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Identification of PLXDC1 and PLXDC2  
as the transmembrane receptors for the 
multifunctional factor PEDF
Guo Cheng1,2†, Ming Zhong1,2†, Riki Kawaguchi1,2†, Miki Kassai1,2,  
Muayyad Al-Ubaidi3, Jun Deng1,2, Mariam Ter-Stepanian1,2, Hui Sun1,2*

1Department of Physiology, Howard Hughes Medical Institute, David Geffen School 
of Medicine, University of California, Los Angeles, Los Angeles, United States; 2Jules 
Stein Eye Institute, David Geffen School of Medicine, University of California, Los 
Angeles, Los Angeles, United States; 3Department of Cell Biology, University of 
Oklahoma Health Sciences Center, Oklahoma City, United States

Abstract Pigment Epithelium Derived Factor (PEDF) is a secreted factor that has broad 
biological activities. It was first identified as a neurotrophic factor and later as the most potent 
natural antiangiogenic factor, a stem cell niche factor, and an inhibitor of cancer cell growth. 
Numerous animal models demonstrated its therapeutic value in treating blinding diseases and 
diverse cancer types. A long-standing challenge is to reveal how PEDF acts on its target cells  
and the identities of the cell-surface receptors responsible for its activities. Here we report the 
identification of transmembrane proteins PLXDC1 and PLXDC2 as cell-surface receptors for PEDF. 
Using distinct cellular models, we demonstrate their cell type-specific receptor activities through 
loss of function and gain of function studies. Our experiments suggest that PEDF receptors form 
homooligomers under basal conditions, and PEDF dissociates the homooligomer to activate the 
receptors. Mutations in the intracellular domain can have profound effects on receptor activities.
DOI: 10.7554/eLife.05401.001

Introduction
Employing physiological pathways to impede pathological processes has been a fruitful approach in 
developing effective therapeutics for human disease. There exists a natural factor that can inhibit 
pathogenesis of several major diseases and has surprisingly diverse therapeutic value. This factor is 
called Pigment Epithelium-Derived Factor (PEDF) (Dawson et al., 1999; Tombran-Tink and Barnstable, 
2003) and was originally identified as a strong protective factor for neurons (Tombran-Tink and 
Barnstable, 2003). It was also initially known as EPC-1, a factor that is downregulated by more than 
100-fold in aged compared to young human fibroblasts (Pignolo et al., 1993). In an unbiased search 
for new antiangiogenic factors, PEDF was identified as the most potent endogenous inhibitor of angi-
ogenesis (Dawson et al., 1999). PEDF inhibits endothelial cell migration and angiogenesis even in 
the presence of strong proangiogenic factors (Dawson et al., 1999). It specifically targets new vessel 
growth without affecting pre-existing vessels. In numerous animal models, PEDF has been shown 
to have potent therapeutic effects in treating several major human diseases through its neurotrophic, 
anti-angiogenic, antitumorigenic and antimetastatic activities. In addition to treating major blinding 
diseases such as ischemia-induced retinopathy, diabetic retinopathy, glaucoma and age-related mac-
ular degeneration (Stellmach et al., 2001; Semkova et al., 2002; Miyazaki et al., 2011), PEDF has 
been shown to inhibit the growth of a wide variety of cancer types including melanoma, neuroblas-
toma, osteosarcoma, hepatoblastoma, Lewis lung carcinoma, chondrosarcoma, gastric carcinoma, 
glioma, Wilm's tumor, prostate cancer, and pancreatic cancer (Doll et al., 2003; Ek et al., 2006; 
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Fernandez-Garcia et al., 2007; Broadhead et al., 2009). In addition, PEDF has also been identified 
as a stem cell niche factor (Pumiglia and Temple, 2006; Ramirez-Castillejo et al., 2006; Andreu-
Agullo et al., 2009; Elahy et al., 2012) and an anti-inflammatory factor (Zamiri et al., 2006; Zhang 
et al., 2006b).

PEDF is widely expressed in many tissues such as the eye, brain, spinal cord, bone, liver, heart and 
lung. PEDF is also naturally present in the blood (Petersen et al., 2003). PEDF level was found to 
decrease during cellular senescence and aging (Pignolo et al., 1993; Tombran-Tink et al., 1995; 
Francis et al., 2004) and in many pathological conditions. A significant decrease in PEDF level in 
the eyes has been observed in patients with age-related macular degeneration and diabetic retinop-
athy, two major blinding diseases characterized by neovascularization (Ogata et al., 2001; Spranger 
et al., 2001; Holekamp et al., 2002; Ogata et al., 2002; Boehm et al., 2003). PEDF levels were also 
found to decrease with age in human eyes (Ogata et al., 2004; Smith and Steinle, 2007; Steinle 
et al., 2008). PEDF expression has been inversely related to metastasis in a variety of cancer types 
such as gliomas (Guan et al., 2003), lymphangiomas (Sidle et al., 2005), hepatoma (Matsumoto 
et al., 2004), melanoma (Orgaz et al., 2009), lung cancer (Zhang et al., 2006a), pancreatic cancer 
(Uehara et al., 2004), and prostate cancer (Halin et al., 2004).

A long-standing challenge has been to understand how PEDF acts on different cell types and its 
fundamental transmembrane mechanisms. Uncovering the transmembrane pathways of PEDF would 
lead to a better understanding of its fundamental mechanisms and the development of new therapeutic 
strategies. After many years of effort in trying both existing and new strategies on a variety of native 
tissues and cell types, we were unable to identify the PEDF receptor, likely due to its low abundance 
and transient nature of expression. Since PEDF's actions do not match any well-characterized recep-
tors, we reasoned that its receptor is likely new and uncharacterized. We tested human orphan recep-
tors and transmembrane domain proteins of unknown function for their ability to bind native PEDF on 
the cell surface and found two transmembrane domain proteins that confer cell-surface PEDF binding 

eLife digest Many cells in our body release signals that trigger responses in other cells.  
A protein called PEDF is a signal released from a variety of cells that can prevent the formation of 
new blood vessels, protect cells in the retina and brain from damage and stop cancer cells from 
growing. Experiments using model animals have also demonstrated that PEDF could be used to 
treat a variety of eye diseases that lead to blindness and many types of cancer.

PEDF is found in tissues including the brain, eye, liver, heart and lung, but it was not known how 
cells sense this signal. Cells are expected to have specific proteins called receptors on the cell 
surface membrane to detect PEDF and transmit the signal into the cell; however, the identity of 
these receptors has remained a long-standing unsolved puzzle.

