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[Abstract] 

This paper describes a modification for the unified 

dynamic hashing method presented by J. K. Mullin. 

The main advantage of this modified dynamic hashing 

method is that it provides a single file access to a 

record, while the unified dynamic hashing method may 

require several accesses for records in buckets that 

oYerfl.owed. This method is spatially efficient because it 

does not use indexes or tables commonly used by other 

dynamic hashing methods. 

1. Introduction 

Since the late seventies, there have been much 

work on dynamic hashing methods. Dynamic hashing 

methods make it possible to e>.."'J)and the hashing space 

dynamically by changing the hashing function. The 

hashing functions are chosen such that the effect on data 

locations is minimized. 

The features of dynamic hashing methods are: 

1) The file space can dynamically be changed as the 

number of records increases. That is, even if the esti­

mate on the needed file space is incorrect, the file never 

overflows. Furthermore, dynamic hashing methods pro­

vide fairly dense file structures even in the case of high 

updating activities. 

•This research was supported by the Applied 
Mathematics Sciences Research Program of the Office of 
Energy Research. United States Department of Energy 
under contract DE-AC03-76SF00098. 
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2) Dynamic hashing methods access a record in a file 

more efficiently than a B-tree, because they do not 

require the additional index information that is nece!:'­

sa.ry in B-tree methods. In practical applications, a 

record can be usually retrieved in a single logical access 

when using dynamic hashing methods. 

Because of these features, dynamic hashing 

methods maintain good access performance even if the 

space required is largely underestimated. [Mull84] 

Kjellberg and Zahle [Kjel84] have categorized 

many existing dynamic hashing methods into two 

classes. The first class of dynamic hashing has a file 

space expansion operation when an overflow occurs. 

This class includes Extendible Hashing [Fagi79], Expan­

dible Hashing [Knot71] , Virtual Hashing [Litw78] and 

Dynamic Hashing [La.rs78]. To maintain the relation­

ship between split buckets and the remaining buckets, 

either tree structures or tables are usually used. 

The second class of dynamic hashing avoid split­

ting until all overflow space is used. Therefore, an 

overflowed bucket is not split, but the records are stored 

in another bucket which has available space. Then, in 

the case that there is no more space in a file, some buck­

ets are split into a larger address space. No index infor­

mation is necessary for this class of hashing met.hods. 

This class of hashing includes Spiral Storage [in ~1ull84j, 

Linear Hashing [Litw80], Linear Hashing with Partial 

E:t.."Pansions [Lars80] and Unified Dynamic Hashing 

[Mull84]. The unified dynamic hashing employs a piece­

wise linear function for the file space growth function. 



In this paper, we present a modified dynamic bash­

ing method that combines the advantages of the first 

and the second classes described above. The first class 

has the advantage of providing a single file access to 

every record, but at the cost of using an additional 

index. The second class does not use an index, but 

requires more than one access for buckets that 

overflowed. In the method described here, we achieve 

always a single· file access without using an index. This 

is achieved by modifying the unified dynamic hashing 

method [Mull84], as will be explained in the following 

section. In addition, we show that this method that 

space utilization is at least as good as the other dynamic 

hashing methods. 

Section 3 describes the data organization and 

access algorithm of the proposed method. In section 4, 

the simulation results for the file load factor of the 

method are presented and then discusses the perfor­

mance of the method and some issues on the model. 

2. Background information on the unified 

dynamic hashing 

The unified dynamic hashing method that :Mullin 

proposed can represent all the methods in the second 

class· of dynamic hashing. According to his representa­

tion, dynamic hashing methods are expressed by the fol­

lowing: 

Key ->Hash(Key)->X->Logical bucket address­

>Physical bucket address, 

where Hash(key) is an arbitrary bashing function of keys 

and whose domain is [0, 1 ). The value of X is derived 

from the function: X=rc-Hash(Key)l+Hash(Key), where 

c is a parameter dependent on the particular method 

used. The mapping from the X values to the logical 

space is represented by a function called 'growth func­

tion'. 

