
UC Berkeley
Earlier Faculty Research

Title
History-Dependent Optimization of Bridge Maintenance and Replacement Decisions Using 
Markov Decision Process

Permalink
https://escholarship.org/uc/item/6c94v984

Authors
Robelin, Charles-Antoine
Madanat, Samer M

Publication Date
2007

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6c94v984
https://escholarship.org
http://www.cdlib.org/


History-Dependent Bridge Deck Maintenance
and Replacement Optimization with Markov

Decision Processes
Charles-Antoine Robelin1 and Samer M. Madanat2

Abstract: Bridge maintenance and replacement optimization methods use deterioration models to predict the future condition of bridge
components. The purpose of this paper is to develop a framework for bridge maintenance optimization using a deterioration model that
takes into account aspects of the history of the bridge condition and maintenance, while allowing the use of efficient optimization
techniques. Markovian models are widely used to represent bridge component deterioration. In existing Markovian models, the state is the
bridge component condition, and the history of the condition is not taken into account, which is seen as a limitation. This paper describes
a method to formulate a realistic history-dependent model of bridge deck deterioration as a Markov chain, while retaining aspects of the
history of deterioration and maintenance as part of the model. This model is then used to formulate and solve a reliability-based bridge
maintenance optimization problem as a Markov decision process. A parametric study is conducted to compare the policies obtained in this
research with policies derived using a simpler Markovian model.

DOI: 10.1061/�ASCE�1076-0342�2007�13:3�195�

CE Database subject headings: Infrastructure; Bridge maintenance; Bridge decks; Optimization; Stochastic models; Monte Carlo
method; Markov process.
Introduction

Based on the recent status of United States’ highways, bridges,
and transit �FHwA 2002�, the average year of construction of the
bridges in the United States was determined to be 1963. In 2002,
50% of the national daily traffic were utilizing bridges that were
older than forty years. Of the 586,000 bridges in the nation, 28%
were found deficient, half of which were structurally deficient.
The deteriorating bridge population, as well as the limited amount
of funds available for maintenance and inspection, led to the de-
velopment of bridge management systems to assist agencies to
make maintenance and rehabilitation decisions by optimizing the
use of available funds.

Experience with infrastructure management systems in the
United States shows that the benefits of systematic approaches to
facilities management have been substantial in practice. For ex-
ample, the Arizona Department of Transportation reported that the
implementation of their pavement management system �PMS� to
optimize pavement rehabilitation expenditures has saved over
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US$200 million in maintenance and rehabilitation costs over a
five-year period �OECD 1987�. These savings were achieved be-
cause the maintenance and rehabilitation resource allocation de-
cisions were made by the PMS with an objective to minimize the
life cycle costs of the pavement sections in the network. In the
area of bridges, the Intermodal Surface Transportation Efficiency
Act �ISTEA� of 1991 required every state department of transpor-
tation and metropolitan planning organization to implement a
bridge management system in order to optimize the allocation of
resources for maintenance planning. This federal mandate has
recently been waived �Schweppe 2001�. Despite the waiver, gov-
ernment agencies are still faced with aging infrastructure and lim-
ited resources. Thus, there is a definite need for the optimization
of the allocation of resources for maintenance planning.

The objective of this paper is to develop a bridge component
maintenance and replacement �M&R� optimization approach that
uses a Markovian deterioration model, while accounting for as-
pects of the history of deterioration and maintenance. Such a
model represents a compromise between simple deterioration
models allowing the use of standard optimization techniques, and
realistic deterioration models whose complexity prevents efficient
optimization of maintenance and replacement decisions.

The article is organized as follows. The next section reviews
some of the existing bridge maintenance optimization methods,
with emphasis on the relationship between complexity of the un-
derlying model and usefulness of the optimization method. The
subsequent section describes how a realistic and complex deterio-
ration model can be formulated as a Markov chain, while main-
taining some of the characteristics of the original model. The
optimization of maintenance and replacement decisions is then
formulated, using the deterioration model developed earlier. A
numerical study is conducted in the last section in order to com-

pare the policies obtained using the model and method developed
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in this research with policies derived using a simpler Markovian
model.

Review of Bridge Management Optimization
Methods

Given available resources and a set of possible M&R actions, the
objective of infrastructure management is to determine the opti-
mal M&R decisions in the current year and in future years. The
solution is based on the consequences of possible actions on the
future condition of the system. Since information about the future
condition is not available, deterioration models are used. This
framework is common to all existing bridge management optimi-
zation methods, although the actual formulation of the optimiza-
tion and the deterioration models differ.

