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Abstract 

Statistical learning (SL) is believed to be a mechanism that enables 

successful language acquisition. Language acquisition in turn is 

heavily influenced by environmental factors such as 

socioeconomic status (SES). However, it is unknown to what 

extent SL abilities interact with SES in affecting language 

outcomes. To examine this potential interaction, we measured 

event-related potentials (ERPs) in 38 children aged 7-12 while 

performing a visual SL task consisting of a sequence of stimuli that 

contained covert statistical probabilities that predicted a target 

stimulus. Hierarchical regression results indicated that SL ability 

moderated the relationship between SES (average of both 

caregiver’s education level) and language scores (grammar, and 

marginally with receptive vocabulary). For children with high SL 

ability, SES had a weaker effect on language compared to children 

with low SL ability, suggesting that having good SL abilities could 

help ameliorate the disadvantages associated with being raised in a 

family with lower SES. 

Keywords: statistical learning; language development; 

socioeconomic status, event-related potentials (ERP); cognitive 

development 

Introduction 

All typically developing children learn how to comprehend 

and produce language, suggesting the existence of common 

biological and/or environmental mechanisms for language 

development. On the one hand, language acquisition may 

depend on intrinsic factors such as mental and genetic 

components (e.g., Chomsky, 1965; Crain & Lillo-Martin, 

1999). On the other hand, language development may rely 

less on internal factors and more on external interactions 

with social and environmental contexts (Bronfenbrenner, 

1979, 1988). The universality and variability in language 

development suggest that a combination of these 

perspectives might provide the most appropriate approach 

for studying language development (Hoff, 2006). In 

particular, it may be beneficial to study language 

development in children by focusing on the interaction 

between intrinsic (e.g., cognitive skills) and extrinsic factors 

(e.g., social/linguistic environment).  

Social environmental factors appear to be essential for the 

development of language (Kuhl, 2010). For instance, 

according to the “social gating” hypothesis (Kuhl, 2007), 

social interactions influence learning in children by 

increasing their attention span and, therefore, the amount of 

knowledge retained from the environment. Social 

environmental factors such as socioeconomic status (SES) 

also impact language learning (Feldman et al., 2003; 

NICHHD, 2000; Hoff et al., 2012). SES consists of many 

components and each component could potentially influence 

various aspects of child development differently. Primary 

Caregivers’ education level and income are among the most 

important indicators of SES (Roberts et al., 1999). Children 

who live in low SES families are reported to have less 

exposure to linguistic stimulation, which could 

detrimentally impact their language development (Rowe and 

Goldin-Meadow, 2009; Sheridan et al., 2012). In addition, 

there is increasing evidence suggesting that environmental 

factors can impact brain regions that are associated with 

executive functions and language. For instance, the 

prefrontal cortex in children seems to be strongly impacted 

by their SES (Sheridan et al., 2012). Consequently, children 

with low SES do not perform as well as children with higher 

SES on tasks that represent cognitive control, memory, and 

language (Farah et al., 2006).  

Certain biological factors and cognitive mechanisms also 

play an important role in language development in children. 

Specifically, statistical learning (SL) abilities appear to be 

essential for detecting and encoding structured patterns of 

information in the environment, including language 

(Conway et al., 2010; Saffran, 2003). Indeed, research 

suggests that SL is a crucial component of language 

processing in newborns (Saffran, Aslin & Newport, 1996; 

Shafto, Conway, Field & Houston, 2012), children (Kidd & 

Arciuli, 2015; Lum et al., 2012), and adults (Christiansen, 

Conway, & Onnis, 2012; Misyak, Christiansen, & Tomblin 

2010). Shafto, Conway, Field, and Houston (2012) 

demonstrated an empirical link between visual SL in infants 

and their subsequent vocabulary development. SL appears 

to be used to learn the underlying patterns inherent in 

linguistic signals, which facilitates the prediction of 

upcoming units (Conway et al. (2010). In an 

electroencephalography study, Christiansen et al. (2012) 

reported that the same neural mechanisms appear to be 

utilized for processing syntactic rules of language and SL. 

Overall, these studies suggest that SL may be a prerequisite 
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for language learning and that variations in SL can affect 

language development. 

