simple 25 10.24 6.55 0.00 47.33 13.11 1.60E-01 
 Complex 80 5.03 2.87 0.00 42.11 6.79  

CD8 Tcm (% of CD8)       
 Simple 25 12.58 4.28 0.00 54.31 15.48 0.220 
 Complex 80 15.52 10.37 0.00 56.18 15.41  

CD8 Tem (% of CD8)       
 Simple 25 47.94 53.03 0.00 90.67 23.78 0.130 
 Complex 80 57.18 57.60 18.42 94.22 18.89  

CD8 Temra (% of CD8)       
 Simple 25 29.24 29.62 0.00 100.00 22.92 0.150 
 Complex 80 22.27 19.38 0.00 76.84 18.50  
         

MYELOID LINEAGE       
CD11B (% of myeloid)       

 Simple 25 43.03 47.72 7.21 70.66 19.81 6.00E-05 
 Complex 80 66.42 73.37 0.09 98.14 22.22  

HLA DR (% of myeloid)       
 Simple 25 48.23 38.86 9.26 85.40 25.15 0.466 
 Complex 80 53.39 52.73 0.00 96.60 27.15  

Macrophages (% of 
myeloid)       

 Simple 25 16.26 16.74 3.16 34.07 9.99 0.065 
 Complex 80 23.58 22.37 0.05 51.29 13.14  
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mDCs (% of myeloid)       
 Simple 25 9.76 10.25 0.77 24.43 6.70 0.010 
 Complex 80 6.10 4.10 0.00 21.53 5.50  

gMDSCs (% of myeloid)       
 Simple 25 18.51 10.19 1.16 58.79 17.12 0.850 
 Complex 80 22.26 14.98 0.01 94.54 21.75  

moMDSCs (% of myeloid)       
 Simple 25 1.44 0.38 0.00 13.07 2.94 0.110 
 Complex 80 2.09 0.91 0.00 14.16 2.90  

Classical Monocytes (% of myeloid)      
 Simple 25 10.37 6.02 0.82 37.91 10.48 0.180 
 Complex 80 16.93 10.16 0.00 78.89 17.70  

Intermediate Monocytes (% of myeloid)      
 Simple 25 15.89 10.89 0.50 54.39 16.74 0.370 
 Complex 80 21.20 12.87 0.00 76.39 20.08  

Nonclassical Monocytes (% of myeloid)      
 Simple 25 5.70 3.46 0.00 19.12 5.61 0.270 
 Complex 80 4.36 2.54 0.00 22.99 5.20  

 
Table 2-18: Table summarizing the association between immune cell infiltration and genomics 

histology group (as defined in methods) in STS tumor samples. Wilcoxon test was used to 

determine the differences between the groups. 

 
   Statistics for Cell Types Listed 

 CNA  n mean median min max sd p value 
         

MYELOID AND LYMPHOID LINEAGES     
Lymphoid Cells (% of CD45)       

 Low 38 55.93 54.11 6.69 87.71 21.81 0.004 
 High 67 41.68 35.74 2.16 92.17 25.12  

Myeloid Cells (% of CD45)       
 Low 38 44.02 44.16 12.29 93.30 21.81 0.006 
 High 67 57.69 62.00 7.83 97.84 25.18  

Myeloid/Lymphoid Ratio (log2 value)      
 Low 38 -0.40 -0.31 -2.83 3.80 1.53 0.005 
 High 67 0.67 0.81 -3.56 5.50 2.00  
         

LYMPHOCYTE 
LINEAGE       
B Cells (% of lymphocytes)       

 Low 38 2.47 1.26 0.00 26.44 4.89 0.300 
 High 67 2.07 0.65 0.00 21.72 4.39  

CD4 T Cells (% of lymphocytes)      
 Low 38 36.38 36.46 9.75 62.98 13.55 0.440 
 High 67 34.14 33.91 6.86 69.02 14.34  
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CD8 T Cells(% of 
lymphocytes)       

 Low 38 35.65 34.04 3.59 79.35 17.82 0.290 
 High 67 39.71 36.49 12.35 86.66 17.32  

NK Cells (% of lymphocytes)       
 Low 38 14.77 12.61 1.04 44.72 10.98 0.029 
 High 67 9.86 8.05 0.07 46.01 8.68  
         

CD4 T CELLS        
CD4PD1 (% of CD4)       

 Low 38 61.23 68.00 0.20 93.52 26.44 0.260 
 High 67 67.80 72.82 0.97 96.19 23.40  

Treg (% of 
CD4)        

 Low 38 12.11 11.01 0.95 45.81 8.65 7.90E-06 
 High 67 25.94 24.32 1.47 67.49 16.18  

CD4 Naïve (% of CD4)       
 Low 38 7.21 2.44 0.15 66.34 13.30 0.150 
 High 67 3.81 1.93 0.00 35.07 5.83  

CD4 Tcm (% of CD4)       
 Low 38 30.61 24.17 0.00 69.61 21.00 0.710 
 High 67 28.03 24.48 0.20 64.00 17.11  

CD4 Tem (% of CD4)       
 Low 38 55.67 64.71 0.00 91.76 23.67 0.100 
 High 67 64.00 66.84 22.24 92.71 17.44  

CD4 Temra (% of CD4)       
 Low 38 6.51 1.63 0.00 97.79 17.01 0.830 
 High 67 4.16 1.70 0.00 39.76 6.54  
         

CD8 T CELLS        
CD8PD1 (% of CD8)       

 Low 38 61.66 62.18 0.14 98.15 26.20 0.160 
 High 67 69.19 72.41 0.54 98.59 23.32  

CD8 Naïve (% of CD8)       
 Low 38 9.57 3.96 0.00 47.33 12.58 0.052 
 High 67 4.46 2.71 0.00 30.46 5.39  

CD8 Tcm (% of CD8)       
 Low 38 12.95 8.51 0.00 54.31 14.82 0.380 
 High 67 15.85 9.71 0.00 56.18 15.73  

CD8 Tem (% of CD8)       
 Low 38 48.57 50.79 0.00 90.67 23.14 0.066 
 High 67 58.49 58.76 25.21 94.22 18.00  

CD8 Temra (% of CD8)       
 Low 38 28.91 28.12 0.00 100.00 22.16 0.050 
 High 67 21.20 19.33 0.00 69.83 17.88  
         

MYELOID LINEAGE       
CD11B (% of myeloid)       

 Low 38 50.31 54.40 7.21 86.34 21.02 0.001 
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 High 67 66.57 75.62 0.09 98.14 23.40  
HLA DR (% of myeloid)       

 Low 38 51.23 52.80 9.26 85.40 23.69 0.840 
 High 67 52.65 52.08 0.00 96.60 28.31  

Macrophages (% of myeloid)       
 Low 38 21.24 23.24 1.86 45.73 12.92 0.810 
 High 67 22.08 16.99 0.05 51.29 12.82  

mDCs (% of myeloid)       
 Low 38 8.49 6.31 0.77 24.43 6.13 0.023 
 High 67 6.15 3.76 0.00 21.53 5.78  

gMDSCs (% of myeloid)       
 Low 38 20.47 12.03 0.52 58.79 18.09 0.790 
 High 67 21.84 14.55 0.01 94.54 22.15  

moMDSCs (% of myeloid)       
 Low 38 1.24 0.38 0.00 13.07 2.51 0.015 
 High 67 2.32 1.08 0.00 14.16 3.06  

Classical Monocytes (% of myeloid)      
 Low 38 14.80 7.14 0.82 66.81 15.68 0.920 
 High 67 15.65 9.59 0.00 78.89 16.98  

Intermediate Monocytes (% of myeloid)      
 Low 38 14.44 9.46 0.50 54.39 14.80 0.120 
 High 67 22.95 14.51 0.00 76.39 21.00  

Nonclassical Monocytes (% of myeloid)      
 Low 38 6.26 3.70 0.00 20.40 5.91 0.056 
 High 67 3.81 2.30 0.00 22.99 4.76  

 
Table 2-19: Table summarizing the association between immune cell infiltration and CNA 

histology group (as defined in methods) in STS tumor samples. Wilcoxon test was used to 

determine the differences between the groups. 

 
   Statistics for Cell Types Listed 

 
TIL 
Growth n mean median min max sd p value 

Blood CD3 (% of Live)       
 Total 85      0.945 
 0 38 80.85 84.65 44.73 97.58 11.78 Ref 
 1 21 76.23 82.15 23.40 97.86 22.10 0.844 
 2 26 80.84 82.86 61.91 94.39 9.25 0.742 

Blood CD4 (% of CD45)       
 Total 85      0.729 
 0 38 7.14 4.70 0.70 20.73 6.09 Ref 
 1 21 7.04 5.11 1.33 12.79 3.78 0.472 
 2 26 6.30 6.82 0.46 13.73 3.47 0.694 

Blood CD4 (% of Lymphocytes)      
 Total 85      0.248 
 0 38 61.48 64.26 26.94 89.08 15.36 Ref 
 1 21 61.85 63.56 27.35 85.97 14.90 1.000 
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 2 26 55.85 58.33 24.36 86.72 15.15 0.170 
Blood CD4 PD1 (% of CD4)       

 Total 85      0.068 
 0 38 35.45 35.18 0.11 73.50 19.58 Ref 
 1 21 36.17 29.93 20.05 64.78 14.26 0.825 
 2 26 44.79 50.23 0.04 80.41 19.12 0.064 

Blood CD4 PD1 (% of CD45)       
 Total 85      0.297 
 0 38 2.22 1.88 0.00 10.29 2.23 Ref 
 1 21 2.65 2.36 0.27 8.29 1.99 0.305 
 2 26 3.11 2.63 0.00 9.33 2.33 0.153 

Blood CD8 (% of CD45)       
 Total 85      0.491 
 0 38 3.53 3.00 0.27 9.96 2.72 Ref 
 1 21 3.97 3.75 0.39 11.94 3.31 0.847 
 2 26 5.08 3.75 0.31 16.45 4.38 0.245 

Blood CD8 (% of Lymphocytes)      
 Total 85      0.125 
 0 38 33.82 32.21 8.84 72.10 15.14 Ref 
 1 21 30.37 27.94 2.90 72.43 15.84 0.415 
 2 26 40.07 38.76 9.73 72.53 15.17 0.201 

Blood CD8 PD1 (% of CD45)       
 Total 85      0.538 
 0 38 1.34 1.12 0.00 5.35 1.29 Ref 
 1 21 1.26 0.81 0.07 4.86 1.32 0.825 
 2 26 2.06 1.47 0.00 9.03 2.32 0.418 

Blood CD8 PD1 (% of CD8)       
 Total 85      0.226 
 0 38 38.57 37.70 0.08 71.89 20.37 Ref 
 1 21 31.06 30.25 12.73 67.51 14.13 0.125 
 2 26 36.67 39.04 0.00 74.56 17.97 0.678 

Blood Granulocytes (% of CD45)      
 Total 85      0.492 
 0 38 70.22 71.76 40.59 92.10 11.65 Ref 
 1 21 65.79 67.83 42.94 89.68 14.72 0.280 
 2 26 70.44 71.84 43.33 92.26 11.80 0.965 

Blood Lymphocytes (% of CD45)      
 Total 85      0.605 
 0 38 17.15 15.17 2.86 46.32 11.49 Ref 
 1 21 18.51 17.96 3.73 34.97 9.17 0.391 
 2 26 18.93 19.22 3.72 46.33 11.01 0.431 

Blood Monocytes (% of CD45)       
 Total 85      0.281 
 0 38 10.97 10.91 4.69 21.65 3.73 Ref 
 1 21 12.44 10.20 1.52 28.89 7.82 0.868 
 2 26 9.43 9.14 2.27 19.38 3.83 0.118 

Tumor CD4 (% of CD45)       
 Total 85      0.048 
 0 38 13.53 8.06 0.37 46.73 12.33 Ref 
 1 21 19.77 16.45 0.93 48.93 13.18 0.035 
 2 26 17.95 14.60 2.62 52.23 12.00 0.049 

Tumor CD4 (% of Lymphocytes)      
 Total 85      0.449 
 0 38 32.32 30.52 6.86 62.98 14.83 Ref 
 1 21 36.31 39.01 10.98 55.38 13.69 0.267 
 2 26 35.86 35.99 7.10 61.26 13.47 0.341 
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Tumor CD4 PD1 (% of CD4)       
 Total 85      0.006 
 0 38 56.62 61.05 0.97 92.81 28.42 Ref 
 1 21 72.94 71.91 50.78 92.83 12.45 0.044 
 2 26 76.13 85.22 28.45 96.19 19.40 0.003 

Tumor CD4 PD1 (% of CD45)       
 Total 85      <0.001 
 0 38 8.15 4.77 0.03 33.39 8.30 Ref 
 1 21 15.33 13.02 1.71 30.02 8.11 <0.001 
 2 26 15.40 14.28 2.23 37.96 9.99 0.002 

Tumor CD45 (% of Live)       
 Total 85      0.666 
 0 38 57.65 58.61 2.42 98.91 32.00 Ref 
 1 21 60.40 63.91 0.36 98.54 29.61 0.761 
 2 26 63.89 71.52 14.31 99.71 28.85 0.371 

Tumor CD8 (% of CD45)       
 Total 85      0.386 
 0 38 18.04 14.47 0.66 68.64 17.02 Ref 
 1 21 22.54 19.39 0.38 61.33 17.26 0.253 
 2 26 21.21 16.18 1.81 68.34 17.66 0.288 

Tumor CD8 (% of Lymphocytes)      
 Total 85      0.722 
 0 38 40.07 37.82 3.59 86.66 17.44 Ref 
 1 21 38.21 31.79 15.04 74.85 18.38 0.470 
 2 26 39.75 38.92 9.53 84.85 18.36 0.895 

Tumor CD8 PD1 (% of CD45)       
 Total 85      0.085 
 0 38 13.82 5.42 0.03 75.82 18.41 Ref 
 1 21 18.14 11.87 0.80 62.73 18.78 0.080 
 2 26 17.93 12.37 1.69 67.53 18.29 0.057 

Tumor CD8 PD1 (% of CD8)       
 Total 85      0.249 
 0 38 61.19 60.87 0.54 98.59 30.41 Ref 
 1 21 71.33 68.63 43.92 97.35 13.91 0.355 
 2 26 74.88 76.09 32.38 97.00 17.25 0.119 

Tumor Lymphocytes (% of CD45)      
 Total 85      0.080 
 0 38 40.28 38.00 2.16 87.71 25.69 Ref 
 1 21 55.26 59.02 2.35 92.17 25.10 0.049 
 2 26 50.49 45.37 6.58 86.13 23.99 0.131 

Tumor Myeloid Cells (% of CD45)      
 Total 85      0.070 
 0 38 59.67 62.00 12.29 97.84 25.66 Ref 
 1 21 44.79 40.98 7.83 97.65 25.05 0.039 
 2 26 48.39 50.48 13.87 93.42 23.82 0.087 

 
Table 2-20: Table summarizing the association between immune cell infiltration and TIL growth 

in STS tumor samples. TILs were successfully generated from 85 samples in this study. TIL 

growth was defined as 0, 1, and 2 for no growth, moderate growth, and strong growth, 

respectively. Kruskal-Wallis test and Wilcoxon tests were used to determine the overall and 
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pairwise differences between the groups, respectively. No growth (0) was the reference group for 

all pairwise comparisons. The above analysis was also conducted comparing no TIL growth (0) 

to any TIL growth (1 & 2). There were no notable differences in the results (data not shown). 

  TIL Growth 0 TIL Growth 1 TIL Growth 2  

  
n or 

median 
% or 
range 

n or 
median 

% or 
range 

n or 
median 

% or 
range p value 

Total 38 44.71 21 24.71 26 30.59  
Sex       0.968 
 F 14 45.16 8 25.81 9 29.03  
 M 24 44.44 13 24.07 17 31.48  
Age (years) 63 27-83 66 33-81 60 18-91 0.987 
Tumor size (max dimension, 
cm)       0.229 
 <5cm 8 38.10 4 19.05 9 42.86  
 5-10cm 13 39.39 12 36.36 8 24.24  
 >10cm 17 54.84 5 16.13 9 29.03  
Grade       0.820 
 Low 1 25.00 1 25.00 2 50.00  
 Intermediate 7 46.67 5 33.33 3 20.00  
 High 20 42.55 12 25.53 15 31.91  
 Missing 10 52.63 3 15.79 6 31.58  
Tumor Site       0.129 
 Lung 0 0.00 0 0.00 1 100.00  
 Extremity/Trunk 30 52.63 12 21.05 15 26.32  
 RP/Abdomen/Pelvis 8 29.63 19 33.33 10 37.04  
Histology                            0.036 
 GIST 0 0.00 1 33.33 2 66.67  
 LMS 5 45.45 1 9.09 5 45.45  
 SS 2 40.00 0 0.00 3 60.00  
 MLS 8 80.00 1 10.00 1 10.00  
 DDLPS 1 9.09 6 54.55 4 36.36  
 MFS 3 60.00 1 20.00 1 20.00  
 USARC 19 47.50 11 27.50 10 25.00  
Lesion Type       0.602 
 Primary 23 46.94 14 28.57 12 24.49  
 Locally Recurrent 6 46.15 3 23.08 4 30.77  
 Metastatic 9 39.13 3 17.39 10 43.48  
Preoperative Radiation       0.538 
 Hypofractionated 12 54.55 5 22.73 5 22.73  
 Conventional 9 47.37 6 31.58 4 21.05  
 None 17 38.64 10 22.73 17 38.64  
Radiation-Surgery Interval 
(Days)       0.446 
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 <1 0 0.00 0 0.00 1 1.00  
 14-30 12 57.14 6 28.57 3 14.29  
 31-49 7 58.33 3 25.00 2 16.67  
 50-71 1 20.00 2 40.00 2 40.00  
 >133 1 50.00 0 0.00 1 50.00  
 NA        
Preoperative Systemic 
Therapy       0.058 
 Cytotoxic 10 45.45 7 31.82 5 22.73  
 Immunotherapy 6 75.00 0 0.00 2 25.00  
 TKI 0 0.00 0 0.00 4 1.00  
 None 22 43.14 14 27.45 15 29.41  
Treatment Effect        0.005 
 <10% 3 25.00 1 8.33 8 66.67  
 10-50% 8 50.00 3 18.75 5 31.25  
 51-89% 8 57.14 6 42.86 0 0.00  
 >90% 7 58.33 4 33.33 1 8.33  
 NA 12 38.71 7 22.58 12 38.71  
Treatment Status       0.292 
 Untreated 8 32.00 7 28.00 10 40.00  
 Treated 30 50.00 14 23.33 16 26.67  
Treatment Type       0.617 
 None 8 32.00 7 28.00 10 40.00  
 Systemic Therapy  9 47.37 3 15.79 7 36.84  
 XRT 14 53.85 7 26.92 5 19.23  
 Systemic Therapy + XRT 7 46.67 4 26.67 4 26.67  
Systemic Therapy       0.772 
 No 22 43.14 14 27.45 15 29.41  
 Yes 16 47.06 7 20.59 11 32.35  
XRT       0.243 
 No 17 38.64 10 22.73 17 38.64  
 Yes 21 51.22 11 26.83 9 21.95  

 
Table 2-21: Table summarizing the association between various clinical, tumor, and treatment 

factors and TIL growth in STS tumor samples. TILs were successfully generated from 85 

samples in this study. TIL growth was defined as 0, 1, and 2 for no growth, moderate growth, 

and strong growth, respectively. Chi-squared, Fisher Exact, or Wilcoxon tests were used to 

compare the groups, as indicated. The above analysis was also conducted comparing no TIL 

growth (0) to any TIL growth (1 & 2). There were no notable differences in the results (data not 

shown). 
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CHAPTER 3 

Validation of in-silico immune deconvolution methods in undifferentiated sarcoma 

 

3.1 Abstract 

 

The composition of immune cells in the tumor microenvironment (TME) has been shown to be 

associated with prognosis and immunotherapy response in multiple cancers, including sarcoma1–

3. Studies often use in-silico immune deconvolution to define the immune cell composition; 

however, the optimal in-silico tool for soft tissue sarcoma is not known. In this study, we assess 

the concordance between various in-silico immune deconvolution techniques and 

immunohistochemistry to determine the optimal in-silico immune deconvolution strategy in 

undifferentiated sarcoma. We created a tissue microarray (TMA) of 60 untreated sarcoma 

samples and performed RNA sequencing on these samples. Multiplex immunofluorescence was 

performed on the TMA, staining for CD20, CD68, CD4, CD8, and CD45. In-silico immune 

deconvolution was performed using six tools – CIBERSORTx, EPIC, MCP Counter, quanTIseq, 

TIMER, xCell4–10. The correlation between mIF and in-silico scores was determined for each cell 

type using a linear fit model and Pearson correlation coefficients. We found that, overall, the in-

silico tools more accurately quantified overall immune cell infiltration than individual immune 

cell subtypes. We found that TIMER was the best tool for defining overall immune cell 

infiltration. Many tools performed well when defining the monocyte / macrophage cell 

population. Caution should be used when applying in-silico immune deconvolution tools to 

define CD8+ T cells, and in-silico immune deconvolution tools should be avoided when defining 

CD4+ T cells and B cells in undifferentiated sarcoma. 
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3.2 Introduction 

 

The composition of immune cells in the tumor microenvironment (TME) has been shown to be 

associated with prognosis and immunotherapy response in multiple cancers, including sarcoma1–

3. Flow cytometry and immunohistochemistry (IHC) are frequently used to characterize the 

immune composition of the TME; however, their limitations include the requirement for large 

amounts of fresh tumor (flow cytometry), low-throughput (flow cytometry and IHC), and the 

lack of publicly available data (flow cytometry and IHC)10–12. The ability to use tumor-derived 

RNA for immunologic analyses would circumvent the issues of tissue amount, throughput and 

data availability.  

 

Multiple in-silico immune deconvolution methods, using bulk or single-cell RNA-seq (scRNA-

Seq) data, have been developed. These methods allow for high-throughput quantification of 

immune cell populations and tools developed for bulk RNA-Seq facilitate the inclusion of 

preserved tumors and/or publicly available RNA-Seq data4–12. The ability to apply these methods 

to publicly available data and/or preserved tumors is particularly important for increasing sample 

sizes when studying rare diseases, such as soft tissue sarcoma (STS). However, the optimal in-

silico immune deconvolution tool for studying sarcoma is not known. Prior studies have 

compared various in-silico immune deconvolution tools and suggest that histology-specific 

immune markers may improve estimates. Unfortunately, sarcoma was often omitted from test 

and/or validation cohorts when creating the in-silico tools4–12.  
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The immune microenvironment in sarcoma, and specifically in undifferentiated sarcoma, 

remains poorly understood. Immune-based therapies have dramatically changed the treatment of 

many cancers in recent decades, and immunotherapy response has been shown to be associated 

with the composition of cells in the TME1–3. Early studies of immunotherapy in STS have not 

had broad success, however, there are findings that warrant further exploration13–16. The 

SARC028 study evaluated the anti-PD1 antibody pembrolizumab in patients with advanced 

sarcoma, and identified the undifferentiated sarcoma (specifically undifferentiated pleomorphic 

sarcoma, UPS) subtype as the most responsive to anti-PD1 immunotherapy. In this study, 40% of 

patients with UPS demonstrated complete or partial response15. To understand why the 

undifferentiated sarcoma subtype demonstrated the highest response rate and to elucidate the 

underlying mechanisms of response, we must first understand the immune microenvironment in 

undifferentiated sarcoma. In-silico immune deconvolution would allow the study of this rare 

tumor in an effective and efficient manner. 

 

In this study, we aim to assess the concordance between various in-silico immune deconvolution 

techniques and immunofluorescence to determine the optimal in-silico immune deconvolution 

strategy in undifferentiated sarcoma.  

 

3.3 Materials and Methods 

 

3.3.1 Patient and sample identification  
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All patients treated at our institution for sarcoma between January 1, 2010 and December 30, 

2020 were identified using a prospectively maintained database. Patient, tumor, and treatment 

data were extracted from the electronic medical record. Sixty patients with untreated 

undifferentiated sarcoma (USARC) with available formalin-fixed paraffin-embedded (FFPE) 

tissue blocks were identified for inclusion in this study (Figure 3-1A). Hematoxylin and eosin 

(H&E) stained sections of each tissue block were re-reviewed by an expert sarcoma pathologist 

to confirm USARC pathology.  

