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This work delves into three fundamental aspects of fluid dynamics: (i) theoretical

investigation, (ii) computational methodologies, and (iii) reduced-order modeling. The starting

point is the near-perfect model for general fluid flows: the Navier-Stokes equations. For the

first part, we investigate the motion of point vortices under the assumption of small Mach

number (M≪ 1). We use a Rayleigh–Jansen expansion and the method of Matched Asymptotic

Expansions to analyze the motion of the vortices at different time scales. Our study shows the

motion undergoes modifications over long time scales O(M2 logM) and O(M2).

Generally, the Navier-Stokes equations require the application of accurate, high-fidelity
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computational methods for their solutions. To this end, we explore the use of radial basis function-

based finite difference (RBF-FD) discretizations for both flow simulations and hydrodynamic

stability analysis, which comprise the core of the second part. Polyharmonic spline functions with

polynomial augmentation (PHS+poly) are used to construct the global differentiation matrices

and the discrete linearized Navier-Stokes operators on scattered nodes. A systematic parameter

study is carried out to identify a set of parameters that guarantee stability while balancing

accuracy and computational efficiency. Based on this, we develop a mesh-free semi-implicit

fractional-step Navier-Stokes solver that uses a staggered node layout. We employ classical linear

stability (LST) analysis and state-of-the-art resolvent analysis (RA) to identify flow instabilities.

An alternative way to extract large-scale coherent structures from flow-field data is the

utilization of modal decomposition techniques. In the third part, we revisit the connection

between spectral proper orthogonal decomposition (SPOD) and other techniques while demon-

strating its theoretical correspondence to time-delay analysis. Using SPOD modes, we establish

two model order-reduction techniques, namely the operator-based Galerkin projection and the

data-driven time-delay Koopman approach. Following the core concept of Koopman theory

that an infinite-dimensional linear operator can describe the nonlinear dynamics, we inflate the

linear state with an exogenous forcing to account for the nonlinear interactions and background

turbulence. Closure is achieved by modeling the remaining residue as stochastic noise. The

result models accurately predict the initial transient dynamics and reproduce the second-order

statistics of broadband turbulent flows.
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Chapter 1

Governing equations

The cornerstone equations in fluid dynamics encompass the continuity, momentum, and

energy equations, which serve as the mathematical expressions of three fundamental physical

principles underpinning the entire field of fluid dynamics: mass conservation, Newton’s second

law, and energy conservation. The Navier-Stokes equations are known as a near-perfect model

that accurately describes the motion of a fluid. In this chapter, we briefly introduce the governing

equations for both incompressible and compressible flows, as well as point vortices.

1.1 Incompressible flows

The motion of a general incompressible Newtonian fluid is governed by the Navier-Stokes

and continuity equations,

∂uuu
∂ t

+(uuu ·∇)uuu =−∇p+Re−1
∇

2uuu, (1.1a)

∇ ·uuu = 0. (1.1b)

Here, all variables are nondimensionalized by the velocity scale UUU∞ and the length scale L, and

Re denotes the Reynolds number. Taken 2D Cartesian coordinates as an example, equation (1.1)
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can be written as

∂u
∂ t

=−
(

u
∂u
∂x

+ v
∂u
∂y

)
− ∂ p

∂x
+

1
Re

(
∂ 2u
∂x2 +

∂ 2u
∂y2

)
, (1.2a)

∂v
∂ t

=−
(

u
∂v
∂x

+ v
∂v
∂y

)
− ∂ p

∂y
+

1
Re

(
∂ 2v
∂x2 +

∂ 2v
∂y2

)
, (1.2b)

∂u
∂x

+
∂v
∂y

= 0. (1.2c)

Upon appropriate discretizations, the above equations can be solved to simulate the motion of

general incompressible flows.

1.2 Compressible flows

The compressible Navier-Stokes equations govern the motion of a general, compressible

Newtonian fluid,

∂ρ

∂ t
=−∇ ·ρu,

∂ρu
∂ t

=−1
2

∇ · (u : ρu+ρu : u)−∇p+
1

Re
∇ · τττ,

∂ρe
∂ t

=−∇ ·ρeu+
1

(γ−1)RePrMa2
∞

∇ · k∇T −∇ · pu+
1

Re
∇ · τττu,

(1.3)

where e is the total energy. For a Newtonian fluid, the viscous stress tensor is τττ = µ
(
∇u+∇uT)

−2
3 µ(∇ ·u)I. All flow quantities are non-dimensionalized by their dimensional free-stream

values, denoted by (·)∗∞, and the coordinates by the diameter D. The dimensionless Reynolds

number Re = ρ∞u∞D/µ∞, Prandtl number Pr = cpµ∞/k∞, and Mach number M = u∞/a∞ then

fully describe the flow. Here, µ∞,k∞,cp,γ,a∞ are the free-stream values of the dynamic viscosity,

heat conductivity, heat capacity at constant pressure, heat capacity ratio, and speed of sound,

respectively. Closure of the equations is achieved under the assumption of an ideal gas, and

using Sutherland’s law to compute the dynamic viscosity from the local temperature.
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1.3 Point vortices

The majority of the work to date on point vortices has been for plane incompressible

flows [223]. Attempting to extend the notion of a point vortex to plane compressible flows is a

daunting task in the general case, but for the case of low-Mach number flows, a Rayleigh–Jansen

expansion in Mach number provides one approach. With the Mach number used in the expansion

defined by the velocities induced by the vortices’ motion and the speed of sound, the O(1)

incompressible velocity field increases so as to become supersonic near the location of a point

vortex. One needs to consider further physics near the vortex location, i.e. the vortices have

a small core region. Barsony-Nagy, Er-El & Yungster (hereafter BNEEY) [18] showed how

to obtain steady point vortex configurations in this manner, relating the core behaviour to a

solution obtained by Taylor [266]. Since then, there have been a few similar studies. These have

examined the translating vortex pair [101, 153, 185], for which it was found in Leppington [153]

that the speed of propagation was unchanged at O(M2), and the von Kármán vortex street [58],

for which the speed of propagation for both staggered and unstaggered streets can either increase

or decrease depending on parameters of the flow. (There have also been works on steady weakly

compressible hollow vortices, as in [7, 57, 174], but these do not consider point vortices.)

As pointed out by Moore & Pullin [185], the existence of a family of continuous shock-

free transonic compressible flows with embedded vortices is of intrinsic interest, given that

similar flows for transonic aerofoils do not persist under small perturbations. Our goal is to

extend the work on weakly compressible point vortices to the unsteady case. We extend the

approach of BNEEY [18] to obtain equations of motion for the positions of the vortices up

to O(M2). Our approach is based on conservation of momentum, which has been used for

incompressible constant-density flows and which we now review (see Llewellyn Smith [157]).

We compute the rate of change of momentum inside a moving closed contour C from Newton’s

3



Second Law in complex notation,

dP
dt

= i
∮
C

pdz− i
2

∮
C

ρw[(w−W )dz− (w−W )dz]. (1.4)

where C is described in the positive sense, the complex momentum inside C is given by the

area integral P =
∫
S ρwdS, the complex position and velocity are z = x+ iy and w = u− iv

respectively, and the velocity of C is given by W = U − iV . Using Bernoulli’s equation and

taking the limit as the contour shrinks down to the vortex, gives ζ t =W = w̃, since the contour

moves with the vortex. Here w̃ is the desingularized velocity at the vortex: physically a point

vortex moves with the local desingularized flow.

We next consider irrotational adiabatic compressible flow in the plane. The adiabatic

relation between pressure, p∗, and density, ρ∗, takes the form p∗/p∗0 = (ρ∗/ρ∗0 )
γ , where γ is the

constant ratio of specific heats, and p∗0 and ρ∗0 are reference values for pressure and density, taken

to be the values at infinity where the flow is at rest. The momentum equation can be transformed

into the unsteady Bernoulli equation,

∂φ∗

∂ t
+

1
2
|∇∇∇φ

∗|2 +
∫ dp∗

ρ∗
=

∂φ∗

∂ t
+

1
2
|∇∇∇φ

∗|2 + c2

γ−1
=

c2
0

γ−1
, (1.5)

where φ∗ is the velocity potential and the speed of sound (squared) is given by c2 = dp∗/dρ∗|s∗ =

γ p∗/ρ∗ with constant value c2
0 = γ p∗0/ρ∗0 at infinity. It is convenient to combine the above equa-

tion and the continuity equation into a single equation for the velocity potential, the Blokhintsev

equation [27, 153]. We non-dimensionalize using a length characteristic of the distance between

vortices L, a typical velocity V induced by one vortex on another, the resulting time scale L/V ,

as well as the value of density at large distances, ρ0 and the dynamic pressure scale ρ0V 2. Then

the Mach number is M =V/c0, and the Blokhintsev equation becomes, dropping the stars and

using the summation convention with subscripts running from 1 to 2,
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∇
2
φ = M2

{
(γ−1)

(
∂φ

∂ t
+

1
2
|∇φ |2

)
∇

2
φ +

∂ 2φ

∂ t2 +2
∂φ

∂xi

∂ 2φ

∂xi∂ t
+

∂φ

∂xi

∂φ

∂x j

∂ 2φ

∂xi∂x j

}
, (1.6)

along with

p =
1

γM2

[
1− (γ−1)M2

(
∂φ

∂ t
+

1
2
|∇∇∇φ |2

)]γ/(γ−1)

, (1.7)

ρ =

[
1− (γ−1)M2

(
∂φ

∂ t
+

1
2
|∇∇∇φ |2

)]1/(γ−1)

. (1.8)

The above equations are valid in the region of length scale L between vortices, which we

call the vortex region. They break down near the vortex cores, as pointed out by BNEEY [18]

and also examined by Leppington [153]. To understand the flow behaviour in a vortex core and

its impact on the subsequent matching process, we work in a reference frame co-moving with

the vortex, so that for a vortex at location XXX moving with velocity UUU , one has

xxx = x̂xx+XXX , uuu = ûuu+UUU , t = t̂, φ = Φ̂+UUU ··· x̂xx, (1.9)

where x̂xx and ûuu are the position and velocity with respect to the vortex core in the moving frame,

respectively. Here t̂ is used to emphasize that partial time- and space-derivatives in the core

frame are taken with constant x̂xx and t̂ respectively. The velocity potential in the core frame is Φ̂.

Following previous authors, we now define an appropriately scaled variable in the core region

using x̂xx = Msss, so that the radial coordinate measured from the vortex core is r = Ms. In terms of

these variables, the Blokhintsev equation becomes

[
1− (γ−1)

(
M2 ∂ Φ̂

∂ t̂
+

1
2

∂ Φ̂

∂ s j

∂ Φ̂

∂ s j
+M3U̇ js j−

1
2

M2U jU j

)]
∂ 2Φ̂

∂ s2
i

=M4 ∂ 2Φ̂

∂ t̂2 +2M2 ∂ Φ̂

∂ si

∂ 2Φ̂

∂ si∂ t̂
+M6 ∂ Φ̂

∂ si

∂ Φ̂

∂ s j

∂ 2Φ̂

∂ si∂ s j
+M5Ü js j−M4U jU j +M3U̇ j

∂ Φ̂

∂ s j
, (1.10)

where dots above U j indicate time derivatives.

5



Chapter 1, in part, is a reprint of the material as it appears in Philosophical Transactions

of the Royal Society A 2022. Llewellyn Smith, Stefan G.; Chu, Tianyi; Hu Zinan, The Royal

Society, 2022. The dissertation author was one of the primary investigators and authors of this

paper.
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Chapter 2

Modal analysis of fluid flows

Flow instabilities and large-scale coherent structures are ubiquitous phenomena in fluid

mechanics that have been the focus of extensive research. Linear stability (LST) analysis is

specifically designed to investigate the growth of small perturbations exclusively around laminar

base flows, which are the steady-state solution to the Navier-Stokes equations. One-dimensional

LST analysis was widely used in the past century, e.g., [26, 56, 103, 171]. Eriksson & Rizzi

[66] and Tuckerman & Marcus [278] were the pioneers in conducting LST analysis in two-

dimensional (2D). Subsequently, Jackson [114] and Zebib [306] examined the 2D nature of

vortex shedding in the wakes of bluff bodies. Readers are referred to Huerre & Monkewitz

[108] and Theofilis [267] for comprehensive reviews of the concept of 2D LST modes. The

implementation of the 2D LST framework has enabled improved identification of flow instability

in non-parallel flows, including cylinder wakes [91, 169, 189], aerofoil wakes [64, 298], boundary

layers [1, 65], and jets in cross-flow [14, 198, 210]. Studies have demonstrated that an open

flow can possess marginal stability despite exhibiting local convective instability. LST analysis

around a steady laminar base flow, by its inherent nature, is not applicable to predict finite-

amplitude flow instabilities arising from nonlinear interactions. The use of mean flow for LST

analysis, despite violating the basic assumption of linear theory, has been used successfully

to predict coherent flow features in diverse types of flows, including cylinder wakes [15, 203],

open cavity flows [252, 253], mixing layers [89, 183, 294], and turbulent or transitional jets
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[95, 190, 236]. Theoretical conditions required for the validity of mean flow stability analysis

have been explored by [25]. Although beyond the scope of this work, it is noteworthy that the

weakly-nonlinear extension of LST analysis has been successfully employed for studying the

dynamics of non-parallel flows [50, 253]. The LST-based semi-empirical eN method [258, 283]

has succeeded in transition prediction for certain flows such as boundary layers. However, the

prediction of disturbance behavior in more complex scenarios, such as crossflows or bypass

transitions, falls outside the scope of LST theory.

Despite these limitations, resolvent, or input-output analysis, has recently emerged as

a linear tool for accurately predicting large-scale coherent structures in fully turbulent flows.

Resolvent analysis (RA) originally stems from the studies of transient growth [67, 207, 208,

276] and seeks the optimal pairs of inputs and corresponding outputs through the linearized

system that maximizes the energy gain. Within the laminar regime, RA has been utilized

to investigate the linear response to external body forces or perturbations for channel flows

[124, 179, 216], boundary layers [3, 29, 41, 184, 200, 254, 274], and jets [88, 118, 239]. In

contrast to classical LST analysis, the input-output perspective offers a mathematically rigorous

framework for studying turbulent mean-flows by identifying the forcing as the Reynolds stresses

in the perturbation-interaction terms in the Reynolds-decomposed Navier–Stokes equations

[173, 247]. Applications include near-wall flows [1, 111, 247], boundary layers [10, 115, 214],

incompressible [88, 154] or compressible jets [118, 237, 275], and airfoil wakes [212, 303]. The

validation of fundamental relationships between RA and other modal decomposition techniques

was facilitated by [275], establishing RA as a well-suited tool for turbulence modeling [201, 202].
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2.1 Linear stability analysis

In the case of laminar flows, we can decompose the flow state around the steady-state

solution of the Navier-Stokes equations (1.1) as

uuu =UUU +uuu′, p = P+ p′, (2.1)

where (UUU , P) represents the base flow that satisfies

(UUU ·∇)UUU =−∇P+Re−1
∇

2UUU , (2.2a)

∇ ·UUU = 0, (2.2b)

and (·)′ denotes the small fluctuating components. In turbulent flows, we take the Reynolds

decomposition of the flow state into the temporal mean, (·), and fluctuating components, given

by

uuu = uuu+uuu′, p = p+ p′. (2.3)

By generalizing the notation of the base state as (uuu0, p0), the resulting governing equations for

the fluctuations take the form of

∂uuu′

∂ t
+(uuu0 ·∇)uuu′+

(
uuu′ ·∇

)
uuu0 =−∇p′+Re−1

∇
2uuu′+ fff ′, (2.4a)

∇ ·uuu′ = 0. (2.4b)

Here, the term fff ′ represents the remaining nonlinear interactions between the fluctuation compo-

nents. Table 2.1 summarizes the two aforementioned decompositions.

Equation (2.4) can be written compactly in terms of the fluctuating state, qqq′ = [u′, v′, p′]T ,
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Table 2.1. Summary of flow state decompositions.

Base state Description Notation Obtained from Remaning forcing fff ′

(uuu0, p0)
Base flow (UUU , P) equation (2.2) −(uuu′ ·∇)uuu′

Mean flow (uuu, p) long-time average −(uuu′ ·∇)uuu′+(uuu′ ·∇)uuu′

as

PPT
(

∂

∂ t
qqq′
)
= L qqq′+P fff ′, (2.5)

where P is the prolongation operator that extends the velocity vector [u, v]T into [u, v, 0]T , and

its transpose is the restriction operator that extracts the velocity vector from the extended state

vector [254]. The incompressible linearized Navier-Stokes (LNS) operator takes the form of

L ≡

−(uuu0 ·∇)()− [() ·∇]uuu0 +Re−1
∇2 −∇

∇ · () 0

. (2.6)

Beyond the linear dynamics, the remaining forcing fff ′ in equation (2.5) comprises products of

fluctuating quantities, as outlined in table 2.1. These terms will be either neglected or modeled.

For compressible flows, we linearize the system described in equation (1.3) and the resulting

governing equation for the fluctuating components takes the form

∂

∂ t
qqq′ = L qqq′+ fff ′ (2.7)

Equation (2.7) is formally equivalent to equation (2.5) when P is considered as the identity

operator I .

Classical (temporal) linear stability (LST) analysis investigates fluctuations with complex

frequency λ = λr + iλi, where λr is the exponential growth rate and λi the oscillation frequency.

The fluctuations are assumed to be infinitesimally small, and the forcing term, fff ′, is, therefore,

10



negligible at O(1), see, e.g., Schmid & Henningson [231]. Substituting perturbations of the form

qqq′(xxx, t) = q̃qq(xxx)eλ t into the governing equations (2.4) yields the LST equation,

λPPT q̃qq = L q̃qq. (2.8)

Equation (2.8) is a generalized eigenvalue problem, and the eigenvector associated with the

largest growth rate ought to predict the dominant flow instability mechanism.

2.2 Resolvent analysis

The nonlinear interactions in equation (2.5) are no longer negligible for general cases of

finite amplitude fluctuations. Within the resolvent framework of turbulent flows, the nonlinear

interactions, along with the background turbulence, can be interpreted as external forcing, fff ′,

to the otherwise linear dynamics. This interpretation was first proposed by Mckeon & Sharma

[173]. By assuming a normal mode form for the fluctuating components,

[uuu′,qqq′, fff ′](xxx, t) = [ûuu, q̂qq, f̂ff ](xxx)eiωt + c.c., (2.9)

where ω is the angular frequency, or equivalently by taking the Fourier transform, we obtain

the linear time-invariant (LTI) representation of the governing equation (2.4) in the frequency

domain,

(
iωPPT −L

)
q̂qq = P

(
B f̂ff
)
, (2.10a)

ûuu = PT (C q̂qq) . (2.10b)
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The linear operators B and C are used to select spatial regions of particular interest. We write

equations (2.10) in a compact form as

ûuu = H (ω) f̂ff , (2.11)

where H (ω) = PT C
(
iωPPT −L

)−1
PB is known as the resolvent operator.

In the absence of nonlinear interactions described in table (2.1), the application of input-

output, or resolvent analysis (RA) provides a means to model them as optimal forcing inputs to

the linear system in equation (2.11). The objective of resolvent analysis is to identify pairs of

optimal forcings and their corresponding responses that maximize the gain, σ2, defined as the

ratio of the energy of the response to the energy of the forcing,

σ
2( f̂ff ;ω) =

∥ûuu∥2
u

∥ f̂ff∥2
f

=

〈
H (ω) f̂ff ,H (ω) f̂ff

〉
u〈

f̂ff , f̂ff
〉

f

. (2.12)

Refer to [231] for a detailed discussion. The energy of the response and the forcing are measured

in the norms ∥ · ∥u and ∥ · ∥ f , induced by the inner products

⟨ûuu1, ûuu2⟩u =
∫

Ω

ûuu∗2(xxx,ω)WWW u(xxx)ûuu1(xxx,ω)dxxx and
〈

f̂ff 1, f̂ff 2

〉
f
=
∫

Ω

f̂ff
∗
2(xxx,ω)WWW f (xxx) f̂ff 1(xxx,ω)dxxx

(2.13)

on the output and input spaces, respectively. Here, WWW u and WWW f are weight matrices containing

both the numerical quadrature weights and weights associated with these inner products, and

(·)∗ denotes the Hermitian transpose. Equation (2.12) is solved by the Schmidt decomposition to

the resolvent operator

H (ω) =
∞

∑
j=1

σ j(ω)ûuu j(xxx,ω)⊗ f̂ff j(xxx,ω) (2.14)
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in terms of the inner products (2.13), where ⊗ denotes the Kronecker product. In practice, that is

for discrete data, it is solved by the singular value decomposition. The output modes, ûuu j, and input

modes, f̂ff j, are orthogonal in their respective inner products, that is,
〈
ûuu j, ûuuk

〉
u =

〈
f̂ff j, f̂ff k

〉
f
= δ jk.

The modes are ordered by the associated singular value, σ j. It can be verified that the input and

output modes are related through

H (ω) f̂ff j = σ j(ω)ûuu j, (2.15)

which provides a physical interpretation of the singular values and vectors.

2.3 Modal decomposition techniques

In addition to identifying flow instabilities through the governing equations, modal

decomposition techniques offer an alternative data-driven approach for extracting energetically

and dynamically significant features from flow-field data.

2.3.1 Proper orthogonal decomposition

In fluid mechanics, the most widely used approach for extracting the dominant features

from a time-series data is proper orthogonal decomposition (POD); see Lumley [159, 160].

In other disciplines, POD is known as empirical orthogonal functions, principal component

analysis, or Karhunen-Loève decomposition. POD modes are particularly suitable for Galerkin

projection due to their optimality and orthogonality; see, e.g., [188, 219]. Most commonly, the

space-only POD modes are computed using the method of snapshots by Sirovich [256]. Consider

a fluctuation data matrix consisting of N snapshots,

QQQ′ = [qqq[1]−qqq,qqq[2]−qqq, · · · ,qqq[N]−qqq] , (2.16)
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and the spatial inner product ⟨·, ·⟩ that quantifies the energy of the flow field,

⟨qqq1,qqq2⟩ ≡
∫

Ω

qqq∗1(xxx)WWW (xxx)qqq2(xxx)dxxx, (2.17)

The space-only POD modes are obtained through the eigendecomposition of the spatial cross-

correlation tensor SSS = QQQ′QQQ′∗ as

SSSWWWΨΨΨ = ΨΨΨΛΛΛ, (2.18)

The resulting POD modes ΨΨΨ optimally represent the data and have orthogonality by definition.

2.3.2 Dynamical mode decomposition and Koopman analysis

As an alternative to POD, dynamic mode decomposition (DMD) developed by Schmid

[229] aims at identifying coherent spatial modes that best describe the flow dynamics upon

linearization. The temporal dynamics of the coefficients are described by complex exponentials,

specifically involving frequency and growth/decay rate. The DMD method provides a spatiotem-

poral decomposition of data streams and is closely related to Koopman analysis [177, 178, 221].

The fundamental concept of Koopman analysis [140] is to use an infinite-dimensional linear op-

erator K that advances observable functions φ forward in time to describe the finite-dimensional

nonlinear dynamics of the flow state qqq∈M , where M ⊆CNq is the state space. Let FFF : M →M

be an evolution operator that describes the nonlinear dynamics of qqq with

qqq[i+1] = FFF(qqq[i]). (2.19)

The Koopman operator acts on functions of state space and is defined by

K φφφ(qqq[i])≡ φφφ(FFF(qqq[i])) = φφφ(qqq[i+1]), (2.20)
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producing a new vector-valued function φφφ ◦FFF . Here, the observable vector φφφ is defined as

φφφ(qqq) =
[

φ1(qqq) φ2(qqq) · · · φNk(qqq)

]T

, (2.21)

where (·)T denotes the transpose. Each component of φφφ is a scalar-valued observable with

φ : M → C. For intuitive understanding, we recommend the notes by Brunton [35]. The

most important property of the Koopman operator is that it linearly governs the evolution of

observables in discrete time, i.e., K (c1φφφ 1 + c2φφφ 2) = c1K φφφ 1 + c2K φφφ 2. In the following, we

omit the dependence on qqq, and use the notation φφφ [i]≡ φφφ(qqq[i]) for brevity.

In standard DMD [229], the full state observable vector is defined as the observable

vector, that is, φφφ(qqq) = qqq. The most popular flavor of DMD is the so-called exact DMD method

developed by Tu et al. [277], which is based on the eigendecomposition of the finite-dimensional

DMD operator, defined as

KKK ≡ QQQN
2

(
QQQN−1

1

)+
. (2.22)

Here, the notations, (·)N−1
1 and (·)N

2 , represent the submatrices by excluding the last and the first

columns, respectively. The DMD modes, also called dynamic modes, reduce to temporal discrete

Fourier transform (DFT) modes if the data is periodic [221] and approximate the Koopman

eigenfunctions if snapshots are independent [48]. For stationary flow, the physically relevant

DMD modes often have nearly zero growth/decay rates, see, e.g., [48, 221, 229, 232, 238, 277].

It is commonly recommended not to subtract the mean when performing DMD for non-stationary

flows to capture their dynamics. If one aims to recover Koopman modes of stationary flows with

zero growth/decay rates, incorporating mean subtraction in DMD is beneficial [275].

As a generalization of the standard DMD, Williams et al. [295] proposed the extended

DMD (EDMD) method for approximating the leading Koopman eigenvalues and eigenfunctions

by using a dictionary of scalar observables. In EDMD, every function of the flow state can be
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considered as observables, in particular, nonlinear observable functions, such as kernel functions

[296], Hermite polynomials [155], and candidate functions obtained using sparse regression [37].

The EDMD operator then takes the form of

KKK ≡ΦΦΦ
N
2
(
ΦΦΦ

N−1
1
)+

, (2.23)

where ΦΦΦ represents the data matrix for observables, φφφ . Koopman theory guarantees the conver-

gence of the EDMD operator to the Koopman operator in the limit of infinite observables [141].

It also converges to a Galerkin method in the large-data limit (N→ ∞) and recovers the action of

the Koopman operator on the Nk-dimensional subspace of observables [138, 295].

2.3.3 Time-delay embedding and space-time POD

While (E)DMD focuses on embedding the state dynamics onto (non)linear manifolds

in space, the time-delay embedding of data sequences provides a different perspective for

identifying dominant spatiotemporal structures. Arbabi & Mezić [5] introduced the Hankel-

DMD algorithm to obtain the Koopman spectrum by performing the DMD of a Hankel data

matrix. This Hankelized approach is guaranteed to retrieve Koopman eigenfunctions for ergodic

systems when an infinite amount of data is available. Le Clainche & Vega [147] proposed the

higher-order DMD (HODMD) to address high spectral complexity. This approach has been

successfully demonstrated on a range of flows characterized by a broadband spectrum, including

a jet [149], a cylinder wake [148], and an airfoil wake [142]. The reader is referred to Vega & Le

Clainche [286] for more applications. The above variants of DMD are summarized in the recent

review by Schmid [230].

In addition to these DMD-based methods, an alternative approach to identifying spa-

tiotemporal structures from data is space-time POD, which originates from the most general

version of POD and describes the time evolution of the flow over a specified time window

[160]. Schmidt & Schmid [235] proposed the conditional space-time POD to identify acoustic
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intermittency in a jet. Recently, Frame & Towne [86] demonstrated that discrete space-time

POD modes can be obtained through the singular value decomposition (SVD) of a block Hankel

matrix. These Hankel singular vectors form the modal basis of the Hankel alternative view of

Koopman (HAVOK) model by Brunton et al. [36]. As shown by Frame & Towne [86], they

converge to space-only POD modes in the short-time limit and to spectral POD (SPOD) modes in

the long-time limit. The common idea behind these time-delay decomposition techniques is the

SVD of a Hankel matrix, which is closely related to the singular spectral analysis (SSA) [285]

and the eigensystem realization algorithm (ERA) [125]. Naturally, their computational cost

depends on the spatial and spectral complexities of the data sequence. This bottleneck can be

circumvented by using convolutional coordinates that readily encapsulate time-delay embedding

[129]. In particular, SPOD can be alternatively viewed as a time-delay technique, specifically

through the Fourier convolution, due to the inherent relationship between the Hankel singular

vectors and SPOD modes [86].

2.3.4 Spectral proper orthogonal decomposition

SPOD, the frequency-domain variant of POD, identifies large coherent structures in

stationary flows by decomposing the data set into energy-ranked, monochromatic modes [237,

275]. The resulting modes evolve coherently in both space and time, and optimally represent

the second-order space-time flow statistics. Analogous to the eigendecomposition of the cross-

covariance matrix, which constitutes POD, SPOD is computed from the eigendecomposition of

the cross-spectral density matrix. For statistically stationary flows, the fluctuation component qqq′

can be decomposed into temporal Fourier modes ˆ(·)
ωk

of angular frequency ωk as

qqq′ = ∑
k

q̂qqωk
eiωkt . (2.24)

SPOD is performed for each frequency independently. For a given frequency ωk, the SPOD

modes are found as the eigenvectors ΨΨΨωk =
[
ψ

(1)
ωk ,ψ

(2)
ωk , · · · ,ψ

(Nb)
ωk

]
, and the modal energy as the
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descending eigenvalues ΛΛΛωk = diag
(

λ
(1)
ωk ,λ

(2)
ωk , · · · ,λ

(Nb)
ωk

)
of the cross-spectral density tensor

ŜSSωk = Q̂QQωk
Q̂QQ
∗
ωk

as

ŜSSωkWWWΨΨΨωk = ΨΨΨωkΛΛΛωk , (2.25)

where Q̂QQωk
=
[
q̂qq(1)ωk , q̂qq

(2)
ωk , · · · , q̂qq

(Nb)
ωk

]
is the matrix of Fourier realizations, and the weight matrix

WWW enters through the definition of the inner product in the equation (2.17). Here, q̂qq(i)ωk is the i-th

realization of the Fourier transform which we obtain by segmenting the data into Nb blocks under

the ergodicity hypothesis. A periodic Hamming window is used to minimize spectral leakage.

The resulting SPOD modes ΨΨΨωk are discretely orthogonal with ⟨ψ(i)
ωk ,ψ

( j)
ωk ⟩E = δi j, where δi j

is the Kronecker delta function. Expanding the SPOD modes in time, {ψψψ(α)
j eiω jt}, achieves

the space-time orthogonality by construction, which permits their interpretation as physical

large-scale structures [275]. A large separation between the first and the remaining eigenvalues

of the SPOD eigenspectra reveals low-rank dynamics associated with prevalent flow structures

[237]. For the same method, Nekkanti & Schmidt [186] proposed a convolution-based approach

to obtain discrete time-continuous expansion coefficients, and facilitate time-local analyses, such

as frequency-time diagrams. Besides optimally accounting for the second-order statistics, the

SPOD modes are also dynamically significant as they are optimally averaged ensemble DMD

modes [275] and are formally equivalent to the spectral expansion of the stochastic Koopman

operator [6, 177] for stationary flows. These properties leverage the potential of modeling

turbulent flows through Koopman theory using SPOD-based convolutional coordinates, see §7.

The aforementioned modal decomposition/analysis techniques and other related methods

are summarized in figure 2.1. Three modeling perspectives are used to categorize these meth-

ods. Note that all the methods here are applied to analyze general nonlinear fluid flows. The

terminology ’linear,’ ’forced linear,’ and ’nonlinear’ pertains to the state vector under analysis.
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Figure 2.1. Summary of modal decomposition/analysis techniques for general fluid flows. These
techniques are categorized due to three modeling perspectives: state vector (linear→ forced
linear→ nonlinear), time-delay horizon (instantaneous→ finite→ long-time limit), and physical
aspects (statistics or dynamics).

Example of a turbulent jet

SPOD has been applied to a variety of turbulent flows, including wall-bounded shear

flows such as boundary layers [280], as well as bluff-body flows such as the wake behind a

disk [281]. For turbulent jets, the use of SPOD was pioneered by Glauser, Leib, & George [93].

Later, different authors linked coherent structures identified by SPOD to concepts from linear

stability theory for both experimental data [46, 94, 95] and large eddy simulation (LES) data

[236, 273, 275].

Take as an example of a statistically stationary flow, a turbulent, iso-thermal jet at Mach

number, based on the jet velocity and the far-field speed of sound, of M = 0.9 and Reynolds

number, based on the nozzle diameter and the jet velocity, of Re≈ 106. The state vector

qqq = [ρ,ux,ur,uθ ,T ]T , (2.26)
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comprises the density ρ , temperature T , and cylindrical velocity components ux, ur and uθ in

the streamwise, x, radial, r, and circumferential, θ , directions, respectively. The LES data is

generated using the unstructured flow solver ‘Charles’. Further details about the dataset can

be found in Brès et al. [33]. Owing to the rotational symmetry of the jet, we may decompose

the data, without loss of generality, into azimuthal Fourier components, m. Consequently,

q̄qq = [ρ̄, ūx, ūr,0, T̄ ]T is the long-time mean of the primitive state, whose azimuthal velocity

component is zero for the round jet. We then interpolate the data on a 950×195 Cartesian mesh

that includes the physical domain x,r ∈ [0,30]× [0,6]. For more details, the reader is referred to

Schmidt et al. [236]. To quantify the flow energy, we use the compressible energy inner product

⟨qqq1,qqq2⟩E =
∫

Ω

qqq∗1diag
(

T
γρ̄M2 , ρ̄, ρ̄, ρ̄,

ρ̄

γ(γ−1)T M2

)
qqq2dxxx = qqq∗1WWWqqq2, (2.27)

devised by Chu [51], in equation (2.17). The same dataset is later used for resolvent analysis in

§5.4.3 and SPOD-based reduced-order models in §6.4 and §7.

We compute the SPOD from the 10,000 snapshots of the turbulent jet by partitioning the

data into Nb = 77 blocks of 256 snapshots with an overlap of 50%. These spectral estimation

parameter are obtained following the best practices outlined in [234, 275]. Owing to the rotational

and temporal symmetry of the jet, it suffices to consider the N f = 129 non-negative frequency

components.

Figure 2.2(a) shows the instantaneous streamwise fluctuating velocity, u′x, and its sym-

metric component (azimuthal wavenumber mθ = 0), ûx, of the turbulent jet. The wide range of

time and length scales of this fully developed turbulent flow becomes apparent from the velocity

field. Figure 2.2(b) shows the SPOD eigenvalue spectra of the axisymmetric component.

Figure 2.3 shows the first, the second, and the 10th of the SPOD modes that constitute the

basis of our models. The frequency is reported in terms of the Strouhal number St = ω/(2πM),

where ω is the non-dimensionalized frequency. Three representative frequencies are presented.

