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The network-level infrastructure management problem involves selecting and schedul-
ing Maintenance, Repair, and Rehabilitation (MR&R) activities on networks of in-
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Problem (MDP) solved via Linear Programming (LP). The conditions of facilities
are represented by elements of discrete condition rating sets, and transition proba-
bilities are employed to describe deterioration processes. Epistemic and parametric
uncertainties not considered within the standard MDP/LP framework are associated
with the transition probabilities used in infrastructure management optimization
routines. This paper contrasts the expected costs incurred when model uncertainty
is ignored with those incurred when this uncertainty is explicitly considered using
Robust Optimization. A case study involving a network-level pavement management
MDP/LP problem demonstrates how explicitly considering uncertainty may limit
worst case MR&R expenditures. The methods and results can also be used to iden-
tify the costs of uncertainty in transition probability matrices used in infrastructure
management systems.
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1 AN OVERVIEW OF THE PROBLEM

Asset management is the process by which agencies monitor and maintain
built systems of facilities, with the objective of providing the best possible
service to the users, within the constraints of available resources. The primary
decisions made by a public works agency are the selection and scheduling
of Maintenance, Repair, and Rehabilitation (MR&R) actions to perform on
facilities in the system during a specified planning horizon.

There are two forms of information on infrastructure condition: information on
current condition, provided by facility inspection, and information on future
condition, predicted by using a deterioration model. Deterioration models are
mathematical relations having as a dependent variable the condition of a fa-
cility and as independent variables the facility’s age, previous condition, level
of utilization, environment, historical MR&R actions, etc. Expert judgment
or empirical data are used to develop these deterioration models. The models,
in turn, are used to produce inputs into the MR&R decision-making process.
Network level infrastructure management problems are frequently formulated
as Markov Decision Processes (MDPs) (Golabi et al (1982), Gopal and Ma-
jidzadeh (1991), Smilowitz and Madanat (2000)).

1.1 A Sample Network-Level Infrastructure Management Problem

A classic example of a network-level asset management optimization system is
the Pavement Management System (PMS) used by the Arizona Department
of Transportation (ADOT) (Golabi et al, 1982). This system minimizes the
life cycle costs of the pavement sections managed by the ADOT by linear
optimization techniques. Facilities are separated into groups based on their
construction, environment, and traffic loading. ADOT’s PMS recommends
MR&R actions for fractions of facilities in the different groups. Pavement
managers are given leeway in determining which specific facilities to choose to
make up the fractions selected by the PMS.

An example of a mathematical programming formulation for an asset manage-
ment problem, built using the ADOT PMS as a template, is presented here.
In this example, it is assumed that there is a network of N facilities to be
managed for a period of T years. Each facility, in any given year, is character-
ized by a condition state in a set I of possible states for this particular type
of infrastructure facility. Every year, a single management action in a set A
of possible management actions must be selected for every individual facility.
(The set A may include an action representing the absence of taking one of the
other actions, a “do nothing” option.) Each of the N facilities in this example
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is identical in the sense that the description of deterioration, as well as the
costs, associated with different facilities are exactly the same.

Model Parameters
Let p(j|i, a) represent the conditional probability of an infrastructure facility

being in state j next year, given that it is in state i this year with action
a being applied.

Let ac(i, a) represent the agency costs for a facility in state i with action a
being applied.

Let tc(i, a) represent the total (user + agency) costs for a facility in state i
with action a being applied.

Let b(t) represent the agency budget in year t.
Let α be the discount amount factor that relates future costs to present dollars

(α = 1
1+r

).

Let initi represent the fraction of all facilities in condition state i at the
beginning of the infrastructure management exercise.

Let X be a set of condition states that provide such poor service that these
states are deemed unacceptable.

Decision Variables
Let ft(i, a) represent, in year t, the expected fraction of all facilities that is in

condition state i with action a being applied.

