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Drug Resistance to EGFR Inhibitors in Lung Cancer
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1Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of 
California San Francisco, San Francisco, CA 94143 USA

2UCSF Helen Diller Family Comprehensive Cancer Center, School of Medicine, University of 
California, San Francisco, San Francisco, CA 94143 USA

Abstract

Background—The discovery of mutations in epidermal growth factor receptor (EGFR) has 

dramatically changed the treatment of patients with non-small cell lung cancer (NSCLC)—the 

leading cause of cancer death worldwide. EGFR-targeted therapies show considerable promise, 

but drug resistance has become a substantial issue.

Methods—We reviewed the literature to provide an overview of the drug resistance to EGFR 

tyrosine kinase inhibitors (TKIs) in NSCLC.

Results—The mechanisms causing primary, acquired, and persistent drug resistance to TKIs 

vary. Researchers and clinicians, who have used study findings to develop more effective 

therapeutic approaches, have found that the sequential use of single agents presents a formidable 

challenge, suggesting that multi-drug combinations must be considered.

Conclusions—In the era of precision medicine, oncologists should promptly obtain an accurate 

diagnosis of drug resistance in each patient to design the most relevant combination therapy to 

overcome patient-specific drug resistance.

Keywords
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Introduction

Lung cancer is the leading cause of cancer death worldwide [1, 2]. It is classified into two 

major histologic types based on microscopic features: small cell lung cancer (SCLC; ~15%) 

and non-small cell lung cancer (NSCLC; ~85%). Because NSCLC represents a 

heterogeneous group of cancers, it is further divided into three different pathological 

subtypes: adenocarcinoma (40%), squamous cell carcinoma (25-30%), and large cell 

carcinoma (10-15%) [3]
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These pathological classifications are clinically important, as treatment decisions have 

depended on tumor histology [4, 5]. For example, localized NSCLC in an early stage is 

mainly treated with surgery followed by adjuvant chemotherapy [4]. In contrast, SCLC—

even in an early stage—has rarely been treated surgically, as it tends to be more aggressive 

and spread more rapidly [5]. Thus, SCLC is usually treated with chemo- and radiotherapy. 

However, histological distinctions are no longer sufficient for determining treatment plans 

[6].

Molecular characterization of NSCLCs has provided valuable information for diagnosis, 

prognosis, and treatment [6]. In fact, the discovery of mutations in epidermal growth factor 

receptor (EGFR) and chromosomal translocations in anaplastic lymphoma kinase (ALK) has 

dramatically changed the treatment of patients with lung adenocarcinoma [7]. Targeted 

therapies are currently approved for these abnormalities and show considerable promise [1, 

2, 7]. However, drug resistance has become a substantial issue [1, 2, 8-11].

In this review article, we focus on EGFR-targeted therapy and present an overview of drug 

resistance in NSCLC. We also discuss therapeutic strategies designed to circumvent drug 

resistance to EGFR inhibitors.

Methods

A search of the literature revealed 131 articles (through November 15, 2015) relevant to drug 

resistance to EGFR TKIs in NSCLC.

Results

Molecular Profiling of Lung Adenocarcinomas

Recent studies have demonstrated that lung adenocarcinomas have recurrent mutations in 

multiple oncogenes: KRAS (32%), STK11 (17%), EGFR (11%), neurofibromin 1 (NF1; 

11%), BRAF (7%), MET (7%), human epidermal growth factor receptor 2 (HER2; 3%), 

PTEN (3%), ROS1 (2%), ALK (1%), AKT1 (1%), RET (<1%), HRAS (<1%), NRAS 

(<1%), MEK1 (<1%), and PIK3CA (<1%) [12-14]. With the exception of PIK3CA [14], 

these mutations are mutually exclusive. Therefore, genetic profiling of NSCLC allows 

precise molecular classification of the disease. It can also be used to predict the potential 

efficacy of targeted therapy for each individual with adenocarcinoma [7, 10-13]. In fact, 

evaluation of gene mutations in EGFR and chromosomal rearrangements of the gene 

encoding ALK (most commonly resulting in an EML4-ALK fusion gene) are now 

considered to be the standard of care in advanced-stage pulmonary adenocarcinomas [7]. 