Cheng, Zhong, Kawaguchi et al. have now identified two human proteins that act as receptors 
for PEDF. These proteins—known as PLXDC1 and PLXDC2—span the cell surface membrane, and 
bind to PEDF on the outside of the cell. PLXDC1 and PLXDC2 are expressed on different types of 
cells that respond to PEDF. Furthermore, PEDF was unable to act upon cells that had been 
engineered to make less of these two receptors.

This study also revealed that each receptor can play different roles in different cell types. For 
example, exposing one type of cell from blood vessels to PEDF would normally kill them, but cells 
without PLXDC2 (but not those without PLXDC1) could survive PEDF treatment. Furthermore, PEDF 
treatment protects a type of neuron against environmental damage, and this activity depends on 
PLXDC1, but not PLXDC2.

How do the receptors transmit the PEDF signal from the outside of the cell to the inside of the 
cell? Cheng, Zhong, Kawaguchi et al. found that when PEDF is not present, both PLXDC1 and 
PLXDC2 form complexes containing more than one copy of either receptor. When PEDF binds to 
the receptors, it causes these complexes to disassemble and this activates further downstream 
signaling events inside the cell.

Understanding PEDF receptors and their mechanisms will open the way to developing new drugs 
that target these receptors to treat human diseases.
DOI: 10.7554/eLife.05401.002
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and have other properties expected of PEDF receptors. These two membrane proteins both have a 
large extracellular domain, a transmembrane domain, and an intracellular domain, and share about 50% 
homology. These two membrane proteins are called plexin domain containing 1 (PLXDC1) and plexin 
domain containing 2 (PLXDC2). Gene and protein expression studies have revealed overlapping but 
distinct tissue expression patterns of PLXDC1 (St Croix et al., 2000; Gaultier et al., 2010) and PLXDC2 
(Leighton et al., 2001; McMurray et al., 2008; Miller-Delaney et al., 2011; Boheler et al., 2014).

Results
Cell-surface binding of PEDF mediated by PLXDC1 and PLXDC2
A prerequisite for a cell-surface receptor is the ability to confer cell-surface binding to the extracellular 
ligand. We found that expression of PLXDC1 or PLXDC2 confers extracellular PEDF binding to live 
cells (Figure 1A–C). PLXDC1 or PLXDC2 with a deletion of the extracellular domain no longer binds 
PEDF, while deletion of the intracellular domain has no effect on PEDF binding (Figure 1D–F). The 
domain structures of PLXDC1 and PLXDC2 are depicted in Figure 1—figure supplement 1. Staining 
with an extracellular epitope on live cells showed that all these proteins are expressed on the cell sur-
face (Figure 1G–L). These experiments demonstrated that PEDF binds to cell-surface transmem-
brane domain proteins PLXDC1 and PLXDC2 through their extracellular domains.

Cellular models of PEDF action
Studying PEDF receptors requires robust and accessible cellular assays for gain and loss of function 
studies. We used three cell types that respond robustly and reproducibly to PEDF as cellular models 
to study PEDF receptors: macrophage cell RAW267.4, endothelial cell SVEC4-10, and neuronal cell 
661W. These three cell types represent three distinct cellular targets of PEDF. We found that both 
PLXDC1 and PLXDC2 are expressed in these three cellular models, consistent with previous know-
ledge that both RAW267.4 and SVEC4-10 cells express PLXDC1 (Wang et al., 2005; Gaultier et al., 
2010). In macrophage RAW267.4, PEDF is known to stimulate secretion of IL-10, an anti-inflammatory 
cytokine (Zamiri et al., 2006). To perform loss of function studies, we screened for siRNAs that can 
effectively knockdown PLXDC1 or PLXDC2 expression in RAW26.4 cells (Figure 2—figure supple-
ment 1). The most effective siRNA was used in subsequent functional assays. We found that knock-
ing down of either PLXDC1 or PLXDC2 led to a substantial decrease in PEDF response (Figure 2A). 
Conversely, transfection of either receptor into macrophages further augments PEDF-induced secre-
tion of IL-10 without increasing basal activity (basal activity is defined as receptor activity without 
PEDF treatment) (Figure 2B). Either receptor lacking the cytoplasmic domain no longer has this 
activity, consistent with role of the cytoplasmic domain in cellular signaling (Figure 2B). Tyrosine 481 
in human PLXDC1 is a highly conserved residue in the cytoplasmic domain and is a potential phos-
phorylation site. PLXDC1 with a mutation of this single residue in the cytoplasmic domain (Y481F) 
has highly enhanced PEDF-mediated response without increasing the basal activity of the receptor 
(Figure 2D,E). One potential mechanism is that phosphorylation of this residue dampens receptor 
signaling and the mutation prevents this inhibition. PLXDC1 transfected cell shows about 100% 
increased activity in response to 2 nM PEDF as compared to control cells, while PLXDC1-Y481F cells 
showed about 400% increased activity in response to PEDF (Figure 2D). This profound stimulatory 
effect on PEDF signaling by mutating a single intracellular conserved residue in PLXDC1 supports its 
role in PEDF signaling.

Using endothelial cell SVEC4-10, we established a highly effective and reproducible assay to 
study PEDF-mediated endothelial cell death (Figure 3). We found that PEDF—mediated cell death 
was completely suppressed by siRNA-mediated knockdown of PLXDC2, but there was no suppres-
sion by siRNA knockdown of PLXDC1 (Figure 3A and Figure 3—figure supplement 1). Since the 
cytoplasmic domain of each receptor is expected to be involved in downstream signaling, we tested 
the effect of expression of the cytoplasmic domain fused to the transmembrane domain of another 
membrane protein (DCC) (Stein and Tessier-Lavigne, 2001) without the extracellular domain of each 
receptor. Interestingly, transfection of PLXDC2 cytoplasmic domain linked to the DCC transmembrane 
domain is sufficient to cause cell death independently of PEDF. In contrast, the cytoplasmic domain of 
PLXDC1 does not have this activity (Figure 3B). We also found that mutations in two cytoplasmic resi-
dues that are potential phosphorylation sites in the PLXDC2 tail enhance the effect of PLXDC2 in caus-
ing cell death (Figure 3B). These experiments demonstrated that PLXDC2 is responsible for mediating 

http://dx.doi.org/10.7554/eLife.05401


Biochemistry | Cell biology

Cheng et al. eLife 2014;3:e05401. DOI: 10.7554/eLife.05401 4 of 18

Research article

PEDF-mediated cell death in this cell type, while there is no detectable role of PLXDC1. In addition, 
the cytoplasmic domain of the PLXDC2 is sufficient to trigger downstream activity.