Fig.l(a) shows the behavior of the X-funct.ion for 

diii-:,rent values of c. Note that as the Yalue of c 

change~, the interval of X values stays, but the starting 

and ending values are c and c+l, respectiYely. 
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Therefore, as the· value of c increases, the region of X 

has larger values shown in Fig.l(b ). An example of a 

growth function is shown in Fig.l(c). As can be seen in 

Fig.l(c), the growth function permits the range of X to 

grow as the value of the parameter c increases. The 

effect of this function is therefore to increase the logical 

space dynamically. A growth function should meet the 

following requirements: a) it should be continuous and 

one to one, b) the first derivative at all points should 

exist except in a finite number of points which occurs at 

bucket boundaries, c) the slope has to be greater at. x+ 1 

than at x, where x and x+l are elements of the region 

X, and d) inverse value calculation should be simple 

[Mull84]. The main reason for the above requirements is 

that the growth function is used not only for the map­

ping of X-value-to-logical address but also for the 

expansion of a logical file space. 

Mullen pointed out in his paper that the physical 

address is uniquely determined from the corresponding 

logical bucket address. The ease of mapping bet.ween 

logical and physical addresses is an important feature of 

the second class of dynamic hashing. He also makes it 

clear that the difference among the dynamic hashing 

methods in the second class lies in the selection of the 

growth function. Spiral storage [in Mull84] uses a form 

such as bx as its growth function. Linear hashing 

[Litw80] uses a set of linear functions such as a..X+b. 

The unified dynamic hashing is a way of viewing 

dynamic hashing, which gives a useful insight on select­

ing growth functions. Moreover, it provides new usage 

of dynamic hashing. 

3. The Modified Dynamic Hashing 

Unlike the unified dynamic hashing method which 

splits senral buckets when the file is full, The modified 

dynamic hashing method splits only the bucket that 

overflowed. The idea of the modified dynamic hashing 

is illustrated in the Fig. ::!. l"ote that the buckets which 

are on the right side of the split bucket han• a larger 

logical address after splitting. Howenr. the above 

structure is not. practic a!. The reason is that it is 

impossible to determine a new hashing function without 

r· 



changing the physical address of the buckets on the 

right. An alternative to this ideal bucket splitting is 

presented in Fig 2(b ). First, all the buckets on the left 

side of the bucket that overflows are logically moved 

toward higher addresses in a logical space without 

changing their physical addresses. They are placed logi­

cally at the end of the current logical space. Then, the 

bucket which overflows is split into the two. One of the 

two uses the same physical area where the bucket 

overflows. The other is physically created. Both are 

logically placed at the end of the logical space. 

A more detailed description of this method lS 

presented in the example shown in Fig.3. Fig.3(a) shows 

the set of records which have to be stored in a file. Ini­

tially, it is assumed that the file has no records. The file 

is used for a secondary access of an employee master file 

using the salary values. Fig.3(b) explains the symbol 

and notation for the next figures. Fig.3( c) shows a 

sequence of buckets in the file according to the record 

insertion operation. The records are stored in the order 

shown in Fig.3( a). First, two records are stored in the 

bucket 1 which is the only bucket in this file (Fig.3(c)-1 

to -3). Then, we assumed that this bucket is full after 

t.hese two records were inserted. The new logical 

address space is created by changing the value of the 

parameter c mentioned in the previous section. There­

fore, before the third record is stored, a new bucket is 

generated. After generating the new bucket, the two 

records in the overflow bucket are split (Fig.3( c )-4). The 

physical bucket address is determined by the X-value of 

the record in the splitting operation. In this case, the 

new bucket generation causes the value of c to change 

from zero to one. Then, the X value at the bucket 

boundary becomes I.5 which is the intermediate value 

of the X value region in the overflow bucket. According 

to the X value of each record in the overflow bucket, the 

record is st.ored in the appropriate bucket. The logical 

addresses of the buckets which are generated by split­

ting are ~ and 3. Note that the physical address of the 

split bucket stayed the same ( i.e. I ), while its logical 

address is changed from I to 2. The additional bucket . 

ha.s therefore physical address ~ and logical address 3. 
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After that, new record ca,n be stored in one of the buck-

ets (Fig.3( c )-5 ). Fig.3( c )-6 shows the second splitting, 

since the bucket with logical address 3 overflows~ This 

splitting causes a change in the logical addresses of the 

buckets whose addresses are lower than the overflow 

bucket address. Therefore, the address of bucket 2 is 

changed into the previous maximum plus one, that is 4. 

