
Lawrence Berkeley National Laboratory
Recent Work

Title
MODIFIED DYNAMIC HASHING

Permalink
https://escholarship.org/uc/item/6c96j5jq

Author
Kawagoe, K.

Publication Date
1985-03-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6c96j5jq
https://escholarship.org
http://www.cdlib.org/

1
.i ~

LBL-19373
C-~

Lawrence Berkeley Labortalt(Qnry
UNIVERSITY OF CALIFORNIA ~~el!2:iV(["

LAWRENCE

Computing Division /~PF~ ~ 5 1985

LIBRARY AND
DOCUMENTS SECTION

To be presented at the SIGMOD 1985 Conference,
Austin. TX, May 28-31, 1985

MODIFIED DYNAMIC HASHING

K. Kawagoe

March 1985 TWO-WEEK LOAN CO

This is a Library Circulating Copy .,~
which may be borrowed for two'"·_ -__

~
f!
r--
,5:)

C}J
__J

~ lfl y
Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Governme.nt or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

•'""' I

.Modified Dynamic Hashing

Kyoji Kawagoe

Computer Science Research Department
University of California

Lawrence Berkeley Laboratory
Berkeley, California 94720

.March. 1985

LBL-19373

This research was supported by the Applied Mathematics Sciences Research Program
of the Office of Energy Research, United States Department of Energy under contract
DE-AC03-76SF00098.

Modified Dynamic Hashing

Kyoji Kawagoe

C&C Systems Research Laboratories
1\1];C Corporation

Miyamae,Kawasaki,Kanagawa 213,Japan

On leave from NEC Corporation until July 1985
Current address: Computer Science Research Department

Lawrence Berkeley Laboratory
University or California

[Abstract]

This paper describes a modification for the unified

dynamic hashing method presented by J. K. Mullin.

The main advantage of this modified dynamic hashing

method is that it provides a single file access to a

record, while the unified dynamic hashing method may

require several accesses for records in buckets that

oYerfl.owed. This method is spatially efficient because it

does not use indexes or tables commonly used by other

dynamic hashing methods.

1. Introduction

Since the late seventies, there have been much

work on dynamic hashing methods. Dynamic hashing

methods make it possible to e>.."'J)and the hashing space

dynamically by changing the hashing function. The

hashing functions are chosen such that the effect on data

locations is minimized.

The features of dynamic hashing methods are:

1) The file space can dynamically be changed as the

number of records increases. That is, even if the esti­

mate on the needed file space is incorrect, the file never

overflows. Furthermore, dynamic hashing methods pro­

vide fairly dense file structures even in the case of high

updating activities.

•This research was supported by the Applied
Mathematics Sciences Research Program of the Office of
Energy Research. United States Department of Energy
under contract DE-AC03-76SF00098.

1

2) Dynamic hashing methods access a record in a file

more efficiently than a B-tree, because they do not

require the additional index information that is nece!:'­

sa.ry in B-tree methods. In practical applications, a

record can be usually retrieved in a single logical access

when using dynamic hashing methods.

Because of these features, dynamic hashing

methods maintain good access performance even if the

space required is largely underestimated. [Mull84]

Kjellberg and Zahle [Kjel84] have categorized

many existing dynamic hashing methods into two

classes. The first class of dynamic hashing has a file

space expansion operation when an overflow occurs.

This class includes Extendible Hashing [Fagi79], Expan­

dible Hashing [Knot71] , Virtual Hashing [Litw78] and

Dynamic Hashing [La.rs78]. To maintain the relation­

ship between split buckets and the remaining buckets,

either tree structures or tables are usually used.

The second class of dynamic hashing avoid split­

ting until all overflow space is used. Therefore, an

overflowed bucket is not split, but the records are stored

in another bucket which has available space. Then, in

the case that there is no more space in a file, some buck­

ets are split into a larger address space. No index infor­

mation is necessary for this class of hashing met.hods.

This class of hashing includes Spiral Storage [in ~1ull84j,

Linear Hashing [Litw80], Linear Hashing with Partial

E:t.."Pansions [Lars80] and Unified Dynamic Hashing

[Mull84]. The unified dynamic hashing employs a piece­

wise linear function for the file space growth function.

In this paper, we present a modified dynamic bash­

ing method that combines the advantages of the first

and the second classes described above. The first class

has the advantage of providing a single file access to

every record, but at the cost of using an additional

index. The second class does not use an index, but

requires more than one access for buckets that

overflowed. In the method described here, we achieve

always a single· file access without using an index. This

is achieved by modifying the unified dynamic hashing

method [Mull84], as will be explained in the following

section. In addition, we show that this method that

space utilization is at least as good as the other dynamic

hashing methods.

