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Evaluating Alternative Strategies for Traffic Reduction in 
Los Angeles 

EXECUTIVE SUMMARY 

Even if post COVID-19 employers provide increased opportunities for telecommuting, Los 
Angeles traffic will likely continue to be a major problem. Prior to the pandemic, Angelinos 
spent 104 hours stuck in traffic each year. For a typical worker, this is equivalent to a total loss 
of 13 working days in a year. In total, the estimates of the social cost of traffic congestion in Los 
Angeles add up to $9.7 billion dollars per year, or $2,408 per driver. Recently, Los Angeles 
METRO announced that it is exploring a new approach to tackle congestion, considering 
congestion pricing coupled with more high-quality transportation options. Several proposals 
have been discussed: one option consists of introducing a cordon toll around downtown L.A. 
Another option includes reducing traffic between the L.A. basin and the San Fernando Valley. 
Yet another would focus on reducing traffic along the I-10 corridor between Santa Monica and 
downtown L.A. 

Using big-data from a rich network of detectors located on all freeways in Los Angeles that 
measure in real-time speed and flow, this project relies on statistical methods and visualization 
tools to develop a practical tool for policymakers to infer the effects of alternative strategies for 
reducing traffic congestion in Los Angeles. Specifically, it provides insights into questions such 
as: Given typical origin/destination pairs and routes that drivers follow on their journey to work 
at peak periods, how many vehicles would have to be removed for traffic congestion to be fully 
eliminated in Los Angeles? What is the resulting level of the tolls needed, and how should these 
tolls vary spatially and along the hours of the day? The project also sheds light on current 
proposals being considered by METRO (and other agencies) and contrasts them against this 
more comprehensive approach to metropolitan-wide congestion. This contrast will help to 
identify potential unintended effects of some of the more spatially targeted proposals being 
considered and provide inputs to improve their design. For example, with localized congestion 
pricing in specific areas, what happens to the traffic that gets displaced elsewhere? Should 
public transit investments be channeled to different areas to minimize potential unintended 
effects of traffic displacement? And, if so, how?  

Unlike other attempts to measure congestion in cities, this proposed framework offers various 
advantages. First, because the framework will provide estimates of the speed/flow 
relationships in real-time at a temporally and spatially disaggregated level, one is able to 
calculate exactly the number of vehicles needed to be removed at different times from specific 
routes and locations so that congestion is eliminated. In the future, our estimates should be 
combined with spatially-explicit data that reflects different key aspects of the existing public 
transit network, so as to infer the capability of the existing public transit network to absorb 
such trips, as well as identify locations where investments in public transit would yield the 
greatest benefits. Given the recent Measure M, knowledge of the returns of public transit 
investments at different locations is of great importance.  



 v 

Finally, our proposed framework informs the design of tolls. The estimation of the speed/flow 
relationships and congestion at a highly disaggregated way leads itself to the calculation of the 
toll needed to be charged at different times of the day and locations, so that the external costs 
of congestion are eliminated. Future work, by matching socio-economic data at the census-
block level with route and our location-specific estimates of the speed/flow relationships and 
congestion, can inform how the tax burden vis-à-vis benefit that a congestion toll strategy 
would generate on different groups of the population.  
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1. Introduction 

Traffic congestion is a perennial issue for cities worldwide. Not only do households spend a 
large share of their income on transportation but they also spend a considerable share of their 
time commuting. This time cost of travel is exacerbated by traffic congestion. For example, in 
Los Angeles, drivers spend on average 104 hours stuck in traffic each year. For a typical worker, 
this is equivalent to a total loss of 13 working days in a year. Earlier estimates of the social cost 
of traffic congestion in Los Angeles suggest that congestion costs add up to $9.7 billion dollars 
per year, or $2,408 per driver. 

Since Vickrey (1969), economists routinely think of traffic congestion as one of the largest 
unpriced negative externalities. This externality is easy to grasp: The more drivers are using the 
road-system, the lower average speed will be. While drivers entering a road perceive the 
average driving time as their cost of travel, they do not take into account that their actions slow 
down other drivers. Economists have therefore recommended congestion pricing to address 
this issue. It is well established that alternative methods to reduce traffic congestion typically 
suggested by policymakers, such as road and public transit investments, partial pricing of lanes, 
and changes in spatial structure are not as effective as congestion pricing. For example, recent 
studies show that travel demand is largely unresponsive to changes in city structure and public 
transportation availability (Bento et al. 2005), and that increasing road capacity simply leads to 
induced demand (Duranton and Turner, 2011).  

In this report, we explore the design of optimal congestion pricing using big data, relying on a 
novel instrumental variables approach. Our goal is to empirically recover the marginal external 
cost of traffic congestion by estimating the speed-flow relationship for freeways in the Los 
Angeles metropolitan area. Estimating the speed-flow relationship comes with three empirical 
challenges: First, since speed and flow are a result of travel demand and supply (highway 
capacity), an instrumental variables approach that identifies this technical relationship is 
needed. Second, the potential presence of hypercongestion, which occurs when the 
relationship between throughput and speed becomes positive (Walters (1961), Hall (2018), 
complicates the estimation. Finally, economic theory doesn’t provide any guidance on the 
functional form that captures the empirical relationship between speed and flow, and it isn’t a 
priori obvious whether this relationship can be captured by a continuous function, or whether 
this function differs depending on the level of flow.  

We tackle these challenges by combining detailed data that includes traffic speeds and volumes 
measured by freeway detectors, vehicle accident counts by location, and real-time routing data 
scraped from Google Maps. In order to distinguish travel supply and demand relationships, we 
use vehicle crashes on parallel routes as plausible exogenous demand shifts, and therefore 
recover the causal effect of flow on speed. The idea is that a crash on one route induces some 
drivers to switch to other routes independently of supply shocks there. As these drivers switch 
routes, flow levels get altered and speeds adjust. 

Our main result points to a significant negative externality of traffic congestion. To demonstrate 
this, we first provide convincing evidence that our instrumental variables approach is valid. In 
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fact, we show that vehicle crashes shift travel demand to other routes and increase traffic 
density there by 2-3%.  

Importantly, our instrumental variables approach uncovers that the marginal effect of an 
additional trip is not constant. That is, the speed-flow relationship is well characterized by a 
structural break: when traffic flow is low, adding an additional trip has little to no effect on 
travel times. But once the free-flow capacity of a freeway is reached, congestion builds up. At 
that point, adding a car to the roadway decreases average freeway speeds by roughly 3.11%. As 
a result, at peak times an additional trip reduces speed by, on average, 0.22%. 

Accounting for the heterogeneity of the congestion externality across space and time is also 
important. Our results underscore that the marginal cost of an additional trip at high levels of 
traffic increases by more than 60%. Taken together, our instrumental variables approach 
implies large negative externalities of traffic congestion. And these are significantly more 
pronounced than the reduced form OLS estimates.  

We use the estimates of the speed-flow relationship to perform several policy counterfactuals. 
We first show that even if we relocated traffic demand over space and time, freeway capacity in 
Los Angeles would not suffice to provide free flow speeds. This further points towards the need 
for congestion pricing, especially during peak periods. 