The new logical address space becomes [4, 6] after split­

ting, because the overflow bucket is split into two 

bucket whose addresses are 5 and 6 similar to the first 

splitting. The value c is also changed into 2.0 because 

the region of the overflow bucket X-values is [1.5, 2.0] 

and c corresponds to a boundary point between the old 

logical address maximum and the generated address 

minimum. The record insertion operation continues in 

this manner. The sequence of the logical addresses 

whose buckets overflow are kept as control data. In this 

example, this split sequence is { 1, 3 } . By keeping the 

trace of the split history, it is possible to calculate the -~1 

physical address from an X-value which is obtained from .. , 

a record key ( a salary value in this example ). ;;<;(; 

Meanwhile, the direct representation of the growth func­

tion as shown in Fig.3(d), can be avoided. An example 

of calculating the physical address from the X-value is 

given in the section 3.5 below. 

Basically, this way of splitting uses the idea of the .. , 

unified dynamic hashing proposed by Mullen r.-1ull84]. 

The piecewise linear functions used in [Mull84] are also 

used here as a growth function and the same saw-tooth 

function is used for deriving the X value. However, the 

main differences between the method presented here and 

the unified dynamic hashing method are: 1) the 

representation of the growth function· is more spatially 

efficient because it does not use a table but only a split 

sequence, 2) splitting is done dynamically for one bucket 

at a time, rather than many buckets when the file is 

full. 

In the unified dynamic hashing, the set of pairs (X, 

logical address) where the first derivative i9 not. continu­

ous, have t.o be stored in some table form. The number 

of pairs depends on the storage utilization. The abon 

-points of (X, logical address) correspond to the break 



points of the space expansion rate. Therefore, the less 

space is available for the table storage, the less dynamic 

the storage expansion is, thus defeating the feature of 

dynamic hashing. This situation occurs because a file 

has a large amount of unused area immediately after 

space expansion. On the other hand, in the modified 

dynamic hashing presented in this paper, This 

phenomena is avoided, because buckets are split dynam­

ically one at a time. The logical addresses of split buck­

ets are stored in a sequence of which is used for deter­

mining a physical address from key values. The length 

of the sequence increases linearly with splitting require­

ments. However, the values of each element in the 

sequence are all integers and monotonically increasing. 

Therefore, some compression technique can be employed 

to reduce more the storage space for the sequence. 

The other difference iS the storage utilization. The 

unified dynamic hashing belongs in the second class of 

·dvnamic hashing. So, file space expansion is made when 

the file becomes full. The overflow records are stored in 

another bucket when the bucket has an area available 

for storing these records. However, in the modified 

dynamic hashing, a bucket which overflows is split at 

the time. Therefore, file control mechanism becomes 

simple and easy tO implement. It is worth noticing that 

the splitting method is similar to B-tree techniques. 

This means that the behavior of splitting is also similar 

to that of a B-tree except that one splitting operation 

does not affect the spiitting of another bucket. 

Next,. the process of the modified dynamic hashing 

is described in more detail. First, some terms are intro­

duced more precisely. 

[bucket] 

All records are stored in a set of buckets. There­

fore, a bucket is a unit of logical space. This term is 

used to avoid the confusion with a usual term "page". 

A "bucket" does not refer to a physical area but to a 

logical area. However, the entire the logical space is not 

used, but only parts of it are effectively used. The 

effective logical space changes as buckets are split, and 

its range is denoted bv [L . , L ]. Each "bucket" · mm max 
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has also a unique physical address corresponding to its 

logical address. 

[bucket size] 

The bucket size is a number of records which can 

be stored in a single bucket. \Vhile we assume that 

records are fixed length in the diagrams and examples 

for simplicity, this assumption is not necessary and not 

made in the actual procedures described later. We 

require that the hashing function is chosen so that the 

number of records which have the same hash value is 

always less than the bucket size. Thus, the hashing 

function should be chosen carefully by the file designer. 

