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Abstract: The Optics in the Life Sciences conference sponsored by the
Optical Society of America was held in Waikoloa Beach, HI on April 14 —
18, 2013. Papers were presented in the areas of Bio-Optics: Design &
Application, Novel Techniques in Microscopy, Optical Molecular Probes,
Imaging & Drug Delivery, and Optical Trapping Applications. A focal
point of the meeting was a special symposium entitled “Photons Across
Medicine”, organized by Adam Wax, Duke University, highlighting
activities of joint interest between the Optical Society of America (OSA)
and the Society for Nuclear Medicine and Molecular Imaging (SNMMI).
This paper is a synopsis of the presentations made at this joint symposium.
Central to the special symposium presentations was the fact that the optical
and nuclear imaging communities share common interests and challenges.
These are highlighted in this article. Also discussed was the fact that the
nuclear technologies in imaging have found their way into general clinical
utility, a feat that has yet to be achieved by optical methods. Because of the
common ground shared by the two technologies, coordination between the
two societies should be planned.

© 2013 Optical Society of America

OCIS codes: (170.0170) Medical optics and biotechnology; (170.0110) Imaging systems;
(170.3880) Medical and biological imaging; (170.3890) Medical optics instrumentation.
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1. Introduction

A driving influence in biomedical research is the desire on the part of any research team to
see the focus of its efforts become a part of clinical practice at some point in the future. This
is as true in the field of biophotonics as it is in any other biomedical arena, and this evolution
of science and technology from bench to bedside has been called translational research [1].
Zerhouni described translational research as moving discovery to practice [2].

While the desire for translation might be strong in the field of biophotonics, the pathway
for its successful execution is vague. A review of the process from bench to bedside has been
given by Drolet and Lorenzi [3], in which the authors present a Biomedical Research
Translation Continuum model and reference it to the Dougherty and Conway “T —
terminology” [4]. In this terminology, the translation of basic science into clinical research
(T1) is only the first step toward high quality, effective, and safe healthcare delivery. The next
step (T2) is the creation of practical clinical trials [5] to deliver the proper treatment to the
right patients correctly. Finally, T3 translational activities include policy changes, including
CMS and health insurance perspectives, needed to stimulate attempts to improve health
outcomes [6]. In biophotonics, the vast majority of research is confronting the first of these
translation barriers. The hurdles to be overcome include those activities needed for FDA
approval, such as validation methods and implementation of some form of good laboratory
practices.

An efficient way to climb the learning curve of translational activities is to follow the lead
given by others engaged in similar research and facing similar difficulties. At first glance, the
nuclear imaging community seems an unlikely candidate as a mentor for the photonics
community to emulate in translational research. However, on closer inspection, there are a
number of similarities in shared technologies, shared concerns and shared challenges that
make the two more alike than not.

Areas of overlapping technologies include photon detection, the use of labeled probes,
tomographic image reconstruction, and the growing need to extract quantitative information
from images. In addition, there are emerging techniques such as Cerenkov radiation detection
that require scientific knowledge of both nuclear (charged particle) physics and photonics.

Concerns shared by both scientific communities include the need to understand and follow
the protocols of radiation dose. While the admissible radiation dose levels are very different
because photon energies in the two research domains are so different, there are established
rules for each which must be followed. Other areas of shared concern for the nuclear imaging
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and the biophotonics community include topics as diverse as detection and quantification of
information in images in the presence of noise, optimal use of anatomic information as a
guide or constraint in hybrid or multimodal imaging, and the steps for investigational device
exemption (IDE) and investigational new drug (IND) status.

Nuclear imaging and optical imaging share common application challenges. Both, for
example, are attempting to unlock the nature of molecular processes in biology through
imaging. To do this, the use of image-enhancing probes (contrast agents or
radiopharmaceuticals) is required. Pharmacokinetic imaging and modeling are needed in both
modalities to establish safe levels of dosing and optimal imaging protocols.