Intriguingly, EGFR mutations are more prevalent in patients with adenocarcinoma from East 

Asia who have never smoked or whose habit was light, whereas KRAS mutations are most 

frequent in Caucasian patients with adenocarcinoma in North America and Europe who have 

been long-time or heavy smokers [15, 16].

Oncogenic Addiction and Targeted Therapy

The genesis and progression of human cancer involves multiple genetic and epigenetic 

alterations [17, 18]. However, the inactivation of a single oncogene can often impair these 
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altered cells’ survival [19]. This phenomenon—known as oncogene addiction—has provided 

a rationale for molecular targeted therapy. The use in lung cancer of selective tyrosine kinase 

inhibitors (TKIs) for EGFR or ALK represents such examples [7]. Here we focus on EGFR 

TKIs.

EGFR is a receptor tyrosine kinase (RTK) that exists on the cell surface [20]. It belongs to 

the EGFR/HER family, consisting of four members: EGFR, HER2, HER3, and HER4. 

EGFR becomes activated by overexpression or by ligand-dependent or -independent 

mechanisms. Ligand-independent activation of the receptor occurs as gain-of-function 

mutations with the mutant allele showing gene amplification [21, 22].

Gefitinib (Iressa) was the first agent designed to target EGFR [22, 23]. It received US Food 

and Drug Administration (FDA) approval for the treatment of NSCLC, yet its activity was 

limited to 10-20% of patients with refractory lung cancer [1, 2]. In 2002, two retrospective 

cohort studies unexpectedly revealed a correlation between dramatic clinical responses to the 

TKI and activating EGFR mutations in the catalytic kinase domain of EGFR [21, 22]. 

Almost similar observations were obtained from treatment with another EGFR TKI, 

erlotinib (Tarceva), which was approved by the FDA in November 2004 [2, 24-26]. 

Approximately 85% of EGFR mutations are either exon 19 deletions (45%) or the missense 

mutation L858R (an amino acid substitution at position 858 from leucine to arginine) in 

exon 21 (41%) within the kinase domain [27, 28].

Heterogeneous Initial Responses to EGFR TKIs in NSCLCs

A recent randomized phase-3 clinical trial with erlotinib found tumor reduction >90% in 

only 5% of patients (complete to near-complete response [29]). The remainder achieved a 

partial response or maintained stable disease, even though they too had TKI-sensitive EGFR 

mutations. The heterogeneous nature of this primary response raised questions of its 

causation—whether attributable to resistance inherent in the tumor cells or to acute drug-

tolerance, or both.

Primary and Acquired Drug Resistance

Drug resistance is a major obstacle to the success of targeted therapies, including EGFR 

TKIs [1, 2]. Based on tumor response to the initial therapy, drug resistance is classified as 

either primary (also called innate or intrinsic) or acquired (adaptive or secondary) [2, 10]. 

Patients with primary resistance do not respond at all to treatment, while those with acquired 

resistance may initially respond completely or partially, only to fail to do so over time. 

Approximately, 10% of patients harboring TKI-sensitive EGFR mutations show primary 

resistance to TKIs [2, 10, 29].

Primary Drug Resistance to EGFR TKIs

Primary resistance to EGFR TKIs in NSCLCs is mostly associated with wild-type EGFR 

[30]. It also develops from activated mutations in KRAS or BRAF, or loss of function of the 

apoptotic protein Bim, or some uncommon EGFR mutation [31-34]. More recently, the 

tumor microenvironment or activation of NF-κB signaling has also been shown to elicit 

primary resistance [35-38].
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Wild-type EGFR—Although erlotinib can prolong survival in patients with unselected 

NSCLC after first- or second-line chemotherapy [39], the benefit from EGFR TKIs is small 

in the 90% of NSCLC patients with wild-type EGFR [30, 40]. A recent clinical trial 

confirmed this observation. Only 3% of patients harboring wild-type EGFR had a partial 

response to erlotinib; in the reminder, docetaxel (Taxotere) was more effective [41].