The optimization can be formulated as a Markov decision pro-
cess �Madanat 1993; Hawk 1994; Golabi and Shepard 1997; Jiang
et al. 2000�. In these models, the deterioration is described by a
Markov chain, with the state representing the condition of the
facility. Optimal solutions are determined using dynamic pro-
gramming for a single facility or linear programming for a system
of several facilities. The main advantage of these models is that
they enable the use of standard and efficient optimization tech-
niques. As a consequence, these models are implemented in actual
bridge management systems such as Bridgit and Pontis �Hawk
1994; Golabi and Shepard 1997�, and also serve as a basis for
more refined models using adaptive control �Durango and
Madanat 2002� or taking into account inspection errors �Madanat
1993; Jiang et al. 2000�. The limitation of these Markovian mod-
els is the memoryless assumption, according to which the prob-
ability for the condition of a facility to transition from an initial
State A to a lower State B does not depend on the time spent in
State A or on the history of deterioration and maintenance. Al-
though parts of this assumption may be valid for certain bridge
states, namely, those where the deterioration is primarily gov-
erned by mechanical processes, Mishalani and Madanat �2002�
have shown empirically that it is unrealistic for bridge states
where the deterioration is primarily governed by chemical
processes.

Deterioration models in which the history of deterioration is
taken into account exist and have been used in bridge mainte-
nance optimization �Mori and Ellingwood 1994; Kong and Fran-
gopol 2003; Robelin and Madanat 2006�. However, due to the
complexity of the deterioration models, these optimization meth-
ods can only handle a very limited number of decision variables,
since the computation of the optimal solution requires the enu-
meration of the consequences of all possible actions over all
stage–state combinations. To the knowledge of the writers, there
does not exist a bridge maintenance optimization method that has
more than a few decision variables and is based on a deterioration
model that takes into account the history of deterioration and
maintenance.

The purpose of the present paper is to develop a bridge deck
maintenance and replacement optimization method with a more
complete set of decision variables, while using a deterioration
model that takes into account important aspects of the history of
deterioration and maintenance. These aspects include the time
since the performance of the latest maintenance action and the

type of that activity.
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Formulation of a History-Dependent Deterioration
Model as a Markov Model

The objective of the present section is to develop a model of the
deterioration of a bridge deck with the two following character-
istics: the model is Markovian and it takes into account aspects of
the history of deterioration and maintenance.

Definitions and Assumptions

The system considered is a single bridge deck managed by an
agency such as a state department of transportation. Maintenance
and replacement decisions are made by the agency at discrete
points in time. Due to the presence of yearly budget constraints,
the most logical time unit for M&R decisions is the year. As a
consequence, the model of deterioration is also discretized in time
intervals of one year. This assumption is consistent with the typi-
cal rate of deterioration of bridges. Within a year, the actual point
in time at which the action �maintenance or replacement� is per-
formed is not important, and an action is said to be performed “in
year n.”

The condition of the deck is represented by its reliability index
�. By definition of the reliability index, the instantaneous prob-
ability of failure of the deck �given it has not failed yet� is ����,
where ��·�=standard normal cumulative distribution.

Several types of maintenance actions can be performed on the
bridge deck. Maintenance actions of different types have different
influences on the condition of the deck, as well as different costs.
The deck can also be replaced, in which case it is then considered
new.

Methodology

Definition of State of the Markov Chain
In earlier Markovian deterioration models, the state is an integer
representing the condition of the deck. In the present model, the
reliability index � of the deck is part of the state space of the
Markov chain, as well as additional variables that are known to
the decision maker and can provide an advantage in selecting the
optimal actions. This process is known as state augmentation
�Bertsekas 2001�. The variables added to the state space are:
• m=integer indicating the type of the latest action �maintenance

or replacement� performed on the deck �or 0 if no action has
been performed since the deck was new�; and

• �=time since the latest action �or the time since the deck was
new, if no action has been performed yet�.

The choice of these variables is based on the precision and ease of
their measurement, as well as on their contribution to the reduc-
tion of the uncertainty in modeling the deterioration. The number
of additional variables must also remain reasonably low, so that
the model can be implemented. These two variables have been
frequently used in infrastructure performance modeling �Ben-
Akiva and Gopinath 1995; Mishalani and Madanat 2002�.