[split sequence] 

The logical addresses of the buckets which have 

been split are stored in a sequence which is called the 

split sequence. A split sequence L is represented by the 

ordered set of {L.}, where L. i=l, 2, .. n are the logical 
l l 

split bucket addresses. 

[bucket number] 

The bucket number, which is initially N
0

, 

represents the total number of buckets used at any 

points in time. This value is increased one at a time as 

splitting occurs. 

Next, we describe the procedures for record inser­

tion, logical address calculation, physical address calcu­

lation and splitting buckets. In the remarks section 

(3.5) we give an explanation for these procedures, as 

well as an example that shows how they are used. It. is 

suggested that the reader refers to the example when 

reading the procedures below. 

3.1 Record Insertion Procedure 

step!: Determine the physical address from the key 

value of a record which needs to be insert.ed as follows: 

1) key -> hash (key) (with user selected hash 

function) 

2) hash(key) - > X (the saw tooth function 

X=fC-hash(key)l+hash(key) is used) 

\./ 



3) X - > logical address (shown in section 3.2 

below) 

4) logical address - > physical address (shown in 

section 3.3 below) 

,.-...,, step2: If the bucket with the calculated physical 

address is full then perform the split procedure 

described lat.er. 

step3: Insert the record at the appropriate location in 

the bucket. 

3.2 Logical address calculation from X value 

Proc: Logical(X) 

X: Given X value 

stepl: Calculation of the base X value (X2) and the 

base logic.al address (Lb) 

Decompose X into X1 and ~ such that 

X=X1 +~, X1 :Integer, 0 :5 ~ :5 1 
then calculate Lb and Xb by the following: 

Lb=[~/a], Xb=Lb*a 
where a= 1 / N 

. 0 ° 0 let l =0, 1=0, Lmax =N0 , Lmin =1 
(see definition below) 

step2: execute L(Lmax 
0

, Lmin °, Lb, Xb, ~· l, i) 

step3: Logical=L, return 

Lmaxi and Lmi/ The max. and mm. logical 
addresses after i-th splitting 

Lt: Temporary logical address used for calcula­

tion 

Xt: The maximum X-value of the bucket with 

logical address Lt 

~t: Temporary X-value with the same decimal 

part as that of the given X-Yalue 

1: The number of splittings 
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i: Indicates the i-th splitting 

stepl: Return condition 

if L . < Lt < L mm- - max 
then, L=Lt return 

step2: easel: Lt = Li+l (case that the bucket Lt is 
split) 

if Xt-(1/2)
1
+

1
•a :5 ~t :5 Xt 

then 

Lt=L i-L.+L- 1+1 max 1 1+ 

Xt=Xt + 1.0 
else 

Lt=L i-1-+L. 1 max 1 1+ 

endif 

~t=Xzt+l.O . 
execute L(Lmax

1
-Li+Li+l+l, Li+l+l, Lt' ·:~ 

._..s,. 
xt, ~t' 1+1, i+l) 

(See Remarks 1-( c) and 1-( d) in section 3.5) """' 

case2: Lt < Li+ 1 (case that the bucket Lt. is in . 

the left of the split. bucke~ Li+ 1) -· 

Lt=Lt+Lmax~-Lmin1+1 ·:~ 

others: 

Xt=Xt+l.O 

~t=~t+l.O . 

execute L(Lmax
1
+Li+l-Li+l, Li+1 +1, Lt, 

xt, Xzt· 1, i+I) 
(See Remarks 1-(a) 1-(b) and 1-(c)) 

execute L(Lmax
1
+Li+l-Li+l, Li+ 1 +1, Lt' 

xt, x2t, 1, i+ 1) 
(See Remarks 1-(a) 1-(b) and 1-(c)) 

3.3 Physical address calculation from Logical 

address 

Proc: Physical(L) 

L: Given logical address 

step!: Initialization 



let k=n (n is the split sequence size) 
k k L =L L . =L . max max' mm mm 

where L and L . mean the current max-max mm 
imum and minimum logical addresses. 