Markov Decision Problem

min
f

T∑
t=0

αt[
∑
i∈I

∑
a∈A

tc(i, a)ft(i, a)N ]

s.t.∑
a∈A

f0(i, a) = initi ∀i ∈ I (1)

ft(i, a) ≥ 0 ∀i ∈ I, a ∈ A, t ∈{0, 1, ..., T} (2)
ft(i, a) = 0 ∀i ∈ X, a ∈ A, t ∈{0, 1, ..., T} (3)∑
i∈I

∑
a∈A

ft−1(i, a)p(j|i, a) =
∑
a∈A

ft(j, a) ∀j ∈ I, t ∈{1, 2, ..., T} (4)∑
i∈I

∑
a∈A

ac(i, a)ft(i, a)N ≤ b(t) ∀t ∈{0, 1, ..., T} (5)

Like the original ADOT PMS, a decision variable is used that produces frac-
tions of facilities to which MR&R actions should be applied. This formulation
does not offer explicit, facility by facility, guidance. However, defining the de-
cision variable this way allows engineers with immediate knowledge of the
facilities in question to choose a repair plan out of a set considered equiva-
lent by this asset management system. Furthermore, the formulation shown
here has the crucial advantage of allowing the scope of the asset management
problem to be independent of the number of facilities in the network.
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In the above formulation, constraint 1 requires that the current conditions of
facilities are recognized. Constraint 2 ensures negative fractions of facilities
are never considered. Constraint 3 deals with level of service considerations.
There are many ways that level of service might be considered within an in-
frastructure management problem. In this example, we simply say that X is
a set of condition states deemed unacceptable because of the poor service fa-
cilities in these states provide. The third constraint as laid out ensures that
facilities are never allowed to reach condition states in X deemed unaccept-
able. The fourth constraint is the key to how deterioration is considered in
decision-making. Decisions made in a given year must be based on the ex-
pected conditions of facilities, which are obtained from the decisions made the
previous year and the transition probability matrix. Constraint 4 says that at
a time t the expected number of facilities in a state j is equal to the sum across
all states of the expected number of facilities in that state at time t− 1 times
the respective probabilities of transitioning into state j. (Note that this con-
straint, when used in conjunction with constraint 1, ensures that all facilities
are accounted for.) Finally, the fifth constraint demands that the agency never
runs over its budget in any given year. The objective function and constraints
3 and 5 could be rewritten any number of ways depending on how a planning
agency wishes to consider level of service and budget constraints.

1.2 Epistemic and Parametric Uncertainty In Transition Probabilities

In general, infrastructure deterioration model forecasts are associated with
a high degree of uncertainty due to the uncertainty in the following factors:
(a) exogenous factors such as the environment and level of utilization, (b)
endogenous factors such as facility design and materials, and (c) statistical
factors such as the limited size and scope of data sets used to generate mod-
els, or the differences between data generated in a laboratory setting versus
in the field. Although we can improve the quality of data by developing more
advanced inspection methods and deterioration models, it is impossible to
eliminate entirely the uncertainty associated with MR&R decision-making. In
state-of-the-art asset management systems, the stochastic nature of a facil-
ity’s deterioration process (intrinsic uncertainty) has been captured through
the use of stochastic process models (such as Markov transition probabili-
ties) as representations of facility deterioration. On the other hand, the de-
termination of the parameters of these stochastic models is still subject to
significant parametric uncertainty. Additional uncertainty known as epistemic
uncertainty stems from a more fundamental inability to model deterioration
precisely, even if parameters could be set properly.

For example, we consider a study by Prozzi and Madanat (2004) that used
data from the American Association of State Highways Officials (AASHO)
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Road Test to model pavement roughness. Statistical testing by Prozzi and
Madanat (2004) revealed statistically significant “unobserved heterogeneity”
in their model that “cannot be ignored” despite the fact that the model’s
prediction error was 50% smaller than that of earlier models developed with
the same data. In other words, they were able to limit parametric uncertainty
but still encountered significant errors in stochastic deterioration models due
to epistemic uncertainty.

Recent research in the area of adaptive infrastructure management acknowl-
edges the presence of parametric uncertainty in infrastructure decay model-
ing. Adaptive control methods use data as it becomes available to update the
parameters of models that guide decision-making. For example, the popular
bridge management system PONTIS updates transition probability matrices
over time (Golabi and Shepard, 1997). Durango and Madanat (2002) have pro-
posed a decision support system that uses Bayesian updating, while Madanat
et al (2005) have made use of maximum likelihood estimation to update the
parameters of transition probabilities. Durango-Cohen (2004) has used rein-
forcement learning techniques for the same purpose.