The state x= �� ,m ,�� consists of one real number in the gen-
eral case ��� and two integers �m and ��, since there is a finite
number of different types of maintenance actions and the unit of
time is the year. In practice, the set of possible values for each
variable can actually be restricted to small intervals while main-
taining the full functionality of the model. For example, typical

values of � are integers between 1 and 15.
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Estimation of the Transition Probabilities
Transition probabilities represent the probability for a facility that
is in state xt= ��t ,mt ,�t� at time period t to be in state xt+1

= ��t+1 ,mt+1 ,�t+1� at the following time period. This transition
probability will be denoted as

P��t+1,mt+1,�t+1��t,mt,�t� �1�

Note that xt and xt+1 can be any elements of the state space, and
may or may not be equal. The original deterioration model of the
facility, which is stochastic, is used to estimate the transition
probabilities for the resulting Markovian model. In order to ac-
commodate any original deterioration model, Monte Carlo simu-
lation is used to estimate the transition probabilities. Namely, a
large number of deterioration profiles are generated using the
original deterioration model, and the counts shown on the right-
hand side of Eq. �2� are determined

P��t+1,mt+1,�t+1��t,mt,�t� =
N��t,mt,�t�,��t+1,mt+1,�t+1�

transitions

N��t,mt,�t�
total �2�

where
• N��t,mt,�t�

total =number of occurrences of the following situation,
among all time steps of all Monte Carlo trials: “the deck is in
state ��t ,mt ,�t�”; and

• N��t,mt,�t�,��t+1,mt+1,�t+1�
transitions =number of occurrences of the following

situation, among all time steps of all Monte Carlo trials: “the
deck is in state ��t ,mt ,�t� at a time step and in state
��t+1 ,mt+1 ,�t+1� at the following time step.”

The pseudocode for the estimation of the transition probabilities
using Monte Carlo simulation is shown in Table 1. Several sim-
plifications are possible in order to decrease the computation time
necessary to estimate all transition probabilities. For example, for
any �t and �t+1, P��t+1 ,mt+1 ,�t+1 ��t ,mt ,�t� is necessarily zero if
mt+1=mt and �t+1��t+1, or if mt+1�mt and �t+1�0. The
pseudocode is presented for the particular example of the deterio-
ration model from Frangopol et al. �2001�. If the deck condition

Table 1. Pseudocode: Estimation of Transition Probabilities Using Mont

1 Define parameters: BETA, �set of possible va
�set of possible values for m�, TAU �maximu

2 Initialize Ntotal[beta, m, tau] at 0 f

3 Initialize Ntr[beta1, m1, tau1, beta
and m2 in M, and tau1 and tau2 in TAU

4 Repeat N times:

5 Repeat for all values of m in M:

6 Repeat for all values of betaIni in B

7 Draw an instance of a set of deterior

8 Repeat for tau from 0 to TAU:

9 Determine the �continuous� con

10 Determine the corresponding dis

11 End repeat

12 Repeat for tau from 0 to TAU-1

13 Increment Ntotal [beta [t

14 Increment Ntr �beta �tau�, m

15 End repeat

16 End repeat

17 End repeat

18 End repeat

19 Ntr [beta1, m1, tau1, beta2, m2,
the probability of transition from state (be
were measured by its serviceability, empirical condition data
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would be available, and the methodology presented in this paper
could also be applied to determine transition probabilities.

Formulation of the Optimization as a Markov
Decision Process

The model of deterioration of a bridge deck developed in the
previous section can be used in the optimization of maintenance
and replacement decisions for that deck.

Definitions and Assumptions

As described earlier, the system considered is a bridge deck man-
aged by an agency. The agency incurs costs when maintenance
actions are performed or when the deck is replaced. Moreover,
maintenance actions on a bridge or deck replacement usually
imply the closure of some or all of its lanes. This leads to delays
to the users or costs associated with detours. This is particularly
important in the case of bridges. In a highway network, bridges
are usually capacity constraining, due to their high cost of con-
struction relative to regular highway lanes. Moreover, convenient
detours may not be available. In pavement management, the in-
fluence of the facility condition on the users is usually modeled
by user costs. The user costs represent vehicle wear and tear, and
fuel consumption due to rough roads and a translation in mon-
etary values of the riding discomfort. In the case of bridges, users
are assumed indifferent to the facility condition, as long as there
is no failure. Bridges are usually short compared to the total
distance of a trip, and the roughness of their surface does not
influence significantly the total fuel consumption and the overall
driving comfort. Thus, user costs consist of delays, closures, and
detours associated with the performance of maintenance actions
and deck replacement.