k k 
step2: calculate P(L,Lmax ,Lmin ,k) 

step3: Physical = P, return 

Proc: P(L,Lmaxi'Lmini,i) 
L: Gi~·en logical address 

L 1
: The maximum logical address after i-th max 

splitting 

Lmini: The minimum logical address after i-t.h 

splitting 

i: Indicates the i-th splitting 

Li: Logical address of the bucket of the i-th 

splitting 

stepl: Case that the bucket has been generated due to 

splitting 

if L=Lmaxi then P=Lmaxi-Lmini+1, return 

step2: Case that the bucket has existed from the begin­

nmg 

if L < N 
0 

then P=L, return 

step3: Case that the bucket is in the left of the split 

bucket 

if L > L i-(L.-L. 1) - max 1 1- . . 

end if 

then P(L+Li-Lma>/+1, Lmax
1
-(Li-Li_1+1), 

L- 1.J..1 i-1) 1- . , 

< See Remarks 1-(b) > 

else P(L, L 1-(L.-L. 1+1), L. 1+1, i-1) max 1 1- 1-

< See Remarks 1-(c) > 

3.4 Split procedure 

stepl: Create a new bucket. whose physical address 
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equals to the current maximum physical value plus 

one. 

step2: Calculate min/max values(Xmin and Xmax)' of X 

which map the logical address of the bucket which 

overflows to the X value space. 

These values can easily be obtained from the pro­

cedure of calculating logical address described 

before. 

step3: For each record in the bucket, do the following: 

if an X value of hash(key of record) is between 

[Xmin' (Xmin +Xmax)/Z] 
then leave the record in the bucket 

else insert the record in the new bucket 

step4: Update the following values: 

The constant c of the saw-tooth function 

Split sequence L 

Current logical space [ Lmin Lmax ] 

as c=Xmax' Lmin=Ln+1+l, 
Lmax=Lmax +Ln+1-Ln +1, and n=n+l. 

3.5 Remarks 

1) Explanation 

The above procedures can be explained using the 

following equations. 

Let a split sequence be {L 1, ··· ,Lk} after k splitt.ings, the 

effective logical space at the time [L . k ,L k], and mm max 
the initial bucket size N . Then the following equations 

0 

hold. Given a logical address L, 

a) Physical(Logical(X-1 ))=Physical(Logical(X)) 

for X such that X . (L)<X<X (L) and L mm - - max 
is not a split bucket 

b) Physical(L+Lk-Lmax k+1)=Physical(L) 

for L such that L 2: Lk 1 k-1 k - k-1 
c) L =L -Lk+Lk 1-1. L . =Lk-1 max max · ·- · mm · 

d) Xmax(L)-Xmin(L)=(I/2)l(L),.a 

where 
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-Physical(L) means Physical address 

corresponding with Logical address L, 

-Logical(X) means Logical address mapped 

from a value X, 

-Xmin(L) and Xmax(L) mean minimum and 

max1mum 

-X values with logical address L, 

-a=l.O/N , 
0 

-l(L) means the split number of the bucket 

with logical address L. 

2) Integration of the above procedures 

It. is easy to combine the logical address calcula­

tion and the physical address calculation shown above, 

into a single procedure, because both procedures use the 

history of splitting. The combined procedure makes it 

possible to calculate the physical address from the X­

value directly [Kawa84]. 

3) Example 

The procedures stated before are easy to under­

stand with the example shown in Fig.4. 

First, a file is assumed to contain five buckets as 

shown in Fig.4(a). Each bucket has a logical address 

which is the same value as its physical address in the 

range of [ 1, 5 J. After insertion of some records, bucket 

3 is assumed to overflow. Therefore, buckets 1 and 2 

which have lower logical addresses than bucket 3, are 

logically moved toward higher addresses. Then, bucket 

3 is split. into two buckets. The result is shown in 

Fig.4(b) (disregard t.he shading of bucket 4, which will 

overflow in the next. step). Buckets 6 and 7 have the 

same physical address as the previous buckets 1 and 2, 

respectively, and buckets 8 and 9 are generated by split­

ting bucket 3. Physically, only one bucket is created in 

this process and some records in the buckets are moved 

to the new bucket 9, whose physical address is 6. \Vhen 

bucket 4 overflows, it is split as shown in Fig.4( c). Then 

Fig.4(d) shows the result of overflowing bucket 6 and 

Fig.4( e) shows the result of overflowing bucket 9. The 

resulting split. sequence is , therefore, { 3, 4, 6, 9 }. 
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Instead of the split sequence, the original growth 

function can also be used for address calculation, which 

is shown in Fig.4(f). However,· it is obvious from 

Fig.4(f) that seven pairs of (X-value, logical address) are 

necessary to store this function, which requires more 

space than the split sequence. Therefore, we use only 

the split sequence in the procedures shown in the previ­

ous sections. 