Adaptive control is able to reduce parametric uncertainty over time, but does
not consider epistemic uncertainty. Additionally, open-loop feedback adaptive
control approaches, like the one used in PONTIS, cannot guarantee that their
decision support systems will converge to optimal policies. Not all actions are
performed on assets in all states a sufficient number of times to ensure that the
system converges to an accurate transition probability matrix (Madanat et al,
2005). The flip side of this argument is that decision support systems that can
guarantee convergence to optimal policies must at times choose actions that
are suboptimal in order to “probe” the system being learned (ibid). However,
the most serious limitation to the effectiveness of the adaptive control approach
is that while managing a network of infrastructure facilities, data on condition,
deterioration, and the effectiveness of different MR&R actions accumulates
slowly. Thus, adaptive control approaches require a long time to improve the
precision of the transition matrices and, during this time, will incur high costs
associated with transition matrix uncertainty.

2 THE PROPOSED SOLUTION: ROBUST OPTIMIZATION

Robust optimization is a modeling methodology to solve optimization prob-
lems in which the data are uncertain and only known to belong to some
uncertainty set. Incomplete information and changing system dynamics often
provide motivation for robust optimization (Averbakh, 2000). The objective is
to seek optimal (or near optimal) solutions that are not overly sensitive to any
realization of uncertainty. Recent reviews on this topic can be found in Mul-
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vey et al (1995), Ben-Tal and Nemirovski (1999) and El Ghaoui (2003) among
others. A robust feasible solution is one that tolerates changes in the problem
data, up to a given bound known a priori, and a robust optimal solution is
a robust feasible solution with the best possible value of the objective func-
tion. When the uncertainty set can be parameterized, the objective function
may minimize expected costs across the uncertainty set. Assuming less avail-
able information regarding uncertainty sets, the objective may be to minimize
‘worst-case’ costs or ‘regret,’ a measure of opportunity cost (Averbakh, 2000).
One interesting alternative proposed in Bertsimas and Sim (2004) minimizes
costs while considering that a set number of parameters used in optimization
are different from initially estimated values. By carefully constructing and ef-
ficiently solving robust problems, it is possible to obtain solutions that trade
off performance vs. guaranteed robustness and reliability. One interesting suc-
cessful example that deals specifically with a robust Markov Decision Problem
in a transportation setting (air traffic control) is Nilim and El Ghaoui (2004).

In infrastructure management, Kuhn and Madanat (2005) have applied Ro-
bust Optimization to single facility infrastructure management. The results
that they obtained in their parametric studies demonstrated that robust opti-
mization was able to limit excess costs associated with errors in infrastructure
deterioration modeling. The robust single facility infrastructure management
problem was solved in Kuhn and Madanat (2005) by considering potential
actions in turn and, for each action, defining an appropriate robust cost. A
similar approach was used in Nilim and El Ghaoui (2004) to solve more gen-
eral robust dynamic programming problems. Neither of these approaches is
well suited to dealing with multi-facility infrastructure management. When
dealing with a large number of facilities, each of which may be maintained a
large number of ways, the space of possible agency policies becomes quite large
and dynamic programming approaches become computationally intractable.
Linear programs, like the one outlined in section 1.1 of this paper, are more
appropriate.

2.1 A Sample Problem Considering the ‘Worst Case’

Robust optimization typically minimizes costs considering that nature will
act as an opponent. Worst case conditions are considered, making it possible
to make performance guarantees (bound worst case costs) across an entire
uncertainty set. This method does not require decision-makers to estimate a
probability distribution over the uncertainty set. Consideration of worst case
conditions may be incorporated into the asset management problem formu-
lated earlier in this paper.

6



New Model Parameters
Let δ represent the uncertainty level (δ ∈ [0, 1]).
Let q(j|i, a) represent the initially assumed conditional probability of an

infrastructure facility being in state j next year, given that it is in state i
this year with action a being applied.

New Decision Variables
Let p(j|i, a) represent the conditional probability, as considered in the robust

optimization, of an infrastructure facility being in state j next year, given
that it is in state i this year with action a being applied.