The agency is responsible for the maintenance and replace-

o Simulation

r � - current condition - and �ini - condition after previous action�, M
e of ��, N �number of Monte Carlo trials�

alues of beta in BETA, m in M, and tau in TAU

, tau2] at 0 for all values of beta1 and beta2 in BETA, m1

arameters from their known distributions

betaCont [tau]

d condition beta [tau], where beta [tau] is in the set BETA

m, tau] by 1

beta �tau+1�,m, tau+1� by 1

2] divided by Ntotal [beta1, m1, tau1] is an estimate of
m1, tau1) to state (beta2, m2, tau2)
e Carl

lues fo
m valu

or all v

2, m2

ETA:

ation p

dition

cretize

:

au],

, tau,

tau
ta1,
ment of the bridge for the duration of the planning horizon �T
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years�. The planning horizon is assumed to start at year 0, and is
broken down into periods of one year. The agency makes main-
tenance and replacement decisions every year.

It is assumed that there is perfect information regarding the
past and present reliability index of the bridge deck. From a prac-
tical point of view, this means that inspections are carried out
frequently, such as on a yearly basis, and that the inspections are
error free.

Problem Formulation

Since the deterioration model developed earlier is Markovian, the
optimization problem can be formulated as a Markov decision
process �Bertsekas 2001�. The following notation is used:
• X=state space of the Markov chain representing the deteriora-

tion of the deck. X�set of all possible values for �� ,m ,��, as
defined in the previous section;

• U=set of all possible M&R actions, i.e., all types of mainte-
nance actions, replacement, or do nothing;

• cu���=cost of action u performed on bridge deck in condition
�. For state x= �� ,m ,��, the notation cu�x� is also used, and
refers to cu���;

• �=discount factor, �=1/ �1+r� where r=discount rate;
• Vt�x�=minimum cost-to-go for the agency to manage the

bridge deck from year t to the end of the planning horizon,
starting from state x in year t; and

• �=set of optimal decisions. �t�x��optimal decision when the
bridge deck is in state x in year t.

The problem formulation is as follows:

∀x � X,Vt�x� = minu�U�cu�x� + ��
y�X

P�y�x�Vt+1�x�� if

t � 	0, . . . ,T − 2
 = VS if t = T − 1 �3�

where VS captures the usefulness of the bridge deck past the plan-
ning horizon. For practical purposes, the influence of the actual
value of VS is limited if the discount rate r is strictly positive.

Solution

The problem formulated above can be solved using backward

Table 2. Pseudocode: Backward Recursion Algorithm

1 Define parameters �similar not
Monte Carlo simulation used t
reliability index, and the cost

2 Initialize V [T-1, x] to VS

3 Repeat for t from T-2 to 0 �s

4 Repeat for all possible value

5 Vtmp←�

6 Repeat for all possible ac

7 If c�u ,beta�+alpha

8 Vtmp←c�u ,beta�
9 muTmp←u

10 End if

11 End repeat

12 V�t ,x�←Vtmp

13 mu�t ,x�←muTmp

14 End repeat

15 End repeat
recursion, as shown in Table 2. The minimum discounted cost to
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manage the bridge deck over the whole planning horizon is
V0�x0�, where x0= initial state of the bridge deck. Using the nota-
tion of the pseudocode, the minimum discounted cost is V �0,x0�.

Numerical Study

Comparison with Simpler Markovian Models

The objective of this section is to compare the policies derived
using the augmented state Markovian model proposed in the
present paper and the policies derived using a simpler Markovian
model. Let us refer to the augmented state Markovian model as
the three-dimensional �3D� model. The state of the simpler Mar-
kovian model used as a comparison is composed of one variable
only, the current condition of the deck. This model is referred to
as the one-dimensional �1D� model. For each Markovian model:
• The coefficients of the transition probability matrices are esti-

mated using Monte Carlo simulation, as explained above,
using the same deterioration parameters adapted from Fran-
gopol et al. �2001�; and

• The set of policies is determined using dynamic programming
as explained above. For this, the costs of maintenance and
replacement, including user costs, are adapted from Kong and
Frangopol �2003�.