 

3.3.2 Tissue microarray 

 

The H&E sections of each tumor (selected as mentioned above) were again examined by an 

expert sarcoma pathologist to identify the region(s) of each slide that contained tumor. Three 

1mm cores from each specimen were taken from the identified tumor region(s). A tissue 

microarray (TMA) consisting of triplicates of each sample was created. 

 

3.3.3 Multiplex Immunofluorescence  

 

Multiplex immunofluorescence was performed in the same manner as described in Chapter 2. 

The TSA‐based Opal method was used for immunofluorescence (IF) staining (Opal Polaris 7‐

Color Automation IHC Kit; Akoya Biosciences, Marlborough, MA, USA; Catalogue No. 

NEL871001KT). Because TSA and DAB oxidation are both peroxidase‐mediated reactions, the 

primary antibody conditions and order of staining determined using DAB detection were directly 

applied to the fluorescent assays. Unlike conventional IHC in which a chromogenic peroxidase 
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substrate is used for antigen detection, each antibody is paired with an individual Opal 

fluorophore for visualization. The Opal fluorophores were used at a 1 in 150 dilution, as 

recommended by Akoya when using the Leica BOND RX. As such, a fluorescent singleplex was 

performed for each biomarker and compared to the appropriate chromogenic singleplex to assess 

staining performance. Additional information regarding antibodies used are included in the 

following list: antibody, clone/lot (if applicable), dilution (company, catalog#). 

 

Antibodies: 

CD4, 1:80 (Dako, M7310) 

CD8, C8/144B, 1:100 (Dako, M7103) 

CD20, 26, 1:500 (Dako, M0755) 

CD68, PG-M1, 1:200 (Dako, m0876) 

CD45, 2B11+PD7/26, 1:200 (Dako, M0701) 

 

Once each target was optimized using uniplex slides, the Opal 6 multiplexed assay was used to 

generate multiple staining slides. We applied primary antibodies to normal human tonsil 

specimens as controls at optimized concentrations previously determined on the uniplex control 

tissues. TMA slides Staining was performed consecutively Leica BOND RX by using the same 

steps as those used in uniplex IF, and the detection for each marker was completed before 

application of the next antibody.  
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All fluorescently labelled slides were scanned on the Vectra Polaris (Akoya Biosciences) at 40× 

magnification using appropriate exposure times. The data from the multispectral camera were 

analyzed by the imaging InForm software (Akoya Biosciences).  

 

Regions of tumor tissue confirmed by corresponding H&E slide were selected using Phenochart 

1.0.12 (Akoya Bioscience), exported as multi-layer TIFF images using inForm 2.4.10 (Akoya 

Bioscience), and stitched in HALO v3 (Indica Labs) for quantitative image analysis. Cell 

inclusion and segmentation criteria were optimized using the "real-time tuning" feature to define 

the nuclear contrast threshold, minimum nuclear intensity, nuclear segmentation aggressiveness, 

and maximum cytoplasmic radius. For each marker, specific positivity thresholds were defined 

based on a human tonsil positive control. The entire image was analyzed using these parameters 

and the generated data included the percentage of cells positive for each marker, expressed as a 

percentage of all nucleated cells.   

 

3.3.4 Nucleic acid extraction and sequencing 

 

RNA was extracted from FFPE-preserved tissues using the Covaris tNA Plus Kit. RNA QC was 

performed using High Sensitivity RNA ScreenTape (Agilent TapeStation Software v3.2). 

Library preparation for RNA was performed using hybrid capture technique using the Illumina 

TruSeq Exome kit. Paired-end RNA sequencing was performed using Illumina Hiseq 3000 

platform with read length of 2x150 and a total of 40 million reads. All RNA-sequencing (RNA-

seq) data was processed using the Toil pipeline, as described in previous publications17. RNA 
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outliers were identified using a combination of principal component analysis (PCA) and Pearson 

correlation. 

 

3.3.5 Acquisition and processing of publicly available sequencing data 

 

Raw RNA-Seq files were downloaded from Therapeutically Applicable Research to Generate 

Effective Treatments (TARGET), European Genome Archive (EGA), and Sequence Read 

Archive (SRA)18–25. BAM files from the EGA were converted to fastq files using Picard26. All 

fastq files were processed using the Toil pipeline, as noted above. Toil processed RNA 

sequencing data files from The Cancer Genome Atlas (TCGA) were downloaded from the Xena 

Browser from the University of California Santa Cruz Computational Genomics Lab. The 

number of samples and histologies included from each data source are summarized in Table 3-1. 

 

3.3.6 In-silico immune deconvolution  

 

Six in-silico immune deconvolution tools (MCP Counter, EPIC, CIBERSORTx, TIMER, 

quanTIseq, xCell) from R-package software were applied to the RNA-Seq data, using tpm or 

log2(tpm+1) data as appropriate4–10. MCP Counter was run using HUGO gene names and default 

probe sets and genes. CIBERSORTx deconvolution was run against the LM22 signature matrix 

files. Settings included no batch correction, disabled quantile normalization, 500 permutations, 

and absolute mode. xCell was run using default settings. EPIC, quanTIseq, and TIMER were run 

using the immunedeconv package. TIMER was run using the “sarc” cancer type setting.  
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Samples were defined as high, medium and low immune cell groups based on the tercile of the 

total immune score for each in-silico immune deconvolution tool, as defined in Table 3-2. A 

“Consensus Group” was defined using the following method: (a) a sample was labeled “high” if 

it was in the high group in four of six of the tools listed above and never low, (b) a sample was 

labeled “low” if it was in the low group in four of six of the tools listed above and never high, 

and (c) all remaining samples were labeled “medium.” 

 

3.3.7 Statistical analysis 

 

The multiplex immunofluorescence (mIF) scores from the multiple cores from each sample were 

averaged to assign one score per sample. The cell type scores from each of the in-silico immune 

deconvolution methods were compared to the mIF results as noted in Table 3-2. In-silico scores 

that required summation were either scaled and then summed or the raw score was summed, as 

indicated based on the tool output. The correlation between mIF and in-silico scores was 

determined for each listed comparison (Table 3-2) using a linear fit model. Pearson correlation 

coefficients are noted. Wilcoxon rank-sum test was used to compare continuous variables across 

groups. Gene set enrichment analyses (GSEA) were performed using the Broad Institute GSEA 

Software (Version 4.2.3). Inputs included 1000 permutations, no collapse, and HALLMARK 

gene sets. Principal component analyses (PCAs) were performed on log2(tpm+1) data, using 

protein coding genes only. P values of <0.05 were deemed statistically significant. A FWER p 

value was used for GSEA. Otherwise, multiple hypothesis testing was performed using 

Bonferroni correction where applicable. 
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3.3.8 Sensitivity analysis 

 

The correlation analyses mentioned above were performed using the average mIF score per 

sample as well as treating each core individually (i.e. up to three cores or mIF scores per 

sample). The results were similar using both methods (Table 3-3, Table 3-12). All the analyses 

were also performed using log of the mIF scores. Again, the results were essentially unchanged 

when using log scores when compared to raw scores (data not shown). 

 

3.3.9 Software 

 

The majority of statistical analyses and data visualizations were performed and generated in R 

(Version 4.0.5). Gene set enrichment analyses (GSEA) were performed using Broad Institute 

GSEA software (Version 4.2.3). 

 

3.3.10 Approval 

 

This study was approved by the UCLA Institutional Review Board (IRB #10-001857). 

 

3.4 Results 

 

3.4.1 Study cohort and sample characteristics 

 



 124 

Sixty untreated undifferentiated sarcoma (USARC) samples were identified for inclusion in this 

study as demonstrated in Figure 3-1A and 3-1B. All 60 samples were included on the TMA, but 

mIF staining failed on 2 samples. Four samples were determined to be outliers on RNA-Seq and 

were excluded from the analysis. There was no overlap between the mIF failures and the RNA-

Seq outliers. Thus, there were 54 samples included in the correlation analysis.  

 

All subtypes of undifferentiated sarcoma, including ovoid, pleomorphic, spindled, and 

epithelioid, were included in the analysis. Representative H&E images of each subtype are 

shown in Figure 3-1C and the tissue microarray (TMA) is shown in Figure 3-2A. A principal 

component analysis of RNA-Seq data from multiple sarcoma subtypes and datasets is shown is 

Figure 3-1D. The comparison of PC2 and PC3 is shown and demonstrates that UCLA USARC 

samples cluster with USARC samples from other publicly available datasets.  

 

The graph showing PC1 versus PC2 is shown in Figure 3-5. PC1 appears to capture the UCLA 

tumors. The statistically significant and largest magnitude enrichment scores (ES) results of the 

gene set enrichment analysis (GSEA) performed on PC1 are shown. This summarizes the 

difference between UCLA and the other study cohorts. Datasets included in these PCAs are 

summarized in Table 3-1. 

 

3.4.2 Summary of multiplex immunofluorescence results 

 

The multiplex immunofluorescence stains that performed the most reliably were CD45, CD68 

and CD8, while CD20 and CD4 performed poorly. Specifically, there was relatively high 
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concordance between CD45, CD68 and CD8 between the mIF and the in-silico results. While the 

CD20 and CD4 mIF resulted in a paucity of stains (Figure 3-4). Triplicates of cores from each 

sample were included in on the TMA. The scores from each triplicate were similar overall, as 

shown in Figure 3-2C-G.  

  

3.4.3 There is substantial discordance between various in-silico immune deconvolution tools in 

undifferentiated sarcoma 

 

There is significant variability in the results of the various in-silico immune deconvolution tools 

when applied to USARC. This was true for both the categorical (tercile) results of total immune 

cell infiltration as well as the continuous data for each subtype.  

 

The alluvial plot in Figure 3-3A demonstrates the correlation between the high, medium, and low 

total immune score terciles from each in-silico immune deconvolution tool and the Consensus 

Group, as defined above. Overall, there is significant change in the categorization of each sample 

across each of these different tools. Less than 20% of samples demonstrated concordance in the 

categorical (high versus medium versus low immune cell infiltration) group that they were 

assigned to across the six in-silico tools and the consensus group.    

 

Figure 3-3B, 3-3C, and 3-3D show the summary of results of CIBERSORTx, EPIC, and 

quanTIseq, respectively. Cell types are summed as noted in Table 3-2. The results of the overall 

immune cell landscape as defined with each of these tools again showed significant variability 

across each of the tools. For example, the results of CIBERSORTx and EPIC suggest that CD4+ 
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T Cells are the most abundant immune cell type in USARC, while quanTIseq does not. The 

results from quanTIseq suggest that B cells or macrophages are the most abundant immune cell 

type, while CIBERSORTx suggests that these are of moderate abundance, and the results of 

EPIC suggest they are relatively scarce. The results MCP Counter, TIMER, and xCell were not 

included in the comparison of the different cell lineages, as the score outputs from these tools are 

scaled, thus different cell types cannot be compared10. 

 

3.4.4 TIMER is the optimal tool for determining overall immune cell infiltration when using in-

silico immune deconvolution tools in undifferentiated sarcoma 

 

Figure 3-4 and Table 3-3 summarize the results of the correlation between mIF scores to the in-

silico immune deconvolution scores for each tool and each cell subtype, as listed in Table 3-2. 

For overall immune cell infiltration, TIMER showed the highest correlation with the CD45+ mIF 

results (correlation coefficient 0.44). For the CD68+CD45+ results, MCP Counter monocyte 

score and the macrophage scores from the remainder of the tools performed well (correlation 

coefficient range 0.31-0.48). For CD8+CD45+ mIF results, CIBERSORTx and xCell CD8 T 

Cells scores show the highest correlation (correlation coefficients 0.34 and 0.27, respectively). 

However, the sequencing data identifies some ‘high’ T cell samples where the TMA does not. 

Comparisons of CD20+CD45+ and CD4+CD45+ mIF scores to B Cell and CD4+ T Cell in-

silico scores showed overall poor concordance (correlation coefficient ranges -0.20-0.03 and -

0.16-0.22, respectively). There were again many samples were the sequencing data identified 

‘high’ B Cell or CD4 T Cell scores where the TMA mIF data did not.    

 



 127 

3.5 Discussion 

 

Immune cell infiltration has been found to be an important factor associated with survival or 

treatment response in various cancers, including sarcoma1–3. Notably, Petitprez et al found that B 

cells are associated with survival and immunotherapy response in sarcoma. Chen et al aimed to 

define factors in the undifferentiated sarcoma tumor microenvironment that might influence 

immunotherapy response . They described an immunosuppressive TME driven by TAMs. 

However, there is no consensus about the optimal in-silico tool that should be applied to 

sarcoma. For example, Petitprez et al used MCP Counter while Chen et al used CIBERSORTx. 

Further, many studies that validate the in-silico immune deconvolution tools do not include 

sarcoma4–10. 

 

In this study, we aimed to define the optimal in-silico immune deconvolution tool for 

undifferentiated sarcoma. We found that CD45+ multiplex immunofluorescence (mIF) results 

showed the highest correlation with total immune cell infiltration scores from TIMER in-silico 

immune deconvolution. There was relatively high correlation between CD68+CD45+ mIF 

results and monocyte (MCP Counter) or macrophage (CIBERSORTx, EPIC, quanTIseq, 

TIMER, xCell) immune deconvolution scores as well as between CD8+CD45+ mIF results and 

CD8+ T cell results from CIBERSORTx. There was very poor correlation between mIF and in-

silico immune cell scores for B cells and CD4 + T cells. Further, the immune cell landscape of 

undifferentiated sarcoma defined by various in-silico immune deconvolution tools varies 

significantly across the different in-silico immune deconvolution tools used.  
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These results suggest that in-silico immune deconvolution can be used to define the immune cell 

populations in undifferentiated sarcoma (USARC), however, these tools should be applied to this 

tumor type in a judicious manner. In-silico immune deconvolution tools can define overall 

immune cell infiltration in undifferentiated sarcoma with relative success. However, the immune 

cell subtypes are more difficult to define accurately. Of the subtypes, the in-silico tools show the 

highest correlation with monocyte or macrophage scores, as determined by mIF. This may be 

because undifferentiated sarcoma is a relatively macrophage/monocyte-rich tumor and/or it may 

be because there is a high degree of similarity between macrophages/monocytes and sarcoma 

cells themselves27-28. Further, our flow cytometry results suggest there is a relative paucity of B 

cells, which may contribute to the overall poor performance of in-silico immune deconvolution 

tools for defining these subtypes. 

 

Leveraging sequencing data and in-silico immune deconvolution tools is particularly important 

when studying rare diseases, such as sarcoma. Flow cytometry and immunohistochemistry (IHC) 

are frequently used to characterize the immune composition of tumors, however, they require 

large amounts of fresh tumor (flow cytometry), are low-throughput (flow cytometry and IHC), 

and they lack of publicly available data (flow cytometry and IHC)10–12. Using tumor-derived 

RNA for immunologic analyses would circumvent the issues and allow researchers to leverage 

publicly available data. However, these tools must be applied in a thoughtful and accurate 

manner. 

 

Based on the findings in this paper, we suggest the following practices when applying in-silico 

immune deconvolution tools to undifferentiated sarcoma: (1) Use TIMER to define overall 
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immune cell infiltration. (2) Use MCP counter to define monocyte infiltration or use 

CIBERSORTx, EPIC, quanTIseq, TIMER, or xCell to define macrophage infiltration. (3) Use 

caution when using in-silico immune deconvolution tools to define CD8+ T cell infiltration. 

CIBERSORTx most accurately defines CD8+ T cell immune infiltration, however, there are still 

many instances when tumors with high CD8+ T cell infiltration will be missed using this 

technique. (4) Avoid applying in-silico immune deconvolution results to define B cell or CD4+ T 

cell immune infiltration. 

 

Limitations of this study include that tissue was obtained in a retrospective manner and that it 

was performed at a single institution. The samples were all formalin-fixed and paraffin 

embedded (FFPE) and stored for up to 10 years prior to nucleotide extraction. It is possible that 

this storage method had an impact on the results. Principal component analysis (PCA) was used 

to compare the in-house sequencing data to publicly available sequencing data from other 

sarcoma subtypes. While principal component (PC) 2 and PC3 showed that our in-house USARC 

data clustered with other USARC subtypes (Figure 3-1), PC1 versus PC2 showed that our in-

house samples clustered together (Figure 3-5A), suggesting there are differences between the in-

house RNA-Seq data and publicly available subtypes. These differences could include extraction 

techniques, sequencing techniques, duration of sample storage, and method of sample storage. 

Another possibility is that our samples selected areas of tumor and immune cell infiltration and a 

more directed way than the publicly available datasets. Our samples were highly curated and the 

portions of the tumor that were used to produce scrolls for nucleotide extraction and for inclusion 

on the tissue microarray (TMA) were selected deliberately by an expert sarcoma pathologist. All 

of these factors could limit the ability to extrapolate these findings to other undifferentiated 
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sarcoma samples. Finally, this project included only undifferentiated sarcoma samples. Thus, 

these findings may not be able to be extrapolated to other soft tissue sarcoma (STS) subtypes and 

further work is needed to define the optimal in-silico immune deconvolution tools for the 

application to STS more broadly. Further work should be done to refine the in-silico immune 

deconvolution tools to optimize them for application to STS. 

  

3.6 Conclusion 

 

In this study, we aimed to determine the optimal in-silico immune deconvolution tool in 

undifferentiated sarcoma by determining the correlation between mIF and in-silico immune 

deconvolution scores. Based on our findings, we suggest the following practices when applying 

in-silico immune deconvolution tools to undifferentiated sarcoma: (1) Use TIMER to define 

overall immune cell infiltration. (2) Use MCP counter to define monocyte infiltration or use 

CIBERSORTx, EPIC, quanTIseq, TIMER, or xCell to define macrophage infiltration. (3) Use 

caution when using in-silico immune deconvolution tools to define CD8+ T cell infiltration. 

CIBERSORTx most accurately defines CD8+ T cell immune infiltration, however, there are still 

many instances when tumors with high CD8+ T cell infiltration will be missed using this 

technique. (4) Avoid applying in-silico immune deconvolution results to define B cell or CD4+ T 

cell immune infiltration. 

 

3.7 Figures 
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Figure 3-1: Study population and experimental design. (A) CONSORT diagram showing study 

population of 60 untreated USARC tumors. (B) Schematic of experimental design and analysis. 

All tumors were re-reviewed by an expert sarcoma pathologist. Three cores from selected sites 

from each tumor were used to create the TMA. RNA was extracted from FFPE-preserved 

samples of the same 60 tumors, the RNA was sequenced, and Toil processing was performed. 

Immune cell quantification was performed using mIF (CD45, CD68, CD4, CD8, CD20) on the 



 133 

TMA and multiple in-silico immune deconvolution tools (CIBERSORTx, EPIC, MCP Counter, 

TIMER, quanTIseq, xCell) on the RNA-Seq data. (C) Representative images of the USARC 

tumors included in the TMA. From left to right, tumors are classified as spindled/pleomorphic, 

ovoid/epithelioid/focal pleomorphic, spindled, and ovoid, respectively. (D) PCA of RNA-Seq 

data from sarcoma tumors from multiple publicly available datasets (EGA, SRA, TARGET, 

TCGA) and UCLA USARC tumor samples. USARC tumors from multiple datasets cluster 

together. PCA run using protein coding genes.  

 

A   
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Figure 3-2: USARC TMA H&E and mIF analysis. CD8, CD68, and CD45 mIF performed 

reliably and consistently between the triplicates from each tumor. CD20 and CD4 mIF performed 

poorly. (A) H&E stain of the TMA with triplicate cores of 60 untreated USARC tumors from 

patients treated at UCLA. (B) A representative image of the multiplex mIF of the USARC TMA. 

(C-G) mIF results from the triplicate cores from each tumor. The y-axis represents CD45+ (C), 

CD68+CD45+ (D), CD20+CD45+ (E), CD4+CD45+ (F), and CD8+CD45+ (G) scores, 

respectively. 
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Figure 3-3: There is discordance between the results of multiple in-silico immune deconvolution 

methods. (A) Alluvial plot demonstrating low, medium, and high samples, defined by terciles, of 

each of the in-silico immune deconvolution tools (CIBERSORTx, EPIC, MCP Counter, 

quanTIseq, TIMER, xCell). Consensus Group is a composite score developed based on the 

results of the six listed in-silico deconvolution methods, as described in the methods. Samples 

are colored by the Consensus Group tercile, and samples that were in the same group using all 

six tools are grey. 18.6% of the samples were concordant across all tools. Of the 188 total 

samples, 23, 2, and 10, were all high, medium, and low, respectively, across all in-silico immune 

deconvolution tools. (B-D) The immune cell landscape predicted using CIBERSORTx (B), EPIC 

(C) and quanTIseq (D), respectively. Cell types were summed as listed in Table 3-2. MCP 

Counter, TIMER, and xCell are not shown as the scores derived are scaled scores thus different 

cell types cannot be compared. See Tables 3-8, 3-9, & 3-11 for tables summarizing B-D, 

respectively. 
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Figure 3-4: Different in-silico immune deconvolution tools demonstrate higher correlation with 

mIF results depending on the immune cell type. (A) Correlation between CD45 mIF score and 

in-silico Sum Immune Score. (B) Correlation between CD68+CD45+ mIF score and in-silico 

monocyte scores (when available). (C) Correlation between CD68+CD45+ mIF score and in-

silico macrophage scores (when available). (D) Correlation between CD4+CD45+ mIF score and 

in-silico CD4 T Cell scores. (E) Correlation between CD8+CD45+ mIF score and in-silico CD8 

T Cell scores. (F) Correlation between CD20+CD45+ mIF score and in-silico B Cell scores. 
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Tumors included in this analysis were 60 untreated USARCs (see Figure 3-1). The in-silico 

immune deconvolution tools used were CIBERSORTx, EPIC, MCP Counter, quanTIseq, 

TIMER, and xCell. X axis values are TMA mIF scores and y axis values are in-silico immune 

deconvolution tool results. Comparisons were made as listed in Table 3-2. Spearman correlation 

coefficients are listed in Table 3-3. 

 

3.8 Tables 

 

Dataset Histology n 
EGA (EGAD00001004439) USARC 48 

SRA (GSE71121) USARC 42 
TARGET (dbGAP) OS 81 

TCGA (Xena Browser) Multiple SARC subtypes 204 
 DDLPS 50 
 MFS 17 
 MPNST 5 
 SS 9 
 STLMS 53 
 ULMS 27 
 UPS 43 

UCLA USARC 60 
 

Table 3-1: Summary of datasets included in this analysis. 

 

mIF 
Stain CIBERSORTx EPIC MCP 

Counter quanTIseq TIMER xCell 

CD45 Sum Immune 
Score 

Sum 
Immune 
Score* 

Sum 
Immune 
Score* 

Sum 
Immune 
Score* 

Sum 
Immune 
Score* 

Sum 
Immune 

Score 
CD68+ 
CD45 Monocytes - Monocytic 

Lineage Monocyte - Monocytes 
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CD68+ 
CD45 

Macrophages 
M0 +  

Macrophages 
M1 +  

Macrophages 
M2 

Macrophage - 

Macrophage 
M1 +  

Macrophage 
M2 

Macrophage Macrophages 

CD4+ 
CD45 

T Cells CD4 
Naive +  

T Cells CD4 
Memory 
Resting +  

T Cells CD4 
Memory 

Activated +  
T Cells 

Follicular 
Helper + 
T Cells 

Regulatory 
Tregs 

T Cell CD4 T Cells - 
CD8 T Cells 

T Cell CD4 
Non 

Regulatory 
+  

T Cell 
Regulatory 

Tregs 

T Cells CD4 CD4 T Cells 

CD8+ 
CD45 T Cells CD8 T Cell CD8 CD8 T Cells T Cell CD8 T Cell CD8 CD8 T Cells 

CD20+ 
CD45 

B Cells Naive 
+  

B Cells 
Memory +  

Plasma Cells 

B Cell B Lineage B Cell B Cell B Cells 

 

Table 3-2: Pairwise comparisons between mIF stains and cell type scores from in-silico immune 

deconvolution. mIF, multiplex immunofluorescence. *Sum Immune Scores noted were 

calculated as the sum of all immune cell types scored by each tool. 