To assay PEDF's neurotrophic activity, we used 661W cells, a neuronal cell line derived from cone 
photoreceptors (Tan et al., 2004; Kanan et al., 2008). We found that PEDF treatment effectively pro-
tects 661W cells against oxidative damage. Knocking down PLXDC1, but not PLXDC2, in 661W cells 
abolishes the protective effect of PEDF (Figure 4A and Figure 4—figure supplement 1). Conversely, 
using gain of function analysis, we showed that transfection of PLXDC1 further enhances the protec-
tive effect of PEDF and that transfection of the cytoplasmic domain of PLXDC1 protects 661W 

Figure 1. The binding of PEDF to PLXDC1 and PLXDC2 on cell surface. Upper panel: Binding of biotinylated PEDF 
to control HEK293 cells (A) or HEK293 cells transfected with PLXDC1 (B), PLXDC2 (C), intracellular domain deleted 
PLXDC2 (D, PLXDC2-dC), extracellular domain (ECD) deleted PLXDC1 (E), or ECD deleted PLXDC2 (F). Binding  
was detected by stretavidin-alkaline phosphatase, shown as deep purple color. Lower panel: Live cell staining of  
an epitope tag of control HEK293 cells (G) or HEK293 cells transfected with PLXDC1 (H), PLXDC2 (I), intracellular 
domain deleted PLXDC2 (J, PLXDC2-dC), ECD-deleted PLXDC1 (K), or ECD deleted PLXDC2 (L). All constructs 
have the epitope tag engineered after the secretion signal at the N-terminus.
DOI: 10.7554/eLife.05401.003
The following figure supplement is available for figure 1:

Figure supplement 1. PLXDC1 and PLXDC2 schematic diagrams and alignment showing the definitions of 
domains. 
DOI: 10.7554/eLife.05401.004

http://dx.doi.org/10.7554/eLife.05401
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Figure 2. The roles of PLXDC1 and PLXDC2 in PEDF-induced IL-10 secretion by macrophage cell RAW267.4.  
(A) siRNA-mediated knockdown of PLXDC1 or PLXDC2 substantially suppresses PEDF-stimulated IL-10 secretion. 
Activity of control transfected cells with PEDF treatment is defined as 1. ** = p < 0.01. (B) Transfection of either 
PLXDC1 or PLXDC2 cDNA enhances RAW cell's PEDF-stimulated IL-10 secretion, while PLXDC1 or PLXDC2 lacking 
the cytoplasmic domain (PLXDC1-dC or PLXDC2-dC) do not show significantly different secretion from control 
EGFP transfection. Activity of control cells with PEDF treatment is defined as 1. ** = p < 0.01; NS = not significant. 
(C) Alignment of human, bovine, mouse, and rat PLXDC1 cytoplasmic tail and the location of the putative  
phosphorylated residue (residue number according to human PLXDC1). (D) Comparing PEDF-induced IL-10 
secretion by RAW267.4 transfected with PLXDC1 and PLXDC1-Y481F. Mutation Y481F on the cytoplasmic tail  
of PLXDC1 greatly enhances its response to PEDF. Activity of control transfected cells without PEDF treatment  
is defined as 1. (E) PEDF concentration-dependent stimulation of IL-10 secretion from control, PLXDC1, and 
PLXDC1-Y481F transfected cells (from D). Activity of PLXDC1-Y481F cells at 16 nM PEDF is defined as 1.
DOI: 10.7554/eLife.05401.005
The following figure supplements is available for figure 2:

Figure supplement 1. Unbiased screening for effective siRNAs that knock down PLXDC1 or PLXDC2 expression in 
macrophage cell RAW267.4. 
DOI: 10.7554/eLife.05401.006

http://dx.doi.org/10.7554/eLife.05401
http://dx.doi.org/10.7554/eLife.05401.005
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independent of PEDF (Figure 4B). These experiments suggest that the cytoplasmic domain of the 
receptor is responsible for triggering the intracellular events during receptor activation. The depend-
ence of 661W cell on PLXDC1 for the survival promoting effect of PEDF is in contrast to SVEC4-10's 
dependence on PLXDC2 to mediate the cell death effect of PEDF.

PEDF's receptor activation mechanism
Although PLXDC1 and PLXDC2 have an architecture reminiscent of membrane receptors with extra-
cellular, transmembrane and intracellular domains, they do not belong to any well-characterized 
receptor families and represent a family of their own. What is the consequence of PEDF's binding to 
these receptors? To answer this question, we performed further mechanistic studies on PEDF/receptor 
interaction. We hypothesized that PEDF might affect the oligomerization states of the receptors. We 
found that PLXDC1 and PLXDC2 form homooligomers in the absence of PEDF. We designed experi-
ments to compare homooligomerization and heterooligomerization and found that PLXDC1 and 
PLXDC2 preferentially form homooligomers (Figure 5—figure supplement 1). Using deletion series 
of the extracellular domains, we identified domain D as an important domain for oligomerization 
(Figure 5A). We noticed that the last residue in the cytoplasmic domain of both PLXDC1 and PLXDC2 
is a conserved cysteine. Since intracellular cysteines are in the reduced state, we tested whether 
copper phenanthroline-induced thiol oxidation (Zhou et al., 2009) could crosslink these cysteines. 
Indeed, we found that copper phenanthroline promoted the formation of covalent dimers, consistent 
with the close proximity of the two cysteines on the cytoplasmic domain (Figure 5B). This covalent 
dimer can be cleaved under reducing conditions (Figure 5B), consistent with its linkage through a 
disulfide bond catalyzed by copper phenanthroline. Interestingly, incubation with PEDF before copper 
phenanthroline treatment inhibited the formation of the dimer and promoted the formation of the 
monomer, indicating that the cytoplasmic tail is no longer in close contact with another cytoplasmic 
tail (Figure 5B).