Next, we show an example of computing the phy­

sical bucket address from a given key. From the key 

value, the X-value is obtained by simple calculation. 

Assume. that this value from the given value is 2.54. 

The value c after the first step is .6 because c is changed 

to xmax as shown in the split procedure in section 3.4. 

Similarly, c changes in the next steps and the current c 

value after 5 record insertion is 1.6. According to the 

above procedure, the result of step 1 is ~ = 0.54, a = 
0 - .. 0 

0.2, Lb = 3, Xb = 0.6 L = :l, L . = 1, L max mm max 
= 18 and Lmin = 10. Then at step 2, the Proc L (5, 1, 

3, 0.6, 0.54, 0, 0) is used. First, because L is not 
t 

between L and L . and also because Lt equals to max mm 
L1 and new Xt' and Lt are calculated. The result is 

that Lt = 9 and Xt = 1.6. Ne).:t, the procedure L (9, 4, 

9, 1.6, 1.54, 1, 1) is executed. Because both L. is not 
t 

between L and L . and Lt not < L1, L is exe-max mm 0 -
cuted again with the change of Lmin and Lmax 

0
. At ,,,, 

the second and third iterations, the results are L (11, 5, 

9, 1.6, 1.54, 1, 2) and L (14, 7, 9, 1.6, 1.54, 1, 3), respec­

tively. At the forth iteration, Lt = L4. Then, it is 

obtained for Xt = 2.55 Lt = 17. Finally, when L {18, 

10, 17, 2.55, 2.54, 2, 4) is executed, Lt is in [Lmin' 

Lmaxl and the procedure terminates. Therefore, the 

logical address Lt = 17 is the result. 

After obtaining the logical address, the physical 

address can be calculated as follows. From the logical 

address = 17, the current L = 18 and the current max 
Lmin = 10, the procedure P (17, 18, 10, 4) is per-

formed. The condition of the step 3 holds becau~e L 

(=17) does not equal to Lmax (=18) and L is not le:;s 

than N (=5) but L > 15 which is L -(L .-L3). o · - max .. 
Therefore, the procedure P (9, 14, i, 3) is executed. At 

the second iteration, the result is t.o execute P (9, 11, 5, 



2) because no if-conditions in the procedure hold. At 

the third iteration, the result is to execute P (9, 9, 4, I) 

because of th.e same reason. Finally, the value L (=9) 

becomes the same as Lmax I. The physical address P = 

L I_L . I+I = 6. Therefore, a record with X-value 
max nun 

2.54 is in the bucket with physical address 6. This 

access is, thus, guaranteed to succeed only a single 

access is necessary. 

4. Discussion 

The performance of a file organization and its 

access method can be evaluated with the following 

measures. 

- The load factor 
- The number of storage accesses for searching 
- The number of storage accesses for insertion 

The last. two values equal exactly to one in the 

case of the modified dynamic hashing, because the file 

organization with the modified dynamic hashing does 

not use overflow area, since a bucket which overflows is 

split immediately. Therefore, the modified dynamic 

hashing only requires one logical access. However, the 

logical access may not require a physical I(O in case 

that the bucket is already in memory. 

The fact that the number of logical accesses 

always equals to one is an important advantage. It is 

achieved by using more CPU time in calculating the 

physical address than the conventional dynamic hashing 

methods. Howenr, this is a worthwhile trade-off 

because CPU costs are continuously decreasing and 

unnecessary physical 1/0 should be avoided. 

To estimate the load factor, we can use analysis 

methods similar to that of B-tree. The splitting causes 

the decomposition of the records in the overflow bucket 

into the two buckets. The result of B-tree analysis, 

which has been done by Yao [Yaoi8], bas showed that 

the anrage load factor is as follows in the case that 

records in buckets are sufficient.ly large, 

LOAD = In 2 * {m+I/m), where m 1s the bucket 

size. 