These areas of common technologies, concerns and challenges between the nuclear
medicine community represented by the Society for Nuclear Medicine & Molecular Imaging
(SNMMI) and the community of biomedical optical researchers represented by the Optical
Society of America (OSA) create links between the two. An important difference, however, is
the fact that nuclear imaging technologies have been successfully translated into clinical
practice, while optical methods, for the most part, remain in feasibility research and
development. Hurdles presented by the FDA have been overcome in nuclear imaging, and
lessons learned should be available to others confronted by similar hurdles. This article
suggests that the biophotonics community can gain valuable information from the nuclear
imaging community in matters of translational research. While it is not the purpose of this
article to lay out a recipe to follow for translational success, it is the purpose to highlight
specific areas where linkage between the two technologies can be strengthened for future
translational collaborations.

2. Nuclear medicine and optical imaging: The physics and engineering interface

At first glance, the technologies and methods of nuclear medical imaging and optical imaging
may appear to share little in common. The photons used in nuclear medicine (typically
gamma rays emitted from excited nuclear states, or annihilation photons from positron
emission) arise from nuclear rearrangements that occur during radioactive decay and occur
approximately five orders of magnitude higher in energy in the electromagnetic spectrum than
optical photons. The interaction mechanisms of high energy photons in tissue are quite
different (dominated by ionizing effects and Compton scattering with relatively low
absorption) from low eV photons (elastic scattering with absorption). Despite these
differences, there are a number of synergies in technologies and methodologies that strongly
suggest the physics and engineering scientists within these two communities should be
working more closely together. Some specific examples are discussed here.

2.1 Advanced photon detectors

The vast majority of nuclear imaging detectors used in gamma cameras, single photon
emission computed tomography (SPECT) scanners and positron emission tomography (PET)
scanners are based on scintillation detectors in which high-energy gamma rays or annihilation
photons (energy range ~80-511 keV) are converted into short pulses of visible light (1-2 eV)
using dense scintillators [7]. At this point, the detection process of nuclear events shares many
similarities with optical imaging, i.e. the need to collect and convert small numbers of optical
photons into an electronic signal efficiently, often preserving spatial and/or temporal
information in the process. Not surprisingly, the photon detectors used in nuclear medicine,
namely photomultiplier tubes, avalanche photodiodes, and more recently silicon
photomultipliers, are also widely used in optical imaging and detection, and advances in these
detectors usually benefit both fields. Methods for characterization and absolute calibration of
these photon detectors are of mutual interest. The efficient collection of the scintillation light
from nuclear radiation detectors is critical, as photon statistics dictate the energy resolution,
timing resolution and in cases where positioning relies on light sharing, the spatial resolution
of the detector. The choice and optimization of scintillator crystal geometries, reflector
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materials, index matched coupling materials, light guides and in some cases optical fibers,
borrows heavily on concepts and materials developed in the optical design field. This extends
to optical simulation tools, which are also useful in nuclear medicine detector design for
modeling photon propagation from the production of optical photons following a high-energy
interaction in the scintillator, to their ultimate detection, absorption or escape from the
detector.

2.2 Hybrid optical/nuclear imaging systems

A variety of efforts are underway to develop small-animal systems that allow both nuclear
and optical imaging, either simultaneously, or in quick succession, without moving the
subject. In its simplest form, standard non-contact CCD-based preclinical optical imaging
systems can introduce a scintillator screen [8] and for better spatial resolution also a
collimator [9] between the subject and the CCD camera to produce an image of the
distribution of a radiotracer. A number of laboratories have developed prototype tomographic
systems for small-animal imaging that combine PET or SPECT imaging with fluorescence or
bioluminescence imaging [10-12]. These hybrid systems provide several important
opportunities [13]. For example, i) they allow the combination of reporter gene optical
imaging (luciferase or fluorescent protein-based) with protein-targeted radiotracer imaging
(one can look at both mRNA and protein levels), ii) dual-labeled agents can be used to
improve quantification of activated optical agents (PET or SPECT imaging provides the total
probe concentration and a spatial constraint for the optical reconstruction, optical imaging
measures the amount of the probe activated by the target of interest) and iii) the highly
quantitative nature of PET and SPECT can be used together with dual-labeled agents to
assess, optimize and validate methods and algorithms for fluorescence tomography in vivo.