 

mIF Stain CIBER-
SORTx EPIC MCP 

Counter quanTIseq TIMER xCell 

CD45 (vs Sum 
Immune Score) 

-0.013 
(0.92) 

0.076 
(0.57) 

-0.12 
(0.38) 

-0.14 
(0.29) 

0.44 
(<0.001) 

0.14 
(0.31) 
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CD68+CD45 (vs 
Monocytes) 

-0.18 
(0.17) - 0.39 

(0.0024) 
-0.28 

(0.031) - -0.11 
(0.39) 

CD68+CD45 (vs 
Macrophages) 

0.48 
(<0.001) 

0.31 
(0.019) 

- 0.35 
(0.0063) 

0.41 
(0.0013) 

0.44 
(<0.001) 

CD4+CD45 (vs CD4 T 
Cell) 

-0.16 
(0.23) 

0.39 
(0.0023) 

-0.072 
(0.59) 

0.070 
(0.60) 

0.22 
(0.10) 

-0.018 
(0.89) 

CD8+CD45 (vs CD8 T 
Cell) 

0.34 
(0.0091) 

-0.020 
(0.88) 

0.024 
(0.86) 0.11 (0.41) 0.16 

(0.24) 
0.27 

(0.041) 
CD20+CD45 (vs B 

Cell) 
0.03 

(0.83) 
-0.087 
(0.54) 

-0.069 
(0.62) 0.13 (0.34) -0.20 

(0.15) 
-0.041 
(0.77) 

 

Table 3-3: Summary of Spearman correlation coefficients (R) and p values derived from the 

comparisons of mIF immune cell quantification and in-silico immune deconvolution scores of 

USARC tumors. Values shown are R (p value).  

 

3.9 Appendix to Chapter 3 

 

3.9.1 PC1 captures differences between RNA-Seq data from UCLA tumors compared to publicly 

available tumors 

 

One of the potential limitations of this study is the differences seen between the UCLA RNA-

Seq data and the publicly available RNA-Seq data. The PCA below demonstrates that the 

samples separate on PC1 primarily based on the dataset. This suggests that there are differences 

between the RNA-Seq data from the UCLA tumors when compared to the other tumors in the 

analysis. These differences could include extraction techniques, sequencing techniques, duration 

of sample storage, and method of sample storage. Another possibility is that our samples selected 

areas of tumor in a more directed way than the publicly available datasets, as described above.  
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The analyses below describe some of the differences between the UCLA samples when 

compared to the other publicly available samples. First, a PCA was performed, which 

demonstrated the clustering as described above. A GSEA was then performed on the genes 

driving PC1. Positive enrichment scores (ES) are associated with the UCLA tumors while the 

negative ES is associated with the publicly available tumors. The genes sets with the highest 

positive and negative ES are shown below. Finally, the top 100 genes driving positive PC1 

scores and the top 100 genes driving negative PC1 scores (i.e. correlated the UCLA and publicly 

available samples, respectively) are listed below. 

 

A  
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B   C  

 

Figure 3-5: PC1 highlights differences between RNASeq from UCLA tumors versus RNASeq 

from publicly available sources (EGA, SRA, TARGET, and TCGA). (A) PCA of RNA-Seq data 

from sarcoma tumors from multiple publicly available datasets (EGA, SRA, TARGET, TCGA) 

and UCLA USARC tumor samples. UCLA USARC tumors cluster separately. PCA run using 

protein coding genes. (B-C) Select statistically significant (FEWR < 0.05) results of GSEA of 

ranked list of PC1 genes using HALLMARK gene sets. Positively scored genes and gene sets 

(B) are associated with UCLA tumors which negatively scored genes and gene sets (C) are 

associated with the other datasets (EGA, SRA, TARGET, TCGA). 

 

TP53TG3 GOLGA6L4 CCDC144A CEP295NL TRIM49D1 
OR4F17 CTAGE6 CP MUC20 TP53TG3D 
GRAPL GOLGA8K SPATA31A7 RIMBP3 ADGRF3 
RGPD8 SPDYE2 KRT5 MBD3L2 PRSS48 
STRC KRT6A ABCC8 FFAR3 TSSK4 
TTN TBC1D3B GOLGA6L10 EGF HYDIN 

OR2A1 CYP21A2 PPIAL4F MUC6 AMHR2 
RGPD1 PPIAL4C RGPD6 AGAP5 ZNF750 
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OR2A7 CDRT1 OR4F4 PCDH15 GPX2 
CHRNA4 NPIPB8 FLG FOXD4L6 AMT 
RGPD2 CTAGE9 PPIP5K1 AGAP9 GRIN2A 
HRNR OR11H12 CLRN1 ANKRD36 NRXN1 

CTAGE4 OR2T5 SPDYE2B ANKRD36C C9orf131 
OR4F3 OR11H1 ALB HSFX2 SEZ6 
NPIPB4 SPATA31A3 TRPM1 GOLGA8N CRB1 
OR2T2 LYPD3 SLC35G6 CTAGE15 ALPK2 

SPATA31A1 FOXD4L4 RGPD3 FAM86B1 GIPR 
CNTNAP3 RGPD5 PPIAL4D ANKRD20A1 CYP2F1 
MBD3L3 GOLGA8R PGA4 MPO ARL17A 

PGA3 ERBB3 PRAMEF15 NPIPB5 GP1BA 
 

Table 3-4: Top 100 genes that are driving PC1 (i.e. associated with UCLA tumors). 

 

NME2 RPL38 SEC61G FKBP2 FCER1G 
IFI6 COX8A PIGBOS1 ERH PPIA 

RPS21 UQCR11 RPL29 RPS9 MARCKSL1 
LGALS1 PRDX1 PECAM1 BRK1 RPL30 
HIGD1A TMSB10 RPS27 S100A6 TSPO 
RPL39 IGFBP4 POLR2L UBL5 RPS10 
COX6C RPS14 DYNLRB1 GNG12 LAGE3 
TOMM6 CREG1 C19orf53 BSG CKS2 
PTMS SNRPB S100A4 CAPNS1 COX4I1 

TMSB4X HLA-A COX7C NDUFA7 TAX1BP3 
TXN DNLZ S100A11 GLO1 NDUFB1 

MRPL12 RNF187 OST4 RPS3 MYL12B 
GNG10 NDUFB7 HCST C18orf32 VAMP8 

ATP6V0E1 MANBAL MT-ATP8 MT-CO2 MT-CO3 
RPS19 LY6E INAFM2 PSMB7 TMEM14A 
PYURF CRIP1 MIF CMC4 ECHS1 
TIMP2 CALM2 S100A13 TIMP3 EIF4EBP1 
B2M PSMA2 COX14 HMGN3 SMIM7 

MYL9 RPS12 POMP TUBB MYL6 
TMEM14C CIB1 CDC42EP5 CST3 SNX3 
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Table 3-5: Top 100 genes that are driving negative PC1 (i.e. associated with publicly available 

USARC tumors from EGA, SRA, TCGA, and TARGET). 

 

3.9.2 There is overall low correlation between various in-silico immune deconvolution methods 

when characterizing the tumor immune microenvironment in undifferentiated sarcoma 

 

Figure 3-3 demonstrated that there is discordance between the results of multiple in-silico 

immune deconvolution methods. The findings here support the conclusions made in Figure 3-3 

and provide additional more granular details. The alluvial plot below additionally includes the 

high, medium, and low terciles based on the mIF CD45+ score. The additional graphs below 

demonstrate the immune cell landscape as predicted by CIBERSORTx, EPIC, and quanTIseq 

immune deconvolution tools. All of the immune cell types described by these tools are included 

in these graphs, rather than just the sums of various cell types as shown in Figure 3-3. 

 

A  
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Figure 3-6: There is discordance between the results of multiple in-silico immune deconvolution 

methods. (B) A correlation plot demonstrating the pairwise correlation between the results of 

each of the six in-silico immune deconvolution tools as well as the Consensus Group. Values 

shown are the Cramer’s V correlation coefficients between the results from each pair of tools. 

Larger and darker circles demonstrate higher correlation between samples. To calculate the 

immune groups shown, z-scores of each cell type were calculated and summed for each sample. 

The samples with in the highest, middle, and lowest tercile were labelled high, medium, and low, 

respectively. The Consensus Group score was high if four of the six tools were high and none 

were low. The Consensus Group score was low if four of the six tools were low and none were 

high. The remaining samples are medium. (A) Alluvial plot demonstrating low, medium, and 

high samples, defined by terciles, of each of the in-silico immune deconvolution tools 

(CIBERSORTx, EPIC, MCP Counter, quanTIseq, TIMER, xCell). Consensus Group is a 

composite score developed based on the results of the six listed in-silico deconvolution methods, 

as described in the methods. CD45+ results are from mIF data. Samples are colored by 

consensus between in-silico and mIF high versus low group definition. Samples are grey if they 
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were “high” based on CD45+ score and never “low” based on in-silico score or if they were 

“low” based on CD45+ score and never “high” based on in-silico score. (B-D) The immune cell 

landscape predicted using CIBERSORTx (B), EPIC (C) and quanTIseq (D), respectively. All 

cell types calculated by each of the respective tools are shown. MCP Counter, TIMER, and xCell 

are not shown as the scores derived are scaled scores thus different cell types cannot be 

compared.  

 

In-silico Tool High (in-silico tool) 
to low (CD45+) 

Low (in-silico tool) 
to high (CD45+) 

CIBERSORTx 6 3 
EPIC 7 3 
MCP Counter 6 4 
quanTIseq 7 5 
TIMER 4 2 
xCell 4 1 

 

Table 3-6: Data summarizing the alluvial plot in Figure 3-6B. The data above describes the 

number of samples that switched from high immune cell infiltration group defined by in-silico 

immune deconvolution tool terciles to low immune cell infiltration group defined by mIF CD45+ 

staining or any samples that switched from low to high, respectively. 

 

Cell Type Mean Median Range Std 
Activated Dendritic Cells 0.25 0.00 (0-2.81) 0.58 
Activated Mast Cells 1.16 0.70 (0-5.14) 1.39 
Activated NK Cells 0.73 0.22 (0-4.82) 1.08 
CD8+ T Cells 1.20 0.88 (0-6.39) 1.40 
Eosinophils 0.84 0.26 (0-4.74) 1.20 
Follicular Helper T Cells 0.42 0.00 (0-3.84) 0.95 
Gamma Delta T Cells 0.07 0.00 (0-1.50) 0.30 
M0 Macrophages 1.51 0.18 (0-14.07) 2.54 
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M1 Macrophages 0.15 0.00 (0-1.87) 0.39 
M2 Macrophages 2.27 2.04 (0-7.70) 2.27 
Memory Activated CD4+ T Cells 1.19 0.45 (0-6.33) 1.70 
Memory B Cells 1.72 1.28 (0-8.84) 2.00 
Memory Resting CD4+ T Cells 2.48 2.17 (0-15.63) 2.76 
Monocytes 0.76 0.29 (0-3.86) 0.95 
Naive B Cells 1.68 0.54 (0-8.67) 2.24 
Naive CD4+ T Cells 3.44 2.66 (0-13.76) 3.42 
Neutrophils 0.38 0.00 (0-2.65) 0.70 
Plasma Cells 0.48 0.00 (0-3.28) 0.82 
Resting Dendritic Cells 0.19 0.00 (0-2.38) 0.54 
Resting Mast Cells 0.40 0.00 (0-5.81) 0.96 
Resting NK Cells 0.98 0.49 (0-8.17) 1.39 
Tregs 0.55 0.00 0-5.00) 1.23 

 

Table 3-7: Table summarizing values of CIBERSORTx results for UCLA USARC tumors. All 

immune cell types calculated by CIBERSORTx are shown. 

 

Cell Type Mean Median Range Std 
B Cells 3.88 3.61 (0.27-9.96) 2.24 
CD4+ T Cells 8.09 8.15 (1.46-16.96) 3.76 
CD8+ T Cells 1.20 0.88 (0-6.39) 1.40 
Macrophages 3.94 3.35 (0-17.47) 3.45 
NK Cells 1.72 1.53 (0-8.17) 1.47 

  

Table 3-8: Table summarizing values of CIBERSORTx results for UCLA USARC tumors. 

Select and summed cell types (as shown in Figure 3-3) are shown. 

 

Cell Type Mean Median Max Std 
B Cells 0.02 0.02 (0-0.09) 0.02 
CD4+ T Cells 0.18 0.17 (0.05-0.37) 0.07 
CD8+ T Cells 0.03 0.03 (0-0.10) 0.03 
Macrophages 0.01 0.01 (0-0.02) 0.00 
NK Cells 0.00 0.00 (0-0) 0.00 
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Table 3-9: Table summarizing values of EPIC results for UCLA USARC tumors. All immune 

cell types calculated by EPIC are shown. 

 

Cell Type Mean Median Range Std 
B Cells 0.06 0.06 (0.02-0.12) 0.02 
CD8+ T Cells 0.02 0.02 (0-0.11) 0.02 
M1 Macrophages 0.02 0.02 (0-0.07) 0.02 
M2 Macrophages 0.04 0.04 (0-0.10) 0.02 
Monocytes 0.04 0.00 (0-0.49) 0.08 
Myeloid dendritic cell 0.00 0.00 (0-0.01) 0.00 
Neutrophil 0.16 0.16 (0-0.51) 0.10 
NK Cells 0.04 0.04 (0.01-0.12) 0.02 
T cell CD4+ (non-regulatory) 0.00 0.00 (0-0.07) 0.01 
T cell regulatory (Tregs) 0.04 0.03 (0-0.17) 0.04 

 

Table 3-10: Table summarizing values of quanTIseq results for UCLA USARC tumors. All 

immune cell types calculated by quanTIseq are shown. 

 

Cell Type Mean Median Range Std 
B Cells 0.06 0.06 (0.02-0.12) 0.02 
CD4+ T Cells 0.04 0.04 (0-0.17) 0.04 
CD8+ T Cells 0.02 0.02 (0-0.11) 0.02 
Macrophages 0.06 0.06 (0-0.12) 0.03 
NK Cells 0.04 0.04 (0.01-0.12) 0.02 

 

Table 3-11: Table summarizing values of quanTIseq results for UCLA USARC tumors. Select 

and summed cell types (as shown in Figure 3-3) are shown. 

 

3.9.3 Sensitivity analysis of USARC TMA data  
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In the primary analysis, the mIF scores were averaged across the triplicates of cores from each 

sample. The average of mIF scores was assigned to each sample and this value was compared to 

the in-silico immune deconvolution score for that sample. A sensitivity analysis was performed 

using the mIF score from each of the cores. The mIF score from each core was compared to the 

in-silico score from that core. The table below summarizes these results. Overall, the results were 

similar to those shown in Figure 3-4 and Table 3-3. The conclusions of the analysis would not 

change. 

 

mIF Stain CIBER- 
SORTx EPIC MCP 

Counter 
quanTI

seq TIMER xCell 

CD45 (vs Sum 
Immune Score) 

0.068 
(0.42) 

0.08  
(0.34) 

-0.02  
(0.81) 

-0.11  
(0.20) 

0.44  
(3.8e-8) 

0.19  
(0.02) 

CD68+CD45 (vs 
Monocytes) 

-0.15  
(0.07) - 0.37  

(4e-6) 
-0.27 

(0.001) - -0.12  
(0.15) 

CD68+CD45 (vs 
Macrophages) 

0.48  
(1.5e-9) 

0.34  
(3.7e-5) - 0.33  

(6.5e-5) 
0.40  

(7e-7) 
0.39  

(1.7e-6) 
CD4+CD45 (vs 

CD4 T Cell) 
-0.18  
(0.03) 

0.35  
(1.9e-5) 

-0.074  
(0.38) 

0.011 
(0.90) 

0.20  
(0.014) 

-0.48  
(0.57) 

CD8+CD45 (vs 
CD8 T Cell) 

0.31 
(<0.001) 

-0.039  
(0.64) 

-0.024  
(0.78) 

0.081  
(0.34) 

0.16 
(0.051) 

0.32  
(8.8e-5) 

CD20+CD45 (vs 
B Cell) 

0.0078 
(0.93) 

-0.091  
(0.32) 

-0.067  
(0.47) 

0.13  
(0.15) 

-0.11  
(0.24) 

-0.038 
(0.68) 

 

Table 3-12: Summary of Spearman correlation coefficients (R) and p values derived from the 

comparisons of mIF immune cell quantification and in-silico immune deconvolution scores of 

USARC tumors. Each sample was treated separately in this sensitivity analysis. Specifically, 

rather than averaging the scores across the triplicate cores for each sample (as was done above), 

each of the cores was treated separately. Values shown are R (p value).  
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3.9.4 Exploring the differences in TME between USARC cell lines, PDX models, and human 

tumors to better understand the limitation of in-silico immune deconvolution 

 

RNA-Seq was performed on USARC cell lines and PDX models. Datasets and n are summarized 

in Table 3-7.  All samples are included in the PCA below and only USARC samples are included 

in the in-silico immune deconvolution analysis. I hypothesized that the cell line RNA-Seq data 

would show the lowest immune scores using the in-silico immune deconvolution methods. I 

further expected that the PDX models will show a lower immune cell scores than the human 

tumors and especially low scores of T, B, and NK cells (as these tumors are generated in mouse 

models that lack mature T, B, and NK cells). However, I did expect there to be some immune 

cells identified using these tools. I predict this spillover effect, which is the detection of cell 

types due to similarities in marker genes between the tumor and immune cell types as described 

by Strum et al, will provide insights into the unique challenges when applying these in-silico 

tools to sarcoma tumors10,11. My predictions were generally seen in the data. Notably, EPIC 

demonstrated higher total immune cell infiltration seen in the cell lines and PDX data than in 

some of the tumor datasets, such as EGA and SRA. This is unsurprising, as EPIC showed the 

lowest correlation with the other in-silico tools as well as with the mIF results. Overall, EPIC 

performed poorly in sarcoma, so these results are not surprising. Rather, they support the 

findings above. The results below also provide further support for using the in-silico immune 

deconvolution tools to describe overall immune cell infiltration rather than to accurately quantify 

immune cell subtypes in sarcoma. Table 3 in the manuscript titled, “Comprehensive evaluation 

of transcriptome-based cell-type quantification methods for immune-oncology” by Sturm et al 

summarized important considerations and caveats when applying these tools10. Notably, all tools 
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used in this analysis can be used to compare across samples. CIBERSORTx (absolute mode), 

quanTIseq, and EPIC tools can be used to compare across cell types.  

 

Dataset Histology n 
Cell Lines Multiple sarcoma subtypes 

(pre/post BO112) 
12 

 Fibrosarcoma 1 
 GSC 1 
 USARC 4 

EGA (EGAD00001004439) USARC 48 
SRA (GSE71121) USARC 42 

TARGET (dbGAP) OS 81 
TCGA (Xena Browser) Multiple sarcoma subtypes 205 

 DDLPS 50 
 MFS 17 
 MPNST 5 
 SS 10 
 STLMS 53 
 ULMS 27 
 UPS 43 

PDX Multiple sarcoma subtypes 42 
 DDLPS 7 
 MFS 5 
 OS 2 
 SS 2 
 STLMS 5 
 ULMS 1 
 USARC 12 
 Other 8 

UCLA USARC 64 
 Untreated 60 
 Treated (pre/post 

immunotherapy pairs) 
4 

 

Table 3-13: A summary of the data sources, histologies, and sample sizes of the RNA-Seq data 

included in this analysis. All samples included in the PCA below. Only USARC samples 

(untreated cell lines and untreated UCLA human tumors only) are included in the in-silico 
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immune deconvolution analysis below. Other includes epithelioid sarcoma, Ewing’s sarcoma, 

fibrosarcoma, myxoid LPS, FDCS, RMS. 

 

Dataset n 
Cell Lines 4 

EGA (EGAD00001004439) 47 
SRA (GSE71121) 42 

TCGA (Xena Browser) 43 
PDX 12 

UCLA 56 
 

Table 3-14: A summary of the data sources and sample sizes of the RNA-Seq data included in 

the undifferentiated sarcoma in-silico immune deconvolution analysis. Outlier samples are 

removed from this table. 

 

A   
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B  

Figure 3-7: PCAs demonstrate clustering of cell lines and PDX models versus human tumors on 

PC2. (A & B) PCAs of RNA-Seq data of all samples listed in Table 3-7. PC2 appears to 

distinguish the human tumors from the other samples. From left to right (negative to positive 

direction) on PC2 the samples cluster from cell lines to PDX models to human tumors. PCAs are 

colored by dataset (A) and histology (B). The patterns of PC1 capturing UCLA tumors, as 

discussed extensively above, were also seen on these PCAs (data not shown). 
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C   
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G   

Figure 3-8: Bar graphs summarizing the immune cell landscape defined by the various in-silico 

immune deconvolution tools across all USARC samples included in this study – cell lines, PDX, 

EGA, SRA, TCGA, and UCLA. (A) Bar graph depicting the total immune cell infiltration 

defined by each tool. (B-G) Bar graphs depicting the immune cell populations predicted by the 

CIBERSORTx, EPIC, MCP Counter, quanTIseq, TIMER, and xCell tools, respectively. 

 

Immune deconvolution tool Median Min Max SD p value  
CIBERSORTx      
 UCLA 22.04 13.65 35.02 5.14 Ref 
 Cell Lines 4.28 3.85 6.07 0.99 0.03 
 EGA 5.83 4.49 7.55 1.03 <0.001 
 PDX 10.47 2.87 38.57 7.67 <0.001 
 SRA 10.97 4.23 70.92 13.53 <0.001 
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 TCGA 11.45 5.65 85.92 16.23 <0.001 
EPIC      
 UCLA 0.23 0.09 0.45 0.09 Ref 
 Cell Lines 0.08 0.04 0.17 0.06 0.18 
 EGA 0.05 0.00 0.20 0.06 <0.001 
 PDX 0.06 0.00 0.28 0.07 <0.001 
 SRA 0.07 0.00 0.36 0.09 <0.001 
 TCGA 0.06 0.00 0.36 0.09 <0.001 
MCP Counter      
 UCLA 13.90 3.55 23.05 5.16 Ref 
 Cell Lines -7.90 -8.48 -7.24 0.52 0.03 
 EGA -6.56 -8.52 -4.57 1.06 <0.001 
 PDX -0.07 -8.13 9.42 3.67 <0.001 
 SRA -0.04 -5.14 13.75 4.53 <0.001 
 TCGA -0.77 -4.89 13.53 4.51 <0.001 
quanTIseq      
 UCLA 0.42 0.27 0.70 0.09 Ref 
 Cell Lines 0.09 0.07 0.19 0.05 0.03 
 EGA 0.12 0.07 0.17 0.04 <0.001 
 PDX 0.20 0.10 0.90 0.14 <0.001 
 SRA 0.23 0.11 0.50 0.09 <0.001 
 TCGA 0.21 0.09 0.48 0.09 <0.001 
TIMER      
 UCLA -0.25 -1.26 1.16 0.53 Ref 
 Cell Lines 0.01 -0.13 0.41 0.25 1.00 
 EGA -0.04 -0.35 0.79 0.40 1.00 
 PDX -0.48 -6.64 9.47 3.76 1.00 
 SRA 0.47 -6.12 20.94 6.14 1.00 
 TCGA 0.41 -5.19 21.34 5.84 1.00 
xCell      
 UCLA 0.06 0.00 0.19 0.05 Ref 
 Cell Lines 0.00 0.00 0.00 0.00 0.06 
 EGA 0.02 0.00 0.05 0.02 <0.001 
 PDX 0.17 0.01 0.50 0.13 0.01 
 SRA 0.18 0.00 0.78 0.18 <0.001 
 TCGA 0.16 0.04 0.63 0.17 <0.001 

 

Table 3-15: Summary of total immune cell infiltration defined by each in-silico immune 

deconvolution tool (as listed above) across all USARC samples included in this study. This table 

corresponds to the graph in Figure 3-8A. Comparisons between groups were performed using the 
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Wilcoxon test. Bonferroni correction was used for multiple hypothesis testing correction. 

Adjusted p values are shown. 

