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Abstract

The premotor theory of attention maintains that visuospatial
attention originates from the activation of the same cortical cir-
cuits involved in saccadic planning. Attention orienting is sup-
posed to be achieved by means of recurrent projections from
premotor areas to spatial maps without involving specific mod-
ules separated from the circuits which transform sensory infor-
mation into motor plans. In the present study, the basic claim
of the premotor theory was tested by implementing a recurrent
neural network model in which spatial attention is explicitly
concerned with action-oriented representations and it is sim-
ulated in terms of feedback effects due to saccadic planning.
The model employs basis function units which simulate pari-
etal neurons involved in the representation of the oculomotor
space. Simulation results bring computational evidence to the
premotor theory and allow to make novel and testable predic-
tions.

Keywords: Spatial attention; Spatial representations; Neural
networks.

Introduction
The premotor theory of attention (Rizzolatti et al., 1987; Riz-
zolatti, Riggio & Sheliga, 1994; Umiltà et al., 1991) main-
tains that visuospatial attention originates from the activation
of the same cortical circuits involved in saccadic planning.
The premotor theory affirms that the preparation of a sac-
cadic movement produces a processing facilitation for stimuli
located in the region of space towards which the motor pro-
gram is prepared. This processing facilitation is supposed to
be achieved by means of recurrent projections from premotor
areas to spatial maps without involving specific modules sep-
arated from the circuits which transform sensory information
into motor plans.

Neurophysiological data strongly support the premotor
theory indicating that cortical neurons located within the in-
traparietal sulcus (IPs) generate action-oriented representa-
tions of space for motor planning and are also crucially in-
volved in the top-down (endogenous) control of spatial at-
tention (Colby & Goldberg, 1999). Specifically, the neu-
rons located in the lateral intraparietal area (LIP) show an
increased firing rate when the monkey anticipates the onset
of a stimulus. Moreover, they do not represent all objects
of the visual field, but only salient targets, suggesting that
they form a salience map of the visual world (Goldberg et al.,
2002). Neural activity in parietal spatial maps describes the

spatial and temporal dynamics of attention (Bisley & Gold-
berg, 2003).

Neuroimaging studies showed that top-down control of
spatial attention in humans recruits the IPs and the frontal eye
fields (FEF) (Corbetta & Shulman, 2002, for review). That
is, the network of brain regions involved in endogenous vi-
suospatial attention strongly overlaps with the network sub-
serving sensorimotor transformations for overt saccadic eye
movements (Corbetta et al., 1998; Nobre et al., 2000).

Previous computational models concerned with spatial at-
tention employed a separate subsystem or set of nodes to gen-
erate attentional effects. For instance, an ”Attentional mecha-
nism” (Mozer, 1991) or ”Attention units” (Cohen et al., 1994)
activated the relevant representations in the relevant module
by means of ad-hoc connections. As noted in a review by
Heslenfeld et al. (1997), in most of the (non-implemented)
cognitive models (e.g., LaBerge, 1990; Treisman, 1988; Van
der Heijden, 1992) or (implemented) connectionist models
(e.g., Cohen, et al., 1994; Mozer, 1991; Phaf, Van der Hei-
jden, & Hudson, 1990), attention is viewed as an additional
resource without specifying where it comes from and how ex-
actly the to-be-activated units are found in the system.

In the present study we propose a recurrent neural network
model in which spatial attention is explicitly concerned with
action-oriented representations and it is simulated in terms of
feedback effects depending on saccadic planning. The model
is based on the basis function approach to simulate the com-
putational properties of the parietal neurons. Moreover, it in-
cludes a circuit that allows the system to update remembered
spatial locations in eye-centred coordinates after intervening
saccades.

As an introduction to the simulations, we briefly review
neurophysiological data regarding the neural encoding of
space.

Spatial representations in the PPC
The activity of many LIP neurons approximates a multiplica-
tive combination of visual and posture signals (Andersen, Es-
sick & Seigel, 1985; Andersen, 1989). The receptive field of
a typical LIP cell is retinotopic like those found in V1, but the
amplitude of the response evoked by a visual target increases
monotonically as the eye moves along a particular direction,
which is specific to each neuron. Cell encoding with multi-

396



plicative interaction of independent variables is called gain-
field coding. Pouget and collaborators (Pouget & Sejnowski,
1997; Pouget & Snyder, 2000) suggested that parietal gain-
modulated neurons may serve as basis functions with which
the brain computes sensorimotor transformations. A popula-
tion of these neurons may provide a complete basis set for the
combined space allowing to approximate any arbitrary func-
tion of the input variables by taking a linear sum of their out-
puts (Poggio & Girosi, 1990). It follows that encoding space
with basis function units renders it possible to reduce non-
linear coordinate transformations to simple linear mappings.
The resulting basis function representation codes spatial lo-
cations in a format which contains implicitly any frame of
reference that can be derived from the input variables. For
instance, a basis function map combining visual information
with eye position may be used to compute target location in
head-centred coordinates with a linear combination of a spe-
cific set of weights.