Markov Decision Problem

max
p

[min
f

T∑
t=0

αt(
∑
i∈I

∑
a∈A

tc(i, a)ft(i, a)N)]

s.t.∑
a∈A

f0(i, a) = initi ∀i ∈ I (1)

ft(i, a) ≥ 0 ∀i ∈ I, a ∈ A, t ∈{0, 1, ..., T} (2)
ft(i, a) = 0 ∀i ∈ X, a ∈ A, t ∈{0, 1, ..., T} (3)∑
i∈I

∑
a∈A

ft−1(i, a)p(j|i, a) =
∑
a∈A

ft(j, a) ∀j ∈ I, t ∈{1, 2, ..., T} (4)∑
i∈I

∑
a∈A

ac(i, a)ft(i, a)N ≤ b(t) ∀t ∈{0, 1, ..., T} (5)

p(j|i, a) ≥ 0 ∀i ∈ I, j ∈ I, a ∈ A (6)∑
j∈I

p(j|i, a) = 1 ∀i ∈ I, a ∈ A (7)

|p(j|i, a)− q(j|i, a)| ≤ δ ∀i ∈ I, j ∈ I, a ∈ A (8)

Setting the uncertainty level δ to 0 implies no uncertainty, meaning a “like-
lihood region” is defined that includes only the transition probability matrix
given by the initial model q. A likelihood region is a set of transition proba-
bility matrices, each of which may describe the deterioration of the facilities
in the network. An uncertainty level of 1 would imply absolute uncertainty. In
this case all transition probability matrices may define infrastructure deterio-
ration and would be included in the likelihood region. According to constraint
8, a transition probability matrix is included in the likelihood region if and
only if the difference between any element of the transition matrix and the
corresponding element of the initially assumed matrix is less than or equal to
the uncertainty level. Seen in this light, the uncertainty level represents how
large an error in transition probabilities is considered possible.

This definition of uncertainty is quite simple and ignores the possibility of
correlations among probabilities from different states and actions. Infrastruc-
ture deterioration models often rely heavily on expert judgment (Harper et al,
1990), and infrastructure management systems that consider uncertainty will
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have to characterize this uncertainty using expert judgment. Cases where un-
certainty is likely to be an issue are exactly the cases where there is an absence
of empirical data regarding deterioration. Parameterizing complex uncertainty
models may be impossible or prone to uncertainty itself. In any event, the point
of this work is to introduce the explicit consideration of uncertainty into the
context of infrastructure management optimization.

One criticism of the mathematical program described above is that it is too
conservative. This criticism is reinforced by the fact that certain transitions
that might be considered impossible in real life may be given positive probabil-
ities of occurring in this formulation. Fortunately, it is a relatively simple task
to ensure that certain “impossible” transitions are never considered. For ex-
ample, it is possible to force any transitions with zero probability in an initial
model to have zero probability in any model included in the likelihood region.
This constraint can be accomplished by fixing p(j|i, a) to 0 whenever q(j|i, a)
is equal to 0. Note that the inclusion of the additional constraint actually
reduces the computational burden of solving the mathematical program.

Fixing certain p(j|i, a) to 0 restricts the likelihood region considered. However,
the approach is still fairly conservative; nature is still seen as a malevolent op-
ponent. While managing a large network of facilities, it may be too costly and
unrealistic, to manage each facility under the assumption that nature is al-
ways malevolent. An alternate approach involves acting under the assumption
that nature will work with decision-makers instead of against them. The most
realistic point of view would be to recognize that nature will act neither as a
perpetual adversary nor ally, but somewhere in between.

2.2 The Hurwicz Criterion

An attractive alternative to decision making focusing exclusively on worst case
conditions involves applying the Hurwicz criterion (Hurwicz, 1951). The Hur-
wicz criterion allows a decision-maker to set his or her “optimism level.” The
optimism level must be a number between 0 and 1. The pessimism level is
defined as 1 - the optimism level. Decisions are then made by selecting actions
that minimize costs obtained by summing the optimism level times the costs
under best case conditions and the pessimism level times the costs under worst
case conditions. Setting the optimism level to 1 would therefore entail com-
paring alternatives based only on the lowest possible cost they might entail.
Similarly, setting the optimism level to 0 would entail considering only worst
case conditions, as was done in section 2.1 of this paper. Solving a Hurwicz-
criterion-based asset management problem with an optimism level between
0 and 1 can yield MR&R policies that limit the sensitivity of maintenance
costs to realized deterioration rates without being overly costly in normal or
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good conditions. To understand how the Hurwicz criterion might be applied
to asset management, consider an infrastructure management problem with a
short two-year management horizon.