We then calculate the optimal Pigouvian congestion charges that recover the social optimum in 
a static model of freeway travel. Using demand estimates from the literature, we find the 
optimal toll at peak times is 33 cents per mile. In contrast,  tolls would be much lower, even 
zero, during off-peak periods. We show how this toll varies over space and time, as well as 
report on its distributional effects. This toll would more than double highway speeds during 
peak times and only requires reducing vehicle miles traveled (VMT) at the peak by 10%. The 
resulting social welfare gains are over two billion dollars per year.  

Importantly, these results differ substantially from a model that fails to account for the 
structural break in the speed-density relationship. Correctly estimating the marginal external 
costs decreases the optimal reduction in VMT by 33%, increases the improvement in speed by 
55%, decreases the increase in private costs by 50%, and increases the social welfare gains by 
30%. We arrive at these results by contrasting estimates from a standard linear speed-flow 
relationship with our specification which allows for a structural break in this relationship.  

This paper builds on a literature of estimating the negative externality of traffic congestion and 
optimal road pricing schemes (keeler (1977)). While there is a large literature in the field of 
transportation engineering that is concerned with the speed-flow relationship, this strand 
ignores the simultaneity of traffic demand and supply. Akbar et al. (2017), Yang et al (2020), 
Couture, (2018) have introduced economic rationale for the need to use an instrumental 
variables approach to recover the causal effect of flow on speed. to  

Our approach differs from previous studies in the use of a spatially and temporally 
disaggregated demand instrument that allows us to quantify the causal relationship between 
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speed and density. While Yang et al. (2020) have provided such an estimate for Beijing, China, 
we are to our knowledge the first ones to do so for a major metropolitan area in the US. The 
fine disaggregation of our data and instrumental variable further allows us to estimate speed 
flow relationships in different parts of the city and link them to socioeconomic characteristics of 
neighborhoods. We are ultimately interested in the spatial distribution of congestion 
externalities within cities. 

The report is structured as follows. Section 2 describes the methodology by introducing the 
economic and empirical framework for measuring road congestion. In Section 3 we discuss the 
data, methods, and empirical strategy. In Section 4 we elaborate on the implementation of the 
empirical strategy. In Section 5 we present the results. In Section 6 we perform policy 
calculations, while Section 7 concludes. 

While comprehensive pricing of roads is still politically disputed and technologically challenging, 
several cities have taken the lead and implemented some form of congestion pricing, usually 
through simple cordon tolling (e.g., London and Singapore). Major cities such as Los Angeles 
have put forward proposals for comprehensive road pricing. The smart city revolution is 
expected to reduce administrative costs of implementing comprehensive yet flexible pricing 
schemes. However, there is still very little known about the spatial and temporal variation in 
optimal congestion charges. 
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2. A Simple Model of Traffic Congestion 

To help fix concepts, we start with the textbook economic model of traffic congestion. We 
further extend this model in Section 5. This model considers a single time period and a single 
road segment of length l. Travel speed on the road segment are a decreasing function of the 
number, or volume, of trips, denoted as 𝑆(𝑉). We denote the inverse demand curve as 𝐷(𝑉). 
All travelers have the same value of time, α. The private costs of traveling in the absence of a 
toll is thus 𝛼. 𝑙 𝑆(𝑉)⁄ . The total social cost of V travelers using the road is V.𝛼. 𝑙 𝑆(𝑉)⁄  and so 
marginal social cost of an additional traveler is 𝛼. 𝑙 𝑆(𝑉) − 𝑉. 𝛼. 𝑙𝑆′(𝑉). 𝑆(𝑉)−2⁄ . The first term 
in the expression for marginal social cost is the private cost born by the additional traveler and 
the second term is the externality, the additional cost born by all other travelers when the 
additional traveler increases travel times.  

We can use this simple model to illustrate the congestion externality and how tolling can 
increase social welfare. Since travelers only consider their private costs and benefits when 
deciding whether to use the road, the no-toll equilibrium occurs where the inverse demand 
curve intersects the private cost curve. That is, when 𝐷(VNT)  =  𝛼𝑙/𝑆(VNT), as shown in Figure 
1. This, unfortunately, means there are many travelers for whom the social cost of their trip 
exceeds their private benefits, and so there is a resulting deadweight loss. In the social 
optimum, the only people who travel are those whose private benefit exceeds the social 
marginal cost, and so the social optimum occurs where the inverse demand curve intersects the 
marginal social cost curve, i.e., 𝐷(𝑉𝑆𝑂) = 𝛼𝑙 𝑆(𝑉𝑆𝑂) − 𝑉𝑆𝑂𝛼𝑙𝑆′(𝑉𝑆𝑂). 𝑆(𝑉𝑆𝑂)−2⁄ .  

 

Figure 1. Standard economic model for congestion. 

As illustrated in Figure 1, this reduces the volume of trips from VNT to VSO. Since the volume has 
decreased, the travel time costs fall from CNT to CSO. To reduce the number of travelers to VSO, 
the social planner must impose a toll, τ , that raises the private cost to D(VSO). Imposing this toll 
increases private costs but also increases social welfare by eliminating the deadweight loss and 
generating toll revenue. 
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3. Data, Methods, and Empirical Strategy 

Our first goal is to estimate the causal relationship between speed and flow, represented by 
𝑆(𝑉). This section presents our empirical strategy, and data for doing so. We start by 
introducing our primary dataset and three empirical challenges in estimating the speed-flow 
relationship. 

3.1 Data 

Our primary dataset comes from California Department of Transportation’s (Caltrans) 
Performance Measurement System (PeMS). PeMS contains data on traffic speeds and flows 
from thousands of inductive loop detectors built into limited-access highways (freeways) across 
California. This data is collected in real-time at 30-second intervals, and then Caltrans conducts 
extensive tests of data quality and provides the data in raw and aggregated form. We 
supplement these data with data on vehicle crashes.  

We use the data for 2017 covering Caltrans District 7, which consists of Los Angeles County and 
Ventura County. These two counties are a subset of the Los Angeles Metropolitan Statistical 
Area, accounting for over two-thirds of the area’s total population. For the sake of brevity, we 
refer to this area as “Los Angeles”. Because some freeways have high-occupancy vehicle lanes, 
we use the hourly data for mainline stations, where a station is the set of detectors in a given 
type of lane at a given location and going a specific direction. Loop detectors regularly fail and 
we only use data from the station-hour observations where all the component detectors are 
reporting data. We use data from 1,318 stations. Figure 2 plots the locations of the stations we 
use. Figure 3 plots average lane speeds across the hours of the day, while Figure 4 plots of the 
frequency of traffic incidents over the course of the day. 

 

Figure 2. Study area. 

Notes: This figure plots locations of in-lane loop detectors that provide data during our study period. To save 
space, it excludes twelve stations (sets of detectors) north of Santa Clarita. 
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Figure 3. Average speed standard deviation over time. 

Notes: This figure plots average lane speed at freeway detectors by hour of day and the associated standard 
errors. 

 

Figure 4. Frequency of traffic incidents. 

Notes: This figure plots the average frequency of traffic crashes by hour of day in our study area. 