Section 3 describes the data organization and

access algorithm of the proposed method. In section 4,

the simulation results for the file load factor of the

method are presented and then discusses the perfor­

mance of the method and some issues on the model.

2. Background information on the unified

dynamic hashing

The unified dynamic hashing method that :Mullin

proposed can represent all the methods in the second

class· of dynamic hashing. According to his representa­

tion, dynamic hashing methods are expressed by the fol­

lowing:

Key ->Hash(Key)->X->Logical bucket address­

>Physical bucket address,

where Hash(key) is an arbitrary bashing function of keys

and whose domain is [0, 1). The value of X is derived

from the function: X=rc-Hash(Key)l+Hash(Key), where

c is a parameter dependent on the particular method

used. The mapping from the X values to the logical

space is represented by a function called 'growth func­

tion'.

Fig.l(a) shows the behavior of the X-funct.ion for

diii-:,rent values of c. Note that as the Yalue of c

change~, the interval of X values stays, but the starting

and ending values are c and c+l, respectiYely.

2

Therefore, as the· value of c increases, the region of X

has larger values shown in Fig.l(b). An example of a

growth function is shown in Fig.l(c). As can be seen in

Fig.l(c), the growth function permits the range of X to

grow as the value of the parameter c increases. The

effect of this function is therefore to increase the logical

space dynamically. A growth function should meet the

following requirements: a) it should be continuous and

one to one, b) the first derivative at all points should

exist except in a finite number of points which occurs at

bucket boundaries, c) the slope has to be greater at. x+ 1

than at x, where x and x+l are elements of the region

X, and d) inverse value calculation should be simple

[Mull84]. The main reason for the above requirements is

that the growth function is used not only for the map­

ping of X-value-to-logical address but also for the

expansion of a logical file space.

Mullen pointed out in his paper that the physical

address is uniquely determined from the corresponding

logical bucket address. The ease of mapping bet.ween

logical and physical addresses is an important feature of

the second class of dynamic hashing. He also makes it

clear that the difference among the dynamic hashing

methods in the second class lies in the selection of the

growth function. Spiral storage [in Mull84] uses a form

such as bx as its growth function. Linear hashing

[Litw80] uses a set of linear functions such as a..X+b.

The unified dynamic hashing is a way of viewing

dynamic hashing, which gives a useful insight on select­

ing growth functions. Moreover, it provides new usage

of dynamic hashing.

3. The Modified Dynamic Hashing

Unlike the unified dynamic hashing method which

splits senral buckets when the file is full, The modified

dynamic hashing method splits only the bucket that

overflowed. The idea of the modified dynamic hashing

is illustrated in the Fig. ::!. l"ote that the buckets which

are on the right side of the split bucket han• a larger

logical address after splitting. Howenr. the above

structure is not. practic a!. The reason is that it is

impossible to determine a new hashing function without

r·

changing the physical address of the buckets on the

right. An alternative to this ideal bucket splitting is

presented in Fig 2(b). First, all the buckets on the left

side of the bucket that overflows are logically moved

toward higher addresses in a logical space without

changing their physical addresses. They are placed logi­

cally at the end of the current logical space. Then, the

bucket which overflows is split into the two. One of the

two uses the same physical area where the bucket

overflows. The other is physically created. Both are

logically placed at the end of the logical space.

A more detailed description of this method lS

presented in the example shown in Fig.3. Fig.3(a) shows

the set of records which have to be stored in a file. Ini­

tially, it is assumed that the file has no records. The file

is used for a secondary access of an employee master file

using the salary values. Fig.3(b) explains the symbol

and notation for the next figures. Fig.3(c) shows a

sequence of buckets in the file according to the record

insertion operation. The records are stored in the order

shown in Fig.3(a). First, two records are stored in the

bucket 1 which is the only bucket in this file (Fig.3(c)-1

to -3). Then, we assumed that this bucket is full after

t.hese two records were inserted. The new logical

address space is created by changing the value of the

parameter c mentioned in the previous section. There­

fore, before the third record is stored, a new bucket is

generated. After generating the new bucket, the two

records in the overflow bucket are split (Fig.3(c)-4). The

physical bucket address is determined by the X-value of

the record in the splitting operation. In this case, the

new bucket generation causes the value of c to change

from zero to one. Then, the X value at the bucket

boundary becomes I.5 which is the intermediate value

of the X value region in the overflow bucket. According

to the X value of each record in the overflow bucket, the

record is st.ored in the appropriate bucket. The logical

addresses of the buckets which are generated by split­

ting are ~ and 3. Note that the physical address of the

split bucket stayed the same (i.e. I), while its logical

address is changed from I to 2. The additional bucket .

ha.s therefore physical address ~ and logical address 3.