2.3 Cerenkov luminescence imaging

During radioactive decay by B (electron) or B~ (positron) emission, the B particles emitted
from the nucleus can transiently travel faster than the speed of light in tissue. Under these
conditions, constructive interference occurs via the Cerenkov effect and visible light is
emitted [14, 15]. Thus, many biomedically relevant radionuclides can be directly detected and
imaged using the optical photons emitted during their decay. The Cerenkov spectrum is
continuous, with an intensity distribution that falls off as 1/A”. It is also a very weak signal,
with only ~100 visible light photons produced in tissue per radioactive decay of **Rb, one of
the very brightest Cerenkov emitters. This observation of detectable luminescence from -
emitting radionuclides allows them to be imaged in small animals (where light absorption is
not limiting) using conventional optical imaging systems, as long as a high sensitivity CCD
camera is used. Given the wide availability of in vivo optical imaging systems, this provides
opportunities for nuclear imaging studies in preclinical animal models using commercially
available radiopharmaceuticals without the need for a PET or SPECT scanner. More
importantly, however, it provides a very sensitive approach for imaging radionuclides such as
Y, which is used in radionuclide therapy, but which cannot be readily imaged at lower
diagnostic doses with PET or SPECT because it is an almost pure §~ emitter. This could help
speed development of new radio-immunotherapy agents based on Y.

Possible translational applications of Cerenkov luminescence are also under investigation.
The use of Cerenkov radiation for detection and imaging of radiopharmaceuticals lies firmly
at the interface of optical and nuclear imaging science and already has led to the development
of important new tools for the community such as integrated Monte Carlo code that models
both ionizing radiation and optical photon transport in biological media [16].

These three diverse examples illustrate just some of the many opportunities for cross-
fertilization and collaboration between physicists and engineers working in nuclear medicine
and optical imaging. Clearly both fields would benefit by improving communication and
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interactions, and this first joint OSA/SNMMI symposium represents an important first step in
recognizing this opportunity.

3. Opportunities with hybrid nuclear/optical imaging agents

Clinical hybrid imaging generally refers to the combination of a functional imaging platform,
such as PET or SPECT, with an anatomical counterpart, such as computed tomography (CT)
or magnetic resonance imaging (MRI), to correlate diagnostic data. In principle, a
corresponding hybrid agent would be one that, for example, is comprised of a targeting unit
which carries contrast for both imaging modalities (PET and CT, for example), and would be
administered as a single agent. However, owing to the large difference in detection
sensitivities of nuclear and anatomical imaging approaches, the application of such a hybrid
agent is often not practical. Fluorescence-based imaging, on the other hand, is a modality with
sensitivity comparable to nuclear techniques and has capitalized on recent advances in
instrumentation and agent development which promise new opportunities for its clinical
implementation, particularly in the area of intraoperative surgical guidance. Although
challenges in probe validation have slowed the translation of new imaging agents that employ
biomedical optics, the growing application of dual labeling for hybrid nuclear/optical agent
development appears to be a significant step forward that benefits both imaging communities.

3.1 Complementary roles of nuclear and optical imaging

Nuclear imaging employs radiolabeled molecular imaging agents, known as radiotracers,
which have demonstrated utility for tumor imaging, patient selection, treatment planning, and
assessing response to therapy. Radiotracers provide images with whole-body field-of-view
(FOV), tomographic capabilities, and quantitative results. Although nuclear imaging is
effectively used before and after surgical procedures in cancer patients [17, 18], the current
clinical standard for use of radiolabeled compounds during surgery relies on audible detection
of radioactive signal and does not provide real-time visualization of contrast-enhanced lesions
[19]. Fluorescence-based imaging, on the other hand, is well-suited for use during surgery
owing to the development of highly sensitive, mobile imaging systems that have already been
tested in clinical settings [20,21].

