Title
Disturbed flow-activated p90RSK kinase accelerates atherosclerosis by inhibiting SENP2 function

Permalink
https://escholarship.org/uc/item/6c561598

Journal
Journal of Clinical Investigation, 125(3)

ISSN
0021-9738

Authors
Heo, Kyung-Sun
Le, Nhat-Tu
Cushman, Hannah J
et al.

Publication Date
2015-03-02

DOI
10.1172/jci76453

Peer reviewed
Disturbed flow-activated p90RSK kinase accelerates atherosclerosis by inhibiting SENP2 function

Kyung-Sun Heo,1 Nhat-Tu Le,1 Hannah J. Cushman,1 Carolyn J. Giancursio,1 Eugene Chang,1 Chang-Hoon Woo,1 Mark A. Sullivan,2 Jack Taunton,3 Edward T.H. Yeh,4 Keigi Fujiwara,1 and Jun-ichi Abe1

1Aab Cardiovascular Research Institute and Department of Medicine, and 2Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA. 3Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California, USA. 4Department of Cardiology, University of Texas MD Anderson Cancer Center, Texas Heart Institute, St. Luke’s Episcopal Hospital, Houston, Texas, USA.

Disturbed blood flow (d-flow) causes endothelial cell (EC) dysfunction, leading to atherosclerotic plaque formation. We have previously shown that d-flow increases SUMOylation of p53 and ERK5 through downregulation of sentrin/SUMO-specific protease 2 (SENP2) function; however, it is not known how SENP2 itself is regulated by d-flow. Here, we determined that d-flow activated the serine/threonine kinase p90RSK, which subsequently phosphorylated threonine 368 (T368) of SENP2. T368 phosphorylation promoted nuclear export of SENP2, leading to downregulation of eNOS expression and upregulation of proinflammatory adhesion molecule expression and apoptosis. In an LDLR-deficient murine model of atherosclerosis, EC-specific overexpression of p90RSK increased EC dysfunction and lipid accumulation in the aorta compared with control animals; however, these pathologic changes were not observed in atherosclerotic mice overexpressing dominant negative p90RSK (DN-p90RSK). Moreover, depletion of SENP2 in these mice abolished the protective effect of DN-p90RSK overexpression. We propose that p90RSK-mediated SENP2-T368 phosphorylation is a master switch in d-flow–induced signaling, leading to EC dysfunction and atherosclerosis.

Introduction

Atherosclerosis is a focalized disease that develops preferentially in areas with large arteries that are exposed to disturbed blood flow (d-flow) (1, 2). Endothelial cells (ECs) are thought to sense and respond to different flow patterns. Indeed, d-flow, not steady laminar flow (s-flow), activates proinflammatory and proapoptotic genes in ECs, causing them to become dysfunctional and proatherogenic (3–5). SUMOylation plays an important role in regulating actin filament remodeling (6), migration (6, 7), inflammation (8), and apoptosis (9) that occur in ECs in response to flow stimulation (3, 4, 8). SUMOylation is one of the most dynamic posttranslational modifications, with its diverse repertoire of effects, such as the localization, transcriptional activity, and DNA binding of modified proteins (9–11). Previously, we found that d-flow induced SUMOylation of p53 (3) and ERK5 (12), leading to EC apoptosis and inflammation, respectively. Reduced expression of sentrin/SUMO-specific protease 2 (SENP2) increased p53 and ERK5 SUMOylation, hence accelerating EC dysfunction, inflammation, and consequently, atherosclerotic plaque formation in mice (11). Although these results might suggest SENP2 expression being downregulated by d-flow, we failed to detect such a change in ECs exposed to d-flow in vitro (11). Because p90RSK activation was associated with EC inflammation and apoptosis, we examined the role of p90RSK in regulating SUMOylation states of SENP2 substrates.

Conflict of interest: Jack Taunton is a cofounder of Principia Biopharma, which has licensed the p90RSK kinase inhibitor FMK-MEA.

Submitted: April 2, 2014; Accepted: January 6, 2015.

Results

p90RSK activation by d-flow induces EC apoptosis and inflammation. We first tested to determine whether d- or s-flow activated p90RSK using human umbilical vein ECs (HUVECs) and found that only d-flow significantly increased p90RSK phosphorylation (Figure 1, A and C) and expression in a time-dependent manner (Supplemental Figure 1; supplemental material available online with this article; doi:10.1172/JCI76453DS1), suggesting the unique response of p90RSK to d-flow. Of note, ERK5 activation was induced only by s-flow (Figure 1, B and C). d-flow–induced apoptosis (Figure 1, D and E) and proinflammatory adhesion molecule expression (Figure 1F) were inhibited in ECs transduced with adenovirus containing dominant negative p90RSK (K94A/K447A, Ad-DN-p90RSK), but not in those transduced with Ad-LacZ and WT-p90RSK. It is interesting to note that Ad-WT-p90RSK transduction by itself without d-flow stimulation significantly increased numbers of apoptotic cells and adhesion molecule expression, suggesting that a certain fraction of overexpressed p90RSK is constitutively activated (Figure 1, D–F). In addition, adhesion molecule expression induced by d-flow was further augmented by overexpression of WT-p90RSK (Figure 1F). Taken together, these data suggest that p90RSK plays a crucial role in regulating d-flow–induced EC apoptosis and inflammation.