3

After that, new record ca,n be stored in one of the buck-

ets (Fig.3(c)-5). Fig.3(c)-6 shows the second splitting,

since the bucket with logical address 3 overflows~ This

splitting causes a change in the logical addresses of the

buckets whose addresses are lower than the overflow

bucket address. Therefore, the address of bucket 2 is

changed into the previous maximum plus one, that is 4.

The new logical address space becomes [4, 6] after split­

ting, because the overflow bucket is split into two

bucket whose addresses are 5 and 6 similar to the first

splitting. The value c is also changed into 2.0 because

the region of the overflow bucket X-values is [1.5, 2.0]

and c corresponds to a boundary point between the old

logical address maximum and the generated address

minimum. The record insertion operation continues in

this manner. The sequence of the logical addresses

whose buckets overflow are kept as control data. In this

example, this split sequence is { 1, 3 } . By keeping the

trace of the split history, it is possible to calculate the -~1

physical address from an X-value which is obtained from .. ,

a record key (a salary value in this example). ;;<;(;

Meanwhile, the direct representation of the growth func­

tion as shown in Fig.3(d), can be avoided. An example

of calculating the physical address from the X-value is

given in the section 3.5 below.

Basically, this way of splitting uses the idea of the .. ,

unified dynamic hashing proposed by Mullen r.-1ull84].

The piecewise linear functions used in [Mull84] are also

used here as a growth function and the same saw-tooth

function is used for deriving the X value. However, the

main differences between the method presented here and

the unified dynamic hashing method are: 1) the

representation of the growth function· is more spatially

efficient because it does not use a table but only a split

sequence, 2) splitting is done dynamically for one bucket

at a time, rather than many buckets when the file is

full.

In the unified dynamic hashing, the set of pairs (X,

logical address) where the first derivative i9 not. continu­

ous, have t.o be stored in some table form. The number

of pairs depends on the storage utilization. The abon

-points of (X, logical address) correspond to the break

points of the space expansion rate. Therefore, the less

space is available for the table storage, the less dynamic

the storage expansion is, thus defeating the feature of

dynamic hashing. This situation occurs because a file

has a large amount of unused area immediately after

space expansion. On the other hand, in the modified

dynamic hashing presented in this paper, This

phenomena is avoided, because buckets are split dynam­

ically one at a time. The logical addresses of split buck­

ets are stored in a sequence of which is used for deter­

mining a physical address from key values. The length

of the sequence increases linearly with splitting require­

ments. However, the values of each element in the

sequence are all integers and monotonically increasing.

Therefore, some compression technique can be employed

to reduce more the storage space for the sequence.

The other difference iS the storage utilization. The

unified dynamic hashing belongs in the second class of

·dvnamic hashing. So, file space expansion is made when

the file becomes full. The overflow records are stored in

another bucket when the bucket has an area available

for storing these records. However, in the modified

dynamic hashing, a bucket which overflows is split at

the time. Therefore, file control mechanism becomes

simple and easy tO implement. It is worth noticing that

the splitting method is similar to B-tree techniques.

This means that the behavior of splitting is also similar

to that of a B-tree except that one splitting operation

does not affect the spiitting of another bucket.

Next,. the process of the modified dynamic hashing

is described in more detail. First, some terms are intro­

duced more precisely.

[bucket]

All records are stored in a set of buckets. There­

fore, a bucket is a unit of logical space. This term is

used to avoid the confusion with a usual term "page".

A "bucket" does not refer to a physical area but to a

logical area. However, the entire the logical space is not

used, but only parts of it are effectively used. The

effective logical space changes as buckets are split, and

its range is denoted bv [L . , L]. Each "bucket" · mm max

4

has also a unique physical address corresponding to its

logical address.

[bucket size]

The bucket size is a number of records which can

be stored in a single bucket. \Vhile we assume that

records are fixed length in the diagrams and examples

for simplicity, this assumption is not necessary and not

made in the actual procedures described later. We

require that the hashing function is chosen so that the

number of records which have the same hash value is

always less than the bucket size. Thus, the hashing

function should be chosen carefully by the file designer.

[split sequence]

The logical addresses of the buckets which have

been split are stored in a sequence which is called the

split sequence. A split sequence L is represented by the

ordered set of {L.}, where L. i=l, 2, .. n are the logical
l l

split bucket addresses.