The fact that surgical personnel are not exposed to ionizing radiation when using optical
methods is another advantage of optical approaches in intraoperative use. Also, there is no
worry about agent half-life which could occur with nuclear agents should a particular surgical
procedure involving radiotracers encounter delay. In a pioneering first-in-humans study, a
fluorescently labeled folate derivative (known as folate-fluorescein isothiocyanate, or FITC)
was injected in patients with ovarian cancer to provide real-time intraoperative imaging of
tumor deposits which were not otherwise detected by visual or tactile cues [22]. This
demonstrated a clear clinical benefit of biomedical optics. Ongoing efforts for intraoperative
optical agent usage are focused on dyes which emit in the near-infrared (NIR) range (>750
nm) to maximize tissue penetration and reduce autofluorescence.

3.2 Implications of dual labeling for the optical imaging community

Dual labeling strategies are being adopted to combine the strengths of each modality and
improve the agent validation process [23, 24]. The overall goal of dual labeling an optical
imaging agent with a radiotracer is to enable validation of the optical imaging modality by a
second, clinically accepted modality such as PET or SPECT. For example, preclinical studies
with novel optical imaging agents dual-labeled with a radioactive tracer allow ex vivo
quantification of targeted tissue areas by established nuclear counting methods to support and
validate optical imaging findings in a manner that is not possible with fluorescence alone
[25]. In patients, dual labeling would permit acquisition of whole-body tomographic nuclear
scans that could be used to assess the extent of cancer spread globally, instead of being
relegated to the surgical FOV associated with clinical near infrared fluorescence (NIRF)
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imaging systems. This would allow clinicians to plan intraoperative procedures based on the
added utility of the hybrid agent. Finally, radiotracer production follows defined
manufacturing processes which can be emulated in the development and optimization of
molecular imaging agents, including agents for optical imaging. Thus, a dual-labeled imaging
agent would follow the established guidelines for radiotracers and have a clear indication of
metrics upon which drug design modifications could be made.

3.3 Implications of dual labeling for the nuclear imaging community

Although an established modality, nuclear imaging stands to benefit significantly from
applying the recent advances of biomedical optics into its agent development paradigm. For
example, the addition of a fluorescent dye onto a clinically validated radiotracer could expand
existing diagnostic applications into intraoperative utility and significantly change the way
cancer surgery is conducted. In a potential clinical application, patients would receive an
injection of a dual-labeled imaging agent and undergo standard nuclear imaging tests to
localize malignant tissues. Following a pre-determined decay period (i.e., 24 hr. post-
injection), patients would then proceed to the operating suite where surgeons would be have
whole-body, tomographic nuclear images to aid in the determination of their surgical plan.
Prior to resection, intraoperative NIRF imaging would be available to confirm sites with
optically enhanced tissue uptake. This identifies tumor regions and margins in real-time,
allowing surgeons to perform debulking procedures more accurately. Immediately after tumor
resection, NIRF imaging would be used to assess the effectiveness of the surgery and
determine if additional surgery is needed to remove tissues that still exhibit a fluorescent
signature. Histological evaluation of resected tissues would then confirm the molecular
targeting of the agent, and would also represent an attractive approach to validate the
targeting properties of emerging investigational agents that show promise for human use.
Finally, a follow-up nuclear scan could be performed following a second injection of the
hybrid agent to confirm surgical efficacy. Of particular importance is the fact that the added
NIRF imaging feature does not in any way alter standard-of-care nuclear imaging procedures.
Hopefully, the seamless integration of imaging agents encourages dialogue between relevant
players in each community to advance this promising strategy. Given the importance of
peptide and antibody-based radiotracers in nuclear medicine [26, 27], and their structural
ability to tolerate the addition of a dye moiety without losing activity, increased interaction
between agent development groups in these areas would be a logical starting point to examine
feasibility.

4. Nuclear and optical imaging agents: The regulatory interface

As mentioned, nuclear and optical imaging methods both require agents, typically injected,
that localize in a specific tissue of interest, relative to disease or normal physiologic
processes, to provide the signal that is collected by their respective scanning devices. The
ability to detect the signal emitted from these agents is a function of the agent concentration
in the tissue of interest, the sensitivity of the instrumentation to measure the photons emitted
and the ability of the photons to exit the body. Optical and nuclear medicine imaging agents
share at least one important quality; they may be detected when administered at similar
concentrations [28]. For this reason, the pathway developed to bring nuclear medicine
imaging agents into human research and clinical use may provide a roadmap for translation of
optical agents.