New Model Parameters
Let β represent the optimism level (β ∈ [0, 1]).

New Decision Variables
Let pb(j|i, a) represent the best case conditional probability of an infrastructure

facility being in state j next year, given that it is in state i this year with
action a being applied.

Let pw(j|i, a) represent the worst case conditional probability of an infrastructure
facility being in state j next year, given that it is in state i this year with
action a being applied.

Let f0(i, a) represent, in year 0, the expected fraction of all facilities that is in
condition state i with action a being applied.

Let f1b(i, a) represent, in year 1, best case conditions, the expected fraction
of all facilities that is in condition state i with action a being applied.

Let f1w(i, a) represent, in year 1, worst case conditions, the expected fraction
of all facilities that is in condition state i with action a being applied.

Markov Decision Problem
max

pw
min

pb

min
f

∑
i∈I

∑
a∈A

tc(i, a)f0(i, a)N + α[β tc(i, a)f1b(i, a)N + (1− β)tc(i, a)f1w(i, a)N ]

s.t.∑
a∈A

f0(i, a) = initi ∀i ∈ I (1)

ft(i, a) ≥ 0 ∀i ∈ I, a ∈ A, t ∈{0, 1b, 1w} (2)
ft(i, a) = 0 ∀i ∈ X, a ∈ A, t ∈{0, 1b, 1w} (3)∑
i∈I

∑
a∈A

f0(i, a)pb(j|i, a) =
∑
a∈A

f1b(j, a) ∀j ∈ I (4.1)∑
i∈I

∑
a∈A

f0(i, a)pw(j|i, a) =
∑
a∈A

f1w(j, a) ∀j ∈ I (4.2)∑
i∈I

∑
a∈A

ac(i, a)ft(i, a)N ≤ b(t) ∀t ∈{0, 1b, 1w} (5)

pb(j|i, a) ≥ 0 ∀i ∈ I, j ∈ I, a ∈ A (6.1)
pw(j|i, a) ≥ 0 ∀i ∈ I, j ∈ I, a ∈ A (6.2)∑
j∈I

pb(j|i, a) = 1 ∀i ∈ I, a ∈ A (7.1)∑
j∈I

pw(j|i, a) = 1 ∀i ∈ I, a ∈ A (7.2)

|pb(j|i, a)− q(j|i, a)| ≤ δ ∀i ∈ I, j ∈ I, a ∈ A (8.1)
|pw(j|i, a)− q(j|i, a)| ≤ δ ∀i ∈ I, j ∈ I, a ∈ A (8.2)
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Note that now two sets of transition probabilities have to be considered, one for
best case conditions and one for worst case conditions. Furthermore, expected
conditions and costs have to be calculated in best and worst case conditions.
The objective function is now quite complex, involving a cost minimization
problem nested within both maximization and minimization problems.

The new mathematical program appears quite complex and it only involved a
two-year planning horizon. For a longer planning horizon, applying the Hur-
wicz criterion to facility management involves considering a combinatorial
number of cases. The MR&R decision in the first year depends upon best
and worst case costs, so there need to be variables considering best and worst
condition states and actions taken in the second year. In order to consider
a management strategy that consistently applies the Hurwicz criterion, the
actions to take in the best and worst cases of the second year will each indi-
vidually be based on separate best and worst case comparisons for the third
year, and so on.

Decisions in all years must be made simultaneously. Facility conditions and
maintenance activities to be performed in later years will be determined by
which maintenance actions were performed in earlier years. Decisions about
maintenance actions to perform in later years will depend on expected fu-
ture costs, which are functions of future conditions and maintenance actions.
This problem’s complexity grows exponentially with the time frame to be
considered. However, the Hurwicz criterion remains an interesting approach
to consider ranges of infrastructure decay rather than focusing on only one
deterioration model.