Depletion of p90RSK abolishes d-flow–induced p53 and ERK5 SUMOylation. Because we have reported that d-flow SUMOylates p53 and ERK5 (11) and because both Ad-DN-p90RSK and a specific p90RSK kinase inhibitor, FMK-MEA, completely inhibit d-flow–induced p90RSK activation (refs. 13, 14, and Supplemental Figure 2B), p90RSK may play a role in p53 and ERK5 SUMOylation by...
ylate SENP2. We found that 3 GST-tagged SENP2 fragments (1–130 aa, 131–300 aa, and 301–450 aa) were phosphorylated by recombinant p90RSK in vitro (Supplemental Figure 3A). We then subjected phosphorylated SENP2 to proteolytic digestion and liquid chromatography–tandem mass spectrometry (LC-MS/MS) and identified T35, S38, and T368 as SENP2 phosphorylation sites by p90RSK with a less than 0.05 error (Figure 3A). The predicted mass of each b or y fragment and the actual value are shown, with the y5 fragment containing the phosphorylated T368 having a predicted mass of 704.4 Da versus an actual value of 686.19 Da (Figure 3A). To study the effect of phosphorylation on downstream signaling, each phosphorylation site was mutated to alanine, expressed in ECs, and its effect on p90RSK-mediated p53 SUMOylation determined (Figure 3B). Inhibition of p53 SUMOylation induced by WT SENP2 (Figure 3B, lane 2) was completely lost in cells cotransfected with d-flow. We deleted both p90RSK1 and -2 by siRNA and found that d-flow–induced p53 SUMOylation (Figure 2A) and the association of p53 with Bcl-2, which inhibits the antiapoptotic effect of Bcl-2 (ref. 3 and Supplemental Figure 2A), were completely inhibited. The complete inhibition of d-flow–induced p53 SUMOylation was also achieved by Ad-DN-p90RSK transduction and FMK-MEA (ref. 13 and Figure 2B). d-flow–induced ERK5 SUMOylation was also inhibited by Ad-DN-p90RSK transduction (Figure 2C). These data suggest that p90RSK kinase activity is involved in regulating SUMOylation of both p53 and ERK5 in ECs by d-flow.

Figure 1. Role of p90RSK activation in d-flow–induced apoptosis and inflammation. (A–C) HUVECs were stimulated by d-flow (upper panel) or s-flow (lower panel) for indicated times, and p90RSK (A) and ERK5 (B) activation were examined by Western blotting using anti–phospho-p90RSK and anti–phospho-ERK5 (T218/Y220), respectively. (C) Quantification of d-flow–induced p90RSK and ERK5 activation is shown after normalization by total protein levels. Data represent mean ± SEM (0 minutes = 100, n = 3). (D) HUVECs were transduced with 50 MOI of Ad-LacZ, Ad-WT-p90RSK, or Ad-DN-p90RSK for 18 hours and then stimulated by d-flow or no flow for 36 hours, followed by TUNEL staining. Images were recorded as described in Methods after counterstaining with DAPI to visualize nuclei. Apoptotic nuclei are indicated by arrows (left panel). Quantification of apoptosis is shown as the percentage of TUNEL-positive cells (right panel). Data represent mean ± SEM, n = 5. Scale bars: 60 μm. (E and F) HUVECs were transduced with 50 MOI of Ad-LacZ, Ad-WT-p90RSK, or Ad-DN-p90RSK and then stimulated by d-flow for 24 hours. Expression of cleaved caspase-3 (E) or E-selectin, ICAM-1, VCAM-1, p90RSK, and tubulin (F) is shown. *P < 0.05; **P < 0.01, by 1-way ANOVA followed by Bonferroni’s post hoc test.
The Journal of Clinical Investigation