In sum, language development appears to be highly 

dependent on both the environment that the child is raised in 

and his or her cognitive skills. What is not known is the 

extent to which these two factors might interact to impact 

language development. For instance, it is possible that 

having better intrinsic learning abilities could help offset the 

deleterious effects of being raised in an impoverished social 

environment.  

The specific aim of this study is to examine the 

relationship between the neural mechanisms of SL, social 

environmental factors, and language in typically developing 

children. Specifically, we explored the possible impact of 

SL as a moderator of the relationship between SES and 

language development in children. We measured SL by 

using the event-related potential (ERP) technique while 

children were performing a computerized visual SL task. 

We also measured children’s vocabulary and grammatical 

judgment using standardized language assessments.  

Method 

Participants 

We recruited 42 typically developing children aged 7-12 

from the Atlanta metropolitan area with English as their 

native and only language (age mean = 9 years; 25 male). 

Four participants were excluded from this study, one due to 

computer software difficulties during ERP data acquisition, 

and three due to having too many noisy trials in the ERP 

task (see EEG section below). The final analyses were done 

using data from 38 participants (Age mean = 9 years; 23 

male, 15 female; 13 black or African American; 18 white; 7 

more than one race). Participants and their parent/caregiver 

came to the Psychology Department at Georgia State 

University for their laboratory visit. During their visit, both 

parents and children were informed about the goal and 

details of the study and provided written informed consent 

and assent to participate. Participants were offered a toy, 

worth $10 for participating. Additionally, the parents 

received monetary compensation of $50 for the session. 

Socioeconomic Status (SES) 

Parents of the participants completed a questionnaire 

regarding their socioeconomic status (SES) and 

demographics. This questionnaire consisted of questions 

about their individual and household income, education, and 

demographics of the PC and secondary caregiver (SC). In 

the analysis, we used average of both PC and SC education 

level as a measure of SES. Each caregiver’s education level 

was measured using the following scale: 0= Less than High 

School, N=5; 1= High School, N=14; 2= Some college, 

N=8; 3= Associate’s degree, N=3; 4= Bachelor’s degree, 

N= 15 ; 5= Master’s degree, N=16; 6= PhD, N=5 ; 7= 

Professional degree, N=10. Household income was not used 

in the analyses due to missing data from more than half of 

the participants. 

Statistical Learning Task 

The visual SL task was based on a task recently developed 

by Jost et al. (2015), which in turn is similar to the classic 

visual oddball paradigm, but with statistical regularities 

embedded in the stimuli. We made the Jost et al. (2015) task 

more child-friendly by making it into a game with a 

background story (“the Magician task”). This task was 

presented as a game on a laptop computer. In this task, 

children were told a story about an inconsistent magician 

who tries to make food for his children using his magic hat. 

Children viewed a stream of flashing stimuli consisting of 

hats of different colors presented with a black background 

one at a time. Occasionally, a target hat with food was 

presented within the stream. Children were instructed to 

“catch” the presented food by pressing a button. Participants 

were not told that hats of different colors each differentially 

predicted the probability of occurrence of the target hat. 

Each target followed a predictor in the sequence with three 

conditions: high (90% probability of target following), low 

(20% probability of target following), and no predictor 

(target presented with no preceding predictor). Each 

experimental condition (high, low, and no) contained 60 

trials, for 180 trials total. Each stimulus was presented on 

the screen for 500 milliseconds and was followed by a black 

screen for 500 milliseconds. Six blocks were separated by 

30-second breaks during which children watched a short 

cartoon related to the magician story. Figure 1 shows a 

schematic presentation of the magician task. It took the 

participants about 20 minutes to complete the task after net 

application. If children learned the probabilistic patterns 

between each type of predictor and the target, it was 

expected that there would be significant differences in their 

response times (RTs) to the targets and/or the amplitude 

differences of ERPs of the predictors based on whether a 

trial was a high-probability (HP), low-probability (LP), or 

no-predictor (NP) type. Either of these differences would be 

evidence of SL1.  