2.3 Setting Up and Solving Robust Problems

The robust mathematical programs presented here require the specification of
an initial transition probability matrix, an uncertainty level, and (in the case
of Hurwicz optimization) an optimism level. While it may be difficult to spec-
ify an initial transition probability matrix, it is worth noting that the robust
model will yield results that are less sensitive to errors in this initial model
than more traditional non-robust optimization. Parametric uncertainty in de-
terioration models can be described statistically in certain situations. For in-
stance, when dealing with parameters of deterioration models calibrated with
empirical data, it is possible to study the standard errors associated with these
parameters. In other situations, epistemic uncertainty cannot be described us-
ing statistical techniques. In such cases, domain-specific expert opinion may
be used to identify realistic bounds on the values of transition matrices. Addi-
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tionally, it is possible to solve a particular robust asset management problem
numerous times with various uncertainty (and optimism) levels to see how
performance and reliability guarantees can be traded off, leading to a more
informed discussion of uncertainty and its costs.

The key to solving the bi-level mathematical programming problems presented
in this paper is recognizing that in infrastructure management it is obvious
that slower deterioration rates yield lower costs. In such circumstances, the
problems of finding worst and best case transition probability matrices can be
separated from the problems of selecting policies optimal for the given transi-
tion probability matrices. Probability must be ‘shifted’ from better condition
states to worse condition states to come up with a worst case transition prob-
ability matrix, and vice-versa to find a best case transition probability matrix.
The simple model used here to describe uncertainty allows the probabilities
originating from different initial state-action pairs to be considered separately.

Once best and worst case transition probability matrices have been found,
it is necessary to select the optimal management policy f . This problem is
essentially the same as the original multi-facility infrastructure management
problem; there is a given transition probability matrix/matrices and linear
programming can be used to reveal the optimal policy in response to this
description of deterioration. However, the transition probability matrix used
to generate the management policy f will not describe the actual expected
realization of deterioration processes. So every year, new information on the
condition of infrastructure facilities will have to be collected, and a new man-
agement policy will have to be found from that time through the end of the
planning horizon, incorporating the conditions of the infrastructure facilities
according to their most recent inspection.

3 A CASE STUDY INVOLVING PAVEMENT MANAGEMENT

In order to illustrate the application of robust algorithms to multi-facility
infrastructure management problems, an example is presented here. A high-
way pavement network is managed according to policies obtained from both
traditional linear programming and robust methodologies. Previous research
(Golabi et al (1982), Madanat (1993), Durango and Madanat (2002)) provides
a ready source of data for how pavement deterioration can be modeled via sta-
tic transition probabilities. However, given the uncertainty in these transition
probabilities, potential cost savings can be achieved by applying robust opti-
mization to this problem. It is worth noting that uncertainty is of more concern
for infrastructure assets that have less refined deterioration models than pave-
ment sections. Thus robust optimization may actually be better suited to the
management of infrastructure assets like underground pipelines and drainage
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systems.

3.1 Problem Specification

A network of 10,000 square yards of highway pavement will be managed for
five years in this example. The decisions to be made include when and how
to maintain, overlay, or reconstruct the pavement. In the example presented
here, it is assumed that the choices of actions to take in any given year are
those presented by Durango and Madanat (2002). These actions include: (1)
do nothing, (2) routine maintenance, (3) 1-in overlay, (4) 2-in overlay, (5) 4-in
overlay, (6) 6-in overlay, and (7) reconstruction. A section of pavement is said
to be in state 1 if it is unusable and in state 8 if it is brand new, with the
intermediate states representing intermediate condition ratings, following the
convention of Durango and Madanat (2002). The costs of the actions presented
here are derived from empirical work by Carnahan (1987) and are included
in Table 1. User costs vary according to the condition state of the pavement,
while agency costs vary by action chosen and condition state.