KRAS and BRAF Mutations—EGFR, KRAS and BRAF mutations are mutually 

exclusive [14]. In approximately 30% of NSCLCs, activating KRAS mutations are observed 

at codons 12 or 13 and are considered to constitute a negative predictor for EGFR-targeted 

therapies [31]. Despite EGFR inhibition, KRAS mutations constitutively activate 

downstream MAPK signaling, presenting another mechanism that contributes to primary 

resistance.

Likewise, 7% of NSCLCs harbor mutations in BRAF. The most common change in BRAF is 

the V600E mutation (an amino acid substitution at position 600 from valine to glutamic 

acid), which confers resistance to EGFR TKIs but shows increased sensitivity to specific 

smallmolecule V600E inhibitors as well as to MEK inhibitors [32].

Bim Polymorphism—Bim is a BH3-only protein, which is essential for apoptosis and 

caspase induction in EGFR-mutated NSCLC cells [42-44]. Thus, reduction of Bim 

expression in NSCLC may cause drug resistance to TKIs. A recent report demonstrated that 

genetic polymorphism generates alternative splicing variants of Bim protein lacking the BH3 

domain, which is sufficient to confer primary resistance to TKIs in NSCLCs harboring 

EGFR mutations [33].

Various EGFR Mutations—The most common activating EGFR mutations (85%) are 

either L858R or exon 19 deletions, which confer drug sensitivity to EGFR TKIs [27, 34]. 

However, less common EGFR mutations also exist. Among them, G719X in exon 18 (a 

substitution at position 719 from glycine to some other amino acid; 3%) and L861Q in exon 

21 (an amino acid substitution at position 861 from leucine to glutamic acid; 2%) appear 

sensitive to TKIs [27, 34].

However, not all EGFR mutations are equally sensitive [27]; some cause TKI resistance. For 

example, small insertions or duplications in exon 20, which account for 5-10% of EGFR 

mutations, are associated with primary resistance, except for the rare case with EGFR exon 

20 insertion A763_Y764insFQEA [45, 46].

A recent study demonstrated that, although the vast majority of cancer cells harbor classic 

activating EGFR mutations, the EGFR TKI resistance conferring T790M EGFR mutation 

(an amino acid substitution from threonine to methionine at position 790) can be found 

within rare cells in primary tumors. Subsequent clonal selection of these preexisting EGFR 

TKI resistant cells during EGFR TKI treatment may contribute to drug resistance [47, 48].

Tumor Microenvironment—The latest studies have demonstrated that RTK ligands 

secreted through paracrine, autocrine, and endocrine mechanisms in the tumor 

microenvironment are also important determinants of primary therapeutic responses to 
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anticancer kinase inhibitors [35-37]. Indeed, hepatocyte growth factor (HGF), fibroblast 

growth factor (FGF), and neuregulin 1 (NRG1) confer primary drug resistance to a large 

number of cancer cell lines by activating RTKs and thus stimulating either the Ras/MAPK- 

or PI3K/AKT pro-survival pathway or both [35]. HGF-mediated activation of the RTK MET 

is suspected as the most important cause of primary resistance to anticancer agents [35-37].

Activation of NF-κB Signaling—NF-κB signaling activation was recently identified as a 

mechanism of primary resistance to EGFR TKI [38]. Low expression of IκB, the NF-κB 

inhibitor, was a predictor of a poor clinical outcome in patients treated with erlotinib [38]. 

Thus, combined therapy with EGFR TKI and an inhibitor of NF-κB signaling can enhance 

primary responses in a subset of NSCLC harboring EGFR mutations.

Acquired Drug Resistance to EGFR TKIs

Acquired resistance to EGFR TKIs develops after an average of a year of continuous 

treatment [1, 2]. A clinical definition has recently been proposed by Jackman et al. [49]. 

According to their criteria, the tumors should harbor TKI-sensitive EGFR mutations such as 

L858R or exon 19 deletions, should have responded either partially or completely (unless 

stable disease has been present for more than six months), and have demonstrated systemic 

progression.