In 1957, iodine-131 sodium iodide was the first radioactive drug approved by the Food
and Drug Administration (FDA). The approval process of new radioactive imaging agents
over the ensuing 45 years followed a very similar process as that of new drugs. This includes
submission of a full pharmacology and toxicology package and evaluation through the three
phases of clinical development for safety and efficacy in humans. The early nuclear
diagnostic imaging agents were predominantly labeled with longer-lived isotopes (e.g. iodine-
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123, iodine-131, indium-111, etc.; half-life > 6 h). These radiolabeled agents were produced
at a centralized location similar to traditional drug preparation and distributed to the imaging
centers for research evaluation or clinical application. The introduction of the molybdenum-
99/ technetium-99m generator system permitted the preparation of the 6 h half life
technetium-99m imaging agents on demand in a radiopharmacy close to the SPECT scanners.
FDA approved kits were prepared for technetium-99m labeling in a centralized facility. The
development and application of short-lived (half-life < 2h) PET radiotracers using distributed
cyclotron and radiochemistry facilities to produce the isotopes and labeled the radiotracers
represented a paradigm shift for the FDA regulation of their preparation. As optical agents are
stable, they may be manufactured in a single site and distributed for patient use. This means
that larger batches of the agent may be produced under regulatory control and tested for
quality before shipping in unit doses to the clinic. This manufacturing approach may
ultimately be reflected in a lower unit dose cost.

In spite of the fact that diagnostic imaging agents are tracers with no pharmacological or
toxicological properties and are typically given to a patient only once or infrequently, they are
still considered as drugs by the FDA requiring extensive testing on the pathway to market
approval. The cost to bring a diagnostic radiotracer to market increased significantly over the
years, paralleling that of traditional drug development, In 2006, Nunn [29] estimated the cost
of diagnostic imaging development to be $100-$200 million. Similar to traditional drugs,
diagnostic agent approvals dropped significantly in the later part of the 20th century as the
increased cost of drug development reduced the number of FDA submissions. This trend was
completely out of phase with the explosive growth of basic biological knowledge.

In 2004 the FDA released a report entitled “Challenge and Opportunity on the Critical
Path to New Medical Products” [30] outlining a plan called the Critical Path Initiative (CPI)
in an effort to reinvigorate drug development and stimulate new drug submissions. The CPI
introduced a streamlined approval process and encouraged the use of technological advances
in genomics, proteomics, bioinformatics and medical imaging to reduce the development
timeline. This initiative halted the decline in submission rate and over the last few years new
drug approvals have begun to increase. This has also had a similar effect on the submission
and approval of new diagnostic agents. Several guidance documents were released including
a three part document entitled “Developing Medical Imaging Drug and Biological Products”
[31] and one detailing the exploratory investigational new drug (IND) process [32]. These
documents provide beneficial information that is equally applicable to optical imaging agents
as it is to nuclear agents especially given the trace quantities of the agent that is necessary to
generate an image. A more detailed review of the nuclear imaging agent development
pathway has been published [33].

The exploratory IND guidance highlights the FDA’s greater flexibility in the traditional
IND process, lowering the barrier to initiate first-in-human studies through the introduction of
microdosing. A microdose is defined as less than 1/100th of the substance dose that produces
a pharmacologic effect, typically less than 100 micrograms or less than or equal to 30
nanomoles for biologics. These doses are generally higher than those given for diagnostic
imaging studies. In addition multiple test substances may be evaluated head-to-head to
identify the best drug or imaging agent to move forward to the clinical development phases.