Large-scale coherent structures associated with Kelvin-Helmholtz instability waves are observed
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Figure 2.2. Axisymmetric component of a M = 0.9 transonic jet: (a) streamwise cross-section
of the instantaneous streamwise fluctuating velocity (top half) and its symmetric component
(bottom half); (b) SPOD eigenvalue spectra.

Figure 2.3. Examples of SPOD modes of the turbulent jet: (a,d,g) St = 0.2; (b,e,h) St = 0.41;
(c,f,i) St = 0.63. The normalized pressure components of the 1st, 2nd, 10th modes are shown in
x,r ∈ [0,25]× [0,4].

in the leading modes. Referred to Schmidt et al. [237] for more details on the physical

interpretation of SPOD modes.

Chapter 2, in part, is a reprint of the materials as it appears in Theoretical and Compu-

tational Fluid Dynamics 2021, Chu, Tianyi; Schmidt, Oliver T., Springer, 2021 and Journal of
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Computational Physics 2023, Chu, Tianyi; Schmidt, Oliver T., Elsevier, 2023. The dissertation

author was the primary investigator and author of these two papers.
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Chapter 3

Numerical discretization: radial basis
functions (RBFs)

In the realm of Computational fluid dynamics (CFD), the fundamental task involves the

discretization of the Navier-Stokes equations. In the past two decades, radial basis functions

(RBF)–based discretizations have emerged as a viable alternative to established approaches

[80]. RBF-based methods are often referred to as mesh-free as they facilitate the discretization

of partial differential operators directly on a set of scattered nodes, i.e., without the need of

local elements. The main promise of RBF-based methods is that they can combine the ease

of implementation and high order of accuracy of finite differences (FD) with the geometrical

flexibility of finite volume (FV), finite element (FE), and discontinuous Galerkin (DG) methods.

RBF approximations provide high-order accuracy, flexibility, and ease of implementation

for interpolation and differentiation. Historically, RBFs were often used as global interpolants

over all nodes. These global RBF methods with spectral-like nominal accuracy have been

applied to a variety of flow problems [73, 75, 77, 78, 130, 131, 300] including Lagrangian

fluid mechanics [291]. Other applications of global RBFs include solid mechanics [289, 290].

They are, however, computationally expensive for large problems and often suffer from ill-

conditioning and numerical instability. Remedies to these problems have been found in the

form of regularizations like hyperviscosity [76, 82] and preconditioners [132]. The use of local

RBF stencils was pioneered by [249, 271, 288, 299] and yields a class of so-called RBF-FD
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methods that are named in reference to classical finite differences. Just like classical FDs,

RBF-FD methods generate sparse differentiation matrices. The level of sparsity depends on

the local stencil size, which in turn is determined by the desired order of accuracy. Common

choices of RBFs for fluid flow problems are Gaussians (GA), multiquadrics (MQ), and inverse

multiquadrics (IMQ). Flyer et al. [76], for example, demonstrated the use of GA-type RBFs

for solving the shallow water equations on a sphere and compared the performance to other

high-order numerical methods. Applications to the incompressible Navier-Stokes equations

(NSE) include the local MQ-differential quadrature (DQ) method by Shu, Ding, & Yeo [250],

its extension to 3D by Ding et al. [61], the compact RBF-FD scheme by Chinchapatnam et al.

[49], which in turn is based on the work by Wright & Fornberg [301], and the method by [302],

who introduced a regularization term for IMQ RBFs and a semi-Lagrangian scheme for transient

simulations. Incompressible flow solvers with convective heat transfer have been implemented

by [249, 293, 304].

All these implementations use infinitely smooth RBFs that are characterized by a shape

parameter. This shape parameter, in turn, significantly impacts both accuracy and stability, and

extensive works, most empirical, have been devoted to investigating its effect [45, 70, 85, 87, 98,

215]. Good accuracy is often associated with near-flat RBFs. RBFs in this flat limit, however,

often yield ill-conditioned discretizations and suffer from stagnation, or saturation, errors [74].

Numerical schemes that address these problems include Contour-Padé [85], RBF-QR [81, 84,

145], and RBF-GA [83] methods. More recently, RBF-FDs based on polyharmonic splines

augmented with polynomials (PHS+poly), that do not require a shape parameter were introduced

by Flyer, Barnett, & Wicker [72]. Later, Flyer et al. [74] demonstrated the use of higher-order

polynomial augmentations, which improve the accuracy of derivative approximations of local

RBF stencils and mitigate the stagnation error under node refinement. Bayona et al. [23] used

PHS+poly for solving elliptic PDEs and showed that a larger stencil size near domain boundaries

helps to avoid the Runge phenomenon. Using closed-form RBFs, Bayona [21] later provided an

analytical validation of this result. Numerical demonstrations for 2-D and 3-D examples were
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presented in Bayona, Flyer, & Fornberg [22]. Several comparisons to other mesh-free approaches,

including polynomial least-squares approximations [74], the RBF-GA method near the flat limit

[225], and the moving least-squares (MLS) method [20] have confirmed the competitiveness of

PHS+poly-based RBF-FDs in terms of accuracy, robustness, and computational efficiency.

3.1 RBF approximations

The underlying idea of radial basis functions (RBFs) is to approximate a given function

f (xxx) using a smooth radial function φ(r). For a set of n scattered nodes, {xxx}n
j=1, we seek the

interpolant

s(xxx) =
n

∑
j=1

λ jφ(∥xxx− xxx j∥) (3.1)

that satisfies s(xxxi) = f (xxxi) for i = 1,2, . . . ,n, where ∥ · ∥ denotes the standard Euclidean norm.

The interpolation coefficients λ1, · · · ,λn can be found as the solution of the linear system



φ(∥xxx1− xxx1∥) φ(∥xxx1− xxx2∥) · · · φ(∥xxx1− xxxn∥)

φ(∥xxx2− xxx1∥) φ(∥xxx2− xxx2∥) · · · φ(∥xxx2− xxxn∥)
...

...
...

φ(∥xxxn− xxx1∥) φ(∥xxxn− xxx2∥) · · · φ(∥xxxn− xxxn∥)


︸ ︷︷ ︸

AAA



λ1

λ2

...

λn


=



f (xxx1)

f (xxx2)

...

f (xxxn)


, (3.2)

where AAA is the interpolation matrix. The RBF interpolant s(xxx) based on these coefficients can

then be used to approximate the function f (xxx) in the local region described by the set of nodes,

{xxx}n
j=1. Common choices for RBFs include Gaussian (GA), multiquadrics (MQ), and inverse

multiquadrics (IMQ). See Fornberg & Flyer [80] for a comprehensive overview. These RBF

types are known to suffer from the stagnation (or saturation) error under refinement and have a

free shape parameter that significantly impacts their accuracy and stability. In this work, we use
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polyharmonic splines (PHS),

φ(r) = rm, where m is an odd positive integer, (3.3)

as the basis functions. This choice is motivated by recent studies [22, 23, 72, 74], which highlight

the advantageous properties of the PHS-type RBFs for discretizations, described next.

3.2 RBF-FD method and augmentation with polynomials

A direct approach for the generation of RBF-based differentiation operations is the RBF-

FD method, which approximates the action of any linear operator, D , as a linear combination of

the function values, f (xxx j), such that

D f (xxx0) =
n

∑
j=1

w j f (xxx j). (3.4)

Here, x0 is a given location, and w j are the unknown differentiation weights. Using equation (3.1),

the function value f (xxx) can be approximated by the RBF interpolant s(xxx) and the corresponding

weight vector www = (w1, · · · ,wn)
T is then obtained by solving the linear system

 AAA





w1

w2

...

wn


=



Dφ(∥xxx− xxx1∥)|xxx=xxx0

Dφ(∥xxx− xxx2∥)|xxx=xxx0

...

Dφ(∥xxx− xxxn∥)|xxx=xxx0


. (3.5)

An implicit assumption of the RBF-FD method is that the derivative of the basis functions, Dφ ,

is continuous.

A commonly used extension of equation (3.4) to enforce consistency with Taylor

expansion-based FD approximations is polynomial augmentation [72, 80, 82, 145, 301]. For 2D
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problems, this RBF-FD method with polynomial augmentation up to degree q takes the form

D f (xxx0) =
n

∑
j=1

w j f (xxx j)+
(q+1)(q+2)/2

∑
i=1

ciPi(xxx0). (3.6)

The use of multivariate polynomial terms, Pi(xxx), to match the local Taylor series introduces the

additional constraints

n

∑
j=1

w jPi(xxx j) = DPi(xxx0), for 1≤ i≤ (q+1)(q+2)
2

, (3.7)

also known as the vanishing momentum conditions [113], for the differentiation weights. These

constraints ensure that the RBF approximations reproduce locally polynomial behaviour up to

degree q [74] and appropriately decay in the far-field [79]. As an example, consider the linear

system for q = 1,



1 x1 y1

AAA
...

...
...

1 xn yn

1 · · · 1

x1 · · · xn 000

y1 · · · yn





w1

...

wn

c1

c2

c3


=



Dφ(∥xxx− xxx1∥)|xxx=xxx0

...

Dφ(∥xxx− xxxn∥)|xxx=xxx0

D1|xxx=xxx0

Dx|xxx=xxx0

Dy|xxx=xxx0


. (3.8)

The interpolation matrix AAA is the same one defined in equation (3.5). A more general and compact

expression for equation (3.8) takes the form

 AAA PPP

PPPT 000


︸ ︷︷ ︸

AAAaug

www

ccc

=

Dφφφ

DPPP

. (3.9)

This procedure ensures consistency with the local expansion, but equation (3.4) is used to
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approximate the actual differentiation operations. The use of polynomial augmentation for PHS

RBFs has shown to improve the accuracy for interpolation and derivative approximations [74],

numerical solutions of elliptic PDE problems [23], and approximations near domain boundaries

[22]. Our practical implementation follows Flyer, Barnett, & Wicker [72].

3.3 Global differentiation operators

Differentiation matrices provide a straightforward and flexible way to discretize partial

differential equations (PDEs). The use of global RBFs leads to full matrices, which are com-

putationally expensive and require a lot of memory. To obtain sparse matrices instead, we seek

local differentiation operators that utilize a smaller number of neighboring nodes. Assume the

given domain is discretized by two sets of scattered nodes, {xxx(α)
i }N

i=1 and {xxx(β )j }M
j=1. Given the

function values at node set β , f (xxx(β )), we seek a differentiation matrix such that DDD(α,β )
D f (xxx(β ))

approximates the derivatives, D f (xxx(α)), at node set α . The differentiation matrix DDD(α,β )
D must

hence satisfy 

w11 w12 · · · w1N

w21 w22 · · · w2N

...
...

...

wM1 wM2 · · · wMN


︸ ︷︷ ︸

DDD(α,β )
D



f (xxx(β )1 )

f (xxx(β )2 )

...

f (xxx(β )N )


=



D f (xxx)|
xxx=xxx(α)

1

D f (xxx)|
xxx=xxx(α)

2
...

D f (xxx)|
xxx=xxx(α)

M


. (3.10)

Note that for collocated grids, we have α = β . For this arrangement, the jth row of the matrix

DDD(α,β )
D approximates the derivative at node xxx(α)

j using the n≪ N nearest nodes of the β -grid as

the stencil for equation (3.9). The remaining weights are set to zero. As argued in Flyer et al.

[74], the use of local RBF-FD approximations has the additional advantage that each stencil has

its own supporting polynomial that can be locally adjusted. The fully assembled matrix, DDD(α,β )
D ,

is sparse with M×n nonzero elements.
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3.4 Accuracy and error analysis

We use modified wavenumber diagrams, as known from classical FD analysis, to gauge

the accuracy of the PHS+poly RBF-FDs on the staggered nodes. Modified wavenumber analysis

was originally designed to examine the truncation error of FD methods on lattice-based grids

but has also been applied to unstructured FD discretizations [187, 193]. Accuracy and error

analysis for RBF approximations are not straightforward and often done in a problem-specific

manner. For PHS+poly RBF-FDs, for example, test problems such as the summation of sinusoids

[72, 74], Poisson’s equation [23], Kovasznay flow, and cylindrical Couette flow [241] were

considered. These studies mainly focused on the discretization error under grid refinement and

have demonstrated that the convergence rate is determined by the degree of the polynomial

augmentation. Here, we first conduct a systematic parameter study to identify a set of parameters,

i.e., stencil size, PHS exponent, and polynomial degree, that minimizes the relative error for

a wave-like test function on a representative, highly heterogeneous grid. We proceed with

a two-dimensional modified wavenumber analysis to quantify the order of accuracy on the

staggered grids. The analysis shows that the selected 28-point stencil PHS+poly RBF-FDs

provide accuracy comparable to 6th-order Padé-type FDs.

Panels 3.1(a,b) shows this unstructured staggered node arrangement for the example of

a cylinder in a rectangular domain with increased resolution close to the cylinder and in the

wake region. For each set of nodes that form a local stencil, a characteristic length ∆r can be

determined as the locally averaged distance between adjacent nodes. The histograms of ∆r for

the V− and P−grids, shown in figure 3.1(c), indicate that the two grids are highly heterogeneous.

The smallest characteristic spacing used to resolve the boundary layer near the cylinder differs

by about one order of magnitude from the largest spacing in the far-field.

Specifically, we are interested in the accuracy of four types of differentiation matrices for

flow simulations:

1. DDD(V,V )
x , DDD(V,V )

y , and DDD(V,V )
∆

with dimension N×N from V-grid to V-grid;
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Figure 3.1. Unstructured staggered node layout for flow around a cylinder: (a) V-grid; (b) P-grid;
(c) grid spacing histograms. This grid is used for both the accuracy and error analyses and the
simulations of the cylinder wake in §4.2.2.

2. DDD(P,V )
x , DDD(P,V )

y with dimension M×N from V-grid to P-grid;

3. DDD(P,P)
∆

with dimension M×M from P-grid to P-grid;

4. DDD(V,P)
x , DDD(V,P)

y with dimension N×M from P-grid to V-grid.

Refer to the numerical scheme introduced in §4.1 below for more details.

Refer to figure 3.1 for the grid topology. For any given node, the RBF stencil consists of

the nearest n nodes acquired through a k-nearest neighbor (kNN) search. For n = 28, figure 3.2

shows examples of stencils used for the four different cases. In panels 3.2(a) and (b), α = β and

the node of interests hence is a node on the grid. In panels 3.2(c) and (d), on the other hand, the

nodes comprising the stencil are from different grids.

In the following, we propose an error analysis strategy that minimizes the truncation error

of the spatial derivatives on the staggered grid by selecting an appropriate combination of the

stencil size, n, the exponent of the PHS, m, and the degree of polynomials, q. In previous studies,

the discretization error for the augmented RBF-PHS method has been examined in terms of the

convergence rate under grid refinement [23, 72, 74, 241]. A general observation is that the error
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Figure 3.2. Stencils (magenta circles) for differentiation matrices: (a) DDD(V,V ) ; (b) DDD(P,P); (c)
DDD(V,P) ; (d) DDD(P,V ). A constant stencil size n = 28 is used to approximate the derivatives at given
nodes (red). Referred to figure 3.1 for the markers. The underlying triangular mesh is shown as
gray dotted lines.

convergence depends on the degree of the polynomial, and a minimum stencil size is required for

numerical stability. In this work, we propose the use of modified wavenumber analysis, which

we generalize to scattered nodes. Classical modified wavenumber analysis for lattice-based node

sets is commonly used to measure the accuracy of finite difference schemes, see e.g., Moin

[182]. For a given lattice with grid spacing ∆x, the modified wavenumber, k∗, is computed by

applying the finite difference to the discretized sinusoidal function g(x) = eikx. The difference

between k∗∆x and k∆x indicates the numerical error as a function of wavenumber. To be able to

investigate the discretization error as a function of the wave angle, θ = arctan(ky/kx), relative to

the fixed set of scattered nodes, we define the transformed radial coordinate r̃ = (kxx+ kyy)/k̃,

where k̃ =
√

k2
x + k2

y is the radial wavenumber. As in [240, 265], the radial modified wavenumber
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is then given as

k∗ =−iδr̃

{
eik̃r̃
}

e−ik̃r̃, (3.11)

where δr̃ is the discrete RBF-FD differentiation operator. Equation (3.11) reduces to the standard

one-dimensional case for kx = 0 or ky = 0. Prior to performing the modified wavenumber

analysis, we first identify the optimal parameters using a fixed nondimensional wavenumber,

k∆r =
√

2, highlighted in figures 3.5 and 3.9. This specific value is chosen to guarantee

the ‘spectral-like resolution’ [152] that is achieved by higher-order Padé-type compact finite

differences, and that has made the latter a popular choice for direct numerical simulation (DNS)

[52, 123, 137, 151, 224, 263].

The test function takes the form

g j(xxx) = cos
(

x
∆r j

)
cos
(

y
∆r j

)
, (3.12)

where j is the node index. The corresponding wavelength is λ =
√

2π∆r j. The average relative

error of the augmented RBF-PHS method is determined as

E(α,β ) =
1
N

N

∑
j=1

|δ (α,β )
j g j(xxx(β ))−L g j(xxx(α))|

max{|L g j(xxx)|}
, (3.13)

where δ j represents the local RBF differentiation operation at the jth node. The local minima of

the error guide the selection of parameters: n, the stencil size, m, the exponent of the PHS, and

q, the polynomial degree. It has been shown by [23, 72, 74, 241] that q determines the overall

order of accuracy.

In the remainder of this section, we use as the test mesh for the error analysis the

distmesh grid shown in figure 3.1 above. Due to its highly non-uniform node distribution and

large variation of ∆r, 0.03 < ∆r < 0.79, it is representative of meshes used to discretize complex
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geometries. This ensures that the error estimates are conservative and applicable to non-generic

scenarios.

Our requirements for the Navier-Stokes solver are:

1. compact stencil size of n ≲ 30 for numerical efficiency,

2. formal order-of-accuracy of q≥ 2 for physical accuracy,

3. small relative error,

4. stability (requires n ≳ (q+1)(q+2) for scattered nodes, see e.g. [21, 23, 22, 72]).

To meet these criteria, we vary the different parameters and conduct detailed error analyses for

the (V,V )- and (P,P)-grids, reported in §3.4.1 and §3.4.2, respectively. The analyses for the

remaining combinations are reported in A.2, and a comparison with the established RBF-QR

implementation by Fornberg & Lehto [82] and the RBF-GA implementation by Bollig, Flyer, &

Erlebacher [28] is shown in A.3.

3.4.1 V-grid to V-grid

We first consider the differentiation matrices DDD(V,V )
x and DDD(V,V )

∆
, which operate on the

(V,V )-grid shown in figure 3.2(a). Figure 3.3 shows the average relative errors, equation (3.13),

computed for the first derivative in the x-direction for the test function, equation (3.12). By

comparing the different subplots of figure 3.3, we observe that the relative error for m = 5 is

largely independent of the polynomial order, q. For q≤ 3, the relative error for m = 5 is larger

than for m = 7 and 9, and we hence do not further consider m = 5. A general trend is that the

truncation error decreases with increasing stencil size and then stagnates. Similar results are

also found in [23]. The last observation is that for q = 5, the relative error has increased for all

m. To avoid the Runge phenomenon near the domain boundary, a smaller value of q is favored

for a fixed stencil size [21, 23, 22]. With the goal to minimize both the stencil size error, we

identify n = 28, m = 7, and q = 3 as the best combination. Note that the order of accuracy is not
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Figure 3.3. Relative error for DDD(V,V )
x for different combinations of PHS exponents, m, and

polynomial orders, q: (a) no polynomial augmentation; (b) q = 1; (c) q = 2; (d) q = 3; (e) q = 4;
(f) q = 5. The results for the y-derivatives (‘+’) are almost indistinguishable. Shaded areas of the
same color show the standard deviation (overlapping regions appear purple).

reflected in this analysis of the relative error for a fixed k∆r. The modified wavenumber analysis

(shown in figures 3.5 and A.1 below) will, however, show that increasing q beyond 3 does not

improve the order of accuracy for a fixed stencil size, n = 28.

Figure 3.4 shows the relative error for the second derivatives contained in the Laplacian,

DDD(V,V )
∆

. We repeat the same analysis as for the first derivative, and similar trends are observed.

Following the same arguments stated above, and for consistency, we proceed with (n,m,q) =

(28,7,3) for the Laplacian as well.

Figure 3.5 shows the modified wavenumber diagrams for the differentiation matrices

DDD(V,V ) with the corresponding standard deviations. Results for the standard 2nd-order central,

and 4th- and 6th-order Padé-type methods are shown for comparison. Despite the inhomogeneity

of the mesh, the truncation errors in the x and y directions are very similar. The accuracy of

the first and second derivatives is almost identical to the 6th-order Padé scheme up to k∆r = 2.

Also shown is the standard deviation of the modified wavenumbers obtained from all grid points.
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Figure 3.4. Relative error for DDD(V,V )
∆

for different combinations of PHS exponents, m, and
polynomial orders, q: (a) no polynomial; (b) q = 1; (c) q = 2; (d) q = 3; (e) q = 4; (f) q = 5.
Shaded areas of the same color show the standard deviation (overlapping regions appear purple).

Figure 3.5. Modified wavenumber diagrams for the differentiation matrices DDD(V,V ) with
(n,m,q) = (28,7,3) for: (a) the first; (b) the second derivatives. Shaded areas represent the
standard deviations for the results in the x- (red) and y- (blue) directions, respectively (overlap-
ping regions appear purple). Results for Padé-type methods are shown for comparison. The
recommended maximum modified wavenumber of k∆r =

√
2 is highlighted in green.

The important observation is that the standard deviation is negligible until the mean modified

wavenumber deviates from the theoretical curve. Wavenumbers beyond this point have to be

35



considered underresolved and have to be filtered out or, ideally, avoided entirely through grid

refinement. The proposed maximum modified wavenumber of k∆r =
√

2 (green lines in figure

3.5) ensures the spectral-like accuracy, which exceeds the second-order accuracy (dotted lines)

of most commercial and general-purpose computational fluid mechanics codes.

Figure 3.6. 2D modified wavenumber diagrams (normalized) for the differentiation matrices
DDD(V,V ) with (n,m,q) = (28,7,3) : (a) first and (b) second derivatives. The recommended
maximum modified wavenumber of k̃∆r =

√
2 is highlighted in green.

To assess the inhomogeneity of the computational grid, we extend the modified wavenum-

ber analysis to two dimensions by plotting the ratio k∗/k̃, where k̃ =
√

k2
x + k2

y , in the x-y

wavenumber plane. This is shown in figure 3.6. An important observation is that the normalized

modified wavenumbers are almost independent of the direction of the wave. This finding is

encouraging since the local topology of an unstructured mesh, in principle, can have arbitrary

orientations. At the proposed maximum modified wavenumber of k̃∆r =
√

2 (green lines),

the ratio deviates from the spectral limit by at most 0.6% and 0.2% for the first and second

derivatives, respectively. These observations suggest that the 28-point PHS+poly RBF-FD

discretization provides high-order accuracy independent of grid orientation if the nodes are taken

as the midpoints of a DistMesh grid, see figure 3.1.
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Figure 3.7. Relative error for DDD(P,P)
∆

for different combinations of PHS exponents, m, and
polynomial orders, q: (a) no polynomial; (b) q = 1; (c) q = 2; (d) q = 3; (e) q = 4; (f) q = 5.
Shaded areas of the same color show the standard deviation (overlapping regions appear purple).

3.4.2 P-grid to P-grid

Next, we repeat the analysis of §3.4.1 for the differentiation matrix DDD(P,P)
∆

, which operates

on the (P,P)-grid shown in figure 3.2(b). We focus on the truncation error of the discretized

Laplace operator that is used to solve the pressure Poisson problem, equation 4.5. Figure 3.7

shows the relative error for different parameters. The combination (n,m,q) = (28,7,3) that was

identified as optimal for the (V,V )-grid is taken as the baseline. Deviating from the baseline

case, increasing m to m = 9 with q constant or increasing q to q = 4 with m constant yields a

small decrease of the error. We choose consistency over these marginal gains and proceed with

(n,m,q) = (28,7,3) for DDD(P,P)
∆

. Prior to making this choice, we confirmed that further increasing

m does not further decrease the error significantly. In fact, letting m = 11 leads to numerical

instability, as can be seen in figure 3.7(d).

To gauge the numerical stability of the local stencils, figure 3.8(a,b) show the histograms

of the condition number of AAAaug, defined in equation (3.9), for q = 3 and q = 4 on V− and
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Figure 3.8. Histogram of the condition numbers of AAAaug: (a) V-grid and (b) P-grid; (c) maximum
value for different polynomial degrees.

P−grids. While the histograms are comparable, the maximum condition number for P−grid

shown in panel 3.8(c) reveals that the condition number starts to deteriorate for q≥ 4. This is in

accordance with the findings of Flyer, Barnett, & Wicker [72] who found that lower polynomial

degrees lead to more stable discretizations. We will show in the following that increasing q

beyond 3 also does not increase the accuracy for a fixed stencil size.

The modified wavenumber diagrams for the differentiation matrices DDD(P,P) are reported

in figure 3.9. As before, the analytical results for the 2nd-order central, and 4th- and 6th-order

Padé-type methods are shown for comparison. It is found that the modified wavenumber curves

for the (P,P)-grid are as good or better as the 6th-order Padé scheme for both the first and

second derivatives. Furthermore, the variances are much lower compared to the results for the

(V,V )-grid, previously shown in figure 3.5. The likely reason is that the local topology of the

(P,P)-grid is more evenly distributed in space. This becomes apparent when comparing figure

3.2(b,c) to (a,d) of the same figure. It is also observed that the modified wavenumber curves for

the x- and y-directions, in particular for the second derivatives, differ. We suspect that this is due
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Figure 3.9. Same as figure 3.5 for DDD(P,P) with (n,m,q) = (28,7,3). Results for the combination
(28,7,4) are reported in panels A.1(c,d) with negligible difference.

to the inhomogeneity of the computational domain, which results from its elongated shape and

the local grid refinement of the wake region that is also oriented in the x−direction. We conclude

that the discretization is also robust in the presence of grid non-homogeneity while preserving

higher-order accuracy.

Figure 3.10. Same as figure 3.6 for DDD(P,P) with (n,m,q) = (28,7,3).

The effect of grid orientation is assessed for the first and second derivatives in terms

of the two-dimensional modified wavenumber diagrams in panels 3.10(a) and (b), respectively.

Similar to what was found for the (V,V )−grid in figure 3.6, no strong directional preference is

observed. The direct comparison with figure 3.6 reveals that the modified wavenumber stays
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closer to unity of a larger radius. This implies that the (P,P)−grid will yield accurate results

over a wider wavenumber range.

Figure 3.11. Relative error of the modified wavenumber at different wave angles.

Figure 3.11 shows a direct comparison of the error relative to the spectral limit at

k̃∆r =
√

2 as a function of the wave angle for both grids and derivatives. The errors for the

(P,P)-grid is around 0.4% and 0.6% for first and second derivatives, respectively. The values for

(V,V )-grid are generally lower. This shows that, despite the heterogeneous grid, the dependence

on the wave angle is low.

The relative error analyses for DDD(V,P) and DDD(P,V ), that is, cases (c) and (d) in figure 3.2,

are reported in A.2. The results are similar to those of the non-mixed grids above. To maintain

the overall accuracy of the numerical scheme, which involves combinations of all grids, we

hence retain the recommended value of k̃∆r =
√

2.

3.5 Numerical stability analysis

The stability of numerical methods plays an important role in hydrodynamic stability

analysis. Numerical instabilities may lead to spurious eigenvalues and modes. The local D-

Lebesgue function proposed by Shanker & Fogelson [245] provides a measure of the eigenvalue

stability of the RBF-FD method. For a given linear operator D , the local Lebesgue function
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Figure 3.12. Maximum local L -Lebesgue function for different combinations of PHS exponents,
m, and polynomial orders, q for the first (a-c) and second derivatives (d-f) in the x- (solid line), y-
(’+’) and xy-directions (circle).

takes the form of the 1-norm of the RBF-FD weight in equation (3.4), that is

ΛD(xxx0;{xxx j}n
j=1) = ∥www∥1 =

n

∑
j=1
|w j|. (3.14)

Larger values of the local Lebesgue function indicate an increased susceptibility to numerical

instability in the assembled global differentiation matrix. Figure 3.12 shows the maximum value

of the local Lebesgue function across various parameter combinations based on the test grid

shown in figure 5.2. Refer to the accompanying context of figure 5.2 for more details of the grid.

For all considered stencil sizes, polynomial degrees, and relevant operators, the minimax value is

consistently achieved at m = 3, suggesting its suitability for hydrodynamic stability analysis.

For two-dimensional problems, it has been suggested that the stencil size should satisfy

n ≳ (q+1)(q+2) [72, 74]. In practice, including a few additional nodes beyond the minimum

requirement is often beneficial to improve performance. The specific choice of additional nodes

may depend on the type of node sets used. For instance, a recommended formula for Halton

nodes is n = (q+1)(q+2)+ ⌊ln [(q+1)(q+2)]⌋ [146, 245]. We here select the stencil size n
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based on the assumption of a perfectly arranged hexagonal node distribution comprising q/2+1

layers, despite the actual distribution of nodes being heterogeneous. For practical examples,

refer to figure 5.1 and the surrounding context. The recommended parameter combinations are

summarized in table 3.1. With these parameters, hyperviscosity or other means of regularization

are not needed to stabilize the solution further.

Table 3.1. Summary of parameter selections.

Shankar & Fogelson [245] Le Borne & Leinen [146] present
q = 2 (n,m) = (14,3) (n,m) = (14,5) (n,m) = (19,3)
q = 3 (n,m) = (22,3) (n,m) = (22,7) (n,m) = (28,3)
q = 4 (n,m) = (33,3) (n,m) = (33,7) (n,m) = (37,3)

n = 37, q = 4
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Figure 3.13. Maximum condition number of AAAaug as a function of local grid spacing ∆r̃: (a)
n = 19, q = 2; (b) n = 28, q = 3; (c) n = 37, q = 4. The recommended local spacing of ∆r̃ = 0.25
is highlighted as dashed lines.

The condition number of the augmented matrix AAAaug, defined in equation (3.9), affects the

numerical stability in a similar way and hence needs to be considered separately. The condition

number for various parameter combinations has been investigated and discussed in Le Borne

& Leinen [146]. Independent of the parameter selection, Shahane, Radhakrishnan, & Vanka

[241] demonstrated that scaling the local stencil to a unit length scale can improve the condition

number. We further reveal the existence of an optimal range for the averaged local grid spacing,

wherein the condition number of the augmented matrix AAAaug reaches its minimum value.
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For a given stencil {xxx j}n
j=1, we perform scaling with respect to the location of xxx0 with a

scaling factor κ such that

{x̃xx j}n
j=1 = {κ(xxx j− xxx0)}n

j=1, (3.15)

and the averaged local grid spacing becomes ∆r̃ = κ∆r. Figure 3.13 shows the maximum

condition number within the test grid as a function of ∆r̃ for the considered parameters. Optimal

performance is consistently achieved within the range of 0.15 ≲ ∆r̃ ≲ 0.3 across all examined

parameter combinations. Based on this, we perform spatial scaling to ensure an averaged local

spacing of ∆r̃ = 0.25 before solving the RBF-FD weights in equation (3.4). The chain rule is

applied to transform the RBF weights back to the original grid.

Chapter 3, in part, is a reprint of the material as it appears in Journal of Computa-

tional Physics 2023, Chu, Tianyi; Schmidt, Oliver T., Elsevier, 2023. Chapter 3, in part, has

been submitted for publication of the material as it may appear in Journal of Computational

Physics 2024, Chu, Tianyi; Schmidt, Oliver T., Elsevier, 2024. The dissertation author was the

primary investigator and author of these papers.
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Chapter 4

An RBF-FD-based Navier-Stokes solver
using scattered but staggered nodes

While there are numerous demonstrations of PHS+poly RBF-FDs for advection-diffusion

problems [19, 96, 244, 245, 246, 261], their application to the incompressible Navier-Stokes

equations has been explored only very recently. Shahane et al. [241], for example, simulated in-

compressible flows using an explicit fractional-step method and considered several test problems

to gauge accuracy. A semi-implicit algorithm was proposed by Shahane & Vanka [243] and later

implemented by Unnikrishnan et al. [282] to simulate Taylor-Couette flow. The consistency and

convergence of this algorithm with respect to grid resolution were later examined in Shahane &

Vanka [242].

We build on this successful combination of fractional-step methods with PHS+poly RBF-

FD discretizations and make two main contributions, one in terms of improving computational

efficiency and the other in terms of error analysis. A significant reduction in computational

cost is achieved through the use of a staggered-grid arrangement that permits the use of smaller

stencils and, at the same time, much coarser grids. The staggered grid arranges the velocity and

pressure at different nodes to circumvent the numerical instability known as odd-even decoupling.

While the idea of grid staggering originates from the classical FD Marker-And-Cell scheme by

Harlow & Welch [99], staggering occurs naturally in finite volume methods that define velocity

in terms of fluxes across cell faces. Similarly, the proposed staggering strategy is based on an

44



underlying triangular grid, generated using any standard grid generator, and defines the pressure

at the vertices and velocities at the centers of the faces.

4.1 Numerical approach

Numerical instabilities are a known problem of standard FD methods that uses the

Cartesian grid. This error can be traced back to central differencing schemes on collocated grids

[194]. Similar grid oscillations are also observed on unstructured meshes. The arguably most

common strategy to address this issue is the use of hyperviscosity [76, 80, 82, 245]. Instead

of ad-hoc regularization, we propose the use of a staggered node arrangement that discretizes

the pressure in the computational domain Ω by M scattered nodes that form the P−grid, and

the velocity by N scattered nodes that form the V−grid. The P−grid is obtained using the

Matlab algorithm DistMesh developed by Persson [199]. This algorithm generates unstructured

triangular meshes in 2-D. Inspired by standard FV methods that define the flux across the cell

boundaries, we arrange the velocity components at the midpoints of cell edges. The resulting N

scattered nodes are the V−grid. This staggered node arrangement is different from the classical

staggered grid, which evaluates the horizontal and vertical velocities at different locations, but is

similar to that used in FV methods. The resulting ratio N/M is around 3. See figure 3.1 for an

example of unstructured staggered node layout for flow around a cylinder.