Research Article

The Journal of Clinical Investigation Research Article

1301

jci.org Volume 125 Number 3 March 2015

jci.org Volume 125 Number 3 March 2015

using anti–phospho–SENP2-T368. We found that SENP2-WT, but not the T368A mutant, was phosphorylated (Supplemental Figure 4A). In addition, we found that phosphorylation of human SENP2 was critical for p90RSK-mediated p53 SUMOylation, indicating the importance of T368 phosphorylation for both human and mouse SENP2 (Supplemental Figure 4B). We also confirmed T368 phosphorylation of endogenous SENP2 and found that this phosphorylation was completely abolished by Ad-DN-p90RSK (Figure 3E). To determine the role of p90RSK-mediated SENP2-T368 phosphorylation in p53 and ERK5 SUMOylation, we separately overexpressed SENP2 mutants in ECs using adenovirus vectors and found that only the SENP2-T368A mutant inhibited d-flow–induced p53 and ERK5 SUMOylation (Figure 4, A and B, and Supplemental Figure 4, C and D). We also found that d-flow–induced p53–Bcl-2 binding, which is a downstream event of p53 SUMOylation and is crucial for inducing apoptosis under d-flow (3), was significantly inhibited by Ad-SENP2-T368A mutant transduction (Figure 4A). In addition, we found that phosphorylation of human SENP2 was critical for p90RSK-mediated p53 SUMOylation, indicating the importance of T368 phosphorylation for both human and mouse SENP2 (Supplemental Figure 4B). We also confirmed T368 phosphorylation of endogenous SENP2 and found that this phosphorylation was completely abolished by Ad-DN-p90RSK (Figure 3E). To determine the role of p90RSK-mediated SENP2-T368 phosphorylation in p53 and ERK5 SUMOylation, we separately overexpressed SENP2 mutants in ECs using adenovirus vectors and found that only the SENP2-T368A mutant inhibited d-flow–induced p53 and ERK5 SUMOylation (Figure 4, A and B, and Supplemental Figure 4, C and D). We also found that d-flow–induced p53–Bcl-2 binding, which is a downstream event of p53 SUMOylation and is crucial for inducing apoptosis under d-flow (3), was significantly inhibited by Ad-SENP2-T368A mutant transduction (Figure 4A). Finally, d-flow–induced cleaved caspase–3 expression, inflammatory adhesion molecule expression, and reduced eNOS expression were significantly decreased by Ad-SENP2-T368A mutant transduction compared with Ad-SENP2-WT transduction (Figure 4, C and D). Taken together, these results suggest that SENP2-T368 phosphorylation is a key regulator of p53 and ERK5 SUMOylation and plays a critical role in d-flow–mediated EC apoptosis and inflammation.

p90RSK-SENP2 association is critical for p53 and ERK5 SUMOylation

To further investigate how p90RSK regulates SENP2, we sought to determine the specific SENP2-binding domain on p90RSK. Myc-tagged SENP2 coimmunoprecipitated...
Next, we determined whether d-flow induced endogenous p90RSK-SENP2 binding and SENP2-T368 phosphorylation in HUVECs and found that d-flow stimulation for 20 to 40 minutes increased both binding and phosphorylation (Supplemental Figure 5C). Interestingly, d-flow–induced SENP2-T368 phosphorylation was inhibited by SENP2-Fr.2 overexpression (Figure 5C and Supplemental Figure 5A), suggesting that weak interaction of this Flag-tagged p90RSK (Figure 5A). We then used 4 different truncated mutants of SENP2 and found that SENP2-Fr.1 (1–130 aa) and SENP2-Fr.2 (131–300 aa) were able to interact with p90RSK in a mammalian 2-hybrid assay, which we had previously described (ref. 13 and Figure 5B). However, only overexpression of SENP2-Fr.2 inhibited p90RSK-SENP2 binding; it also inhibited p90RSK-mediated p53 SUMOylation (Supplemental Figure 5, A and B).

Figure 3. p90RSK-mediated SENP2-T368 phosphorylation is critical for p53 SUMOylation. (A) An LC-MS/MS analysis identified SENP2 phosphorylation sites by p90RSK at T35, S38, and T368 with a less than 0.05 error (upper panel). An LC-MS/MS plot of different peptide fragments shows T368 phosphorylation based on mass shift of phosphorylated threonine within H2O (686 Da, lower panel). (B and C) CHO cells were cotransfected with 4 plasmids, Flag-p53, HA-SUMO3, Xpress-p90RSK1, and an additional plasmid containing one of the following pCS-Myc–tagged plasmids encoding SENP2-WT, SENP2-T35A, SENP2-S38A, or SENP2-T368A. Control plasmid contained only Flag-p53 and HA-SUMO. p53 SUMOylation was determined as described in Methods. p53, SUMO3, p90RSK, and SENP2 expression were detected by Western blotting. (D) HUVECs were transduced with Ad-SENP2-WT or SENP2 phosphorylation mutants as indicated and stimulated by d-flow or no flow (–) for 3 hours, and SENP2-T368 phosphorylation was detected using anti–phospho–SENP2-T368. (B–D) The blots shown are representative of 3 independent experiments. (E) After transduction of Ad-LacZ or Ad-DN-p90RSK, d-flow–induced SENP2-T368 phosphorylation was analyzed by Western blotting. Quantification of data represents mean ± SEM (lower panel, n = 3). **P < 0.01, compared with no-flow conditions in the presence of Ad-LacZ; ***P < 0.01, compared with each time point of Ad-LacZ control by 1-way ANOVA followed by Bonferroni’s post hoc test.