Figure 3. The PLXDC2 dependence of PEDF's effect on endothelial cell SVEC4-10. (A) PEDF promoted-cell death of SVEC4-10 cells is suppressed by 
siRNA-mediated knockdown of PLXDC2, but not PLXDC1. Survival of control siRNA tranfected cells without PEDF treatment is defined as 1. Statistical 
significance is shown on the top. ** = p < 0.01, and NS = not significant. (B) Left panel: Schematic diagrams of full length receptors and the fusion 
proteins for the receptor cytoplasmic tails. The cytoplasmic tail of the receptor is fused to the TM domain of DCC, which is fused to the secretion signal 
of alkaline phosphase at the N-terminus. Alignment of human, mouse, rat and bovine PLXDC2 cytoplasmic tails shows complete conservation (bottom). 
Locations of potential phosphorylation sites are indicated. Right panel: Expression of cytoplasmic tail of PLXDC2, but not the cytoplasmic tail of PLXDC1 
promotes SVEC4-10 cell death. PLXDC2 double mutant S506A/Y511F has greater activity. Survival of control EGFP transfected cells without PEDF 
treatment is defined as 1. Statistical significance of the comparison of cells without PEDF treatment (with the control cells without PEDF treatment) is 
shown in blue. Statistical significance of the comparison of cells with PEDF treatment (with the control cells with PEDF treatment) is shown in red.  
* = p < 0.05, ** = p < 0.01, and NS = not significant.
DOI: 10.7554/eLife.05401.007
The following figure supplement is available for figure 3:

Figure supplement 1. Unbiased screening for effective siRNAs that knock down PLXDC1 or PLXDC2 expression in endothelial cell SVEC4-10. 
DOI: 10.7554/eLife.05401.008

http://dx.doi.org/10.7554/eLife.05401
http://dx.doi.org/10.7554/eLife.05401.007
http://dx.doi.org/10.7554/eLife.05401.008
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To pinpoint the receptor domain that interacts with PEDF, we used a deletion series of PLXDC1 
to perform copurification analysis with PEDF and found that extracellular domain B plays an impor-
tant role in binding to PEDF (Figure 6A). To demonstrate PEDF's effect on receptor oligomerization 
in live cells, we developed an assay to visualize PEDF-induced receptor dissociation on the cell sur-
face. Epitope-tagged extracellular domain of PLXDC1 is associated with the cell surface through its 
binding to the coexpressed full length untagged PLXDC1 (Figure 6B). Incubation of the cells with 
PEDF causes the dissociation of the extracellular domain and the loss of the epitope tag from the cell 
surface (Figure 6B). This live cell-based assay again demonstrated the ability of PEDF to dissociate 
receptor oligomer.

To further observe PEDF's effect on receptor oligomerization in real time, we developed a fluo-
rescence resonance energy transfer (FRET)-based assay. We coexpressed PLXDC1 fused to a Cyan 
Fluorescent Protein (CFP) and PLXDC1 fused to a yellow fluorescent protein (YFP) at the C-terminus 
and observed a time-dependent decrease in FRET signals after addition of PEDF, but not a control 
extracellular protein nidogen (Figure 6C). To show that this decrease in FRET signal was due to 
receptor dissociation, we crosslinked the cysteine residues on the cytoplasmic domain of PLXDC1 
using sulfhydryl-specific crosslinker bismaleimidoethane (BMOE) before PEDF addition and found that 
this crosslinker prevents PEDF-dependent suppression of the FRET signal (Figure 7). However, muta-
tion of the cysteine to serine (C500S) prevents the blocking effect of BMOE on PEDF (Figure 7).

In summary, using three different techniques (visualization of receptor oligomers in SDS-PAGE, 
visualization of receptor oligomers on the cell surface, and tracking receptor interaction in real-time), 
we found that PEDF receptors self-associate to form homooligomers and that PEDF has the ability to 
dissociate receptor homooligomers so that the cytoplasmic tails are no longer in contact with each 
other. This effect of PEDF is consistent with the ability of membrane-tethered cytoplasmic tail to acti-
vate downstream pathways.

Figure 4. PEDF's neurotrophic effect on 661W cells depends on PLXDC1. (A) PEDF treatment protects 661W cells 
against hydrogen peroxide-mediated oxidative damage. siRNA-mediated knockdown of PLXDC1, but not PLXDC2 
abolishes the protective effect of PEDF. The survival of control siRNA transfected cell without treatment is defined 
as 1. (B) Transfection of PLXDC1 or the cytoplasmic domain of PLXDC1 fused to DCC's TM domain enhances 
protection of 661W cells against damage caused by hydrogen peroxide. The effect of DCC-PLXDC1 C-tail is 
independent of PEDF. Cell survival of transfected control is defined as 1. Statistical significance is shown on the  
top. ** = p < 0.01; NS = not significant.
DOI: 10.7554/eLife.05401.009
The following figure supplement is available for figure 4:

Figure supplement 1. Unbiased screening for effective siRNAs that knock down PLXDC1 or PLXDC2 expression in 
neuronal cell 661W. 
DOI: 10.7554/eLife.05401.010

http://dx.doi.org/10.7554/eLife.05401
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Discussion
Both PLXDC1 and PLXDC2 are cell-surface transmembrane domain proteins and confer cell-surface 
binding to PEDF, as expected of cell-surface receptors. PLXDC1 and PLXDC2 represent a receptor 
family of their own that has two members in human. Through both loss of function and gain of 

Figure 5. Receptor oligomerization. (A) PLXDC1 deletion series with a Rim tag following the N-terminal secretion 
signal were purified together with HA-tagged full length PLXDC1 by purifying the Rim tag (diagrams on the left). 
Anti-Rim Western is shown on the top and anti-HA Western is shown on the bottom for the elutions. HA-PLXDC1 
no longer copurifies if domain D is deleted. (B) Copper phenanthroline [Cu (II) Phe] treatment creates covalent 
receptor dimer through oxidation of the free cysteine residue on the cytoplasmic tail (schematic diagram on the 
left). Cu (II) Phe oxidation creates disulfide bond-linked covalent PLXDC1 dimer, as indicated in the Western blot 
for the receptor. PEDF inhibits dimer formation as shown by increased monomer band on a non-reducing gel after 
Cu (II) Phe oxidation (red asterisk). The disulfide bond-linked dimers are sensitive to DTT treatment as shown in the 
reducing gel on the right. Molecular weight markers are in kD.
DOI: 10.7554/eLife.05401.011
The following figure supplement is available for figure 5:

Figure supplement 1. PLXDC1 and PLXDC2 preferentially form homooligomers. 
DOI: 10.7554/eLife.05401.012

http://dx.doi.org/10.7554/eLife.05401
http://dx.doi.org/10.7554/eLife.05401.011
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Figure 6. Structure/function and real-time analysis of PEDF/receptor interaction. (A) PEDF with HA tag after  
the N-terminal secretion signal is copurified with different deletion mutants of PLXDC1, which are all tagged with  
a Rim tag following the N-terminal secretion signal (diagrams on the left). Purification of the Rim-tagged proteins 
with HA-PEDF is shown on the right. The upper Western is the anti-Rim Western and the lower Western is anti-HA 
Western to detect PEDF. Deletion of domain B largely abolishes the interaction between PLXDC1 and HA-PEDF.  
(B) An assay to study PEDF-mediated disruption of receptor dimers on the cell surface. Schematic diagram is on 
the left. PEDF displaces Rim-tagged PLXDC1 extracellular domain (green) bound to cell surface PLXDC1 (gray) to 
cause detachment of the extracellular domain. Immunostaining of Rim-tagged PLXDC1 extracellular domain, 
Rim-PLXDC1N, (cotransfected with PLXDC1) on live cell surface is shown in the middle two pictures (green signal). 
Blue color is nucleic acid stain DAPI. Upper picture: control (no PEDF). Lower picture: PEDF treated. Quantitation  
of bound Rim-tagged PLXDC1 extracellular domain on the cell surface with or without PEDF treatment is shown on 
Figure 6. Continued on next page

http://dx.doi.org/10.7554/eLife.05401
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function studies using three distinct cellular models that respond robustly to PEDF, we showed that 
both receptors have the expected properties of PEDF receptors in transducing PEDF signal and have 
cell type-specific roles. How does PEDF activate its cell-surface receptors? Our experiments suggest 
that these receptors form homodimers under basal conditions, and the dimerization functions to 
inhibit self-activation. PEDF activates its receptors through dissociation of the dimer. PEDF's ability to 
dissociate the receptor dimer was demonstrated using three independent techniques. Without oli-
gomerization provided by the extracellular domains, the cytoplasmic domain of the PEDF receptor is 
sufficient to activate downstream signaling. We also showed that modulating the cytoplasmic domain 
strongly affects receptor signaling. For example, a mutation in a conserved tyrosine residue in the 
cytoplasmic domain of PLXDC1 greatly enhanced PEDF-induced and PLXDC1-dependent IL-10 se-
cretion from macrophages. Structure and function analysis revealed an important PEDF-interacting 
domain and a dimerization domain in the receptors.

PLXDC1 and PLXDC2 are homologous membrane proteins with overlapping but distinct expres-
sion patterns in physiological and pathological conditions, as revealed by gene and protein expres-
sion studies. PLXDC1 (also called tumor endothelial marker 7) was discovered as one of the genes 
enriched in many types of human tumor endothelial cells (St Croix et al., 2000; Schwarze et al., 2005; 
Beaty et al., 2007; Lu et al., 2007; van Beijnum et al., 2009). PLXDC1 was also found to be highly 
expressed in the endothelial cells of another human disease- diabetic retinopathy- and is highly spe-
cific to diseased blood vessels (Yamaji et al., 2008). PLXDC1 is also expressed on the macrophage cell 
surface (Gaultier et al., 2010) and is downregulated by LRP-1, a large membrane protein involved in 
endocytosis of a variety of cell surface receptors (Herz et al., 1990; Herz and Strickland, 2001). In 
contrast, PLXDC2, but not PLXDC1, was found as one of the genes that increase in expression during 
cellular senescence (Schwarze et al., 2005), as one of the E2F1 target genes repressed by serum 
(Hallstrom et al., 2008), as a gene negatively correlated with malignant cell transformation in tumors 
and its disturbance increases tumor volume (McMurray et al., 2008), and as a candidate axon guid-
ance molecule (Leighton et al., 2001). Microarray analysis also revealed PLXDC2, but not PLXDC1, 
as one of the markers of adult stem cells (Noh, 2006). Proteomic analysis also revealed PLXDC2 on 
the cell surface of human pluripotent stem cells (Boheler et al., 2014). PLXDC2 is also known as a 
mitogen for neuroprogenitors (Miller-Delaney et al., 2011). Interestingly, expression patterns of both 
PEDF and PLXDC2 have been previously linked to cellular growth states. PEDF expression correlates 
with G0 growth arrest in fibroblasts (Pignolo et al., 1993, 2003) and has been demonstrated to induce 
cell cycle arrest of glioma cells (Zhang et al., 2007). The correlation between PLXDC2 and cell prolif-
eration (Miller-Delaney et al., 2011), senescence (Schwarze et al., 2005), transformation (McMurray 
et al., 2008) and cell death (Hallstrom et al., 2008) has been noted in several studies. Consistent with 
these earlier reports, our study identified PLXDC2 as playing the dominant role in a PEDF-induced 
endothelial cell death model.

From a different perspective, this study identified the extracellular ligand for two membrane pro-
teins and showed that they function as cell-surface receptors that can transduce an extracellular signal. 
These receptors represent a new type of cell-surface receptor. They oligomerize in the basal state 
and are activated by ligand-induced dissociation. Mechanistically, they behave oppositely from many 
known single transmembrane domain signaling receptors that are activated by ligand-induced dimer-
ization. However, detailed mechanisms can be complex, as exemplified by the human grown hormone 
receptor. For a long time after its original discovery more than two decades ago (Leung et al., 1987; 
Cunningham and Wells, 1989; Cunningham et al., 1989, 1991a, 1991b), the growth hormone 
receptor was hypothesized to be activated by ligand-induced receptor dimerization, as revealed by 
classic studies. A recent study suggested that its conformational change is similar to that of scissors 
(Brooks et al., 2014).

the right. (C) An assay to study PEDF-mediated disruption of receptor dimerization in real time. Schematic diagram 
of the experimental design is shown on the left. The cytoplasmic tail of PLXDC1 is linked to CFP or YFP, which are 
in close proximity due to receptor dimerization. PEDF suppresses the FRET signal between CFP and YFP if it 
disrupts the association of the receptor dimer. Right panel: PEDF, but not a control protein (nidogen) causes a 
time-dependent decrease in FRET signal between PLXDC1-CFP and PLXDC1-YFP. Both PEDF and nidogen were 
added at time 0.
DOI: 10.7554/eLife.05401.013

Figure 6. Continued
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PEDF receptors have at least two mechanisms to diversify their function and regulation. First, 
both human PLXDC1 and PLXDC2 have several isoforms. Second, receptors can couple to different 
immediate downstream molecules. The immediate downstream molecules that transduce the PEDF 