In describing the effects of the 7 maintenance actions outlined above, Durango
and Madanat present three sets of transition probability matrices. The matrix
that describes a section of pavement deteriorating at a “medium” rate is meant
to reflect the current best estimate of how a given section of pavement will
deteriorate. The inclusion of alternative “fast” and “slow” rates of deteriora-
tion draws attention to the fact that this estimate may under or over estimate
decay in meaningful ways. For the purposes of the present example, Durango
and Madanat’s medium deterioration rate transition probabilities are used to
initialize the robust programming application used in this paper.

Various uncertainty levels between 0 and 1 are considered. Costs are then cal-
culated for the cases where the actual transition probabilities are as predicted
by the initial model, as well as the worst and best possible (i.e. fastest and
slowest deterioration). It is assumed that all pavement sections begin the com-
putational study in like new condition and deteriorate according to the same
transition probabilities. Both robust and non-robust linear programming al-
gorithms are applied to guide the management of the infrastructure facilities,
each being re-run each year in the five year planning horizon as new condition
state information becomes available.

The optimization problems solved to guide decision-making are based on those
outlined in this paper: an original linear program, a modified mathematical
program that considers worst case conditions, and a Hurwicz criterion based
mathematical program. The second and third of these programs fix at 0 those
transition probabilities equal to 0 in the original medium decay rate. The worst
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condition state for the pavement, state 1, is deemed unacceptable. A maximum
budget of 25,000 dollars each year is set. Given costs as outlined above, this
is sufficient to maintain the network if wise investments in maintenance are
made, even in the worst case. However, the budget is small enough to make
it impossible to perform the actions that yield lowest possible user + agency
costs on all facilities at all times.

The focus of this paper is on showing why robust optimization may be worth-
while in the case of infrastructure management, rather than developing any
computational tricks for robust optimization. However, it is worthwhile to
present broadly how the optimization problems used in this computational
study were solved. It is apparent that, in the pavement management example
here, better condition states are associated with lower management costs. This
makes it relatively easy to describe transition probability matrices associated
with best and worst case conditions, as was discussed. A program was written
in C++ to perform this task which has an order of complexity equal to the
number of condition states possible in this problem. The yearly selection of
management policies required the optimization of a linear program equivalent
to that shown in section 1.1 of this paper. This was done using the AMPL
programming language. A few different workstation computers were used, but
in all cases, solutions were found in between 5 and 3,000 seconds.

3.2 Results of the Computational Study

The policies prescribed by the robust linear programming algorithm that con-
siders worst case conditions are able to achieve significant (user + agency)
cost savings when compared to traditional non-robust optimization. Figure 1
shows the accumulated five year infrastructure management costs accrued to
both the users of the system and the planning agency in charge.

If the uncertainty level exceeds 0.8 then the worst-case cost of non-robust
optimization is undefined. Given the available budget, non-robust optimization
is unable to meet the level of service requirement that the worst condition
state be avoided. At the same uncertainty levels, robust optimization is able
to meet budget and service requirements. The reason is that the non-robust
management scheme either chooses not to spend or inefficiently spends its
available budget in the first years of asset management. In the problem studied
here, budget not spent one year is lost rather than carried over to the following
year. Thus, the belief that decay occurs slower than it actually does leads to
a crisis in later years when the planning agency suddenly realizes in one year
that given that year’s budget alone it cannot maintain the system above the
minimum service requirement.
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Figure 1 shows the worst-case costs of asset management, both using an ap-
proach that seeks to minimize those costs and the current standard approach,
as a function of uncertainty. Seen in this light, the difference between cost
figures can be seen as the maximum cost of uncertainty in the facility per-
formance models. Naturally, non-robust optimization produces lower costs if
decay proceeds as anticipated by the initial model. It is interesting to look at
the additional cost of optimization that considers worst-case conditions in this
scenario (shown in Figure 2), and in particular to compare this potential extra
cost of robust management with the potential savings observed in worst-case
conditions (Figure 1).

Discontinuities in costs in Figure 2 are associated with the fact that at certain
threshold levels of uncertainty, robust asset management schemes alter their
maintenance schedule recommendations. The costs of asset management in
the expected case were plotted on the same scale as the costs in the worst
case shown before. Note that the potential savings achieved by robust opti-
mization in worst case conditions are of a larger magnitude than the extra
costs in expected case conditions. This was by no means guaranteed; robust
optimization does not even consider costs for expected case conditions. For
further demonstration of this phenomenon, consider the total cost ranges pos-
sible under traditional and robust asset management, as shown in Figure 3.