Retinotopic representations, however, are not sufficient to
store spatial locations, because the remembered spatial loca-
tion will not be in register with the external space after an eye
shift (Miller & Bockisch, 1997). When the task requires to
foveate a remembered location and the eyes move during the
memory period, the saccadic system must take into account
the change in eye position. Primates can easily and accurately
perform saccadic tasks in which the retinal error is dissociated
from the motor error, such as in the case of ocular pertur-
bation by electrical stimulation (Mays & Sparks, 1980) and
the double-saccade task (Goldberg & Bruce, 1990, Mazzoni
et al., 1996). Mays and Sparks showed that a perturbation in
the eye position, induced by electrical stimulation of the su-
perior colliculus during the preparation of a saccade toward
a visual target, is compensated by the saccadic system even
when the target is no longer visible. In the double-saccade
task, two visual targets are presented sequentially and very
briefly. The task requires to direct the gaze at targets in or-
der of presentation. When the first saccade is performed, the
retinal coordinates of the second target do not match the mo-
tor coordinates required to foveate it. Thus, the system must
take into account the displacement of the eye due to the first
saccadic movement.

Two alternatives corresponding to different encoding
schemes have been proposed to explain how the brain per-
forms this computation (Bremmer, Pouget & Hoffmann,
1998). The first hypothesis is based on extraretinal encod-
ing by means of a coordinate transformation. For instance,
the position of the eye can be combined with the retinal coor-
dinates of the target in order to obtain a head-centred repre-
sentation, which is invariant with respect to eye movements.
The second hypothesis is based on a perisaccadic updating
mechanism. It has been shown that spatial representations
within area LIP are remapped in the coordinates of the new
fixation point after an intervening saccade (Duhamel, Colby
& Goldberg, 1992), but the source and the properties of the
signal that drives the updating process are still not clearly un-
derstood.

Figure 1: Recurrent neural network model for saccadic plan-
ning and spatial attention using basis functions. The model
contains two basis function maps reciprocally connected: an
input map (LIP) composed of basis function units which com-
bine visual and posture information, and a memory buffer
(MB) which stores target location in head-centred coordinates
modulated by eye position. The output layer contains an ocu-
lomotor map (FEF). Each map has lateral connections with
local excitation and long range inhibition.

Simulations
Description of the model
The architecture of the model (Figure 1) consists of two basis
function maps which simulate the activation of gain modu-
lated neurons described in the PPC and an output layer con-
sisting of a computational motor map which is meant to sim-
ulate the activity within the FEF.

The first basis function map (LIP) is composed of 847 units
which generate a representation of the oculomotor space by
combining multiplicatively retinal input (r) with eye position
(e) encoded in head-centred coordinates (Figure 2):

xLIP = G(r)S(e)

The tuning curve of visual response is a Gaussian function
of target location in retinal coordinates (rx and ry):

G(r)i = e
− (rx−rxi)

2

2σ2
xi e

− (ry−ryi)
2

2σ2
yi

where rxi and ryi indicates the centres of the visual receptive
fields (RFs), uniformly spread between -40◦ and 40◦ in incre-
ments of 8◦, both in the horizontal and vertical dimensions.
The width of the Gaussians, σ, changes linearly with the hor-
izontal and vertical eccentricity of the units’ RF according to
the following equation: 2.491+0.439∗Eccentricity (Platt &
Glimcher, 1998). As a result, the response field radius in-
creases by nearly 0.5◦ for every degree increase in eccentric-
ity. Gaussian functions optimally fit intraparietal neurons ac-
counting for most of the variance in their activity (Gnadt &
Breznen, 1996; Platt & Glimcher, 1998).

Eye position is encoded with a sigmoid function:

S(e)i =
1

1+ exp−
e−ei

s
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Figure 2: Activity of a basis function unit which computes the
product of a Gaussian of target location (eye-centred position)
multiplied by a sigmoid function of eye position.

where e is the current horizontal eye position and ei is the
inflection point of the function, spread between -24◦ and +24◦
in steps of 8◦. The slope of the sigmoid, s, is set to 8.

LIP units are reciprocally connected with another basis
function map (MB, memory buffer) which stores target lo-
cation in head-centred coordinates modulated by eye posi-
tion. Connections from LIP units to MB units allow the sys-
tem to transform retinal coordinates into head-centred coor-
dinates, while feed-back connections from MB units to LIP
units allow system to achieve the opposite transformation,
from head-centred to eye-centred coordinates. As a result,
the extraretinal encoding in MB renders it possible to achieve
perisaccadic updating in LIP after intervening saccades.