FIGURE 3: AVERAGE SPEED STANDARD DEVIATION OVER TIME 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: This figure plots average lane speed at freeway detectors by hour of day and the associated standard errors. 
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3.2 Empirical Challenges 

The relationship between speed, flow, and density 

Figure 5a depicts the relationship between speed and flow in our data using a heatmap. It 
shows that speeds of 65–80 miles per hour (mph) are regularly observed with flows from 0–
2,000 vehicles per hour per lane (vphpl). However, every level of flow also occurs at lower 
speeds. This lower portion of the speed-flow relationship is known by traffic engineers as 
“oversaturated flow”, and by economists as “hypercongestion”. When traffic flow is 
oversaturated, higher flows are associated with higher speeds. Oversaturated flow regularly 
occurs when a downstream road segment is so full of vehicles (i.e., oversaturated) that no more 
vehicles can fit in, and so vehicles in the upstream segment begin queuing, experiencing low 
speeds and flow (Verhoef, 2001; Small and Chu, 2003; Lindsey and Verhoef, 2007).  

There is an ongoing debate within the literature regarding whether a causal hypercongestion 
relationship exists, where it is possible to increase both speeds and flow. Hall (2018, 2021) 
summarize extensive evidence from the traffic engineering literature on the existence of a 
causal relationship, while Anderson and Davis (2020) find no evidence for one of the causal 
mechanisms behind hypercongestion. We follow the majority of the literature by being 
conservative and not treating hypercongestion as a causal relationship (e.g., Lindsey and 
Verhoef, 2007; Yang et al., 2020). 
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Figure 5. Fundamental traffic relationships. 

Notes: These figures plot the relationship between speed and flow, and speed and density in our data. Specifically, 
it is a heatmap where the plane is divided into small hexagons, and each hexagon is colored according to the log10 
of the number of observations it contains. To reduce figure size, we do not plot the 0.1% largest values on each 
dimension. 
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Speed-flow relationship is not single valued 

The oversaturated portion of the speed-flow relationship creates our first empirical challenge. 
That is,  the speed-flow relationship is not single valued. To address this, we follow Yang et al. 
(2020) and estimate the speed-density relationship and use this to calculate the speed-flow 
relationship. Traffic density is the number of vehicles per mile per lane, and is connected to 
speed (miles per hour) and flow (vehicles per hour per lane) by an identity: 

𝑓𝑙𝑜𝑤 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦. 𝑠𝑝𝑒𝑒𝑑. (1) 

This approach is useful, as documented in Figure 5b, since the speed-density relationship is 
single valued. We use (1) to convert our estimates of the effect of density on log speed to the 
effects of volume on speed. Therefore 1 will form the basis for our empirical specification. 

Speed/Density a result of supply and demand 

Our second, and most important, empirical challenge is that observed speed and density 
depends on both supply and demand. This is the classic challenge in estimating a supply (or 
demand) curve. While we observe many different equilibrium combinations of speed and 
density, we do not know whether they vary due to changes is supply, demand, or both. As an 
example of how this can bias our results, consider a rainstorm. A rainstorm reduces drivers’ 
demand for trips and the capacity of the freeway, which will bias our estimates of the speed-
density (and thus speed-flow) relationship towards zero. To overcome this challenge, we need a 
source of exogenous variation in demand.  

Ideal experiment and our solution 

To highlight our empirical approach, it is useful to think about the perfect experiment that we 
try to emulate. In the perfect experiment, we would hire drivers and randomly assign them to 
drive on various freeway segments. We would then measure the change in speed caused by the 
additional trips. 

Our solution to our second empirical challenge is to approximate this ideal experiment by using 
traffic crashes on alternate routes as a source of plausibly exogenous demand shocks. Consider, 
for example, a traveler who has two routes to his destination. When there is a crash on his 
preferred route, this worsens congestion on this route. The traveler, informed of this 
congestion either by radio or navigation apps such as Google Maps, instead travels on his 
alternate route. The crash on the preferred route thus leads to an exogenous increase in traffic 
flow and density on the alternative route.  

This approach has the additional advantage that it solves for the causality issue when dealing 
with hypercongestion. Hypercongestion can lead to distortions in the speed-flow relationship 
even when the density transformation is used. The presence of downstream bottlenecks can 
lead to an increase in density and a simultaneous decrease in speed on upstream routes that is 
not causal. By using variation in vehicle density on the road that is caused by conditions on 
alternative routes and unrelated to bottleneck conditions on the current route, we eliminate 
this simultaneity issue. 
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3.3 Methods 

We implement this approach using an instrumental variables approach, where a crash occurring 
on an alternate route serves as an instrument for measuring the effect of density on speed. Our 
exclusion restriction is that a crash on route i only effects speeds on route j by redirecting 
additional vehicles to route j. This also requires there to be no other factors that cause crashes 
on route i and simultaneously affect traffic speed on route j. One example of a violation of this 
assumption are unobserved weather hazards that affect both traffic speed and crashes. A 
rainstorm could potentially lead to crashes on the main route and also reduce speeds on the 
alternative. To address this possible issue, we control for an extensive set of different 
measurements of weather conditions. Another violation would be time of day or day of week 
factors that increase traffic flow on all routes, increasing crash risk and reducing travel speeds. 
We address this by using an extensive set of time of day, day of week, and month fixed effects. 
We also control for the price of gasoline as speed might be influenced by the cost of driving 
(Burger and Kaffine, 2009; Bento et al., 2013). To address other possible demand shocks that 
increase traffic flow on all routes, we also control for hourly vehicle miles traveled (VMT) in 
District 7. Finally, to account for differences between road segments, we include station fixed 
effects. Thus, our estimates compare travel speeds at a given station-hour-day of week-month 
when there is a crash on an alternative route to the same station-hour-day of week-month 
when there is not a crash. 

Thus our baseline instrumental variables (IV) model is described by the following two-equation 
system: 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑡 = 𝛾. 𝐶𝑟𝑎𝑠ℎ𝑎(𝑖),𝑡 + 𝑋𝑖,𝑡
′ . 𝛿 + 휀𝑖,𝑡 (2) 

𝐿𝑜𝑔(𝑆𝑝𝑒𝑒𝑑𝑖,𝑡) = 𝛽. 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑡 + 𝑋𝑖,𝑡
′ 𝜃 + 𝜂𝑖,𝑡 (3) 

Here, 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑡 is the average density at station 𝑖 at time 𝑡, 𝐶𝑟𝑎𝑠ℎ𝑎(𝑖),𝑡 is an indicator variable 

equal to one if there is a crash on an alternate route for segment 𝑖 at time 𝑡, and 𝑆𝑝𝑒𝑒𝑑𝑖,𝑡  is the 
average speed at station 𝑖 at time 𝑡. In future work, we will generalize the instrument so it can 
be a continuous variable. That is, instead of an indicator variable, one may consider the number 
of crashes on alternative routes during a specific time period.  

The vector 𝑋𝑖,𝑡
′  contains the control variables. These include a full set of station, hour, day of 

week, and month indicators, temperature, temperature squared, wind speed, precipitation, gas 
prices, and District 7 VMT. 

