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Exponential Extrapolation of Fourier Transformed Potentials
in 2.5-D dc Resistivity Modeling

Hee Joon Kmv*, Yoonho SONG™* and Ki Ha LEgE™

ABSTRACT

Tn 2.5-D dc resistivity modeling which allows for subsurface current and potential electrodes, numerical
errors depend on the coarseness of discretization and increase with spatial wavenumbers. In this regard, the
exponential extrapolation of Fourier transformed potentials is useful for the evaluation of inverse Fourier
transform integral in the outmost range of wavenumbers. This paper presents an accurate integral scheme in
the outmost range using an exponential function of which coefficient is represented by a ratio between the
modified Bessel functions of order 1 and 0. The effectiveness of this scheme has been confirmed using a
homogenous half-space model and a vertical fault model.
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1. INTRODUCTION

The dc resistivity response in the 2-D earth
due to a 3-D (point) current source is described
by Poisson’s equation:

—y-[o(x, 2)ve(x, 3, 2)1=0(x,5,2), (1)

where.o(x, ) is the electrical conductivity, ¢ (%,
v, z) the electrical potential, and (%, 3, z) the
source current distribution. By taking the Fourier
transform of equation ¢1) with respect to the y
coordinate, one obtains

—v-[o(x,2)v®(%, 4,2)]
226 (x,2) @ (x, A, 2) =L(x, A, 2), (2)

where 4 is the Fourier transform variable (spatial
wavenumber).

1f the Fourier transformed potentials o(x, y,
z) are obtained for several values of A, then the
electrical potential ¢(%, ¥, z) can be evaluated us-
ing the inverse Fourier transform. When both cur-
rent and potential electrodes are located along
y=0, the inverse Fourier transform becomes
(Dey and Morrison, 1979)

(5,0, 2) =Egm &5, 1,2) di. (3)
T Jo

Dey and Morrison (1979) performed this integra-
tion by fitting the envelope of ®(1) in each
subsection [A;, As+1] by an exponential function
and using the analytic form
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A1 A1
g @(1) d/lzg cexp (—ak) dA
A

Ai

_®() — D)
- a

, (4)

where
=111 (@ is1) /2(45))
Ai— Ay ’

(5)

and ¢ is a constant
To reduce errors associated with the Fourier
integral (3), Fujisaki ef al. (1992) suggested a
logarithmic interpolation of transformed poten-
tials for small values of A7, where ris the distance
between current and potential electrodes, and an
exponential interpolation for large values. The op-
timum value of Ay to switch from the logarithmic
function to the exponential function was given as
about 0.8 by XKim ef ¢, (1995). In the innermost
interval [0, 4,], a logarithmic extrapolation is
- useful to minimize the error associated with the
singularity at =0 (Fujisaki ef al., 1992; Haryu,
1996). In the outermost interval [Ay_1, Ax], On
the other hand, an exponential extrapolation is
‘effective to reduce a truncation error associated
with a finite value of Ay (Kim ef al., 1995; Haryu,

1996).
The accuracy of numerical model depends on
the coarseness of discretization (Kim ef al., 1995;
Haryu, 1996). In 2.5-D dc resistivity modeling,
the coarseness of discretization is essentially
varied with spatial wavenumbers. Haryu (1996)
suggested that the mesh size could be decided bas-
ed on the Nyquist wavenumber. If we do not
change the mesh size for all wavenumbers,
Fourier transformed potentials @(1) for large
values of A contain significant errors because the
mesh size may be too large to simulate the poten-
tials (see Figure 2 in Kim ef al. (1995)). Since
this discretization error increases with increasing
A and is most obvious in the outmost interval
[CAn—1, Av], Kim et al. (1995) used the following
extrapolation fromula:

Sw @(A;V_l) '

cexp (—al) di= (6)

ANt
Here, it is assumed that potentials @(1) outside
of Ay_1 are beyond an acceptable lavel of the
discretization error. The coefficient a can be ap-
proximated using known & (Ay_;) and @ (Ay_s)
as

a=1n (D (A1) /P (An-1))
AN—1—AN—2 '

(7

The coefficient a controls the shape of ex-
ponential function, and the error of the integra-
tion in equation (6) may be small when Ay_, is
sampled near Ay_;. However, to suppress the
amount of computations, Fujisaki ef al. (1992)
and Kim ef al. (1995) used a relatively wide
samplings: Ay-,=0.32 and Ay_;=0.64. Thus
there is a room for improvement in determining @
if we adopt their sampling scheme for an efficient
and accurate evaluation of the Fourier integral.