[bucket number]

The bucket number, which is initially N
0

,

represents the total number of buckets used at any

points in time. This value is increased one at a time as

splitting occurs.

Next, we describe the procedures for record inser­

tion, logical address calculation, physical address calcu­

lation and splitting buckets. In the remarks section

(3.5) we give an explanation for these procedures, as

well as an example that shows how they are used. It. is

suggested that the reader refers to the example when

reading the procedures below.

3.1 Record Insertion Procedure

step!: Determine the physical address from the key

value of a record which needs to be insert.ed as follows:

1) key -> hash (key) (with user selected hash

function)

2) hash(key) - > X (the saw tooth function

X=fC-hash(key)l+hash(key) is used)

\./

3) X - > logical address (shown in section 3.2

below)

4) logical address - > physical address (shown in

section 3.3 below)

,.-...,, step2: If the bucket with the calculated physical

address is full then perform the split procedure

described lat.er.

step3: Insert the record at the appropriate location in

the bucket.

3.2 Logical address calculation from X value

Proc: Logical(X)

X: Given X value

stepl: Calculation of the base X value (X2) and the

base logic.al address (Lb)

Decompose X into X1 and ~ such that

X=X1 +~, X1 :Integer, 0 :5 ~ :5 1
then calculate Lb and Xb by the following:

Lb=[~/a], Xb=Lb*a
where a= 1 / N

. 0 ° 0 let l =0, 1=0, Lmax =N0 , Lmin =1
(see definition below)

step2: execute L(Lmax
0

, Lmin °, Lb, Xb, ~· l, i)

step3: Logical=L, return

Lmaxi and Lmi/ The max. and mm. logical
addresses after i-th splitting

Lt: Temporary logical address used for calcula­

tion

Xt: The maximum X-value of the bucket with

logical address Lt

~t: Temporary X-value with the same decimal

part as that of the given X-Yalue

1: The number of splittings

5

i: Indicates the i-th splitting

stepl: Return condition

if L . < Lt < L mm- - max
then, L=Lt return

step2: easel: Lt = Li+l (case that the bucket Lt is
split)

if Xt-(1/2)
1
+

1
•a :5 ~t :5 Xt

then

Lt=L i-L.+L- 1+1 max 1 1+

Xt=Xt + 1.0
else

Lt=L i-1-+L. 1 max 1 1+

endif

~t=Xzt+l.O .
execute L(Lmax

1
-Li+Li+l+l, Li+l+l, Lt' ·:~

._..s,.
xt, ~t' 1+1, i+l)

(See Remarks 1-(c) and 1-(d) in section 3.5) """'

case2: Lt < Li+ 1 (case that the bucket Lt. is in .

the left of the split. bucke~ Li+ 1) -·

Lt=Lt+Lmax~-Lmin1+1 ·:~

others:

Xt=Xt+l.O

~t=~t+l.O .

execute L(Lmax
1
+Li+l-Li+l, Li+1 +1, Lt,

xt, Xzt· 1, i+I)
(See Remarks 1-(a) 1-(b) and 1-(c))

execute L(Lmax
1
+Li+l-Li+l, Li+ 1 +1, Lt'

xt, x2t, 1, i+ 1)
(See Remarks 1-(a) 1-(b) and 1-(c))

3.3 Physical address calculation from Logical

address

Proc: Physical(L)

L: Given logical address

step!: Initialization

let k=n (n is the split sequence size)
k k L =L L . =L . max max' mm mm

where L and L . mean the current max-max mm
imum and minimum logical addresses.

k k
step2: calculate P(L,Lmax ,Lmin ,k)

step3: Physical = P, return

Proc: P(L,Lmaxi'Lmini,i)
L: Gi~·en logical address

L 1
: The maximum logical address after i-th max

splitting

Lmini: The minimum logical address after i-t.h

splitting

i: Indicates the i-th splitting

Li: Logical address of the bucket of the i-th

splitting

stepl: Case that the bucket has been generated due to

splitting

if L=Lmaxi then P=Lmaxi-Lmini+1, return

step2: Case that the bucket has existed from the begin­

nmg

if L < N
0

then P=L, return

step3: Case that the bucket is in the left of the split

bucket

if L > L i-(L.-L. 1) - max 1 1- . .

end if

then P(L+Li-Lma>/+1, Lmax
1
-(Li-Li_1+1),

L- 1.J..1 i-1) 1- . ,

< See Remarks 1-(b) >

else P(L, L 1-(L.-L. 1+1), L. 1+1, i-1) max 1 1- 1-

< See Remarks 1-(c) >

3.4 Split procedure

stepl: Create a new bucket. whose physical address

6

equals to the current maximum physical value plus

one.

step2: Calculate min/max values(Xmin and Xmax)' of X

which map the logical address of the bucket which

overflows to the X value space.