3.4 Empirical Strategy 

To implement our approach, we require data on crashes, routes and their alternatives, gas 
prices, and weather. We obtain geo-coded crash reports from PeMS, which reports all crashes 
investigated by the California Highway Patrol. The data includes the exact location, time (up to 
a minute), a verbal description of the incident, and the duration until the crash was resolved. 
We link crashes to the closest station, requiring the distance to be less than a mile, on the 
correct freeway and direction of travel. 
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Not all crashes are recorded by law enforcement officers. This under-reporting might vary by 
traffic density and it is not clear whether this issue is more pronounced at high or low traffic 
density. In either case, since we are potentially misleadingly counting “treated” stations as 
“non-treated,” we are introducing a negative bias and therefore our results should be seen as a 
lower bound of the true marginal effect. 

Creating alternative routes 

We gather data on routes and their alternatives in three steps. First, we obtain commuting data 
from the LEHD Origin-Destination Employment Statistics (LODES). This dataset provides the 
work and home census blocks for all workers covered by state unemployment insurance 
programs.4 Second, we query the Google Maps API to find the recommended route and up to 
two alternative routes for a random sample of 1% of commutes (19,163 origin-destination 
pairs). Figure 6 shows what Google returns for a single origin-destination pair and Figure 7 
shows that this 1% sample covers all of Los Angeles’ major roads. Our third step is to spatially 
match each route to the PeMS stations they cross. We do so by taking the polyline shapefiles 
for each route, calculating the non-overlapping portion of each route, and then finding the 
stations (in the correct direction of travel) crossed by each route. This allows us to define routes 
as a list of stations crossed. 

 

Figure 6. Example of Google Maps driving directions. 
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Figure 7. Roads used in driving directions. 

Notes: This figure plots the roads used in the driving directions for the 1% sample of all LODES origin-destination 
pairs. 

 

Figure 8. Example of instrument construction. 

Notes: This figure shows that when a crash occurs on the green route, detectors along the blue route become 
treated while the detectors on the same highway link on the green route are excluded. 
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We define a station as treated in given hour if, during that hour, there is a crash near a station 
on the non-overlapping portion of an alternate route.5 Since crashes potentially change the 
relationship between function of speed and density, we exclude station-hour observations that 
experience traffic crashes from our regressions. Specifically, we define a freeway “link” as the 
segment of a freeway between two highway interchanges, and exclude all stations on a link 
that experiences a crash. Figure 8 shows an example of how this works. 

In addition, we also collect weekly retail gas prices for the Los Angeles area from the Energy 
Information Administration’s website and gather data on hourly weather conditions from the 
National Oceanic and Atmospheric Administration’s Integrated Surface Database (ISD) Lite 
Database. The ISD Lite data contains hourly measurements of temperature, rainfall, windspeed, 
and visibility from six weather stations in the Los Angeles metropolitan area with varying 
coverage. We match each station to the closest weather station for which data is provided 
during that hour. 

The speed-density relationship is non-linear 

Our third empirical challenge is that, as Figure 5b shows, that the speed-density relationship is 
highly non-linear. When density is below 20 vehicles per mile per lane (vpmpl), density and 
speed are uncorrelated, but as density grows beyond 20 vpmpl, then speed begins to fall. This 
empirical pattern is not unique to our data, the Highway Capacity Manual (Transportation 
Research Board, 2016) describes the speed-flow relationship as typically having “a range of flow 
rates over which speed is constant” which ranges from “a flow rate of zero to a breakpoint 
value” (p. 12-9). This implies a speed-density relationship that has a range of densities over 
which speed is constant. 

Given this, our goal is to estimate the speed-density relationship when density is above the 
breakpoint. By breakpoint we mean the flow value after which speeds start to decline.  

This requires first estimating the location of the breakpoint. We do so by estimating a series of 
models using ordinary least squares (OLS) where the speed-density relationship has a slope of 
zero below the breakpoint using the following regression specification: 

𝑙𝑜𝑔𝑆𝑝𝑒𝑒𝑑𝑖,𝑡 = 𝛽2𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑡 . 𝑎𝑏𝑜𝑣𝑒_𝑏𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑖,𝑡 + 𝑋𝑖,𝑡
′ 𝛿 + 휀𝑖,𝑡 (4) 

The vector 𝑋𝑖,𝑡
′  contains the same extensive set of controls as in equations (2) and (3). We then 

determine the optimal breakpoint by choosing the breakpoint that maximizes model fit as 
measured by the Akaike Information Criterion (AIC). That is, we run a multitude of OLS 
regressions varying the level of flow that characterizes the break point and recover this break 
point. We also contrast our finding against the suggested guidelines for break points in the 
Highway Capacity Manual (Transportation Research Board, 2016). 

Once we know the breakpoint, our main results reports estimates of the speed-density 
relationship, estimated using (2) and (3) for two subsamples: densities above or below the 
breakpoint. That is, we estimate two separate sets of models: We estimate the speed-density 
relationship below the breakpoint to validate the assumption that speed is constant when 
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density is below the breakpoint. And we also report the estimates of the speed-flow 
relationship above the breakpoint. The latter are our primary empirical estimates. Importantly, 
a priori there is no reason to believe that the instrument would be needed for the regression 
below the breakpoint, since at low levels of density, there should be no relationship between 
density and speed.  

This methodology requires that the reduced form OLS regression can inform us of the structural 
break even in the presence of endogenous regressors. This assumption is based on the notion 
that the structural break in the congestion function is driven solely by freeway capacity. While 
the same endogeneity concerns mentioned above are present for the uncongested part of the 
congestion function (i.e., weather shocks), there is no a-priori reason to believe that the 
endogenous regressors would distort the location of the structural break. 

3.5 Descriptive Statistics 

Table 1 shows descriptive statistics of the speed-flow data. The first thing which is noticeable in 
the data is that average speeds are quite high. The unweighted mean of lane speeds on all 
detectors actually slightly exceeds the maximum speed limit in the study area of 65mph. This 
average masks high heterogeneity between detectors as certain routes see little traffic for most 
of the time. The range of speeds varies between 3mph and 86mph. We therefore weight the 
detector observations by traffic flow to create a typical freeway situation faced by a Los Angeles 
motorist. This reduces the weight of freeways that see little traffic and therefore provide high 
speeds. While this weighting scheme reduces the average speed, it is still very high at slightly 
below 62mph. 

Table 1. Descriptive statistics. 

Speeds and Crashes 
Variable Mean Std.Dev. Min Max Obs 
Lane Speed (mph) 60.87 17.12 3 86.5 1,362,961 
Lane Flow (vehicles per hour) 1,438.30 496.76 1 5173 1,362,961 
Lane Density (vehicles per mile) 28.16 18.02 0.01 189 1,362,961 
Implied Daily Delay (vehicle hours) 392,989 146,331 59,565 575,902 92 
Crashes by Hour 19.6 10.7 0 46 2,208 
Crashes by Day 470.9 50 333 562 92 

Importantly, Figure 9 makes it clear that traffic congestion is prominently a peak hour 
phenomenon. The figure depicts average speed and its standard deviation by hour of day. Even 
in the evening rush hour, the average speed for all detectors does not drop below 50mph. 
However, we see considerable variance in speeds during peak hour times. The slowest speed 
occurs during evening peak times at 5pm. The picture is consistent with general traffic patterns. 
The evening rush hours see lower speeds and last longer than the morning rush hours, 
consistent with the notion that drivers take more discretionary trips in the hours after work. 
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Figure 9. Mean weekday travel speed (mph) by link. 