 

Cell Type Median Min Max SD p value  
Activated Dendritic Cells      
 Cell Lines 0.06 0.00 0.36 0.17 1.00E+00 
 PDX 0.02 0.00 2.05 0.61 1.00E+00 
 EGA 0.00 0.00 1.60 0.29 1.00E+00 
 SRA 0.00 0.00 0.43 0.08 1.00E+00 
 TCGA 0.00 0.00 1.02 0.15 1.00E+00 
 UCLA 0.00 0.00 2.81 0.58 Ref 
Activated Mast Cells      
 Cell Lines 0.47 0.06 0.74 0.35 1.00E+00 
 PDX 0.00 0.00 1.52 0.51 1.19E-02 
 EGA 0.00 0.00 1.38 0.29 1.00E+00 
 SRA 0.00 0.00 1.90 0.40 1.50E-02 
 TCGA 0.00 0.00 1.61 0.33 4.91E-04 
 UCLA 0.70 0.00 5.14 1.39 Ref 
Activated NK Cells      
 Cell Lines 0.04 0.00 0.08 0.04 1.00E+00 
 PDX 0.17 0.00 0.68 0.21 1.00E+00 
 EGA 0.01 0.00 0.57 0.14 1.00E+00 
 SRA 0.24 0.00 2.48 0.61 1.00E+00 
 TCGA 0.33 0.00 6.94 1.20 1.00E+00 
 UCLA 0.22 0.00 4.82 1.08 Ref 
CD8+ T Cells      
 Cell Lines 0.00 0.00 0.04 0.02 1.00E+00 
 PDX 0.10 0.00 0.87 0.27 1.00E+00 
 EGA 0.59 0.00 6.00 1.54 1.00E+00 
 SRA 0.51 0.00 14.33 3.18 1.00E+00 
 TCGA 0.73 0.00 30.81 5.05 1.00E+00 
 UCLA 0.88 0.00 6.39 1.40 Ref 
Eosinophils      
 Cell Lines 0.02 0.00 0.02 0.01 1.00E+00 
 PDX 0.00 0.00 0.26 0.07 2.20E-05 
 EGA 0.00 0.00 0.15 0.03 1.00E+00 
 SRA 0.00 0.00 0.03 0.00 2.04E-06 
 TCGA 0.00 0.00 0.00 0.00 5.67E-07 
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 UCLA 0.26 0.00 4.74 1.20 Ref 
Follicular Helper T Cells      
 Cell Lines 0.00 0.00 0.00 0.00 1.00E+00 
 PDX 0.15 0.00 1.95 0.64 5.91E-03 
 EGA 0.22 0.00 1.67 0.42 1.00E+00 
 SRA 0.23 0.00 5.30 1.08 1.90E-02 
 TCGA 0.41 0.00 13.14 2.01 4.95E-04 
 UCLA 0.00 0.00 3.84 0.95 Ref 
Gamma Delta T Cells      
 Cell Lines 0.00 0.00 0.00 0.00 1.00E+00 
 PDX 0.00 0.00 0.00 0.00 1.00E+00 
 EGA 0.00 0.00 0.56 0.10 1.00E+00 
 SRA 0.00 0.00 0.51 0.08 1.00E+00 
 TCGA 0.00 0.00 1.78 0.30 1.00E+00 
 UCLA 0.00 0.00 1.50 0.30 Ref 
M0 Macrophages      
 Cell Lines 1.01 0.23 1.70 0.79 1.00E+00 
 PDX 0.49 0.00 1.00 0.31 1.00E+00 
 EGA 0.68 0.00 8.89 2.20 1.00E+00 
 SRA 0.06 0.00 11.34 2.32 1.00E+00 
 TCGA 0.12 0.00 34.24 5.52 1.00E+00 
 UCLA 0.18 0.00 14.07 2.54 Ref 
M1 Macrophages      
 Cell Lines 0.00 0.00 0.00 0.00 1.00E+00 
 PDX 0.00 0.00 0.81 0.33 8.48E-04 
 EGA 0.24 0.00 3.61 0.93 1.00E+00 
 SRA 0.23 0.00 7.28 1.42 1.69E-04 
 TCGA 0.37 0.00 3.77 0.84 2.50E-05 
 UCLA 0.00 0.00 1.87 0.39 Ref 
M2 Macrophages      
 Cell Lines 0.00 0.00 0.13 0.07 1.00E+00 
 PDX 0.00 0.00 1.74 0.61 8.47E-07 
 EGA 5.05 0.80 24.03 4.37 2.63E-02 
 SRA 5.61 0.13 26.22 4.98 1.75E-06 
 TCGA 6.26 1.63 37.16 6.27 5.42E-08 
 UCLA 2.04 0.00 7.70 2.27 Ref 
Memory Activated CD4+ T Cells      
 Cell Lines 0.00 0.00 0.00 0.00 1.00E+00 
 PDX 0.00 0.00 0.67 0.22 7.78E-02 
 EGA 0.00 0.00 1.87 0.40 5.50E-01 
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 SRA 0.00 0.00 0.94 0.15 3.91E-05 
 TCGA 0.00 0.00 2.01 0.33 1.75E-02 
 UCLA 0.45 0.00 6.33 1.70 Ref 
Memory B Cells      
 Cell Lines 0.03 0.00 0.21 0.10 1.00E+00 
 PDX 0.08 0.00 0.73 0.27 1.00E+00 
 EGA 0.13 0.00 1.66 0.29 1.00E+00 
 SRA 0.07 0.00 4.81 1.01 8.80E-01 
 TCGA 0.01 0.00 1.21 0.24 3.71E-02 
 UCLA 1.28 0.00 8.84 2.00 Ref 
Memory Resting CD4+ T Cells      
 Cell Lines 0.92 0.82 1.43 0.29 1.00E+00 
 PDX 1.40 0.00 3.03 0.92 1.00E+00 
 EGA 0.63 0.00 3.82 0.79 1.00E+00 
 SRA 0.79 0.00 6.27 1.16 1.00E+00 
 TCGA 0.57 0.00 4.91 0.88 4.40E-01 
 UCLA 2.17 0.00 15.63 2.76 Ref 
Monocytes      
 Cell Lines 0.06 0.03 0.16 0.05 1.00E+00 
 PDX 0.15 0.06 0.43 0.13 1.00E+00 
 EGA 0.20 0.00 2.16 0.47 1.00E+00 
 SRA 0.46 0.00 7.20 1.15 1.00E+00 
 TCGA 0.29 0.00 2.50 0.60 1.00E+00 
 UCLA 0.29 0.00 3.86 0.95 Ref 
Naive B Cells      
 Cell Lines 0.00 0.00 0.00 0.00 1.00E+00 
 PDX 0.00 0.00 0.39 0.11 6.56E-05 
 EGA 0.00 0.00 0.60 0.10 2.20E-01 
 SRA 0.00 0.00 2.85 0.46 2.02E-02 
 TCGA 0.02 0.00 1.59 0.37 4.40E-01 
 UCLA 0.54 0.00 8.67 2.24 Ref 
Naive CD4+ T Cells      
 Cell Lines 1.42 0.37 2.05 0.81 1.00E+00 
 PDX 0.01 0.00 1.97 0.73 2.57E-11 
 EGA 0.00 0.00 0.47 0.08 7.62E-02 
 SRA 0.00 0.00 0.47 0.08 6.89E-11 
 TCGA 0.00 0.00 0.26 0.04 7.01E-12 
 UCLA 2.66 0.00 13.76 3.42 Ref 
Neutrophils      
 Cell Lines 0.00 0.00 0.00 0.00 1.00E+00 
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 PDX 0.00 0.00 0.03 0.01 1.00E+00 
 EGA 0.00 0.00 0.90 0.14 1.00E+00 
 SRA 0.00 0.00 0.31 0.09 1.00E+00 
 TCGA 0.00 0.00 0.47 0.10 1.00E+00 
 UCLA 0.00 0.00 2.65 0.70 Ref 
Plasma Cells      
 Cell Lines 0.06 0.02 0.40 0.18 1.00E+00 
 PDX 0.00 0.00 0.32 0.09 1.00E+00 
 EGA 0.05 0.00 1.19 0.23 1.00E+00 
 SRA 0.04 0.00 1.68 0.28 1.00E+00 
 TCGA 0.00 0.00 1.70 0.36 1.00E+00 
 UCLA 0.00 0.00 3.28 0.82 Ref 
Resting Dendritic Cells      
 Cell Lines 0.00 0.00 0.00 0.00 1.00E+00 
 PDX 0.00 0.00 0.00 0.00 1.00E+00 
 EGA 0.00 0.00 0.42 0.08 1.00E+00 
 SRA 0.00 0.00 0.87 0.18 1.00E+00 
 TCGA 0.00 0.00 0.31 0.09 1.00E+00 
 UCLA 0.00 0.00 2.38 0.54 Ref 
Resting Mast Cells      
 Cell Lines 0.00 0.00 0.00 0.00 1.00E+00 
 PDX 0.18 0.00 1.52 0.56 1.10E-01 
 EGA 0.26 0.00 2.59 0.51 1.00E+00 
 SRA 0.29 0.00 4.81 1.01 1.10E-01 
 TCGA 0.42 0.00 3.30 0.78 1.01E-02 
 UCLA 0.00 0.00 5.81 0.96 Ref 
Resting NK Cells      
 Cell Lines 0.43 0.00 0.62 0.28 1.00E+00 
 PDX 0.44 0.00 1.01 0.36 6.60E-01 
 EGA 0.05 0.00 1.77 0.36 1.00E+00 
 SRA 0.00 0.00 0.91 0.20 2.57E-02 
 TCGA 0.00 0.00 0.31 0.08 3.87E-03 
 UCLA 0.49 0.00 8.17 1.39 Ref 
Tregs      
 Cell Lines 0.00 0.00 0.00 0.00 1.00E+00 
 PDX 0.00 0.00 0.78 0.27 1.00E+00 
 EGA 0.03 0.00 0.64 0.18 1.00E+00 
 SRA 0.08 0.00 2.77 0.55 1.00E+00 
 TCGA 0.16 0.00 4.33 0.78 2.74E-03 
 UCLA 0.00 0.00 5.00 1.23 Ref 
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Table 3-16: Summary of immune cell populations across all USARC samples included in this 

study predicted by CIBERSORTx in-silico immune deconvolution tools. This table corresponds 

to the graph in Figure 3-8B. Comparisons between groups were performed using the Wilcoxon 

test. Bonferroni correction was used for multiple hypothesis testing correction. Adjusted p values 

are shown. 

 

Cell Type Median Min Max SD p value  
B Cells      
 Cell Lines 5.05E-04 8.44E-07 1.21E-03 5.86E-04 1.50E-01 
 PDX 3.71E-04 4.01E-07 4.06E-03 1.16E-03 2.70E-04 
 EGA 3.53E-05 8.37E-09 8.25E-03 1.56E-03 2.08E-12 
 SRA 1.69E-05 3.26E-10 4.26E-02 7.81E-03 1.04E-10 
 TCGA 3.83E-04 2.01E-08 2.81E-02 4.88E-03 2.13E-09 
 UCLA 1.74E-02 3.63E-09 9.43E-02 1.91E-02 Ref 
CD4+ T Cells      
 Cell Lines 6.79E-02 2.46E-02 1.68E-01 6.17E-02 4.50E-01 
 PDX 4.53E-02 9.75E-05 9.88E-02 3.32E-02 7.48E-06 
 EGA 2.54E-02 2.86E-09 2.39E-01 4.35E-02 7.08E-15 
 SRA 1.36E-02 1.62E-07 1.46E-01 3.66E-02 2.31E-14 
 TCGA 8.66E-06 2.40E-09 5.64E-02 1.35E-02 5.23E-16 
 UCLA 1.68E-01 4.74E-02 3.71E-01 7.16E-02 Ref 
CD8+ T Cells      
 Cell Lines 4.89E-03 1.02E-07 2.35E-02 1.11E-02 9.75E-01 
 PDX 5.41E-03 3.64E-08 9.40E-02 2.97E-02 1.00E+00 
 EGA 7.37E-03 1.60E-08 7.81E-02 1.99E-02 8.63E-03 
 SRA 1.33E-02 1.01E-09 2.51E-01 4.98E-02 1.00E+00 
 TCGA 1.07E-02 1.35E-09 2.08E-01 3.97E-02 1.25E-01 
 UCLA 3.15E-02 2.54E-07 1.04E-01 2.63E-02 Ref 
Macrophages      
 Cell Lines 5.52E-04 9.89E-09 2.96E-03 1.39E-03 2.50E-02 
 PDX 1.58E-04 2.07E-07 1.92E-03 5.28E-04 1.69E-06 
 EGA 1.75E-02 3.54E-08 8.76E-02 2.07E-02 1.08E-05 
 SRA 2.85E-02 9.88E-08 1.26E-01 3.42E-02 1.83E-03 
 TCGA 3.33E-02 9.10E-09 2.35E-01 5.66E-02 1.29E-06 
 UCLA 7.20E-03 2.80E-03 2.04E-02 4.08E-03 Ref 
NK Cells      
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 Cell Lines 3.58E-09 2.14E-10 8.35E-08 4.05E-08 1.00E+00 
 PDX 6.06E-08 4.66E-10 2.71E-03 7.81E-04 2.75E-01 
 EGA 1.34E-07 1.18E-09 1.16E-02 1.73E-03 1.94E-06 
 SRA 1.43E-07 3.33E-09 2.22E-03 4.00E-04 1.02E-05 
 TCGA 2.26E-06 1.96E-09 3.61E-03 8.88E-04 6.18E-09 
 UCLA 4.72E-09 8.99E-11 6.48E-06 1.07E-06 Ref 

 

Table 3-17: Summary of immune cell populations across all USARC samples included in this 

study predicted by EPIC in-silico immune deconvolution tools. This table corresponds to the 

graph in Figure 3-8C. Comparisons between groups were performed using the Wilcoxon test. 

Bonferroni correction was used for multiple hypothesis testing correction. Adjusted p values are 

shown. 

 

Cell Type Median Min Max SD p value  
B Cells      
 Cell Lines -1.03 -1.09 -0.98 0.05 3.81E-02 
 PDX -0.92 -1.08 -0.34 0.19 2.71E-06 
 EGA -0.32 -0.97 1.50 0.58 2.67E-15 
 SRA -0.25 -0.95 2.73 0.75 6.48E-13 
 TCGA -0.19 -0.89 1.49 0.54 1.15E-14 
 UCLA 2.17 -0.12 3.20 0.74 Ref 
CD8+ T Cells      
 Cell Lines -0.99 -0.99 -0.99 0.00 1.20E-01 
 PDX -0.99 -0.99 0.43 0.42 8.40E-04 
 EGA -0.20 -0.99 2.08 0.81 7.92E-03 
 SRA -0.32 -0.99 3.35 1.08 4.00E-02 
 TCGA -0.12 -0.96 3.58 1.17 9.60E-01 
 UCLA 1.13 -0.99 2.75 1.09 Ref 
Cytotoxic Lymphocytes      
 Cell Lines -1.25 -1.34 -1.16 0.07 3.81E-02 
 PDX -1.20 -1.36 0.45 0.62 4.60E-06 
 EGA -0.09 -1.29 2.41 0.73 1.81E-12 
 SRA -0.04 -1.01 3.25 0.84 2.60E-11 
 TCGA -0.19 -1.05 2.28 0.79 1.80E-11 
 UCLA 1.91 0.06 3.67 0.87 Ref 
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Monocytes      
 Cell Lines -1.86 -2.14 -1.44 0.29 3.81E-02 
 PDX -1.61 -2.13 -0.92 0.33 2.71E-06 
 EGA 0.68 -1.71 1.89 0.74 1.00E+00 
 SRA 0.78 -1.22 2.23 0.88 1.00E+00 
 TCGA 0.60 -0.71 1.72 0.64 1.00E+00 
 UCLA 0.85 -0.19 1.82 0.43 Ref 
Myeloid DCs      
 Cell Lines -0.54 -0.86 -0.13 0.33 4.00E-02 
 PDX -0.65 -1.70 0.62 0.61 1.20E-05 
 EGA -0.05 -1.19 2.61 0.78 1.82E-09 
 SRA 0.16 -0.86 2.14 0.82 5.80E-06 
 TCGA 0.20 -1.07 1.87 0.80 6.92E-07 
 UCLA 1.33 -0.31 2.90 0.77 Ref 
Neutrophils      
 Cell Lines -0.58 -0.89 -0.32 0.30 3.81E-02 
 PDX -0.45 -0.68 -0.03 0.22 2.71E-06 
 EGA -0.14 -0.68 1.56 0.40 4.12E-16 
 SRA -0.01 -0.59 0.61 0.29 1.45E-15 
 TCGA -0.32 -0.95 0.16 0.28 7.84E-16 
 UCLA 2.45 0.54 3.63 0.83 Ref 
NK Cells      
 Cell Lines -0.50 -0.59 -0.24 0.17 3.81E-02 
 PDX -0.50 -0.62 -0.36 0.08 2.71E-06 
 EGA -0.25 -0.56 0.51 0.23 1.29E-16 
 SRA -0.28 -0.58 0.96 0.31 2.84E-15 
 TCGA -0.41 -0.61 0.84 0.32 1.28E-15 
 UCLA 2.49 0.46 4.24 1.03 Ref 
T Cells      
 Cell Lines -1.21 -1.43 -0.99 0.19 3.81E-02 
 PDX -0.99 -1.28 -0.54 0.27 2.71E-06 
 EGA -0.17 -1.01 1.94 0.68 4.76E-13 
 SRA 0.00 -0.80 2.69 0.85 1.16E-09 
 TCGA -0.18 -0.97 3.02 0.93 6.72E-10 
 UCLA 1.92 0.16 3.29 0.75 Ref 

 

Table 3-18: Summary of immune cell populations across all USARC samples included in this 

study predicted by MCP Counter in-silico immune deconvolution tools. This table corresponds 
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to the graph in Figure 3-8D. Comparisons between groups were performed using the Wilcoxon 

test. Bonferroni correction was used for multiple hypothesis testing correction. Adjusted p values 

are shown. 

 

Cell Type Median Min Max SD p value  
B Cells      
 Cell Lines 0.01 0.01 0.02 0.00 4.76E-02 

 PDX 0.01 0.00 0.02 0.00 3.39E-06 
 EGA 0.01 0.00 0.04 0.01 2.42E-16 

 SRA 0.00 0.00 0.05 0.01 1.19E-14 

 TCGA 0.00 0.00 0.05 0.01 3.67E-15 
 UCLA 0.06 0.02 0.12 0.02 Ref 
CD4+ T Cells (non-regulatory)      
 Cell Lines 0.01 0.00 0.02 0.01 1.00E+00 
 PDX 0.00 0.00 0.04 0.01 1.00E+00 

 EGA 0.00 0.00 0.04 0.01 1.00E+00 

 SRA 0.00 0.00 0.06 0.02 5.15E-03 
 TCGA 0.00 0.00 0.07 0.02 4.00E-01 

 UCLA 0.00 0.00 0.07 0.01 Ref 
CD8+ T Cells      
 Cell Lines 0.00 0.00 0.00 0.00 3.00E-01 

 PDX 0.00 0.00 0.00 0.00 3.26E-04 

 EGA 0.00 0.00 0.10 0.02 8.80E-03 
 SRA 0.00 0.00 0.26 0.06 2.74E-02 

 TCGA 0.00 0.00 0.30 0.06 4.50E-01 

 UCLA 0.02 0.00 0.11 0.02 Ref 
M1 Macrophages      
 Cell Lines 0.03 0.00 0.05 0.03 1.00E+00 

 PDX 0.01 0.00 0.13 0.04 1.00E+00 
 EGA 0.03 0.00 0.81 0.14 1.00E+00 

 SRA 0.03 0.00 0.19 0.04 1.00E+00 

 TCGA 0.04 0.00 0.17 0.04 2.00E-01 
 UCLA 0.02 0.00 0.07 0.02 Ref 
M2 Macrophages      
 Cell Lines 0.00 0.00 0.00 0.00 1.00E-01 
 PDX 0.00 0.00 0.03 0.01 2.17E-04 

 EGA 0.04 0.00 0.11 0.03 1.00E+00 
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 SRA 0.05 0.00 0.13 0.03 1.00E+00 
 TCGA 0.05 0.00 0.13 0.03 1.70E-02 

 UCLA 0.04 0.00 0.10 0.02 Ref 
Monocytes      
 Cell Lines 0.00 0.00 0.01 0.00 1.00E+00 

 PDX 0.01 0.00 0.09 0.03 1.00E+00 

 EGA 0.00 0.00 0.10 0.02 2.00E-01 
 SRA 0.00 0.00 0.21 0.04 1.00E+00 

 TCGA 0.00 0.00 0.07 0.02 4.50E-01 

 UCLA 0.00 0.00 0.49 0.08 Ref 
Myeloid DCs      
 Cell Lines 0.00 0.00 0.00 0.00 1.00E+00 

 PDX 0.00 0.00 0.03 0.01 1.00E+00 
 EGA 0.00 0.00 0.02 0.00 1.00E+00 

 SRA 0.00 0.00 0.06 0.01 2.27E-02 

 TCGA 0.00 0.00 0.04 0.01 7.40E-04 
 UCLA 0.00 0.00 0.01 0.00 Ref 
Neutrophils      
 Cell Lines 0.04 0.02 0.09 0.03 6.50E-01 
 PDX 0.01 0.00 0.09 0.03 3.71E-04 

 EGA 0.07 0.00 0.47 0.08 1.04E-05 

 SRA 0.05 0.00 0.25 0.06 2.88E-06 
 TCGA 0.03 0.00 0.22 0.05 2.21E-08 

 UCLA 0.16 0.00 0.51 0.10 Ref 
NK Cells      
 Cell Lines 0.00 0.00 0.00 0.00 4.76E-02 

 PDX 0.01 0.00 0.04 0.01 3.21E-04 

 EGA 0.01 0.00 0.04 0.01 3.99E-14 
 SRA 0.01 0.00 0.03 0.01 1.87E-12 

 TCGA 0.01 0.00 0.04 0.01 9.10E-13 

 UCLA 0.04 0.01 0.12 0.02 Ref 
Tregs      
 Cell Lines 0.01 0.00 0.01 0.00 3.50E-01 

 PDX 0.01 0.00 0.07 0.02 7.50E-01 
 EGA 0.01 0.00 0.04 0.01 5.70E-06 

 SRA 0.01 0.00 0.07 0.01 5.75E-05 

 TCGA 0.01 0.00 0.07 0.01 2.05E-04 
 UCLA 0.03 0.00 0.17 0.04 Ref 
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Table 3-19: Summary of immune cell populations across all USARC samples included in this 

study predicted by quanTIseq in-silico immune deconvolution tools. This table corresponds to 

the graph in Figure 3-8E. Comparisons between groups were performed using the Wilcoxon test. 

Bonferroni correction was used for multiple hypothesis testing correction. Adjusted p values are 

shown. 

 

Cell Type Median Min Max SD p value  
B Cells      
 Cell Lines 0.17 -0.03 0.23 0.11 1.00 
 PDX -0.03 -0.21 0.15 0.14 1.00 
 EGA -0.58 -1.83 1.08 0.76 0.01 
 SRA -0.21 -1.25 3.96 1.12 1.00 
 TCGA -0.33 -1.67 5.09 1.38 0.60 
 UCLA 0.03 -0.44 0.55 0.19 Ref 
CD4+ T Cells      
 Cell Lines -0.17 -0.26 0.19 0.20 1.00 
 PDX -0.07 -0.36 0.56 0.23 1.00 
 EGA -0.01 -1.61 2.89 0.84 1.00 
 SRA -0.19 -1.21 4.84 1.17 1.00 
 TCGA 0.32 -1.41 6.60 1.62 1.00 
 UCLA -0.19 -0.57 0.53 0.25 Ref 
CD8+ T Cells      
 Cell Lines 0.06 -0.11 0.12 0.10 1.00 
 PDX 0.07 -0.09 0.58 0.20 1.00 
 EGA -0.31 -2.15 2.66 0.90 0.01 
 SRA -0.29 -1.20 9.58 1.87 0.00 
 TCGA -0.35 -1.63 9.10 2.00 1.00 
 UCLA 0.08 -0.23 0.57 0.17 Ref 
Macrophages      
 Cell Lines 0.24 0.07 0.46 0.16 0.33 
 PDX -0.10 -0.67 0.30 0.24 1.00 
 EGA 0.02 -0.96 3.90 1.12 1.00 
 SRA 0.29 -0.96 3.76 1.12 1.00 
 TCGA -0.03 -0.96 3.63 1.22 1.00 
 UCLA -0.22 -0.53 0.92 0.30 Ref 
Myeloid DCs      
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 Cell Lines -0.26 -0.47 -0.15 0.15 0.03 
 PDX 0.04 -0.13 0.24 0.10 1.00 
 EGA -0.13 -1.67 2.98 1.01 1.00 
 SRA -0.01 -1.47 3.98 1.40 1.00 
 TCGA 0.33 -1.26 4.71 1.41 1.00 
 UCLA 0.05 -0.21 0.34 0.11 Ref 
Neutrophils      
 Cell Lines 0.02 -0.11 0.25 0.15 1.00 
 PDX -0.02 -0.22 1.09 0.35 1.00 
 EGA 0.16 -1.37 8.23 1.67 1.00 
 SRA 0.43 -1.49 3.85 1.25 0.03 
 TCGA -0.24 -1.50 2.21 1.06 1.00 
 UCLA -0.05 -0.45 0.46 0.20 Ref 

 

Table 3-20: Summary of immune cell populations across all USARC samples included in this 

study predicted by TIMER in-silico immune deconvolution tools. This table corresponds to the 

graph in Figure 3-8F. Comparisons between groups were performed using the Wilcoxon test. 