Several variants of the original fractional-step method by Kim & Moin [136] using RBF-

FD discretizations on collocated Cartesian grids [117, 302] and unstructured grids [241, 282]

can be found in literature. These previous implementations do not require regularizations, but, as

we will demonstrate, significant savings in terms of the total number of grid points and stencil

size is achieved by using the staggered node layout. We propagate the flow field from j−th time

step to ( j+1)−th time step by the following three-stage semi-implicit approach. The primitive

variables u,v, p are expressed in vector form as uuu,vvv, ppp, respectively.

1. In the first stage, we use the second-order Adam-Bashforth method to discretize equations
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(1.2a) and (1.2b) in time explicitly, yielding

uuu∗−uuu j

∆t
=

3
2

CCC j(uuu j)−
1
2

CCC j−1(uuu j−1),
vvv∗− vvv j

∆t
=

3
2

CCC j(vvv j)−
1
2

CCC j−1(vvv j−1). (4.1)

Here the convective term, CCC j, is defined as

CCC j(qqq) =−
[
uuu j ◦

(
DDD(V,V )

x qqq
)
+ vvv j ◦

(
DDD(V,V )

y qqq
)]

, (4.2)

where qqq ∈ {uuu,vvv}, superscripts (·)∗ and (·)∗∗ denote intermediate, non-divergence-free

velocity fields, and ◦ the Hadamard product.

2. In the second stage, the viscous terms are advanced by the second-order implicit Crank-

Nicolson scheme in time as

(
III− ∆t

2Re
DDD(V,V )

∆

)
uuu∗∗ =

(
III +

∆t
2Re

DDD(V,V )
∆

)
uuu∗, (4.3a)(

III− ∆t
2Re

DDD(V,V )
∆

)
vvv∗∗ =

(
III +

∆t
2Re

DDD(V,V )
∆

)
vvv∗, (4.3b)

where III denotes the identity matrix. The use of the Crank-Nicolson scheme eliminates the

diffusive time-step constraint while maintaining second-order accuracy, see A.4 for more

details.

3. In the third stage, incompressibility is enforced via pressure correction. First, we calculate

the divergence of the intermediate velocity, (·)∗∗, on the P-grid as

FFF j+1 = DDD(P,V )
x uuu∗∗+DDD(P,V )

y vvv∗∗. (4.4)

Upon solution of the pressure-Poisson equation,

DDD(P,P)
∆

p̃pp j+1 =
1
∆t

FFF j+1, (4.5)
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for the pressure correction, p̃pp, the pressure is obtained as

ppp j+1 = p̃pp j+1−
∆t

2Re
DDD(P,P)

∆
p̃pp j+1. (4.6)

The velocity components at the ( j+1)-th time step are then calculated as

uuu j+1 = uuu∗∗−∆tDDD(V,P)
x p̃pp j+1, vvv j+1 = vvv∗∗−∆tDDD(V,P)

y p̃pp j+1. (4.7)

Following [136], the boundary conditions for the intermediate velocities are

uuu∗∗ = uuu j+1 +∆tDDD(V,P)
x p̃pp j, vvv∗∗ = vvv j+1 +∆tDDD(V,P)

y p̃pp j. (4.8)

The matrix inversions in equations (4.3) and (4.5) are solved only once at the beginning using

LU factorization with time complexity O(2
3N3) and O(2

3M3), respectively. At each time step, the

time complexity is O(max{N2,M2}).

4.2 Applications

We demonstrate the viability, robustness, and flexibility of the fractional-step, staggered-

node, PHS+poly RBF-FD algorithm on two examples, internal lid-driven cavity flow and the flow

past a cylinder. Both test cases are established benchmark problems. The parameters identified

from the error and accuracy analyses in the previous section, i.e., (n,m,q) = (28,7,3), are used

throughout, and it is ensured that the DistMesh grid properly resolves the flow by adhering to

the k̃∆r ≲
√

2 recommendation.

4.2.1 Lid-driven cavity flows

The lid-driven cavity problem is often used to validate different implementations of

RBF-FD methods. In the past, these implementations often used specific grid arrangements, such

as Cartesian or quasi-uniform grids [226, 302], or locally orthogonal grids near the boundary
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[49, 249, 250]. A notable exception is the vorticity/stream function-based steady-state solver by

Bayona et al.[23], which uses scattered nodes throughout. Here, we solve the transient problem

on scattered nodes with local grid refinement near the walls.

Figure 4.1. Computational domain and solution for the lid-driven cavity at Re = 10000: (a)
V-grid with N = 42799≈ 2072 nodes, colored by vorticity; (b) P-grid with M = 14606≈ 1212

nodes, colored by pressure.

Figure 4.1 shows the discretization of the unit square cavity domain, Ω = [0,1]× [0,1],

with N = 42799≈ 2072 and M = 14606≈ 1212. The characteristic distance of the P-grid is 0.004

near the walls and averages at 0.008 for the whole domain. The flow inside the square cavity is

driven by the motion of the top wall with unit velocity, U0 = 1. No-slip boundary conditions are

prescribed at all walls. The fluid is at rest at t = 0. A time step ∆t = 0.00125, corresponding to

a CFL number around 0.7, is used in the computation. Results at Reynolds numbers, Re = U0
ν

,

ranging from 100 to 10000 are investigated for comparison with the benchmark results by [90].

While other RBF-based codes often rely on hyperviscosity or other means of regularization, the

present implementation runs stably for the entire range of Reynolds numbers.

Figure 4.2(a) and (b) display the obtained velocity profiles through the horizontal and

vertical centerlines of the cavity, respectively. The present results compare well with the

benchmark data of Ghia et al. [90], who used 1292 and 2572 nodes for Reynolds numbers smaller

and larger or equal than 5000, respectively. After reaching steady-state, a periodic solution
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Figure 4.2. Velocity profiles for the lid-driven cavity flow at Re = 100 (magenta), Re = 400
(cyan), Re = 1000 (black), Re = 3200 (black), Re = 5000 (green) and Re = 7500 (red) through
the: (a) horizontal centerline; (b) vertical centerline. Results at Re = 10000 (purple) are the
time-averaged profiles. The obtained results (solid) are compared to those of [90] (‘+’).

with frequency f = 0.63 is found at Re = 10000. The corresponding curves in figure 4.2 are

therefore time-averaged velocity profiles. The oscillation frequency varies in the literature, and

the frequency obtained here falls well in the reported range [9, 34, 195, 268]. After confirming

the quantitative agreement of our results with the literature, we next examine the corresponding

flow fields.

Figure 4.3 shows the vorticity fields for the four highest Reynolds numbers. For Re≤

5000, the primary vortices seen in figure 4.3(a,b) evolve into the steady-state solutions shown in

4.3(e,f). Despite its more chaotic evolution, the flow at Re = 7500 also converges to a steady

state. It is generally observed that the higher the Reynolds numbers, the longer it takes to reach

steady-state. For Re = 10000, the flow-field is doe not possess a steady-state solution, and we

hence show an instantaneous state within the limit-cycle. After confirming that the proposed

scheme is well-suited for simulating this unsteady incompressible internal flow, we next focus

on the more challenging example of open flow over a cylinder.
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Figure 4.3. Vorticity fields for Re = 3200 (a, e), Re = 5000 (b, f), Re = 7500 (c, g) and
Re = 10000 (d, h) at: (a-d) t = 15; (e-g) steady-state; (h) limit-cycle . The vorticity vector is
calculated as ωωω = DDD(V,V )

x vvv−DDD(V,V )
y uuu.

4.2.2 Cylinder flow

Wakes behind bluff bodies are an ubiquitous phenomenon in engineering, and the flow

over a circular cylinder is often used as an unsteady benchmark problem for numerical methods.

RBF-based discretization facilitates easy local grid refinement near the solid boundaries and in the

wake region. To the best knowledge of the authors, previous works on RBF for cylinder flows have

exclusively used polar meshes to discretize the region around the cylinder [60, 116, 117, 250, 302]

(or have not reported the mesh topology). Here, we use scattered nodes, as described in §4.1 and

previously shown in figure 3.1, throughout the entire domain.

Figure 4.4. Computational grids for cylinder flow: (a) V-grid with N = 55671 nodes showing ω ;
(b) P-grid with M = 18647 nodes showing p at Re=100, respectively.

Following [43, 222], we take the computational domain Ω as the exterior of the cylinder
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r ≥ D/2 = 0.5 within the rectangle −8 ≤ x ≤ 24,−8 ≤ y ≤ 8. Local grid refinement is used

to resolve the regions near the cylinder and the wake. Figure 4.4(a,b) show the V-grid with

N = 55671 and P-grid with M = 18647, respectively. The characteristic distances of the P-grid

are ∆r(p) = 0.03 near the cylinder, 0.04 on the wake centerline, x > 0.5,y = 0, and averaged at

0.123 in the whole domain. The inflow is uniform with U∞ = 1,V∞ = 0, symmetric boundary

conditions with v = ∂u/∂y = 0 are applied at the transverse boundaries, a no-slip condition

is prescribed on the cylinder, and a stress-free outflow condition, −pnnn+ 1
Re∇UUU ·nnn = 0, where

nnn = [1,0]T , is prescribed at the outlet. The flow field is initialized with UUU0 = [111,000]T . The

time step is ∆t = 0.005, corresponding to a CFL number of 0.67. Two Reynolds numbers,

Re = U∞D
ν

=100 and 200, are considered.

-1

0

1

Figure 4.5. Instantaneous vorticity fields for Re = 100 (a, c, e), and Re = 200 (b, d, h) at: (a, b)
t = 25; (c, d) t = 40; (e, f) limit-cycle .

Figure 4.5 shows the vorticity field at three different time instances for both Reynolds

numbers. For both cases, these three time instances capture the gradual evolution of the unstable

wake flow through a transient that finally results in the limit-cycle oscillation. This limit-cycle

oscillation is the well-known periodic von Kármán vortex street seen in figures 4.5(e) and 4.5(f).

We next quantify these results by examining the drag and lift coefficients on the limit
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Figure 4.6. Drag (red) and lift (blue) coefficients for cylinder flow at Re = 100 for different grid
resolutions. The vertical dashed line indicates the reference P-grid resolution ∆r = 0.123 used in
§4.2.2.

cycle, defined as

CD =
FD

1
2ρU2

∞D
, CL =

FL
1
2ρU2

∞D
, (4.9)

respectively. The drag, FD, and lift, FL, forces are computed by integrating the pressure and

wall-shear over the cylindrical surface using the Simpson’s rule. The grid dependence of the lift

and drag coefficients is investigated in figure 4.6 for Re = 100. The four grids are obtained by

varying the initial edge length for DistMesh from 0.025 to 0.04. The differences in the drag and

lift coefficients between the current (vertical dashed line) and the densest grid are 0.07% and

0.29%, respectively. This indicates that the present grid resolution is sufficient.

Table 4.1. Summary of results for drag, lift, and the fundamental vortex shedding frequency the
flow behind a cylinder at Re = 100 and Re = 200.

Re = 100 Re = 200
CD CL St CD CL St

Braza et al. [32] 1.364±0.015 ±0.25 - 1.40±0.05 ±0.75 -
Calhoun [43] 1.330±0.014 ±0.298 0.175 1.17±0.058 ±0.67 0.202

Ding et al. [60] 1.325±0.008 ±0.28 0.164 1.327±0.045 ±0.60 0.196
Liu et al. [156] 1.350±0.012 ±0.339 0.164 1.31±0.049 ±0.69 0.192

Russell & Wang [222] 1.38±0.007 ±0.300 0.169 1.29±0.022 ±0.50 0.195
Shahane et al. [241] 1.354±0.009 ±0.333 0.166 1.364±0.045 ±0.690 0.197

Shu et al. [250] 1.362±0.010 ±0.32 0.166 1.352±0.049 ±0.62 0.192
Present 1.353 ± 0.010 ± 0.342 0.171 1.382 ± 0.046 ± 0.683 0.201
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Table 4.1 compares previous results for both Reynolds numbers to the values obtained

here. The vortex shedding frequency is reported in terms of the Strouhal number, St = f D/U∞.

It can be seen that our results fall well within the range of the previous results, which vary by as

much as 16% at Re = 200. Out of the reported literature, the work of Shahane et al. [241] is

most closely related to the present study. Shahane et al. [241] report results for their collocated

PHS-RBF method for two different grid resolutions. Their results on the finer grid are reported

in table 4.1. The staggered-grid arrangement used here utilizes around 55% fewer nodes on the

V−grid, or 85% on the P−grid, and an about one-third smaller RBF stencil.

Chapter 4, in full, is a reprint of the material as it appears in Journal of Computational

Physics 2023, Chu, Tianyi; Schmidt, Oliver T., Elsevier, 2023. The dissertation author was the

primary investigator and author of the paper.

53



Chapter 5

Mesh-free hydrodynamic stability

While RBF-FDs demonstrate the capability to construct sparse differentiation operators,

the potential applications in hydrodynamic stability analysis have not been thoroughly explored.

Both classical LST and RA require, in their most basic form, the construction of large matrices

that have to be decomposed into their singular- or eigen-components. The construction and

decomposition of these matrices are particularly challenging for flows in complex geometries.

Previous studies [63, 213, 251, 303] have leveraged the flexibility of the FV methods on unstruc-

tured meshes. However, a downside of unstructured FV methods is that the accuracy is usually

restricted to 2nd-order. Alternatively, the utilization of FE methods for spatial discretization

provides high-order accuracy for flow instability analysis [168, 169, 214, 253]. The commonly

employed weak formulation of governing equations in FE methods raises concerns regarding

stability and convergence. FE methods offer the same flexibility, and the FreeFEM+ toolbox by

Hecht [100] has been employed in a number of recent studies [168, 169, 214, 253]. Matrix-free

methods, such as the time-stepper [11, 14, 279] and other related techniques [59, 170, 184, 192],

provide an alternative approach where the decomposition of large matrix operations can be

completely circumvented. Iterative Krylov subspace methods are commonly employed to obtain

a partial eigendecomposition. However, their major limitation lies in their capacity to extract

only a limited portion of the spectra at a time. Randomized approaches have also been explored

as potential solutions to decrease the computational cost of the singular- or eigendecomposition
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of large stability matrices [180, 212]. In this chapter, we demonstrate the capability and accu-

racy of RBFs in effectively addressing the aforementioned challenges. This work is the first

demonstration of such applications.

5.1 Mesh-free linear stability analysis

Upon the use of these global RBF-FD-based differentiation matrices, we assemble the

discrete global incompressible LNS operator from equation (2.6), taking the two-dimensional

Cartesian coordinate system as an example, as

LLL =


SSS−diag(DDDxuuu0)+Re−1 (DDDxx +DDDyy) −diag(DDDyuuu0) −DDDx

−diag(DDDxvvv0) SSS−diag(DDDyvvv0)+Re−1 (DDDxx +DDDyy) −DDDy

DDDx DDDy 000

,

(5.1)

where SSS = −(uuu0 ◦DDDx + vvv0 ◦DDDy), and ◦ denotes the Hadamard product. For the case of com-

pressible flows, we analogously replace all the differentiation operations in L with the RBF-FD-

based differentiation matrices. In particular, we use (n,m,q) = (37,3,4) for interior nodes and

(n,m,q) = (19,3,2) for nodes near boundaries in the construction of the discrete LNS operator,

LLL, as in table 3.1.

For a weighted inner product ⟨qqq1,qqq2⟩ = qqq∗2WWWqqq1 that accounts for the non-uniformly

distributed nodes, the discrete LST and its adjoint eigenvalue problems take the form of

λPPPPPPT q̃qq = LLLq̃qq, (5.2a)

λ
+PPPPPPT q̃qq+ = LLL+q̃qq+, (5.2b)
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respectively, where

LLL+ =WWW−1LLLHWWW (5.3)

is the discrete adjoint LNS operator. Here, the restriction matrix for two-dimensional incompress-

ible flows takes the form of PPPT =

III 000 000

000 III 000

, and (·)H denotes the Hermitian transpose. The

eigenvectors of these two generalized eigenvalue problems, q̃qq= [ũuu, ṽvv, p̃pp]T and q̃qq+= [ũuu+, ṽvv+, p̃pp+]T ,

are referred to as the LST and adjoint modes, respectively.

The wavemaker (WM), introduced by Giannetti & Luchini [91], identifies the flow region

with the strongest localized feedback, where the dominant instability mechanisms act. Based on

the leading LST and adjoint modes, the WM is locally defined as

ζLST(x1,x2) =
∥PPPT q̃qq+(x1,x2)∥∥PPPT q̃qq(x1,x2)∥

|⟨q̃qq+, q̃qq⟩ |
, (5.4)

where the norm ∥ · ∥ measures the localized energy. Referred to Luchini & Bottaro [158] for a

comprehensive review. In addition to quantifying the receptivity, the wavemaker also indicates

the non-normality level of the flow field [50]. Initially introduced for base flows, Meliga, Boujo,

& Gallaire [175] extended the application of wavemaker as a sensitivity analysis technique for

mean flows. We utilize this methodology to gauge the structural sensitivity of the RBF-FD-based

global LNS operator, LLL.

5.2 Mesh-free resolvent analysis (RA)

The construction of the global Jacobian, LLL, leads to the direct discretization of the

input-output system in equation (2.11), yielding

ûuu = HHH(ω) f̂ff , (5.5)
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where

HHH(ω) = PPPTCCC
(
iωPPPPPPT −LLL

)−1
PPPBBB (5.6)

is referred to as the discrete resolvent operator. We further define the modified, or weighted,

resolvent operator

RRR(ω)≡WWW
1
2
u HHH(ω)WWW

− 1
2

f = ÛUUΣΣΣF̂FF
∗

(5.7)

to account for the energy in the input and output spaces. The optimal responses ÛUU =

[
ûuu1, · · · , ûuuN

]
and the corresponding forcings F̂FF =

[
f̂ff 1, · · · , f̂ff N

]
are obtained from the SVD of the modified

resolvent operator and ranked by the energy gains Σ =

[
σ1, · · ·σN

]
. The resulting modes are

orthogonal in their respective inner products, that is,
〈
ûuu j, ûuuk

〉
u =

〈
f̂ff j, f̂ff k

〉
f
= δ jk. The optimal

input and output modes are related through

RRR(ω) f̂ff j = σ j(ω)ûuu j. (5.8)

In practice, the optimal input forcings, f̂ff j, are determined as the solutions of the eigenvalue

problem

WWW−1
f HHH(ω)∗WWW uHHH(ω) f̂ff j = σ

2
j f̂ff j, (5.9)

where WWW−1
f HHH(ω)∗WWW uHHH(ω) is Hermitian. The matrix inversion of

(
iωPPPPPPT −LLL

)
is solved using

LU-factorization [254].

The RA-based wavemaker,

ζRA(x1,x2) =
∥ûuu1(x1,x2)∥∥ f̂ff 1(x1,x2)∥

|ûuu∗1WWW u f̂ff 1|
, (5.10)
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is defined analogous to equation (5.4). Within the framework of RA, it provides a quantitative

measure of the effect of the localized feedback at any given frequency [206, 213, 257, 264].

5.3 Boundary condition treatments

5.3.1 Homogeneous Dirichlet boundary conditions

Homogeneous Dirichlet boundary conditions, qqq′ = 0, are widely employed in hydrody-

namic stability analysis based on the assumption that perturbation variables either vanish at the

solid wall or in the far field. To approximate spatial derivatives for a node near such a boundary,

we follow the Kansa method [131] and compute the RBF-FD weights using the local stencil

consisting of both the interior nodes, {xxx(i)}n(i)
j=1, and the boundary nodes, {xxx(b)}n(b)

j=1. Letting

g(xxx(b)j ) = 0, equation (3.4) becomes

Dg(xxx0) =
n(i)

∑
j=1

w(i)
j g(xxx(i)j )+

n(b)

∑
j=1

w(b)
j g(xxx(b)j ) =

n(i)

∑
j=1

w(i)
j g(xxx(i)j ), (5.11)

and only the weights for the interior nodes will be used in the computation.

5.3.2 Boundary-normal derivatives

Neumann conditions, inflow/outflow conditions, or the enforcement of continuity neces-

sitate the evaluation of boundary-normal derivatives and require special treatment for scattered

nodes that are not structured near boundaries. Using ghost nodes requires additional, generally

non-physical, conditions for their evaluation. To avoid using ghost nodes and their associated

computational overhead and implementation complexity, we propose the use of specialized

stencils with boundary-normal alignment. To accurately approximate derivatives in the boundary-

normal direction, we propose an elliptical stencil with its major axis perpendicular to the

58



Figure 5.1. RBF stencils (red-shaded circles) for a given node (blue star): (a) boundary-
normal derivatives; (b) interior node near the symmetric centerline (dot-dashed). The latter
stencil includes the interior nodes ({xxx•}n•

j=1, dot) and image ghost nodes ({xxx+}n+
j=1, ’+’). The

counterparts of the image nodes, {xxx∆}n+
j=1, and the remaining nodes, {xxx◦j}

n•−n+
j=1 , are shown as

triangles and circles, respectively. The area of each red-shaded circle represents the corresponding
local radial control volume, dVi.

boundary. The elliptical form is achieved by utilizing a weighted Euclidean distance metric

r̃ =
√

a2 +b2

√
((xxx− xxx0) ·nnn)2

a2 +
((xxx− xxx0) · ttt)2

b2 , (5.12)

where nnn and ttt are the normal and tangential directions, respectively, and a and b denote the

corresponding scaling factors. An eccentricity of
√

a2−b2

a = 2
√

6
5 is used in the computation. We

use the q = 2 polynomial augmentation for the boundary-tangential direction and a higher-order

of accuracy of q = 4 for the boundary-normal direction. An illustrative example is shown in

figure 5.1(a). This new strategy circumvents the need to increase the local stencil near domain

boundaries to prevent the Runge phenomenon, as demonstrated in [21, 23]. Without this special

treatment, a significantly larger stencil size will be needed to attain stable solutions.

5.3.3 Symmetric and anti-symmetric boundary conditions

Exploiting physical and geometrical symmetries in flow problems leads to drastic com-

putational savings. For example, a problem with simple reflectional symmetry will reduce the
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size of the linearized stability and resolvent operators to 25% of that in the full problem. This is

particularly important for the direct solutions of eigen- and singular-value problems, for which

memory is the bottleneck. For axisymmetric problems, like the jet problem at hand, the saving is

even more severe; the problem is reduced, without loss of generality, from 3D to 2D. To address

pole singularities that arise in these coordinates and symmetric or anti-symmetric boundary con-

ditions, we propose a generalization of the pole treatment method by Mohseni & Colonius [181]

for scattered nodes. We introduce a set of ghost nodes, denoted as X +, which are symmetric

to the interior nodes, X •, with respect to the centerline. For each interior node, we divide its

local stencil into two disjoint sets such that {xxx}n
j=1 = {xxx•j}n•

j=1∪{xxx
+
j }n+

j=1, where xxx• ∈X • and

xxx+ ∈X +, respectively, and n = n•+ n+. Additionally, we define {xxx∆
j }n+

j=1 ∈ {xxx•j}n•
j=1 as the

counterparts of the image nodes, and {xxx◦j}
n•−n+
j=1 = {xxx•j}n•

j=1 \{xxx∆
j }n+

j=1 represents the remaining

nodes within the interior nodes, Refer to figure 5.1(b) for detailed symbol explanations. The

function values at the image nodes are determined by their corresponding counterparts, given by

g(xxx+j ) = ηg(xxx∆
j ), (5.13)

where η depends on the type of boundary conditions being imposed. Specifically, we use η = 1

for symmetric boundary conditions and η =−1 for anti-symmetric boundary conditions. The

RBF-FD weights in equation (3.4) can be written as

Dg(xxx0) =
n•

∑
j=1

w•jg(xxx
•
j)+

n+

∑
j=1

w+
j g(xxx+j ) =

n•−n+

∑
j=1

w◦jg(xxx
◦
j)+

n+

∑
j=1

(
ηw+

j +w∆
j

)
g(xxx∆

j ). (5.14)

This treatment allows us to approximate derivatives solely based on the function values at the

interior nodes, effectively handling pole singularities and addressing the challenges associated

with scattered nodes.

60



Table 5.1. Overview of datasets and analyses. The columns from left to right indicate the
flow description, Reynolds number, Mach number, flow type, base state, analysis type, and
section number. The zero-pressure-gradient (ZPG) Blasius solution is used for analyzing the
boundary layer. Analyses include linear stability (LST) and resolvent analyses (RA), along with
wavemaker (WM).

Flow Re M Flow type Base state Analysis Sec.

Cylinder wake (§4) 47−180 - 2D laminar u,v LST/RA/WM §5.4.1

Boundary layer (ZPG) 6×105 - 2D laminar uZPG,vZPG RA/WM §5.4.2

Jet [33] ≈ 106 0.9 3D turbulent ρ,ux,ur,uθ ,T RA/WM §5.4.3

5.4 Applications

We demonstrate the mesh-free RBF-FD-based hydrodynamic stability framework out-

lined in §5.1 and §5.2 using three representative examples: canonical steady and unsteady

cylinder wakes, a self-similar non-parallel steady laminar boundary-layer flow, and the turbulent

mean of a transonic jet, as summarized in table 5.1. These three examples are benchmark

problems for open flows and are appropriate for validating mesh-free hydrodynamic stability.

Same as in §4, we employ DistMesh [199] to efficiently generate scattered nodes with localized

refinement in regions of interest. We highlight that the local connection information is not used

in the computation.

5.4.1 Cylinder wake

We first consider the incompressible cylinder flow at diameter-based Reynolds numbers,

Re = U∞D
ν

, ranging from 47 to 180 and investigate the mean-flow stability within the two-

dimensional laminar regime. The occurrence of the periodic von Kármán vortex shedding in the

cylinder wake beyond the critical Reynolds number of Rec ≃ 47 is a well-known phenomenon,

owing to a Hopf bifurcation that results in flow instability, see, e.g., [24, 287]. Beyond the limit

of Re≃ 188, the cylinder flow becomes three-dimensional [16, 297].

Classical LST analysis of the cylinder base flow ought to predict the onset of unsteadiness

[114, 306] but fails to capture the vortex-shedding frequency beyond Rec [15, 253]. Previous
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studies by Hammond & Redekopp [97] and Pier [203] show that LST analysis around the

cylinder mean flow accurately identifies the vortex-shedding frequency compared to experimental

measurements. Barkley [15] supported these findings and showed that the cylinder mean flow is

marginally stable in the 2D regime. Sipp & Lebedev [253] subsequently provided theoretical

underpinning by conducting a weakly nonlinear analysis and establishing criteria for utilizing

mean flows in LST analysis. The vortex-shedding dynamics beyond the critical Reynolds number

were later investigated using a self-consistent model [166, 167] and RA [120, 264] based on

the mean flow stability. We here conduct both LST and resolvent analyses of the cylinder wake

mean flow.

Figure 5.2. Computational grid for cylinder flows with N = 118225 nodes, colored using the
mean vorticity, ωωω = DDDxvvv−DDDyuuu, at Re = 100.

We define the the computational domain Ω as the exterior of the cylinder r ≥ D/2 = 0.5

and within the rectangle −15≤ x≤ 30,−15≤ y≤ 15. The computational domain is discretized

using N = 118225 scattered nodes. Local grid refinement is employed near the cylinder with

a characteristic distance of ∆r = 0.03 and around the wake centerline with ∆r = 0.04 to better

resolve the flow structures. The unsteady cylinder flow is simulated using the PHS+poly RBF-FD

version of the fractional-step, staggered-grid incompressible Navier-Stokes solver previously

described in §4. The mean-flow profiles are obtained as the time average of flow over 20

vortex-shedding cycles. Figure 5.2 shows the mean vorticity at Re = 100 and the computational
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grid. Homogeneous boundary conditions, u′ = v′ = 0, are prescribed at the inlet and the cylinder

surface. Symmetric boundary conditions with v′ = ∂u′/∂y = 0 are applied at the transverse

boundaries. A stress-free outflow condition, −p′nnn+ 1
Re∇uuu′ · nnn = 0, where nnn = [1,0]T is the

outflow direction, is enforced at the outflow.

The local wavemaker sensitivity in equation (5.4) and the resolvent gain in equation

(2.12) and are both quantified in terms of the perturbed kinetic energy. To this end, we define the

integration matrices

WWW u =WWW f ≡

111 000

000 111

⊗diag(dV1,dV2, · · · ,dVN) (5.15)

in equation (2.13) to approximate the integral within the computational domain, where⊗ denotes

the Kronecker product. Here, dVi = ξ π(∆ri)
2 is the local radial control volume for each grid.

The constant ξ ensures consistency with the total control volume and is defined by letting

∑
N
i=1 dVi = ξ π ∑

N
i=1(∆ri)

2 =
∫

Ω
1dxxx. Refer to figure 5.1 for practical illustrations.

Figure 5.3. Vortex shedding frequency predicted by the leading eigenvalue of the mean-flow sta-
bility problem as a function of Reynolds number. The frequency is given as the non-dimensional
Strouhal number St = λi/2π . Shown for comparison are results from Pier [203] (green square)
and Barkley [15] (blue circle). Two representative Reynolds numbers for the following analysis,
Rec ≈ 47 and Re = 100, are highlighted as dashed lines.

Figure 5.3 shows the Strouhal number, St = λi/2π , associated with the leading eigenval-
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ues at varying Reynolds numbers. Starting from the critical Reynolds number of Rec ≈ 47, the

frequency-Reynolds number dependence exhibits the typical features of a Hopf bifurcation. Our

results are in good agreement with Barkley [15], and similarly, deviate no more than 3% from

those reported by Pier [203]. The maximum growth rates are almost identical to zero (see also

figure 5.4 below), confirming that the mean flow is marginally stable.

Figure 5.4. Resolvent singular values (blue curve) and stability eigenvalue (red circle) spectra
for Re = 47 (a) and Re = 100 (b). The 20 eigenvalues closest to λc = 0+0.753i or Stc = 0.1199
and λ = 0+ 1.038i or St = 0.1652 (dashed lines) were found within the regions outlined by
the black dot-dashed lines using the shift-and-invert Arnoldi algorithm for Re = 47 and 100,
respectively.

We next conduct a comparative study of LST and RA at two representative Reynolds

numbers, the critical Reynolds number of Re = 47 and Re = 100, as an example of the unsteady

regime. Figure 5.4 shows the resulting resolvent singular value and stability eigenvalue spectra.

At Re = Rec, both the peak of the resolvent gain and the leading eigenvalue identify the same

frequency, Stc = 0.1199, as the vortex shedding frequency. This value is in good agreement

with the results of the LST analysis around the base flow, see, e.g., Giannetti & Luchini [91]

(Stc ≃ 0.118 for Rec ≃ 46.7), Marquet, Sipp, & Jacquin [169] (Stc ≃ 0.116 for Rec ≃ 46.8),

and Sipp & Lebedev [253] (Stc ≃ 0.118 for Rec ≃ 46.6). Similarly, the resolvent singular value

spectrum at Re = 100 in panel 5.4(b) displays a clear peak at the vortex shedding frequency,

which is now at St = 0.1652, and again coinciding with the least stable LST eigenvalue. This

result matches closely with the findings of earlier Strouhal-Reynolds number relationship [71,
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119, 166, 204, 297] and RA [120, 264] studies.

Figure 5.5. Leading modes for Re = 47 at St = 0.1199 (a-d) and Re = 100 at St = 0.1652 (e-h):
(a,e) LST modes; (b,f) response modes; (c,g) adjoint modes; (d,h) forcing modes.

Figure 5.5 shows the leading LST and RA modes for the cylinder mean flow at Re = Rec

and Re = 100. The leading LST and optimal response modes, along with their corresponding

adjoint and forcing modes, are near-identical at both Reynolds numbers. The resemblance

observed between the LST and resolvent response modes is to be anticipated, as the singular

value of the resolvent attains its peak at the vortex-shedding frequency [25, 264], thus exhibiting

the characteristic vortex-shedding structure. This implies that the optimal forcing leverages the

global instability mode to achieve maximum gain. Differing from the optimal response and

LST modes, the optimal forcing and adjoint modes are active far upstream of the cylinder but

peak downstream in close vicinity to the cylinder. This hallmark of convective instability was

similarly observed in previous works [120, 169, 264].

We finally investigate the wavemaker ζLST, defined in equation (5.4), in figure 5.6 to

quantify the sensitivity of spatially localized feedback. Wavemakers obtained from LST and RA

look similar for both Reynolds numbers and reach their maxima in two symmetrically positioned
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Figure 5.6. Wavemakers ζLST for mean flow at (a) Re = 47 and (c) Re = 100. Respective results
for ζRA are shown in (b) and (d). The blue curve represents the mean flow streamlines.

lobes located across the separation bubble. This result signifies the promising applicability of

RA-based wavemakers in accurately identifying the region where the flow instability mechanisms

happen. The wavemaker patterns at the critical Reynolds number shown in panels 5.6 (a,c)

compare well to those previously reported by Giannetti & Luchini [91] and Marquet, Sipp,

& Jacquin [169]. The shrinking of wavemaker region at Re = 100 in panels 5.6 (b,d) closely

matches with the findings in Meliga, Boujo, & Gallaire [175] and Symon et al. [264].

5.4.2 Blasius boundary layer

We now examine the incompressible two-dimensional non-normal flat-plate boundary

layer, a classic example of convectively unstable flows characterized by the amplification

of disturbances during downstream advection. The convective instability of boundary-layer

flows has been extensively studied through 1D LST analysis over the past century, e.g., [122,

161, 162, 209, 259]. Above the critical displacement-thickness Reynolds number of Reδ ,c ≈

520, the Tollmien–Schlichting (TS) waves are known to arise as unstable eigenmodes of the

Orr-Sommerfeld equation [42]. While these locally unstable waves are damped in 2D LST

[1, 4, 11, 65], investigations into the non-normality of the linearized Navier-Stokes equations for

open flows have revealed an alternative pathway for disturbance amplification [50, 168, 255].
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To analyze the non-modal behavior of boundary-layer flows, input-output analysis has been

conducted to determine the optimal harmonic forcing that results in the largest asymptotic

response [2, 12, 13, 184, 231, 254].