Notes: This figure plots mean weekday (and non-holiday) travel speed (mph) for each highway link in the Los 
Angeles area. Travel speed calculated by dividing the length of each link by the travel time from the start to the 
end of the link, and then averaging across days. A link is defined as the segment between two highway 
interchanges. The links in grey are those with no valid data. 
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Crash data 

We next describe the characteristic features of the crash data. In our study period, there 
occurred more than 14,000 incidents within our study area. This corresponds to a daily number 
of around 450 traffic crashes per day. The temporal distribution of crashes mirrors that of 
traffic conditions but is more spread out (see Figure 4). Traffic crashes are more likely to occur 
during daytime hours and start to increase with the onset of the morning peak at 6am. 
However, they do not die out during noontime and steadily increase throughout the day to the 
beginning of the evening peak. They decline after 7pm until the minimum is achieved at 3am at 
night.  

Regarding the weather data, our study area experiences very little variation in weather 
condition during the study period of August 2017. There was no measurable rain during the 
time period and only 0.25% of all observations experience some trace precipitation. Similarly, 
wind speeds never exceed 8.2 meters/second which is equivalent to a “moderate breeze” on 
the Beaufort scale and is unlikely to influence traffic conditions. The only major variation in 
weather conditions come from changes in temperatures. These vary between 15 and 42.2 
degrees Celsius and experience considerable variation over the day.  

Additionally, we have very little variation in gas prices. Over our three months study period, the 
price of regular gasoline varied between $3.07 and $3.27 per gallon. 
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4. Implementation of Empirical Strategy 

In this section, we outline our instrumental variable design and present evidence for the 
relevance of our instrument. We then proceed to report and discuss the results of our 2SLS 
regressions and compare them to the OLS estimates. 

4.1 Constructing the Instrument 

Defining alternatives 

We begin by carefully describing the construction of our instrument, namely the occurrence of 
traffic incident on alternative routes. At first, we need to define what we mean by the term 
routes. We define routes as sets of contiguous freeway detectors that equal a typical 
commuting path. Since in our data we only observe origin and destination of commutes, but 
not the actual route taken, we use online routing platforms to determine the likely path of the 
commute. To do so, we query a random 1% sample (= 19,163 origin-destination pairs) of the 
universe of all OD commute pairs in the LODES database using Google Maps. The Google Maps 
API will return up to three different routes and we save these alternative pairs (and triplets 
respectively) as polyline shapefiles. An example of a commuting origin-destination pair and its 
geocoded driving route is depicted in Figure 6. Overall, the 1% sample creates driving directions 
that cover all major roads of the Los Angeles metropolitan area (see Figure 7).  

Next, we spatially match these to traffic detectors in the same travel direction using geospatial 
software. We first calculate the non-overlapping part of the driving routes and then use the 
Google Maps driving directions to overlay them with the detector shapefile. We then assign 
each detector that is congruent with the driving directions on the correct direction of the 
freeway. This allows us to define routes as a list of detectors crossed. Formally, for each origin-
destination route 𝑘 ∈  𝐾 we define up to three 𝑖 ∈  {1, 2, 3} sets of detectors:  

𝑅𝑖𝑘 = {𝑑𝑗|𝑑𝑗 𝑖𝑠 𝑎𝑙𝑜𝑛𝑔 𝑟𝑜𝑢𝑡𝑒 𝐾 } 

Where 𝑑𝑗 refers to the detector 𝑗 = {1, … , 𝐽} 

This allows us to establish alternatives at the detector level. We denote these exclusive sets of 
detectors as: 

𝐸𝑖𝑘 = 𝑅𝑖𝑘\(𝑈𝑗≠𝑖𝑅𝑗) 

We define detector pairs that are related if they are on segments that are alternatives to each 
other. That is, we rely on detectors in an alternative routes if they are located along the 
alternative routing suggestion from Google.  

Instrument construction 

We now can link the crashes data to the detectors. We first match every traffic incident report 
to the closest in-lane detector according to straight-line distance using the coordinates in the 
PeMS database. This allows us to define detectors that experienced crashes. We define 
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detector 𝑑𝑗𝑡 as affected by a crash if it is the closest detector to the crash location on the same 

route and the crash time falls within the hourly time window. 

For each detector 𝑑𝑗𝑡 we define 𝑐𝑟𝑎𝑠ℎ−𝑖,𝑡 as equal to one if any of its alternatives 𝑑𝑗 is affected 

by a crash in time 𝑡. This is a binary indicator equal to one if a crash happened on any 
alternative route and does not take into account the intensive margin. In future versions of our 
work we will explore a continuous instrument. Substitution effects could be stronger if there 
are multiple crashes on alternative routes. The binary instrument will not capture this intensity 
but measure the average effect of at least one crash occurring. Since crashes potentially change 
the relationship between function of speed and density, we exclude detector-time observations 
that experience traffic incidents directly from the regression. 

It is well known in the traffic engineering literature that an increase in traffic volume leads to a 
higher crash rate. We tackle this issue by including an extensive set of time fixed effects. In all 
specifications, we use seven day of week (DOW) and 24 hour of day (HOD) dummies as well as 
traffic detector fixed effects. The remaining identifying variation therefore results from changes 
in traffic density and speeds within the same time of day across different weeks. 

4.2 Functional form 

To quantify the congestion externality, we need to assure that the functional form is a good 
proxy of the actual relationship. Empirical evidence suggests that there is no externality at low 
traffic densities. Traffic engineers refer to the threshold where congestion arises as the capacity 
of the freeway. This creates a structural break in the relationship between speed and density as 
suggested by the scatterplot of the raw data.  

We operationalize this structural break by splitting the sample into congested and uncongested 
parts. For the uncongested part, we restrict the slope to zero and then test for the optimal 
cutoff point. Specifically, we run OLS regressions of the form, each for a different level of 
vehicles per mile. 

log 𝑠𝑝𝑒𝑒𝑑𝑖𝑡 = 𝛼𝑖𝑡 + 𝛽2𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖𝑡 ∗ 𝑎𝑏𝑜𝑣𝑒𝑖𝑡 + 𝛽3𝑎𝑏𝑜𝑣𝑒𝑖𝑡 + 𝑠𝑖𝑡 (5) 

and vary the threshold from 1 to 50 vehicles per mile. That is, fifty different regressions. We 
then determine the optimal structural break by comparing measures of fit for each of the 
models using the Akaike Information Criterion. The optimal threshold that maximizes AIC is at 
density level of D = 21. In other words, 21 vehicles per mile. 