Four different mechanisms of acquired drug resistance to EGFR TKIs have been reported [1, 

2]: EGFR target alterations in the drug target itself (such as T790M secondary mutation [30, 

45]), which can nullify the activity of gefitinib or erlotinib without changing the RTK 

activity; activation of alternative signaling pathways to bypass the EGFR inhibition (such as 

amplification of RTK MET [50, 51] or HER2 [52, 53], activation of another oncogenic 

driver, BRAF [54], or inactivation of the tumor suppressors PTEN [55, 56] or NF1[57]); a 

lineage switch through histological transformation from NSCLC to SCLC [58-60] or 

epithelial-mesenchymal transition (EMT) [61-63]; and intratumor heterogeneity [64].

T790M and Other Secondary EGFR Mutations—Acquired resistance to gefitinib and 

erlotinib is predominantly mediated by the development of the T790M EGFR secondary 

mutation, which occurs in 50-65% of patients with EFGR mutation and TKI resistance [1, 2, 

8, 30, 45]. Threonine 790 is the gatekeeper residue in EGFR, lies within the ATP-binding 

pocket of EGFR, and influences drug effectiveness [65]. In accordance with this notion, a 

recent report demonstrated that the T790M mutation in EGFR confers drug resistance by 

increasing the affinity for ATP [66]. In addition, a further chromosomal amplification of the 

gene locus may enhance the inhibitory effect of T790M [67].

Gatekeeper mutations can be a common mechanism of acquired drug resistance to targeted 

therapies in cancer [68]. In fact, analogous mutations are reported in malignances exposed to 

various TKIs: imatinib-resistant T315I BCR-ABL fusion kinase in chronic myelogenous 

leukemia (CML) [69]; imatinib-resistant T670I KIT in gastrointestinal stromal tumor 

(GIST) [70]; and crizotinib-resistant L1196M ALK fusion gene in NSCLC [71].

Other rarer TKI-induced EGFR mutations, constituting <10% of all secondary substitutions 

in EGFR, have been reported: L747S [42], D761Y [72], and T854A [73]. Although these 
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non-T790M mutations have been associated with acquired resistance to TKIs, their drug-

resistant mechanism is not yet clear [74].

Activation of Alternative Pathways—Recently, a common mechanism of acquired 

resistance to EGFR TKIs has been reported as a result of an RTK switch, such as 

amplification of MET [50,51] or HER2 [52, 53] or activation of HER3 [75, 76], insulin-like 

growth factor 1 receptor (IGF-1R) [77, 78], or fibroblast growth factor receptor 1 (FGFR1) 

[79, 80].

MET Amplification: Amplification of the MET gene is identified in 5-20% of EGFR-

mutated NSCLCs with acquired drug resistance to EGFR TKIs [50]. Amplified MET 

specifically makes a heterodimeric complex with HER3, one of four members of the EGFR 

kinase family, and activates the PI3K/AKT pathway to bypass EGFR inhibition [50]. MET 

amplification is not mutually exclusive with the T790M secondary mutation; indeed, the 

latter is seen in 50% [51]. Thus, it is possible to conjecture that MET-amplified clones are 

selected after exposure to EGFR TKIs and then acquire the T790M mutation. In fact, MET 

amplification is found in 2-4% of previously untreated EGFR-mutated NSCLCs [51]. In any 

case, the population harboring activating EGFR mutations and MET amplification can 

achieve a clinical benefit from combined therapy with EGFR and MET inhibitors, as shown 

in a recent phase-III clinical trial [81].

HER2 Amplification: HER2 is amplified in 12% of tumors with acquired resistance, 

whereas the gene amplification is found in only 1% of untreated lung adenocarcinoma [52, 

53]. No mutations in HER2 are found in this population. Importantly, HER2 amplification 

and T790M mutation occur in a mutually exclusive manner. These observations clearly 

suggest that HER2 amplification is an alternative mechanism of drug resistance to EGFR 

TKIs [2]. Indeed, HER2 is a potential therapeutic target because its overexpression or 

knockdown can confer, respectively, resistance or sensitivity to TKIs in NSCLC cells [53].