Following the setup by Sipp & Marquet [254], we compute the resolvent gain in the

restricted domain ΩRA = [x, y/δ ] ∈ [0.02, 1]× [0, 22.52] within the computational domain Ω =

[x, y/δ ]∈ [0.02, 1.27]× [0, 22.52] such that the forcing optimizes the ratio between the restricted

kinetic energy,
∫∫

ΩRA

(
|û|2 + |v̂|2

)
dxdy, and the integral of forcing,

∫∫
Ω

(
| f̂u|2 + | f̂v|2

)
dxdy. The

zero-pressure-gradient (ZPG) asymptotic Blasius solution, characterized by a local Reynolds

number of Rex =
U∞x

ν
= 6× 105 or Reδ = U∞δ (x)

ν
= 1332 at the end of the restricted domain

ΩRA, is used as the base flow to investigate the flow instabilities, where δ (x) = 1.72
√

x/Rex

is the displacement thickness. The leading edge (x < 0.02) is removed to avoid the singularity

of the self-similar solution. Hereafter, we use the notations Re = Rex=1 and δ = δ (x = 1) for

simplicity. Conversely, x = 1 in figures 5.8, 5.9, and 5.11 corresponds to Re = 6× 105. All

quantities and coordinates presented are dimensionless.

The computational domain Ω is discretized using N = 726143 scattered nodes, cor-

responding to 2.2× 106 degrees of freedom. In comparison, Sipp & Marquet [254] employ

13.7×106 degrees of freedom. The characteristic distances of the grid are ∆r = 0.069δ near

the flat plate (y/δ < 4), ∆r = 0.077δ near the inlet (x < 0.025), and average at 0.081δ over the

whole domain. At the inlet and the flat plate, we prescribe u′ = v′ = 0. A symmetric boundary

condition with v′ = ∂u′/∂y = 0 is applied at the far-field (y/δ = 22.52). A stress-free outflow

condition is enforced at the outflow. The weight matrix WWW u is defined in equation (5.15), but

with zero weights in the region Ω\ΩRA.

We first examine the leading resolvent singular value as a function of the normalized

frequency, F = 106 ·ω/Re, in figure 5.7. Overall, our results agree well with those reported by

Sipp & Marquet [254]. The slight deviation of the peak and the resolvent gains beyond the peak

(F ≳ 88) are most likely attributed to differences in the base flows, that is, the ZPG self-similar

Blasius solution in the present study and the fully non-parallel numerical data of Sipp & Marquet
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Figure 5.7. Resolvent gains (solid lines) and peak frequencies (dashed lines) for the flat-plate
boundary layer and Re = 6 ·105.

[254] that includes the leading edge. The discrepancy at higher frequencies is potentially also

related to the truncation of the leading edge, where the asymptotic Blasius solution becomes

singular.

Figure 5.8 shows the optimal and suboptimal forcings and corresponding responses at

F = 100. The optimal response exhibits clear Tollmien–Schlichting (TS) wavepackets in the

downstream region, while the upstream tilted structures in the optimal forcing highlight the active

role of the Orr mechanism in extracting energy from the mean shear via the Reynolds stress [42].

The clear spatial separation between leading resolvent forcing and response modes indicates the

stream-wise non-normality of the system [50, 169, 255]. The suboptimal forcing and response

are similar to the leading modes except for two local maxima. This modulation confirms the

orthogonality in their respective inner products. Qualitative comparisons with previous studies

by [1, 31, 184, 254] verify the capability of the present framework in identifying the convective

instability of the boundary-layer flow.

As a quantitative assessment of the flow structures, we examine the energy density

functions,

d f (x) =
∫ ymax

0

(
| f̂u|2 + | f̂v|2

)
dy, and du(x) =

∫ ymax

0

(
|û|2 + |v̂|2

)
dy, (5.16)
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Figure 5.8. Optimal and suboptimal resolvent forcings (b,d) and corresponding responses (a,c)
for the flat-plate boundary layer at F = 106 ·ω/Re = 100. The normalized stream-wise velocity
components have been interpolated onto a stretched Cartesian mesh for visualization. Panels (e)
and (f) show the local regions of the optimal forcing (magenta box) and corresponding response
modes (red box) with the largest magnitudes, respectively, on the scattered nodes used for the
computation. The Blasius displacement thickness, δ (x), is highlighted as the white dashed line.

in figure 5.9 for the modes shown in figure 5.8. Our results are almost identical to Sipp & Marquet

[254] The spatial distribution of the optimal forcing unambiguously identifies the location of the

upstream neutral point (branch I) from a local stability analysis at x = 0.3 and the corresponding

response is localized at x = 0.89, which is in close proximity to the downstream neutral point

(branch II).

Figure 5.10 shows the energy density distributions of the optimal forcing and response as

a function of frequency, with the stream-wise coordinate given in terms of the local Reynolds

number, Reδ . The optimal forcings agree well with Sipp & Marquet [254], and their maxima

effectively delineate the convectively stable/unstable boundary (branch I) obtained using local

stability theory. The Orr and TS mechanisms coexist and compete while both contribute to the

overall energy gain of RA. As frequency increases, the spatial support of the TS-like optimal
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Figure 5.9. Spatial distributions of energy density for optimal (dashed) and suboptimal (dotted)
forcings and corresponding responses (solid and dot-dashed, respectively) at F = 100. The
results (red) are compared to those reported by Sipp & Marquet [254] (blue). The two vertical
solid lines represent the upstream neutral point (branch I) and the downstream neutral point
(branch II) from a local stability analysis.

Figure 5.10. Energy density distributions for the optimal forcings (a) and responses (b) as a
function of frequency. The locations of maximum energy densities are marked as red circles. The
results reported by Sipp & Marquet [254] are shown as blue stars for comparison. The neutral
curve obtained from a local LST analysis is shown as the magenta line.

responses decreases, suggesting that the TS mechanism is only supported in a limited region

of the shear layer at high frequencies. Additionally, the energy density of the forcing shows
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an increasing trend, indicating that the Orr mechanism becomes dominant at high frequencies.

Similar to the deviation in the resolvent gain spectra shown in figure 5.7, we observe a slight

downstream shift in the peak of optimal responses compared to the results reported by Sipp &

Marquet [254] for increasing frequency (F ≳ 130).

Figure 5.11. RA-based wavemaker ζRA for the flat-plate boundary layer as a function of
frequency.

Finally, we show the RA-based wavemaker, defined in equation (5.10), in figure 5.11

to examine the instability mechanisms at different frequencies. The maximum magnitude of

ζRA shows an increasing trend with frequency. The large magnitudes of the wavemaker are

attributed to the fact that the value of the term |ûuu∗1WWW u f̂ff 1|−1 is considerably greater than the value

of the self-adjoint modes, which is equal to 1 [168]. This again confirms that the boundary-layer

flow exhibits high non-normality. For F ≲ 100 (panels 5.11 (a-c)), the RA-based wavemaker

exhibits an elongated shape and is artificially restricted within the optimization domain ΩRA.

The wavemaker becomes more concentrated towards the upstream region for higher frequencies

(F ≳ 140, panels 5.11 (d-g)). This observation suggests a transition from the TS-dominated to

the Orr-dominated mechanism as the frequency increases.
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5.4.3 Turbulent jet

The above two examples demonstrate the capability of the proposed numerical framework

for analyzing incompressible flows within the laminar regime. We now focus on the mean

flow analysis of the turbulent iso-thermal jet previously described in §2.3.4. Previous studies

have demonstrated that the transonic turbulent jet under consideration displays a variety of

coherent features, including the well-known Kelvin–Helmholtz instabilities of the shear layer

[33], downstream non-modal Orr-type waves [202, 237], and trapped acoustic waves in the

potential core [236, 273].

Owing to the rotational symmetry of the jet, we may decouple the governing equations and

construct the compressible linear operator L in cylindrical coordinates, without loss of generality,

for each azimuthal wavenumber mθ independently. Upon linearization of the compressible

Navier-Stokes equations shown in (1.3), we obtain the linearized Navier-Stokes operator around

the azimuthally averaged long-time mean of the primitive state in equation (2.7). The general

setup, including boundary conditions, sponge regions, and a molecular Reynolds number of

Re = 3×104, follows Schmidt et al. [236] and [237].

Figure 5.12. Computational grid for jet with N = 210817≈ 1013×208 nodes, colored using
the mean streamwise velocity ux at Re ≈ 106. The potential core (white solid) and the jet
width (white dashed) are delineated as isolines corresponding to 99% and 5% of the jet velocity,
respectively

The computational domain Ω = [−1,31.01]× [0,9.65] includes the physical domain

x,r ∈ [0,30]× [0,6] and the surrounding sponge regions that prevent waves from being reflected.

Local refinement is used near the nozzle with ∆r = 0.005 and near the jet centerline with
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∆r = 0.008, resulting in N = 210817 scattered nodes for the construction of the RBF-FD-based

global Jacobian LLL, see figure 5.12. A structured mesh with a comparable number of N = 185250

was used in Schmidt et al. [237].

The resolvent gain is quantified in terms of the compressible energy norm defined in

equation (2.27) through the weight matrices

WWW q =WWW f ≡ diag
(

T
γρM2 ,ρ,ρ,ρ,

ρ

γ(γ−1)T M2

)
⊗diag(2πr1dV1,2πr2dV2, · · · ,2πrNdVN).

(5.17)

For compressible flows, the discrete weighted resolvent operator takes the form of

RRR(ω) =WWW
1
2
qCCC (iωIII−LLL)−1 BBBWWW

− 1
2

f , (5.18)

where the input and output matrices, BBB and CCC, are used to are used to focus the analysis

exclusively on the physical domain. As a first demonstration, we conduct the mesh-free RA for

the symmetric component of the jet with mθ = 0 in the following.

Figure 5.13. Leading resolvent singular value spectra for the transonic jet and mθ = 0. Results
reported by [237] are shown as comparisons (blue dashed).

Figure 5.13 compares the leading resolvent singular value spectra to those reported by
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Schmidt et al. [237], obtained using a 4th-order finite difference [172] and a tenth-order filter

for discretization. Very good agreement is observed within the frequency range 0.15 ≲ St ≲ 1.2,

with only a minor deviation at the peak value. This specific frequency range has been previously

identified as the regime where different physical mechanisms are active in turbulent jets, see,

e.g., [88, 201, 236, 237, 262, 270, 273].

Figure 5.14. Streamwise velocity component of the optimal response (a,c,e) and corresponding
forcing modes (b,d,f) at three representative frequencies: (a-b) St = 0.2; (c-d) St = 0.6; (e-f)
St = 1. The modes are interpolated onto a stretched Cartesian mesh with contours corresponding
to ±0.6∥ · ∥∞ for visualization. The potential core and the jet width, shown in figure 5.12, are
visualized for comparisons.

To verify that large-scale coherent structures in the turbulent jet are accurately captured,

we investigate the leading resolvent modes at three representative frequencies, as shown in

figure 5.14. At St = 0.2, the optimal response exhibits a clear downstream (x ≳ 10) Orr-type

wavepacket. The elongated structures tilted against the mean shear in the corresponding forcing

are a clear indicator of the Orr mechanism associated with the optimal non-modal spatial growth

[237, 269, 270]. Similar flow structures have been reported in [88, 154, 202]. For higher

frequencies (St ≳ 0.6), the optimal response take the form of compact Kelvin–Helmholtz (KH)

wavepackets localized upstream in the initial shear layer region of the jet (x ≲ 10), which can be

identified as the modal KH-type shear-layer instability of the turbulent mean flow [95, 121, 262].

The corresponding forcing distributions near the lip line (r ≃ 0.5) remain indicative of the Orr

mechanism, but this time with the KH instability [88, 118, 206, 239, 270]. Within the potential
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core, the optimal response exhibits duct modes at St = 0.6 and trapped acoustic waves at St = 1.

The presence of the latter is a general feature of resonance mechanisms between propagating

waves associated with the isothermal and transonic jet, as previously described in [236, 273].

Notably, comparable patterns can be observed in the corresponding forcings, indicating the

nearly self-adjoint nature of the trapped instability mechanism. We confirmed the modal shapes

are almost identical to those obtained using the numerical scheme outlined in Schmidt et al.

[237] (not shown).
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Figure 5.15. RA-based wavemaker ζRA for: (a) St = 0.2; (b) St = 0.6; (c) St = 1. The region
with the strongest feedback is marked as green ’+’.

Figure 5.15 shows how the RA-based wavemaker, ζRA, unveils different physical mech-

anisms that are active in the turbulent jet. Most notably, the wavemaker region and its overall

peak move upstream as the frequency increases from St = 0.2 to 1. At St = 0.2, the optimal

forcing and response modes are spatially separated (see panels 5.14(a,b)), resulting in a very

weak wavemaker signature in the downstream self-similar region. This result is anticipated,

as the responses at low frequencies are purely triggered by the Orr mechanism without being

associated with a single global mode or a local feedback mechanism that leads to the creation

of waves in a localized region. This is indicative of a non-modal convective instability. At

St = 0.6, the wavemaker peaks at the centerline at x≃ 5. This is the end of the potential core,

where upstream traveling acoustic modes are generated, also known as duct modes, as previously

described by Towne et al. [273]. Parallel-flow models accurately predict the occurrence of duct
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modes, but the wavemaker potentially reveals the location where duct modes originate, which

is not predicted by the theory. The wavemaker at St = 1 peaks within the shear layer, which is

associated with the KH instability, but it also exhibits a comparable magnitude at the upstream

region of the potential core, which identifies the resonance mechanisms that trigger trapped

acoustic modes [236, 273]. That is, the wavemaker analysis confirms the phase-linking between

downstream KH waves and upstream traveling waves at St = 1. Note that this is not the case for

St = 0.6, where the wavemaker is solely associated with the duct modes.

Chapter 5, in full, has been submitted for publication of the material as it may appear in

Journal of Computational Physics 2024, Chu, Tianyi; Schmidt, Oliver T., Elsevier, 2024. The

dissertation author was the primary investigator and author of this paper.
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Chapter 6

A stochastic SPOD-Galerkin model for
broadband turbulent flows

The complex and chaotic dynamics, coupled with a wide range of length and time

scales, remain an open challenge for the reduced-order modeling of turbulent flows. Despite

the knowledge of the Navier-Stokes equations and accurate high-fidelity methods to solve them,

real-time prediction of turbulent flows is out of reach due to their immense computational cost.

Reduced-order models (ROMs) have become a prevalent approach in fluid mechanics to reduce

complexity by separating temporal dynamics that are governed by simplified equations, such as

ordinary differentiation equations (ODEs), from a modal basis of spatial fields, as described in §2.

Practical applications of ROMs for turbulent flows include real-time simulations [39, 44, 126],

flow control [38, 135, 150, 220, 255, 305], and uncertainty quantification (UQ) [163, 227, 228].

6.1 Galerkin projection-based model order reduction

Among the most successful models in fluid dynamics are POD-Galerkin models that

leverage the orthogonality of POD modes to obtain coupled ODEs that govern the temporal

evolution of the POD expansion coefficients. Holmes et al. [105] and Rowley & Dawson [220]

summarized and illustrated this approach. POD-Galerkin models have been successfully applied

to model the wall region of incompressible turbulent boundary layers by Aubry et al. [8] and

later, with a focus on low wave number phenomena of turbulence generation, by Holmes et al.
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[106]. Noack et al. [188] proposed a hierarchy of POD-Galerkin models for viscous cylinder

wakes and introduced a shift mode that accounts for the mean field correction. For compressible

flows, POD-Galerkin modeling is significantly complicated by the additional energy equation

and the occurrence of triple products of the state variables, which may be defined in either

primitive or conservative form. It was observed by Rempfer [211] that POD-Galerkin models of

general compressible flows exhibit nonphysical instability. There are several previous attempts

to overcome these difficulties for moderate Reynolds number flows. In pioneering works by

Rowley [217, 218], the authors implemented POD-Galerkin models for compressible cavity

flows for control purposes. Later, Rowley et al. [219] applied simplified Navier-Stokes equations

to obtain a quadratic POD-Galerkin ROM that is valid for isentropic, cold flows at moderate

Mach numbers. For linearized compressible flows, Barone et al. [17] devised an inner symmetry

product that yields stable models. Expanding on this work, Kalashnikova & Barone [127, 128]

proposed stability-preserving model reduction techniques for non-linear systems. All of the

work discussed so far is based on standard space-only POD modes. Recently, the use of SPOD

modes as the modal basis has been explored owing to their statistical optimality and space-time

coherence properties. Cong [53] and Towne [272] leveraged the space-time orthogonality of

SPOD by implementing the Galerkin projection in the frequency domain. We here propose a

predictive ROM that accurately reproduces the second-order flow statistics based on the oblique

projection of the linearized Navier-Stokes operator onto SPOD modes.

We recall the Reynolds decomposition of the turbulent flow state,

qqq(t) = qqq+qqq′(t), (6.1)

and discretize the linearized compressible Navier-Stokes equations (2.7) to obtain

d
dt

qqq′ = LLLqqq′+ fff . (6.2)
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We here consider fff to account for the unresolved nonlinear interactions and stochastic fluctua-

tions. This idea is inspired by the operator-based flow models, such as the stochastic structural

stability theory (S3T) system by Farrell & Ioannou [68, 69], and the mean-flow based RA

[111, 173]. Start from the control theoretical perspective or system identification, similar LTI for-

mulations have also been carried out for turbulent systems, see, e.g., [36, 38, 164, 165, 220, 228].

We choose as the basis of the Galerkin ROM the first M SPOD modes (at all N f frequen-

cies),

VVV =


| |

ψ
(1)
ω1 · · · ψ

(M)
ω1

| |︸ ︷︷ ︸
ω1

| |

ψ
(1)
ω2 · · · ψ

(M)
ω2

| |︸ ︷︷ ︸
ω2

· · ·

| |

ψ
(1)
ωNf

· · · ψ
(M)
ωNf

| |︸ ︷︷ ︸
ωNf

 . (6.3)

Here, ψ
(i)
ωk are the ith SPOD modes of frequency ωk and energy λ

(i)
ωk . The jth column of VVV is the

( j−⌊ j/M⌋M)th SPOD mode at the frequency ω̃ j = ω⌈ j/M⌉. This rank-M×N f (assuming all ψ

are linearly independent) SPOD basis contains

EM =
∑

M
i=1 ∑

N f
k=1 λ

(i)
ωk

∑
Nb
i=1 ∑

N f
k=1 λ

(i)
ωk

·100% (6.4)

of the total energy density. Within the subspace S spanned by the columns of VVV , the vector q̌qq(t)

that best approximates qqq′(t) in terms of ∥ · ∥E is found from the oblique projection

q̌qq(t) = PPPqqq′(t), where (6.5)

PPP =VVV (VVV ∗WWWVVV )−1VVV ∗WWW (6.6)

is the oblique projection matrix for non-singular VVV ∗WWWVVV . Here, the notation (·̌) represents the

quantity that is directly obtained from data without any modeling. Alternatively, we may directly
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express q̌qq(t) as a linear combination

q̌qq(t) =
M

∑
i=1

N f

∑
k=1

a(i)k (t)ψ(i)
ωk =VVV aaa(t) (6.7)

of the modes ψ
(i)
ωk by defining

ǎaa(t)≡ (VVV ∗WWWVVV )−1VVV ∗WWWqqq′(t) (6.8)

as the vector of temporal expansion coefficients a(i)k (t). The error vector between the true state

and its approximation at any given time is defined as

ěee(t)≡ qqq′(t)− q̌qq(t) = (III−PPP)qqq′(t). (6.9)

In the following, we will omit the explicit time dependence of qqq′ and aaa for brevity.

Different from standard Galerkin ROMs, we next model linear dynamics and use the

forcing as the compensation for the linearization under the linear time-invariant (LTI) assumption.

First, we obtain the forcing

f̌ff =
d
dt

qqq′−LLLqqq′ (6.10)

as the offset between the linear approximation and the true state. This procedure guarantees that

the forcing is consistent with the discretization. The resulting Galerkin ROM of the LTI system

d
dt

aaa = (VVV ∗WWWVVV )−1VVV ∗WWW
(
LLLqqq′+ fff

)
= LLLGalaaa+bbb (6.11)

governs the evolution of the forced state. Both the state and the forcing are expressed in terms of

their expansion coefficients, aaa and bbb, respectively. In equation (6.11),

LLLGal = (VVV ∗WWWVVV )−1VVV ∗WWWLLLVVV (6.12)
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is the system dynamics matrix, and

b̌bb≡ (VVV ∗WWWVVV )−1VVV ∗WWW fff =
d
dt

ǎaa−LLLGalǎaa (6.13)

the vector of expansion coefficients of the forcing field fff . Equation (6.11) is an m-dimensional

first-order differential equation. If a particular trajectory, for example starting from qqq′(0) is of

interest, the corresponding initial condition can be found as aaa(0) = (VVV ∗WWWVVV )−1VVV ∗WWWqqq′(0). If aaa

is statistically stationary, then

b̌bb =
d
dt

ǎaa−LLLGalǎaa = 0 (6.14)

implies that bbb has zero mean. This property is important in the context of inverse stochastic

models, described next.

6.2 Inverse stochastic models

6.2.1 Linear inverse model (LIM)

Inverse stochastic models are data-driven models that do not require knowledge of the

linear operator LLLGal. Instead, they approximate its action in the training phase of the model via a

least squares approximation and model the stochasticity of the original process as additive noise.

The simplest version is the linear inverse model (LIM),

d
dt

aaa = T̃TT aaa+www, (6.15)

proposed by Penland [196, 197]. It assumes a deterministic linear operator that is forced by

white noise, www. The operator itself is approximated from the data in a least squares sense as

T̃TT = argmin
T̃TT

N

∑
j=1

(∥∥∥∥ d
dt

ǎaa[ j]− T̃TT ǎaa[ j]
∥∥∥∥2
)
. (6.16)
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Note that knowledge of LLLGal is not required for this procedure. The underlying assumption of

the LIM is that the residue of the linear regression,

řrr =
d
dt

ǎaa− T̃TT ǎaa, (6.17)

can be approximated as white noise. If the governing linear operator LLLGal is known, we may

express T̃TT as the sum of two matrices,

T̃TT = LLLGal +TTT . (6.18)

Combining equations (6.11), (6.15) and (6.18) yields the relation

bbb = TTT aaa+www (6.19)

between the forcing coefficients, bbb, and the model coefficients, aaa in terms of TTT . If the feedback

matrix TTT is known, a random realization of the forcing coefficients can be generated to drive the

stochastic model. Observe that realizations of bbb are generated from white noise forcing. This

implies that TTT accounts for the correlations between the state and forcing.

6.2.2 Linear multi-level regression (MLR) models

The LIM discussed above assumes that the residue in the model’s definition, equation

(6.17), is white in time. However, there is no guarantee that the white-noise assumption holds for

any given nonlinear process. To address this problem, Kondrashov et al. [139] and Kravtsov et

al. [143] introduced the so-called linear multi-level regression (MLR) model. The idea behind

the MLR model is to inflate the original model by a hierarchy of additional levels. Each level

describes the dynamics of the residue of the previous level and is found by linear regression.

Closure of the model is archived once the white-noise assumption holds. Denoting by rrr1 the

first-order residue, i.e., the residue of the original model obtained using equation (6.17), the
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first-level model takes the form d
dt aaa = T̃TT aaa+ rrr1. The second-level system is then obtained by

inflating the state vector by the first-order residue, [ aaa
rrr1 ], and so on. Assuming that the first (L−1)

residues are differentiable, the linear MRL model takes the form

Level 1:
d
dt

aaa =T̃TT aaa+ rrr1,

Level 2:
d
dt

rrr1 =MMM1

 aaa

rrr1

+ rrr2,

...

Level L:
d
dt

rrrL =MMML



aaa

rrr1

...

rrrL


+www.

(6.20)

Here, MMMl is the system matrix of size MN f × (l +1)MN f , and rrrl the l-th level residue. Alterna-

tively, equation (6.20) can be written in the matrix form as

d
dt



aaa

rrr1

...

rrrL−1

rrrL


=



T̃TT III 000 · · · 000

MMM1 III . . .
...

. . . . . . 000

MMML−1 III

MMML





aaa

rrr1

...

rrrL−1

rrrL


+



000
...
...

000

www


. (6.21)

Equation (6.20) reduces to the classical LIM if rrr1 is white-in-time to start with.

6.3 The stochastic two-level SPOD-Galerkin model

The underlying idea of the proposed approach is to model a statistically stationary flow

as the superposition of large-scale coherent structures that evolve on the mean flow under
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the influence of stochasticity. This idea is reflected in the well-known triple-decomposition

introduced by Hussain & Reynolds [110]. We choose SPOD modes as the modal basis as

they optimally represent the second-order space-time statistics of the stationary flow field. The

triple-decomposition further requires the ‘background turbulence’ to be stochastic in nature. To

accomplish this goal, we employ a multi-level linear regression model, as introduced in §6.2.2.

In the following, we will demonstrate that the Galerkin-projection approach shown in §6.1 is

particularly well-suited for this purpose as it requires only one additional level for closure.

6.3.1 Two-level SPOD-Galerkin model

Using an infinite-dimensional linear operator to describe the nonlinear dynamics is the

core concept of Koopman theory. Following this idea, EDMD [295] augments the standard

DMD with additional nonlinear observables to obtain a finite-dimensional approximation of the

Koopman operator. Following this, we inflate our model with additional levels to incorporate the

linear evolution of nonlinear terms with the model. To obtain the most compact representation

of the dynamics, it is desirable to truncate the multi-level model, equation (6.20), at the lowest

possible level. Our natural starting point is therefore the two-level model

Level 1:
d
dt

aaa = LLLGalaaa+bbb, (6.22)

Level 2:
d
dt

bbb = MMMyyy+ rrr, where yyy≡

aaa

bbb

. (6.23)

Motivated by the goal of creating a physics-based model that relies on regression for closure

only, we deviate from the standard linear inverse modeling approach and retain the physics-based

operator LLLGal at first level. Consistent with equation (6.11), the residue at first level is identified

as the forcing vector bbb, obtained from equation (6.13). Following the standard linear inverse

84



modeling paradigm, we seek closure at the second level by solving the least squares problem

MMM = argmin
MMM

N

∑
j=1

(∥∥∥∥ d
dt

b̌bb[ j]−MMMy̌yy[ j]
∥∥∥∥2
)

(6.24)

to obtain MMM. This least squares problem is formally equivalent to a linear system problem

d
dt

B̌BB = MMMY̌YY , (6.25)

where Y̌YY = [y̌yy[ j], y̌yy[2], · · · , y̌yy[N]] and B̌BB =
[
b̌bb[1], b̌bb[2], · · · , b̌bb[N]

]
are the matrices of extended vec-

tors and forcing vectors, respectively. The solution of equation (6.25) is

MMM =

(
d
dt

B̌BB
)

Y̌YY
+
, (6.26)

where Y̌YY
+

denotes the pseudo-inverse of the (possibly singular) extended state matrix. Once MMM

is known, we can obtain the second-level residue řrr from equation (6.23) as

řrr =
d
dt

b̌bb−MMMy̌yy. (6.27)

Form equation (6.14), we may deduce that the second-level residue řrr has zero mean,

řrr =
d
dt

b̌bb−MMMy̌yy = 0.

The residue řrr will be approximated as white noise that can be correlated in the subspace,

described next. Once MMM and rrr are determined, the final two-level model is assembled as

d
dt

yyy =

 LLLGal III

MMM


︸ ︷︷ ︸

LLL2-lvl

yyy+

000

rrr

. (6.28)
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in the form of equation (6.21). Equation (6.28) is a forced first-order linear time-invariant

system for the extended state vector. The final system dynamic matrix LLL2-lvl contains both the

operator governing the linear evolution of large-scale coherent structures—represented by the

basis vectors—about the mean flow, LLLGal, and correlation information between the state and the

forcing that is learned from the data in MMM. In particular, the left square matrix MMMab and the right

square matrix MMMbb that constitute

MMM =

[
MMMab MMMbb

]
(6.29)

contain correlations between the expansion coefficients and the forcing, and the correlation

between the forcing components, respectively. If the residual is computed from the data by

means of equation (6.27), the proposed model, equation (6.28), accurately reproduces the original

flow field over all times. The remaining task is to find a suitable model for the residue řrr.

Residue modelling

In particular, we seek a stochastic forcing model rrr that has the same second-order

statistics as the residue řrr. The autocorrelation function that describes the second-order statistics

of the residue řrr at zero time-lag is readily obtained from the data as RRRrrrrrr = řrrřrr∗. Assuming that

the residue řrr is normally distributed in time with

řrr∆t ∼N (0,RRRrrrrrr · (∆t)2), (6.30)

we may randomly generate rrr from Gaussian white noise www∼N (0, III) as

rrr = GGGwww, (6.31)

where GGG is the unknown input distribution matrix. The role of GGG in our model is to color

randomly generated white noise with the statistics of the residual. Vice versa, GGG−1 can be
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interpreted as a whitening filter [284]. Gaussian white noise can be generated, by sampling from

a Wiener process ξξξ , as

www≡ dξξξ

dt
= lim

∆t→0

ξξξ (t +∆t)−ξξξ (t)
∆t

. (6.32)

For any time increment ∆t, ∆ξξξ is normally distributed with zero mean and covariance matrix

III∆t. We may now express equation (6.31) in terms of ∆ξξξ as

rrr∆t = GGG∆ξξξ , (6.33)

where

GGG∆ξξξ ∼N (0,GGGGGG∗∆t) (6.34)

follows the properties of the Wiener process. Comparing equations (6.34) and (6.30) allows us

to relate the unknown matrix, GGG, to the known covariance matrix of the residue, RRRrrrrrr, as

RRRrrrrrr∆t = GGGGGG∗. (6.35)

Based on the form of equation (6.35), we obtain GGG from the Cholesky decomposition of RRRrrrrrr∆t.

Owing to this procedure of computation, GGG−1 may be referred to as a Cholesky whitening filter.

6.3.2 Stochastic two-level SPOD-Galerkin model

Closure of the model is achieved by introducing the stochastic forcing model rrr into

equation (6.28). The resulting stochastic two-level SPOD-Galerkin model takes the form of the
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stochastic differential equation

dyyy = LLL2-lvlyyydt +
∫ t+dt

t
w̃wwdt, where w̃ww≡

 000

GGGwww

 (6.36)

is the process noise. Equation (6.36) is a stochastic differential equation (SDE) that can be solved

numerically by approximating the time derivative using a forward difference as

yyy[ j+1] = TTT yyy[ j]+∆ξ̃ξξ [ j], (6.37)

where j is the time index, ∆t the time step, and

TTT = III +LLL2-lvl∆t and ∆ξ̃ξξ ≡

 000

GGG∆ξξξ

 (6.38)

are the state transition matrix and the process noise, respectively. By construction, the process

noise ∆ξ̃ξξ is a zero-mean Gaussian random sequence with covariance matrix

R̃RRrrrrrr ≡ ∆ξ̃ξξ ∆ξ̃ξξ
∗
=

000 000

000 RRRrrrrrr∆t

. (6.39)

This completes the model. The discrete-in-time algorithm is outlined in the following.

6.3.3 Algorithm: stochastic two-level SPOD-Galerkin

Algorithm Stochastic two-level SPOD-Galerkin model

Input: Fluctuating data matrix QQQ′ = [qqq[1]−qqq,qqq[2]−qqq, · · · ,qqq[N]−qqq] consisting N snapshots,

discretized linearized Navier-Stokes operator LLL, time step ∆t.

Output: Matrices LLL2-lvl and GGG of the stochastic two-level SPOD-Galerkin model d
dt yyy = LLL2-lvlyyy+
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w̃ww, where w̃ww =

 000

GGGwww

.

1. Compute the SPOD of QQQ′ and store the SPOD modes in the column (basis) matrix VVV .

2. Determine the expansion coefficients and the Galerkin system dynamics matrix as

AAA = (VVV ∗WWWVVV )−1VVV ∗WWWQQQ′ and LLLGal = (VVV ∗WWWVVV )−1VVV ∗WWWLLLVVV ,

respectively.

3. Following the equation (6.13), calculate the forcing coefficients as

BBB =
AAAN

2 −AAAN−1
1

∆t
−LLLGalAAAN−1

1 .

where AAAN
2 = [aaa[2],aaa[3], · · · ,aaa[N]] and AAAN−1

1 = [aaa[1],aaa[2], · · · ,aaa[N−1]].

4. Let YYY ←

AAAN−1
1

BBB

. Solving the linear system problem in the equation (6.26) yields

MMM =
BBBN−1

2 −BBBN−2
1

∆t
YYY ∗ (YYYYYY ∗)−1 .

5. Assemble the matrices to obtain

LLL2–lvl←

 LLLGal III

MMM

 .
.

6. Calculate the linear regression residue as

RRR =
BBBN−1

2 −BBBN−2
1

∆t
−MMMYYY N−2

1 .
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7. Determine the matrix GGG by solving the Cholesky decomposition

GGGGGG∗ =
∆t

N−2
RRRRRR∗.

The resulting stochastic two-level SPOD-Galerkin model is propagated in time as

yyy[ j+1] = [III +LLL2-lvl∆t]yyy[ j]+

 000

GGG
√

∆twww

,
where j is the time index, see equations (6.36)-(6.38). The zero mean, unit variance Gaussian

white noise www which drives the system is obtained from a random number generator.

6.3.4 Uncertainty quantification and spectral analysis

Next, we leverage the resemblance of equation (6.37) to first-order vector autoregression

(VAR) processes to conduct an uncertainty quantification analysis of the model. Following

Stengel [260], we analyze the propagation of the uncertainty in terms of the expected value of the

extended state vector, ⟨yyy[ j]⟩, where ⟨·⟩ denotes the average over a large number of realizations

of ∆ξ̃ξξ [ j]. Since the forcing has zero-mean, the equation

⟨yyy[ j]⟩= ⟨TTT yyy[ j]+∆ξ̃ξξ [ j−1]⟩= TTT ⟨yyy[ j−1]⟩ (6.40)

shows that TTT functions as the propagator of the expected value of the state. If TTT is stable

with max{|λ (TTT )|}< 1, then the average of yyy[ j] at large time, denoted by lim j→∞⟨yyy[ j]⟩, is zero.

Denoting by

yyy′[ j] = yyy[ j]−⟨yyy[ j]⟩ (6.41)
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the fluctuation of the state, we may compute the auto-covariance matrix PPP( j) of the state as

PPP[ j] =
〈
yyy′[ j]yyy′∗[ j]

〉
= TTT PPP[ j−1]TTT ∗+ R̃RRrrrrrr. (6.42)

Equation (6.42) is the propagation equation for auto-covariance of the state, which is readily

obtained by combining equations (6.37), (6.40), and (6.41). Here, we made use of the fact

that the fluctuating state is uncorrelated to the process noise, that is, ⟨yyy′[ j−1]∆ξ̃ξξ
∗
[ j−1]⟩= 0.

The reason is that the stochastic component of yyy′[ j−1] is computed from the evaluation of the

stochastic process at the previous time instant, ∆ξ̃ξξ
∗
[ j−2], see equation (6.37).