LIP units send connections also to the output layer that
contains an oculocentric map composed of 11 x 11 units cov-
ering a 40◦ x 40◦ space with 8◦ spacing. The activation of the
output units is given by the linear sum of the weighted signals
coming from the LIP units.

For sustaining activity in the absence of visual input, we
introduced in each map of the recurrent model lateral connec-
tions that generate local excitation and long range inhibition.
This kind of connectivity allows to maintain the hill of activ-
ity within a computational map over time after the stimulus
disappears and has been used in a number of computational
models of cortical activity (e.g., Somers, Nelson & Sur, 1995;
Zhang, 1996; Salinas, 2003).

The dynamics of the model are captured by the following
equations:

dxLIP
i

dt
= (G(r)+∑

m
wimaMB

m +∑
j

vi jxLIP
j − kxLIP

i )S(e)

dxMB
i

dt
= (∑

m
wimaLIP

m +∑
j

vi jxMB
j −qxMB

i )S(e)

dxOUT
i
dt

= ∑
m

wimaLIP
m +∑

j
vi jxOUT

j −qxOUT
i

where xi is the activation of the unit i, wim is the synaptic
weight coming from the unit m in the connected map, vi j is
the lateral connection coming from the neighbouring neuron
j, k and q are passive decays of activation.

Synaptic weights and learning procedure
Each set of weights in the model renders it possible to read
out a specific frame of reference (postsynaptic representa-
tion) from the activity within a basis function map (presy-
naptic representation). The training procedure consisted of
repeatedly presenting input patterns to the network, propa-
gating the activation to the postsynaptic units and adjusting
the weights by using the delta rule (Widrow & Hoff, 1960):

dϖi j = η(a∗i −ai)a j

where dϖi j is the change in the weight connecting the presy-
naptic unit j with the postsynaptic unit i, a j is the activation of
the presynaptic unit j, ai* is the expected postsynaptic activ-
ity and ai is the predicted postsynaptic activity. The learning
rate, η, was set to 0.01.

The training set consisted of 330 patterns generated by se-
lecting random visual targets, given initial eye positions. Ex-
pected outputs were generated by computing Gaussian func-
tions of target location in the frame of reference correspond-
ing to the postsynaptic representation. Training was repeated
until the mean square error between the centre of mass of the
expected postsynaptic patterns and the predicted postsynaptic
patterns was less than 1◦.

The lateral connections were given by:

vi j = e
− (cxi−cx j)

2

2σ2
xi e

− (cyi−cy j)
2

2σ2
yi −ge

−d
(cxi−cx j)

2

2σ2
xi e

− (cyi−cy j)
2

2σ2
yi

where vi j is the weight connecting the unit j to the unit i
within a specific map, g and d are constants which control
respectively the value and the width of the inhibitory region
within the RF of the unit i.

Results
The premotor theory of spatial attention maintains that motor
planning generates top-down signals that produce a process-
ing facilitation for stimuli located in the region of space to-
wards which they were prepared.

The basic claim of the premotor theory was tested in the
model by implementing a spatial cueing paradigm (Posner,
1980), which requires to detect as fast as possible a visual
target presented to the left or the right side of fixation. In en-
dogenous cueing, participants voluntarily orient their spatial
attention to the region of visual space indicated by a cognitive
cue and the target can be presented on the same side (valid
trials) or on the opposite side (invalid trials). In neutral trials
attention is not spatially oriented. Typically, valid trials give
rise to attentional benefits (faster reaction times with respect
to neutral trials), while invalid trials give rise to attentional
costs (slower reaction times with respect to neutral trials).

In accordance with the premotor theory, attention orient-
ing was simulated by generating a saccadic plan in the output
map of the model and feeding back the activation to LIP units
through the same connections involved in sensorimotor trans-
formations for saccadic movements. After a variable number
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Figure 3: Reaction times for detecting visual targets in a spa-
tial cueing paradigm. Orienting of attention was simulated by
computing a saccadic plan in the output map and propagating
the activation to the input units using the same connections
involved in the sensorimotor mapping. Attention orienting
produces reliable benefits (valid trials faster that neural trials)
and costs (invalid trials slower that neutral trials).

of time steps, a visual target was presented to the input units
in the same location of the planned saccade (valid trials) or
in another location (invalid condition). Neutral trials with-
out attention orienting were used to establish a baseline for
the detection task. The number of cycles required to reach a
detection threshold in the LIP map was used as an index of
the reaction times for detecting the target. In order to col-
lect good statistics, we performed a number of trials by ran-
domly changing the goal location of the planned saccade and
the retinal coordinates of the target. An analysis of Variance
(ANOVA) was performed on mean reaction times as a func-
tion of type of trials (Valid, Neutral, Invalid). Since the analy-
sis of Variance was significant, F(2,198) = 39.01,MSE =
1705.44, p < 0.001, we performed multiple comparison tests
indicating that the valid condition produces faster responses
(180 cycles) than the neutral condition (209 cycles), which is
in turn faster than the invalid condition (232 cycles). These
results clearly indicate that attention orienting in our recur-
rent model of saccadic planning produces reliable benefits
and costs (Figure 3) consistent with behavioural data.