In the following, we will present estimates of the congestion function for both the lower and 
upper part of this function. That is, we will split the sample into two subsamples: We assign 
observations into the congested sample if the detector-day of week-hour of day average of 
density is above 21 vehicles per mile. Accordingly, we will sort observations that are below that 
threshold into the uncongested part. 
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The implicit assumption of this methodology is that the reduced form OLS regression can 
inform us of the structural break even in the presence of endogenous regressors. This 
assumption is based on the notion that the structural break in the congestion function is driven 
solely by freeway capacity. While the same endogeneity concerns mentioned above are present 
for the uncongested part of the congestion function (i.e., weather shocks), there is no a-priori 
reason to believe that the endogenous regressors would distort the location of the structural 
break. 
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5. Results 

5.1 First-stage Results 

We begin by showing that our instrument is relevant and that crashes increase traffic density 
on parallel routes. Table 2 reports the results from regression equation 3. Our first stage 
regression of traffic density on the occurrence of an incident on parallel routes yields the 
expected positive signs and shows that there is statistically significant substitution of traffic 
towards alternatives in case of crashes. These results hold across the board for different 
controls and sample selections. To control for spatial and temporal auto-correlation of the 
residuals, we use two-way clustering and cluster our standard errors at both the day and 
freeway level (Cameron et al., 2011). The point estimate for the model that uses observations 
below the congestion threshold is 0.033 (column 2 in Table 2), albeit statistically insignificant. 
Above the congestion threshold of 21 vehicles per mile, we estimate larger and statistically 
significant coefficients of around 0.638. This result is robust to including weather and gas price 
controls and the coefficients are highly statistically significant at the 1% level. The F-statistic 
values for the model above the threshold suggest that we have a very powerful instrument. 

Table 2. First-stage regression estimates. 

 (1) (2) (3) 

No kink Below threshold Above threshold 

Crash 0.620∗∗∗ 0.0330 0.638∗∗∗ 
 (0.0762) (0.0257) (0.0932) 

Detector FE yes yes yes 
Day of Week FE yes yes yes 
Hour of Day FE yes yes yes 
Month FE yes yes yes 
Controls yes yes yes 
Observations 5538143 3608619 1929517 
R squared 0.604 0.851 0.381 
F-Statistic 77.12 107.5 68.14 
Sample Mean 18.67 10.02 34.85 

5.2 Second-stage Results 

We now move to the results of our second-stage regression describing the effect of traffic 
density on average speeds. In Table 3, we summarize the results of estimating regression (4) 
using both the OLS and the IV estimator. We estimate the average marginal effect of adding 
one more vehicle per mile of roadway on speed. Given the specifics of the IV approach which 
excludes detectors where crashes happen, the IV sample size is smaller than the full sample. In 
the OLS regressions, we force the sample size to be the same as in the IV approach. Again, all 
standard errors are clustered at both the day and the freeway level. The table presents the 
results for the OLS and the IV estimates below and above the threshold. We persistently find 
negative effects of traffic density on speed. For observations below the congestion threshold, 
we find significant but small effects that are close to zero as expected. In column (1) and (3), 
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the OLS estimates yield nearly identical coefficients of -0.00420 (without controls) and -0.00419 
(with controls). This implies that an increase in traffic density by one vehicle per mile of 
roadway decreases speeds by around half a percent. We next contrast these results with the 
instrumental variable regression. The IV regression results in columns (2) and (4) are more 
negative compared to the OLS estimates. Without controls, we estimate a β of -0.0088 and -
0.0196 with controls. The standard errors in this regression are notably larger, and the latter 
coefficient with the controls is not statistically different from zero. Furthermore, we cannot 
reject the null hypothesis that the IV estimate is the same as the OLS estimate. We conclude 
that the congestion externality is small at low traffic densities. 

Table 3. Second-stage regression results 

(1) 
OLS               

(2)  (3) 
OLS 

(4) 
IV 

Panel A: below threshold 
Lane density -0.0042*** -0.0088** -0.0044*** -0.0196 

 (0.0002) (0.0024) (0.0002) (0.0101) 

Detector FE yes yes yes yes 
Day of Week FE yes yes yes yes 
Hour of Day FE yes yes yes yes 
Controls no no yes yes 

Observations 4449577 4449577 3509759 3487822 
R squared 0.329 0.274 0.339 0.443 
KP F-Statistic - 37.96 - 5.41 
Constant 4.32 4.36 4.30 4.41 
Density Sample Mean 9.18 9.18 9.03 9.00 
Speed Sample Mean 72.56 72.56 72.54 72.56 

Panel B: above threshold 
Lane density -0.0255*** -0.0296*** -0.0244*** -0.0327*** 

 (0.0004) (0.0011) (0.0004) (0.0024) 

Detector FE yes yes yes yes 
Day of Week FE yes yes yes yes 
Hour of Day FE yes yes yes yes 
Controls no no yes yes 

Observations 2715770 2715770 2014217 2014217 
R squared 0.940 0.925 0.970 0.944 
KP F-Statistic - 55.83 - 15.91 
Constant 4.81 4.96 4.74 4.98 
Density Sample Mean 36.14 36.14 36.81 36.81 
Speed Sample Mean 49.01 49.01 48.16 48.16 

Dependent Variable: Log Lane Speed 
Standard errors multi-clustered at the freeway and weekly level 
∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001 

We now focus on the congested part of the speed-density relationship. The results in Panel B 
show distinctively different marginal effects above the density threshold. The OLS estimates in 
columns (1) and (3) indicate that for each additional vehicle per mile of roadway, we observe a 
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reduction in average speed in that lane by around 2.6%. These coefficients are statistically 
significant at the 0.1% significance level. In column (2) we present the result from our 
instrumental variable approach. The estimated coefficient is -0.0296 with a standard error of 
0.001. In (4), we check for robustness to additional covariates and again control for weather 
variables and the price of gas. The point estimate differs only slightly and suggests that every 
additional vehicle per mile of roadway decreases average speeds by 3.27%. 

In each specification pair, the IV estimate is always larger (in absolute values) than the OLS 
estimate. The differences between the estimates of the two approaches are statistically 
significant at conventional significance levels. The magnitude of the IV result suggests that our 
instrumental variable approach reduced the expected upward bias (towards zero) of the OLS 
estimate. This implies that the OLS reduced form estimate picks up demand shocks and 
underestimates the true causal impact of traffic density on freeway speeds. 

5.3 Heterogeneity 

In a next step, we explore the heterogeneous effects and analyze whether the speed-density 
relationship is stable over time and space. A potential concern is that drivers of different types 
sort into different routes and hours to a degree that average estimates are distorting policy 
implications. We use the temporal and geographic detail in our data to look at results for 
different sub-samples. 

We first look at spatial variation of the congestion function. Freeways could experience a 
differential congestion technology not only due to driver selection but also due to physical 
differences. Although freeways are built to federal construction standards, they might 
potentially differ due to other geographic features. We therefore perform separate speed-
density IV regressions for the four major freeway routes in our sample (Interstates 5, 10, 110, 
and 405). 