Flag-tagged p90RSK (Figure 5A). We then used 4 different truncated mutants of SENP2 and found that SENP2-Fr.1 (1–130 aa) and SENP2-Fr.2 (131–300 aa) were able to interact with p90RSK in a mammalian 2-hybrid assay, which we had previously described (ref. 13 and Figure 5B). However, only overexpression of SENP2-Fr.2 inhibited p90RSK-SENP2 binding; it also inhibited p90RSK-mediated p53 SUMOylation (Supplemental Figure 5, A and B).
domain with p90RSK is necessary for T368 phosphorylation. To see whether SENP2-T368 phosphorylation regulated d-flow–induced p90RSK–SENP2 association in cells, we transduced HUVECs with Ad-SENP2-WT, Ad-SENP2-T368A, or Ad-LacZ as a control and examined p90RSK–SENP2 binding. We found that d-flow increased SENP2-T368 phosphorylation and p90RSK–SENP2 binding in Ad-SENP2-WT and Ad-LacZ transduced cells, but not in SENP2-T368A mutant transduced cells (Figure 5D). Taken together, these results demonstrate a functional interplay between p90RSK–SENP2 binding and SENP2-T368 phosphorylation. In addition, d-flow–induced SUMOylation of p53 and ERK5 was abolished in HUVECs transduced with adenovirus containing SENP2-Fr.2 (Figure 5, E and F), suggesting a crucial role of direct binding between p90RSK and SENP2 in the regulation of SENP2 function.

d-flow induces SENP2 nuclear export via T368 phosphorylation. SENP2 contains a bipartite nuclear localization signal (NLS) sequence in the N terminus domain and a leucine-rich, CRM1-dependent nuclear export signal (NES) sequence in the central domain (ref. 15 and Figure 5B). These NLS and NES sequences are involved in SENP2 shuttling between the nucleus and the cytoplasm, which could regulate SENP2 function. To investigate the possibility that SENP2-T368 phosphorylation regulates SENP2 cellular localization, HUVECs were transduced with Ad-SENP2-WT or Ad-SENP2-T368A, and SENP2 localization was evaluated. Interestingly, d-flow increased SENP2-WT nuclear export, which was significantly inhibited by the T368A mutation (Figure 6A). To determine the role of SENP2 nuclear export and T368 phosphorylation in vivo, we investigated T368 phosphorylation-dependent SENP2 localization using in face preparations and confocal microscopy (Figure 6, B and C). We focused on 2 areas: the region exposed to d-flow (lesser curvature of the aortic arch) and the area exposed to s-flow (greater curvature of the aortic arch), as we described previously (11, 16). When the endothelium was double-stained with anti-SENP2 or anti–phospho–SENP2-T368 together with anti–vascular endothelial-cadherin (anti–VE-Cad) as an EC marker, clear SENP2 nuclear localization was observed in the s-flow area. In the d-flow area, however, an increased level of anti-SENP2 extranuclear staining was observed (Figure 6B). In addition, although it was very low in the s-flow area, a robust increase in anti–phospho–SENP2-T368 staining was detected in the extranuclear compartment in d-flow areas (Figure 6C), indicating that T368 phosphorylation by d-flow is consistent with SENP2 nuclear export.

Role of p90RSK in EC inflammation and apoptosis and subsequent atherosclerotic plaque formation. To examine the role of p90RSK in EC pathology, aortas from male Ldlr−/− mice (7 weeks old) fed normal chow for 2 weeks were isolated and en face preparations were stained with anti-p90RSK and anti–phospho-p90RSK-S380. We found that both total p90RSK and phospho-p90RSK signals were significantly higher in the d-flow area compared with the s-flow area (Supplemental Figure 6). When these

Figure 4. SENP2-T368 phosphorylation by p90RSK causes EC apoptosis and inflammation. After HUVECs were transduced with Ad-SENP2-WT or Ad-SENP2-T368A and exposed to d-flow as indicated, p53 and ERK5 SUMOylation (**A** and **B**), p53–Bcl-2 binding (**A**, middle panel), cleaved caspase-3 expression (**C**), and eNOS and adhesion molecule expression (**D**) were analyzed. (**A**–**C**) Quantification of data represents mean ± SEM (lower panel, n = 3). **P < 0.01, compared with no-flow condition in the presence of Ad-SENP2-WT; ***P < 0.01, compared with each time point of Ad-SENP2-WT control by 1-way ANOVA followed by Bonferroni’s post hoc test.
mice were fed a high-fat diet (HFD) for 2 weeks, significantly increased staining was observed in both d- and s-flow areas compared with the normal chow-fed group (Supplemental Figure 6). These data suggest that atherogenic environment (i.e., HFD) induces not only activation but also expression of p90RSK and further increases d-flow–induced SENP2-T368 phosphorylation in vivo. To specifically study the role of p90RSK in ECs in vivo, we generated EC-specific WT-p90rsk transgenic mice using mice expressing tamoxifen-inducible Cre-recombinase CreERT2 under the regulation of the VE-Cad promoter (17) (VE-Cad-CreTg[WT-p90rsk]), herein referred to as WT-p90rsk-ETg.