Figure 7. Crosslinking of the terminal cysteine of PLXDC1 prevents PEDF's effect on receptor dimerization.  
(A) Schematic diagrams of the experimental design. ‘C’ indicates the cysteine residue located at the C-terminus of 
PLXDC1. ‘S’ indicates mutation of this residue to serine. (B and C) Crosslinking of the cysteine on the cytoplasmic tail 
of wild-type PLXDC1 (PLXDC1-WT) by sulfhydryl-specific crosslinker BMOE prevents the PEDF-dependent decrease of 
FRET signal between PLXDC1-CFP and PLXDC1-YFP. (D and E) BMOE has no effect on PEDF-dependent decrease of 
FRET signal between PLXDC1-CFP and PLXDC1-YFP if the C-terminal cysteine is mutated to serine (PLXDC1-C500S).
DOI: 10.7554/eLife.05401.014
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receptor signal (the equivalent of G-proteins for G-protein coupled receptors) are still unknown. As 
shown by G-protein coupled receptors, distinct cellular responses can be governed not only by distinct 
cell-surface receptors, but also by distinct downstream molecules. Because PEDF is a multifunctional 
factor, understanding the fundamental mechanisms of its transmembrane receptors in different cellular 
contexts will help to develop potent and specific small molecule-based therapeutics in treating diseases.

Materials and methods
PEDF purification from conditioned media
To purify PEDF, we performed large-scale transfection of human PEDF cDNA into HEK293T cells using 
Jetprime reagent (Polyplus-transfection SA, Illkirch, France). Six hours after transfection, the cells were 
washed twice with Hank's Balanced Salt Solution (HBSS) and changed to serum free medium (SFM). 
PEDF is naturally present in several isoforms as revealed by isoelectric focusing (Tombran-Tink et al., 
1995). Not all PEDF isoforms are equally active (Duh et al., 2002; Subramanian et al., 2012). Consistent 
with previous reports (Duh et al., 2002; Subramanian et al., 2012), we found that more negatively 
charged PEDF isoforms are more biologically active. Therefore, we purified PEDF using sequential anion 
exchange chromatography. Briefly, PEDF was purified from conditioned SFM 24, 48, or 72 hours after 
transfection using a combination of Q sepharose (Amersham/GE Healthcare, Little Chalfont, United 
Kingdom) and polyethyleneimine column (AX-300, Eprogen, Downers Grove, IL). The conditioned SFM 
was dialyzed against binding buffer (20 mM Tris, pH 7.5 and 50 mM NaCl) overnight at 4°C. Dialyzed 
medium was then applied to Q sepharose equilibrated with the binding buffer. The column was washed 
with 10 bed volumes of binding buffer before elution using buffer containing 20 mM Tris, pH 7.5 with 
100, 200, 300, or 400 mM NaCl. High performance liquid chromatography (HPLC) using polyethyle-
neimine column was performed to further purify PEDF. Briefly, buffer exchange for the Q fraction con-
taining PEDF was performed for three times by diluting with 10 vol of column buffer (25 mM Tris, pH 8.4) 
and concentrating in an Amicon Ultra-4 filter (Millipore, Billerica, MA) before being loaded onto the 
HPLC system. HPLC was performed using the Agilent 1100 series liquid chromatography system with 
a diode-array detector. Proteins were separated on polyethyleneimine column using column buffer with 
increasing NaCl concentrations as the mobile phase (from 0 to 1.8 M in 8 min and the 1.8 M sodium 
concentration was maintained for another 4 min). The flow speed of mobile phase was 0.5 ml/min, and 
four fractions were collected every minute. Elution fractions with significant A280 value were saved. 
Buffer exchange was performed for three times by diluting with 10 vol of phosphate buffered saline 
(PBS) and concentrating in an Amicon Ultra spin filter. The final volume of each concentrated elution was 
0.5 ml. The presence of PEDF was confirmed by both total gel staining and Western blot analysis. Protein 
sterilization was achieved using Ultrafree Durapore 0.22 μm filter (Millipore). We also produced PEDF 
with a 6XHis tag followed by the HA tag at the N-terminus after the secretion signal and PEDF with an 
8XHis tag at the C-terminus of PEDF. We found that tagging significantly diminishes the biological activity 
of PEDF. Therefore, all biological assays were performed using untagged PEDF. The negative effect of 
epitope tagging on PEDF is likely one of the reasons that PEDF receptors are difficult to identify.

Engineering cDNAs for PLXDC1 and PLXDC2
The domains for human PLXDC1 (numbered according to the full length receptor with the secretion 
signal) were: domain A (19–127), domain B (128–242), domain C (243–292), and domain D (293–359). 
We also created chimeras containing the transmembrane domain (TM) of another single transmem-
brane protein DCC (Stein and Tessier-Lavigne, 2001) and the C-terminus of the receptors. The DCC 
TM domain was fused to the secretion signal of alkaline phosphatase and Rim tag at the N-terminus 
and the cytoplasmic tail of PLXDC1 or PLXDC2 at the C-terminus. A monoclonal antibody has been 
produced against the Rim tag, which has 14 residues (NETYDLPLHPRTAG) (Illing et al., 1997). The 
most likely positions of phosphorylation sites in the cytoplasmic domains of human PLXDC1 and PLXDC2 
were identified through PhosphoSite Plus, a bioinformatics resource to identify potential protein 
phosphorylation sites (http://www.phosphosite.org/staticUsingPhosphosite.do). Residue numbers are 
according to human isoform 1. The secretion signal for alkaline phosphatase (AP) followed by the 
Rim tag was engineered at the N-terminus of each extracellular domain.

Receptor binding assay
PEDF was biotinylated using sulfo-NHS-SS-biotin (Pierce, Rockford, IL) after overnight dialysis in PBS 
at 4°C. After biotinylation, free biotin was removed by further overnight dialysis in PBS at 4°C and the 

http://dx.doi.org/10.7554/eLife.05401
http://www.phosphosite.org/staticUsingPhosphosite.do


Biochemistry | Cell biology

Cheng et al. eLife 2014;3:e05401. DOI: 10.7554/eLife.05401 13 of 18

Research article

degree of biotinylation was assessed by visualizing the shifting of molecular weight in SDS-PAGE gels 
after incubation with streptavidin. The advantage of biotinylation is that biotin is a tag much smaller 
than peptide tags or fusion protein tags and is less likely to interfere with biological activities. In addi-
tion, biotin is added after protein production and folding and allows sensitive detection. However, 
excessive biotinylation can inactivate proteins due to the modification of key lysine residues. To pre-
vent excessive biotinylation, the ideal degree of biotinylation is about 90%, as judged by shifting in 
molecular weight after binding to streptavidin. Biotinylated PEDF (20 nM) was added to transfected or 
control cells grown on a fibronectin-coated dish in HBSS with 10 mM HEPES, pH 7.5 and 2 mg/ml BSA 
at room temperature for 1 hour. After two continuous washes with HBSS, 10 mM HEPES, pH 7.5, the 
cells were fixed using freshly made 4% paraformaldehyde in HBSS, pH 7.5 for 20 min. The cells were 
heated in HBSS at 65°C for 1 hr to inactive endogenous AP activity. After blocking in 5 mg/ml BSA in 
PBS for 1 hour, the cells were incubated with streptavidin-AP diluted in 5 mg/ml BSA in PBS. After four 
washes using PBS, AP activity was visualized using NBT/BCIP (Thermo Scientific, Waltham, MA).