HER3 Activation: HER3 is activated independent of MET amplification in NSCLCs, and 

may contribute acquired drug resistance to EGFR TKI [75, 76]. HER3 lacks several 

catalytically important residues and is thought to be an inactive pseudokinase [82]. However, 

it can form a heterodimeric complex with EGFR/HER2 to stimulate downstream cell 

signaling [83, 84] and can be activated by its ligand NRG1 through an autocrine mechanism 

[85].

In NSCLC cells, HER3 couples with EGFR to activate the PI3K/AKT pathway in gefitinib-

sensitive NSCLC cell lines, but not gefitinib-resistant lines, suggesting that NRG1-bound 

HER3 may predominantly dimerize with RTKs other than EGFR to promote acquired 

resistance to TKIs [76]. This mechanism may provide a rationale for the combined treatment 

of NSCLC patients with erlotinib and patritumab, an anti-HER3 monoclonal antibody [86].

IGF-1R Activation: IGF-1R has also been proposed to have a role in mediating acquired 

drug resistance to EGFR TKIs [77, 78], and in fact was reported as a biomarker for 

resistance to the TKI in NSCLC [78]. Unfortunately, data are conflicting: IGF-1R expression 
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was significantly associated with longer survival in NSCLC patients treated with gefitinib 

[87]. Further studies are warranted.

FGFR1 Activation: FGFR1 is activated by its ligand fibroblast growth factor (FGF) 2 

through an autocrine mechanism and confers acquired drug resistance in NSCLC cells [79, 

80].

BRAF Mutations: Mutations occurring in other driver oncogenes may also affect acquired 

drug resistance to EGFR TKIs. BRAF, but not KRAS, mutations are found in TKI-resistant 

NSCLC tumors, although their frequency is very low [54].

Loss of PTEN Expression: PTEN is a tumor suppressor gene controlling the PI3K/AKT 

pathway [88], and its mutation or loss of expression has been reported as a potential 

mechanism of acquired drug resistance [55, 56].

Reduced NF1 Expression: NF1 is a negative regulator of the Ras oncogene through 

stimulation of Ras GTPase activity [89]. TKI-induced low levels of NF1 expression have 

been associated with primary and acquired resistance to EGFR TKIs in NSCLC patients 

[57]. Treatment of NF1-deficient lung cancers with MEK inhibitors has restored sensitivity 

to TKIs, suggesting that combination therapy with MEK and EGFR inhibitors may have a 

clinical benefit [57, 90].

Histologic Transformation—In a rare phenomenon of acquired drug resistance, two 

lineage switches have been reported: histologic transformation of EGFR-mutated NSCLC to 

SCLC [58-60]; and epithelial-mesenchymal transition (EMT) [61-63]. The former has been 

reported in 2–14% of patients with acquired resistance to EGFR TKI [58-60]. These new 

SCLCs continued to harbor the initial activating EGFR mutations and were highly sensitive 

to the chemotherapy regimens for SCLC [60].

The lineage switch from NSCLC adenocarcinoma to SCLC was recently reported to involve 

the loss of RB1 (retinoblastoma 1) and EGFR proteins [91]. Actually, primary SCLCs are 

known to have a high prevalence of inactivating mutations in RB1 and TP53 [92]. In 

contrast, EGFR mutations and gene amplifications are rarely found in sporadic SCLCs [92]. 

Thus, the loss of RB1 expression can be the most likely scenario for lineage switching [91]. 

The study also suggested that NSCLC and SCLC may share the same cells of origin [93]. 

Alveolar type II cells might have the potential [94], but further studies are required.

EMT is a cellular mechanism critical for normal development, wound healing, and cancer 

metastasis [95]. In the process of EMT, cells undergo a lineage switch from epithelial to 

mesenchymal phenotype, which causes loss of cellular polarity, resulting in high motility 

and increased invasion capability [95]. EMT induction can be triggered by various cell 

signals, including TGF-beta and Notch-1, and may confer acquired drug resistance [61, 62]. 

A recent study demonstrated that the mechanisms leading to EMT in TKI-treated patients 

may involve activation of AXL RTK [63]. AXL overexpression has been found in 20% of 

NSCLC samples with progressive disease after treatment with EGFR TKI. However, how 
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EMT promotes TKI drug resistance remains unclear, and additional investigation is 

warranted.