The IV results in Table 4, Panel A do not suggest large heterogeneity of the congestion function 
over space. The coefficient estimates in Panel A for observations below the density threshold 
are all close to zero and statistically indistinguishable from another. The largest negative 
estimate for Interstate 5 at -.015 is imprecisely estimated and comes with a large standard 
error. Panel B shows the IV results for observations above the threshold. We find remarkable 
stability between the freeway routes and again, we cannot reject the null that the estimates for 
all specifications are the same at conventional significance levels. We therefore conclude that 
the congestion function is stable over space and does not vary between different freeway 
routes. 
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Table 4. Second-stage regression by freeway route. 

Panel A: Heterogeneity of IV estimates 

I-10 I-5 I-110 I-405 
below threshold 

Lane Density -0.00445∗ -0.0153 -0.00506∗∗ -0.00391 
 (0.00191) (0.0138) (0.00150) (0.00271) 

Density Sample Mean 10.18 9.862 9.400 9.703 

above threshold 
Lane Density -0.0323∗∗∗ -0.0339∗∗∗ -0.0339∗∗∗ -0.0299∗∗∗ 

 (0.00196) (0.00215) (0.00228) (0.00250) 
Density Sample Mean 35.17 37.74 33.71 40.19 

Panel B: Heterogeneity by time of day 
 AM Peak Midday PM Peak Night 

Lane Density -0.0346∗∗∗ -0.119 -0.0306∗∗∗ -0.0298∗∗∗ 
 (0.00513) (0.700) (0.00260) (0.00848) 

Density Sample Mean 37.95 34.08 41.85 30.52 
Dependent Variable = Log Lane Speed 
Standard Errors clustered at the freeway and weekly level 
∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001 

We next explore heterogeneity over time. We expect potentially heterogeneous results due to 
driver selection into certain hours of day. We check for divergence of the policy-relevant 
coefficient estimates by splitting the sample into four large periods of time. We distinguish 
between morning peak period (5-9am), midday off-peak (9am-4pm), evening peak (4-8pm), and 
the night off-peak (8pm-5am). Table 4, Panel B presents the coefficient estimates for each time 
block for observations above the threshold. The results are quantitatively similar to the results 
from the overall sample with the exception for the midday off-peak period. Here we estimate a 
marginal effect of -0.119 which is about 3-4 times as large as the earlier estimates. However, 
this estimate has a very large standard error of 0.7 and we therefore cannot reject that they are 
statistically the same. 

Overall, we find little evidence that the congestion function differs between time and space in a 
way that would massively distort potential policy schemes based on these coefficient estimates. 
With the sole exception of the midday hours, we consistently find marginal effects on the order 
of 3% - 3.4% speed reduction for each additional vehicle per mile of roadway. 

  



 24 

6. Policy Counterfactuals 

In this section, we use our empirical estimates of the speed-density relationship to provide the 
potential gains from reshuffling traffic demand over time and space, and from optima 
congestion pricing schemes.  

6.1 Temporal and Spatial Substitution of Travel Demand 

We start with evaluating the gains from shifting travel demand over time and space. The large 
heterogeneity in travel speeds both over space and time displayed in Figure 7 and Figure 8 
implies that travel demand is highly localized. In fact, large parts of the freeway network are 
uncongested during off-peak hours, and there are segments of the system that are rarely at 
capacity. This suggests that there are potential gains from shifting travel demand from peak 
hours to off-peak hours and from congested roads to underutilized roads. While the observed 
travel patterns in the data are a result of differential demand and indicate a higher willingness 
to pay to travel during peak hours, temporal substitution might be a preferable policy 
compared to general congestion pricing. Such temporal reshuffling of demand could be induced 
by e.g., relaxing work schedules. Likewise, spatial substitution of travel demand could be 
generated by allowing for more flexible zoning ordinances that spread economic activity more 
evenly over space 

We explore the potential gains from substituting travel demand by studying how much 
substitution is needed to avoid the need for congestion pricing. In this exercise, we keep overall 
travel demand constant and use our estimated coefficients of the speed- density relationship to 
evaluate the effect of reshuffling demand on freeway speeds. For each detector and hour of 
day, we calculate its average “excess capacity” over our study period. This is the amount of 
traffic density that the detector can accommodate until it becomes congested. If the detector is 
congested, this value becomes negative and can be interpreted as “excess density”, i.e., the 
amount of traffic that needs to be removed at this detector to reach free-flow speed. This 
allows us to judge whether all travel demand could be accommodated given the current 
freeway infrastructure. We start with the most flexible substitution and introduce progressively 
restrictive constraints on reshuffling. As we ignore a demand reaction, these scenarios will be 
hypothetical best-case scenarios and thus represent upper bounds on the potential of temporal 
and spatial substitution. 

We start with the most flexible scenario and allow for both substitution over time and space: 
We shift traffic density between the 24 hours of the day and between individual detectors 
(weighted by detector length). This represents a scenario where traffic demand is completely 
flexible and ignores routing dependencies of individual trips. In this most flexible case, the 
freeway system can provide speeds of about 77mph after reshuffling. This extraordinary high 
speed is driven by substitution of traffic demand into the nighttime hours. Figure 10 depicts 
excess capacity by hour of day in relation to a free-flow speed of 65mph. If we restrict the 
substitution to be within major peak periods of the day, spatial reshuffling can provide speeds 
of 64.8mph in the morning peak (5-9am), 64.2mph during midday off-peak (9am-4pm), and 
53.9mph in the evening peak period (4-8pm). 
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Figure 10. System-wide excess capacity by hour of day. 

Notes: Total excess capacity of the freeway system if allowing for complete spatial substitution of traffic demand in 
relation to free-flow speed of 65mph. 

We next look at more realistic scenarios and consider temporal substitution only. For this case, 
we treat the travel demand for each detector as fixed. This will lead to a distribution of detector 
excess capacity measures where 26% of detectors remain at speeds below the free-flow level of 
65mph even after temporal reshuffling. We finally restrict the substitution to within peak 
periods. Figure 11 displays the resulting distributions of excess capacity by period. While during 
the night off-peak period, virtually all detectors can achieve free-flow after temporal 
substitution, this is not the case during daytime hours. The largest share of detectors that 
provide speeds below 65mph is in the evening peak as expected. Overall, for the most realistic 
scenario where travel demand is spatially kept fixed, merely shifting traffic within peak periods 
does not eliminate congestion or the need for pricing roads. 
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Figure 11. Distribution of excess capacity by period. 

Notes: Distribution of detector excess capacity when allowing for complete temporal substitution within each 
period of day in relation to free-flow speed of 65mph. Morning peak period (5-9am), midday off-peak (9am-4pm), 
evening peak (4-8pm), night off-peak (8pm-5am). 

6.2 The Marginal External Costs of Congestion and Optimal Pricing 

We now use our estimates to calculate the marginal external cost of congestion and to evaluate 
the potential welfare gains from pricing roads. To do so, we use the standard static congestion 
model. 

Setup 

The first step in doing this is converting our estimates of the marginal effect of an additional 
unit of density on speeds into a production possibilities frontier fully specifying the relationship 
between the volume of traffic and speed. Consistent with our estimates, we assume that for 
densities below the kink point that speeds are constant at the free flow speed. We estimate the 
free flow speed based on average speed across all Los Angeles highways from 2–4 AM. We 
assume the marginal effect of an additional vehicle per mile per lane is given by our IV estimate 
(column (4) of Table 3). Doing this gives us the speed-density relationship plotted in Figure 12a. 