If the true state yyy[1] is used as the initial condition, then PPP[0] = 0 from equation 6.42, and

it can be shown that the matrix sequence {PPP[ j]} converges to the true covariance

PPP = lim
j→∞

PPP[ j] =
∞

∑
n=0

TTT nR̃RRrrrrrr (TTT ∗)
n , (6.43)

which solves the discrete-time Lyapunov equation

TTT PPPTTT ∗−PPP+ R̃RRrrrrrr = 0. (6.44)

Since R̃RRrrrrrr is hermitian and positive-definite by construction, the existence and uniqueness of the

solution PPP are guaranteed by the Lyapunov theorem if TTT is stable. Since the process noise ∆ξ̃ξξ [ j]

is Gaussian, the distribution of the realizations of the state, yyy, is also Gaussian for the LTI system

at hand. Therefore, the 95% confidence interval of yyy at t j can be determined as

CI =
(
⟨yyy[ j]⟩−2

√
diag(PPP j), ⟨yyy[ j]⟩+2

√
diag(PPP j)

)
. (6.45)

In the limit of large times with j→ ∞, this interval converges to the bounded interval(
−2
√

diag(PPP),2
√

diag(PPP)
)

. Under the assumption that the realizations generated by the
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discrete SDE, equation (6.37), are weakly stationary with zero mean and covariance matrix PPP,

the time-lagged autocorrelation function can be determined analytically as

RRRyyyyyy(n)≡ ⟨yyy[ j]yyy∗[ j+n]⟩= PPP(TTT ∗)|n| . (6.46)

By way of the Wiener-Khinchin theorem, the analytical expression for the spectral density

function

SSSyyyyyy(ω) =
1√
2π

∞

∑
n=−∞

RRRyyyyyy(n)e−iωn

=
1√
2π

PPP
[(

III− e−iωTTT ∗
)−1

+
(

III− eiωTTT ∗
)−1
− III
]
.

(6.47)

is found by means of the discrete-time Fourier transform. The diagonal of SSSyyyyyy(ω) then contains

the power spectral density of yyy.

6.4 Example of a turbulent jet

We consider the same turbulent jet previously described in §2.3.4 as an example of a

statistically stationary flow. We construct a stochastic two-level SPOD-Galerkin model for the

symmetric component of the jet with mθ = 0. The same spectral parameters in §2.3.4 are used.

6.4.1 Subspace modeling

Figure 6.1 shows the SPOD expansion coefficients, ǎaai(t), obtained from the oblique

projection defined in equation (6.8) for the three modes shown in figure 2.3(a-c). Results

are shown for the rank 1× 129 basis, that is, the basis consisting exclusively of the leading

SPOD modes (one mode per frequency). Note again that each SPOD mode is, by construction,

associated with a single frequency. To confirm that the oblique projection truthfully represents

this property, we compute the periodograms (right column) to reveal the frequency content of

the expansion coefficients. It is observed that the PSD indeed peaks at the respective SPOD

frequencies. This confirms that the SPOD modes in fact predominantly represent the spectral
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Figure 6.1. SPOD expansion coefficients aaai(t) for the three representative modes shown in figure
2.3(a-c) as part of the rank 1×129 basis: (a−b) St = 0.2; (c−d) St = 0.41; (e− f ) St = 0.63.
Time trace over 100 time units (left), and PSD (right). The frequency of the SPOD modes are
marked by dashed lines in the spectra.

content they optimally account for by construction. Even though the model does technically

not depend on this property, we note that this observation can be interpreted as an a posteriori

justification for the use of the oblique projection introduced in equation (6.8), and therefore also

of the use of SPOD modes as a modal basis in the time domain.

Figure 6.2 (a) compares the compressible energy norm, ∥qqq(xxx, t)∥E , of the full LES data,

q̌qqfull, to the energy of the partial reconstructions for modal bases. It can be observed that all

reconstructions follow the dynamics of q̌qqfull. The approximately constant offset between the

energy of q̌qqfull and the low-rank approximations is similarly reflected in the retained SPOD energy.

In particular, q̌qq1×129, q̌qq2×129, q̌qq3×129, q̌qq10×129 account for 13%, 21%, 27%, and 52% of the total

energy, respectively. Figure 6.2(b) shows that the offset between the low-rank approximation

and the true state is almost constant. This implies that the error stems, almost exclusively, from

the energy contained in scales that are not important from a dynamics perspective.
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Figure 6.2. Compressible energy norm in (a), and deviation from the mean energy in (b). The
LES data and the low-rank approximations with 13%, 21%, 27%, 52% energy are reported.
Part (b) emphasises that the dynamics (deviation from the mean) are well captured even by the
lowest-rank approximation.

In figure 6.3, the stability of the naive Galerkin ROM of the LTI system, equation (6.12),

and the two-level model, equation (6.28), is addressed in terms of the eigenvalue spectra of

the corresponding operators, LLLGal and LLL2-lvl, respectively. The dashed blue line in the spectra

corresponds to the disc of radius 1
∆t , centered about − 1

∆t . It demarcates the region of stability;

eigenvalues inside the circle are associated with temporal decay, whereas eigenvalues on the

outside are associated with exponential amplification. Clearly, the simple Galerkin ROM is

unstable, whereas the two-level model is stable. Furthermore, the eigenvalues of the 2-level

model are mostly confined to the upper half of the stability region. This behaviour is explained

by the symmetry of the SPOD spectrum and the restriction of the modal basis to non-redundant

positive frequency content. Figure 6.3(d-f) shows that the eigenvalues of LLL2-lvl remain confined

to a specific area within the region of stability when the model rank is increased. These results

demonstrate that the transition matrices HHH computed using equation (6.38) are stable, that is,

max{|λ (HHH)|} < 1. Hence, when there is no stochastic input to the SDE, equation (6.37), the

extended state vector yyy vanishes as t→ ∞ as its expected value is zero. In accordance with the
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Figure 6.3. Eigenvalues of the standard SPOD-Galerkin ROM, λ (LLLGal), and the proposed
two-level model, λ (LLL2-lvl): (a,d) rank 1×129 (black); (b,e) 2×129 (green); (c,f) 3×129 (red).
The blue dashed circle represents the stability region. The eigenvalues outside of the unit disc in
(a-c) indicate that Galerkin projection yields an unstable model. On the contrary, the two-level
model in (d-f) is stable.

modeling philosophy, appropriate forcing input is necessary to sustain the turbulent flow.

As the turbulence closure relies on linear regression, it has to be shown that LLL2-lvl

converges as more data is used for its construction. Consider the sequence of matrices, {LLL(n)
2-lvl},

where n is the number of snapshots used in the linear regression, equation (6.25). We define a

normalized norm of these the matrix sequence, ∥ · ∥D, as

∥LLL2-lvl∥D ≡
∥LLL(n)

2-lvl−LLL(N)
2-lvl∥F

∥LLL(N)
2-lvl∥F

, (6.48)

where ∥ · ∥F denotes the Frobenius norm, and N is the total number of available snapshots. The

norm ∥ · ∥D measures the normalized distance between the matrices constructed with n and N

snapshots. The convergence of LLL2-lvl as more and more data is added is apparent from figure 6.4.
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Figure 6.4. Convergence of the matrix sequence {LLL(n)
2-lvl}.

Figure 6.5. Matrices MMMab (left column) and MMMbb (right column), computed from the least-squares
problem (6.25) for models of different rank: (a) rank 1×129; (b) rank 2×129; (c) rank 3×129.
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Figure 6.5 compares the left, MMMab (left column), and the right, MMMbb (right column), square

matrices that together form MMM, as defined in equation (6.29), for modal basis of three different

sizes. The matrix MMMab represents the cross–correlation information between the expansion and

the forcing coefficients. Compared to the off-diagonal entries, a notable positive correlation

is observed on the diagonal of the matrix MMMab. This suggests that the correlation between the

expansion and the forcing coefficients at the same frequencies dominate. The matrix MMMbb shows

the cross-correlation between the forcing coefficients. This matrix, too, is diagonally-dominant;

however, the autocorrelation of the forcing is negative. In the following discussion of figure 6.6

below, we will show that this procedure of computing MMM leads to an almost flat residue spectrum.

Figure 6.6. Time traces (left column), spectra (middle column) and autocorrelation estimates
(right column) of the rank 1×129 forcing coefficients, bbb (red), and residue, rrr (green), at three
representative frequencies: (a− c) i = 10, or St = 0.2; (d− f ) i = 20, or St = 0.41; (g− i)
i = 30, or St = 0.63. In (b,e,h), vertical dashed lines indicate the SPOD mode frequencies and
horizontal dashed green lines the mean PSD of the residue. The absolute values of the normalized
autocorrelation is shown in (c,f,i).

Following the steps outlined in §6.3.1, we proceed with the modeling of the second-level

97



residue. Recall that the proposed model closure hinges on the assumption that the highest-level

residue can be modeled as random noise. This assumption is tested in figure 6.6, which examines

the temporal evolution and the spectra of the forcing coefficients, bbb(t), and the residue, rrr(t). The

rank 1×129 case is shown as an example. It is observed that the residue is of significantly lower

amplitude than the forcing. Similar to the trend observed for the SPOD expansion coefficient in

figure 6.1, the PSD of the forcing coefficients, shown in the right column, attains its maximum

value at the corresponding mode frequency. For the frequencies at hand, a separation of at least

two orders of magnitude between the maximum and minimum values of the PSD is found. The

PSD of the residue, on the contrary, is significantly flatter. To further quantify the white noise

assumption, figure 6.6(c,f,i) show the corresponding (normalized) autocorrelations calculated

as Rxx(τ) = ⟨x(t)x(t + τ)⟩, where the ensemble average ⟨·⟩ is taken over the same blocks for

the SPOD, see §2.3.4. The autocorrelations of the residue decay rapidly, whereas the forcing

coefficients are correlated over 20 or more time units. This suggests that the residue can be

modeled as white-in-time. Both the spectral flatness and the rapid drop of the autocorrelation

motivate the truncation of the multi-level stochastic model at the second level.

To further motivate the proposed model truncation at the second level, we next examine

the probability distributions of the rank 1×129 coefficients aaa and bbb, and the corresponding residue

rrr in figure 6.7. As desired, the probability distributions of residue are nearly Gaussian, which is

clearly not the case for the mode and forcing coefficients. In accordance with the observations

made in the context of figure 6.6, this suggests that rrr may be modeled with components that

are mutually correlated, but that are white-in-time. In the model, the correlation between the

components of the residue is accounted for by the matrix GGG (see equation (6.35)) that filters the

white-in-time input www to generate the process noise w̃ww that drives the final model.

6.4.2 Model performance

Consistent with the equation (6.37), we use the forward Euler method to march the SDE,

equation (6.36), forward in time. The time step of the original data, ∆t = 0.2, is used to guarantee
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Figure 6.7. The probability distribution of rank 1×129 state coefficients aaa (blue), forcing
coefficients bbb (red) and the residue rrr (green) at different frequencies: St = 0.09 (solid), St = 0.20,
(dashed), St = 0.30 (dotted).

consistency with the modeling of the forcing and the residue. The initial condition for the model

is within the training set, resulting in the flow field hindcast for the turbulent jet.

Figure 6.8 shows the comparison between the rank 1×129 approximation, ǎaa1×129, and a

single realization of the rank 1×129 model, aaa1×129, as well as their power spectra at different

frequencies. Starting from an initial condition taken from the data, this example of a realization

of the stochastic model follows the initial transient dynamics of the data for approximately 3

time units. To demonstrate that the model accurately captures the known trajectory, we run the

model without stochastic forcing and the true residue as the input rrr. It can be seen that the model

output (red dots) and the LES trajectory (black line) are indistinguishable. A more rigorous

approach to quantify the predictability of the model is the use of the analytical 95% confidence

interval defined by equation (6.45), and Monte Carlo simulation. For the latter, 104 realizations

of the stochastic model, all starting from the same initial condition, were computed. It can be

seen that the envelope of uncertainty closely follows the reference in the vicinity of t = 0. As
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Figure 6.8. Time series and spectra for the rank 1×129 approximation (black line, representing
the original data) and a single realization of the rank 1×129 model (red line) for three representa-
tive frequencies: (a,b) St = 0.2; (c,d) St = 0.41; (e,f) St = 0.63. Red dots show the model output
when the true residue taken from the data is used as input. It is indistinguishable from the data.
Blue dashed lines mark the analytic 95% confidence interval. The blue shaded area outlines a
Monte Carlo envelope based on 104 realizations of the stochastic model, for comparison.

theoretically predicted in the context of equation (6.45), the region of uncertainty stays bounded

for larger times, implying that the model is stable. A good agreement is also found between the

power spectra of the coefficients of aaa1×129 and ǎaa1×129. This observation confirms that the model

preserves the direct correspondence between modes and frequencies inherent to SPOD.

Figure 6.9 shows, analogously to figure 6.8(b,d,f), the power spectra of aaa1×129 and

ǎaa10×129 at different frequencies. For all frequencies, the power spectra of the rank 10×129

approximation and model follow the order of the SPOD eigenvalues. As for the rank 1×129
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Figure 6.9. The power spectra of the first three state coefficients aaai of rank 10×129 approxima-
tion (black) and model (blue) at four representative frequencies: (a) St = 0.2; (b) St = 0.41; (c)
St = 0.63; (d) St = 0.85 .

model, a favourable agreement between approximation and model is observed. In summary,

figures 6.8 and 6.9 demonstrate that both the dynamics and statistics of the state coefficients ǎaa

are well described by two-level models of different fidelity. More results for the rank 2×129 and

3×129 models are provided in appendix B.1.

Having found that the spectral content of individual projection coefficients is represented

well by the model, we now focus on the entire fluctuating flow field qqq′. Figure 6.10 compares the

compressible energy norm of ǎaafull, q̌qq10×129, and a single realization of qqq10×129. Also indicated in

gray is the region of uncertainty obtained from 2500 Monte Carlo realizations of the model that

start from the same initial condition. Two shifted axes are used to account for the constant offset

between the oblique projection and model, on one hand, and the full data, on the other hand (see

discussion of figure 6.2). A favorable agreement of the general dynamics is observed between

q̌qq10×129 and qqq10×129. Starting from the initial condition of the data, the random realization
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Figure 6.10. Comparison between the compressible energy norms of LES data (blue), rank
10×129 approximation (black), and a single realization of the stochastic model (black dashed).
The shaded area is a Monte Carlo envelope based on 2500 model evaluations. The ensemble
average of Monte Carlo simulations (red dashed) and the long-time mean of rank 10×129
approximation (red solid) are shown for comparison.

shown here (first Monte Carlo sample) follows the general trend of the data for, arguably, up

to 100 time units. The model uncertainty region show that significantly larger variations are

of course possible, but that the model stays bounded within an expected range. As desired,

the ensemble average of the Monte Carlo simulations converges to the long-time mean of

reduced-rank approximation.

After establishing that the approach yields a good model of the flow dynamics in terms

of energy, we next compare the original, approximated and modeled flow fields. As examples,

figure 6.11 compares the instantaneous pressure fields at t = 5 for rank 1×129 and rank 10×129.

The same realization of the stochastic qqq10×129 as in figure 6.10 above (dashed line) is shown.

From figure 6.10, we expect that the model closely follows the approximation (and therefore the

data) at this short time after its initialization. This can be clearly seen for both the rank 1×129

and rank 10×129 approximations and models in figure 6.11(b,c) and 6.11(d,e), respectively. As
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Figure 6.11. Comparison between pressure fields of the LES data, its low-rank approximations,
and random realizations of the two-level model at t = 5: (a) LES data; (b,c) rank 1×129 and
model; (d,e) rank 10×129 and model. The pressure is normalized by its root mean square for
comparability (see discussion of figure 6.2).

expected, the higher-rank approximation and model yield a more detailed picture of the flow.

But even for rank 1×129, many of the eminent features of the LES data are accurately captured.

Due to the stochastic nature of the problem, this similarity fades for larger times. Instead, the

stochastic model will yield a unique flow trajectory that can be interpreted as surrogate data that

accurately reproduces the second-order statistics and dynamics of the input data.

The temporal evolution of the pressure field is investigated in terms of x-t diagrams

at r = 0.5 (along the lipline) in figure 6.12. The convective nature of the flow field becomes

apparent from the diagonal pattern corresponding to the advection of the wavepackets previously

seen in figure 6.11. The original LES data shown in figure 6.12(a) is compared to its low-rank

approximations (middle) and the model output (right). It can be seen that qqq1×129 in figure 6.12(c)

exhibits dynamics that are highly reminiscent of q̌qq1×129 and q̌qqfull. Similar observations are

made for q̌qq10×129 and qqq10×129 in figure 6.12(d) and (e), respectively. We note that the vertical

stripes in figure 6.12(d) stem from spatial aliasing, which occurs for subdominant modes at high

frequencies. We emphasize that this issue is linked to the discretization of the data set, which

was interpolated from the unstructured LES grid to a cylindrical grid for post-processing. The

phenomenon is, however, accurately reproduced by the model in figure 6.12(e).
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Figure 6.12. Comparison between LES data (a), rank 1×129 and model (b-c), rank 1×129 and
model (d-e) of normalized pressure component at r = 0.5 for different time.

After establishing that the model reproduces a surrogate flow field that is qualitatively

very similar to the original data, we now focus on the flow statistics. An obvious choice is to use

the SPOD for this purpose as well. In figure 6.13, we hence compare the SPOD eigenvalue spectra

of LES data to both the rank 1× 129 and 10× 129 approximations and models, respectively.

For clarity, only the leading two eigenvalues are shown for q̌qqfull, and the leading 3 eigenvalues

for q̌qq10×129 and qqq10×129. It can be seen that both models accurately reproduce the eigenvalue

spectra of the LES data for all but the lowest frequencies. qqq10×129 accurately follows q̌qq10×129 at

frequencies with St > 0.2, but somewhat under-predicts the q̌qq10×129 at lower frequencies. For

qqq1×129, we observe an overall very good fit between approximation and model for the leading

mode. In accordance with the conjectures drawn from figure 6.12, we conclude that qqq1×129

produces an accurate surrogate flow field, both qualitatively and statistically.

Chapter 6, in full, is a reprint of the material as it appear in Theoretical and Computational
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Figure 6.13. Comparison of SPOD eigenvalue spectra of the LES data (black), low-rank
approximations (blue) and 2–level models (red): (a) rank 1×129; (b) rank 10×129. The leading
two eigenvalues are shown for the LES data (with shaded area between them), and the leading
three eigenvalues for the approximations and models, respectively.

Fluid Dynamics 2021, Chu, Tianyi; Schmidt, Oliver T., Springer, 2021. The dissertation author

was the primary investigator and author of this paper.
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Chapter 7

A convolutional Koopman model for tur-
bulent dynamics

Operator-based ROMs require knowledge of the governing equations. Therefore, they are

challenged when the physical description of the system dynamics is difficult to formulate, as is

true in examples including climate science and physiology. As an alternative, data-driven model-

ing techniques have become increasingly popular for analyzing and controlling high-dimensional

dynamical systems such as turbulence based on the rise of high-fidelity data collection, see, e.g.,

[38, 144, 62, 176]. Analogous to the operator-based ROM in equation (6.11), we aim to leverage

the properties of SPOD described in §2.3.4 to model turbulent flows as an LTI system,

d
dt

aaa = KKKaaa+bbb, (7.1)

in a purely data-driven manner. The Koopman/DMD perspective introduced in §2.3.2 provides a

straightforward data-driven way of modeling nonlinear dynamical systems by performing the

linear dynamic regression of the observable sequence, φφφ [i]. The art of the Koopman operator lies

in selecting the right observables, and it can embed the state dynamics into a low-dimensional

manifold [40]. The arguably most straightforward way to reduce dimensionality is to use the

amplitudes of spatial modes obtained via projection as linear observables. When the spatial
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modes, ψψψ j, are orthogonal, the projection reduces to the inner product

φ j(qqq) =
〈

ψψψ j,qqq−qqq
〉
=
〈

ψψψ j,qqq
′
〉
, (7.2)

where the inner product is defined in equation (2.17). We leverage the cheap-to-compute property

of the inner product to obtain observables without requiring orthogonality of the spatial modes.

We later demonstrate in §7.2 that SPOD offers the optimal modal basis for Fourier convolution.

The linear observable vector φφφ , however, may be overly constrained for adequately describing

the complex dynamics encountered in fluids or other nonlinear systems. We then explore the

application of time-delay embedding as a means to capture the nonlinear dynamics.

7.1 Time-delay embedding

Time-delay embedding has been incorporated with Koopman theory to represent chaotic

systems as linear dynamic models, such as the Hankel-DMD model [5], the HODMD model

[147], and the HAVOK model [36]. These approaches obtain time-delay observables by per-

forming the SVD of a large Hankel matrix. Alternatively, we may define a general time-delay

observable vector aaa ∈ CNk as a linear combination of previous and future observables, φφφ , with

aaa[i]≡
N f

∑
h=1−N f

Ch (φφφ [i+h]) , (7.3)

where the linear maps, Ch : CNk → CNk , assign weights for different instants. The linearity of

the Koopman operator K yields

aaa[i+1] =
N f

∑
h=1−N f

Ch (φφφ [i+h+1]) =
N f

∑
h=1−N f

Ch (K φφφ [i+h])

= K

(
N f

∑
h=1−N f

Ch (φφφ [i+h])

)
= K aaa[i], (7.4)
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which gives

aaa[i+1] = K aaa[i]. (7.5)

This implies that aaa spans a Koopman-invariant subspace, that is, the same Koopman operator K

governs the evolution of both the observables, φφφ , and the corresponding time-delay observables,

aaa. Equation (7.4) also exhibits an inherent equivalence to HODMD. By comparing the second and

the third terms and shifting the time index with N f , φφφ [i+1] can be cast into a linear combination

of the previous 2N f states, that is,

φφφ [i+1] = C−1
N f

(
K ◦CN f −CN f−1

)︸ ︷︷ ︸
R2Nf

φφφ [i]+C−1
N f

(
K ◦CN f−1−CN f−2

)︸ ︷︷ ︸
R2Nf−1

φφφ [i−1]+ · · · (7.6)

+C−1
N f

(
K ◦C2−N f −C1−N f

)︸ ︷︷ ︸
R2

φφφ [i−2N f +2]+C−1
N f

(
K ◦C1−N f

)︸ ︷︷ ︸
R1

φφφ [i−2N f +1],

where C−1 represents the inverse operator of C . Here, the linear operators R1, · · · ,R2N f are

constructed as linear combinations of the Koopman operator K and linear maps C . Their

finite-dimensional representations recover the formalisation of HODMD.

We use equation (7.3) to specialize the construction of the time-delay coordinates as a

convolution process by assigning the linear maps as

Ch(φφφ)≡
[

ch,1φ1 ch,2φ2 · · · ch,NkφNk

]T

, (7.7)

where the ch,1, · · · ,ch,Nk are nonzero convolutional weights. Together with equation (7.4), we

formalize the idea of using a Koopman operator to evolve the convolutional coordinates. This

idea has been previously explored by Kamb et al. [129]. Most notably, as mentioned before,

the Koopman operator remains invariant under the convolution. Hankel singular vectors are

particularly well-suited for convolution bases as they converge to Legendre polynomials in the
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limit of short delays [92] and to a Fourier basis in the limit of long delays [30]. The natural

choice for the convolution basis for a statistically stationary process is the Fourier basis. We

avoid the construction of a Hankel matrix altogether by considering the Fourier convolution,

a j(t)≡
∫ T0

−T0

φ j(t + τ)e−iω̃ jτw(τ)dτ. (7.8)

to obtain the convolutional coordinates, a j, that describe the temporal dynamics of individual

frequency components. Here, ω̃ j ∈ {ωl}
2N f
l=1 is the associated frequency. The Fourier series,

{e−iωlτ}2N f
l=1, are orthonormal on the time interval [−T0,T0]. In practice, a window function w(τ)

is included to minimize spectral leakage. The discrete form of equation (7.8) on the time interval

(−N f ∆t,N f ∆t] can be written as

a j[i] =
N f

∑
h=1−N f

ch, jφ j[i+h] (7.9)

by defining the convolutional weights as

ch, j ≡ e−iω̃ jh∆tw[h∆t]∆t. (7.10)

Equation (7.9) is a continuously discrete convolution sum for the observable φ . Instead of

explicitly computing the convolutional weights, we use the fast Fourier transform (FFT) to

perform the discrete convolution. In the following, we demonstrate that SPOD provides the

optimal modal basis for the Fourier convolution.

7.2 Optimal convolutional coordinates from SPOD

The first step to finding the modal basis vector is to obtain the span of the Fourier basis.

We decompose the fluctuating state into its temporal discrete Fourier modes, ˆ(·), on the time
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interval (−N f ∆t,N f ∆t] as

qqq′(t) =
1

2N f ∆t

2N f

∑
l=1

q̂qq(ωl)eiωlt , (7.11)

where ωl = lπ/(N f ∆t) is the angular frequency. Inserting equation (7.2) into equation (7.11)

yields the jth observable

φ j(qqq) =
1

2N f ∆t

2N f

∑
l=1

〈
ψψψ j, q̂qq(ωl)

〉
x
eiωlt . (7.12)

Substituting this expression for the observable in equation (7.9) and using the definition of the

convolutional weights, ch, j, from equation (7.10) leads to

a j[i] =
N f

∑
h=1−N f

ch, j

(
1

2N f ∆t

2N f

∑
l=1

〈
ψψψ j, q̂qq(ωl)

〉
x
eiωl(i+h)∆t

)

=
1

2N f ∆t

2N f

∑
l=1

〈
ψψψ j, q̂qq(ωl)

〉
x

(
N f

∑
h=1−N f

ch, j eiωl(i+h)∆t

)

=
1

2N f ∆t

2N f

∑
l=1

〈
ψψψ j, q̂qq(ωl)

〉
x

(
∆t eiωl(i∆t)

N f

∑
h=1−N f

ei(ωl−ω̃ j)h∆tw[h∆t]

)

=
2N f

∑
l=1

〈
ψψψ j, q̂qq(ωl)

〉
x
eiωl(i∆t)

δ (ωl− ω̃ j)

=
〈

ψψψ j, q̂qq(ω̃ j)
〉

x
eiω̃ j(i∆t), (7.13)

where δ (·) represents the Dirac delta function. The magnitude of a j only depends on the

inner product of the jth basis vector, ψψψ j, and the Fourier mode associated with frequency ω̃ j,

q̂qq(ω̃ j). With modes that have unit energy, ∥ψψψ j∥x = 1, we seek the convolutional coordinates that

optimally represent the flow field at each given frequency, ω̃ j. This objective is formalized by

maximizing the quantity
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λ j = E{a ja∗j}= E{
(〈

ψψψ j, q̂qq(ω̃ j)
〉

x
eiω̃ j(i∆t)

)(〈
ψψψ j, q̂qq(ω̃ j)

〉
x
eiω̃ j(i∆t)

)∗
}

= E{
〈

ψψψ j, q̂qq(ω̃ j)
〉

x

〈
q̂qq(ω̃ j),ψψψ j

〉
x
}

= E{
〈

ψψψ j, q̂qq(ω̃ j)q̂qq(ω̃ j)
∗WWWψψψ j

〉
x
}

=
〈

ψψψ j,SSS jWWWψψψ j

〉
x
, (7.14)

where SSS j = E{q̂qq(ω̃ j)q̂qq(ω̃ j)
∗} is the cross-spectral density matrix. Equation (7.14) represents

a generalized Rayleigh quotient, and its maximum values can be found from the eigenvalue

problem

SSS jWWWψψψ
(α)
j = λ

(α)
j ψψψ

(α)
j . (7.15)

This is the same eigenvalue problem previously introduced in equation (2.25). The correspond-

ing eigenvectors, ψψψ
(α)
j , are therefore SPOD modes. Even though the SPOD modes across

different frequencies are not orthogonal in the spatial inner product, ⟨·, ·⟩x, the convolution

in equation (7.13) reinstates the space-time orthogonality,
∫ T0
−T0

〈
ψψψ

(α)
j eiω̃ jt ,ψψψ

(β )
k eiω̃kt

〉
x

dt =

2T0δ (α − β )δ (ω̃ j − ω̃k), thereby preserving the direct correspondence between modes and

frequencies inherent to SPOD. The optimality we require for the convolutional Koopman model

hence naturally recovers SPOD modes as the adequate basis.

To represent the dynamics at all scales of turbulence, we choose a modal basis that

includes all 2N f frequency components. At each frequency, we pick the leading M modes to

retain the largest amount of energy. The resulting basis takes the form of the rank M× 2N f

SPOD basis, VVV , as introduced in equation (6.3). Inserting equation (7.12) into the Fourier

convolution (7.9) recovers the convolutional integral used by Nekkanti & Schmidt [186] to

compute discrete time-continuous SPOD expansion coefficients. This also implies that the

convolutional coordinates, aaa, facilitate the optimal low-reconstruction of the flow field in the
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space-time sense,
∫ T0
−T0
⟨qqq1,qqq2⟩x dt. For a given time index i and a given time-lag h∈ [1−N f ,N f ],

the flow field can be reconstructed as

qqq′[i;h]≈ 1
2N f ∆tw(h∆t)

2MN f

∑
j=1

(
a j[i+h]ψψψ j

)
eiω̃ j(N f−h)∆t . (7.16)

As the window-weighted average leads to better reconstruction [186], we consider the time

window [h−, h+]⊂ [1−N f ,N f ] such that

qqq′[i]≈ Eh∈[h−,h+]{qqq
′[i;h]}= 1

2N f ∆t ∑
h+
h=h−w(h∆t)

h+

∑
h=h−

2MN f

∑
j=1

(
a j[i+h]ψψψ j

)
eiω̃ j(N f−h)∆t

=
2MN f

∑
j=1

(
∑

h+
h=h−

(
a j[i+h]

)
eiω̃ j(N f−h)∆t

2N f ∆t ∑
h+
h=h−w(h∆t)

)
︸ ︷︷ ︸

ã j[i]

ψψψ j, (7.17)

which can be written in a compact form as

qqq′[i]≈VVV ãaa[i]. (7.18)

Here, ã j constitutes the jth component of ãaa. Given the convolutional coordinates a j, equation

(7.17) offers a particularly economical way for the reconstruction of flow data, as both the

weighting and Fourier inversion are performed on the coordinates, not on the flow data.

7.3 Forced LTI system

The use of convolutional coordinates implicitly embeds nonlinearity into the Koopman

operator, K . For fully turbulent flows, it is unrealistic to expect a truncated linear operator, KKK, to

govern the dynamics of all temporal scales. We hence suggest augmenting the linear Koopman

model in equation (7.5) with an exogenous time-invariant forcing, bbb, to account for the remaining

nonlinear interactions and background turbulence. The resulting evolution model for the discrete
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time-continuous convolutional coordinates can be written as a continuous-time LTI system,

d
dt

aaa = KKKaaa+bbb. (7.19)

Here, KKK ∈ CNk×Nk is a finite-dimensional approximation of the continuous-time version of the

Koopman operator. In the absence of bbb, the matrix KKK can be learned from the raw data, (·̌), by

solving the least-squares problem with L2 regularization [104],

KKK = argmin
KKK

1
2

(
N−1

∑
i=1

∥∥∥∥ d
dt

ǎaa[i+1]−KKKǎaa[i]
∥∥∥∥2

+ γ1∥KKK∥2

)
, (7.20)

where γ1 is the ridge parameter. L2 regularization is particularly well-suited for enhancing model

stability when the training data is noisy, which is true for turbulent flows. Instead of considering

bbb as merely stochastic, we treat bbb as an independent dynamical variable that models the residual

nonlinear dynamics. Our approach is next discussed in §7.4.

7.4 The stochastic low-dimensional inflated convolutional
Koopman (SLICK) model

In §6, we proposed a two-level framework for modeling the nonlinear forcing of a

SPOD-Galerkin ROM, which drives the oblique projection-based expansion coefficients in time

via the reduced-order linearized Navier-Stokes operator. Here, we follow the idea of using a

linear operator to describe the inflated nonlinear state to construct a purely data-driven ROM

for SPOD-convolutional coordinates. Analogous to equation (6.28), we inflate the forced LTI

system in equation (7.1) to incorporate the dynamics of bbb within the model, such that

d
dt

aaa

bbb


︸︷︷︸

yyy

=

 KKK III

MMMab MMMbb


︸ ︷︷ ︸

KKKy

aaa

bbb

+
 000

GGGwww


︸ ︷︷ ︸

w̃ww

. (7.21)
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Here, the matrix KKKy is the EDMD operator within the time-delay framework that governs the

linear dynamics of the compound convolutional coordinates, yyy. It consists of KKK, which drives the

motion of the most energetic coherent structures, along with the linear deterministic correlation

between the forcing and the compound state, modeled as MMMab and MMMbb. The white noise input, www,

is colored by a dewhitening filter, GGG, as a stochastic source to facilitate turbulence closure while

preserving the same second-order flow statistics. Without the need for the linearized Navier-

Stokes operator, the stochastic low-dimensional inflated convolutional Koopman (SLICK) model

in equation (7.21) establishes a purely data-driven ROM based on Koopman theory. With an

initial condition and the stochastic input, the SLICK model can be solved numerically analogous

to equation (6.37) as

yyy[i+1] = (III +KKKy∆t)︸ ︷︷ ︸
TTT

yyy[i]+

 000

GGG∆ξξξ

, (7.22)

where ∆ξξξ is an independent Gaussian increment of a Wiener process with zero mean and

covariance matrix III∆t.