These values can easily be obtained from the pro­

cedure of calculating logical address described

before.

step3: For each record in the bucket, do the following:

if an X value of hash(key of record) is between

[Xmin' (Xmin +Xmax)/Z]
then leave the record in the bucket

else insert the record in the new bucket

step4: Update the following values:

The constant c of the saw-tooth function

Split sequence L

Current logical space [Lmin Lmax]

as c=Xmax' Lmin=Ln+1+l,
Lmax=Lmax +Ln+1-Ln +1, and n=n+l.

3.5 Remarks

1) Explanation

The above procedures can be explained using the

following equations.

Let a split sequence be {L 1, ··· ,Lk} after k splitt.ings, the

effective logical space at the time [L . k ,L k], and mm max
the initial bucket size N . Then the following equations

0

hold. Given a logical address L,

a) Physical(Logical(X-1))=Physical(Logical(X))

for X such that X . (L)<X<X (L) and L mm - - max
is not a split bucket

b) Physical(L+Lk-Lmax k+1)=Physical(L)

for L such that L 2: Lk 1 k-1 k - k-1
c) L =L -Lk+Lk 1-1. L . =Lk-1 max max · ·- · mm ·

d) Xmax(L)-Xmin(L)=(I/2)l(L),.a

where

~
I

-Physical(L) means Physical address

corresponding with Logical address L,

-Logical(X) means Logical address mapped

from a value X,

-Xmin(L) and Xmax(L) mean minimum and

max1mum

-X values with logical address L,

-a=l.O/N ,
0

-l(L) means the split number of the bucket

with logical address L.

2) Integration of the above procedures

It. is easy to combine the logical address calcula­

tion and the physical address calculation shown above,

into a single procedure, because both procedures use the

history of splitting. The combined procedure makes it

possible to calculate the physical address from the X­

value directly [Kawa84].

3) Example

The procedures stated before are easy to under­

stand with the example shown in Fig.4.

First, a file is assumed to contain five buckets as

shown in Fig.4(a). Each bucket has a logical address

which is the same value as its physical address in the

range of [1, 5 J. After insertion of some records, bucket

3 is assumed to overflow. Therefore, buckets 1 and 2

which have lower logical addresses than bucket 3, are

logically moved toward higher addresses. Then, bucket

3 is split. into two buckets. The result is shown in

Fig.4(b) (disregard t.he shading of bucket 4, which will

overflow in the next. step). Buckets 6 and 7 have the

same physical address as the previous buckets 1 and 2,

respectively, and buckets 8 and 9 are generated by split­

ting bucket 3. Physically, only one bucket is created in

this process and some records in the buckets are moved

to the new bucket 9, whose physical address is 6. \Vhen

bucket 4 overflows, it is split as shown in Fig.4(c). Then

Fig.4(d) shows the result of overflowing bucket 6 and

Fig.4(e) shows the result of overflowing bucket 9. The

resulting split. sequence is , therefore, { 3, 4, 6, 9 }.

7

Instead of the split sequence, the original growth

function can also be used for address calculation, which

is shown in Fig.4(f). However,· it is obvious from

Fig.4(f) that seven pairs of (X-value, logical address) are

necessary to store this function, which requires more

space than the split sequence. Therefore, we use only

the split sequence in the procedures shown in the previ­

ous sections.

Next, we show an example of computing the phy­

sical bucket address from a given key. From the key

value, the X-value is obtained by simple calculation.

Assume. that this value from the given value is 2.54.

The value c after the first step is .6 because c is changed

to xmax as shown in the split procedure in section 3.4.

Similarly, c changes in the next steps and the current c

value after 5 record insertion is 1.6. According to the

above procedure, the result of step 1 is ~ = 0.54, a =
0 - .. 0

0.2, Lb = 3, Xb = 0.6 L = :l, L . = 1, L max mm max
= 18 and Lmin = 10. Then at step 2, the Proc L (5, 1,

3, 0.6, 0.54, 0, 0) is used. First, because L is not
t

between L and L . and also because Lt equals to max mm
L1 and new Xt' and Lt are calculated. The result is

that Lt = 9 and Xt = 1.6. Ne).:t, the procedure L (9, 4,

9, 1.6, 1.54, 1, 1) is executed. Because both L. is not
t

between L and L . and Lt not < L1, L is exe-max mm 0 -
cuted again with the change of Lmin and Lmax

0
. At ,,,,

the second and third iterations, the results are L (11, 5,

9, 1.6, 1.54, 1, 2) and L (14, 7, 9, 1.6, 1.54, 1, 3), respec­

tively. At the forth iteration, Lt = L4. Then, it is

obtained for Xt = 2.55 Lt = 17. Finally, when L {18,

10, 17, 2.55, 2.54, 2, 4) is executed, Lt is in [Lmin'

Lmaxl and the procedure terminates. Therefore, the

logical address Lt = 17 is the result.