When the value of m is also sufficiently large, 

LOAD is approximately In 2. Therefore, in the modified 

dynamic hashing, the load factor is expected In 2. 

To investigate the above result, a simulation was 

performed. Fig.5 shows the load factor for several 

bucket sizes and bucket numbers. The bucket sizes 

chosen are 20, 50, 100 and 150. For each bucket size, 

the load factors are calculated after n record insertions, 

where n is set to 500 in the simulation. Records to be 

inserted are assumed to have random keys. From the 

simulation results in Fig.5, it can be observed that the 

load factor is close to In 2. 

We also measured the number of bucket splits. 

For the case that ten thousand records are inserted, the 

number of splittings is approximately between 100 and 

650 depending on the size of a bucket. This means that 

in practice the split sequence can be stored in mai:1 

memory. 

In summary, the advantages of the modified 

dynamic hashing are: 

I) It provides direct access to the desired bucket without. 

additional bucket or index 

2) It. provides In 2 load factor with less variation, similar 

to B-tree 

3) It is easy to implement due to the simple access 

method. 

4) No index tree is required. The necessary space size is 

proportional to the number of splits. 

In order to make this hashing technique more 

practical, there are a couple of problems related with 

the modified dynamic hashing that have to be worked 

out in detail. We indicate below possible techniques for 

their solutions. 

8. 

The three problems are: I) record deletion and 

bucket concatenation, and 2) the reorganization of logi­

cal space, and 3) address calculation cost reduction. 

The deletion problem can be supported as follows. 

One possible method is to delete records logically, not 

physically. Howenr, this method causes the load fac· 

tors t.o degeneratt-. As in the case of a B-tree, bucket 
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concatenation should be used. By doing so, it is possible 

to store records more efficiently. In our method, it is 

possible to use the split sequence including concatenated 

bucket addresses in order to achieve the effect of con­

catenation. 

The problem of organizing the logical space arises 

as more and more splitting cause the logical space to 

assume larger and larger values, and the split sequence 

increases. The computation time therefore increases as 

well. The reorganization of the logical space can be 

achieved by exchanging the physical addresses of buck­

ets. It amounts t.o finding the simplest method for the 

bucket cont.ext permutation, which is similar to matrix 

permutation. 

The cost problem of address ·calculation comes 

from the split sequence for address mapping which needs 

a linear order access O(n), where n means the number of 

buckets. If a tree structure can be constructed, the 

access cost could be reduced to O(log n). In order to 

change a split sequence into a form of tree structure, it 

is required t.o include the set of X-values related with 

the split buckets as well as pointers for tree representa­

tion. Therefore, the necessary memory size for this split 

tree structure mcreases. This means that designers 

should select an appropriate structure, considering 

trade-off between the memory cost and the access cost. 

5. Conclusion 

A new dynamic hashing method called :Modified 

Dynamic Hashing has been described in this paper. This 

method is based on the unified hashing method 

presented by Mullin. As a growth function, the 

modified dynamic hashing includes piecewise linear func­

tions, which the same as suggested by Mullin. However, 

his method requires a table of pairs for the representa-

l~; tion of the function. Instead, the method presented in 

this paper has split sequence which is an ordered set of 

split bucket logical addresses. The number of integers 

in split sequence is the order of the number of buckets, 

and therefore can usually be st.ored in main memory. 

Moreover, only one access is required using this method, 

while other methods may require addit.ional bucket 

9 

accesses for overflowed bucket. Therefore, this method 

has better performance as a secondary index file access 

method. 

Acknowledgement 

I would like to thank Dr. Kato, Dr. l\1ikami, Dr. 

Naniwada and :Mr. Managaki for giving me a chance to 

study in the US and also to thank Dr. Shoshani for his 

helpful and constructive comments on a draft of my 

paper and his helping me with my English. 