The application of the sets of policies derived using the 1D and
3D models is finally simulated on two bridge decks having the
same deterioration parameters, over a time horizon of 75 years
�Fig. 1�.

In the simulation, the deterioration of the bridge deck is deter-
mined by a model such as the one presented in Frangopol et al.
�2001�, and not using the transition probabilities derived earlier.
Therefore, the comparison is made on the basis of a model as-
sumed to be an accurate representation of reality, and more im-
portantly, independent from the method used to determine the
policies. Specifically, the comparison would be much weaker if it
were based on the values of the objective functions �predicted
optimal costs and not simulated costs�.

Comparison of the 3D and 1D Models for One Facility

The applications of the policies determined using the 3D and 1D

as defined in the problem formulation and in the pseudocode for the
ate the transition probabilities�. In particular, define the threshold of
ons c [ u, beta] accordingly.

possible values of x= �beta ,m ,tau�
:

= �beta ,m ,tau�:

:

�y�x ,u��*V�t+1 ,y��Vtmp

a*�y�XP�y�x ,u��*V�t+1 ,y��Vtmp
ations
o estim
of acti

for all

tep-1�

s of x

tions u
*�y�XP

+alph
models are first compared for one facility. Fig. 2 shows the evo-
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lution of the condition of a bridge deck if the policies of the 1D
model are applied �top graph�, and if the policies of the 3D model
are applied �bottom graph�. Fig. 2 also shows the sequence of
actions performed in each case.

The main objective of this comparison is to show the differ-
ence in the sequence of actions when applying the two sets of
policies. Cost comparisons are presented in the probabilistic sense
in the next section. The sequence of M&R actions obtained by
application of the policies of the 1D model is very different from
the sequence obtained by application of the policies of the 3D
model. Namely, using policies of the 1D model, the deck is
replaced twice, at years 32 and 64, and maintenance is never
performed. Using the policies of the 3D model, maintenance is
performed regularly, every three to four years. Maintenance is not
performed at the end of the planning horizon, since the final con-
dition of the deck is indifferent, provided it is above the user-
defined threshold of reliability index. The deck is not replaced
over the planning horizon.

Using the policies of the 3D model, the performance of main-
tenance actions at almost regular intervals is a result of the opti-
mization and was not provided as an input to the model. A
possible intuitive explanation for this fact is as follows. By con-
struction, the state space of the 3D model captures more detail
than the state space of the 1D model. In particular, the combina-
tion of values for the condition of the facility and for the time
since the previous maintenance action is possible in the
augmented-state model and not in the 1D model. This combina-
tion allows for more selective recommendations using the 3D
model. For example, if the current condition is 5, the recommen-
dation using the 3D model may be to perform maintenance if the
previous maintenance action was performed five years before or
earlier, and to do nothing if the previous maintenance action was
performed less than five years before. In the same situation, if the
current condition is 5, the simple model provides only one rec-
ommendation, regardless of the time since the previous action.
Thus, the performance of maintenance at regular intervals cannot
be recommended by the 1D model.

This behavior is not limited to the example presented in this
section. The application of the policies with many other deterio-
ration parameters produced the same pattern of sequences of ac-

Fig. 1. Comparison of two optimization methods �1D and 3D
models�
tions. More precisely, a large number of deterioration parameters

JOURNAL O
were drawn from the distributions presented in Frangopol et al.
�2001�, thus creating a large number of test bridge decks, and the
pattern of the sequences of actions described in this section oc-
curred in the majority of the cases.

Comparison of the 3D and 1D Models
in the Probabilistic Sense

In the previous paragraph, the comparison of the two models was
mostly qualitative, in terms of the general patterns of the se-
quence of actions. The purpose of the present comparison is to
analyze the difference in costs resulting from the application of
the policies of the 3D and 1D models, based on trials on a large
number of test bridge decks representing a realistic range of de-
terioration parameters.