To incorporate bbb within the model, we follow the inverse modeling paradigm [139, 143,

196, 197] by using the offset between the linearized dynamics and the true data sequence,

b̌bb =
d
dt

ǎaa−KKKǎaa, (7.23a)

to inform the model in the training phase via linear regression. The still-existing nonlinear

dynamics within bbb are modeled by matrices MMMab and MMMbb, whose constructions are generally the

same as in the operator-based model introduced in §6. One minor discrepancy is that we here

include an L2 regularization when determining the matrix MMM, such that

MMM = argmin
MMM

N

∑
i=1

(∥∥∥∥ d
dt

b̌bb[i]−MMMy̌yy[i]
∥∥∥∥2

+ γ2∥MMM∥2

)
, (7.24)
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where γ2 is the ridge parameter. This helps circumvent the overdetermining issue from the

training set. With regularization, we have to update the dewhitening filter GGG to ensure that the

second-order statistics are accurately reproduced by the model. As shown in equation (6.44), the

auto-covariance matrix of yyy[i] converges to the solution of a discrete-time Lyapunov equation

TTT PPPTTT ∗−PPP+

000 000

000 GGGGGG∗∆t

= 0 (7.25)

if TTT is stable. To ensure that the model reproduces the second-order flow statistics, we determine

the matrix GGG using the auto-covariance matrices of the training data,

P̌PP1 = E{(y̌yyy̌yy∗) |N−1
i=1 } and P̌PP2 = E{(y̌yyy̌yy∗) |Ni=2}, (7.26)

such that

GGGGGG∗ ≈ HHH =
1
∆t

[
000 111

](
P̌PP2−TTT P̌PP1TTT ∗

)︸ ︷︷ ︸
ȞHH

000

111

. (7.27)

Here, the ergodicity hypothesis is applied, assuming that the long-term statistics are the same

as ensemble statistics. The matrix HHH is hermitian but not guaranteed positive semi-definite. To

address this, we perform an eigenvalue decomposition of HHH,

HHH =VVV HDDDHVVV ∗H . (7.28)

We then adjust its negative eigenvalues to a small positive value 0 < ε ≪ 1, and rescale the

positive ones to maintain the trace of HHH, which can be interpreted as the total variance of the

stochastic forcing. Similar approaches have been employed in other LIM studies, see, e.g.,

115



[197, 248]. The matrix GGG can then be determined as

GGG =VVV HD̃DD1/2
H , (7.29)

where D̃DDH represents the updated diagnal eigenvalue matrix.

Time-delay observables Forcing coefficients

   Dataset 

 Trajectories of SPOD modes:

Fourier convolution:

(a)

t

(b)

 1st level: Koopman analysis for convolutional coordinates

 2nd level: Regression + Closure

Input white noise

Dewhitening filter

(c) Stochastic 2-level SPOD-Koopman model

Low-rank reconstruction: t

   Streaming snapshots

Stochastic 2-level model

Linear inverse model

I. C.s Stochastic
input

Figure 7.1. Schematic of the SLICK model for broadband turbulent flows: (a) collecting data as
equally sampled snapshots; (b) performing model-order reduction and time-delay embedding
using SPOD-based convolution; (c) training the SLICK model. The open cavity flow described
in §7.5.3 is shown as an example.

The summary of the SLICK model is shown in figure 7.1, demonstrated using a turbulent

open-cavity flow as an example. While the model encompasses complex concepts, it can be

formulated by a simple discrete-in-time algorithm, as outlined in appendix C.1.

7.5 Examples

We demonstrate the SLICK model using three different examples: a numerically inte-

grated stochastic complex Ginzburg–Landau equation (SCGL), a turbulent jet by Brès et al. [33],
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Table 7.1. Overview of datasets. SCGL for stochastic complex Ginzburg–Landau equation,
SRK4 for the fourth-order stochastic Runge-Kutta algorithm.

Flow Method Variables N/N∞ Nq Overview
SCGL SRK4 [133, 134] q 20000/80000 220 Fig. 7.2

Jet LES [33] p 9000/10000 950×195 Fig. 7.7
Open cavity TR-PIV [307] u, v 14400/16000 156×55×2 Fig. 7.14

and an open cavity flow by Zhang et al. [307], as summarized in table 7.1. These three examples

are representative of statistically stationary turbulent flows and exhibit different spectral content:

the open cavity data has tonal peaks and an underlying broadband spectrum [33]; the turbulent jet

data has broadband turbulence spectra [308]. The lack of physical dynamical descriptions of the

latter two examples motivates data-driven modeling approaches. In the rest of this section, we

assess the model in terms of initial transient dynamics, flow statistics, and uncertainty quantifi-

cation. Beyond qualitative evaluation, two metrics, correlation and root-mean-square error, are

employed to quantify the performance of the model. The training set comprises N consecutive

snapshots out of a total of N∞ snapshots, and it can be shifted in time. The corresponding test set

begins immediately after the end of each training set. The weighted convolutional coordinates, ãaa,

are weighted through the first half of the block in equation (7.17), i.e., h− = 1−N f and h+ = 0.

This arrangement confirms the causality of the model.

7.5.1 Stochastic complex Ginzburg–Landau equation

We first consider the SCGL equation,

∂

∂ t
q =

(
−ν

∂

∂x
+ γ

∂ 2

∂x2 +µ

)
q−ξ q|q|2 +

∫
Ω

g(x,x′)η(x′)w(x′)dx′, (7.30)

which is widely used as a model to study instabilities in spatially evolving flows. Here, the

parameter µ is expressed in a quadratic form as µ(x) = µ0−C2
µ + µ2

2 x2, see, e.g., [13, 47,

54, 109, 275]. The parameter selection follows Ilak et al. [112]. Specifically, we choose the

supercritical case with µ0 = 0.41, where the linear component of the SCGL equation is globally
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Figure 7.2. Overview of the stochastic complex Ginzburg-Landau equation. Time domain:
temporal evolution for full data (a), rank 2×32 data (c), and energy (e). Frequency domain: the

first three SPOD eigenvalue spectra (b), weighted leading SPOD modes
√
∥q∥λ (ω)ψ(x;ω) (d),

and the percentage of energy accounted by each mode (f) as functions of frequency.

unstable [50, 107] exhibits similarities to vortex shedding in the presence of crossflow past a

cylinder [108, 205]. Additionally, including a cubic nonlinearity with ξ = 0.1 induces a limit

cycle behavior in the system. The Gaussian white noise input, w∼N (0,1), has a uniformly

distributed phase spanning from 0 to 2π and is spatially constrained with an exponential envelope

of η(x) = exp[−(x/60)10]. The Gaussian kernel function, g(x,x′) = 1
4
√

2π
exp
[
−1

2

(
x−x′

4

)2
]
, is

utilized to spatially correlate the white noise input to enhance statistical convergence [275]. To

generate data, the computational domain, x ∈ [−85,85], is discretized using Nq = 220 uniformly

distributed nodes and a 6th-order finite difference scheme [172]. The fourth-order stochastic

Runge-Kutta algorithm (SRK4) by Kasdin [133, 134] is employed to numerically integrate

equation (7.30) over time. Panels 7.2(a,e) show the temporal evolution of the spatial pattern and

the corresponding energy, respectively.

We perform SPOD using N = 20000 snapshots at a time step of ∆t = 0.5, a block size of
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N f = 32, and an overlap of 75%. Panels 7.2(b,d) show the first three SPOD eigenvalue spectra

and the leading SPOD modes as a function of the angular frequency ω = 2π f , respectively. The

SPOD eigenvalue attains its peak at ω =−0.39. Figure 7.2(f) presents the energy distribution

among different modes, indicating that the first two modes capture most of the energy, specifically

accounting for 92.5% of the total energy. As shown in panels 7.2(c,e), the data reconstruction

using 2×32 modes, q̌qq2×32, demonstrates remarkable accuracy. Hereafter, we will use the first

two SPOD modes to construct the ROM. No regularization is implemented in this case. The

model assumptions are later verified in appendix C.2.
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Figure 7.3. Hindcast (a,c,e,g) and forecast (b,d,f,g) for the SCGL equation through a single
realization of the SLICK model (blue) in terms of the leading ãaa at three representative frequencies:
(a-b) St=-0.39, (c-d) St=1.18, and (e-f) St=-1.57, along with (g-h) the total energy of the state
field. Shown for comparison are the full SCGL data (black) and the rank 2×32 data (red).
Magenta dashed lines show the onset of prediction. Blue dashed lines mark the analytic 95%
confidence interval. The shaded area is a Monte Carlo envelope based on 5000 model evaluations.

We first assess the model using one initial condition within the training set. Panels 7.3

(a,c,e,g) compares the rank 2× 32 data and a single realization of the stochastic rank 2× 32

model for the hindcast. Starting from the onset of prediction (t = 0), this example of realization

follows the initial transient dynamics of the data for approximately 3 time units. Model UQ
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is performed through the utilization of both the analytical 95% confidence interval and 5000

Monte Carlo simulations, showing that larger variations are possible in later time periods, but

the model is bounded within an expected range. Notably, the envelope of the uncertainty for

total energy only tends to expand when the prediction starts. Next, we evaluate the model using

a single initial condition from the test set to make forecasts, as shown in panels 7.3 (b,d,f,h).

The overall trend closely resembles those obtained in the hindcast, indicating that the dataset is

well-converged over 20000 snapshots.
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Figure 7.4. Spatial-temporal evolution of the full data (a-b), the rank 2×32 data (c-d) and the
rank 2×32 model (e-f) for hindcast (a,c,e) and forecast (b,d,f).

Next, we compare the spatial-temporal evolution of the full data, the rank 2×32 data,

and the model for both hindcast and forecast in figure 7.4. The overall dynamics are, arguably,

qualitatively well-predicted up to t = 10 for both cases. At later times, the large-scale structures

are still well-predicted for hindcast. While the phase may exhibit subsequent deviations, the

model continues to predict the occurrence of large-scale structures in forecasts.

For qualitative assessment of the model across various initial conditions and independent
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stochastic inputs, we consider two different metrics: the Pearson correlation coefficient

ρ(qqq1,qqq2) =
E
{
(qqq1−E{qqq1})

∗WWW (qqq2−E{qqq2})
}√

E
{
∥qqq1−E{qqq1}∥

2}E
{
∥qqq2−E{qqq2}∥

2} , (7.31)

and the normalized root-mean-square error (RMSE)

RMSE(qqq1,qqq2) =

√
E
{∥qqq1−qqq2∥2

∥qqq2∥2

}
. (7.32)

Figure 7.5 shows the normalized RMSE and correlation for 2000 initial conditions, with each

undergoing 200 Monte Carlo simulations. The overall results for hindcast and forecast are

comparable. The model exhibits a slight deviation from the low-rank data at t = 0, yet it

demonstrates a nearly identical difference compared to the full data. At t ≃ 6, the normalized

RMSEs are nearly 1, and the correlation coefficients are around 0.5 compared to both the low-

rank and full data. This indicates a prediction of fair accuracy along with a moderate positive

correlation. We can thus regard the prediction horizon of the model as approximately t ≲ 6.

Having confirmed that the model successfully reproduces a surrogate flow field exhibiting
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both qualitative and quantitative similarities to the data, our attention now shifts to the flow

statistics. A natural choice is also to employ SPOD for this purpose. Figure 7.6 compares the

leading two SPOD eigenvalues of q̌qqfull, q̌qq2×32, and qqq2×32. It can be observed that the SPOD

eigenvalue spectra for qqq2×32 and q̌qq2×32 are indistinguishable, both of which closely resemble

those of q̌qqfull. The aforementioned results validate that the rank 2×32 model accurately performs

hindcast and forecast tasks qualitatively, quantitatively, and statistically.

7.5.2 A turbulent jet

We next consider the LES data of a turbulent jet described in §2.3.4. The SPOD-based

Galerkin model in §6 requires the knowledge of the linearized Navier-Stokes operator and all

primitive variables. In this work, we only take the pressure field as the representation of the flow

state to assess the proposed data-driven model. The weighted pressure 2-norm is used to quantify

the flow energy. Figure 7.7 provides a comprehensive overview of the turbulent jet in both

temporal and frequency domains. Here, SPOD is performed using a block size of 2N f = 128,

and an overlap of 75% for the best practice of the model. Panel 7.7(g) shows the frequency-time

diagram and reveals intermittent events. As an example, the instant marked as blue dashed lines

in panels 7.7(g,h) highlights a high-energy event that corresponds to low-frequency downstream

wavepackets, see panel 7.7(a). This supports the motivation for incorporating an exogenous
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Figure 7.7. Overview of the turbulent jet: (a) instantaneous pressure field (marked as blue
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forcing term in the equation (7.19) to trigger these events. In the following, we construct the

model for the jet using the first 15 modes of all 65 non-negative frequency components that

contain 83.6% of the energy. As shown in panel 7.7(h), the rank 15×65 data, p̌pp15×65, provides

a promising reconstruction that accurately captures the dynamics of the full LES data, p̌ppfull. The

training set comprises N = 9000 consecutive snapshots. The L2 regularizations are performed

with γ1/E{∥aaa∥2}= 10−3 and γ2/E{∥yyy∥2}= 10−4 for best practices.

Similar to figure 7.3, we compare the rank 15×65 data and a single realization of the

rank 15×65 model in figure 7.8. A favorable agreement is observed between the low-rank data

and the model for hindcast. Commencing from the onset of prediction (t = 0), the envelope of the

uncertainty region closely follows the general trend of the data, arguably, up to t = 15. Results for

the forecast are shown in panels 7.8 (b,d,f,h). Unlike the case for the SCGL equation, the model

exhibits deviations from the reference at an earlier time (t ≃ 5) compared to the hindcast, yet it
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realization of the SLICK model (blue) in terms of the leading ãaa at three representative frequencies:
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continues to predict the initial and overall dynamics effectively. This suggests that the model has

not achieved complete convergence with the utilization of 9000 snapshots for a turbulent jet, and

incorporating additional snapshots could contribute to enhancing its performance.

To examine the contributions of these convolutional coordinates to the surrogate flow

field, we compare the instantaneous pressure fields from t = 0 to t = 5 for the full LES data, the

rank 15×65 data, and the model. Figure 7.9 shows the results for hindcast. It can be observed

that the model closely resembles the low-rank data (and therefore the full data) up to t ≃ 2,

and even at t = 5, it accurately captures many prominent features of the pressure field. Due to

the stochastic nature of the problem and the convective nature of the jet, the similarity of the

upstream patterns fades more quickly. Instead, the stochastic model will yield a surrogate flow

field that accurately reproduces the second-order statistics of the jet.
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Figure 7.9. Pressure field hindcast for the turbulent jet at different leading times: (left) the full
LES data; (middle) the rank 15×65 data; (right) a random realization of the SLICK model.
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Figure 7.10. Same as figure 7.9 but for forecast.

We next show the results for forecast in figure 7.10. The model deviates from the data

at an earlier time around t ≃ 3. Given the challenge in real-time prediction for turbulent flows

with a high Reynolds number, this result is expected. At larger times, the SLICK model exhibits

significant discrepancy from the data, yet the second-order statistics remain.

To examine the continuous spatial-temporal evolution of the flow field, we show the
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Figure 7.11. Comparisons between the full LES data p̌ppfull (a,b), the rank 15×65 data p̌pp15×65
(c,d), the model ppp15×65 (e-f), and the absolute error between p̌pp15×65 and ppp15×65 (g-h) for hindcast
(a,c,e,g) and forecast (b,d,f,h) at r = 0.5 for different times.

x-t diagrams at r = 0.5 (along the lip line) for both hindcast and forecast in figure 7.11. The

convective characteristics of the flow field manifest through the diagonal pattern associated

with the propagation of the wavepackets previously seen in figures 7.9 and 7.10. The model

demonstrates general dynamics that closely resemble those of p̌pp15×65 and p̌ppfull for both hindcast

and forecast. More specifically, the model accurately predicts the initial transient dynamics up

to t ≃ 5 for the hindcast and around t ≃ 3 for the forecast. As shown in panels 7.11(g,h), the

discrepancy between the model and the low-rank data is predominantly evident at the inlet before

propagating downstream. Again, this originates from the convective nature of the jet.

Figure 7.12 shows the normalized RMSE and correlation for the hindcast and forecast of

the jet. Unlike the case for SCGL in figure 7.5, the overall results for the hindcast outperform

those for the forecast, which can also be qualitatively observed in figures 7.9-7.11. The correlation

coefficients are around 0.5 at t ≃ 5 for the hindcast and t ≃ 3 for the forecast, quantitatively

confirming the corresponding prediction horizons for each case.
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Finally, we validate that the model accurately reproduces the second-order statistics of

the high-Reynolds number turbulent jet. Figure 7.13 compares the SPOD eigenvalue spectra of

the surrogate flow field produced by the model with those of both the full LES and low-rank data.

Except for minor deviations at low frequencies, the model closely matches the eigenvalue spectra

of the LES data, especially in the frequency range 0.2 ≲ St ≲ 1.2, where different physical

mechanisms are active in turbulent jets [88, 201, 236, 237, 262, 270, 273]. This suggests that

the surrogate flow field conveys relevant physical interpretations.
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7.5.3 An open cavity flow

Finally, we consider the experimental data of a high-Reynolds number flow over an

open cavity obtained from time-resolved particle image velocimetry (TR-PIV) measurements.

The measurement noise is present in this dataset. The center plane of the open cavity has a

length-to-depth ratio of L/D = 6 and a width-to-depth ratio of W/D = 3.85. The Reynolds

number based on the cavity depth is Re = ρU∞D/µ ≈ 3.3× 105, and the Mach number is

M = U∞/c∞ = 0.6. The value of c∞ represents the far-field speed of sound. Data collection

utilized a sampling rate of 16 kHz. For further details, refer to Zhang et al.[307, 308]. We

non-dimensionalize the spatial coordinates, the velocity components, and time units using D,

U∞, and L/U∞, respectively. The Strouhal number is defined as St = f L/U∞. The flow state is

represented as the compound velocity field, q = [u, v]T . The flow energy is quantified using the

turbulent kinetic energy, TKE = 1
2
∫

Ω

(
(u′)2 +(v′)2)dxxx.

A comprehensive overview of the open cavity flow is provided in figure 7.14, encom-

passing both the temporal and frequency domains. Here, SPOD is performed using N∞ = 16000

snapshots at a block size of 2N f = 256 and an overlap of 75%. These parameters are chosen to

provide the best practice for the model performance. The resulting SPOD eigenvalue spectra

in panel 7.19(b) match well with those reported by Zhang et al. [308] and Schmidt [233],

particularly the dominant second and third Rossiter tones. These peaks are also evident in

the frequency-time diagram in panel 7.19(g). The SPOD modes with higher energy do not

necessarily contribute to the TKE. As an example, panels 7.19(a,g,h) show an instant that is both

dominated by the low-frequency modes and corresponds to a high-energy event. The SLICK

model is constructed using the first 20 modes of all 129 non-negative frequency components

that contain 76.6% of the energy. As shown in panel 7.19(h), the rank 20×129 data, q̌qq20×129,

provides a promising reconstruction that accurately captures the dynamics of the full PIV data,

q̌qqfull. The training set comprises N = 14400 consecutive snapshots. The same ridge parameters

in §7.5.2 ,γ1/E{∥aaa∥2}= 10−3 and γ2/E{∥yyy∥2}= 10−4, are used for L2 regularization.

128



-0.5
0

0.5
1

y

-0.5
0

0.5
1

y

-0.5
0

0.5
1

y

-0.5
0

0.5
1

y

1 3 5
x

-0.5
0

0.5
1

y

-0.5 0 0.5

0.2 0.74 2
St

100

102

0.2 0.74 2

0 5

0 10 20 30

TKE

0

20

40

60

80

t

full PIV
rank 20#129
rank 1#129

u=umax

(a)

(c)

(d)

(e)

(f)

(b)

(g) (h)

j~aj

Figure 7.14. Overview of the open cavity flow: (a) instantaneous streamwise velocity (marked
as blue dashed lines in (g,h)); (b) SPOD eigenvalue spectra; leading SPOD modes at the first 4
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frequency-time diagram; (h) time traces of TKE.

Figure 7.15 compares the trajectories of the rank 20×129 data and model for both the

hindcast and forecast. The two shown realizations demonstrate favorable agreements with the

low-rank data. Compared to the SCGL and jet cases (see figures 7.3 and 7.8), the model exhibits

much larger uncertainty bounds in the total energy at t = 0. This is attributed to the presence of

measurement noise, gaps, and artifacts stemming from the PIV measurements within the dataset,

leading to increased uncertainty in inferring the dynamical system from the data.

Figure 7.16 compares the instantaneous velocity fields from t = 0 to t = 1.19 for ǔuufull,

ǔuu20×129, and uuu20×129 for both the hindcast and forecast. For the hindcast, it can be observed that

the model closely resembles the data up to half of the flow-through time, t ≃ 0.48. Even after

unit flow-through time at t = 1.19, the model qualitatively captures many prominent features of

the streamwise velocity field. As expected, the similarity between the model and the low-rank
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Figure 7.15. Hindcast (a,c,e,g) and forecast (b,d,f,h) for the open cavity flow through a single
realization of the stochastic model (blue) in terms of ãaa at three peak Rossiter frequencies: (a-b)
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are the full PIV data (black) and the rank 20×129 data (red). Blue dashed lines mark the analytic
95% confidence interval. The shaded area is a Monte Carlo envelope based on 3000 model
evaluations.

data diminishes more rapidly for the forecast. The prediction horizon ends at approximately

one-quarter of the flow-through time, t ≃ 0.24. After that, the surrogate flow field will emulate

the second-order statistics rather than the dynamic behavior of the open cavity flow.

Similar to figure 7.11, we show the x-t diagrams at y= 0 for both the hindcast and forecast

for the open cavity flow in figure 7.17. The model closely resembles the general convective

behavior of the flow field. Consistent with 7.16, the model for the hindcast has a longer prediction

horizon than the forecast. Unlike the case of the jet, the discrepancy between ǔuu20×129 and uuu20×129

does not originate from the inlet, where the velocity profile is nearly uniform, but rather from the

middle part of the cavity, where the recirculation region is located.

Figure 7.18 shows the error analysis of the SLICK model. Compared to figures 7.5 and

7.12, the overall model performance undergoes degradation as a consequence of measurement
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noise and gaps within the data. These challenges are intrinsic to PIV measurements, rendering

the modeling of PIV data a complex endeavor. Despite this, our model yields qualitatively

accurate predictions (ρ ≳ 0.5) for hindcasting at t ≃ 1 and forecasting at t ≃ 0.25.
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Figure 7.19 compares the SPOD eigenvalue spectra of qqq20×129 with those of both q̌qq20×129

and q̌qqfull. The model closely matches the eigenvalue spectra of the data, particularly at the

peak Rossiter frequencies, therefore preserving the second-order statistics of the flow field. In

accordance with the conjectures drawn above, we conclude that the SLICK model can effectively

generate accurate surrogate flow fields for the PIV data in both qualitative and statistical aspects.

Chapter 7, in full, is currently being prepared for submission for publication of the
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Chapter 8

Equations of motion for weakly compress-
ible point vortices

In the incompressible argument, point vortices have no internal structures, but for the

compressible case, we will need to consider the flow in the vortex cores on scales of O(M)

smaller than the distance between vortices. In addition, at large distances of O(M−1) from the

vortical region, as pointed out by Leppington [153], the Rayleigh–Jansen expansion will become

disordered, indicating the presence of a wavelike far field. This feature was already present in

previous work on sound generation by vortical flows in aeroacoustics using Matched Asymptotic

Expansions (MAE; see [55, 191] for an overview).

The Rayleigh–Jansen expansion is an expansion in small Mach number. Before writing

it down in § 8.1, we consider the momentum equation in complex form, as in Llewellyn Smith

[157], taken over the small circle with radius e. We take e≫ M, as we are interested in the

momentum balance over circles that are asymptotically small with respect to the region between

vortices but much larger than the vortex cores, i.e. e is an intermediate variable in the terminology

of MAE. This means that one can use either the core solution or the vortex solution when

evaluating the right-hand side of (1.4), since the terms on the right-hand side are all contour

integrals evaluated at radius e. The left-hand side, however, is a surface integral that must be

calculated in the inner variable. To leading order in M, we have Φ̂ = κθ where κ = Γ/(2π) is
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the scaled circulation and θ is the polar angle, so that in vectorial form, the momentum is

∮ ∫ e/M

sv

ρ̂(M−1
∇̂∇∇Φ)M2sdsdθ ≈M2

∮ ∫ e/M

sv

[
1− (γ−1)

κ2

2s2

]1/(γ−1) [
κ

Ms
ttt +UUU

]
sdsdθ ,

(8.1)

where ttt is the unit vector tangential to the circle. The lower limit sv is the smallest value of s

for which the pressure and density in (1.7–1.8) are positive, and is obtained from the condition

2sv
2 = (γ − 1)κ2. We see that the term in ttt cancels by symmetry. In complex form, we then

obtain

P = πW
[

e2 +κ
2M2 logM−κ

2M2 loge+M2C+O
(

M4

e2

)]
, (8.2)

for e≫M, where

C =2
∫

∞

sv

{[
1− (γ−1)

κ2

2s2

]β

−1+
κ2

2s2

}
sds− sv

2 +κ
2 logsv (8.3)

=2β [ψ(β )−ψ(1)−1]+2− sv
2 +κ

2 logsv, (8.4)

where ψ(z) is the digamma function and we write β = (γ−1)−1 for brevity. We see that (8.2)

contains a term of O(M2 logM) if the flow is unsteady. This means that such a term must exist in

appropriate time-derivatives of the Rayleigh–Jansen expansion, either as a term in the expansion

or as a result of slow time variation.

Terms in the Rayleigh–Jansen expansion will evolve on slow time scales to allow the

position of vortices to change. Figure 8.1 illustrates the different regions of the flow and gives

some notation.

8.1 Derivation of the equation of motion for a vortex

8.1.1 Rayleigh–Jansen expansion of the global solution in the vortical
region and time dependence

Motivated by the discussion above, we consider a modified version of the Rayleigh–
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Figure 8.1. Schematic illustrating the different regions of the flow.

Jansen expansion in the form

φ(t,z,z) = φ0(t,z)+M2 logMφ1(t,z)+M2
φ2(t,z,z)+ · · · , (8.5)

where the arguments of the two first terms reflect the fact that they correspond to incompressible

flow in the vortical region, since from (1.6) we have ∇2φ0 = ∇2φ1 = 0. The governing equation

for φ2,

∇
2
φ2 =

∂ 2φ0

∂ t2 +2
∂φ0

∂xi

∂ 2φ0

∂xi∂ t
+

∂φ0

∂xi

∂φ0

∂x j

∂ 2φ0

∂xi∂x j
, (8.6)

does not contain γ .

Define a complex potential F0 = φ0+ iψ0, since the flow at leading order is incompressible

and irrotational. Similarly there is a complex potential F1 = φ1 + iψ1. These potentials are

harmonic functions that decay far from the vortex. Since F0 has logarithmic singularities, F1

cannot have singularities of higher order, while logarithmic singularities in F1 are disallowed

by requiring the vorticity to be entirely at O(1). Hence, as an analytic function bounded at

infinity with no singularities, F1 is a constant that can be taken to be 0 without loss of generality.
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This means that the Rayleigh–Jansen expansion does not have a term at O(M2 logM). The term

entering the matching from (8.2) must come from taking the O(M2 logM) time dependence into

account appropriately, as is done in (8.10) below. Using φ0 = (F0 +F0)/2, (8.6) becomes

∇
2
φ2 = 2

∂ 2F2

∂ z∂ z
+ c.c.=

1
2
(F0tt +2F0zF0zt +F0zzF2

0z + c.c.), (8.7)

where c.c. stands for complex conjugate and we have defined a function F2(t,z,z) such that

φ2 = (F2 +F2)/2. Note that, because the flow at O(M2) is no longer incompressible, there is no

streamfunction corresponding to φ2, so we call F2 a potential but not a complex potential. Only

the real part of F2 matters, and the complex velocity w2= u2− iv2 is given by w2 = ∂z(F2 +F2).

We can integrate (8.7) and obtain a particular solution for φ2 as the real part of

F2(z,z) =
1
4
(z−Z0)J(z)+

1
2

F0t(z)F0(z)+
1
4

w0(z)I(z)+G(z), (8.8)

where Z0 is a time-dependent centre of vorticity that can be picked to simplify the analysis for

specific cases. The functions I(z) and J(z) are defined globally by

I(z) =
∫ z

zI

w2
0 dz, J(z) =

∫ z

zJ

F0tt dz. (8.9)

The integration limits zI and zJ will also be picked depending on the global nature of the flow.

The full O(M2) potential (8.8) is composed of an inhomogeneous part and a homogeneous part,

G(z), which is made up of homogeneous solutions of the Poisson equation (8.6), i.e. solutions

of Laplace’s equation that can be written as functions of z. They are used to enforce single-

valuedness of the velocity field, appropriate behaviour near the vortices and boundary conditions.

It turns out that the location of the vortex is not uniquely defined when it is expanded in

Mach number. We can remove this ambiguity by requiring that the location not be expanded

in Mach number (this is reminiscent of slaving principles as in Warn et al. [292]). However,

we need to allow the position to evolve in time at higher order in M to allow matching of the
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terms in (8.2). This leads to the use of multiple time scales. Given the form of (8.2), we consider

all variables to be functions of t0 = t, t1 = tM2 logM and t2 = tM2 (and possibly further time

scales). We define
d
dt

=
∂

∂ t0
+M2 logM

∂

∂ t1
+M2 ∂

∂ t2
+o(M2), (8.10)

Hence dζ/dt =W =W0 +M2 logMW1 +M2W2 +o(M2), so that W0 = ζ ,0, W1 = ζ ,1, W2 = ζ ,2,

where we write ζ,i = ∂ζ/∂ ti. We can now write pressure and density using the full time

dependence by expanding (1.7–1.8) written in complex notation:

p0 =−
1
2
(|w0|2 +F0,0 +F0,0), (8.11)

p1 =−
1
2
(F0,1 +F0,1), (8.12)

p2 =−
1
2
(F0,2 +F0,2)+

1
8
(|w0|2 +F0,0 +F0,0)

2− 1
2
(w0w2 +w0w2 +F2,0 +F2,0), (8.13)

ρ2 =−
1
2
(|w0|2 +F0,0 +F0,0). (8.14)

There is a dynamically irrelevant component p−2 = (γM2)−1 that can be ignored, while ρ0 = 1.

8.1.2 Local solution for the O(M2) potential

We now consider the solution near the vortex located at z = ζ . The following expansions

provide the terms needed to compute the equations of motion, writing ε = z−ζ and e = |ε|:

F0 =− iκ logε + f0 + f1ε +
1
2

f2ε
2 +

1
3

f3ε
3 +o(e3), (8.15)

F0,0 =
iκζ,0

ε
+ f0,0− f1ζ,0 +( f1,0− f2ζ,0)ε +o(e), (8.16)

F0,00 =iκ

[
ζ,00

ε
+

ζ 2
,0

ε2

]
+ f0,00− ( f1ζ,0),0− ( f1,0− f2ζ,0)ζ,0 +o(1), (8.17)

J =iκ

[
ζ,00 logε−

ζ 2
,0

ε

]
+ J0 +[ f0,00− ( f1ζ,0),0− ( f1,0− f2ζ,0)ζ,0]ε +o(e), (8.18)

w0 =−
iκ
ε
+ f1 + f2ε + f3ε

2 +o(e2), (8.19)

I =
κ2

ε
−2iκ f1 logε + I0 +(−2iκ f2 + f 2

1 )ε +(−iκ f3 + f1 f2)ε
2 +o(e2). (8.20)
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We have expressed the coefficients of F0 in the above form for later convenience. The coefficients

f0, f1, . . . depend on time in general. While the coefficient f0 appears to have no dynamical

meaning, it is different from one vortex to another and hence is kept.

The first step is to ensure that the velocity field obtained from F2 in (8.8) is single-valued.

While F0 has a multi-valued logarithmic term near ζ , the resulting complex velocity, w0, is

single-valued. However, F2 contains logarithmic terms of the form logε multiplied by functions

of z. The resulting velocity is not single-valued, but becomes single-valued when adding a

homogeneous solution with the same z-dependence multiplied by logε . This corresponds to

including the following contribution in G(z):

l(z) log(z−ζ ) =

[
1
4
(z−Z0)(−iκζ ,00)+

1
2

F0,0(z)(iκ)+
1
4

w0(z)(2iκ f 1)

]
logε. (8.21)

The square bracket defines the function l(z). The effect of (8.21) in the expansion of F2 near a

vortex is to replace logε terms by loge2.

We then include two homogeneous terms in G(z):

µ

z−ζ
+ξ log(z−ζ ), (8.22)

which allow us to remove unacceptable singularities in F2 near ε = 0. Since F0 has logarithmic

singularities, F2 cannot have singularities of higher order, or else the expansion would be

disordered near ε = 0. Logarithmic singularities in F2 are removed by requiring the vorticity to

be entirely at O(1). Unlike Crowdy & Krishnamurthy [58] we do not require a term in ε−2.

Finally, the local expansion of G(z) also contains terms from expanding the counterparts

of the terms inside the square bracket in (8.8) due to other vortices and to other homogeneous

contributions to G(z). From the forms of F0,0 and of I(z), the former lead to terms of O(ε−1) as

well as analytic terms. The latter are denoted by K(z). The result is a contribution g−1ε−1 +g0 +

g1ε +O(e2) near the vortex. (These contributions are calculated explicitly for the two-vortex
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case in § 8.2.)

We can now write down the expansion for F2 needed to remove singular terms:

F2 =−
iκ3

4|ε|2
+

κ2 loge2

4ε
(−2ζ,0 +2 f 1)+

1
4ε

(2iκ f 0ζ,0− iκI0 +4µ +4g−1)+
κ2

4ε
f1 +

iκ
4ε

(ζ −Z0)ζ 2
,0

+
1
4
[2iκ( f0,0− f1ζ,0)+2iκ| f1|2− iκ(ζ −Z0)ζ ,00] loge2 +ξ logε +O(1). (8.23)

The term in ε−2 is purely imaginary and hence can be ignored, while the term in ε−1 loge2

cancels from the O(1) result, which will be rederived in the current framework and notation

below. Since F2 only enters the solution via its real part, removing the singular terms in its real

part leads to the following conditions:

2iκ f 0ζ,0− iκ(ζ −Z0)ζ
2
,0− iκI0 +4µ +κ

2 f 1 +4g−1 = 0, (8.24)

2iκ( f0,0− f1ζ,0)−2iκ( f 0,0− f 1ζ ,0)+4ξ − iκ(ζ −Z0)ζ ,00 + iκ(ζ −Z0)ζ,00 = 0. (8.25)

8.1.3 Conservation of momentum

We now return to the conservation of momentum, viewing it as a matching problem

for an expansion in M, with e serving as the independent variable. We define Q as the left-

hand side of (1.4) and express it as an expansion in the inner variable, s, and define q as

the right-hand side and express it as an expansion in the vortex variable, e. We expand the

time-derivative of (8.2) in the inner variable, using W = W0 +M2 logMW1 +M2W2 + · · · and

d/dt = ∂,0 +M2 logM∂,1 +M2∂,2 + · · · , giving

Q = π[W 0,0 +M2 logM(W 0,1 +W 1,0)+M2(W 0,2 +W 2,0)+o(M2)]

× [M2s2−κ
2M2 logs+M2C+O(M2s−2))]+O(M2), (8.26)

where the final O(M2) term includes an as yet unknown dependence on s. In anticipation of

using Van Dyke’s rule (e.g. [102]), we employ the notation Q(n,.) to denote the n-term truncation
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of the function Q and Q(n,m) to denote its subsequent truncation to m terms when rewritten in

the outer variable. Then Q0 = Q(0,.) = 0 since there are no O(1) terms in (8.26). Expanding the

right-hand side of (1.4) leads to the exact result

q0 = i
∮
C

p0 dz− i
2

∮
C

w0[(w0−W 0)dz− (w0−W0)dz]

= πiκ[W 0−2 f 1 +ζ,0]+π[ f 1,0− f 2(ζ ,0−W0)]e2. (8.27)

The (0,0) term in Van Dyke’s rule is Q(0,0) = q(0,0), so that

0 = πiκ[W 0−2 f 1 +ζ,0]. (8.28)

Using ζ,0 =W 0 leads to

ζ ,0 =W0 = f1, (8.29)

i.e. the incompressible result expressed in the current notation.