We expressed WT-p90rsk, as opposed to a constitutively active mutant form of p90RSK, because a portion of overexpressed WT-p90rsk is constitutively active, as shown in Figure 1. As controls, we used nontransgenic littermates (NLC: VE-Cad-Cre+/− Tg[WT-p90rsk] or VE-Cad-Cre+/− Tg[WT-p90rsk]) that did not express exogenous p90RSK under 4-hydroxytamoxifen (4-OHT) treatment. We did not find any phenotypic differences between these 2 strains of NLC (data not shown). SENP2-T368 phosphorylation, expression of inflammatory adhesion molecules at both protein and mRNA levels, and cleaved caspase-3 expression were increased in mouse ECs (MECs) isolated from WT-p90rsk-ETg compared with those from NLC mice after 4-OHT injection (Figure 7, A and B). In contrast, eNOS expression was downregulated in the WT-p90rsk-ETg mice (Figure 7A). To examine the role of p90RSK in atherogenesis, we generated WT-p90rsk-ETg/Ldlr−/− mice and compared the extent of atherogenesis in these mice with that in NLC/Ldlr−/− mice after 16 weeks on a high-cholesterol diet. Differences were noted in their body weight and blood measurements of total, LDL, and HDL cholesterol (Supplemental Figure 7, A and B). The lesion areas in both aortic arch and descending aorta were significantly larger in WT-p90rsk-ETg/Ldlr−/− than in NLC/Ldlr−/− mice (Figure 7C). We also found that the lesion size at the level of the aortic valve was larger in WT-p90rsk-ETg/Ldlr−/− than in NLC/Ldlr−/− mice (Figure 7D).
Role of the p90RSK-SENP2 module in atherosclerotic plaque formation. To establish the role of the p90RSK-SENP2 module in d-flow–elicited apoptosis and inflammation, we generated EC-specific dominant-negative p90RSK transgenic (VE-Cad-Cre+/–Tg[DN-p90rskfl]; herein referred to as DN-p90rsk-ETg) mice and also double-transgenic/knockout mice (DN-p90rsk-ETg/Senp2+/–). Of note, we have already reported increased apoptosis and inflammatory adhesion molecule expression in both s- and d-flow areas in the aortic arch in Senp2+/– mice (11). The extent of apoptosis (Supplemental Figure 8, A and B) and VCAM-1 expression (Figure 8A) in the d-flow area in the aortic arch was significantly dampened in DN-p90rsk-ETg mice, but these antiatherogenic phenotypes were lost in the double-transgenic/knockout mice. d-flow–induced SENP2-T368 phosphorylation (Figure 8B), adhesion molecule expression (Figure 8C), and cleaved caspase-3 expression (Figure 8C) were also reduced in MECs isolated from DN-p90rsk-ETg mice, but in MECs isolated from DN-p90rsk-ETg/Senp2+/– mice, DN-p90RSK–mediated inhibition of adhesion molecule expression and apoptosis was completely reversed.

Next, to explore whether d-flow–mediated p90RSK activation was involved in atherogenesis, we made partial ligation of left carotid artery (PLCA) models using NLC/Ldlr–/–, DN-p90rsk-ETg/Ldlr–/–, and DN-p90rsk-ETg/Senp2+/–/Ldlr–/– mice. The mouse PLCA model has been used to experimentally generate an area of d-flow where atherogenic responses are induced in a short period of time (18–20). There was no notable difference in cholesterol levels among these mice after 4-OHT injection and partial ligation (Supplemental Figure 9). Intimal lesion formation and lipid deposition were inhibited in DN-p90rsk-ETg/Ldlr–/– mice, but these inhibitions were completely abolished in DN-p90rsk-ETg/Senp2+/–/Ldlr–/– mice (Figure 9, A–E, and Supplemental Figure 10A). Next, to determine the contribution of macrophages and vascular smooth muscle cells to lesion formation, we performed cell type–specific staining using anti-MAC3 (macrophages) and anti-α-smooth muscle actin (α-SMA) (smooth muscle cells). We found accumulation of anti-MAC3–staining cells, but not α-SMA–staining cells, in the intima of NLC/Ldlr–/– and DN-p90rsk-ETg/Senp2+/–/Ldlr–/– mice. However, this inflammatory cell infiltration into the lesion was significantly impaired in

Figure 6. d-flow–induced SENP2 nuclear export is regulated by T368 phosphorylation. (A) After transduction for 18 hours with Ad-myc–tagged SENP2-WT or Ad-myc–tagged SENP2-T368A, HUVECs were exposed to d-flow or kept under static conditions for the indicated times and immunostained with anti-Myc and DAPI. Images were recorded using a confocal microscope equipped with a Planapo ×60 1.42 NA oil objective lens. Scale bars: 20 μm. Bar graph indicates quantification of percentage of nuclear fluorescence intensity divided by total cell fluorescence intensity of anti-Myc staining. Data represent mean ± SEM (n ≥ 30 cells per each condition). **P < 0.01, compared with no-flow condition in the presence of Ad-SENP2-WT. ***P < 0.01, compared with each time point of Ad-SENP2-WT control by 1-way ANOVA followed by Bonferroni’s post hoc test. (B and C) En face preparations of the aortic arch of 7-week-old WT C57BL/6 mice were triple-stained with anti–VE-Cad (as an EC marker), anti–SENP2 (B), or anti–phospo–SENP2-T368 (C), and DAPI. Scale bars: 10 μm (left panels, B and C); 20 μm (right panel, B and C). Representative images from 3 independent experiments are shown.
by s-flow and the level of this downregulation went below the level of SUMOylation in cells kept under static conditions (11). In addition, we have already reported that s-flow increased and d-flow decreased ERK5 transactivation via regulating ERK5-SUMOylation (8, 11). These data suggest crucial roles played by p53 and ERK5 SUMOylation in differentiating EC responses to s-flow and d-flow.