Specific guidance for imaging agents is also given relative to the pharmacologic and
toxicologic information required for agent approval. As imaging agents are given at
microdose levels the pharmacologic effect, by definition, is nonexistent. Administration of an
agent is typically one time so genetic toxicity and safety pharmacology studies are generally
waived. A 14-day single species, single dose toxicology study (current cost: $60-80,000) at
>100x the human dose is required. A recent review of the literature for organic fluorophore
toxicity data by Alford et al [34] revealed that the general margin of safety for several of the
optical agents was >100 fold based on the future clinical doses that may be administered to
humans. The inherent safety of optical agents is also evident since there is no radioactive
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isotope present. One does not have to be concerned with the radiation dose to the patient. This
is encouraging and supports the use of the exploratory IND mechanism to move optical
agents into human studies.

Once the exploratory IND studies are complete, a choice is made whether to continue on
with the agent development process, continue to evaluate the agent(s) under a research IND
or cease investigation of the agent(s). Continuing the process towards a marketable imaging
agent requires a significant capital investment as the process parallels that of traditional drug
development. The process requires a much more rigorous portfolio of pharmacologic and
toxicologic tests as well as completion of the three phases of patient trials culminating in the
collection of data from multiple imaging centers to highlight the safety and efficacy of the
new agent. This process may take up to 10 years and several hundred thousand dollars to
complete.

In summary, nuclear and optical agents produce a signal that is detectable at low mass
concentrations. As these agents are given at “tracer” doses no pharmacologic or toxicologic
effect will be expected. The agents are not delivered chronically and in large doses. Typically,
single doses of the agent are all that is required for a diagnostic. Follow-up imaging studies
will typically be separated temporally. This too minimizes the potential for a pharmacologic
or toxicologic event. These similarities between nuclear and optical imaging agents encourage
utilization of the established pathway that has proven successful for translating nuclear
medicine imaging agents.

5. Combined device/agent optical studies

While the clinical translation of many “first-of-its-kind” optical technologies lack an
established translational pathway, the previous section suggests that the history of regulatory
approvals in nuclear imaging may provide guidance for the introduction of fluorescence
molecular imaging agents, whether singly labeled with a fluorophore or dual-labeled with a
radionuclide. Given the potentially high photon yield of a near-infrared fluorophore that can
be repeatedly excited by tissue-penetrating excitation light, the opportunities for translating
“first-in-humans” optical agents as trace agents may be considerable.

5.1 Device considerations on performance

Indeed, use of the exploratory IND as described above can lower translational barriers for
translating fluorescent molecular imaging agents. However, myriad of device operational
factors in optical devices (that are not present in nuclear imaging) requires a complete
understanding of performance factors for the device before administering “first-in-humans”
fluorescently labeled agents. Unlike nuclear imaging, where there has been little doubt that
high energy photons could be collected from tissues using standardized devices to render an
image, there has been considerable and worthwhile debate about how deep one can probe in
tissues with the low energy optical excitation and fluorescence photons and whether the wide
variety of devices currently used can detect trace amounts of an optical imaging agent in the
same manner as nuclear imaging devices enable. There are no standardized devices in
fluorescence molecular imaging, as there are in nuclear medicine.

While small animal fluorescence imaging and tomography shows the potential of
translational fluorescence imaging, these studies are conducted with a variety of devices in
small tissue volumes that do not necessarily recapitulate the same pertinent physics in
clinically relevant, larger volumes. Thus, while preclinical small animal imaging studies of
new nuclear imaging agents may be predictive for clinical studies, non-standard devices and
tissue attenuation can confound the direct extrapolation of preclinical fluorescence studies to
patient studies. Most importantly, the ability to detect a fluorescent agent either deep within a
tissue or in the sub-surface of exposed tissues in an intraoperative setting depends critically
upon the sensitivity of the device. Device performance such as the ability to reject
backscattered excitation light with selective collection of fluorescence varies greatly not in
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only preclinical devices, but in emerging investigational devices used in clinical studies. The
ultimate combinational device/drug performance depends upon the ability to excite a specific
fluorophore and collect its fluorescence which may be spectrally distinct from other
fluorophores employed in other imaging agents. For fluorophores not excited in the near-
infrared wavelength range (>750 nm), additional device constraints require removing the
noise floor due to endogenous autofluorescence from the signal arising from an exogenous
fluorescence imaging agent. In short, fluorescence imaging is complicated by the necessary
regulatory processes requiring approval of device-specific imaging agents, rather than the
platform-specific imaging agents as is routinely done in nuclear imaging.