Robust optimization dramatically shrinks the range of potential costs asso-
ciated with asset management in cases of decay rate uncertainty. Cost un-
certainty is undesirable to planning agencies, particularly given the political
environment in which they operate. It is worth noting that the extra costs
of robust management as compared to traditional management in best case
conditions are actually slightly greater than those seen earlier in expected
case conditions. Robust management is more conservative than traditional as-
set management schemes and incurs higher costs more or less in proportion to
how benevolent conditions are. Thus, consideration of the whole range of costs
that are possible may suggest the use of Hurwicz style robust optimization,
which considers both minimum and maximum potential costs. The cost ranges
obtained by using the Hurwicz criterion are presented in Figure 4, for the case
of an optimism level of 0.5. An optimism level of 0.5 was chosen because this
weights best and worst case costs equally and thus results in the narrowest
possible total range of costs. Using this level of optimism would be an entirely
logical option for the responsible planning agency.

Note that Hurwicz robust asset management is able to limit worst case costs
well below those of the non-robust scheme. At the same time, the best-case
costs of Hurwicz robust management are in line with those of non-robust
management. Thus, Hurwicz robust optimization may be seen to have the
benefits of robust optimization, while incurring costs commensurate with non-
robust optimization under more benevolent conditions.
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4 DISCUSSION

Statistician Leo Breiman once noted that he was “deeply troubled by the cur-
rent and past use of data models in applications, where quantitative conclu-
sions are drawn and perhaps policy decisions are made” since “conclusions are
about the model’s mechanism, and not about nature’s mechanism” (Breiman,
2001). Robust optimization offers a way to mitigate against the effects of un-
certainty in the deterioration models that underlie asset management systems.
Applying robust optimization to the management of multiple infrastructure
facilities can achieve significant cost savings. These savings can also be thought
of as the costs associated with uncertainty in the transition probability ma-
trices used in modern asset management systems.

Monte-carlo simulation of the computation of pavement deterioration transi-
tion probabilities, based on the statistical uncertainty surrounding parameters
used in this process (as found in Mishalani and Madanat (2002)) reveals stan-
dard errors in the range of 0.22 to 0.35. Consideration of these standard errors
supports uncertainty levels of 0.6 or greater. The computational study un-
dertaken in this paper, also dealing with pavement deterioration, reveals the
potential for significant benefits associated with considering uncertainty of this
magnitude.

It is worth noting that this paper focuses upon uncertainty in infrastructure
deterioration modeling, but that there may also be uncertainty in the costs of
performing different maintenance actions on different infrastructure facilities.
The techniques employed to deal with uncertainty in deterioration modeling
in this paper could equally be used to address concerns of cost uncertainty.
Similarly, although the models presented here are benchmarked in a specific
pavement management problem, they are generalizable to a wide range of
problems regarding the management of different infrastructure assets.
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Table 1: Costs (dollars per lane-yard), both to users and agency, of performing
different M&R actions.

Agency Costs User Costs

Condition

Action to take 1 2 3 4 5 6 7

2 0.00 2.00 10.40 12.31 16.11 19.92 25.97 25.00

3 0.00 1.40 8.78 10.69 14.49 18.30 25.97 22.00

4 0.00 0.83 7.15 9.06 12.86 16.67 25.97 14.00

5 0.00 0.65 4.73 6.64 10.43 14.25 25.97 8.00

6 0.00 0.31 2.20 4.11 7.91 11.72 25.97 4.00

7 0.00 0.15 2.00 3.91 7.71 11.52 25.97 2.00

8 0.00 0.04 1.90 3.81 7.61 11.42 25.97 0.00
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Fig. .1. The worst case costs of worst case robust and non-robust pavement man-
agement.

19



Fig. .2. The expected case costs of worst case robust and non-robust pavement
management.
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Fig. .3. The possible cost ranges of worst case robust and non-robust pavement
management.
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Fig. .4. The possible cost ranges of hurwicz robust (for β = 0.5) and non-robust
pavement management.
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