Using (2) we can convert these estimates into the relationship between speed and flow. This 
relationship is plotted in Figure 12b. As the figure shows, when the traffic volume is low, further 
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increases have no effect on speeds. However, once volume crosses 1,441 vehicles per hour per 
lane (vphpl), each additional vehicle causes a decrease in speed. 

 

Figure 12. Estimated traffic relationships. 

Notes: This figure plots our estimates from Table 3. 
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As discussed earlier, the speed-flow relationship has a portion that is backward bending. This is 
not a causal relationship where an increase in flow could cause speeds to increase, but rather is 
caused observing data from within a queue. Additionally, our log-linear functional form for the 
speed-density relationship mechanically implies a backward bending speed-flow relationship 
for 𝑆 < exp (1 + 𝛼).7 To be conservative, we follow Verhoef (2001) in allowing the speed-flow 
relationship to become vertical once flow has reached its maximum. This represents queuing on 
the highway, where speeds fall but flow is unchanged. By not allowing for the possibility of a 
causal hypercongestion relationship, where too many vehicles on the road causes it to jam, and 
reduces capacity, we will understate the social welfare gains from tolling, and overstate the 
optimal reduction in flow and optimal toll. Figure 12b plots our estimated speed-flow 
relationship, shows how it compares to the data, and further shows what it looks like when we 
allow for queuing.  

Having specified the supply side of the model, we now turn to the demand side. In our 
empirical framework, we do not have exogeneous variation in travel supply to estimate a 
demand curve, and so instead rely on estimates from the literature. We assume a constant 
elasticity of demand for travel, so 𝑉 = 𝐴 · 𝑃𝑆, where 𝐴 is a constant and 𝑠𝑑  is the elasticity of 
demand. We use the estimates of 𝑠𝑑  from Anderson (2014), who finds, based on estimates of 
long-run elasticity of VMT with respect to gas prices or tolls, that 𝑠𝑑 ∈  [−2.0, −0.67]. Our 
results are largely unchanged by which estimate of the elasticity we use, so in the results 
reported below we use −2.0, which gives more conservative results. We assume the average 
value of time is $15.00 per vehicle-hour. Figure 13 displays the result.  

 

Figure 13. Estimated marginal external cost of congestion. 

Notes: Marginal external cost of congestion calculated assuming a value of time of $15.19 and an average vehicle 
occupancy of 1.6. 
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6.3 Effects of a Pigouvian Toll 

Figure 14 compares the two equilibria. Without tolls, the equilibrium quantity is when the 
marginal private benefit equals the marginal private cost. Given our estimated relationship 
between speed and volume and our assumed demand curve, this occurs at a volume of 1560 
vphpl and a trip cost of $13, which is all due to the cost of travel time. The social welfare 
maximizing equilibrium occurs when the marginal private benefit equals the marginal social 
cost. This occurs at a volume of 1441. By reducing volume by 119 vphpl and eliminating 
queuing, speeds increase from 30 mph to 69 mph. Achieving this requires charging a toll of 
$0.81 per mile, and yields improvements in social welfare by $0.68 per vehicle-mile traveled 
when there was no toll. Since, as is always the case in the standard static model, the toll is 
greater than the social welfare gain, this toll makes travelers worse off before the revenue is 
used. 

 

Figure 14. Policy counterfactual. 
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7. Conclusions 

This project employs an instrumental variable design to causally estimate the negative 
externalities of traffic congestion and calibrate models of optimal congestion pricing. Since the 
decision to travel is endogenous, ordinary least square will not recover the causal relationship 
between speed and traffic density. Combining origin-destination commuting data with actual 
web-scraped driving directions from the Los Angeles metropolitan area, we construct pairs of 
alternative routes and use traffic crashes on alternatives as demand shocks for the main route. 
Employing spatially disaggregated freeway detector data collected at high frequency, we show 
that traffic crashes shift travel demand to other routes. This exogeneous variation in demand 
allows us to estimate the congestion function relating traffic density to freeway speed and back 
up the marginal cost of congestion and thus optimal Pigouvian taxes. 

Our results indicate that the instrument has power to isolate exogeneous variation in travel 
demand to estimate a causal speed-density relationship. The instrumental variable estimate 
suggests that an additional vehicle on the road reduces average freeway speed by about 3.1% 
once capacity is exceeded. This result implies a larger negative externality from traffic 
congestion than the reduced form OLS approach. The estimates show considerable 
heterogeneity that have direct policy relevance: The empirical relationship observes a clear 
structural break with only small congestion externalities at low levels of traffic. 

We use these causal estimates to analyze the potential gains from policy experiments such as 
congestion pricing and substituting travel demand over time and space. Keeping demand 
constant, reallocating traffic demand from peak to off-peak hours does not resolve the capacity 
constraint of the current freeway system in the Los Angeles metropolitan area. This suggests 
that road pricing is an inevitable policy to alleviate congestion. Employing a static model of 
freeway travel and common demand parameters, our econometric estimates imply an average 
optimal congestion charge of 33 cents per mile in the pricing equilibrium. This policy yields 
large welfare gains and reduces the average social cost of travel by 56%. 

We find the optimal toll at peak times is 33 cents per mile, with the toll being lower, even zero, 
off-peak. We show how this toll varies over space and time, as well as report on its 
distributional effects. This toll would more than double highway speeds during peak times and 
only requires reducing vehicle miles traveled (VMT) at the peak by 10%. The resulting social 
welfare gains are over two billion dollars per year. Ignoring the structural break in the speed-
density relationship underestimates the marginal cost of an additional trip at high levels of 
traffic flow by more than 60%. Correctly estimating the marginal external costs decreases the 
optimal reduction in VMT by 33%, increases the improvement in speed by 55%, decreases the 
increase in private costs by 50%, and increases the social welfare gains by 30%. This highlights 
the importance of correctly specifying the empirical models used to estimate parameters of 
economic models guiding optimal policy. 
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Data Summary  

Products of Research  

Section 3 of the report describes in detail the dataset. This includes hourly observations on 
speeds and flows for California’s district 7 during 2017. The dataset also includes all vehicle 
crashes during this time period, as well as additional data used as regressions in the empirical 
analysis (see section 3).  

Data Format and Content  

All data is publicly available. The clean dataset used in the project is readily available on stata 
format.  

Data Access and Sharing  

The general public can access the data without any restrictions. The dataset is stored at: 
https://doi.org/10.7910/DVN/VMJIRX  

Reuse and Redistribution  

Since the data used in the project is publicly available, there are no restrictions on how the data 
can be reused and redistributed by the general public. The data should be cited as follows: 

Bento, Antonio, 2022, "Replication Data for: Evaluating Alternative strategies for traffic 
reduction in Los Angeles", https://doi.org/10.7910/DVN/VMJIRX, Harvard Dataverse, V1 

https://doi.org/10.7910/DVN/VMJIRX
https://doi.org/10.7910/DVN/VMJIRX
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