Perisaccadic updating and spatial attention
In order to investigate the role of the remapping process in
spatial attention, a variant of the spatial cueing paradigm with
an ocular perturbation before the onset of the target. The se-
quence of events was the following: a saccadic plan was first
generated in the saccadic map and after a temporal delay an
ocular perturbation was simulated by changing the eye po-
sition. After 1 or 10 time steps a random visual target was
presented to the LIP units and the number of cycles required
to reach a threshold value was measured. We performed 25
runs with 100 random valid trials, in which target location
corresponded to the remapped motor error of the planned sac-
cade, 100 random invalid trials in which target location cor-
responded neither with the remapped motor error nor with

Figure 4: Reaction times for detecting visual targets in a vari-
ant of the spatial cueing paradigm with an ocular perturbation
(OP). Attention orienting produces reliable benefits and costs,
which decrease as the interval between the OP and the target
presentation increases. Eye-centered trials are slower than the
invalid trials (remapping interference).

the motor error, 100 random eye-centred trials in which the
retinal coordinates of the target matched the original motor
error, and 100 random neutral trials without attention orient-
ing. An analysis of Variance (ANOVA) was performed on
mean reaction times as a function of type of trials (Valid,
Neutral, Invalid, Eye-centred) and interval between ocular
perturbation and target presentation (1 vs. 10 time steps).
The main effect of type of trials [F(3,72) = 479.25,MSE =
363.47, p < 0.001] and interval [F(1,24) = 21.14,MSE =
622.13, p < 0.001], as well as their interaction [F(3,72) =
49.47,MSE = 524.40, p < 0.001] were significant (Figure 4).
Reaction times were faster on valid trials than neutral trials
[F(1,24) = 68986.59,MSE = 2.343, p < 0.001], and slower
on invalid trials than neutral trials [F(1,24) = 106.05,MSE =
717.41, p < 0.001], indicating reliable benefits and costs.
Both benefits and costs decreased at the longer interval as a
consequence of the activation decay. Interestingly, we found
that the eye-centred trials, in which the visual target appeared
in the same location of the saccadic goal, were slower than
invalid trials [F(1,24) = 1973.03,MSE = 87.68, p < 0.001].
This result can be explained considering that after ocular per-
turbation the updating mechanism moves the attentional code
away from the original location interfering with target detec-
tion. We will refer to this effect as ”remapping interference”.

Discussion
In the present research we examined whether a recurrent
model of saccadic planning can account for attentional ef-
fects without requiring additional learning or specific com-
putational mechanisms separated from the sensorimotor cir-
cuit. The model employs basis function units which simulate
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parietal neurons involved in the representation of oculomotor
space. Moreover, it incorporates the updating of remembered
spatial locations after intervening saccades by means of coor-
dinate transformations between basis function units.

We tested the model by implementing a spatial cueing par-
adigm which is a typical task used in behavioural research.
The recurrent architecture allowed us to measure the num-
ber of cycles required to reach a detection threshold and to
compare the simulation results with behavioural data. Sim-
ulations showed the typical patterns of results described in
behavioural studies, with reliable benefits and costs in a spa-
tial cueing paradigm under conditions of endogenous cueing.
Moreover, we examined the role of perisaccadic remapping
in attention orienting by implementing a variant of the spa-
tial cueing paradigm in which an eye shift was interposed be-
tween attentional allocation and target presentation.

Simulations allowed to make novel and testable predic-
tions: when attention is directed to a particular location with
retinal coordinates Rx and Ry and then a saccadic movement
is performed toward a different location, the attentional code
is fast and efficiently remapped in the coordinates of the new
fixation point. As a consequence, attention can be maintained
over a specific region of the visual space while moving the
eyes. Moreover, presenting a visual target with coordinates
Rx and Ry immediately after the end of the saccade gives rise
to additional costs with respect to any other retinal location.
We called this effect remapping interference.

In summary, our simulations are consistent with the premo-
tor theory of attention which maintains that attention and eye
movements are tightly coupled, demonstrating that a plausi-
ble model of saccadic planning renders it possible to simulate
attentional effects described in behavioural research.
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