Electroencephalography (EEG) Recording 

We collected EEG data measuring changes in electrical 

potential on the scalp during the statistical learning task 

using a 32-channel high-density EGI (Electrical Geodesics, 

Inc.) sensor net and followed standard net application 

techniques for the EGI system.  EEG data were collected in 

a sound-attenuated room. We used the NetStation 4.3.1 

acquisition software (Electrical Geodesics, Inc.) to 

transform and record the data to digital form. Before starting 

the SL task, participants were instructed to sit still and avoid 

excessive blinking. Data were acquired with a 0.1 to 30 Hz 

bandpass filter and digitized at 250 Hz. 

 

 
1 The no-predictor condition in the “Magician” task is the same as the 

standard stimuli, which means participants saw it more frequently than the 
high- and low- probability conditions; therefore, ERP responses to the no-

predictor condition may be influenced by this difference in frequency of 

occurrence. 
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Impedances were kept below 50 kΩ. ERP recordings were 

time-locked to the onset of each predictor stimulus and 

continued for 1500ms after onset for a total segment length 

of 1700ms.  In the no-predictor condition, the ERPs were 

time-locked to the standard preceding the target stimulus. 

After data acquisition, data from channels with poor or 

noisy signals was replaced with data induced from 

surrounding sensors using the computational MATLAB 

software (version R2012b 8.0.0783; MathWorks). 

Additionally, trials containing muscle activity such as eye 

movement and blinks were removed using an artifact 

detection process.  

 

 
Figure 1: A schematic representation of the statistical learning 

“Magician” Task. 

Language Assessments 

The Grammaticality Judgment subtest of the 

Comprehensive Assessment of Spoken Language (CASL; 

Carrow-Woolfolk, 1999) was administered as an assessment 

of syntactic language development. In this test, a sentence 

with or without grammatical errors was read to the child, 

and the child was asked whether it sounded correct and if 

not to fix it by changing only one word. This assessment 

was administered in a separate room with a trained 

experimenter after removal of the EEG sensor net. The 

standardized scores of this test were computed based on 

participants’ age.  

Children’s receptive language was measured using the 

Peabody Picture Vocabulary Test, Fourth Edition (PPVT-4; 

Dunn & Dunn, 2007). During this test, an experimenter 

showed the participants 4 pictures and asked them to point 

to the picture that best represented the presented word. This 

assessment was administered by a trained experimenter in a 

quiet room before the EEG net application. 

Results 

 

The descriptive statistics of the language tests are reported 

in Table 1. We used the standard scores for these measures 

which take age into account. The average score for both the 

grammaticality judgement subtest of the CASL and PPVT is 

100 with a standard deviation of 15 points. The participants’ 

average scores were slightly higher than average on the 

grammaticality judgement and the PPVT tasks (yet still 

within normal limits); but there was a wide range of scores 

for both language tests.  

 

Table 1: Means and standard deviations for language tasks 

  N=38 

Statistical Learning Measure  

Based on Jost et al. (2015), who observed a P300-like ERP 

component in the posterior region of the scalp in 

conjunction with SL in the 400-700 milliseconds window 

following the predictor onset, we focused our analyses on a 

pre-defined region of 6 electrodes in the posterior region for 

the same time window (see Figure 2). To assess the 

behavioral and neural correlates of learning during the SL 

task, we ran 2 one-way ANOVAs to determine whether the 

3 probability conditions (high, low, and no) in ERP 

amplitudes and reaction times (RT) were significantly 

different from one another.  

 
Figure 2: The map of 32-sensor EEG net with posterior region of 

interest highlighted. 

 

ERP Amplitudes Figure 3 displays the grand average ERP 

waveforms in the posterior region. Visual inspection 

suggests that there may be a late positivity roughly 400-700 

msec for the high and low predictor conditions. This was 

confirmed with a one-way ANOVA comparing ERP 

amplitudes for the 3 probability conditions in the 400-700 

ms time-window after predictor onset, which revealed a 

significant effect of probability condition, F(2, 74) = 16.60, 

p < .000. Paired-sample t tests with Sidak adjustment 

revealed that the ERP wave amplitude was significantly 

higher for the high-probability condition (M = 2.42, SD = 

2.52) compared to the low-probability condition (M = 1.59, 

SD = 2.39), t (37) = 2.41, p < .05, and no-predictor 

condition (M = 0.28, SD = 1.94), t (37) = 5.19, p < .001. 