5.2 Device qualification

Sharing regulatory experiences in the community may help to define translational pathways
and reduce the time for ultimate clinical adoption. In 2003, one of the authors (EMS) found
the Center for Drug Evaluation Research (CDER) of the FDA to be reluctant (and
appropriately so) to permit the “risk” associated with the administration of a “first-in-
humans” fluorescent imaging agent, even at trace amounts, without proof of actually being
able to detect the dose in human tissues. Yet if the device that is intended to detect a “first-in
humans” drug requires an Investigational Device Exemption (IDE) for use on human
subjects, it would be impossible for the Center for Devices and Radiological Health (CDRH)
to grant that exemption without knowing how the device will perform at the safe agent dose
levels. This poses a chicken-and—egg dilemma in the regulatory process for fluorescence
molecular imaging.

To overcome this, several different research and development pathways have been
suggested. For the case of near infrared fluorescence, it was possible to employ the FDA
approved indocyanine green (ICG) in an off-label use as a substitute for the investigational
new drug (agent) in a dose escalation study that defined performance [35]. The study was not
intended to identify ICG as a near infrared fluorescent imaging agent, but rather to qualify the
device in humans for the purpose to which it was designed, detecting trace amount of near-
infrared fluorescence imaging agent. This substitution can only work if equivalence between
the agents (in terms of performance at specific excitation and emission wavelengths) can be
verified and accepted by the FDA.

ICG may make an excellent surrogate for qualification of near-infrared fluorescence
devices, and most recently, it is used as a non-specific fluorescent imaging in lymph node
mapping in cancer staging, intraoperative angiography, among other uses [36—39]. For over
50 years, ICG has been used as a blood pooling dye used on the basis of its dark green color
for assessing hepatic function and retinopathy, but as an near infrared fluorescence imaging
agent, it is a poor fluorophore, unstable, and has no functional group to attach molecularly
targeting entities.

In a recent development in imaging hardware, the ability to detect lymph nodes 3-4
centimeters beneath the tissue surface with as little as 10 micrograms of total ICG
administered and only 200 milliseconds of image acquisition time was demonstrated,
qualifying the imaging device for future imaging after microdoses of “first-in-humans” agents
[35]. However, a more efficient means to qualify devices in the future may be to develop
figures of merit and to create certifiable standards that act as accurate surrogates and
predictors of human imaging performance. The requirement to conduct ICG dose escalation
studies for qualification of devices prior to administration of “first-in-humans” agents is
costly and could impede translational efforts. Hence a critical issue for device translation is
for community-wide definition and adoption of device standards. Such definitions to qualify
of device platforms will facilitate development and clinical deployment of fluorescence
molecule imaging agents and enable platform- rather than device-specific fluorescent
molecular imaging agent development to parallel that described for nuclear imaging agents.
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5.3 Future regulatory routes for imaging agents with qualified devices

After device qualification through CDER, one commonly proposed FDA regulatory route
includes an IND application that involves NIRF labeling of a therapeutic biologic. Given that
(i) the biologic already has an established safety record, (ii) imaging it at administered trace
doses could be performed under an Exploratory IND, and (iii) the large real-estate of
biologics (~150kDa), the conjugation of comparatively small NIR fluorophores (~1 kDa) may
not dramatically alter pharmacokinetics and biodistribution. The only significant regulatory
concern could be the “first-in-humans” fluorophore conjugated to the biologic, already used
in humans. While this approach is plausible and may speed translation, it may require the
pharmaceutical manufacturer to grant a reference letter enabling the FDA access to its own
safety data for the IND application of a NIRF labeled biologic. Many (most) pharmaceutical
companies will not grant such letters for third party INDs, since it could constitute a liability
to their marketed product. This may be because the dismal diagnostic performance of a
molecularly targeted NIRF labeled biologic could be incorrectly interpreted as indicating
poor targeting and therefore therapeutic efficacy as described below.