Bonferroni correction was used for multiple hypothesis testing correction. Adjusted p values are 

shown. 

 

Cell Type Median Min Max SD p value  
aDCs      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.01 0.00 0.24 0.07 1.00 
 EGA 0.25 0.00 0.58 0.13 <0.001 
 SRA 0.25 0.00 0.60 0.14 <0.001 
 TCGA 0.25 0.06 0.63 0.12 <0.001 
 UCLA 0.04 0.00 0.33 0.07 Ref 
B Cells      
 Cell Lines 0.00 0.00 0.01 0.00 1.00 
 PDX 0.00 0.00 0.04 0.01 1.00 
 EGA 0.02 0.00 0.14 0.03 1.00 
 SRA 0.01 0.00 0.34 0.06 1.00 
 TCGA 0.00 0.00 0.19 0.04 1.00 
 UCLA 0.01 0.00 0.22 0.05 Ref 
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Basophils      
 Cell Lines 0.02 0.01 0.02 0.01 0.51 
 PDX 0.00 0.00 0.18 0.06 <0.001 
 EGA 0.02 0.00 0.16 0.04 <0.001 
 SRA 0.01 0.00 0.14 0.04 <0.001 
 TCGA 0.07 0.00 0.21 0.06 <0.001 
 UCLA 0.25 0.00 1.25 0.30 Ref 
C.S. Memory B Cells      
 Cell Lines 0.00 0.00 0.01 0.00 1.00 
 PDX 0.00 0.00 0.03 0.01 1.00 
 EGA 0.01 0.00 0.07 0.02 1.00 
 SRA 0.00 0.00 0.12 0.02 1.00 
 TCGA 0.00 0.00 0.06 0.02 1.00 
 UCLA 0.00 0.00 0.08 0.02 Ref 
CD4+ Memory T Cells      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.00 0.00 0.00 0.00 1.00 
 EGA 0.00 0.00 0.03 0.01 0.17 
 SRA 0.00 0.00 0.04 0.01 0.04 
 TCGA 0.00 0.00 0.04 0.01 1.00 
 UCLA 0.00 0.00 0.07 0.02 Ref 
CD4+ Naive T Cells      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.00 0.00 0.00 0.00 1.00 
 EGA 0.00 0.00 0.09 0.01 1.00 
 SRA 0.00 0.00 0.12 0.02 1.00 
 TCGA 0.00 0.00 0.11 0.02 1.00 
 UCLA 0.00 0.00 0.01 0.00 Ref 
CD4+ T Cells      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.00 0.00 0.00 0.00 0.85 
 EGA 0.00 0.00 0.00 0.00 1.00 
 SRA 0.00 0.00 0.00 0.00 1.00 
 TCGA 0.00 0.00 0.00 0.00 <0.001 
 UCLA 0.00 0.00 0.00 0.00 Ref 
CD4+ Tcm Cells      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.00 0.00 0.02 0.01 1.00 
 EGA 0.00 0.00 0.05 0.01 1.00 
 SRA 0.02 0.00 0.10 0.02 1.00 
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 TCGA 0.00 0.00 0.02 0.00 1.00 
 UCLA 0.01 0.00 0.16 0.04 Ref 
CD4+ Tem Cells      
 Cell Lines 0.00 0.00 0.02 0.01 1.00 
 PDX 0.00 0.00 0.05 0.02 1.00 
 EGA 0.00 0.00 0.07 0.02 1.00 
 SRA 0.02 0.00 0.09 0.03 0.51 
 TCGA 0.01 0.00 0.13 0.03 1.00 
 UCLA 0.00 0.00 0.15 0.05 Ref 
CD8+ Naive T Cells      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.00 0.00 0.02 0.01 1.00 
 EGA 0.01 0.00 0.02 0.01 <0.001 
 SRA 0.00 0.00 0.02 0.01 <0.001 
 TCGA 0.01 0.00 0.04 0.01 1.00 
 UCLA 0.01 0.00 0.08 0.02 Ref 
CD8+ T Cells      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.00 0.00 0.02 0.01 1.00 
 EGA 0.01 0.00 0.23 0.05 <0.001 
 SRA 0.01 0.00 0.39 0.09 <0.001 
 TCGA 0.00 0.00 0.43 0.09 <0.001 
 UCLA 0.00 0.00 0.04 0.01 Ref 
CD8+ Tcm Cells      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.00 0.00 0.00 0.00 1.00 
 EGA 0.02 0.00 0.26 0.06 1.00 
 SRA 0.02 0.00 0.49 0.11 0.05 
 TCGA 0.02 0.00 0.55 0.13 0.12 
 UCLA 0.00 0.00 0.08 0.01 Ref 
CD8+ Tem Cells      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.00 0.00 0.01 0.00 0.03 
 EGA 0.00 0.00 0.14 0.03 1.00 
 SRA 0.00 0.00 0.22 0.04 1.00 
 TCGA 0.00 0.00 0.24 0.05 1.00 
 UCLA 0.00 0.00 0.00 0.00 Ref 
cDCs      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.00 0.00 0.03 0.01 1.00 
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 EGA 0.05 0.00 0.65 0.10 1.00 
 SRA 0.07 0.00 0.45 0.11 1.00 
 TCGA 0.06 0.00 0.34 0.10 1.00 
 UCLA 0.05 0.00 0.34 0.06 Ref 
DCs      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.00 0.00 0.01 0.00 1.00 
 EGA 0.01 0.00 0.11 0.03 0.34 
 SRA 0.01 0.00 0.12 0.03 0.17 
 TCGA 0.02 0.00 0.16 0.04 <0.001 
 UCLA 0.00 0.00 0.05 0.01 Ref 
Eosinophils      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.00 0.00 0.00 0.00 1.00 
 EGA 0.00 0.00 0.00 0.00 1.00 
 SRA 0.00 0.00 0.00 0.00 1.00 
 TCGA 0.00 0.00 0.00 0.00 1.00 
 UCLA 0.00 0.00 0.09 0.02 Ref 
Gamma Delta T Cells      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.00 0.00 0.00 0.00 1.00 
 EGA 0.00 0.00 0.04 0.01 1.00 
 SRA 0.00 0.00 0.04 0.01 1.00 
 TCGA 0.00 0.00 0.08 0.01 1.00 
 UCLA 0.00 0.00 0.00 0.00 Ref 
iDCs      
 Cell Lines 0.01 0.00 0.05 0.02 1.00 
 PDX 0.00 0.00 0.24 0.08 0.15 
 EGA 0.16 0.00 1.50 0.43 1.00 
 SRA 0.21 0.00 1.37 0.43 1.00 
 TCGA 0.36 0.00 1.80 0.52 0.02 
 UCLA 0.14 0.00 0.73 0.17 Ref 
M1 Macrophages      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.00 0.00 0.03 0.01 1.00 
 EGA 0.05 0.00 0.12 0.03 <0.001 
 SRA 0.05 0.00 0.17 0.04 <0.001 
 TCGA 0.08 0.02 0.19 0.05 <0.001 
 UCLA 0.00 0.00 0.03 0.01 Ref 
M2 Macrophages      
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 Cell Lines 0.00 0.00 0.01 0.00 1.00 
 PDX 0.02 0.00 0.06 0.02 1.00 
 EGA 0.04 0.00 0.12 0.03 <0.001 
 SRA 0.05 0.00 0.14 0.03 <0.001 
 TCGA 0.05 0.00 0.12 0.03 <0.001 
 UCLA 0.01 0.00 0.10 0.02 Ref 
Macrophages      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.01 0.00 0.04 0.01 1.00 
 EGA 0.09 0.00 0.18 0.05 <0.001 
 SRA 0.08 0.00 0.25 0.07 <0.001 
 TCGA 0.10 0.01 0.26 0.07 <0.001 
 UCLA 0.02 0.00 0.13 0.03 Ref 
Mast Cells      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.00 0.00 0.02 0.01 1.00 
 EGA 0.02 0.00 0.05 0.01 0.01 
 SRA 0.01 0.00 0.05 0.01 1.00 
 TCGA 0.01 0.00 0.03 0.01 1.00 
 UCLA 0.01 0.00 0.05 0.01 Ref 
Memory B Cells      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.00 0.00 0.03 0.01 0.02 
 EGA 0.00 0.00 0.04 0.01 <0.001 
 SRA 0.00 0.00 0.08 0.01 <0.001 
 TCGA 0.00 0.00 0.06 0.01 <0.001 
 UCLA 0.06 0.00 0.27 0.08 Ref 
Monocytes      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.00 0.00 0.02 0.01 1.00 
 EGA 0.06 0.00 0.26 0.07 <0.001 
 SRA 0.10 0.00 0.34 0.08 <0.001 
 TCGA 0.07 0.01 0.27 0.07 <0.001 
 UCLA 0.00 0.00 0.01 0.00 Ref 
Naive B Cells      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.00 0.00 0.01 0.00 1.00 
 EGA 0.00 0.00 0.02 0.01 1.00 
 SRA 0.00 0.00 0.05 0.01 1.00 
 TCGA 0.00 0.00 0.04 0.01 1.00 
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 UCLA 0.00 0.00 0.02 0.00 Ref 
Neutrophils      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.00 0.00 0.00 0.00 1.00 
 EGA 0.00 0.00 0.06 0.01 1.00 
 SRA 0.00 0.00 0.01 0.00 1.00 
 TCGA 0.00 0.00 0.01 0.00 1.00 
 UCLA 0.00 0.00 0.07 0.01 Ref 
NK Cells      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.00 0.00 0.00 0.00 1.00 
 EGA 0.00 0.00 0.01 0.00 0.10 
 SRA 0.00 0.00 0.02 0.00 0.68 
 TCGA 0.00 0.00 0.01 0.00 1.00 
 UCLA 0.00 0.00 0.00 0.00 Ref 
NK T Cells      
 Cell Lines 0.00 0.00 0.01 0.00 1.00 
 PDX 0.03 0.00 0.07 0.03 1.00 
 EGA 0.01 0.00 0.09 0.02 <0.001 
 SRA 0.00 0.00 0.08 0.02 <0.001 
 TCGA 0.02 0.00 0.18 0.04 <0.001 
 UCLA 0.09 0.00 0.47 0.10 Ref 
pDCs      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.00 0.00 0.00 0.00 1.00 
 EGA 0.01 0.00 0.14 0.03 1.00 
 SRA 0.01 0.00 0.12 0.02 1.00 
 TCGA 0.02 0.00 0.16 0.05 1.00 
 UCLA 0.00 0.00 0.24 0.06 Ref 
Plasma Cells      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.00 0.00 0.03 0.01 1.00 
 EGA 0.00 0.00 0.04 0.01 1.00 
 SRA 0.00 0.00 0.05 0.01 1.00 
 TCGA 0.00 0.00 0.03 0.01 1.00 
 UCLA 0.01 0.00 0.04 0.01 Ref 
Pro B Cells      
 Cell Lines 0.00 0.00 0.00 0.00 0.34 
 PDX 0.00 0.00 0.00 0.00 <0.001 
 EGA 0.00 0.00 0.01 0.00 <0.001 
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 SRA 0.00 0.00 0.02 0.00 <0.001 
 TCGA 0.00 0.00 0.03 0.01 <0.001 
 UCLA 0.09 0.00 0.45 0.11 Ref 
Th1 Cells      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.00 0.00 0.03 0.01 <0.001 
 EGA 0.00 0.00 0.03 0.01 <0.001 
 SRA 0.00 0.00 0.06 0.01 <0.001 
 TCGA 0.00 0.00 0.15 0.04 0.04 
 UCLA 0.06 0.00 0.24 0.07 Ref 
Th2 Cells      
 Cell Lines 0.00 0.00 0.03 0.01 1.00 
 PDX 0.10 0.03 0.19 0.05 1.00 
 EGA 0.12 0.00 0.43 0.09 1.00 
 SRA 0.11 0.00 0.48 0.09 1.00 
 TCGA 0.15 0.06 0.36 0.08 1.00 
 UCLA 0.12 0.00 0.35 0.10 Ref 
Tregs      
 Cell Lines 0.00 0.00 0.00 0.00 1.00 
 PDX 0.00 0.00 0.00 0.00 1.00 
 EGA 0.01 0.00 0.10 0.02 1.00 
 SRA 0.00 0.00 0.04 0.01 1.00 
 TCGA 0.00 0.00 0.04 0.01 1.00 
 UCLA 0.00 0.00 0.11 0.03 Ref 

 

Table 3-21: Summary of immune cell populations across all USARC samples included in this 

study predicted by xCell in-silico immune deconvolution tools. This table corresponds to the 

graph in Figure 3-8G. Comparisons between groups were performed using the Wilcoxon test. 

Bonferroni correction was used for multiple hypothesis testing correction. Adjusted p values are 

shown. 

 

3.9.5 Examination of CD4+ and macrophage in-silico correlation 
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We hypothesized that there would be a high correlation between macrophage and CD4+ T cell 

scores predicted by the in-silico immune deconvolution tools. We suspected this may be one 

reason for the discordance between CD4+ mIF and in-silico scores. We examined the correlation 

between CD4+ and macrophage scores in each tool using all USARC samples. The correlation 

between mIF and in-silico scores was determined using a linear fit model and Pearson correlation 

coefficients. 

 

A    B  

C    D   
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E    F  

Figure 3-9: Bar plots demonstrating the correlation between CD4+ and macrophage scores 

predicted by each of the in-silico immune deconvolution tools using all undifferentiated sarcoma 

samples in this study. 

 

In-silico immune 
deconvolution tool 

R (Pearson correlation 
coefficient) p value 

CIBERSORTx 0.50 <2.2e-16 
EPIC -0.16 0.00046 

MCP Counter 0.22 1.2e-6 
quanTIseq -0.08 0.087 

TIMER 0.47 <2.2e-16 
xCell 0.06 0.22 

 
Table 3-22: Correlation between CD4+ and macrophage scores in each of the in-silico immune 

deconvolution tools in this study. All undifferentiated sarcoma samples from all datasets were 

inclued in this analysis. This table summarizes the data depicted in Figure 3-9. 
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CHAPTER 4 

The transcriptomic and genomic signatures of immune cell infiltration in undifferentiated 

sarcoma 

 

4.1 Abstract 

 

Soft tissue sarcoma demonstrates poor response to immunotherapy overall. However, 

undifferentiated sarcoma is subtype as the most responsive to anti-PD1 immunotherapy, with 

40% of patients demonstrating complete or partial response1. The drivers of this response are 

unclear and warrant further study. This study aimed to define the transcriptomic and genomic 

signatures associated with immune cell infiltration in undifferentiated sarcoma. We generated 

and aggregated next generation sequencing data from 192 unique undifferentiated sarcoma 

samples. Ultimately, 188 samples from four different datasets (EGA, SRA, TCGA, and UCLA) 

were included in this study. Immune cell infiltration was defined according to the total immune 

cell scores from the TIMER in-silico immune deconvolution tool, which was selected based on 

its superior performance described in Chapter 3. The transcriptomic and genomic analyses 

demonstrated that low immune cell infiltration is associated with high copy number changes in 

undifferentiated sarcoma.  

 

4.2 Introduction 

 

Immune-based therapies have dramatically changed the treatment of many cancers in recent 

decades. These include blockade of immune checkpoint molecules such as PD-1/PD-L1 and 
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CTLA-4, cellular therapies using chimeric antigen receptor or T-cell receptor modified T-cells, 

and emerging therapies modulating tumor-associated macrophages. While early studies of 

immunotherapy in STS have not had broad success, there are signals of efficacy that warrant 

further exploration1–4. The SARC028 study evaluated the efficacy of the anti-PD1 antibody 

pembrolizumab in patients with advanced sarcoma, and identified the undifferentiated 

pleomorphic sarcoma (UPS) subtype as the most responsive to anti-PD1 immunotherapy, with 

40% of patients demonstrating complete or partial response1. This was notable given that UPS, 

unlike most tumors that are most responsive to immune checkpoint blockade, have a low 

mutational burden.  

 

Soft tissue sarcoma (STS) is predominantly characterized by an abundance of genomic DNA 

copy number alterations. A few genes, specifically TP53, ATRX, and RB1, have been shown to 

be recurrently mutated across multiple sarcoma subtypes. However, overall mutational burden is 

low, particularly compared to other epithelial tumors and melanoma that respond to immune 

checkpoint blockade5. As such, the lower response rate of STS to immunotherapy in the 

SARC028 is unsurprising1,6. Yet, why there were higher response rates in UPS (40%) warrants 

further exploration1.  

 

Understanding the transcriptomic and genomic signatures associated with immune cell 

infiltration in undifferentiated sarcoma is critical to guiding future studies to develop optimal 

immunotherapy regimens for patients with this disease. Chromosomal instability, and in 

particular aneuploidy, has been shown to play a critical role in tumorigenesis, metastases, 

chronic inflammation, and immune cell infiltration in multiple cancer types7–10. For example, 
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Davoli et al. demonstrated that increased somatic copy number alterations (SCNA) was 

associated with decreased immune cell infiltration signatures across multiple cancer types10. 

Sarcoma, however, was notably missing from this analysis. 

 

This study aimed to define the transcriptomic and genomic signatures associated with immune 

cell infiltration in undifferentiated sarcoma.  

 

4.3 Materials and Methods 

 

4.3.1 Patient and sample identification  

 

Patients and samples were identified as described in the methods section of Chapter 3. All 

patients treated at our institution for sarcoma between January 1, 2010 and December 30, 2020 

were identified using a prospectively maintained database. Patient, tumor, and treatment data 

were extracted from the electronic medical record. Sixty patients with untreated undifferentiated 

sarcoma (USARC) with available formalin-fixed paraffin-embedded (FFPE) tissue blocks were 

identified for inclusion in this study (Figure 4-1A). Hematoxylin and eosin (H&E) stained 

sections of each tissue block were re-reviewed by an expert sarcoma pathologist to confirm 

USARC pathology.  

 

An additional four samples from before and after treatment with immunotherapy were included 

in portions of this analysis. These were paired samples obtained from two patients with 

undifferentiated sarcoma who were treated with immunotherapy.  
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4.3.2 Nucleic acid extraction, sequencing, and processing 

 

RNA and DNA were simultaneously extracted from FFPE-preserved tissues using the Covaris 

tNA Plus Kit. DNA was extracted from blood or PBMCs, when available. RNA and DNA QC 

was performed using High Sensitivity RNA ScreenTape and Genomic DNA ScreenTape 

(Agilent TapeStation Software v3.2), respectively. Library preparation for RNA and whole 

exome sequencing was performed using hybrid capture technique using the Illumina TruSeq 

Exome kit. Paired-end RNA sequencing was performed using Illumina Hiseq 3000 platform with 

read length of 2x150 and a total of 40 million reads. All RNA-sequencing (RNA-seq) data was 

processed using the Toil pipeline, as described in previous publications11. Whole exome 

sequencing (WES) was performed on those samples for which matched-normal tissue (i.e. blood 

or PBMCs) were available. Paired-end whole exome sequencing was performed using the 

Illumina Hiseq 3000 platform with read lengths 2x150 with 100x coverage for blood and 200x 

coverage for tumors.  

 

4.3.3 Processing of publicly available sequencing data 

 

Transcriptomic data were obtained from the TCGA (SARC cohort), Lesluyes et al (GSE71121), 

and Steele et al (EGAD00001004439)12–14. TCGA SARC was restricted to the validated USARC 

samples defined by the TCGA group12. Myxofibrosarcoma (MFS) samples were excluded from 

the GSE71121 dataset14. Normal samples were excluded from the EGAD00001004439 dataset13. 

TOIL processed TCGA SARC data was downloaded from the UCSC Xena Browser portal15. All 

remaining RNA-sequencing data was Toil processed, as described in previous publications11.  
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4.3.4 In-silico immune deconvolution  

 

TIMER was used for in-silico immune deconvolution of the RNA sequencing data. This tool was 

selected based on its superior performance in undifferentiated sarcoma samples, as described in 

Chapter 3 (Figure 3-4).  TIMER was run using the immunedeconv package in R using the “sarc” 

cancer type setting16,17. Samples were defined as high or low immune cell groups based on the 

median of the total immune score.  

 

4.3.5 Transcriptomic and genomic analyses 

 

Principal component analyses (PCAs) were performed on log2(tpm+1) data, using protein coding 

genes only. RNASeq data outliers were identified using PCA. Differential expression analysis 

(DESeq) was performed comparing samples with high versus low immune cell infiltration. 

Genes with sum of zero across all samples were dropped prior to the analysis. Dispersion 

estimates and MA plots were examined for each dataset. Statistical significance was defined as a 

q value less than 0.01. Rank-rank hypergeometric overlap was performed using the output of 

various DESeq results comparing samples with high versus low immune cell infiltration. The 

website RRHO version was used to perform the analyses. Step size was 100, as recommended18. 

GSEA and GO term analyses were performed using the Broad Institute Software19. GSEA 

analysis was performed using Hallmark gene sets with settings including 1000 permutations and 

no collapse20. GO term analysis was performed in the same manner. Heatmaps were scaled 

across the rows. Clustering results, when shown, were calculated using Euclidean distances. 

Copy number changes were defined as any segment with less than or more than 1 copy of either 
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allele in the UCLA cohort. The TCGA cohort values provided were log2(tumor/normal), and a 

copy number change was defined as absolute value >0.3, as described previously. In a sensitivity 

analysis, this definition was changed. The methods and results of the sensitivity analysis are 

described in the Appendix. 

 

4.3.6 Statistical analysis 

 

Correlation analyses were performed using a linear fit model. Pearson correlation coefficients are 

noted. Wilcoxon or chi square tests were used, as appropriate. Multiple hypothesis testing was 

performed using Bonferroni correction and noted where applicable. 

 

4.3.7 Outlier definition 

 

Principal component analyses and/or correlation plots were used to define outliers. When 

applicable, a Pearson mean correlation of <0.8 was used to identify outliers. Outliers defined by 

principal component analysis were defined by a panel of people who have extensive experience 

in PCA analyses and were blinded to the sample IDs and the study questions. 

 

4.3.8 Sensitivity analysis 

 

All transcriptomic analyses were performed on each dataset alone and all USARC samples 

together. In analyses where sequencing data from each dataset was analyzed separately, the 

immune cell infiltration groups (high versus low) were defined within each dataset separately. In 



 191 

analyses where all sequencing data was analyzed together, the immune cell infiltration groups 

(high versus low) were defined with all in-silico immune deconvolution results together. TCGA 

copy number change cutoffs were changed and the results did not change (data not shown). 

 

4.3.9 Software 

 

The majority of statistical analyses and data visualizations were performed and generated in R 

(Version 4.0.5). Gene set enrichment analyses (GSEA) were performed using Broad Institute 

GSEA software (Version 4.2.3). 

 

4.3.10 Approval 

 

This study was approved by the UCLA Institutional Review Board (IRB #10-001857). 