We should now group the O(M2 logM) and O(M2) terms together to continue with Van

Dyke’s rule. We should also compute Q(2,.). We shall avoid doing this, and instead carry out the

matching informally. This approach works, but to be safe we will revisit the formal matching

in appendix §D.1. In the vortex region, the right-hand side of (1.4) gives the O(M2 logM)

contribution

q1 = i
∮
C

p1 dz− i
2

∮
C

w0[−W 1 dz+W1 dz] = πiκ[W 1+ζ,1]+π[ f 1,1− f 2(ζ ,1−W1)]e2. (8.30)

These two terms correspond to the terms

πM2 logM[W 0,0 +(W 0,1 +W 1,0)e2] (8.31)
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in (8.26). The constant term gives the evolution equation on the timescale t1 as

ζ,1 =−
iκ
2

W 0,0 =−
iκ
2

ζ,00. (8.32)

At this point, the terms at O(e2) do not match. This is because the matching requires further

terms in Q, as discussed appendix §D.1.

The O(M2) contribution is

q2 =i
∮
C

p2 dz− i
2

∮
C

ρ2w0[(W0−W 0)dz− (w0−W0)dz]

− i
2

∮
C

w2[(w0−W 0)dz− (w0−W0)dz]− i
2

∮
C

w0[(w2−W 2)dz− (w2−W2)dz]. (8.33)

To obtain this, we need to consider further terms in the local expansion of F2. Using the conditions

(8.24–8.25), we find

F2 ⊜ A+B
ε

ε
+Dε loge2 +Hε +L

ε2

ε
+o(e), (8.34)

where the relation ⊜ means that the equality ignores purely imaginary terms. The coefficients

needed are

D =
iκ
4
[−ζ ,00 +2( f1,0− f2ζ,0)+2 f 1 f2] =

iκ
4

f1,0, (8.35)

H =
1
4
[J0 +2 f 0( f1,0− f2ζ,0)+ f2I0 +2 f1( f 0,0− f 1ζ ,0)+ f 1(−2iκ f2 + f 2

1 )]

+
1
4
(ζ −Z0)[ f0,00− ( f1ζ,0),0− ( f1,0− f2ζ,0)ζ,0]+g1. (8.36)

The expansion (8.34) leads to

w2 =
B
ε
−B

ε

ε2 +D(loge2 +1)+D
ε

ε
+H +2L

ε

ε
−L

ε2

ε
2 +o(1), (8.37)

F2,0 ⊜B
(

ζ ,0
ε

ε
2 −

ζ,0

ε

)
+o(e−1). (8.38)

142



Substituting into (8.33) and computing the integrals leads to extensive cancellation, yielding

q2 =−
π

2
κ

2 f 1,0 +πiκζ,2 +πiκW 2−2πiκH−2πiκD(1+ loge2)+o(1). (8.39)

We see from (8.26) that the loge term in q2 cancels the loge term at O(M2) in Q. Recalling that

ζ,2 =W 2 gives the equation for the slow evolution of ζ as

ζ,2 =−
iW 0,0

2κ
C− iκ

4
f 1,0 +D+H =− iκ

2
f 1,0

(
1+

C
κ2

)
+H. (8.40)

It is useful to check the behaviour of a single point vortex. The incompressible complex

potential is F0 =−iκ log(z−ζ ). The point vortex does not move at O(1). Hence ζ,1 = 0 and

F2 =
1
4

w0I(z)+G(z) =
1
4

(
− iκ

z−ζ

)[
κ2

z−ζ
− κ2

zI−ζ

]
+

µ

z−ζ
. (8.41)

The arbitrariness of zI is irrelevant, as it is cancelled by µ1 when removing the simple pole in F2.

The leading-order term is purely imaginary so that it can be ignored. Hence the O(M2) velocity

of a single point vanishes, a necessary feature for this model.

8.1.4 Global solution

The results above are applicable near every vortex, because neither the vortex circulation

nor the vortex location has a preferred value. We can now assemble a global solution that

is valid everywhere in the vortical region. The O(M2) potential is given by the sum of the

inhomogeneous part (8.8) and of a homogeneous part. The homogeneous part takes the form

G(z) = ∑
m

(
µm

z−ζm
+[ξm + lm(z)] log(z−ζm)

)
+K(z) (8.42)

and includes contributions from each vortex of the form (8.21) and (8.22), while K(z) includes

possible further terms (e.g. to satisfy boundary conditions or to set the circulation around objects
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in the flow). We now consider the expansion near vortex n of the sum in (8.42) omitting term n,

writing the rest of the sum as g−1ε−1
n +g0 +g1εn +O(e2

n), with εn = z−ζn and en = |εn|. The

calculations above show that g0 is not needed. We find, for vortex n,

g−1 =
1
2

κn∑
m

′
κm

(
f (m)
1 −ζn,0

)
logζmn =

1
2

κn∑
m

′
κm (ζm,0−ζn,0) logζmn, (8.43)

g1 = ∑
m

′

(
− µm

ζ 2
mn

+
ξm + l(mn)

0
ζmn

+ l(mn)
1 logζmn

)
+K′(ζn), (8.44)

where ζmn = ζn− ζm and the prime in the summation indicates that term n is omitted (the

derivation is given in appendix §D.2).

8.2 Two vortices in the plane

We consider the simplest situation consisting of two point vortices in the infinite plane.

In cases such as this, there are no other contributions to the potential F0 beyond the vortices,

which means that K(z) = 0 in (8.42). While some simple geometries can also be solved using

the method of images and could hence be considered as consisting of a finite number of vortices,

the dynamics of the actual and image vortices are different: the latter are not physical so that

their motion is set by boundary conditions rather than matching.

Results for the leading-order potential, complex velocity, I and J are equally simple for

N vortices; we will take N=2 after presenting general results. We have

F0 =
N

∑
n=1

Γn

2πi
log(z−ζn), w0 =

N

∑
n=1

Γn

2πi
1

z−ζn
. (8.45)

The decay properties of w(z) for large |z| mean that we can take zI = ∞. It is known that the

incompressible two- and three-vortex cases are integrable. The system has four real conserved

quantities, two of which combine to give the complex vortex momentum ∑
N
n=1 Γnζn. Conserva-

tion of this quantity means that integral J(z) is convergent at infinity, so that we can take zJ = 0.
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To calculate the integrals I and J, we use the primitives

∫ z

∑
m

[
− iκm

z−ζm

]2

dz = ∑
m

κ2
m

z−ζm
+∑

m,n

′κmκn

ζnm
log

z−ζn

z−ζm
(8.46)

and

∫ z

∑
m

iκm

[
ζm,00

z−ζm
+

ζ 2
m,0

(z−ζm)2

]
dz = ∑

m
iκm

[
ζm,00 log(z−ζm)−

ζ 2
m,0

z−ζm

]
, (8.47)

where the primed sums indicate m ̸= n.

For the two-vortex case, the total circulation is Γ∞ = Γ1 +Γ2, so there are two different

cases, corresponding to Γ∞ = 0 and Γ∞ ̸= 0. In the latter case, the conservation laws show

that the vortices must stay in a bounded area of the plane. The former case corresponds to a

co-propagating dipole pair in the incompressible limit. Expressions for f0, f1, J0 and g−1 for

the two vortices are given in appendix §D.3. The relation (8.25) gives ξ1 = ξ2 = 0 if Z0 is taken

to be on the line joining ζ1 and ζ2, although the final result for the motion of the vortices is

independent of Z0.

In the co-propagating case, we can take κ = κ1 =−κ2. Then ζ21 and |ζ1|2−|ζ2|2 are

independent of t0. Without loss of generality, we take the positions of the vortices at t = 0 to be

±ia0 with a0 real, yielding

ζ1 = ia+
κt
2a

, ζ2 =−ia+
κt
2a

, (8.48)

with a = a(t1, t2) and a(0,0) = a0. Since ζ1,00 = ζ2,00 = 0, we find from (8.32) that ζ1 and ζ2

do not depend on t1, so that a = a(t2). Since f1,0 = 0, D = 0, and since (ζ1− ζ2),0 = 0, we

have g−1 = 0. Calculations (see appendix §D.3) lead to H1 = 0, with the Z0 terms cancelling.

Substituting into (8.40), along with f1,0 = 0, means that ζ does not change with t2. Hence we

recover the result of Leppington [153] and Crowdy & Krishnamurthy [58]: the translation speed

of the co-propagating vortex pair does not change at O(M2). The current procedure is of course
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lengthier than that needed to obtain this result in a co-moving frame in which the pair is at rest,

but we can now address the fundamentally unsteady co-rotating pair.

For the co-rotating case, κ = κ1 = κ2, so that ζ1 +ζ2 is independent of t0. Without loss

of generality, we take the positions of the vortices at t = 0 to be ±a0 with a0 real, yielding

ζ1 = aeiϕ , ζ2 =−aeiϕ (8.49)

with ϕ = θ +κt/(2a2) = θ +ωt. Here a and θ are functions of t1 and t2 with a(0,0) = a0 and

θ(0,0) = 0. Since ζ1,00 =−ω2ζ1, we find from (8.32) that

a,1 = 0, θ,1 = ω1 =
κω2

2
=

κ3

8a4 . (8.50)

The radius is only a function of t2, while the rotation rate varies with t1. Since the θ,1 term

has the same sign as the O(1) rotation rate, it leads to a slowing down of the rotational motion

when multiplied by M2 logM, which is negative since 0 < M2≪ 1. Fairly extensive algebra (see

appendix §D.3) gives

H1 =−
iκ3

16a3 e−iϕ (1− log4a2) (8.51)

and

ζ1,2 =−
iκ
2

f (1)1,0

(
1+

C
κ2

)
+H1 =

iκ3

8a3 eiϕ
(

1+
C
κ2

)
+H1 =

iκ3

8a4 ζ

(
3
2
+

C
κ2 − log2a

)
.

(8.52)

Here, the constant C is given in (8.4). Once again there is a correction to the rotation speed:

θ,2 = ω2 =
κ3

8a4

(
3
2
+

C
κ2 − log2a

)
. (8.53)
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In dimensional form, we can combine the frequencies to obtain

ω
∗ =

κ∗
2a∗

[
1+

κ2
∗

4c2
0a2
∗

(
− log

(
2a∗Γ
c0L2

)
+

3
2
+

CΓ2

κ2
∗

)]
, (8.54)

where stars represent dimensional quantities. The circulation scale is Γ = LV . There is no unique

choice of scalings, but the simplest choice is probably Γ = 2κ∗ and L = 2a∗, so that Γ is the total

circulation divided by 2π and L is the distance between vortices. Then

ω
∗ =

κ∗
2a∗

[
1+

κ2
∗

4c2
0a2
∗

(
− log

(
κ∗

c0a∗

)
+

3
2
+4C

)]
. (8.55)

For the general two-vortex case, the vortices rotate about their centre of vorticity at O(1).

Write ζ1 = aeiϕ and ζ2 = −beiϕ with aκ1 = bκ2 so that the centre of vorticity is at the origin

with Z0 = 0. Then

ω =
κ1

b(a+b)
=

κ2

a(a+b)
. (8.56)

The O(M2 logM) equations become

ζ1,1 =−ζ2,1 =
iκ1κ2ω

2ζ 21
. (8.57)

The velocities of the vortices are the same, but their angular velocities differ, so that as they move

their trajectories will no longer be circles. The centre of the vorticity ζc = (κ1ζ1 +κ2ζ2)/(κ1 +

κ2) moves slowly with the O(M2 logM) velocity

ζc,1 =
iκ1κ2(κ1−κ2)ω

2ζ 21(κ1 +κ2)
. (8.58)

The O(M2) motion is

ζ1,2 =
iκ1κ2(κ1 +κ2)

4|ζ21|2ζ 21

(
3+

2C1

κ2
1
− log |ζ21|2

)
, ζ2,2 =

iκ1κ2(κ1 +κ2)

4|ζ12|2ζ 12

(
3+

2C2

κ2
2
− log |ζ12|2

)
.

(8.59)
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This slow motion can be decomposed into rotation about a slowly moving centre with the O(M2)

correction

ζc,2 =
iκ1κ2(κ1−κ2)

4|ζ21|2ζ 21

(
3+

2(C1κ2−C2κ1)

κ1κ2(κ1−κ2)
− log |ζ21|2

)
. (8.60)

This shows that the relative equilibrium of the co-rotating vortices evolves slowly in time due to

the weak compressibility effects, although in the symmetric case, it is only the rotation rate that

changes.

8.3 Point vortex inside a circle

We now introduce a boundary into the fluid domain. The simplest case is to take a single

point vortex either inside a circle of radius R. The O(1) potential takes a simple form, using the

method of images. The boundary condition at O(M2) now requires explicit consideration. The

case of the vortex inside a circle does not have a far field, while the vortex outside the circle has

a degree of freedom associated with the circulation bound to the circle. We restrict ourselves

here to the case of motion inside a circle

The O(1) potential is

F0 =−iκ log(z−ζ )+ iκ log(z−ζi). (8.61)

The image vortex at ζi = R2/ζ ensures that the no-flow boundary condition at |z|= R is satisfied.

The point vortex moves in a circle with radius a with angular velocity ω = κ/(R2−a2). The

same calculation as in § 8.2 gives θ,1 = κω2/2.

Moving to O(M2), it is easiest to take the lower limit in J to be the origin. The velocity

needs to be bounded and single-valued need inside the circle. Outside the circle, this is not

required, but any branch cuts will need to avoid the circle. This is always possible by taking the

branch cut radially to infinity. Because the flow at O(M2) is not incompressible, we need to use
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the velocity in the boundary condition on the circle, which we write as

Re zw2(z) = 0 on zz = R2. (8.62)

Given the inhomogeneous portion of F2, we will need to satisfy the boundary condition (8.62) as

well as require the solution to be single-valued inside the circle with appropriate behaviour near

ζ . The potential F2 can be written

F2(z) = l(z) logε + l′i(z) logε i +
1
4
(z−Z0)J̃(z)+

1
4

w0(z)Ĩ(z)+G(z). (8.63)

We now enforce single-valuedness near z = ζ . Previously we added the terms l(z) logε and

li(z) logεi to F2. These do not satisfy the boundary condition. Instead, since ζi is not in the

physical domain, we do not enforce single-valuedness there. Hence we add to F2 the terms

l(z) logε and mi(z) logεi, then pick the function mi(z) to satisfy the boundary condition. We

hence have the following logarithmic terms in w2:

l′(z) loge2 + l′i(z) logε i +m′i(z) logεi. (8.64)

A simple extension to the Milne-Thomson circle theorem shows that if f (z) is a function of z,

then

f (z)− R2

z2 f̄ (R2/z) (8.65)

satisfies the boundary condition (8.62). Similarly we find that both of the expressions

f (z)g(z)− f (z)ḡ(R2/z), f (z)g(z)− R2

z2 f (R2/z)g(z) (8.66)

satisfy (8.62). Using these results (see appendix §D.4), we obtain a logarithmic contribution that

is single-valued at ζ , has no singularity at ζ and satisfies the boundary condition.
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We satisfy the boundary condition by adding terms that do not introduce a singularity at

ζ . We have to remove the singularity introduced in the full expression for w2 at the origin by the

above process. This takes the form λ z−2 +νz−1. We remove the singularity by adding

− λ

z2 +
λ

R2 −
ν

z
. (8.67)

The second term ensures that the boundary condition is satisfied for the extra −λ z−2 term. The

−νz−1 term that has been added satisfies the boundary condition if ν is imaginary. One cannot

add a term to remove it, as it corresponds to a volume source (or sink) at the origin. Such

a term cannot be present. Verifying that the real part of ν vanishes is a useful check on the

calculations. Finally we need to remove the singularity at ζ by adding terms that satisfy the

boundary condition, namely
ξ

ε
+

ξ ζi

zεi
− µ

ε2 +
µζ 2

i

R2ε2
i
. (8.68)

This seems to introduce another pole at the origin, but in fact ξ = 0 as will be verified.

The details of the lengthy calculation are presented in appendix §D.4. The final, decep-

tively simple, result is

D+H =
iκ3ae−iϕ

4(R2−a2)2

[
log

(R2−a2)3

R4 +
R4

a4 log
R2

R2−a2 +1
]
. (8.69)

We see that the vortex continues to move in circles, and it is just the angular velocity that changes.

We can adapt the above calculation to a vortex outside a circle. Now the behaviour

of logarithmic terms near infinity needs to be examined, and one needs to examine possible

non-decaying analytic growing terms near infinity. When the fluid region is outside the circle,

there is a freedom in choosing the circulation around the circle. We leave this calculation for

future work.

Chapter 8, in part, is a reprint of the material as it appears in Philosophical Transactions

of the Royal Society A 2022. Llewellyn Smith, Stefan G.; Chu, Tianyi; Hu Zinan, The Royal
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Society, 2022. The dissertation author was one of the primary investigators and authors of this

paper.
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Chapter 9

Summary

This study explores three fundamental aspects of fluid dynamics, focusing on analytical

investigation, computational methodologies, and reduced-order modeling for vortical and turbu-

lent flows. We examine diverse flow scenarios, encompassing different Mach numbers, ranging

from incompressible to compressible, and different Reynolds numbers, spanning from laminar to

turbulent. These flows serve as illustrative exemplars to systematically investigate and explore

the physics of fluid dynamics from varied perspectives.

In the first part, we delve into the dynamics of point vortices under the assumption of

a small Mach number. Employing a modified Rayleigh–Jansen expansion and the method of

Matched Asymptotic Expansions, our analytical study unveils the modification of point vortices’

motion over long time scales. In the second part, we explore the use of PHS+poly RBF-FD

discretizations to establish a mesh-free framework for both flow simulations and hydrodynamic

stability analysis. We conduct a systematic parameter study to identify a set of parameters

ensuring stability while balancing accuracy and computational efficiency within this framework.

In the third part, we introduce two model order-reduction techniques: the operator-based Galerkin

projection and the data-driven time-delay Koopman approach, both based on SPOD modes. The

result models accurately capture the initial transient dynamics and reproduce the second-order

statistics of broadband turbulent flows. In summary, the amalgamation of these three parts not

only enhances our comprehension of flow physics but also propels our exploration into new
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perspectives. This holistic approach facilitates further potential advancements in our scientific

understanding of flow physics.
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Appendix A

Navier-Stoke solver

A.1 Modified wavenumber diagrams for q = 4

Figure A.1. Modified wavenumber diagrams for (n,m,q) = (28,7,4): (a,b) same as figure 3.5
for DDD(V,V ); (c,d): same as figure 3.9 for DDD(P,P).

Panels A.1(a,b) show the modified wavenumber diagrams for the differentiation matrices

DDD(V,V ) obtained using the combination (n,m,q) = (28,7,4). The results are visually indistin-

guishable from those in figure 3.5, indicating that increasing the polynomial degree, q, beyond
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3 does not improve the accuracy for a fixed RBF stencil size, here n = 28. The corresponding

diagram for the (P,P)−grid is shown in panels A.1(c,d). In the same way as for the (V,V )−grid,

the modified wavenumber curves in figures 3.9 and A.1(c,d) are nearly identical.

A.2 Relative errors for V-to-P and P-to-V grid derivatives

Figure A.2. Relative errors for staggered nodes: (a-f) same as figure 3.3 for DDD(V,P)
x ; (g-l) same as

figure 3.3 for DDD(P,V )
x . The results for the y-derivatives are shown as ‘+’.

The staggered node layout introduced in §4.1 requires differentiation matrices that operate

between the V - and P-grids (see equations (4.4) and (4.7) of the fractional step algorithm). Panels

A.2(a-f) show the relative errors for the differentiation matrix DDD(V,P), which operates on the

(V,P)-grid shown in figure 3.2(c) for varying n, m and q. Similar trends as for the collocated

(V,V )- and (P,P)-grids are found. For the same reasons discussed in §3.4, and for consistency
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with the differentiation operators on the collocated grids, we proceed with the same parameter

combination of (n,m,q) = (28,7,3). The same parameter study is repeated for the differentiation

operator DDD(P,V ) in panels A.2(g-l) with a comparable outcome and the same conclusion.

A.3 Comparison with RBF-QR and RBF-GA

Figure A.3. Comparison with RBF-QR and RBF-GA on the (V,V)-grid with n = 28: modified
wavenumber diagrams for the (a) first derivative; (b) second derivative. The recommended
maximum modified wavenumber of k∆r =

√
2 is shown in green.

Figure A.3 compares the accuracy of different RBF-FD methods for a fixed stencil size

of n = 28. The comparison is conducted on the (V,V )-grid, on which both the first and second

derivatives are required. The accuracy and numerical stability of the RBF-QR and RBF-GA

methods depend on their shape parameters. The corresponding values of εQR = 2.5 and εGA = ...

are taken from the standard references by [82] and [28], respectively. It can be seen that all three

RBF-FD variants perform very well up to our recommended maximum modified wavenumber

of k∆r =
√

2 for both the first and second derivatives. For fewer points per wavelength, that is

k∆r ≳
√

2, the proposed PHS+poly variant with (n,m,q) = (28,7,3) stays closer to the spectral

limit, in particular for the second derivative. With the caveat that the shape parameters of

the RBF-QR and RBF-GA variants are not optimized for this specific node distribution, the

results show that the proposed PHS+poly discretization is highly competitive. An advantage of
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PHS+poly, arguably, is that the optimization of its integer parameters, m and q as demonstrated in

§3, for a fixed stencil size is more straight forward than finding the optimal value of a continuous

shape parameter.

A.4 Time stepping accuracy

Figure A.4. Relative error of the flow field at different time steps.

Figure A.4 shows the relative error of the flow field simulated using different time

steps. As a test case, we use the lid-driven cavity flow at Re = 1000 and compute the error

for the steady-state solution, see §4.2.1. The close match between the theoretical curve and

the simulation error for small ∆t confirms that the algorithm possesses an order of accuracy of

O(∆t)2. This is consistent with the numerical scheme described in §4.1.
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Appendix B

SPOD-Galerkin model

B.1 Stochastic SPOD-Galerkin two-level model for rank
2×129 and rank 3×129 cases

This appendix reports the additional results for the rank 2×129 and rank 3×129 cases.

Figure B.1(a-d) show the comparison between the power spectra of the state coefficients aaai

and the rank 2×129 expansion coefficients at different frequencies. Figure B.1(e-h) report the

corresponding results for the rank 3×129 case. Good agreements between the approximations

and models are observed in both cases. The corresponding SPOD eigenvalue spectra shown in

figure B.1(i-j) show that both models accurately reproduce the eigenvalue spectra of the LES

data for a wide range of frequencies. From these observations and the favourable results obtained

for the 1×129 baseline model, as previously reported in figures 6.8 and 6.13, it concluded that

subdominant SPOD modes are not required in the modal expansion.
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Figure B.1. Power spectra of the state coefficients aaai of low-rank approximations (red) and 2–
level models (black) of rank 2×129 (first row) and rank 3×129 (second row) at four representative
frequencies: (a,e) St = 0.2; (b,f) St = 0.41; (c,g) St = 0.63; (d,h) St = 0.85. Comparison of
SPOD eigenvalue spectra of the LES data (black), low-rank approximations (blue) and 2–level
models (red): (i) rank 2×129; (j) rank 3×129. Compare figures 6.8, 6.10 and 6.13.
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Appendix C

Stochastic low-dimensional inflated convo-
lutional Koopman (SLICK) model

C.1 Algorithm

Input: Fluctuating data matrix QQQ′ =


| | |

qqq[1]−qqq qqq[2]−qqq · · · qqq[N]−qqq

| | |

 consisting N

snapshots, time step ∆t, weight matrix WWW , windowing function w.

Output: SPOD convolutional coordinates aaa, matrices of the SLICK model yyy[ j+1] = TTT yyy[ j]+ 000

GGG
√

∆twww

, and surrogate flow field.

Phase 1 – Koopman analysis of the low-dimensional convolutional coordinates

1. Compute the SPOD of QQQ′ and store the first M SPOD modes (at all N f frequencies) in the

column matrix VVV .

2. Segment the data matrix and determine the ith observable block as

ΦΦΦ[i] =


| |

φφφ [i] · · · φφφ [i+2N f −1]

| |

=VVV ∗WWW


| |

qqq′[i] · · · qqq′[i+2N f −1]

| |

 .
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Calculate and store the DFT using a windowed fast Fourier transform

Φ̂ΦΦ[i] = FFT(ΦΦΦ[i]) =


φ̂φφ 1[i]

...

φ̂φφ Nk
[i]

 .

3. For each block, determine the expansion coefficient vector with a time shift N f −1 as

aaa[i+N f −1] =


(

φ̂φφ 1

)
l1
[i]

...(
φ̂φφ Nk

)
lNk

[i]

 ,

where the index l j = ⌈ j
M⌉ denotes the element associated with the frequency ω j in φ̂φφ .

4. Determine the discrete modified Koopman operator as

KKK =
AAA2−AAA1

∆t
AAA∗1 (AAA1AAA∗1 + γ1III)−1 ,

where

AAA =


| |

aaa[N f ] · · · aaa[N−N f ]

| |

 ,

and the subscripts, (·)1 and (·)2, represent the submatrices by excluding the last and the

first columns, respectively.

Phase 2 – Stochastic inflated model
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1. Store the remaining residue,

BBB =
AAA2−AAA1

∆t
−KKKAAA1,

as a data matrix of the forcing coefficients.

2. Let YYY ←

AAA

BBB

. Solving the linear system problem in the equation (6.26) yields

MMM =
BBB2−BBB1

∆t
YYY ∗1 (YYY 1YYY ∗1 + γ2III)−1 .

3. Assemble the matrices to obtain

TTT ← III +

 KKKaaa III

MMM

∆t.

4. Compute

HHH =

[
000 111

]
(YYY 2YYY ∗2−TTTYYY 1YYY ∗1TTT ∗)

000

111


(N−N f −2)∆t

and its eigenvalue decomposition

HHH =VVV HDDDHVVV ∗H .

5. Set the negative eigenvalues in DDDH to 10−15 and rescale the rest positive eigenvalues such
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that tr(DDDH) = tr(D̃DDH). Determine the matrix GGG as

GGG =VVV HD̃DD1/2
H .

The resulting SLICK model is propagated in time as

yyy[ j+1] = TTT yyy[ j]+

 000

GGG
√

∆twww

.
The zero mean, unit variance Gaussian white noise www, which drives the system, is obtained from

a random number generator.

Phase 3 – Flow field reconstruction

1. Collect aaa from data or model.

2. For each instant i, perform the inversion of SPOD-based convolution in the subspace as

ãaa[i] =
∑

h+
h=h−

(
a j[i+h]

)
e−iω̃ j(h∆t)

2N f ∆t ∑
h+
h=h−w(h∆t)

.

3. Reconstruct the flow field at each time step i as

qqq′[i] =VVV ãaa[i],

C.2 Convergence and assumption validation

Figure C.1 shows the real parts of the leading SPOD observables φ j, defined in equation

(7.2), and the convolutional coordinates aaa, defined in equation (7.8), at three representative

frequencies. In contrast to φφφ , aaa are discrete-continuous in time but can effectively capture

the intermittent nature of the system states. Furthermore, it is noteworthy that the PSD of aaa
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Figure C.1. Time traces (a,c,e) and spectra (b,d,f) of the leading SPOD observables φφφ (blue)
and convolutional coordinates aaa (red) at three representative frequencies: (a-c) ω =−0.39; (d-f)
ω = 1.18; (g-i) ω =−1.57.

peaks at the respective SPOD frequencies, showing that the convolution process preserves the

orthogonality property and mode-frequency correspondence inherent in the SPOD.

Next, we investigate the convergence of the modified Koopman operator as the amount

of data used for its construction increases. We introduce a matrix norm, ∥ · ∥D, as

∥KKK∥D ≡
∥KKK(N)−KKK(N∞)∥F

∥KKK(N∞)∥F
, (C.1a)

which measures the normalized distance between the matrices constructed with N and N∞

snapshots. Here, ∥ · ∥F denotes the Frobenius norm, and N∞ is the total number of available

snapshots.
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Figure C.2. Convergence of the modified Koopman operators KKK (blue) and KKKy (red).
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Figure C.2 shows the convergence of KKK and KKK2-lvl, defined in equations (7.20) and (6.28),

respectively, as the total number of snapshots N∞ is set to 80000. As the amount of snapshots

increases, both matrices demonstrate nearly algebraic convergence. The stability of KKK2-lvl is

verified in figure C.5. In the following, the training set is defined as a dataset comprising

N = 20000 snapshots, where the normalized norm values for the matrices are found to be

∥KKK∥D = 0.005 and ∥KKK2-lvl∥D = 0.082, respectively. The rest of the snapshots form the test set.
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Figure C.3. Spectra (left column), autocorrelation estimates (middle column) and the probability
distribution (right column) of the rank 2×32 forcing coefficients, bbb (red), and residue, rrr (green),
at three representative frequencies: (a-c) ω =−0.39; (d-f) ω = 1.18; (g-i) ω =−1.57.

Subsequently, we proceed to validate the underlying assumption of the model, which

posits that the residue can be modeled as Gaussian random noise. To accomplish this, we examine

the spectra, (normalized) autocorrelations Rxx(τ) = ⟨x(t)x(t + τ)⟩, and probability distributions

of both the forcing coefficients, b̌bb(t) and the residue, řrr(t) in figure C.3. As in panels C.3(a,d,f),

it is evident that the PSD of the residue remains nearly constant across frequencies, whereas the

PSD of the forcing coefficients peaks near the corresponding mode frequency. Panels C.3(b,e,h)

show that the autocorrelations of the residue exhibit a rapid decay, while the forcing coefficients

display correlations that persist for 10 or more time units. The combined evidence of spectral
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flatness and the rapid drop of the autocorrelation supports the proposition that the residue can be

adequately modeled as white-in-time. We finally examine the probability distributions of b̌bb and řrr

in panels C.3(e,f,i). Notably, the probability distributions of residue at different frequencies are

nearly Gaussian. This confirms that řrr can be modeled using mutually correlated but white-in-time

components.

1 64 128
1

64

128

1 64 128

-5 0 5

#10!3

(b) imag(a) real

Figure C.4. Matrix ȞHH: (a) real part; (b) imaginary part.

Figure C.4 shows the matrix ȞHH defined in equation (7.27). Notably, both its real and imag-

inary components are primarily active in the bottom-right quadrant. This observation confirms

the viability of truncating ȞHH to solely retain this quadrant. The matrix GGG is then calculated using

equations (7.28-6.35) to correlate the white-in-time input www for different frequencies, generating

the process noise w̃ww that drives the final model.

C.3 Eigenvalues of KKKy

Figure C.5 shows the eigenvalues of the inflated Koopman operator KKKy defined in equation

(6.28) for all the cases under consideration. It can be observed that all the eigenvalues stay

within the stability region. With L2 regularization, part of the eigenvalues associated with

higher frequencies are pushed away from the unit circle. This prevents the overfitting of these

high-frequency noise-like signals from the data.

166



-2 -1.5 -1 -0.5 0
Ref6g

-1

-0.5

0

0.5

1

Im
f6

g

-1.5 -1 -0.5 0
Ref6g

-2 -1 0
Ref6g

Regularized

No regularization

(a) SCGL (b) jet (c) cavity
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Appendix D

Compressible point vortices

D.1 Inner region and formal matching

D.1.1 Velocity potential

In the steady case, BNEEY [18], Leppington [153] and Crowdy & Krishnamurthy [58]

were able to obtain the solution without carrying out a formal matching procedure, by requiring

certain growth conditions on the potential near the vortices. In the unsteady case here, we used

the O(1) solution in the core region to obtain equations of motion for the point vortices, but did

not compute further terms in the inner region. We now carry out the formal matching procedure

to verify that the approach in the main body of the paper is correct. We follow the analyses of

BNEEY [18] and Leppington [153] closely (and no longer cite these references in this section),

with the extensions required.

We expand the velocity potential Φ̂ near the vortex at z = ζ as Φ̂ = Φc0 + κθ +

∆(M)κΦ1 + · · · , where Φc0 is a constant with no dynamical significance and ∆(M) is a gauge

function to be determined. The leading-order term satisfies the expansion and we obtain the

following equation for Φ1:

(
1− 2(γ−1)

2s2

)
∂ 2Φ1

∂ s2 +

(
1− 2(γ−3)

2s2

)
1
s

∂Φ1

∂ s
+

(
1− 2(γ +1)

2s2

)
1
s2

∂ 2Φ1

∂θ 2 = 0. (D.1)

This is the same equation as for the steady case. Terms associated with the travelling reference
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frame appear at higher order.

We now match the velocity potential φ to the vortex region, which will fix ∆(M). Rewrit-

ing the outer potential in terms of the inner variable, we have, from (8.20),

F(0,.) =−iκ logMseiθ + f0 + f1Mseiθ +
1
2

f2M2s2e2iθ +O(M3s3). (D.2)

In the notation of Matched Asymptotic Expansions, we can write

φ
(0,0) = κθ +Re f0. (D.3)

In the inner region, we find

Φ
(0,.) = g+Φc0 +κθ , (D.4)

in which contributions from UUU do not appear. Van Dyke’s rule, φ (0,0) = Φ(0,0), gives

κθ +Re f 0 = Φc0 +κθ +g, (D.5)

which is identically satisfied for the κθ term and relates the dynamically irrelevant constants f0,

Φc0 and g. Since F1 = 0,

φ
(1,1) = φ

(0,0)+MsRe f 1eiθ . (D.6)

Examining (D.1) shows that its solutions for s≫ 1 look like s±me±imθ for integer m;

essentially they are tending to harmonic functions. We denote the solution that grows in s as

χm(s)eiθ . For large m, we have

χ1(s) = s+O(s−1 logs), (D.7)

χ2(s) = s2 +
5
2
+O(s−2 logs), (D.8)

These are the only modes that we need. From (D.6) we see that we need the mode-1 solution of
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the form A1χ1(s)eiθ + c.c. in the matching. Hence the next equation in Van Dyke’s hierarchy,

φ (1,1) = Φ(1,1), gives

MsRe f 1eiθ =UUU0 ··· x̂xx+Φc1Re [A1seiθ + c.c.]. (D.9)

This is satisfied with Φc1 = A1 = 0, because f1 =W0 from (8.29), the leading-order result for

point vortices. Physically, the velocity of the vortex core matches motion of the fluid as one

tends to the core. Hence the solution in the core region vanishes at O(M).