Receptor dimer crosslinking catalyzed by copper phenanthroline  
[Cu (II) Phe]
Membranes were prepared from HEK293 cells transfected with the receptors using PBS and 5 mM 
EDTA, which helps to keep free cysteine residues in the reduced state. After one wash using PBS, the 
membrane was resuspended in PBS and incubated with or without PEDF for 3 hr at room temperature. 
Oxidation-induced disulfide bond formation was catalyzed by 0.5 mM Cu (II) Phe. After 5 min, EDTA 
was added to each reaction to 50 mM to stop the oxidation reaction. The membranes were spun down, 
resuspended and boiled in SDS loading buffer with or without DTT for loading onto a SDS-PAGE gel.

Assay to visualize the dissociation of receptor extracellular domain  
by PEDF
We developed a live cell-based assay to study the ability of PEDF to dissociate receptor complexes. 
PLXDC1 extracellular domain with a Rim tag following the N-terminal secretion signal of alkaline phos-
phatase is cotransfected into COS-1 cells with wild-type PLXDC1 with no tag. The Rim-tagged extra-
cellular domain of PLXDC1 associates with the cell surface through its interaction with the extracellular 
domain of the full length PLXDC1. 1 day after transfection, the cells were washed once with HBSS and 
incubated overnight at 37°C in SFM with 5 mg/ml BSA with or without 50 nM PEDF. The next day cell 
surface associated Rim tagged protein is assessed through live cell staining by anti-Rim antibody by 
incubating with antibody diluted in SFM with 5 mg/ml BSA for 60 min at 37°C. After antibody binding, 
the cells were washed with HBSS and fixed in freshly made 4% paraformaldehyde in HBSS, pH 7.5 for 
20 min. Rim antibody was detected through immunostaining using anti-mouse secondary antibody. 
Fluorescent signals were quantified using Nikon NIS Elements AR Analysis software.

Cell death assay
The survival of SVEC4-10 endothelial cells (ATCC, Manassas, VA) upon PEDF treatment was analyzed 
by the MTT assay. Briefly, SVEC4-10 cells were grown in 10% FBS in DMEM containing penicillin and 
streptomycin until confluency. Cell death was initiated by splitting confluent SVEC 1:10 in serum free 
media (SFM) and 1 mg/ml BSA with or without 20 nM PEDF. PEDF was added before cell addition. 
Trypsin used in cell splitting was neutralized by defined trypsin inhibitor (Gibco) and removed by spin-
ning down the cells. Cell viability was assessed 24 hr later after cell plating. MTT assay was done by 
incubating cells with 100 μg/ml MTT reagent (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide) in SFM for 3 hr at 37°C. Dimethyl sulfoxide (DMSO) was added to each well after MTT was 
removed. The absorbance of the purple color from the formazan formed was measured and quanti-
fied using POLARstar Omega (BMG Labtech, Ortenberg, Germany) at 534 nm. For cell death assay on 
siRNA transfected cells, cell plating in SFM (with or without PEDF addition) was done after two rounds 
of 48-hour transfection. For cell death assay on DNA transfected cells, the cells were split at 1:15 ratio 
16 hours before transfection and were transfected using Jetprime reagent (about 40–50% confluency 
during transfection). Cell plating in SFM and 1 mg/ml BSA (with or without PEDF addition) was done 
16 hours after transfection. All assays were performed in 96-well plates in triplicate.

Assay for neurotrophic activity of PEDF
We found that PEDF protects cone-derived 661W cells from hydrogen peroxide-mediated oxidative 
damage. 661W cells were grown in 10% FBS, 40 μg/l of hydrocortisone 21-hemisuccinate, 40 μg/l of 
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progesterone, 32 mg/l of putrescine, 40 μl/l of β-mercaptoethanol in DMEM containing penicillin and 
streptomycin and treated with 10 nM PEDF for 20 hours. After addition of 2.5 mM H2O2 for 1 hr (to 
achieve about 90% cell death in control cells the next day), the media was replaced with fresh media 
and the cells were continuously grown for 24 hours. Cell survival was quantified using the MTT assay 
as described above. For siRNA transfected cells, 10 nM PEDF was added after two rounds of 48-hour 
transfection. For DNA transfection, the cells were split at 1:5 ratio 16 hours before transfection and 
were transfected using Jetprime reagent. Four hours after transfection, the media was changed to 
fresh media and PEDF was added.

Assay for IL-10 secretion by macrophage
Macrophage cell line RAW267.4 (ATCC) was grown in RPMI1640 media with 10% FBS (Gibco Certified 
Performance Plus FBS), penicillin and streptomycin. For DNA transfection, the cells were split at 1:6 
ratio 16 hours before transfection and were transfected using Jetprime reagent. Eight hours after 
transfection, the media was changed to fresh media and PEDF was added. PEDF-induced IL-10 secre-
tion from macrophages was assayed using mouse IL-10 ELISA kit from Southern Biotech 18 hours after 
PEDF addition. For siRNA transfection, media was changed to fresh media and PEDF was added after 
two rounds of 48-hour transfection. All final assays were performed in 96-well plates in triplicate. We 
found that longer culture of RAW267.4 cells without cell replating leads to more responsiveness to 
PEDF. Since siRNA experiments need longer cell culture time, cells are consistently more responsive 
to PEDF than cells in DNA transfection experiments, which are done only 1 day after transfection.