2. EXPONENTIAL EXTRAPOLATION

When A approaches to Ay_;, the mesh size
would become enormously large to simulate
Fourier transformed potentials ®(A), which
largely depend on the resistivity distribution sur-
rounding an observation point accordingly. If the
resistivity distribution near an observation point
is homogeneous, the potential & (1) for large A
may have the form

o(L) =A[K, (Ar) + Ko (A7) ], (8)

where A is a constant, K the modified Bessel
function of order 0, and 7, the distance between
image source and observation point. Substituting
equation (8) into equation (7) yields

I ([Ko (An-27) + Ko th—z’&)])

= [Ko(Ay—17) +Ko(Ay-1%:) ] e,

AN-1—An—2

If Ay_s approaches to Ay_; equation (9) can be
rewritten as

9l (Ko(r) +Ko )
oA

L
A=AN-1

7K (Ayar) +7.K (A7)
Ko(An-17) +Ko(Ay-17s)

where K; is the modified Bessel function of order
1. This scheme uses only one wavenumber, Ay_1,
and the coefficient a is expressed by the ratio bet-
ween the modified Bessel functions of order 1 and
order O.

Simple numerical experiments are now con-
ducted to find the validity of equation (10). In the
experiments we use the same sampling scheme as
Fujisaki ef al. (1992) and Kim et al. (1995). If
one or both of source and observation points are

(10
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located on the surfce of a homogeneous half-
space model and the distance between them is
7=10 m, for example, the coefficient ¢ in the inter-
val [0.64, 1.28], g, is obtained from equation (5)
as

a1=1n (Ko(6.4) /K(12.8)) —10.53,

1.28—0.64
If we use the exponential extrapolation scheme of
Kim et al. (1995), the coefficient ¢ in the interval
[0.32, 0.64], a; is given by

_In (%,(3.2) /Ko(6.4))
T =032

This result shows that a, is 4.75% greater than a,,
and thus the integrated value with a; will be
4.75% smaller than with @;. On the other hand,
the new algorithm yields a coefficient as as

K,(6.4)
Ky (6.4)

Because a difference between the coefficients of
az and a, is only 2.09%, the coefficient a; is much
- better approximation to a; than a,.

Next example is for a vertical fault model,
for which the potential (1) is obtained

analytically, as shown in Figure 1. Two media of
10 and 100 Q-m are horizontally contacted. A cur-
rent soruce of 1 A is located on the surface 4 m
away from the vertical contact. Seven observa-
tion points are horizontally positioned at 2 m in
depth near the contact. It is clear that equation
(8) is derived by ignoring the effect of in-
homogeneity on ®(A). However, our scheme
works well even in the non-uniform model. From
Table 1, we can see that the coefficient a3 is much
better approximation to ; than as.

3. CONCLUSIONS

We have analyzed discretization errors of
2.5-D dc resistivity modeling that allows for sub-
surface current and potential electrodes. Since

az=10 =10.75.

numerical errors depend on the coarseness of

discretization and increase with increasing spatial
wavenumber A, the exponential extrapolation of
Fourier transformed potentials is useful for the
evaluation of inverse Fourier transform integral
in the outmost range of A. In this paper we have
developed an integral scheme in the outmost
range using an accurate exponential extrapola-
tion function. The coefficient of the exponential

e 4m Ry
v .
10 Q-m & 100 Q-m
o~
X X X X X X
<<
05m |

Fig. 1 A vertical fault model. A current source of
1 A is located on the surface 4 m away
from the vertical contact of two media of
10 and 100 Q-m. Seven observation points
are located at 2 m in depth near the con-
tact.

Table 1 The coefficient a1, a5, and a3 determining
the shape of exponential function, which
are evaluated as a function of horizontal
distances of observation points from the
source in the vertical fault model as
shown in Figure 1

% (m) a ay as
2.5 3.843 4,571 3.915
3.0 4.317 4,987 4.325
3.5 4.759 5.309 4.756
4.0 4.986 5.460 5.201
4.5 5.440 5.919 5.657
5.0 5.903 6.385 6.121
5.5 6.372 6.858 6,592

function is represented by the ratio between the
modified Bessel functions of order 1 and order 0,
and its shape is much better than that used in
Kim et al. (1995).
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