 

4.4 Results  

 

4.4.1 Characteristics of study cohort 

 

A total of 188 undifferentiated sarcoma (USARC) samples were included in this analysis. After 

exclusion of outliers there were 47, 42, 43, and 56 USARC samples in the EGA, SRA, TCGA, 

and UCLA cohorts, respectively (Table 4-1). The clinical characteristics of in-house samples are 

summarized in Table 4-2 and the results of the univariate analysis comparing samples with high 

and low immune cell infiltration is summarized in Table 4-3. The clinical characteristics of the 
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publicly available datasets are summarized in Tables 4-7 through 4-9, and corresponding 

univariate analysis are shown in Tables 4-11 through 4-13. 

 

Of the in-house, untreated undifferentiated sarcoma samples, 34 (57%) were from male patients. 

The median age at the time of tissue acquisition (biopsy or surgery) was 62 years (range 19-101 

years). The majority (n = 57, 95%) of samples were obtained from tumor resection while the 

remainder were obtained by incisional biopsy. The majority of tumors were located in the 

trunk/extremity (n = 45, 75%) or retroperitoneum/abdomen/pelvis (n=10, 17%), while a minority 

(n = 5, 8%) came from other sites, such as head or breast. The median size was 5.7cm (range 0.8-

27.0). The majority of samples came from patients with primary disease (n = 51, 85%), while 

few came from recurrent or metastatic lesions (n = 5, 8% and n = 4, 6 %, respectively). 

Approximately half (n = 29, 48%) of patients had no evidence of disease (NED) at the time of 

follow up, and 21.7% (n = 13) were alive with disease (AWD), 2% (n = 1) had died of other 

causes (DOO), and 28% (n = 17) had died of disease (DOD) at the time of follow up. The 

median follow-up time was 5 years (range 0-11 years) (Table 4-2). There was no statistically 

significant difference in any of these characteristics when comparing samples with high versus 

low immune cell infiltration (Table 4-3). 

 

4.4.2 Principal component analyses demonstrate a high degree of overlap of transcriptomic 

results when comparing undifferentiated sarcoma across various datasets 

 

A principal component analysis of RNA-Seq data from multiple sarcoma subtypes and datasets 

is shown is Figure 4-1. As noted in chapter 3 the comparison of principal component 2 (PC2) and 
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PC3 demonstrates that UCLA USARC samples cluster with USARC samples from other 

publicly available datasets. When the data is restricted to USARC samples only, there is a 

significant amount of overlap across the four USARC datasets (EGA, SRA, TCGA, and UCLA) 

when comparing PC2 and PC3 (Figure 4-1C). Of these datasets, the EGA and SRA samples 

demonstrate the most overlap. TCGA and UCLA samples also overlap these samples in the same 

region, though there is most dispersion of these datasets across PC2 (TCGA) and PC3 (UCLA).  

 

While principal component (PC) 2 and PC3 showed that our in-house USARC data clustered 

with other USARC subtypes (Figure 4-1), PC1 versus PC2 showed that our in-house samples 

clustered together (Figure 4-10), suggesting there are differences between the in-house RNA-Seq 

data and publicly available subtypes. These findings were consistent when including multiple 

sarcoma subtypes or USARC only.  

 

4.4.3 Gene set enrichment analyses support that in-silico immune deconvolution accurately 

characterizes tumors with high versus low immune cell infiltration  

 

Differential gene expression (DESeq) analysis was performed comparing tumors with high 

versus low immune cell infiltration (defined relative to the median of TIMER in-silico immune 

deconvolution tool results) in each of the USARC datasets (EGA, SRA, TCGA, and UCLA) 

separately as well as all the data together. Representative volcano plots depicting DESeq results 

are shown in Figure 4-14. Gene set enrichment analyses (GSEA) and gene ontology (GO) term 

analyses were performed on these results. The gene sets associated with samples in the high 

immune cell infiltration group, as defined by TIMER, were associated with gene sets associated 
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with the immune system. The GSEA results varied across the datasets, however, the theme 

overall was gene sets associated with the immune system, which was true when the datasets were 

analyzed separately or together (Figure 4-15). These results support the method of in-silico 

immune deconvolution that was used to define the samples with high versus low immune cell 

infiltration.  

 

4.4.4 Rank-rank hypergeometric overlap demonstrates global similarities between tumors with 

low immune cell infiltration across datasets 

 

Rank-rank hypergeometric overlap (RRHO) was performed to compare the gene lists derived 

from each of the DESeq comparisons, specifically comparing samples with high versus low 

immune cell infiltration in each of the USARC datasets (EGA, SRA, TCGA, UCLA) and in all 

the USARC datasets combined. The results of RRHO suggested that there was the highest degree 

of overlap with the genes associated with low immune cell infiltration across the datasets. The 

results from the UCLA dataset were the most different from the others, however, there was still a 

fair degree of overlap when examining the genes associated with low immune cell infiltration. 

The results were similar when compared to the DESeq results when all USARC samples were 

used (Figure 4-2). 

 

4.4.5 Copy number alterations are associated with low immune cell infiltration in 

undifferentiated sarcoma 
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Copy number analyses demonstrated that samples with low immune cell infiltration 

demonstrated statistically significantly higher copy number alterations when compared to tumors 

with high immune cell infiltration. This finding was seen in both the TCGA and UCLA USARC 

cohorts (Figure 4-4). We also examined this association in the TCGA SARC cohort, and 

determined this association within each subtype of STS. Figure 4-5 demonstrates that low 

immune cell infiltration was associated with higher copy number changes in USARC and 

DDLPS samples. However, there was no association between immune cell infiltration and copy 

number change in the other sarcoma subtypes or in the STS cohort overall (Figure 4-5). 

 

The GSEA and GO term results associated with the samples with low immune cell infiltration 

were frequently associated with cell division. Hallmark GSEA gene sets, such as “mitotic 

spindle” and “G2M checkpoint” as well as GO results related to chromosome or chromatid 

segregation were associated with low immune cell infiltrated samples (Figure 4-3B&C). This 

was true when all protein coding genes were included in the analysis or when only the cell lines 

genes were included. The results were similarly consistent when each dataset was analyzed 

separately and when all were analyzed together (Figure 4-15). 

 

4.5 Discussion 

 

Genomic instability is a hallmark of cancers21. Genomic instability in the context of DNA repair 

deficiencies drives an increased number of tumor associated antigens and/or neo-antigens. This 

process would be expected from a purely stochastic perspective to increase the likelihood of 

recognition by tumor-specific T cells. This was demonstrated to be the case in multiple cancers 
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including lung, melanoma, and colon or rectum, as TMB positively correlated with CD8 T cell 

infiltration and improved patient outcome22–25. 

 

However, higher order tumor genomic instability, including copy number alteration and 

aneuploidy, have been demonstrated to confer a selective advantage26. High broad CNA in HCC 

correlated with proliferation and immune evasion. Conversely, low broad CNA correlated with 

increased HLA-A expression and response to PD1 blockade27. Similarly, higher ploidy was 

found to correlate with lower adaptive immune signatures; including IFNg, cytotoxic CD8 T 

cells, NK cells, B cells, and chemokine receptor interactions; across BRCA, HSNC, CRC, 

LUAD, LUSC, OV, SKCM, STAD, UCEC, and KIRC. Moreover, the ratio of observed-to-

expected neoantigens in tumors with higher ploidy suggests less immune editing, a finding 

echoed in TNBC10,28.  

 

Multiple mechanistic explanations for the link between genomic instability and immune 

subversion have been suggested. It may be that neoantigens are eliminated by successive rounds 

of immunoediting, LOH including antigen presentation machinery, hypermethylation and 

silencing of neoantigen promoters, or genomic imbalances leading to decreased frequency of 

strong antigens being loaded into MHC complexes10,23,29. One common manifestation of 

chromosomal instability is presence of intracellular micronuclei, which collapse to cause 

cytosolic leak of DNA. Aberrant DNA localization then activates cGAS-STING pathway driving 

IFNa signaling and immune activation30. However, chronic type I IFN signaling drives T cell 

exhaustion31. Experimental models of polyploid tumor cells may provide further insight. 

Induction of aneuploidy in human retinal pigment epithelial cells led to elimination by NK cells 
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in co-culture, while euploid cell were spared32. Similarly, induced polyploid cancer cells grow 

unrestrained in immunocompromised mice but often fail to establish in those with an intact 

immune response, possibly through ER stress and subsequent calreticulin exposure33. Taken 

together, it may be that aneuploid cells are effectively eliminated in the early stages of 

tumorigenesis; however, once tumors become established, additional mechanisms sufficiently 

curtail immune-mediated selective pressure against chromosomal instability, enabling accrual of 

additional mutations and eventual selective advantage. 

 

Detailed studies regarding the correlation between genomic instability and immune response in 

soft tissue sarcomas are lacking. One study reported an “immune-low” profile in UPS with 

higher rates of CNA34. Additionally, PDL1 copy number gain has been proposed as a mechanism 

of immune suppression in STS, correlating with worse survival in TCGA analysis35. Our 

findings demonstrate an association between high number of copy alterations and low immune 

cell infiltration in undifferentiated sarcoma. This association was seen in both transcriptomic 

analyses of multiple datasets (EGA, SRA, TCGA, and UCLA) as well as genomic studies of both 

the TCGA and UCLA cohorts. Interestingly, this association was not seen in all STS subtypes, 

rather only UPS and DDLPS. The underlying mechanisms for the association between copy 

number changes and immune cell infiltration in soft tissue sarcoma are not clear and warrant 

further study. Further, the unique association between CNA and immune cell infiltration in the 

DDLPS and UPS subtypes of STS warrants further study. Limitations of this study are described 

in detail in the discussion of Chapter 3.  

 

4.6 Conclusion 
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In this study, we aimed to define the transcriptomic and genomic drivers of immune cell 

infiltration in undifferentiated sarcoma. We found that increased copy number changes were 

associated with low immune cell infiltration in undifferentiated sarcoma. These findings were 

suggested in both transcriptomic and genomic analyses. Interestingly, this association between 

CNA and immune invasion were unique to the UPS and DDLPS subtypes of STS, but it was not 

seen in other subtypes of STS. The mechanisms underlying this association are not clear and 

warrant further study.  

 

4.7 Figures 

 

A  
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B  
 

C  
 
Figure 4-1: Overview of experimental design and study cohorts. (A) Summary of the data types 

and sources included in this study. Nucleic acid sequencing data was downloaded from publicly 

available sources (EGA, SRA, TCGA) or generated in-house (UCLA). (B) The analysis pipeline 

in this study. RNA-Seq data was available for all samples. Datasets were analyzed separately as 

well as all together. WES and copy number alteration data was analyzed when available (TCGA 

& UCLA). (C) PCA analyses of RNA-Seq data from untreated human USARC tumor samples in 

this study (EGA, SRA, TCGA, and UCLA). PCAs were performed on protein coding genes only 

and are colored by dataset. PCs and their contribution to the variance are noted. 
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Figure 4-2: RRHO analysis comparing USARC tumor samples with high versus low immune 

cell infiltration. RRHO demonstrates global similarities between tumors with low immune cell 

infiltration across datasets. 

 

A   
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B   
 

C   
 
Figure 4-3: Transcriptomic analysis comparing USARC tumor samples with high versus low 

immune cell infiltration. Together, these results support that in-silico immune deconvolution 

accurately characterizes tumors with high versus low immune cell infiltration. It further suggests 

an association between gene sets related with cell division and tumors with low immune cell 

infiltration. (A) Heatmap of top 10 and bottom 10 genes on DESeq comparing samples with high 

versus low immune cell infiltration. (B&C) GSEA & GO term analyses (respectively) of results 

of DESeq comparing samples with high versus low immune cell infiltration. 
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A     B  
 

C   D  
 
Figure 4-4: Increased copy number alterations are associated with lower immune cell infiltration 

in undifferentiated sarcoma. Comparisons of total number and per chromosome copy number 

segment changes are shown. Results were analyzed in the UCLA cohort (A&B) and in the 

TCGA cohort (C&D). 
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A   B  
 

C  
 
Figure 4-5: Increased copy number alterations are associated with lower immune cell infiltration 

in USARC and DDLPS, but not in other subtypes of STS and not in STS overall. (A&B) Bar 

graphs demonstrating the association between copy number changes and immune cell infiltration 

in all subtypes of STS from the TCGA. Comparisons were made examining total copy number 

changes (A) and total copy number changes within each chromosome (B). There was a trend 

toward increased copy number changes in the low immune cell infiltration group, though this did 

not reach statistical significance (p = 0.067). (C) Increased copy number alternations were 
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associated with low immune cell infiltration in USARC and DDLPS subtypes of STS, though 

there was no difference in copy number changes between high and low immune cell infiltration 

groups in the other subtypes of STS. Immune groups were defined relative to the median TIMER 

score within each histology. 

  
4.8 Tables 
 

Dataset n 
EGA 47 
SRA 42 

TCGA 43 
UCLA 56 
Total 188 

 
Table 4-1: A summary of the data source and sample sizes of the untreated human tumor 

USARC samples included in this study. Sample sizes listed exclude outliers. Additional sarcoma 

subtypes and sample types were included in various analyses when noted. A complete list of all 

samples and data sources in included in Table 4-4. Outlier identification is summarized in Table 

4-6. 

 

Characteristic Median (range)  
or n (%) 

Sex  
 Female 26 (43.3%) 
 Male 34 (56.7%) 
Age 62 (19-101) 
Tissue Type  
 Incisional biopsy 3 (5.0%) 
 Resection 57 (95.0%) 
Primary Site  
 RP/Abdomen/Pelvis 10 (16.7%) 
 Trunk/Extremity 45 (75.0%) 
 Other 5 (8.3%) 
Size (cm) 5.7 (0.8-27.0) 
Disease Status  
 Primary 51 (85.0%) 
 Recurrence 5 (8.3%) 
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 Metastasis 4 (6.7%) 
Status  
 NED 29 (48.3%) 
 AWD 13 (21.7%) 
 DOO 1 (1.7%) 
 DOD 17 (28.3%) 
Follow-Up Time (yrs) 5 (0-11) 

 
Table 4-2: Summary of patient and tumor characteristics from 60 patients with untreated 

USARC tumors treated at UCLA from 2010-2020. Samples were selected as described in the 

CONSORT diagram in Figure 3-1 of Chapter 3. Follow up time listed is the years from the date 

of surgery to the date of last follow-up and excludes patients who died.  

 
  Low High p 

  
n or 

median 
% or 
range 

n or 
median 

% or 
range  

Total 28 50.0 28 50.0  
Sex     0.420 
 Female 14 56.0 11 44.0  
 Male 14 45.2 17 54.8  
Age 62 29-88 62 19-101 0.512 
Tissue Type     0.553 
 Incisional biopsy 2 66.7 1 33.3  
 Resection 26 49.1 27 50.9  
Primary Site     0.497 
 RP/Abdomen/Pelvis 4 40.0 6 60.0  
 Trunk/Extremity 21 50.0 21 50.0  
 Other 3 75.0 1 25.0  
Size (cm) 5.2 1.4-18.3 5.9 0.8-27.0 0.855 
Disease Status     0.189 
 Primary 21 44.7 26 55.3  
 Recurrence 4 80.0 1 20.0  
 Metastasis 3 75.0 1 25.0  
Status     0.579 
 NED 11 44.0 14 56.0  
 AWD 7 53.8 6 46.2  
 DOD 10 58.8 7 41.2  
 DOO 0 0.0 1 100.0  
Follow-Up Time (yrs) 4 0-10 3 0-11 0.419 
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Table 4-3: Univariate analysis patient and tumor characteristics from 60 patients with untreated 

USARC tumors treated at UCLA from 2010-2020. Samples were selected as described in the 

CONSORT diagram in Figure 3-1 of Chapter 3. Characteristics are compared between tumors 

with high versus low immune cell infiltration, defined relative to the median TIMER total 

immune score. Chi square test or Wilcoxon test were used as appropriate. Follow up time listed 

is the years from the date of surgery to the date of last follow-up and excludes patients who died.  

 

4.9 Appendix to Chapter 4 

 

4.9.1 Summary of datasets included in this analysis 

 

Sequencing data (primarily RNA-Seq and occasionally WES where noted) from multiple data 

sources was included in this study. The sources, histologies, and samples sizes of all the data 

aggregated in processed for this manuscript is summarized below. In most instances, human 

USARC samples were used in the analyses. When other histologies and/or sample types were 

included, this was specifically noted.  

  
Dataset Histology n Notes 

Cell Lines Multiple STS  
(4 USARC, 1 fibrosarcoma, 1 

GSC) 

12 6 cell lines 
12 total RNA-Seq samples (pre/post 

BO112 for each cell line) 
EGA USARC 48 Normal samples were downloaded 

from EGA but not processed 
PDX Multiple sarcoma subtypes 

(DDLPS, STLMS, MFS, 
USARC, OS, SS, ULMS, other 

= epithelioid, Ewing’s, 
fibrosarcoma, myxoid LPS, 

FDCS, RMS) 

42 1 IM myxoma was dropped prior to 
processing 
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SRA USARC 42 16 MFS were dropped prior to data 
processing 

TARGET OS 81  
TCGA Multiple STS  

(DDLPS, MFS, MPNST, SS, 
STLMS, ULMS, UPS) 

204  

UCLA USARC 65 60 untreated samples, 1 sample redo 
(dropped), 2 paired samples from 2 
patients (pre/post immunotherapy) 

TOTAL Multiple sarcoma subtypes 494  
 

Table 4-4: Summary of data sources, sarcoma subtypes, and sample sizes  

aggregated and processed for this study. 

 

4.9.2 Sample selection based on tumor necrosis 

 

One of the sample exclusion criteria for the in-house samples was necrosis >35% (see 

CONSORT diagram, Figure 3-1A). Prior studies used exclusion criteria of 40% (Lesluyes et al), 

20-30% (TCGA), or 50% (Steele et al) necrosis when selecting tumor samples12–14. Based on 

these standards in the sarcoma literature, we selected a cut off of 35% necrosis for inclusion in 

our study. As a result, 14 samples were excluded from the final study population. 

 

4.9.3 Summary of sequencing techniques from various data sources 

 

The majority of the analyses in this manuscript focus on human tumor data from the following 

sources: EGA, TCGA, SRA, and UCLA. There was significant variation in the sample storage 

and sequencing techniques used in each of these datasets. Select available data is summarized in 

the table below. 
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Dataset Tissue 
type 

RNA Extraction 
Kit 

Platform Mode Sequencing 
Length 

Sequencing 
Depth 

EGA Frozen Zymo Direct Zol 
RNA isolation 
kit 

Illumina 
HiSeq 
2000 

Paired 
end 

76bp 35M 

SRA Frozen 
and 
FFPE 

TRIzol (Life 
Technologies)  
chloroform 
extraction 
[Frozen], 
Deparaffinization 
Solution and 
RNeasy FFPE 
kits (Qiagen) 
[FFPE] 

Illumina 
HiSeq 
2500 

Paired 
end 

100bp 60M 

UCLA FFPE Covaris tNA 
Plus Kit 

Illumina 
Hiseq 
3000 

Paired 
end 

150bp 40M 

 

Table 4-5: Summary of sequencing techniques for EGA, SRA, and UCLA. The sequencing 

techniques for TCGA vary depending on the submitting institution36. 

 

4.9.4 RNA-Seq fastqc analysis and in-house sample quality control 

 

As described above, fastq files were downloaded or generated for the EGA, SRA, and UCLA 

datasets11,13–15. These files were then processed for downstream analyses using the Toil pipeline. 

The TCGA data was previously Toil processed and this processed data (rather than the fastq 

files) was downloaded from Xena browser. As such, the TCGA data is not included in this fastqc 

analysis. 

 

The quality of each fastq file (n=155) was analyzed using the fastqc R package. Outputs from the 

fastqc package include analyses of adapter content, overrepresented sequences, per base N 
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content, per base sequence content, per base sequence quality, per sequence GC content, per 

sequence quality scores, per tile sequence quality, sequence duplication levels, and sequence 

length distribution. Any outputs that had noted issues (i.e. labeled as “warn” or “fail”) were 

examined. Many of the outputs noted no issues in any of the datasets. The two outputs that most 

frequently noted “warn” or “fail” for the fastq files in these datasets were the “per base sequence 

quality” and the “per sequence GC content” outputs.  

 

In the SRA dataset, 13 samples were labeled as “warn” on the per sequence GC content. A 

representative figure is shown in Figure 4-6A. While these results did results in a “warn” error 

message, this graph demonstrates results of a GC content graph that are within normal limits. 

The typical mean GC-content in human genomes is 40% with a range from 35-60%37–39. The 

peaks of the graphs fall within this range, and generally show a normal distribution, as expected. 

In the SRA dataset, 3 samples were labeled as “fail” on the per base sequence quality analysis. A 

representative result is shown in Figure 4-6B. The decrease in per base sequence quality seen at 

the end corresponds to the adapter sequences, which are trimmed during Toil processing. In the 

EGA dataset, 11 samples were flagged as “warn.” A representative figure is shown in Figure 4-

6C. The notch seen on the left side of the graph likely corresponds to poly-A tail enrichment, and 

should not results in any issues with sample quality40. 

 

Representative paired samples of per base sequence quality analysis for the UCLA data are 

shown in Figure 4-6D (forward read) and 4-6E (reverse read). Most forward reads demonstrated 

high quality throughout, while the reverse reads typically demonstrated a decrease in quality 

toward the end of read. It is not atypical to have a decrease in quality of the per base sequence 



 210 

quality in the reverse read compared to the forward read, however, this degree of decline was 

notable. Many additional downstream analyses and corrections, which are described in later 

sections, to attempt to account for and explain this decrease. Ultimately, after many analyses and 

discussions with experts in the field, the decision was made to not exclude these samples base on 

the results of the per base sequence quality on the reverse strand alone. Finally, there were 3 

samples in the UCLA dataset that had per base sequence quality as shown in Figure 4-6F and 4-

6G (forward and reverse strands, respectively). Although these samples were defined as “pass” 

in the fastqc results, it is abnormal to see no variation in the per base sequence quality across a 

read. The decision was made to drop these samples based on these results, though these samples 

were confirmed to be outliers on downstream analyses as well. 

 

Three additional sarcoma RNA-Seq datasets (TARGET, PDX, Cell lines) were included in this 

analysis, as described above. These datasets were used in very few analyses throughout the 

project and were primarily used to elucidate overall trends across tumor types. The quality 

control performed on these datasets (n=135) was not as rigorous as that described for the human 

tumor USARC samples, which were the focus on this analysis.  

 

A    B  
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C     

D    E     

F     G  
 
Figure 4-6: Summary of fastqc analysis results. All fastq files from EGA, SRA, and UCLA 

datasets were analyzed using the fastqc package. (A) A representative example of the per 

sequence GC content analysis resulting in an error in the SRA dataset. (B) A representative 

example of the per sequence base quality analysis resulting in an error in the SRA dataset. (C) A 
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representative example of the per sequence GC content analysis resulting in an error in the SRA 

dataset. (D&E) A representative example of the per sequence base quality analysis resulting in 

an error in the UCLA dataset. D demonstrates a typical forward read and E represents a typical 

reverse read. (F&G) An example of the per sequence base quality analysis resulting in an error in 

three samples in the UCLA dataset. F demonstrates a typical forward read and G represents a 

typical reverse read. 

 

4.9.5 Identification of outliers 

 

The figures and tables below note the outliers identified from each of the datasets. Outliers were 

defined as described in the methods section. Both PCAs and correlation plots were used to define 

outliers in the data. PCAs were explored up to PC1 vs PC10. Graphs depicting PC1 vs PC2 were 

shown below as higher PC graphs did not change the outlier analyses. Correlation plots 

demonstrate Pearson correlation values. Each of the datasets was analyzed separately when 

identifying outliers. Sample IDs were removed from all graphs that do not depict publicly 

available data. Figure 4-7 A&B demonstrates the results of the TCGA SARC outlier analysis. 

There was no clear outlier identified on PCA or correlation plot. Figure 4-7 C&D demonstrates 

the results of the TARGET OS outlier analysis. There was one clear outlier identified on both 

PCA and correlation plot. The sample is seen the top right corner of the PCA graph and is the 

dark line (lowest correlation) on the correlation plot. As such, one outlier was identified. Figure 

4-7 E&F demonstrates the results of the EGA USARC outlier analysis. On PCA, there is a clear 

outlier. This sample corresponds to the sample with lowest correlation on the correlation plot. 