Our present study has uncovered the central role of the p90RSK-SENP2 module in d-flow–elicited EC signaling that leads to vascular dysfunction. This conclusion is based on several findings, including that (a) p90RSK regulates SENP2 de-SUMOylation function by phosphorylating SENP2-T368, (b) p90RSK-mediated SENP2-T368 phosphorylation modulates the function of p53 and ERK5, and (c) endothelial p90RSK activation by d-flow induces EC inflammation, apoptosis, and subsequent atherosclerotic plaque formation. In Ldlr–/– mice, a conventional atherosclerosis model, not only d-flow–induced endothelial dysfunction but also many other factors, including macrophage- and lymphocyte-mediated inflammation, contribute to atherogenesis. In contrast,

DN-p90RSK-ETg/Ldlr–/– mice (Supplemental Figure 10, B and C). These results demonstrate that the p90RSK-SENP2 module in ECs plays a critical role in d-flow–induced atherogenesis.

Discussion

In this study, we provide evidence that p90RSK, a key activator of d-flow–induced EC dysfunction and subsequent development of atherosclerosis, is a downregulator of the SENP2 de-SUMOylation function on p53 and ERK5. We have shown that d-flow activates p90RSK and phosphorylates SENP2-T368, which was identified as a phosphorylation site of this SUMO protease in this study. Phosphorylated SENP2 loses its de-SUMOylation function and, as a result, SUMOylation levels of p53 and ERK5 increase, causing EC dysfunction.

Chronic low-grade inflammation and apoptosis are thought to induce EC dysfunction and atherosclerosis (11, 13). We have previously published that d-flow induces ERK5 and p53 SUMOylation, which leads to EC inflammation and apoptosis (11). Unlike d-flow stimulation, SUMOylation of p53 and ERK5 was downregulated by s-flow and the level of this downregulation went below the level of SUMOylation in cells kept under static conditions (11). In addition, we have already reported that s-flow increased and d-flow decreased ERK5 transactivation via regulating ERK5-SUMOylation (8, 11). These data suggest crucial roles played by p53 and ERK5 SUMOylation in differentiating EC responses to s-flow and d-flow.

Our present study has uncovered the central role of the p90RSK-SENP2 module in d-flow–elicited EC signaling that leads to vascular dysfunction. This conclusion is based on several findings, including that (a) p90RSK regulates SENP2 de-SUMOylation function by phosphorylating SENP2-T368, (b) p90RSK-mediated SENP2-T368 phosphorylation modulates the function of p53 and ERK5, and (c) endothelial p90RSK activation by d-flow induces EC inflammation, apoptosis, and subsequent atherosclerotic plaque formation. In Ldlr–/– mice, a conventional atherosclerosis model, not only d-flow–induced endothelial dysfunction but also many other factors, including macrophage- and lymphocyte-mediated inflammation, contribute to atherogenesis. In contrast,
ETC cells by bone marrow transplantation showed the same extent of vascular lesion development in the aortic root as the mice given Senp2+/+ donors, suggesting that vascular SENP2 expression regulates atherosclerosis plaque formation (11). In addition, we found a significant increase in endothelial inflammation in Senp2+/– mice in vivo (11). Taken together, these data suggest that EC damage, but not macrophage or vascular smooth muscle cell proliferation, is the main mechanism of this lesion formation.

The concept that p90RSK-SENP2 compartmentalization (nucleus vs. cytosol), which regulates SENP2 function, is critical for the regulation of atherogenesis is, we believe, novel and highlights the importance of SUMOylation in mechanotransduction of d-flow that dictates the initial development of atherosclerotic plaques. The proteins we have focused on in this study should be attractive drug targets, since they are uniquely involved in signaling events that are activated by d-flow. We have shown that p90RSK-mediated SENP2-T368 phosphorylation plays a central role in endothelial inflammation and apoptosis, which are causally tied to diseases such as hypertension, diabetes, and coro...