After obtaining the logical address, the physical

address can be calculated as follows. From the logical

address = 17, the current L = 18 and the current max
Lmin = 10, the procedure P (17, 18, 10, 4) is per-

formed. The condition of the step 3 holds becau~e L

(=17) does not equal to Lmax (=18) and L is not le:;s

than N (=5) but L > 15 which is L -(L .-L3). o · - max ..
Therefore, the procedure P (9, 14, i, 3) is executed. At

the second iteration, the result is t.o execute P (9, 11, 5,

2) because no if-conditions in the procedure hold. At

the third iteration, the result is to execute P (9, 9, 4, I)

because of th.e same reason. Finally, the value L (=9)

becomes the same as Lmax I. The physical address P =

L I_L . I+I = 6. Therefore, a record with X-value
max nun

2.54 is in the bucket with physical address 6. This

access is, thus, guaranteed to succeed only a single

access is necessary.

4. Discussion

The performance of a file organization and its

access method can be evaluated with the following

measures.

- The load factor
- The number of storage accesses for searching
- The number of storage accesses for insertion

The last. two values equal exactly to one in the

case of the modified dynamic hashing, because the file

organization with the modified dynamic hashing does

not use overflow area, since a bucket which overflows is

split immediately. Therefore, the modified dynamic

hashing only requires one logical access. However, the

logical access may not require a physical I(O in case

that the bucket is already in memory.

The fact that the number of logical accesses

always equals to one is an important advantage. It is

achieved by using more CPU time in calculating the

physical address than the conventional dynamic hashing

methods. Howenr, this is a worthwhile trade-off

because CPU costs are continuously decreasing and

unnecessary physical 1/0 should be avoided.

To estimate the load factor, we can use analysis

methods similar to that of B-tree. The splitting causes

the decomposition of the records in the overflow bucket

into the two buckets. The result of B-tree analysis,

which has been done by Yao [Yaoi8], bas showed that

the anrage load factor is as follows in the case that

records in buckets are sufficient.ly large,

LOAD = In 2 * {m+I/m), where m 1s the bucket

size.

When the value of m is also sufficiently large,

LOAD is approximately In 2. Therefore, in the modified

dynamic hashing, the load factor is expected In 2.

To investigate the above result, a simulation was

performed. Fig.5 shows the load factor for several

bucket sizes and bucket numbers. The bucket sizes

chosen are 20, 50, 100 and 150. For each bucket size,

the load factors are calculated after n record insertions,

where n is set to 500 in the simulation. Records to be

inserted are assumed to have random keys. From the

simulation results in Fig.5, it can be observed that the

load factor is close to In 2.

We also measured the number of bucket splits.

For the case that ten thousand records are inserted, the

number of splittings is approximately between 100 and

650 depending on the size of a bucket. This means that

in practice the split sequence can be stored in mai:1

memory.

In summary, the advantages of the modified

dynamic hashing are:

I) It provides direct access to the desired bucket without.

additional bucket or index

2) It. provides In 2 load factor with less variation, similar

to B-tree

3) It is easy to implement due to the simple access

method.

4) No index tree is required. The necessary space size is

proportional to the number of splits.

In order to make this hashing technique more

practical, there are a couple of problems related with

the modified dynamic hashing that have to be worked

out in detail. We indicate below possible techniques for

their solutions.

8.

The three problems are: I) record deletion and

bucket concatenation, and 2) the reorganization of logi­

cal space, and 3) address calculation cost reduction.

The deletion problem can be supported as follows.

One possible method is to delete records logically, not

physically. Howenr, this method causes the load fac·

tors t.o degeneratt-. As in the case of a B-tree, bucket

-I
v

J

\j

concatenation should be used. By doing so, it is possible

to store records more efficiently. In our method, it is

possible to use the split sequence including concatenated

bucket addresses in order to achieve the effect of con­

catenation.