The decision was made to exclude this sample. Figure 4-7 G&H demonstrates the results of the 
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SRA USARC outlier analysis. There was no clear outlier identified on either the PCA or the 

correlation plot. Figure 4-7 I&J demonstrates the results of the sarcoma cell line outlier analysis. 

In this dataset, each of the cell lines were sequences before and after treatment with BO112. Both 

the correlation plot and the PCA depict a high correlation between paired samples from each cell 

lines. There was no clear outlier identified. Figure 4-2 K&L demonstrates the results of the 

sarcoma PDX outlier analysis. There was no clear outlier identified on either the PCA or the 

correlation plot. Figure 4-7 M&N demonstrates the results of the UCLA USARC outlier 

analysis. There are five samples (2 are duplicates of the same sample) that appear to be outliers 

on the PCA. These are seen on the lower left portion of the graph. These five samples correspond 

to the samples with the lowest correlation on the correlation plot and were determined to be 

outliers. The correlation between samples seen in the UCLA dataset was significantly lower than 

that seen between samples in each of the other datasets in this analysis. Possible explanations for 

this and additional batch effects are explored in the following sections. Table 4-6 summarizes the 

number of outliers and final sample sizes for each dataset. 

 

A   
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Figure 4-7: Summary of outlier identification in this study. PCA and correlation plots were used 

to define outliers. PCAs were restricted to protein coding genes and colored by sarcoma subtype, 

when applicable. Graphs shown depict PC1 vs PC2. Correlation plots were restricted to protein 

coding genes and show pairwise Pearson correlation between samples in each dataset. (A-B) 

Outlier analysis of TCGA SARC RNA-Seq dataset. There was no outlier identified. (C-D) 

Outlier analysis of TARGET OS RNA-Seq dataset. There was one outlier identified. (E-F) 

Outlier analysis of EGA USARC RNA-Seq dataset. There was one outlier identified. (G-H) 

Outlier analysis of SRA USARC RNA-Seq dataset. There was no outlier identified. (I-J) Outlier 

analysis of sarcoma cell lines RNA-Seq dataset. There was no outlier identified. There are 6 cell 

lines, each of which were sequenced before and after treatment with BO112. The high degree of 

correlation between pairs of samples seen on the PCA and correlation plot represent the paired 

samples. (K-L) Outlier analysis of sarcoma PDX RNA-Seq dataset. There was no outlier 
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identified. (M-N) Outlier analysis of UCLA USARC RNA-Seq dataset. There were five outliers 

identified. 

 
Dataset Initial n Outlier n Final n 

Cell Lines 12 0 12 
EGA 48 1 47 
PDX 42 0 42 
SRA 42 0 42 

TARGET 81 1 80 
TCGA 204 0 204 
UCLA 65 5 60 

TOTAL 494 7 487 
 
Table 4-6: Summary of outliers and final sample sizes. 

 

4.9.6 Identifying batch effects in the data 

 

PCAs using protein coding genes were performed between various combinations of the above 

datasets to explore batch effects. The PCAs below include the data from all sarcoma datasets in 

this analysis (Figure 4-8), all human tumor samples (Figure 4-9), and USARC tumors samples 

(Figure 4-10). The PCAs were colored by dataset or by histology, as noted. PC1 separates UCLA 

samples from the other samples. However, once graphs are comparing PC2 versus PC3 the 

samples cluster by histology rather than by dataset. This pattern was seen in the multiple 

analyses with various combinations of sample types. In Figure 4-11 PCAs were generated from 

publicly available RNA-Seq data from human sarcoma tumors from the TCGA, EGA, and SRA 

datasets. The UCLA USARC RNA-Seq samples were then projected onto these PCAs. Again, 

there was separation of the UCLA samples on PC1, though a closer clustering on PC2 versus 

PC3. The difference in the UCLA samples is also seen in the correlation plot in Figure 4-9. 
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However, it is important to note that the UCLA samples also showed lower correlation between 

samples within the dataset than was seen between samples in each of the other datasets. 

 

The reasons for this significant batch effect are not clear. It is possible that PC1 reflects FFPE 

samples and/or the degradation associated with samples over time. It is also possible that PC1 

captures differences in nucleic acid extraction or sequencing techniques. In order to test this 

theory, the PCAs were re-created after being restricted to genes only in the library preparation 

that was used for the sequencing of the UCLA USARC samples. However, there were no 

changes seen on the PCAs (data not shown as there were no differences). Figure 4-12 explores 

the clustering UCLA USARC samples based on treatment and time of storage in FFPE. Neither 

variable showed cleared trends in the data.  

 

We were ultimately unable to identify the reason for the batch effects seen in PC1 our data. 

However, it was reassuring that PC2 and PC3 did cluster according to histology as expected. 

Despite this, it was clear that care needed to be taken in the analyses to account for the batch 

effects seen. In order to account for the batch effects, multiple extensive sensitivity analyses 

were performed. All analysis pipelines in this study were performed on each dataset separately 

(primarily USARC samples from TCGA, EGA, SRA, and UCLA) and on all the USARC 

samples together. The results from all the analyses were compared and only results that were 

consistent across all datasets and all methods of analysis were considered reliable. Ultimately, 

despite the batch effects seen on PC1, the results of the analyses were fairly consistent across the 

datasets and various analysis methods. 
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Figure 4-8: PCA analyses including all sarcoma datasets in this study (as listed above). PCAs 

were performed on protein coding genes only and are colored by dataset (A-C) or by histology 

(D), as indicated. PCs and their contribution to the variance are noted on each graph.  
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Figure 4-9: PCA analyses including all human sarcoma tumor datasets in this study (as listed 

above). PCAs were performed on protein coding genes only and are colored by dataset (A-D) or 

by histology (E-F), as indicated. PCs and their contribution to the variance are noted on each 

graph. (G) Correlation plot depicting the Pearson correlation between all human sarcoma tumor 

samples. Data is restricted to protein coding genes only. 

A B  
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Figure 4-10: PCA analyses including human USARC RNA-Seq (EGA, SRA, TCGA, and 

UCLA). PCAs were performed on protein coding genes only and are colored by dataset. PCs and 

their contribution to the variance are noted on each graph.  
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Figure 4-11: PCA analyses including all human sarcoma tumor datasets in this study (as listed 

above). Initial PCAs (A, B, D, E, G, H) included data from publicly available sarcoma datasets 

(EGA, SRA, TCGA). PCAs were performed on protein coding genes only and are colored by 

histology (A, D, G) or by dataset (B, E, H), as indicated. PCs and their contribution to the 

variance are noted on each graph. (C, F, I) PCAs depicting projection of UCLA USARC RNA-

Seq data onto the aforementioned PCAs.  
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Figure 4-12: PCA analyses of UCLA USARC RNA-Seq samples. PCAs were performed on 

protein coding genes only and are colored (A) by treatment or (B) by year of sample resection 

(which corresponds to time of storage in FFPE). PCs and their contribution to the variance are 

noted on each graph. There were no clear trends in this unsupervised analysis. 

 



 235 

4.9.7 Clinical analyses of publicly available datasets 

 

As described above, the majority of the analyses in this manuscript utilized human tumor 

samples (USARC) from three publicly available datasets (EGA, SRA, and TCGA) and a dataset 

generated from patients treated in-house (UCLA). Specifically, these were the samples and 

datasets used to define the transcriptomic and genomic signatures associated with immune cell 

infiltration in USARC, which was the primary focus of this study. The corresponding patients 

and tumor characteristics from each of the publicly available datasets is summarized in the tables 

below. The patient and tumor characteristics from the UCLA samples was noted in Table 4-2 

above. All UCLA tumor sites were characterized into the following categories: 

RP/abdomen/pelvis, trunk/extremity, or other. Additional tumor site information is summarized 

below. Further, the follow-up time (in years) in Table 4-2 was calculated excluding patients who 

died of disease or died of other causes (DOD or DOO). Median (range) was 5 (0-11) years. If all 

patients were included, the median (range) of follow-up was 4 (0-11) years.  

 

Univariate analyses comparing the high and low immune cell infiltration groups were also 

performed. Immune cell infiltration was characterized relative to the median TIMER total 

immune score. Wilcoxon or chi squared tests were used as appropriate. The characteristics were 

similar across the groups. The only difference found was that in the TCGA cohort, size was 

correlated with immune group. Specifically, increased tumor size was associated with low 

immune cell infiltration. 

 
Characteristic n % 
Sex   
 Female 21 44.7 
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 Male 26 55.3 
 
Table 4-7: Summary of the patient characteristics for the samples in the EGA dataset. This 

excludes outliers (n = 47). 

 
Characteristic n or median % or range 
Sex   
 Female 20 47.6 
 Male 22 52.4 
Age (years) 63 24-85 
Tumor site   
 Chest 3 7.1 
 Extremity 30 71.4 
 Head and neck 1 2.4 
 Trunk 8 19.0 

 
Table 4-8: Summary of the patient and tumor characteristics for the samples in the SRA dataset. 

This excludes outliers (n = 42). 

 
  All SARC USARC only 

Characteristic n or 
median 

% or 
range 

n or 
median 

% or 
range 

Total 204  43  
Histology     
 DDLPS 50 24.5 NA NA 
 Myxofibrosarcoma 17 8.3 NA NA 
 MPNST 5 2.5 NA NA 
 Synovial sarcoma 9 4.4 NA NA 
 STLMS 53 26.0 NA NA 
 ULMS 27 13.2 NA NA 
 UPS 43 21.1 NA NA 

Age (years) 60 20-90 66 29-90 
Sex     
 Female 112 54.9 20 46.5 
 Male 92 45.1 23 53.5 

History of other malignancy     
 No 177 86.8 33 76.7 
 Yes 27 13.2 10 23.3 

Tumor Site     
 Chest 4 2.0 0 0.0 
 Extremity 60 29.4 28 65.1 
 Gynecological 23 11.3 0 0.0 
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 Head and Neck 3 1.5 0 0.0 
 RP/Abd/Pelvis 97 47.5 9 20.9 
 Trunk 16 7.8 6 14.0 

Tumor size (cm) 10.1 1.2-39.5 10.0 2.7-36.5 
Depth     
 Deep 173 84.8 33 76.7 
 Superficial 8 3.9 5 11.6 

Residual tumor     
 R0 126 61.8 26 60.5 
 R1 54 26.5 13 30.2 
 R2 8 3.9 2 4.7 
 RX 16 7.8 2 4.7 

Adjuvant radiation     
 No 139 68.1 17 39.5 
 Yes 57 27.9 25 58.1 

Adjuvant systemic treatment     
 No 150 73.5 34 79.1 
 Yes 46 22.5 8 18.6 

Adjuvant chemo+XRT     
 No 187 91.7 36 83.7 
 Yes 17 8.3 7 16.3 

Tumor status (at follow-up)     
 Tumor free 95 46.6 24 55.8 
 With tumor 96 47.1 17 39.5 

OS status     
 Alive 127 62.3 29 67.4 
 Dead 77 37.7 14 32.6 

OS time (months) 32.0 0.5-170.6 22.5 0.5-106.2 
RFS status     
 No relapse 83 40.7 21 48.8 
 Relapse 121 59.3 22 51.2 

RFS time (months) 17.5 0.2-151.7 13.3 0.2-106.2 
Treatment outcome at final TCGA follow-up    
 Complete response 69 33.8 20 46.5 
 Partial response 1 0.5 0 0.0 
 Progressive disease 44 21.6 4 9.3 
 Stable disease 6 2.9 5 11.6 

Local recurrence     
 Yes 46 22.5 7 16.3 
 No or NA 158 77.5 36 83.7 

Time to local recurrence (months) 11.0 0.9-66.8 15.7 0.9-22.4 
Distant recurrence     
 Distant metastasis 71 34.8 15 34.9 
 New primary 6 2.9 1 2.3 

Distant recurrence site     
 Liver 7 3.4 0 0.0 
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 Lung 50 24.5 13 30.2 
 RP/Abd/Pelvis 7 3.4 0 0.0 
 Other 11 5.4 3 7.0 

Time to distant recurrence (months) 10.1 0.2-87.2 5.0 0.2-16.1 
 
Table 4-9: Summary of the patient and tumor characteristics for the samples in the TCGA 

dataset. TCGA SARC and TCGA USARC are noted separately above. This excludes outliers 

(SARC n = 204; USARC n = 43). 

 
Tumor Site Tumor Site Recode 
Abdomen RP/Abdomen/Pelvis 
Back Trunk/extremity 
Breast Other 
Chest wall Extremity/Trunk 
Extremity Extremity/Trunk 
Gluteus Extremity/Trunk 
Groin Extremity/Trunk 
Head Other 
Pelvis RP/Abdomen/Pelvis 
RP RP/Abdomen/Pelvis 
Trunk Extremity/Trunk 

 
Table 4-10: All UCLA tumor sites were characterized as the following categories: 

RP/abdomen/pelvis, trunk/extremity, or other. Additional information regarding the tumor sites 

and how they were recoded is summarized here. 

 
  Low High p 
  n % n %  
Total 24 51.1 23 48.9  
Sex     0.671 
 Female 10 47.6 11 52.4  
 Male 14 53.8 12 46.2  

 
Table 4-11: Univariate analysis patient and tumor characteristics from EGA USARC cohort. 

Characteristics are compared between tumors with high versus low immune cell infiltration, 

defined relative to the median TIMER total immune score. Chi square test or Wilcoxon test were 
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used as appropriate. Follow up time listed is the years from the date of surgery to the date of last 

follow-up and excludes patients who died.  

 
  Low High p 

  
n or 

median 
% or 
range 

n or 
median 

% or 
range  

Total 21 50.0 21 50.0  
Sex     1.000 
 Female 10 50.0 10 50.0  
 Male 11 50.0 11 50.0  
Age (years) 63 24-85 63 36-83 0.980 
Tumor site     0.210 
 Chest 2 66.7 1 33.3  
 Extremity 12 40.0 18 60.0  
 Head and neck 1 100.0 0 0.0  
 Trunk 6 75.0 2 25.0  

 
Table 4-12: Univariate analysis patient and tumor characteristics from SRA USARC cohort. 

Characteristics are compared between tumors with high versus low immune cell infiltration, 

defined relative to the median TIMER total immune score. Chi square test or Wilcoxon test were 

used as appropriate. Follow up time listed is the years from the date of surgery to the date of last 

follow-up and excludes patients who died.  

 
  Low High p 

  
n or 

median 
% or 
range 

n or 
median 

% or 
range  

Total 22 51.2 21 48.8  
Age (years) 65 29-88 67 43-90 0.618 
Sex     0.280 
 Female 12 60.0 8 40.0  
 Male 10 43.5 13 56.5  
History of other malignancy     0.126 
 No 19 57.6 14 42.4  
 Yes 3 30.0 7 70.0  
Tumor Site     0.638 
 Extremity 15 53.6 13 46.4  



 240 

 RP/Abd/Pelvis 5 55.6 4 44.4  
 Trunk 2 33.3 4 66.7  
Tumor size (cm) 12.2 7.0-36.5 7.5 2.7-27.5 0.003 
Depth     0.816 
 Deep 17 51.5 16 48.9  
 Superficial 2 40.0 3 60.0  
 Unknown 3 60.0 2 40.0  
Residual tumor     0.561 
 R0 13 50.0 13 50.0  
 R1 6 46.2 7 53.8  
 R2 2 100.0 0 0.0  
 RX 1 50.0 1 50.0  
Adjuvant radiation     0.569 
 No 8 47.1 9 52.9  
 Yes 14 56.0 11 44.0  
 Unknown 0 0.0 1 100.0  
Adjuvant systemic treatment     0.881 
 No 18 52.9 16 47.1  
 Yes 4 50.0 4 50.0  
 Unknown 0 0.0 1 100.0  
Adjuvant chemo+XRT     0.729 
 No 18 50.0 18 50.0  
 Yes 4 57.1 3 42.9  
Tumor status (at follow-up)     0.853 
 Tumor free 12 50.0 12 50.0  
 With tumor 9 52.9 8 47.1  
 Unknown 1 50.0 1 50.0  
OS status     0.232 
 Alive 13 44.8 16 55.2  
 Dead 9 64.3 5 35.7  
OS time (months) 20 1-106 23 3-102 0.585 
RFS status     0.287 
 No relapse 9 42.9 12 57.1  
 Relapse 13 59.1 9 40.9  
RFS time (months) 11 0-106 13 0-102 0.618 
Treatment outcome at final TCGA f/u    0.921 
 Complete response 10 50.0 10 50.0  
 Progressive disease 2 50.0 2 50.0  
 Stable disease 2 40.0 3 60.0  
 Unknown 8 57.1 6 42.9  
Local recurrence     0.257 
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 Yes 5 71.4 2 28.6  
 No 17 47.2 19 52.8  
Time to local recurrence 
(months) 16 1-22 13 10-15 0.847 
Distant recurrence     0.242 
 Distant metastasis 9 60.0 6 40.0  
 New primary 0 0.0 1 100.0  
Distant recurrence site     0.321 
 Bone 0 0.0 1 100.0  
 Groin 1 100.0 0 0.0  
 Inguinal LN 0 0.0 1 100.0  
 Lung 8 61.5 5 38.5  
Time to distant recurrence 
(months) 5 1-16 4 0-13 0.916 

 
Table 4-13: Univariate analysis patient and tumor characteristics from TCGA USARC cohort. 

Characteristics are compared between tumors with high versus low immune cell infiltration, 

defined relative to the median TIMER total immune score. Chi square test or Wilcoxon test were 

used as appropriate. Follow up time listed is the years from the date of surgery to the date of last 

follow-up and excludes patients who died.  

 

4.9.8 Summary of USARC subtypes in the study cohort 

 

Subtypes of USARC include spindled, epithelioid, pleomorphic, and ovoid13. An expert sarcoma 

pathologist re-reviewed all samples included in this study and noted the USARC subtype of each 

sample. A summary of the USARC subtypes is included below. 

 
USARC Subtype n 

Spindled 9 
Spindled/ovoid 2 

Spindled/pleomorphic 24 
Spindled/epithelioid 1 

Ovoid 6 
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Epithelioid 2 
Epithelioid/ovoid 1 

Pleomorphic 3 
Pleomorphic/ovoid 3 

Epithelioid/ovoid/pleomorphic 2 
Epithelioid/spindled/pleomorphic 2 

Spindled/ovoid/pleomorphic 2 
Spindled/pleomorphic/histiocytoid 1 

Epithelioid/spindled/pleomorphic+chondroid 2 
 
Table 4-14: Summary of USARC subtypes included in this study. 

 

4.9.9 Unsupervised analysis of clustering of samples based on immune cell infiltration 

 

PCAs were performed to explore the unsupervised clustering of USARC samples based on 

immune cell infiltration. The PCAs below are colored by immune cell infiltration category. 

Samples were characterized as high, medium or low (based on tercile) or high or low (based on 

median) immune cell infiltration according to Consensus Group (as defined in Chapter 3) or 

TIMER immune sum scores. 

 

A B  
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Figure 4-13: PCA analyses of human USARC RNA-Seq samples. PCAs were performed on 

protein coding genes only and are colored (A-C) by Consensus Group (as defined in Chapter 3) 

or (D-F) by TIMER immune sum scores. There was a general PCs and their contribution to the 

variance are noted on each graph. There were no clear trends in this unsupervised analysis. 

 

4.9.10 Analysis of cell lines elucidates genes likely to be tumor-derived 

 

RNA sequencing was performed on four undifferentiated sarcoma cell lines. Genes were 

restricted to protein coding genes only. Genes that had a raw count of greater than 10 in all four 
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cell lines were included on the final list. A total of 9,948 genes meeting these criteria were 

identified (Table 4-15). These genes likely represent those that are tumor-derived, rather than 

derived from immune cells, as they are consistently present in cell lines, which should be devoid 

of immune cells. This gene list was used for additional sensitivity analyses in this study. For 

example, the PCAs including sarcoma genes and the GSEA analyses comparing tumor samples 

with high versus low immune cell infiltration were performed on all protein coding genes as well 

as on only the cell lines genes. There were no significant differences in the results (data not 

shown).  

 

Row sum N of 
genes 

Min 
(row 
sum) 

1st 
quartile Median  Mean 3rd 

quartile Max 

Without any 
genes removed 60,448 0 0 1 2,130 99 1,327,961 

Remove genes 
with row sum 0 31,366 1 5 76 4,106 2,741 1,327,961 

Protein coding 
only + row sum 
> 0 

16,327 1 109 2,037 7,393 6,943 1,327,961 

Protein coding + 
row sum >10 14,352 10 463 2,920 8,410 7,921 1,327,961 

>10 in 2 or more 
samples 12,776 NA NA NA NA NA NA 

>10 in all 
samples 9,948 NA NA NA NA NA NA 

 
Table 4-15: Summary of analysis of genes in RNA-Seq data from four USARC cell lines. 

 

4.9.11 Additional transcriptomic analysis comparing USARC samples with high versus low 

immune cell infiltration 
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The transcriptomic analysis pipeline is summarized in Figure 4-1 and the results of this analysis 

are summarized below. All analyses were performed on each dataset (EGA, SRA, TCGA, and 

UCLA) separately as well as all datasets together and compare samples with high versus low 

immune cell infiltration. Volcano plots demonstrate DESeq analysis (Figure 4-14 A, C, E, G, I). 

Heatmaps summarizing the DESeq results demonstrate transcriptomic signatures associated with 

high versus low immune cell infiltration (Figure 4-14 B, D, F, H, J). GSEA using Hallmark gene 

sets was performed on the results of the DESeq analyses. Samples with high immune cell 

infiltration demonstrated an association with gene sets relating to immune function. These results 

suggest the characterization of samples with high versus low immune cell infiltration based on 

TIMER in-silico immune deconvolution were correct. Samples with low immune cell infiltration 

demonstrated an association with gene sets relating to cell division and growth, such as mitotic 

spindle and G2M checkpoint. These results were similar whether all protein coding genes were 

included or only genes highly expressed in cell line genes were included, as in the sensitivity 

analysis (Table 4-15, Figure 4-15). Finally, the transcriptomic signatures associated with high or 

low immune cell infiltration in each dataset were validated in the other datasets. Sum z scores of 

the top or bottom 50 genes were calculated to determine signature scores (Figure 4-16). 
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Figure 4-14: Transcriptomic analyses of human USARC tumors, comparing samples with high 

versus low immune cell infiltration. (A, C, E, G, I) Volcano plots demonstrate results of DESeq 

analysis comparing samples with high versus low immune cell infiltration. Colored dots 

represent statistically significant results. (B, D, F, H, J) Heatmaps showing the top genes 

associated with samples with high versus low immune cell infiltration on DESeq. Values are 

scaled across rows. Analyses were performed on each dataset (EGA, SRA, TCGA, UCLA) 

separately (A-H) as well as all datasets together (I-J).  
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Figure 4-15: GSEA analyses, using Hallmark gene sets, of DESeq results of human USARC 

samples. Samples with high immune cell infiltration demonstrated an association with gene sets 

relating to immune function. Samples with low immune cell infiltration demonstrated an 

association with gene sets relating to cell division and growth, such as mitotic spindle and G2M 

checkpoint. These results were similar whether all protein coding genes were included (A, C, E, 

G, I) or only genes highly expressed in cell line genes were included (B, D, F, H, J). Analyses 

were performed on each dataset (EGA, SRA, TCGA, UCLA) separately (A-H) as well as all 

datasets together (I-J). 
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Figure 4-16: Transcriptomic signatures associated with high and low immune cell infiltration 

were determined using DESeq in each dataset (EGA, SRA, TCGA, UCLA). The signatures 

determined in each dataset were tested and validated in each of the other datasets in this study. 

Sum z scores of the top 50 or bottom 50 genes in each of these gene lists were calculated and 

compared.  

 

4.9.12 Samples with low immune cell infiltration were associated with stem cell signatures  
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Mesenchymal stem cells, the presumed cell of origin of undifferentiated sarcoma, are known to 

play a role in immune evasion. Mesenchymal and pluripotent stem cell signatures were 

compared between samples with high and low immune cell infiltration41–43. Sum z scores of 

these genes were compared across samples. Samples with low immune cell infiltration showed a 

trend toward increased mesenchymal stem cell signatures across most of the datasets. This 

difference was statistically significant in the EGA dataset (Figure 4-17A). Samples with low 

immune cell infiltration generally showed a higher pluripotent stem cell score. This was 

statistically significant in the EGA and SRA datasets and when all samples were analyzed 

together (Figure 4-17C&D). 