Figure 8. Role of the p90RSK-SENP2 module in d-flow–elicited inflammation and apoptosis. (A) En face preparations of aortic arch of 7-week-old NLC, DN-p90rsk-ETg, or DN-p90rsk-ETg/Senp2–/– mice were double-stained with anti–VE-Cad and anti–VCAM-1. Scale bars: 20 μm. The graph shows anti–VCAM-1 staining intensities in d- and s-flow areas of the aortic arch. Data represent mean ± SEM. Right panel, n = 3 for each genotype. **P < 0.01, by 1-way ANOVA followed by Bonferroni’s post hoc test. (B–D) MECs isolated from NLC, DN-p90rsk-ETg, or DN-p90rsk-ETg/Senp2–/– mice were stimulated with d-flow, and SENP2-T368 phosphorylation (B), expression of adhesion molecules as inflammation markers (C), and cleaved caspase-3 expression as an apoptosis marker (D) were determined by Western blotting. (B) Bar graph shows the quantification of SENP2-T368 phosphorylation levels after normalization with tubulin expression. Data represent mean ± SEM (n = 3 for each genotype). **P < 0.01, by 1-way ANOVA followed by Bonferroni’s post hoc test. (C and D) The blots shown represent 1 of 3 independent experiments.
bovine serum (Hyclone). HUVECs were cultured on 0.2% gelatin-precoated dishes. Cells were used for experiments at passages 4 and 5. To expose the cells to flow in vitro, we used a cone-and-plate flow apparatus described previously (26). Confluent cells cultured in 100-mm dishes were exposed to s-flow (shear stress = 20 dyn/cm²) or d-flow created by a cone with radial grooves as we described previously (7). HeLa, human cervical adenocarcinoma (no. CCL2), and CHO, hamster ovary (no. CCL-61), cell lines used in this study were purchased from ATCC.

Immunoprecipitation (SUMO assay) and Western blot analysis. Cells were collected in PBS containing 10 mM N-ethylmaleimide (NEM), and cell extracts were prepared in modified radioimmunoprecipitation assay (RIPA) buffer. SUMOylation was detected as previously described (7).

In vitro phosphorylation of SENP2 by activated p90RSK. Glutathione-S-transferase–SENP2–truncated (GST–SENP2–truncated) proteins were expressed in Escherichia coli, purified with glutathione–sepharose 4B as described (Pharmacia Biotech Inc.), and used in in vitro kinase assays with activated p90RSK, as described previously (27).

Mammalian 2-hybrid analysis and transfection of cells. Cells were plated in 12-well plates at 5 × 10⁴ cells/well. The mammalian 2-hybrid assay was performed as described previously (4).

Figure 9. Role of the p90RSK-SENP2 module in atherosclerotic plaque formation. (A) Atherosclerotic lesions 4 weeks after partial left carotid artery (LCA) ligation in NLC/Ldlr⁻/⁻ (n = 9), DN-p90rsk-ETg/Ldlr⁻/⁻ (n = 10), and DN-p90rsk-ETg/Senp2⁻/⁻/Ldlr⁻/⁻ (n = 7) mice are shown. Unligated right carotid artery (RCA) in each mouse is used as control. Representative images are shown after H&E staining. Scale bars: 50 μm. The intimal lesion area and the media area (B), and the intima/media ratio (C) were determined in cross-sections of ligated LCAs. Data represent mean ± SEM. *P < 0.05; **P < 0.01, by 1-way ANOVA followed by Bonferroni’s post hoc test. (D) Representative images of frozen sections of LCA and RCA after LCA ligation are shown with oil red O staining displaying lipid deposits. Scale bars: 50 μm. (E) Bar graph shows quantification of oil red O–stained areas in the intima of NLC/Ldlr⁻/⁻ (n = 4), DN-p90rsk-ETg/Ldlr⁻/⁻ (n = 5), and DN-p90rsk-ETg/Senp2⁻/⁻/Ldlr⁻/⁻ (n = 5) mice. Data represent mean ± SEM. **P < 0.01, by 1-way ANOVA followed by Bonferroni’s post hoc test.

Methods
Additional details of experimental procedures are included in Supplemental Methods.

Generation of mouse anti–phospho–SENP2-T368. A peptide corresponding to the aa sequence from 358 to 378 of mouse SENP2 (Biotin-NPEGQ-DRTEDLFEFT*EDMEKEISNA) was synthesized (Peptidebody Inc.) with an aminoterminus biotin label in both phosphorylated and unphosphorylated forms. A mouse anti–phospho–SENP2-T368 single-chain Fv (scFv) was generated against the phospho-peptide by phage display (22) with a naive human phage display library constructed from peripheral blood lymphocytes (23, 24).

Isolation of MECs. MECs were isolated according to our previous publication (1).

Cell culture and flow apparatus. HUVECs were obtained from collagenase-digested umbilical cord veins (25) and collected in M200 medium supplemented with LGSS (Cascade Biologic) and 5% fetal bovine serum (Hyclone). HUVECs were cultured on 0.2% gelatin-precoated dishes. Cells were used for experiments at passages 4 and 5. To expose the cells to flow in vitro, we used a cone-and-plate flow apparatus described previously (26). Confluent cells cultured in 100-mm dishes were exposed to s-flow (shear stress = 20 dyn/cm²) or d-flow created by a cone with radial grooves as we described previously (7). HeLa, human cervical adenocarcinoma (no. CCL2), and CHO, hamster ovary (no. CCL-61), cell lines used in this study were purchased from ATCC. Immunoprecipitation (SUMO assay) and Western blot analysis. Cells were collected in PBS containing 10 mM N-ethylmaleimide (NEM), and cell extracts were prepared in modified radioimmunoprecipitation assay (RIPA) buffer. SUMOylation was detected as previously described (7).