X· 

1 

0 
0 1 ~ash{Key) 

c=O 

c + 1 

1 

J7: I I 
c I 

I 
c 

O<c<1 

2 -,-1 
c' + 1 -- I -I 

l I I 

c' 
~~Vj 

I I 
I 

0 c' 1 

0 < c < c' < 1 

c" -r 1 

2 

c" 

1 

0 c"- 1 

1 < c·· < 2 

(a) X function 

0 c c' 1 c" c+l c'+1 2 
~ 'I ....... ...... ' ' 

I I ,, I 
I II I •' •' ,. 

(b) X function regio:"l 

c" 

I 

Logical address 

- - ---- --------. _ __ rr~ -- ---- .. : 11 
•I .. •. I: 

0 c 1-.c" ~.;1 c'+l 
c=O A" ; ~ i; i 

c • ;rl l 
c· ·f oJ 

I 
I 
I 
I 
I 
I 
I. 
I 
I 
I 

2 c"+l 
1 

(c) Growth function 

X 

F'ig.l X function and Grawti} function 

c"+l 
I X 

Logical space 

Ovetow bucket 

I I I ~I 

\

Modify logical address 
without modifying p~ysical address 

(a) Ideal splitting • 

Logical space 

Over.tlow bucket 

c=~-t-_:_===~==::::::_~M~odify logical address 

SPLIT without modifying physical address 

No Changes 

r- r - r - r --r=;==;:=;:=;::::::...r=;=::::;::::~:.__~ 
~-L _:- .L -~1 -!.-I _,l_l --l.-.1 --LI -LI -LI ...J':::(;b~/J?':~~J 

Not Used 

(b) Modified dyneJ":'Jc ha~hing splitli."'lg 

Flg.2 Bucket Sp!ittir.g 

10 



salary hash value record-id 
10 0.1 1 

100 0.9 2 
20 0.4 3 

120 0.6 4 
130 0.7 I 5 

(a) Example records 

L[x,y] : Logical space domain 

c : a parameter used 

for X-value calculation 

P Physical address 

1 Logical address 
a salary (key value) 

b record-id 

Bucket size= 2 

(!) EJ 
(4) ~ 

{5) 

{6) 

1.{1,1] 

c=O 

(2) ~ 1[1.1] 

~c=O 

{3) 

1..[2,3] 

c =.1.0 

{b) Notation and assumption (c) Buckets history as records insert 

Logical address 

X ILl 
1 I 1 
2.5 I 4 

3 I 6 

Lfl. 1] 

c=O 

pnj 1..[4,6] 

~ c = 2.0 

0 1 . 1.5 2 2.5 3 
(e) Table of growth function 

(d) Growth function 

Fig.3 Example 

11 . 



(a) [] EJ ~ [] EJ 
(b) Wj EJ Ej EJ [] [5 
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Fig.4 Example of modified dynamic hashing 
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Fig.5 Average load factor vs. Number of records with Modified dynamic hashing 
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Appendix 

Proof of the equations in 3.5-1) 

a) It is obvious from file expansion way to hold that 

both the logical address of X-1 and the logical address of 

X have the same hashing value, when a bucket with log­

ical address of X-1 is not a split bucket. Then, the 

bucket with logical address of X-1 and the bucket with 

logical address L are the same bucket, physically. 

Therefore, the physical address of the bucket with the 

logical address L equals to the physical address of the 

bucket with the logical address whose X value is X-1 , 

where X . (L) < X < X (L). mm - - max 

b) Let L' be the logical address of L before splitting. 

Then, by splitting of Lk, L' bucket on the (Lk-L'+l) 

lower of the Lk bucket is logically moved to the L 

bucket on the (Lmax kk L) lower of the Lmax k bucket. 

Then, L'=L+Lk-Lmax +1 holds. 

c) The length of logical space after k-1 splitting is 

Lmaxk-l_Lr-l . That of logical space after k splitting is 

also Lmax -Lk. The difference of them equals to one 

because only one bucket is generated by splitting. 

Then, Lma..x k-l=Lmax k_Lk +Lk_1-1 holds. It. is easy to 
K-1 show L . = Lk -1. mm · 

d) By splitting, the difference between Xrna.x k and 

X k . h If f h b X k-l d X k-l • lS a o t. at etween an _ . . mm 1 max mm 
Then, Xmax-Xmin=(l/2) •a is easily obtained. 
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