The problem of organizing the logical space arises

as more and more splitting cause the logical space to

assume larger and larger values, and the split sequence

increases. The computation time therefore increases as

well. The reorganization of the logical space can be

achieved by exchanging the physical addresses of buck­

ets. It amounts t.o finding the simplest method for the

bucket cont.ext permutation, which is similar to matrix

permutation.

The cost problem of address ·calculation comes

from the split sequence for address mapping which needs

a linear order access O(n), where n means the number of

buckets. If a tree structure can be constructed, the

access cost could be reduced to O(log n). In order to

change a split sequence into a form of tree structure, it

is required t.o include the set of X-values related with

the split buckets as well as pointers for tree representa­

tion. Therefore, the necessary memory size for this split

tree structure mcreases. This means that designers

should select an appropriate structure, considering

trade-off between the memory cost and the access cost.

5. Conclusion

A new dynamic hashing method called :Modified

Dynamic Hashing has been described in this paper. This

method is based on the unified hashing method

presented by Mullin. As a growth function, the

modified dynamic hashing includes piecewise linear func­

tions, which the same as suggested by Mullin. However,

his method requires a table of pairs for the representa-

l~; tion of the function. Instead, the method presented in

this paper has split sequence which is an ordered set of

split bucket logical addresses. The number of integers

in split sequence is the order of the number of buckets,

and therefore can usually be st.ored in main memory.

Moreover, only one access is required using this method,

while other methods may require addit.ional bucket

9

accesses for overflowed bucket. Therefore, this method

has better performance as a secondary index file access

method.

Acknowledgement

I would like to thank Dr. Kato, Dr. l\1ikami, Dr.

Naniwada and :Mr. Managaki for giving me a chance to

study in the US and also to thank Dr. Shoshani for his

helpful and constructive comments on a draft of my

paper and his helping me with my English.

X·

1

0
0 1 ~ash{Key)

c=O

c + 1

1

J7: I I
c I

I
c

O<c<1

2 -,-1
c' + 1 -- I -I

l I I

c'
~~Vj

I I
I

0 c' 1

0 < c < c' < 1

c" -r 1

2

c"

1

0 c"- 1

1 < c·· < 2

(a) X function

0 c c' 1 c" c+l c'+1 2
~ 'I ' '

I I ,, I
I II I •' •' ,.

(b) X function regio:"l

c"

I

Logical address

- - ---- --------. _ __ rr~ -- ---- .. : 11
•I .. •. I:

0 c 1-.c" ~.;1 c'+l
c=O A" ; ~ i; i

c • ;rl l
c· ·f oJ

I
I
I
I
I
I
I.
I
I
I

2 c"+l
1

(c) Growth function

X

F'ig.l X function and Grawti} function

c"+l
I X

Logical space

Ovetow bucket

I I I ~I

\

Modify logical address
without modifying p~ysical address

(a) Ideal splitting •

Logical space

Over.tlow bucket

c=~-t-_:_===~==::::::_~M~odify logical address

SPLIT without modifying physical address

No Changes

r- r - r - r --r=;==;:=;:=;::::::...r=;=::::;::::~:.__~
~-L _:- .L -~1 -!.-I _,l_l --l.-.1 --LI -LI -LI ...J':::(;b~/J?':~~J

Not Used

(b) Modified dyneJ":'Jc ha~hing splitli."'lg

Flg.2 Bucket Sp!ittir.g

10

salary hash value record-id
10 0.1 1

100 0.9 2
20 0.4 3

120 0.6 4
130 0.7 I 5

(a) Example records

L[x,y] : Logical space domain

c : a parameter used

for X-value calculation

P Physical address

1 Logical address
a salary (key value)

b record-id

Bucket size= 2

(!) EJ
(4) ~

{5)

{6)

1.{1,1]

c=O

(2) ~ 1[1.1]

~c=O

{3)

1..[2,3]

c =.1.0

{b) Notation and assumption (c) Buckets history as records insert

Logical address

X ILl
1 I 1
2.5 I 4

3 I 6

Lfl. 1]

c=O

pnj 1..[4,6]

~ c = 2.0

0 1 . 1.5 2 2.5 3
(e) Table of growth function

(d) Growth function

Fig.3 Example

11 .