The ERP wave amplitude was also significantly higher for 

Assessment  Mean SD Range 

PPVT Standard 

Score 

111.58 19.20 73-146 

Grammaticality 

Judgment 

Standard Score 

105.53 13.42 69-132 
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the low-probability condition compared to the no-predictor 

condition, t (37) = 3.60, p < .001. These results provide 

neurophysiological evidence that children demonstrated 

sensitivity to the different probability conditions, measured 

by the EEG data, which is consistent with the findings of 

Jost et al. (2015). These results suggest that as a group, 

children’s learning of the predictor-target statistical patterns 

was reflected by a larger amplitude for the high predictor 

stimuli, and to a lesser extent, for the low predictor stimuli. 

Figure 3: ERP waveform in the posterior region showing 3 

different probability conditions. High- probability line is on the top 

(blue), low-probability line is in the middle (green), and no-

predictor line (baseline) is at the bottom (red). 

 

Reaction Times Similarly, the behavioral analyses provide 

evidence of statistical learning. The results of the second 

one-way ANOVA comparing RT in each predictor 

condition showed that participants responded significantly 

differently to the 3 predictor conditions, F(2, 70) = 31.04, p 

< .001, sphericity assumed. Paired-sample t tests revealed 

that the RT was significantly lower to the target following 

the high-probability stimuli (M = 388.97, SD = 78.84) 

compared to when the target followed the low-probability 

stimuli (M = 465.08, SD =65.89,), t (35) = - 4.96, p < .001, 

and the no-predictor stimuli (M = 493.20, SD = 67.59), t 

(35) = - 6.21, p < .001. The RTs were also significantly 

lower for the target when it followed the low-probability 

condition compared to the no-predictor condition, t (35) = - 

4.18, p < .001.  

Furthermore, difference scores were created for both the 

ERPs and the RT data between the high and no predictor 

conditions to explore the magnitude of the learning effects. 

Because the target was preceded by a standard in the no-

predictor condition, we used it as the measure of baseline 

for both ERPs and RTs as it essentially constituted a 

measure of ERP or RT that would occur without any 

predictor. Thus, we defined SL by the difference between 

baseline and high-predictor conditions. This created one 

variable for ERP amplitude difference, high probability – 

no-predictor (H-N), and one variable for RT difference, no-

predictor – high probability (N-H).  Note that for the RTs, 

the difference scores were calculated to be positive since the 

high predictor condition elicited lower RTs than the no 

predictor condition.  

Correlations  

The relationship between ERP amplitude difference scores, 

RT difference scores, and language assessments were 

examined using Pearson’s correlation analyses. The H-N 

ERP variable (M = 2.11, SD = 2.59) was significantly 

positively correlated with N-H RT (M = 104.23, SD = 

100.71), r = .54, p = .001. Consistent with past research, 

SES (M = 3.67, SD = 2.06) was positively correlated with 

scores on PPVT (M = 111.58, SD = 19.20), r = .63, p < 

.001, and Grammaticality Judgement test (M = 105.53, SD 

= 13.42), r = .59, p < .001. However, SES was not 

correlated with any of the SL measures (r’s < 0.3, p’s > .07). 

Surprisingly, we did not find significant correlations 

between SL and either language measure (r’s < 0.3, p’s > 

.07). Partial correlation analyses with age as the controlled 

variable, did not result in any significant changes in these 

correlations. 

Moderation Analyses 

Hierarchical multiple regression analyses were conducted to 

examine if SES as the independent variable predicts 

language outcome in children and whether SL ability 

modifies this relationship. The predicting variables were 

standardized (converted to z scores) prior to data analyses. 

The results reveal that SL ability (H-N ERP variable) 

moderated the relationship between the caregivers’ 

education level and grammar, R2 
adj = .50, F(3, 34) = 13.13, 

p < .001, and marginally moderated the relationship 

between  the caregivers’ education level and receptive 

vocabulary in children, R2 
adj = .45, F (3, 34) = 11.18, p = 

.058 (see Figure 4). In addition, the SL reaction time for N-

H condition was a significant moderator of the relationship 

between SES and grammar scores, R2 
adj = .367, F(2, 33) = 

7.75,  p < .001, but not with receptive vocabulary, R2 
adj = 

.373, F (2, 33) = 8.33, p = ns. We controlled for potential 

covariates in each model by including 3 widely-used 

cognitive measures: Stroop (inhibitory control and 

attention), Block Design (visuo-spatial memory), and Digit 

Span (short-term memory) in each regression analysis 

separately. None of these measures were significant 

predictors of variance in grammar scores in addition to SL. 