5.4 Targeting moieties for fluorescent diagnostics

The criteria for success of therapeutic and diagnostic agents are vastly different. Therapeutic
biologics are optimized on their basis to induce cytotoxic effects which require a high dose
and relatively long blood circulation times. For a diagnostic imaging agent, no therapeutic
action is desired, a low innocuous dose is sought, and short blood circulation times maximize
target to background ratios that are necessary for successful molecular imaging. The features
that make a good therapeutic may not make for a good diagnostic agent and visa-versa. In
addition, for cancer imaging and lymph node staging, the Fc-binding portion of the mAb
binds to Fc Y receptors on effector cells of the immune system. While responsible for
therapeutic cytotoxicity in therapeutic agents, the Fc binding may also cause off target
binding of the imaging agent to these immune cells [40], thereby reducing specificity, an
important figure of merit for molecular imaging performance. Hence, in the long-run it may
be advantageous (although require greater investment !) to develop anti-body based or peptide
imaging agents specifically as diagnostic agents rather than employ existing therapeutic
biologics.

5.5 Fluorescent agents for translation

In addition to the targeting moiety (whether anti-body, protein, or peptide), another
component of regulatory concern is the fluorescent agent. In addition to the imaging agent
comprised of the targeting moiety and fluorophore, studies are needed to establish safety of
the fluorophore itself. Today, there is one cGMP near-infrared fluorophore, IRDye800 (LiCor
Biosciences, Lincoln, Nebraska), with a Drug Master File available to aid translational efforts
[41] with others potentially pending. Fluorescein isothiocyanate, used in the studies of Van
Dam and associates [22] is a derivate of fluorescein, which is already used clinically for
angiography but functionalized with an isothiocyanate reactive group for conjugation to
targeting moieties. Likewise cypate is a derivative of ICG, but has a functional group for
conjugation [42].

With the maturation of both devices and imaging agents in a scientific, community-based
effort to define performance, the barriers to translation could be lowered, enabling optical
technologies to contribute to the armamentarium of diagnostic, molecular imaging tools
employed in nuclear medicine. Given that nuclear medicine has already tackled the device-
drug combinational dilemmas (albeit with slightly different physics), much can be learned
from the history and future of the clinical adoption of nuclear molecular imaging agents.
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6. Conclusions

The field of nuclear imaging has established itself as an important contributor to the field of
clinical medicine. With the advent of in sifu methods of preparing radiotracers, hospitals have
a number of agents available for a variety of imaging needs. Optical imaging methods are
adopting the use of imaging agents to perform a number of imaging functions that have been
difficult for other imaging modalities. These include intraoperative functions, image guided
biopsy direction, and early stage cancer detection, to name only a few. The problem with
optical methods, however, is that they lag far behind in the translational pipeline for adoption
in the clinical environment. Most of the successes claimed by optical imaging methods are in
proof-of-principle or feasibility studies. Large scale adaption of optical imaging methods in
the clinic has yet to take place. A great deal of work remains to bring optical devices and their
accompanying targeting agents through the translational pipeline.

An important hurdle in that translational pipeline is FDA regulatory approval of both
devices and imaging agents used in optical measurements of disease. As this paper has
demonstrated, the similarities between optical imaging and nuclear imaging are stronger than
might first be realized. As a result, it is possible for the optical imaging community to follow
many of the leads provided by nuclear imaging to translate technology closer to clinical
reality. An open dialogue is encouraged among scientists of both technologies.

Acknowledgment

The authors thank the Optical Society of America (OSA) and the Society for Nuclear
medicine and Milecular Imaging (SNMMI) for their foresight in planning this session. A
special acknowledgment is extended to Dr. Adam Wax, Duke University, who organized the
half-day session.

#193216 - $15.00 USD Received 1 Jul 2013; revised 22 Oct 2013; accepted 22 Oct 2013; published 5 Nov 2013
(C) 2013 OSA 1 December 2013 | Vol. 4, No. 12 | DOI:10.1364/BOE.4.002751 | BIOMEDICAL OPTICS EXPRESS 2762