The input deterioration model, as described in Box A in Fig. 1,
remains the same, which implies that the policies remain the same
as well, for each model �and for a value of the user-defined
threshold of reliability index�. These two sets of policies are ap-
plied to a variety of different bridge decks �Box B in Fig. 1�. To
create a realistic set of different facilities, the deterioration param-
eters for each bridge are drawn from the distributions provided in
Frangopol et al. �2001�. The distributions used as input to deter-
mine the optimal policies and the distributions used to draw the
population of test facilities are the same. This is not a coinci-
dence, but rather, a consequence of the following assumption: the
stochastic deterioration model is assumed to be known and is

Fig. 2. Comparison of the application of the policies of the �A� 1D
model; �B� 3D model
assumed to be the same for each test bridge deck.
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Comparison of Average Costs
The average total cost over the planning horizon when applying
the policies of the 3D model is determined for a large number of
different test bridge decks. This average is also determined in the
case of the policies of the 1D model. Moreover, these simulations
are done for several different values of the user-defined threshold
of reliability index. The pseudocode for the determination of the
policies and the simulations is presented in Table 3.

This simulation is done for the 3D and 1D models. As shown
by the results in Fig. 3, the average cost when using the policies
of the 3D model is approximately 30% lower than the average
cost when the policies of the 1D model, based on 100,000 trials.
It can be noted that, for a given model, the mean simulated cost
increases as the threshold of reliability index increases �i.e., as the
facility becomes more reliable�, which is intuitive.

Probability of Lower Cost
Using the simulation described earlier, it is possible to obtain the
empirical distribution of the simulated costs. This, in turn, allows
for the determination of the probability of a lower cost when
applying the policies of the 3D model than when applying the
policies of the 1d model. The empirical distribution of the simu-
lated costs is shown in Fig. 4. Using these joint distributions, it
can be determined that the probability of a lower cost when ap-
plying the policies of the 3D model than when applying the poli-

Table 3. Pseudocode: Determination of Optimal Policies and Simulation

1 Define distributions D of random variables modelin

2 Determine the transition probabilities �pseudocode

3 Define parameters: N �number of trials�, B �set of u

4 Repeat for all values of b in B:

5 Determine the optimal policies P�b�, with b as t

6 End repeat

7 Initialize total cost [b, i] at 0 for all value

8 Repeat for all values of b in B:

9 Repeat for i from 1 to N:

10 Draw an instance of a set of deterioration p

11 Simulate the evolution of the condition of th

12 Record simulated total cost in total cos

13 End repeat

14 End repeat

Fig. 3. Comparison of the mean simulated total costs when applying
the policies of 3D and 1D models for different values of threshold of
reliability index
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cies of the 1D model is 0.75. Moreover, a Kolmogorov–Smirnov
test run on the sample costs allows to reject the following hypo-
thesis: “the sample costs when applying the policies of the 3D
model and the sample costs when applying the policies of the 1D
model are drawn from the same distribution.” This formally
proves that the difference in the distribution of the costs intu-
itively apparent in Fig. 4 is indeed statistically significant.

Computational Considerations

The computation times needed for the implementation of the 3D
model are very short on a computer with a 1.7 GHz processor,
1 GB RAM, running Unix. The computation time for the estima-
tion of the transition probabilities is approximately one minute,
with 100,000 Monte Carlo trials. The computation time for the
determination of optimal policies is of the order of a few seconds,
with a state space of size 840 and a time horizon of 75 years. The
computation times needed for the implementation of the 1D
model are even shorter. In the 3D model, the state space consists
of 14 different values for the current condition, two types of ac-
tions �maintenance and replacement�, and 30 different values for
the time since the previous action. In the 1D model, the state
space is of size 14, which is the number of different values for the
current condition. The limitation for the state space is actually not
the computation time, but the memory needed to implement the
backward recursion algorithm.

Application of the Policies to a Population of Bridges, for One Model

eterioration �Box A in Fig. 1�

d earlier�

ned thresholds of reliability index�

-defined threshold of reliability index �pseudocode provided earlier�

in B and for i from 1 to N

ers �Box B in Fig. 1� from the distributions D
lity, applying actions according to policies P�b� �recording yearly costs�

i]

Fig. 4. Comparison of the distribution of simulated costs when ap-
plying the policies of the 3D and 1D models
of the

g the d

provide

ser-defi

he user

s of b

aramet

e faci

t [b,
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Conclusion

We have presented an approach to formulate a complex history-
dependent deterioration model as a Markovian model with aug-
mented state, as well as its use in a Markov decision process to
determine optimal maintenance and replacement policies for one
facility. Additional research is needed to address the problem of
determining optimal maintenance and replacement policies for a
system of facilities. Given the short computation times, the
method presented in this article for facility level optimization
seems to be a promising candidate to be adapted to the optimiza-
tion at the system level.
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