However, Block Design and Digit span tasks were 

significant predictors of variance in receptive vocabulary 

scores, β = 7.42, p < .05 and β = 7.47, p < .05, respectively. 

In addition, we controlled for age as a potential covariate in 

all analyses which did not result in any significant 

explanation of variance in either language measure. The 

overall effect that can be seen in Figure 4 is that SES has a 

larger effect on language scores for the children with lower 

SL ability; SES has a much weaker influence on children 

with higher SL. This figure also shows that there is a good 

distribution of caregivers’ average education level in our 

sample.  
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Figure 4: Scatter plots of the interactions between language 

scores and SES for low and high SL. For the purpose of 

illustration, SL variable was separated into low SL and high SL by 

a median split of the data. 

Discussion 

In this study, we investigated whether SL moderates the 

known relationship between SES and language outcome. In 

the SL task, children demonstrated different sensitivity to 

the different probability conditions, indicating learning of 

the statistical probabilities. The reaction time results were 

consistent with the ERP results in demonstrating evidence 

of SL. Consistent with previous findings, there was a 

positive relationship between children’s SES level and their 

language ability (Feldman et al., 2003; Hoff & Tian, 2005; 

NICHHD, 2000). These results replicate previous studies 

demonstrating a relationship between primary caregiver’s 

education level and language development in children 

(Stanton-Chapman et al., 2002).  Children with more highly 

educated mothers demonstrated better language skills in 

both receptive vocabulary and grammar measures compared 

to those children whose mothers are not highly educated.   

 

More importantly, the results of the moderation analysis 

revealed that children with high SL appeared to have more 

robust language ability that was less affected by their SES.  

In other words, the negative effect of low SES on language 

appeared to be dampened by high SL ability. On the other 

hand, for children with lower SL ability, their language 

scores were much more sensitive to the effects of SES. 

Thus, children who were raised in less advantaged families 

showed more typical language development if they had 

good SL skills whereas if they had low SL their language 

scores were lower. These results are the first to suggest that 

intrinsic cognitive abilities, specifically SL, may play a 

moderating role in the relationship between SES and 

language skills in children. The negative effect of low SES 

on language is more apparent when a child’s SL ability is 

low compared to when SL ability is high.  

Results also showed that SL had a stronger moderating 

effect for grammar compared to receptive vocabulary 

scores. This distinction could possibly be explained by the 

declarative/procedural model of language, which posits that 

procedural learning and grammar share a common 

neurological substrate (Ullman, 2004). Thus, it makes sense 

that SL ability has a greater moderating effect on 

grammatical ability compared to vocabulary.  

It is important to mention that sample size of 38 

participants may be relatively small for the type of analyses 

used in this study, and so future research with a larger 

sample size is needed to confirm the observed interaction 

between SES, SL, and language. In addition, although up to 

this point we have considered SL an intrinsic or biological 

factor and SES an environmental one, it is also possible that 

children’s SL ability may have been shaped by the 

environment they are raised in while differences in SES 

level could be due to biological or genetic factors.  

In sum, this research provides an important examination 

of the relationship between learning abilities, the socio-

linguistic environment, and language development in 

children. The results suggest that having good SL abilities 

can help ameliorate the language disadvantages associated 

with being raised in a lower SES home environment, 

offering intriguing new ways to think about the relations 

between learning, language development, and the 

social/linguistic environment in which a child is raised. One 

possible implication of these findings is the possibility of 

designing intervention programs for children of families 

with low SES. Recent research has demonstrated that it may 

be possible to improve SL abilities through targeted 

computerized training (e.g., Smith, Conway, 

Bauernschmidt, & Pisoni, 2015). Thus, by promoting SL 

abilities in children raised in low SES families, it may be 

possible to facilitate children’s development by minimizing 

the impact of being raised in a less than optimal social and 

linguistic home environment. 
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