The use of a moving reference frame has removed the O(M) term, along with a multitude

of higher-order terms that it would have forced. Note that Φ1 = s−1eiθ is an exact solution of

(D.1). However it matches to terms in the vortex region that are singular. These are not consistent

with point vortex solutions. (There is a clash of notation here: the superscripts in this section do

not match the subscripts used previously. The superscripts indicate orders of truncation, grouping

logarithmic terms with purely algebraic ones, while the subscripts used previously explicitly

distinguish between M2 logM and M2.)

The conclusion is that ∆ = M2. Continuing,

φ
(2,2) = φ

(1,1)+
1
2

M2s2Re f 2e2iθ +M2Re [A+Be2iθ ]. (D.10)

Crucially, the new terms that require matching do not include a linear term in s. The O(M2)

solution in the core region can be written as Φ2 = Φc,2 + A2χ2(s)e2iθ + c.c., with χ2(s) =

s2 +5/2+O(s−2 logs) for large s, using the fact that (D.1) is linear. Hence

Φ
(2,2) = Φ

(1,1)+M2
Φc2 +

[
A2

(
ε

2 +
5
2

M2
)

e2iθ + c.c.
]
. (D.11)

Note that the core-region terms with UUU1 and UUU2 first appear in Φ(3,.). Equating (D.10) and (D.11)

leads to equations for A2 and Φc2.

To reach the terms at O(M3 logM) and O(M3) that were mentioned in § 8.18.1.3, we
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discuss one more order. From (1.6), we see that the solutions in the vortex region at these orders

are harmonic functions. By the same argument as used for F1, they must vanish. Hence we have

φ
(3,3) = φ

(2,2)+
1
3

M3s3Re f 3e3iθ +M3Re [2DMs logseiθ +Hseiθ +Lse3iθ ]. (D.12)

The solution in the core region is more involved. We note that

Φ
(2,3) = Φ

(2,2)+[M2 logMUUU1 +M2UUU2] ··· x̂xx. (D.13)

We see that, to be able to match to (D.12), we need terms in Φ̂ at O(M3 logM) and O(M3). Using

(1.10), we find that the former satisfies (D.1), while the equation for the latter has a forcing term

on the right-hand side given by U0 j∂ Φ̂0/∂ s j. We do not carry out the full matching at this order,

because it is not needed.

D.1.2 Conservation of momentum

We can now formalize the matching argument of § 8.1 to verify the equations of motion

rigorously. We have the information we need for q:

q(2,2) =M2 logM[πiκ[W 1 +ζ,1]+π f 1,1e2]

+M2
[
−π

2
κ

2 f 1,0 +πiκζ,2 +πiκW 2−2πiκH−2πiκD(1+ loge2)
]
. (D.14)

where we have used the result Q(0.0) = q(0,0) = 0 established earlier as well as the identity

ζ ,1 =W1. For the inner region, we return to (8.1) using the full expansion:

P = M2
∮ ∫ s

sv

[ρ̂0 +O(M2)]
[
UUU +

κ

Ms′
ttt +O(M)

]
s′ ds′ dθ . (D.15)

171



Since we need Q(2,.) and the time derivatives cannot reduce the powers of M, we see that we

have enough terms. We obtain

Q(2,2) = πW 0,0e2 +πW 0,0(κ
2M2 logM−κ

2M2 loge+M2C), (D.16)

We see that Van Dyke’s rule, Q(2,2) = q(2,2), corresponds to the result obtained before, on

comparing (D.14) and (D.16). Hence the approach of § 8.1.3 gave the correct answer.

D.2 Details of the global solution

To obtain (8.44), we expand the function

lm(z) =
1
4
(z−Z0)(−iκmζ

(m)
,00 )+

1
2

F0,0(iκm)+
1
4

w0(2iκm f (m)
1 ) (D.17)

near vortex n and obtain

lm(z) =
1
4
(ζ −Z0 + ε)n(−iκmζ

(m)
,00 )+

1
2

[
iκζ,0

ε
+ f0,0− f1ζ,0 +( f1,0− f2ζ,0)ε

](n)
(iκm)

+
1
4

[
− iκ

ε
+ f1 + f2ε

](n)
(2iκm f (m)

1 )+O(e2
n) (D.18)

=l(mn)
−1 ε

−1
n + l(mn)

0 + l(mn)
1 εn +O(e2

n). (D.19)

The coefficients are given by

l(mn)
−1 =

1
2

κnκm( f (m)
1 −ζn,0), (D.20)

l(mn)
0 =

1
4
(ζn−Z0)(−iκmζ

(m)
,00 )+

1
2
( f0,0− f1ζ,0)

(n)(iκm)+
1
2

f (n)1 (iκm f (m)
1 ), (D.21)

l(mn)
1 =

1
4
(−iκmζ

(m)
,00 )+

1
2
( f1,0− f2ζ,0)

(n)(iκm)+
1
2

f (n)2 (iκm f (m)
1 ). (D.22)
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D.3 Two vortices in the plane

The integrals I and J become

I(z) =
∫ z

∞

[
− iκ1

z−ζ1
− iκ2

z−ζ2

]2

dz =
κ2

1
z−ζ1

+
κ2

2
z−ζ2

+
2κ1κ2

ζ12
log

z−ζ1

z−ζ2
, (D.23)

J(z) =
∫ z

∞

F0,00 dz = iκ1ζ1,00 log(z−ζ1)+ iκ2ζ2,00 log(z−ζ2)−
iκ1ζ 2

1,0

z−ζ1
−

iκ2ζ 2
2,0

z−ζ2
. (D.24)

Using superscripts to indicate the vortex for which terms are being calculated, we expand the

potentials and integrals about the locations of the two vortices to give

f (1)0 =−iκ2 logζ21, f (1)1 =− iκ2

ζ21
, f (1)2 =

iκ2

ζ 2
21
, I(1)0 =

κ2
2

ζ21
+

2κ1κ2

ζ21
logζ21, (D.25)

f (2)0 =−iκ1 logζ12, f (2)1 =− iκ1

ζ12
, f (2)2 =

iκ1

ζ 2
12
, I(2)0 =

κ2
1

ζ12
+

2κ1κ2

ζ12
logζ12, (D.26)

and

J(1)0 = iκ2ζ2,00 logζ21−
iκ2ζ 2

2,0

ζ21
, J(2)0 = iκ1ζ1,00 logζ12−

iκ1ζ 2
1,0

ζ12
. (D.27)

In addition

g(2)−1 =
1
2

κ1κ2(ζ1−ζ2),0 logζ12 =
iκ1κ2(κ1 +κ2)

2ζ 21
logζ12. (D.28)

This leads to H1 = 0.

For the co-propagating case, we find

l(21)
0 =

1
2
(− f (1)1 ζ

(1)
,0 )(iκ2)+

1
2

f (1)1 (iκ2 f (2)1 ) =
1
2
(iκ2) f (1)1 (−ζ

(1)
,0 + f (2)1 ) = 0, (D.29)

and by symmetry l(12)
0 = 0. A similar argument shows that l(21)

1 = l(12)
1 = 0. The remaining
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constraint (8.24) becomes

µ2 =
iκ3

2ζ 21
+

iκ3

4ζ
2
12

(ζ 2−Z(2)
0 ) =−κ3

4a
− iκ3

16a2 (ζ 2−Z(2)
0 ), (D.30)

For the co-rotating case, we can compute the terms required in the t2-equation. The

centre of vorticity remains at the origin, so we take Z0 = 0. We have

f (1)0 =−iκ log(2aeiϕ), f (1)1 =− iκ
2a

e−iϕ , f (1)2 =
iκ

4a2 e−2iϕ . (D.31)

Then

f (1)0,0 =
κ2

2a2 , f (1)1,0 =− κ2

4a3 e−iϕ , D1 =−
iκ3

16a3 e−iϕ , g(1)−1 =−
iκ3

2a
eiϕ log(2aeiϕ)

(D.32)

and

µ2 =−
iκ3

16a
eiϕ (8log4a2−1

)
, l(21)

0 =− iκ3

16a2 , l(21)
1 =− iκ3

16a3 e−iϕ . (D.33)

This gives

H1 =−
iκ3

16a3 e−iϕ (1− log4a2) (D.34)

and

ζ1,2 =−
iκ
2

f (1)1,0

(
1+

C
κ2

)
+H1 =

iκ3

8a3 eiϕ
(

1+
C
κ2

)
+H1 =

iκ3

8a4 ζ

(
3
2
+

C
κ2 − log2a

)
.

(D.35)

Once again there is a correction to the rotation speed:

θ,2 =
κ3

8a4

(
3
2
+

C
κ2 − log2a

)
. (D.36)
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For the general two-vortex case, we have

µ2 =
iκ1κ2(κ1−κ2)

4ζ 12
−

iκ2
1 κ2

4ζ
2
12

ζ2−Z0−
iκ1κ2(κ1 +κ2)

2ζ 21
log |ζ12|2, (D.37)

l(21)
0 =− iκ1κ2(κ1 +κ2)

4ζ 2
21ζ 21

(ζ1−Z0), (D.38)

l(21)
1 =− iκ1κ2(κ1 +κ2)

4ζ 2
21ζ 21

, (D.39)

and ξ2 = 0 if Z0 is aligned between the two vortices. This gives

g1 =
iκ1κ2(κ1−κ2)

4ζ 2
21ζ 21

+
iκ2

1 κ2

4ζ 2
21ζ

2
21

ζ2−Z0 +
iκ1κ2(κ1 +κ2)

2ζ 2
21ζ 21

log |ζ21|2 (D.40)

− iκ1κ2(κ1 +κ2)

4ζ 3
21ζ 21

(ζ1−Z0)−
iκ1κ2(κ1 +κ2)

4ζ 2
21ζ 21

logζ21.

The term H1 can then be obtained as

H1 =
iκ1κ2

4|ζ21|2

(
κ1(ζ 2−Z0)+κ2(ζ 1−Z0)

|ζ21|2
− (κ1 +κ2)

ζ 2
21

(ζ1−Z0)−
κ2

ζ21

)
+

iκ1κ2(κ1 +κ2)

4ζ 2
21ζ 21

log |ζ21|2.

(D.41)

Selecting Z0 appropriately gives

H1 =
iκ1κ2(κ1 +κ2)

4|ζ21|2ζ21

(
−1+ log |ζ21|2

)
. (D.42)

We then obtain (8.59).

D.4 Point Vortex inside a circle

The functions J̃(z) and Ĩ(z) retain the non-logarithmic terms:

J̃(z) =−
iκζ 2

,0

ε
+

iκζ 2
i,0

εi
+ J0, Ĩ(z) =

κ2

ε
+

κ2

εi
. (D.43)
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We have

l(z) =
1
4
(z−Z0)(−iκζ ,00)+

κ2

2εi
(ζi,0− f 1), (D.44)

li(z) =
1
4
(z−Z0)(iκζ i,00)−

κ2

2εi
(ζi,0− f (i)1 ) (D.45)

since ζ,0 = f 1 = f i
1, so the only singularities are of l(z) and li(z) are at ζi and ∞. Note that

l(z)+ li(z) =−
iκ
4
(z−Z0)[ζ ,00−ζ i,00]. (D.46)

Then the velocity w2 can be written

w2 =l′(z) logε +
l(z)
ε

+ l′i(z) logε i +
li(z)

εi
+

1
4

J̃(z)+
1
4
(z−Z0)J̃′(z)

+
1
4

w′0(z)Ĩ(z)+
1
4

w0(z)Ĩ′(z)+G′(z). (D.47)

Given the inhomogeneous portion of F2, we will need to satisfy the boundary condition

(8.62) as well as require the solution to be single-valued inside the circle with appropriate

behaviour near ζ . The potential F2 can be written

F2(z) = l(z) logε + l′i(z) logε i +
1
4
(z−Z0)J̃(z)+

1
4

w0(z)Ĩ(z)+G(z). (D.48)

We now enforce single-valuedness near z = ζ . Previously we added the terms l(z) logε

and li(z) logεi to F2. These do not satisfy the boundary condition. Instead, since ζi is not in

the physical domain, we do not enforce single-valuedness there. Hence we add to F2 the terms

l(z) logε and mi(z) logεi, then pick the function mi(z) to satisfy the boundary condition. We

hence have the following logarithmic terms in w2:

l′(z) loge2 + l′i(z) logε i +m′i(z) logεi. (D.49)
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A simple extension to the Milne-Thomson circle theorem shows that if f (z) is a function of z,

then

f (z)− R2

z2 f̄ (R2/z) (D.50)

satisfies the boundary condition (8.62). Similarly we find that both of the expressions

f (z)g(z)− f (z)ḡ(R2/z), f (z)g(z)− R2

z2 f (R2/z)g(z) (D.51)

satisfy (8.62).

We now add to (D.49)

−l′(z) log
(

R2

z
−ζ

)
− l′(z) logε− l′i(z) log

(
R2

z
− R2

ζ

)
− R2

z2 m̄′(R2/z) log
(

R2

z
− R2

ζ

)
.

(D.52)

Noting that

log
(

R2

z
−ζ

)
= log

(−ζ εi)

z
, log

(
R2

z
− R2

ζ

)
= log

(−R2ε)

ζ z
, (D.53)

we see that (D.52) has logarithmic singularities at ε and at the origin. These can be simultaneously

removed by requiring

m̄i(z) = l(R2/z)+ li(R2/z) =− iκ
4

(
R2

z
−Z0

)
[ζ ,00−ζ i,00]. (D.54)

The expression (D.52) reduces to

−l′(z) log
(

a2εi

R2

)
, (D.55)

which is single-valued in the fluid domain. The term m′(z) logεi has a double pole at the origin
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from (D.54). This can be removed by adding the following expression

−m′i(z) log(−ζi)+
R2

z2 m̄′i(R
2/z) log(−ζi) =−m′i(z) log(−ζi)− [l′(z)+ l′i(z)] log(−ζ i).

(D.56)

The sum of (D.49), (D.55) and (D.56) is single-valued at ζ , has no singularity at ζ and satisfies

the boundary condition.

We now consider the non-logarithmic terms in w2. These can be written as

l(z)+ l(z)
ε

+
li(z)+mi(z)

εi
+

1
4

J̃(z)+
1
4
(z−Z0)J̃′(z)+

1
4

w′0(z)Ĩ(z)+
1
4

w0(z)Ĩ′(z) (D.57)

=
1
ε

[
1
4
(z−Z0)(iκζ,00)+

κ2

2ε i
(ζ i,0− f1)+

1
4
(z−Z0)(−iκζ ,00)+

κ2

2εi
(ζi,0− f 1)

]
+

1
εi

[
1
4
(z−Z0)(−iκζi,00)−

κ2

2ε i
(ζ i,0− f (i)1 )+

iκ
4

(
R2

z
−Z0

)
(ζ,00−ζi,00)

]

+
1
4

 iκζ
2
,0

ε
−

iκζ
2
i,0

ε i
+ J0 +

2iκ3

ε2ε i
− 2iκ3

ε2
i ε

+ 1
4
(z−Z0)

[
iκζ 2

,0

ε2 −
iκζ 2

i,0

ε2
i

]
. (D.58)

We satisfy the boundary condition by adding terms that do not introduce a singularity at

ζ . The following tables list in their first row terms in (D.58) and in their second rows the terms

to add to satisfy the boundary condition. First, from (D.50) or just from removing the term,

α
α

ε

α

εi

αz
ε

α

ε2
α

ε2
i

α

zεi

−α
αζi

zεi
−α

εi

αR2ζi

z2εi
− αζ 2

i

R2ε2
i
− α

ε2
i
− α

zεi
.

(D.59)

(Note that these choices are not unique. For example one could take −αR2/z2 for the first case.

Uniqueness will come later when the singularities at the origin and at ζ are taken into account.)
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Then, from (D.51),

α

ε

α

ε i

αz
ε

αz
ε2

αz
εi

αz
ε2

i

α

εε i

α

ε2ε i

α

ε2
i ε

αζiz
R2εi

−αR2

z2εi

αζi

εi
−αζ 2

i z
R2ε2

i
−αR2

zεi
−αR2

zε2
i

αζi

zε2
i
− αζ 2

i

R2ε3
i

αzζi

R2ε3
i
.

(D.60)

The remaining terms are lengthier:

α

εεi
: add

αζi

(ζ −ζ i)zεi
+

α

(ζ −ζi)εi

α

εiε i
: add

αzζ

R2εiε
− αζ 2

R2(ζ −ζi)ε
− αζ

z(ζ −ζ i)εi
.

(D.61)

Every term in (D.58) takes one of the above forms.

We have to remove the singularity introduced in the full expression for w2 at the origin

by the above process. This takes the form λ z−2 +νz−1. We remove the singularity by adding

− λ

z2 +
λ

R2 −
ν

z
. (D.62)

The second term ensures that the boundary condition is satisfied for the extra −λ z−2 term. The

−νz−1 term that has been added satisfies the boundary condition if ν is imaginary. One cannot

add a term to remove it, as it corresponds to a volume source (or sink) at the origin. Such

a term cannot be present. Verifying that the real part of ν vanishes is a useful check on the

calculations. Finally we need to remove the singularity at ζ by adding terms that satisfy the

boundary condition, namely
ξ

ε
+

ξ ζi

zεi
− µ

ε2 +
µζ 2

i

R2ε2
i
. (D.63)

This seems to introduce another pole at the origin, unless ξ = 0, which will need to be checked.
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We now give the details of the calculation, starting by setting Z0 = 0. Writing down the

form for w2 that satisfies the boundary conditions gives

w2 =

[
1
4
(−iκζ ,00)−

κ2

2ε2
i
(ζi,0− f 1)

]
log

R2e2

a2εi

+

[
1
4
(iκζ i,00)+

κ2

2ε2
i
(ζi,0− f 1)

]
logε i−

iκ
4

R2

z2 (ζ,00−ζi,00) log
(
−εi

ζi

)
+

iκ
4
(ζ ,00−ζ i,00) log(−ζ i)

+
1
ε

[
1
4

z(iκζ,00)+
κ2

2ε i
(ζ i,0− f1)+

1
4

z(−iκζ ,00)+
κ2

2εi
(ζi,0− f 1)

]
+

1
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[
1
4
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κ2

2ε i
(ζ i,0− f (i)1 )

]

+
1
4

 iκζ
2
,0

ε
−

iκζ
2
i,0

ε i
+

2iκ3

ε2ε i
− 2iκ3

ε2
i ε


+

1
4

z

(
iκζ 2

,0

ε2 −
iκζ 2

i,0

ε2
i

)

+
iκζ,00R2ζi

4z2εi
+

iκζ
2
,0ζiz

4R2εi
−

iκζ 2
i,0R2

4z2εi
−

iκζ ,00ζi

4εi
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iκζ
2
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i z

4R2ε2
i

+
iκζi,00R2

4zεi
+

iκζ 2
i,0R2

4zε2
i

+
κ2(ζi,0− f 1)ζi

2zε2
i

+
iκ3ζ 2

i

2R2ε3
i
− iκ3zζi

2R2ε3
i

+
κ2(ζ i,0− f1)ζi

2(ζ −ζ i)zεi
+

κ2(ζi,0− f 1)

2(ζ −ζi)εi
+

αzζ

R2εiε
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λ
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ν

z
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i

R2ε2
i
, (D.64)

where α =−κ2(ζ i,0− f1)/2. Expanding about the origin gives

λ =−
iκζ,00R2

4
+

iκζ 2
i,0R2

4ζi
, (D.65)

ν =
iκR2

4ζi
(ζ,00−ζi,00)−

iκζ,00R2

2ζi
+

iκζ 2
i,0R2

2ζ 2
i

+
κ2(ζi,0− f 1)

2ζi
−

κ2(ζ i,0− f1)

2(ζ −ζ i)
−

κ2(ζi,0− f 1)ζ

2(ζ −ζ i)ζi
. (D.66)
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The first of these relations gives λ . In the second, we see that every term in ν is pure imaginary,

since ζi, ζi,00, −iζ,0 =−i f 1 and −iζi,0 have the same argument. Hence the term in z−1 satisfies

the boundary condition. The ε−2 and ε−1 terms near z = ζ give

µ =
iκζ 2

,0ζ

4
+

iκ3

2(ζ −ζ i)
(D.67)

and ξ = 0.

Finally we calculate the constant term in (8.37). We obtain

w2 =

[
1
4
(−iκζ ,00)−

κ2

2δ 2
i
(ζi,0− f 1)

]
log

R2

a2δi

+
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1
4
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2δ 2
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+
1
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ζ (−iκζi,00)−
κ2
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]
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, (D.68)

where δi = ζ −ζi. After lengthy algebra we obtain

D+H =
iκ3ae−iϕ

4(R2−a2)2

[
log

(R2−a2)3

R4 +
R4

a4 log
R2

R2−a2 +1
]
. (D.69)
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[1] E. Åkervik, U. Ehrenstein, F. Gallaire, and D. S. Henningson. Global two-dimensional
stability measures of the flat plate boundary-layer flow. Eur. J. Mech. B-Fluids., 27(5):501–
513, 2008.

[2] F. Alizard, S. Cherubini, and J.-C. Robinet. Sensitivity and optimal forcing response in
separated boundary layer flows. Phys. Fluids, 21(6), 2009.

[3] F. Alizard, T. Gibis, B. Selent, U. Rist, and C. Wenzel. Stochastic receptivity of laminar
compressible boundary layers: An input-output analysis. Phys. Rev. Fluids., 7(7):073902,
2022.

[4] F. Alizard and J.-C. Robinet. Spatially convective global modes in a boundary layer. Phys.
Fluids, 19(11), 2007.
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double-wedge flow. J. Fluid Mech., 948:A37, 2022.

[64] A. M. Edstrand, P. J. Schmid, K. Taira, and L. N. Cattafesta. A parallel stability analysis
of a trailing vortex wake. J. Fluid Mech., 837:858–895, 2018.

[65] U. Ehrenstein and F. Gallaire. On two-dimensional temporal modes in spatially evolving
open flows: the flat-plate boundary layer. J. Fluid Mech., 536:209–218, 2005.

[66] L. E. Eriksson and A. Rizzi. Computer-aided analysis of the convergence to steady state
of discrete approximations to the euler equations. J. Comput. Phys., 57(1):90–128, 1985.

[67] B. F. Farrell and P. J. Ioannou. Stochastic forcing of the linearized navier–stokes equations.
Phys. Fluids A, 5(11):2600–2609, 1993.

[68] B. F. Farrell and P. J. Ioannou. Structural stability of turbulent jets. J. Atmos. Sci.,
60(17):2101–2118, 2003.

[69] B. F. Farrell and P. J. Ioannou. Dynamics of streamwise rolls and streaks in turbulent
wall-bounded shear flow. J. Fluid Mech., 708:149–196, 2012.

[70] G. E. Fasshauer and J. G. Zhang. On choosing “optimal” shape parameters for rbf
approximation. Numer. Algorithms., 45:345–368, 2007.

[71] U. Fey, M. König, and H. Eckelmann. A new strouhal–reynolds-number relationship for
the circular cylinder in the range 47¡ re¡ 2×105. Phys. Fluids, 10(7):1547–1549, 1998.

[72] N. Flyer, G. A. Barnett, and L. J. Wicker. Enhancing finite differences with radial basis
functions: experiments on the navier–stokes equations. J. Comput. Phys., 316:39–62,
2016.

[73] N. Flyer and B. Fornberg. Radial basis functions: Developments and applications to
planetary scale flows. Comput. & Fluids, 46(1):23–32, 2011.

186



[74] N. Flyer, B. Fornberg, V. Bayona, and G. A. Barnett. On the role of polynomials in rbf-fd
approximations: I. interpolation and accuracy. J. Comput. Phys., 321:21–38, 2016.

[75] N. Flyer and E. Lehto. Rotational transport on a sphere: Local node refinement with radial
basis functions. J. Comput. Phys., 229(6):1954–1969, 2010.

[76] N. Flyer, E. Lehto, S. Blaise, G. B. Wright, and A. St-Cyr. A guide to rbf-generated finite
differences for nonlinear transport: Shallow water simulations on a sphere. J. Comput.
Phys., 231(11):4078–4095, 2012.

[77] N. Flyer and G. B. Wright. Transport schemes on a sphere using radial basis functions. J.
Comput. Phys., 226(1):1059–1084, 2007.

[78] N. Flyer and G. B. Wright. A radial basis function method for the shallow water equations
on a sphere. Proc. Math. Phys. Eng. Sci., 465(2106):1949–1976, 2009.

[79] B. Fornberg, T. A. Driscoll, G. Wright, and R. Charles. Observations on the behavior of
radial basis function approximations near boundaries. Comput. Math. Appl., 43(3-5):473–
490, 2002.

[80] B. Fornberg and N. Flyer. Solving pdes with radial basis functions. Acta Numer., 24:215–
258, 2015.

[81] B. Fornberg, E. Larsson, and N. Flyer. Stable computations with gaussian radial basis
functions. SIAM J. Sci. Comput, 33(2):869–892, 2011.

[82] B. Fornberg and E. Lehto. Stabilization of rbf-generated finite difference methods for
convective pdes. J. Comput. Phys., 230(6):2270–2285, 2011.

[83] B. Fornberg, E. Lehto, and C. Powell. Stable calculation of gaussian-based rbf-fd stencils.
Comput. Math. Appl., 65(4):627–637, 2013.

[84] B. Fornberg and C. Piret. A stable algorithm for flat radial basis functions on a sphere.
SIAM J. Sci. Comput., 30(1):60–80, 2008.

[85] B. Fornberg and G. Wright. Stable computation of multiquadric interpolants for all values
of the shape parameter. Comput. Math. Appl., 48(5-6):853–867, 2004.

[86] P. Frame and A. Towne. Space-time pod and the hankel matrix. Plos One, 18(8):e0289637,
2023.

[87] R. Franke. Scattered data interpolation: tests of some methods. Math. Comp., 38(157):181–
200, 1982.

[88] X. Garnaud, L. Lesshafft, P. J. Schmid, and P. Huerre. The preferred mode of incompress-
ible jets: linear frequency response analysis. J. Fluid Mech., 716:189–202, 2013.

[89] M. Gaster, E. Kit, and I. Wygnanski. Large-scale structures in a forced turbulent mixing
layer. J. Fluid Mech., 150:23–39, 1985.

187



[90] U. Ghia, K. N. Ghia, and C. T. Shin. High-re solutions for incompressible flow using the
navier-stokes equations and a multigrid method. J. Comput. Phys., 48(3):387–411, 1982.

[91] F. Giannetti and P. Luchini. Structural sensitivity of the first instability of the cylinder
wake. J. Fluid Mech., 581:167–197, 2007.

[92] J. F. Gibson, J. D. Farmer, M. Casdagli, and S. Eubank. An analytic approach to practical
state space reconstruction. Phys. D: Nonlin. Phenom., 57(1-2):1–30, 1992.

[93] M. N. Glauser, S. J. Leib, and W. K. George. Coherent structures in the axisymmetric
turbulent jet mixing layer. In Turbulent Shear Flows 5, pages 134–145. Springer, 1987.

[94] S. V. Gordeyev and F. O. Thomas. Coherent structure in the turbulent planar jet. part
1. extraction of proper orthogonal decomposition eigenmodes and their self-similarity.
J. Fluid Mech., 414:145–194, 2000.

[95] K. Gudmundsson and T. Colonius. Instability wave models for the near-field fluctuations
of turbulent jets. J. Fluid Mech., 689:97–128, 2011.

[96] D. Gunderman, N. Flyer, and B. Fornberg. Transport schemes in spherical geometries
using spline-based rbf-fd with polynomials. J. Comput. Phys., 408:109256, 2020.

[97] D. A. Hammond and L. G. Redekopp. Global dynamics of symmetric and asymmetric
wakes. J. Fluid Mech., 331:231–260, 1997.

[98] R. L. Hardy. Multiquadric equations of topography and other irregular surfaces. Math.
Comp., 76(8):1905–1915, 1971.

[99] F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous incom-
pressible flow of fluid with free surface. Phys. Fluids., 8(12):2182–2189, 1965.

[100] F. Hecht. New development in freefem++. J. Numer. Math., 20(3-4):251–266, 2012.

[101] S. D. Heister, J. M. McDonough, A. R. Karagozian, and D. W¿ Jenkins. The compressible
vortex pair. J. Fluid Mech., 220:339–354, 1990.

[102] E. J. Hinch. Pertubation Nethods. Cambridge Univesity Press, Cambridge, 1991.

[103] C.-M. Ho and P. Huerre. Perturbed free shear layers. Annu. Rev. Fluid Mech., 16(1):365–
422, 1984.

[104] A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

[105] P. Holmes, J. L. Lumley, and G. Berkooz. Turbulence, coherent structures, dynamical
systems and symmetry. Cambridge university press, 1996.

[106] P. Holmes, J. L. Lumley, G. Berkooz, J. C. Mattingly, and R. W. Wittenberg. Low-
dimensional models of coherent structures in turbulence. Phys. Rep., 287(4):337–384,
1997.

188



[107] P. Huerre. Open shear flow instabilities. Perspective in Fluid Dynamics, pages 159–229,
2000.

[108] P. Huerre and P. A. Monkewitz. Local and global instabilities in spatially developing
flows. Annu. Rev. Fluid Mech., 22(1):473–537, 1990.

[109] R. E. Hunt and D. G. Crighton. Instability of flows in spatially developing media. Proc. R.
Soc. A, 435(1893):109–128, 1991.

[110] A. K. M. F. Hussain and W. C. Reynolds. The mechanics of an organized wave in turbulent
shear flow. J. Fluid Mech., 41(2):241–258, 1970.

[111] Y. Hwang and C. Cossu. Amplification of coherent streaks in the turbulent couette flow:
an input–output analysis at low reynolds number. J. Fluid Mech., 643:333–348, 2010.

[112] M. Ilak, S. Bagheri, L. Brandt, C. W. Rowley, and D. S. Henningson. Model reduction of
the nonlinear complex ginzburg–landau equation. SIAM J. Appl. Dyn. Syst., 9(4):1284–
1302, 2010.

[113] A. Iske. On the approximation order and numerical stability of local lagrange interpolation
by polyharmonic splines, in: W. haussmann, k. jetter, m. reimer, j. stöckler (eds.). In
Modern developments in multivariate approximation, in: International Series of Numerical
Mathematics, Birkh’́auser, Basel., pages 153–165. Springer, 2003.

[114] C. P. Jackson. A finite-element study of the onset of vortex shedding in flow past variously
shaped bodies. J. Fluid Mech., 182:23–45, 1987.

[115] I. Jacobi and B. J. McKeon. Dynamic roughness perturbation of a turbulent boundary
layer. J. Fluid Mech., 688:258–296, 2011.

[116] A. Javed, K. Djidjeli, J. T. Xing, and S. J. Cox. A hybrid mesh free local rbf-cartesian fd
scheme for incompressible flow around solid bodies. Int. J. Math. Comput. Phys. Elect.
Comput. Eng., 7:957–966, 2013.

[117] A. Javed, K. Djijdeli, and J. T. Xing. Shape adaptive rbf-fd implicit scheme for incom-
pressible viscous navier–strokes equations. Comput. & Fluids, 89:38–52, 2014.

[118] J. Jeun, J. W. Nichols, and M. R. Jovanović. Input-output analysis of high-speed axisym-
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forced regimes. J. Fluid Mech., 182:1–22, 1987.

[206] U. A. Qadri and P. J. Schmid. Effect of nonlinearities on the frequency response of a
round jet. Phys. Rev. Fluids, 2(4):043902, 2017.

[207] S. C. Reddy and D. S. Henningson. Energy growth in viscous channel flows. J. Fluid
Mech., 252:209–238, 1993.

[208] S. C. Reddy, P. J. Schmid, and D. S. Henningson. Pseudospectra of the orr–sommerfeld
operator. SIAM J. Appl. Math., 53(1):15–47, 1993.

[209] H. L. Reed, W. S. Saric, and D. Arnal. Linear stability theory applied to boundary layers.
Annu. Rev. Fluid Mech., 28(1):389–428, 1996.

[210] M. A. Regan and K. Mahesh. Global linear stability analysis of jets in cross-flow. J. Fluid
Mech., 828:812–836, 2017.

195



[211] D. Rempfer. On low-dimensional galerkin models for fluid flow. Theor. Comput. Fluid
Dyn., 14(2):75–88, 2000.

[212] J. M. Ribeiro, C.-A. Yeh, and K. Taira. Randomized resolvent analysis. Phys. Rev. Fluid,
5(3):033902, 2020.

[213] J. M. Ribeiro, C.-A. Yeh, K. Zhang, and K. Taira. Wing sweep effects on laminar separated
flows. J. Fluid Mech., 950:A23, 2022.

[214] G. Rigas, D. Sipp, and T. Colonius. Nonlinear input/output analysis: application to
boundary layer transition. J. Fluid Mech., 911:A15, 2021.

[215] S. Rippa. An algorithm for selecting a good value for the parameter c in radial basis
function interpolation. Adv. Comput. Math., 11:193–210, 1999.

[216] K. Rosenberg and B. J. McKeon. Computing exact coherent states in channels starting
from the laminar profile: A resolvent-based approach. Phys. Rev. E, 100(2):021101, 2019.

[217] C. W. Rowley. Modeling, simulation, and control of cavity flow oscillations. PhD thesis,
California Institute of Technology, 2002.

[218] C. W. Rowley, T. Colonius, and R. Murray. Dynamical models for control of cavity
oscillations. In AIAA Pap., page 2126, 2001.

[219] C. W. Rowley, T. Colonius, and R. M. Murray. Model reduction for compressible flows
using pod and galerkin projection. Phys. D, 189(1-2):115–129, 2004.

[220] C. W. Rowley and S. T. Dawson. Model reduction for flow analysis and control. Annu.
Rev. Fluid Mech., 49:387–417, 2017.
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