siRNA-mediated knockdown
After screening many siRNA transfection reagents including X-tremeGENE (Roche, Basel, Switzerland), 
siTran (Origene, Rockville, MD), Jetprime (Polyplus-transfection SA), RNAiMAX (Life Technologies, 
Carlsbad, CA), and GenMute (SignaGen, Rockville, MD), we found that the most effective siRNA trans-
fection reagent is RNAiMAX. Since the three cell types (RAW267.4, SVEC4-10 and 661W) that were 
used as cellular models to study PEDF receptors are all mouse cells, siRNAs targeting mouse genes 
were tested. For mouse PLXDC1, siRNAs tested included Dharmacon D-060224-01 (siRNA-1), 
Dharmacon D-060224-02 (siRNA-2), Dharmacon D-060224-03 (siRNA-3), Dharmacon D-060224-04 
(siRNA-4), Invitrogen 4390771-s90877 (siRNA-5), Invitrogen 4390771-s90878 (siRNA-6), Dharmacon 
smart pool L-060224-01 (siRNA-7) and Origene 866091-SR46066C (siRNA-8). For mouse PLXDC2, 
siRNAs tested included Dharmacon D-059538-01 (siRNA-1), Dharmacon D-059538-02 (siRNA-2), 
Dharmacon D-059538-03 (siRNA-3), Dharmacon D-059538-04 (siRNA-4), Invitrogen 4390771-n380220 
(siRNA-5), Invitrogen 4390771-n380229 (siRNA-6), Dharmacon smart pool L-059538-01 (siRNA-7), 
and Origene 866094-SR416812C (siRNA-8). For mouse LRP-1, siRNAs tested included Origene 
SR423695A-866095 (siRNA-1) and SR423695B-866096 (siRNA-2). Control siRNA was from Invitrogen. 
The most effective siRNA was transfected through reverse transfection using RNAiMAX in antibiotic 
free culture medium at 50 nM concentration with a cell splitting ratio of 1:5. To achieve a high trans-
fection rate and knockdown effect, reverse transfection was performed twice consecutively following 
the manufacturer's protocol. At 48 hr after transfection, the cells were reverse transfected again using 
the same siRNA for the second round of knockdown. Functional assays were performed 48 hours 
after the second round of reverse transfection.

Gene expression analysis
Gene expression levels were analyzed by RT-PCR. Briefly, total RNA was extracted from cells with a kit 
(Qiagen, Hilden, Germany). Total RNA concentration was measured by Nanodrop (Thermo Scientific). 
Total RNA was then used to generate cDNA by using ThemoScript Reverse transcriptase (Life 
Technologies). Mouse PLXDC1 was amplified by 5′-GGAGGCAGAAGGCAAGACATGCG-3′and 
5′-CGTGGAGGCCGAGCAGTGCTGA-3′. Mouse PLXDC2 was amplified by 5′-CTGCCAGCCGGGAT 
CTGTGGGTTAACATAGACC-3′ and 5′-GGGAAGTGGAGTCATCTCCACAGCTGAGATGTTGG-3′.

Copurification studies
Rim-tagged proteins were purified using the anti-Rim antibody- conjugated to CNBr-activated 
Sepharose 4 Fast Flow beads (Amersham/GE Healthcare). Briefly, cells were washed once with HBSS 
and lysed in well with 1% Triton X-100 in HBSS and protease inhibitors for 30 min on ice. Cell lysate 
was spun at 16,000×g, 4°C for 10 min to remove insoluble materials. Cell lysate was applied to anti-
Rim antibody conjugated beads, and rotated for 4 hr at 4°C. The beads were washed three times 
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using 0.1% Triton X-100 in HBSS by spinning down at 1000×g for 30 s and eluted in 0.1% Triton X-100 
in 0.1 M Glycine, pH = 2.3 for 15 min at room temperature. Tris (pH 9.5) was added to 0.1 M to neu-
tralize the elution before the samples were analyzed. HA-tagged proteins were detected using a 
monoclonal anti-HA antibody. To compare homooligomerization and heteroligomerization, anti-Rim 
purification was performed 24 hr after cells were transfected with Rim-tagged PLXDC1 (20%), HA-tagged 
PLXDC1 (40%) and untagged PLXDC2 (40%) in one experiment and Rim-tagged PLXDC2 (20%), 
HA-tagged PLXDC2 (40%) and untagged PLXDC1 (40%) in another experiment. Copurified receptors 
were detected either by anti-HA antibody or antibody specific to PLXDC1 or PLXDC2. Polyclonal 
antibodies against the N-terminal peptide of human PLXDC1 (SPQPGAGHDEGPGSGWAAKGTVRG) 
and the N-terminal peptide of human PLXDC2 (KPGDQILDWQYGVTQAFPHTE) were produced  
by conjugating the peptides to KLH before immunization of rabbits (Genemed Synthesis, San 
Antonio, TX). Antibodies were purified from rabbit crude sera using the corresponding peptide 
conjugated to Affigel (Bio-Rad, Hercules, CA).

Real-time analysis of PEDF-mediated dissociation of receptor 
oligomerization by fluorescence resonance transfer (FRET)
CFP and YFP proteins were fused to the C-terminus of PLXDC1 and PLXDC2 to detect oligomerization 
of PEDF receptors. Three glycine linkers were added between YFP/CFP and the C-terminal tail of 
PLXDC1 or PLXDC2. FRET analysis was performed similarly as described (Kawaguchi et al., 2011). 
Briefly, membranes were prepared from HEK293 cells that coexpress PLXDC1-CFP and PLXDC2-YFP. 
CFP-YFP FRET was measured in black flat bottom 96-well plates (Microfluor 2, Thermo Scientific) using 
simultaneous dual emission optics in POLARstar Omega with excitation filter 422-20 and emission fil-
ters 470-12 and 530-10. The background signal of each reaction was measured before PEDF was 
added to the membrane suspension to initiate the reactions. The signal from each time point was the 
average of 20 measurements. After all the measurements were done, the signals were calculated as 
the ratio of emissions at 530 nm over emissions at 470 nm to observe the dynamic change in FRET. To 
crosslink the C-terminal free cysteine using BMOE (Pierce), membrane preparations were made in PBS 
and 5 mM EDTA. BMOE was added to the membrane suspension at a concentration of 2 mM. The 
reaction was carried out at room temperature for 1 hour. Concentrated DTT solution was added to 
5 mM to quench the reaction. After incubation at room temperature for 10 min, 1 ml of HBSS/HEPES 
(HBSS with 10 mM HEPES, pH 7.5) was added to the membrane suspension. After the membranes 
were pelleted down, the resulting membrane pellets were washed once and resuspended in HBSS/
HEPES for FRET measurement.
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