In vitro phosphorylation of SENP2 by activated p90RSK. Glutathione-S-transferase–SENP2–truncated (GST–SENP2–truncated) mutant proteins were expressed in Escherichia coli, purified with glutathione–sepharose 4B as described (Pharmacia Biotech Inc.), and used in in vitro kinase assays with activated p90RSK, as described previously (27).

Mammalian 2-hybrid analysis and transfection of cells. Cells were plated in 12-well plates at 5 × 10⁴ cells/well. The mammalian 2-hybrid assay was performed as described previously (4).
Real-time PCR assay. Total RNA was extracted using the TRIzol reagent according to the manufacturer’s instructions. The reverse transcriptase reaction (PCR) was performed in 20 μl mixtures containing 1 μg of total RNA according to the manufacturer’s protocol (no. 170-8890; Bio-Rad).

Analysis of apoptosis. In accordance with recently published guidelines, apoptosis was quantified by 2 methodologically unrelated criteria (28). Late-stage apoptosis was quantified by counting cells with positive TUNEL staining (29).

Animals. Tamoxifen-inducible (4-OHT) EC-specific transgenic mice and WT-p90rsk (WT-p90rsk-ETg) and dominant-negative p90rsk (K94A/K447A; DN-p90rsk-ETg) mice were generated by using mice expressing tamoxifen-inducible Cre recombinase Cre-ER\(^2\) under the regulation of the VE-Cad promoter (17) (provided by M. Luisa Iruela-Arispe, UCLA, Los Angeles, California, USA) (13). All mice were maintained under pathogen-free conditions at the Aab Cardiovascular Research Institute at the University of Rochester.

En face immunostaining. The s-flow and d-flow areas within the aorta were identified based on the published and generally accepted anatomical locations where such flow patterns are known to occur (3, 11). We performed en face staining as described in our previous reports (3, 4).

Partial carotid ligation and atherosclerosis. Partial carotid ligation has been well established as a model of d-flow–induced atherosclerosis, and we performed this surgery as previously described (30). Briefly, NLC/Ldlr\(^–\)/\(^–\), DN-p90rsk-ETg/Ldlr\(^–\)/\(^–\), and DN-p90rsk-ETg/\(^{Senp2__2}/_________Ldlr\(^–\)/\(^–\) mice were anesthetized by 2.0% isoflurane, placed on a heated surgical pad, and subcutaneously given 2.5 mg/kg flunixin. Isoflurane was maintained at a level between 1.0% and 2.0%. After hair removal, a midline cervical incision was made and the internal and external carotid arteries were exposed and partially ligated with 6.0 silk suture, leaving the occipital artery patent. The skin was sutured with absorbable 6.0 silk suture in a running subcuticular pattern. Mice were allowed to recover in a clean cage on a heated pad. For the atherosclerosis study, mice were fed a HFD (TD88137, Harlan Laboratories) for 4 weeks, at which time their carotid arteries were harvested. To determine atherosclerotic lesions in histological sections, right (control) and left (surgery performed) carotid arteries were made through the entire aortic arch (11) and the intimal lesion and medial areas of the arterial wall (19, 31), image analysis was performed using Image J 1.45.

Cholesterol level analysis. Mice were anesthetized and blood samples were collected from the abdominal artery. Serum was prepared and total cholesterol, HDL, and non-HDL (LDL and VLDL) concentrations were measured enzymatically using commercially available kits (ab65390; Abcam). The assays were performed in accordance with the manufacturer’s instructions.

Statistics. Data are presented as mean ± SEM. Differences between 2 independent groups were determined by Student’s t test (2-tailed), and where applicable, 1-way ANOVA followed by Bonferroni’s post hoc test for multiple group comparisons using GraphPad Prism 5.0 (GraphPad Software Inc.). When groups showed unequal variances, we applied Welch’s ANOVA to perform multiple group comparisons. P values of less than 0.05 were accepted as being statistically significant.

Study approval. All animal procedures were approved by the University Committee on Animal Resources of the University of Rochester (approval no. 2007-091/100593).

Acknowledgments

We are grateful to Craig Morrell and Deanne M. Mickelsen for performing microsurgery on mice and for discussions and comments on the manuscript. This work is supported by grants HL-088637, HL-064839, and HL-077789 (to J. Abe); 12SG11690003 and HL-118462A (to K. Fujiwara); 11GRNT5850001 (to K. Fujiwara); and GM-071434 (to J. Taunton).

Address correspondence to: Jun-ichi Abe, Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Box CVRI, Rochester, New York 14642, USA. Phone: 585.276.9794; E-mail: Jun-ichi_Abe@urmc.rochester.edu.

Chang-Hoon Woo’s present address is: Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, South Korea.

Kyung-Sun Heo, Nhat-Tu Le, Keigi Fujiwara, and Jun-ichi Abe’s present address is: Department of Cardiology, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.