(a) [] EJ ~ [] EJ
(b) Wj EJ Ej EJ [] [5

(c) [] ffl EJ E3 Ej E5 ~

Physical address

Logical address

Sbows overOow bu.ckel

(d) EJ ~ WI~ EJ Ej Ej ~ ~

(e) rl EJ EJ EJ E) Ej. Ej EJ ~
(a)-(e) Bucket history

Fig.4 Example of modified dynamic hashing

Average load factor

1.0

0.8

0.6

0.4

0.2

0
0 2 4 6 8

logical address

10

lB ------------------

I
I

I I
I I
I I
I I

I I
I I
I I

10 I I
I I
I I

I
I I
I I
I I
I I

I: I
It I
Ill
I I I

I
jl I I: I I

X
0 1.0 2.0 2.6

""
"I (e)

~ (b)

I< •I (c)

.-.----o~ (a)

~<'-I' -----W~I (e)

(f) G.rorJl function

4-4 m = 150 s= 94

o-o m = 100 s = 133

·-· m= 50 s = 267

·-· m= 20 s= 647

(m:bucket size, s:number of split)

Number of records

103

Fig.5 Average load factor vs. Number of records with Modified dynamic hashing

12

r·

v

. J
"'

References

[FaNP79] Fagin, R., Nievergelt, J., Pippenger, N. and

Strong, H. R., Extendible Hashing: A Fast

Access Method for Dynamic Files. ACM.

TODS., 4, 3, pp315-344, Sep., 1979

[Kawa84] Kawagoe, Kyoji, Modified Dynamic Hash­

ing, Internal Memo., Oct, 1984

[KjeZ84] Kjellberg, P. and Zahle, T. U., Cascade

Hashing, Proc of lOth VLDB, Singapole ,

pp481-492, Aug., 1984

[Knot71] Knott, G. D., Expandable Open Addressing

Hash Storages and Retrieval, Proc. 1971

AC1v1-SIGFIDET W. S. on Data Description

Access and Control, ppl87-206, 19il

[Knut73] Knuth, D. E., The Art of Computer Pro­

gramming, Vol 3/Sorting and Searching,

Addison-Wesley, 1973

[Lars78] Larson, P., Dynamic Hashing, BIT 18, 2,

ppl84-201, 1978

[Lars80] Larson, P., Linear Hashing with Partial

Expansions, Proc.of 6th VLDB , pp224-232,

1980

[Litw78] Litwin, W., Virtual Hashing:Dynamically

Changing Hashing, Proc. of 4th VLDB,

West-Berlin, Sep, pp517-523, 1978

[Litw80] Litwin, W., Linear Hashing:A New Tool for

File and Table Addressing, Proc of 6th

VLDB, pp212-223, 1980

[Lome83] Lomet, D. B., Bounded Index Exponential

Hashing, ACM TODS, 8, 1, pp136-165, 1983

[Mull84] ·Mullen, J. K., Unified Dynamic Hashing,

Proc.of lOth VLDB, pp.473-480, AUg., 1984

[RamL82] Ramamohanaran, K. and LlOyd, J. W.,

Dynamic Hashing Schemes, The Computer

·" Journal, 25, 4, pp478-485, Nov., 1982

[Tamm82] Tamminan, M., Extendible Hashing with
1.;, Overflow, Inf. Proc. Letters, 15, 5, pp 227-

232, Dec., 1982

[Yao78] Yao, A. C. C., On. Random 2-3 Trees, Acta

Inf., 9, pp159-180, 1978

Appendix

Proof of the equations in 3.5-1)

a) It is obvious from file expansion way to hold that

both the logical address of X-1 and the logical address of

X have the same hashing value, when a bucket with log­

ical address of X-1 is not a split bucket. Then, the

bucket with logical address of X-1 and the bucket with

logical address L are the same bucket, physically.

Therefore, the physical address of the bucket with the

logical address L equals to the physical address of the

bucket with the logical address whose X value is X-1 ,

where X . (L) < X < X (L). mm - - max

b) Let L' be the logical address of L before splitting.

Then, by splitting of Lk, L' bucket on the (Lk-L'+l)

lower of the Lk bucket is logically moved to the L

bucket on the (Lmax kk L) lower of the Lmax k bucket.

Then, L'=L+Lk-Lmax +1 holds.

c) The length of logical space after k-1 splitting is

Lmaxk-l_Lr-l . That of logical space after k splitting is

also Lmax -Lk. The difference of them equals to one

because only one bucket is generated by splitting.

Then, Lma..x k-l=Lmax k_Lk +Lk_1-1 holds. It. is easy to
K-1 show L . = Lk -1. mm ·

d) By splitting, the difference between Xrna.x k and

X k . h If f h b X k-l d X k-l • lS a o t. at etween an _ . . mm 1 max mm
Then, Xmax-Xmin=(l/2) •a is easily obtained.

13

''-'

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

~.' ~~,

TECHNICAL INFORMATION DEPARTMENT

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CAUFORNIA

BERKELEY, CAUFORNIA 94720

i; ·~- '!Pj