 

A    B   
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Figure 4-17: Summary of the association between stem cell gene signatures and immune cell 

infiltration in USARC tumor samples. Samples with low immune cell infiltration showed a trend 

toward increased mesenchymal stem cell signatures across most of the datasets. This difference 

was statistically significant in the EGA dataset (C&D). Samples with low immune cell 

infiltration generally showed a higher pluripotent stem cell score. This was statistically 

significant in the EGA and SRA datasets (C) and when all samples were analyzed together (D).  

 

4.9.13 Additional copy number alteration analyses 

 

The results below summarize additional analyses of copy number alterations in our study 

population. The UCLA and the TCGA datasets were analyzed separately. These copy number 

analyses quantified copy number changes by the number of copy number segment changes, 

unless otherwise noted. The total numbers of copy number changes are summarized in the 

histograms in Figure 4-18A&B. In addition to exploring the association between total immune 

cell infiltration and copy number changes, we examined the association between the infiltration 
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of various immune cell types and copy number changes. Specifically, we quantified total 

immune cell infiltration using TIMER, CD8 T cell infiltration using CIBERSORTx, 

macrophages using CIBERSORTx, and macrophage/CD8 T cell ratio using CIBERSORTx. 

These tools were selected based on the results summarized in Chapter 3 (Figure 3-4). Samples 

were characterized as high or low in each of these categories relative to the median value. The 

results of this categorization are summarized in Tables 4-16 & 4-17. We then examined the 

differences in copy number changes between these categories using the Wilcoxon test. In the 

UCLA cohort, there was an association between higher copy number changes and low overall 

immune cell infiltration and a trend toward high copy number changes and low CD8T cell 

infiltration (Figure 4-19). In the TCGA cohort, there was an association between higher copy 

number changes and low overall immune cell infiltration as well as low macrophages (Figure 4-

20). In the TCGA cohort, we additionally analyzed the association between overall immune cell 

infiltration and copy number gain and losses separately (Figure 4-21). The results were similar 

when examining the association between overall immune cell infiltration and total copy number 

changes (Figure 4-4), copy number gains alone, and copy number losses alone (Figure 4-21). 

Figures representing the copy number changes seen in representative chromosomes in the TCGA 

dataset are shown in Figure 4-22. In addition to analyzing CN changes by copy number, the 

analysis was also performed by defining copy number changes according to % genome altered in 

the UCLA cohort. These results are summarized in Figure 4-23 and show a trend toward higher 

copy number changes in the low immune cell infiltration group, though this did not reach 

statistical significance. On the histogram in Figure 4-18, there is one sample with a particularly 

large number of segments with copy number changes, which may represent an outlier. 

Sensitivity analyses were also performed dropping the UCLA sample with the highest CN 
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changes as well as the two samples with the highest copy number changes. There was no 

meaningful difference in the results (data not shown). 

 

A  B   
 
Figure 4-18: Histograms summarizing number of segments with copy number alteration in the 

(A) UCLA dataset and (B) TCGA dataset.  

 

Cell Type In-silico Immune Deconvolution 
Tool High (n) Low (n) 

Total Immune Cell Infiltrates TIMER 3 9 
Macrophage CIBERSORTx 4 8 
CD8 T Cell CIBERSORTx 6 6 

Macrophage/CD8 T Cell Ratio CIBERSORTx 6 6 
 
Table 4-16: Summary of immune cell groups in the UCLA dataset. 
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Figure 4-19:  Summary of copy number changes associated with immune cell infiltration in the 

UCLA dataset. Data shown is number of CN segment changes. Comparisons were made between 

high versus low amounts of immune cell infiltration according to the median of the following in-

silico immune deconvolution scores: (A) TIMER overall, (B) CIBERSORTx CD8 T cell, (C) 

CIBERSORTx macrophage, and (D) CIBERSORTx macrophage/CD8 T cell ratio. Wilcoxon test 

was used to compare groups. 

 

Cell Type In-silico Immune Deconvolution 
Tool High (n) Low (n) 

Total Immune Cell Infiltrates TIMER 21 22 
Macrophage CIBERSORTx 21 22 
CD8 T Cell CIBERSORTx 21 22 

Macrophage/CD8 T Cell Ratio CIBERSORTx 21 22 
 
Table 4-17: Summary of immune cell groups in the TCGA dataset. 
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Figure 4-20: Summary of copy number changes associated with immune cell infiltration in the 

TCGA dataset. Data shown is number of CN segment changes. Comparisons were made between 

high versus low amounts of immune cell infiltration according to the median of the following in-

silico immune deconvolution scores: (A) TIMER overall, (B) CIBERSORTx CD8 T cell, (C) 

CIBERSORTx macrophage, and (D) CIBERSORTx macrophage/CD8 T cell ratio. Wilcoxon test 

was used to compare groups.  

 

A    B    
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Figure 4-21: Increased copy number alterations are associated with lower immune cell 

infiltration in undifferentiated sarcoma in the TCGA cohort. Comparisons of total number and 

per chromosome copy number segment gains (A&B) and losses (C&D) are shown.  

 

A    B     
 
Figure 4-22: Representative images of copy number changes seen in select chromosomes in the 

TCGA dataset. Each column represents a distinct sample. 
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Figure 4-23: There is a trend toward increased copy number alterations associated with lower 

immune cell infiltration in undifferentiated sarcoma in the UCLA cohort. Comparisons of CN 

changes quantified by percent genome altered are shown. Comparisons were made across the 

whole exome (A) and in each chromosome (B). 

 

4.9.14 Analysis of the association between CN changes and immune cell infiltration within 

various STS subtypes 

 

Figure 4-5 above demonstrates the association between copy number changes and immune cell 

infiltration in each of the STS histologies. In the analysis above, the results demonstrate that low 

immune cell infiltration is associated with higher numbers of copy number changes in USARC 

and DDLPS subtypes, however, this association is not seen in the other STS subtypes nor is it 

seen in STS overall. Samples were defined as high versus low immune cell infiltration relative to  

the total immune cell infiltration defined by TIMER within each histology. A sensitivity analysis 

was performed defining samples as high versus low immune cell infiltration relative to the 

overall STS cohort, rather than within each histology. The analysis was then repeated. The 
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results did not change. Tables 4-18 & 4-19 show the number of each histology that was defined 

as high versus low immune cell infiltration using each of these definition strategies. Figure 4-

24A&B show the analysis of overall copy number changes across samples with high versus low 

immune cell infiltration across all chromosomes (A) and within each chromosome (B). There 

was no difference in copy number changes within each group. Figure 4-24C compares the copy 

number changes across the high versus low immune cell infiltration groups within each 

histology. In USARC and DDLPS, higher copy number changes are associated with low immune 

cell infiltration. This association was not seen in the other STS histologies. 

 

  
Defined within 

histology 
  Low High 

Defined all 
together 

Low 83 19 
High 22 80 

 
Table 4-18: Summary of samples defined as high versus low immune cell infiltration in the 

TCGA SARC cohort. Samples were defined relative to the median TIMER total immune score 

across the entire cohort and within each histology. This table demonstrates the number of 

samples that switched from high to low immune cell infiltration groups as the definition 

changed. 

 
 Defined all together Defined within histology 

 Low High Low High 
Histology n % n % n % n % 
Total 102 50.0 102 50.0 105 51.5 99 48.5 
DDLPS 17 34.0 33 66.0 25 50.0 25 50.0 
MFS 4 23.5 13 76.5 9 52.9 8 47.1 
MPNST 3 60.0 2 40.0 3 60.0 2 40.0 
SS 9 100.0 0 0.0 5 55.6 4 44.4 
STLMS 35 66.0 18 34.0 27 50.9 26 49.1 
ULMS 21 77.8 6 22.2 14 51.9 13 48.1 
UPS 13 30.2 30 69.8 22 51.2 21 48.8 
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Table 4-19: Summary of samples defined as high versus low immune cell infiltration in the 

TCGA SARC cohort. This table shows the number of samples defined as high versus low 

immune cell infiltration within each histology. Samples were defined relative to the median 

TIMER total immune score across the entire cohort and within each histology.  

 

A  B  
 

C   
 
Figure 4-24: Increased copy number alterations are associated with lower immune cell 

infiltration in USARC and DDLPS, but not in other subtypes of STS and not in STS overall. 
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(A&B) Bar graphs demonstrating the association between copy number changes and immune 

cell infiltration in all subtypes of STS from the TCGA. Comparisons were made examining total 

copy number changes (A) and total copy number changes within each chromosome (B). There 

was a trend toward increased copy number changes in the low immune cell infiltration group, 

though this did not reach statistical significance (p = 0.067). (C) Increased copy number 

alternations were associated with low immune cell infiltration in USARC and DDLPS subtypes 

of STS, though there was no difference in copy number changes between high and low immune 

cell infiltration groups in the other subtypes of STS. Immune groups were defined relative to the 

median TIMER score in the STS cohort. 

 

4.9.15 An analysis of the types of copy number changes seen across STS subtypes 

 

Steele et al recently described copy number signatures across cancer types. There were 21 copy 

number signature groups defined. Here, we examined the copy number signatures seen in the 

various subtypes of soft tissue sarcoma. There is significant variability in the predominant copy 

number signature seen in each of the sarcoma subtypes (Figure 4-25A). We also examined the 

differences in copy number signatures between samples with high and low immune cell 

infiltration, and there was no significant difference seen (Figure 4-25B). In the primary analysis, 

scaled values were used for the copy number signatures assigned to each sample (Figures 4-25 

A&B). In the sensitivity analyses, total counts of major and minor copy number signatures were 

tabulated and compared. The results did not change in any significant way (Figures 4-26 & 4-

27). 
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Figure 4-25: Analysis of copy number signatures across STS histologies (scaled values) (A) and 

between samples with high and low immune cell infiltration within each histology (B). Copy 

number signatures were defined and analyzed by Steele et al44. Values used are scaled copy 

number signature values assigned to each sample.  

A  



 265 

B  

Figure 4-26: Analysis of copy number signatures across STS histologies (major and minor 

values). Copy number signatures were defined and analyzed by Steele et al44. Values used are 

total major (A) and minor (B) copy number signature values assigned to each sample.  

 

A  

B  

Figure 4-27: Analysis of copy number signatures between samples with high and low immune 
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cell infiltration within each STS histology group (major and minor values). Copy number 

signatures were defined and analyzed by Steele et al44. Values used are total major (A) and minor 

(B) copy number signature values assigned to each sample. 

 

4.9.16 Survival analyses 

 

Survival analyses were performed to determine the association between immune cell infiltration 

and survival in patients with USARC. Tumors were classified as having “high” or “low” immune 

cell infiltration based on the median TIMER score, as previously described. Survival data was 

available for UCLA and TCGA cohorts. The cohorts were examined together and separately. 

There was a trend toward decreased survival associated with low immune cell infiltration, 

however, this difference was not statistically significant (Figure 4-28). We additionally examined 

the association between survival and the expression of select genes that were significantly 

differently expressed in all datasets analyzed together or separately. The genes analyzed were 

COL11A2 (associated with low immune cell infiltration), SYNGR2 (associated with high 

immune cell infiltration), and HMOX1 (associated with high immune cell infiltration). Samples 

were categorized based on the median expression of these genes. There was a trend toward 

improved survival with high SYNGR2 expression, no difference in survival with HMOX1 

expression, and a trend toward improved survival with COL11A2 expression. Datasets were 

analyzed together (UCLA and TCGA) as well as separately. There was no meaningful difference 

in the results. The results of the datasets analyzed together is shown (Figure 4-29). 
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Figure 4-28: The association between immune cell infiltration and survival in patients with 

undifferentiated sarcoma. Kaplan Meier curves are shown. Samples were categorized as having 

“high” or “low” immune cell infiltration relative to the median overall TIMER score. Survival 

data was available for the UCLA and TCGA cohorts. Comparisons were made using (A) all 

samples, (B) UCLA samples only, and (C) TCGA samples only. There was a trend toward 

decreased survival associated with low immune cell infiltration, though this did not reach 

statistical significance (p = 0.4, p = 0.7, and p = 0.5, respectively). 
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Figure 4-29: The association between expression of (A) SYNGR2, (B) HMOX1, and (C) 

COL11A2 and survival in patients with undifferentiated sarcoma. Kaplan Meier curves are 

shown. Samples were categorized as having “high” or “low” gene expression relative to the 

median. Survival data was available for the UCLA and TCGA cohorts. Comparisons shown were 

made using all samples. There was a trend toward improved survival with (A) SYNGR2 (p = 

0.1) and (C) COL11A2 (p = 0.1) expression and no difference in survival with (B) HMOX1 (p = 

0.8) expression. 
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4.9.17 An analysis of transcriptomic and genomic changes before and after treatment with 

immunotherapy  

 

We explored the association between immunotherapy treatment and transcriptomic and genomic 

signatures. The data used in this analysis was RNA-Seq data from four USARC cell lines. 

Sequencing was performed both pre- and post-treatment with BO112. Additionally, we identified 

paired samples from patients treated at our institution. Samples from their tumors were available 

both from the patients before and after they were treated with immunotherapy. A summary of the 

clinical data is in Table 4-20. PCAs were performed on the cell lines and the tumors separately. 

In the cell line analysis, PC4 appears to identify genes associated with immunotherapy treatment. 

In the human tumor analysis, PC3 identifies a signature associated with immunotherapy 

treatment. Tables 4-21 & 4-22 show the top 50 genes that define each of these PCs. Genomic 

analyses of the human tumor samples show that the samples treated with immunotherapy 

demonstrated lower copy number segment changes than their paired samples prior to 

immunotherapy (Figure 4-29). 

 
Pt # Sex Resection Tumor Site Size(cm) Prior treatment Primary 

1 F Resection Lung 4.5 Immunotherapy Metastasis 
1 F Resection Sub-scapular 11.5 XRT Primary 
2 M Resection Abd/RP 12.0 Immunotherapy Recurrence 
2 M Resection Abd/RP 8.0 Chemo Primary 

 
Table 4-20: Summary of clinical characteristics from paired samples from patients treated with 

and without immunotherapy. 
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Figure 4-30: PCAs exploring the transcriptomic signatures associated with immunotherapy 

treatment in USARC. (A&B) PCA analyses of four USARC cell lines before and after treatment 

with BO112. PC4 identifies a signature associated with immunotherapy treatment. (C&D) PCA 

analyses of paired USARC samples from patients before and after treatment with 

immunotherapy. PC3 identifies a transcriptomic signature associated with immunotherapy 

treatment. 

 
Top 50 Genes (PC4)    
FAM156B DIO2 GEM CGB8 SLX1B 
GAGE12C ANKRD44 TOX ZMAT3 DENND5B 
GAGE12D MICU3 FMN2 VGF EPHX2 
RGPD5 PDCD11 ZSCAN31 ATOH8 DLX2 
SCHIP1 TLL1 TRIM2 GTF2IRD2 NDRG2 
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UBE3D OXTR CDNF RDH10 ACTR3B 
PYROXD2 FHIT DSEL CEP126 L3MBTL1 
SPANXC STK32A EHHADH ZNF573 KLF5 
SMAD6 NOG KRT80 TCF7L2 GPR87 
EVI2A ARL10 MBNL2 LURAP1L ZFHX4 
     
Bottom 50 Genes (PC4)    
IFIT2 GBP4 OAS1 APOL1 MX2 
OASL CXCL11 MX1 HERC5 APOL6 
RSAD2 GBP5 USP18 CCL2 BATF2 
IFIT1 IFIH1 CCL3L3 SAMD9 APOL2 
CXCL10 OAS2 CCL3 CCL20 RAET1L 
CCL5 GBP1 RTP4 ISG15 CFB 
IFIT3 TRIM22 XAF1 CXCL8 ICAM1 
IFNL1 ISG20 DHX58 PLEKHA4 THEMIS2 
IFNB1 ZC3HAV1 HELZ2 GAGE12B CMPK2 
DDX58 SAMD9L IDO1 TNFSF10 TRANK1 

 
Table 4-21: Top 50 and bottom 50 genes on PC4 on cell line PCA. This appears to be a gene 

signature associated with BO112 treatment in USARC cell lines. 

 
Top 50 Genes (PC3)    
SFTPB HBB CCL5 PIGR FCN1 
HBA1 JCHAIN CST7 S100A12 VCY 
CXCL13 CCL18 HBA2 S100A8 ITM2C 
SFTPA2 SLC34A2 ECSCR HCST EGFL7 
MMP13 RUNX3 CXCL9 C7 MPZL3 
MT1A GZMA CCL17 ITGA1 CACNA2D2 
MMP9 CD27 SCGB3A2 RHOF SFTPA1 
GZMK UBD CRTAM CD3E PDCD1 
CXorf49 SFTPC PGC MT1M SLAMF6 
SCGB1A1 NKG7 TNFRSF9 GBP4 ABCA3 
     
Bottom 50 Genes 
(PC3)    
TNNT3 ACTN2 TNNI1 SCN5A NPIPA3 
MYL1 ACTA1 NRAP DNAH8 SYNC 
MYH1 MYBPC1 MB CGB8 STAC3 
CKM FUT5 MYLPF MYBPC2 BNIP3 



 272 

TNNC2 TTN TRIM63 LUC7L2 SH2D5 
TNNI2 COX6A2 CCDC169 CSRP3 GLIPR1L1 
THBS4 TNNT1 TRPV3 ANKRD1 PAX8 
DES TMOD4 C1orf53 BPI MT-ATP8 
TBC1D3G MYH2 MYBPH S100A1 CDC25C 
NEB EEF1A2 IGFN1 HSPB7 C4orf51 

 
Table 4-22:  Top 50 and bottom 50 genes on PC3 on PCA of tumors treated with and without 

immunotherapy. This appears to be a gene signature associated with immunotherapy treatment in 

USARC tumors. 

 

A  B  

C  
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Figure 4-31: An analysis of paired samples from two patients with and without treatment with 

immunotherapy. (A) Lower copy number segment changes are seen in post-immunotherapy 

samples. (B) Higher TIMER scores are seen in samples from patients previously treated with 

immunotherapy compared to samples from the same patient before they were treated with 

immunotherapy. (C) There is no clear correlation between TIMER score and CN segment 

changes.  
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CHAPTER 5 

Conclusion 

 

5.1 Summary of Research 

 

Soft tissue sarcoma (STS) is a rare and diverse group of malignancies with over 60 subtypes, 

presumed to be of mesenchymal origin. Patients with localized STS are managed with surgery 

with or without radiation1–3. Despite aggressive local therapy, up to 50% of patients with high-

risk (≥ 5cm, high-grade) primary STS develop metastases, highlighting the critical need for more 

effective systemic therapies4–11. 

 

Immune-based therapies have dramatically changed the treatment of many cancers in recent 

decades. These include blockade of immune checkpoint molecules such as PD-1/PD-L1 and 

CTLA-4, cellular therapies using chimeric antigen receptor or T-cell receptor modified T-cells, 

and emerging therapies modulating tumor-associated macrophages. While early studies of 

immunotherapy in STS have not had broad success, there are signals of efficacy that warrant 

further exploration12–15. The SARC028 study evaluated the efficacy of the anti-PD1 antibody 

pembrolizumab in patients with advanced sarcoma, and identified the undifferentiated 

pleomorphic sarcoma (UPS) subtype as the most responsive to anti-PD1 immunotherapy, with 

40% of patients demonstrating complete or partial response14. This was notable given that UPS, 

unlike most tumors that are most responsive to immune checkpoint blockade, have a low 

mutational burden.  
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Why a fraction of patients with UPS and other tumors with low mutational burden instigate an 

anti-tumor immune response is unclear. At the same time, 60% of patients with UPS in this study 

did not respond to anti-PD1 therapy, suggesting that within UPS there are drivers of immune 

evasion.  

 

In order to stratify the patients with STS that may benefit from immunotherapy, we need 

alternate strategies to study sarcoma in a high throughput fashion. For STS, alternatives to 

categorizing patients based on “response” versus “non-response” to immunotherapy are needed, 

as this disease is extremely rare and large studies of immune checkpoint blockade are not readily 

available as in other disease12–21. In order to guide further studies and to develop optimal 

immunotherapy strategies for patients with STS, we must first understand the landscape of 

immune cell infiltration and the associated genomic changes associated with immune evasion in 

this disease.  

 

In this study, I aimed to investigate the immunologic heterogeneity and identify transcriptomic 

and genomic correlates of immune evasion in undifferentiated sarcoma. In doing so, I 

determined the immune cell landscape, the optimal high-throughput tools, and the transcriptomic 

and genomic changes associated with high and low immune cell infiltration in STS.  

 

The specific aims and primary findings were as follows: 
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Specific Aim 1: Characterize the landscape of immune cell infiltration in soft tissue sarcoma. My 

goal was to determine the overall immune cell landscape and the association between clinical 

and treatment factors and immune cell infiltration in STS. (Project 1, Chapter 2) 

 

In this aim, we characterized the landscape of immune cell infiltration in soft tissue sarcoma and 

determined the association between clinical and treatment factors and immune cell infiltration in 

soft tissue sarcoma. We found that USARC tumors are characterized by a myeloid predominance 

and a relative abundance of suppressor cells, such as Treg cells and CD11b cells. We found 

similar trends when comparing STS subtypes with high levels of copy number alterations overall 

(DDLPS, USARC, and MFS; n=67) versus those that are characterized as having low levels of 

copy number alterations (MLS, LMS, SS, and GIST) as CNA-low (n=38)22. We additionally 

found that the immune composition of peripheral blood was associated with intratumoral 

leukocyte infiltration, and specifically that myeloid-predominant tumor and lymphocyte-

predominant blood are mutually exclusive.  

 

Specific Aim 2: Develop and apply an optimal in-silico immune deconvolution technique for 

sarcoma. My goal was to assess the concordance between various immune deconvolution 

techniques and compare their ability to recapitulate the results of immunohistochemistry on 

paired USARC specimens. (Project 2, Chapter 3) 

 

In this aim, we determined the optimal in-silico immune deconvolution tool in undifferentiated 

sarcoma by determining the correlation between mIF and in-silico immune deconvolution scores. 

Based on our findings, we suggest the following practices when applying in-silico immune 
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deconvolution tools to undifferentiated sarcoma: (1) Use TIMER to define overall immune cell 

infiltration. (2) Use MCP counter to define monocyte infiltration or use CIBERSORTx, EPIC, 

quanTIseq, TIMER, or xCell to define macrophage infiltration. (3) Use caution when using in-

silico immune deconvolution tools to define CD8+ T cell infiltration. CIBERSORTx most 

accurately defines CD8+ T cell immune infiltration, however, there are still many instances 

when tumors with high CD8+ T cell infiltration will be missed using this technique. (4) Avoid 

applying in-silico immune deconvolution results to define B cell or CD4+ T cell immune 

infiltration. 

 

Specific Aim 3: Define transcriptomic signatures and genomic changes associated with immune 

cell infiltration in undifferentiated sarcoma. I aimed to determine the role of chromosomal 

instability in immune cell infiltration in this disease. (Project 3, Chapter 4) 

 

In this aim, we found that increased copy number changes were associated with low immune cell 

infiltration in undifferentiated sarcoma. These findings were suggested in both transcriptomic 

and genomic analyses. Interestingly, this association between CNA and immune invasion were 

unique to the UPS and DDLPS subtypes of STS, but it was not seen in other subtypes of STS. 

The mechanisms underlying this association are not clear and warrant further study.  

 

These insights provide necessary information to understand which patients may benefit from 

immunotherapy and guide future studies to further the treatment of STS. These studies provide 

the groundwork for further investigation in this study of immune cell infiltration in STS and 

provide insights into how we may be able to improve outcomes in this rare and devastating 
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disease. The mechanisms underlying these findings remain unclear and warrant further 

investigation. A deeper understanding of the drivers of immune cell infiltration, the unique tumor 

microenvironment in STS, and role that chromosomal instability plays in STS will hopefully 

ultimately lead to insights to new, and much-needed, treatments for this disease. 
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