Intratumor Heterogeneity—Intratumor heterogeneity may also account for drug 

resistance [64]: e.g., activating EGFR mutations and MET amplification were shown to co-

exist a minor subset of cells in previously untreated TKI-sensitive NSCLC [51]. Subsequent 

clonal selection of the doubly positive cells could result in acquired drug resistance by 

affecting additional genomic alterations such as T790M EGFR [51].

Cancer Dormancy and Acquired Drug Resistance

The origin of resistant cells remains to be elucidated, but they must arise from surviving 

populations [96-98]. These cells lie temporarily dormant or quiescent as a means of 

circumventing the effects of the given therapy, but eventually regain proliferative capacity 

[99]. The dormant cells resist chemotherapy because they do not divide until the 

environment is favorable to resume cell proliferation [100]. In the clinical setting, cancer 

dormancy is observed as a “grace period” after treatment [101]: signs and symptoms of 

cancer have disappeared, but the patients occasionally carry surviving tumor cells in local 

and distant bodily regions.

Drug-tolerant Persister Cells—In a recent study by Sharma et al., cultured cells from 

various cancer tissues remained after targeted or cytotoxic chemotherapy [102]. This 

phenomenon can affect up to 10% of a genetically homogeneous drug-sensitive population; 

thus, these drug-tolerant cells are far more numerous than might be expected from resistance 

based on the acquisition of de novo genetic mutations. Importantly, however, it was shown to 

be reversible, supporting a non-mutational mechanism.

In an analogy to microbial persister cells, these non-mutational drug-resistant cells were 

defined as drug-tolerant persisters. In 1942 Gladys Hobby first described the phenomenon of 

bacterial persistence, whereby penicillin was found to kill the vast majority of cultured 

streptococcal cells, but 1% remained intact [103, 104]. These residual cells were 

characterized in 1944 by Joseph Bigger as “bacterial persisters” [105].

In lung cancers, drug-tolerant persisters emerge during treatment as a subset of the cells 

within primary tumors [96, 102]. Although initially quiescent, the persister cells can soon 

begin to propagate in the presence of EGFR TKIs, becoming drug-tolerant expanded 

persisters. These may be cancer stem or mesenchymal cells because of this ability to escape 

the effect of drug treatment by becoming quiescent [102]. Epigenetic mechanisms have been 

proposed to explain this distinct lineage-switching [102]. However, in our investigation of 

the small TKI-tolerant subset of NSCLC cells we could not detect known lung cancer stem 

cell markers, nor could we uncover expression changes in mesenchymal markers [97, 98]. 

This suggested that a different mechanism could also cause the quiescent status in NSCLC 

cells after EGFR inhibition.

Drug Resistance of Dormant NSCLC Cells to EGFR TKIs—As mentioned above, 

we recently studied the mechanism by which a small subset of cells remains viable after 

EGFR inhibition, despite cell death in the vast majority [96-98, 106, 107]. Our study 
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demonstrated that EGFR inhibition in lung cancer cells generates a drug-tolerant 

subpopulation by blocking AKT activity and thus inactivating Ets-1 function (Figure 1). The 

remaining cells enter a dormant, non-dividing quiescent state (G0/G1 arrest) because of the 

inhibited transactivation of Ets-1 target genes cyclins D1, D3, and E2. Moreover, Ets-1 

inactivation inhibits transcription of dual specificity phosphatase 6 (DUSP6), a negative 

regulator specific for ERK1/2. As a result, ERK1/2 is activated, which combines with c-Src 

to renew activation of the Ras/MAPK pathway, causing increased cell survival by 

accelerating Bim protein turnover. These observations may explain why a small subset of 

quiescent persister cells can tolerate TKIs, leading to acquired drug resistance.

Overcoming Drug Resistance to EGFR Inhibitors

Among the numerous therapeutic investigations to improve patient outcomes [2, 8], a focus 

has narrowed on T790M EGFR, the most common mechanism of drug resistance to gefitinib 

and erlotinib. Below is an overview of the past decade's battles to overcome T790M-

mediated resistance.

Retreatment with the Same TKI after a Treatment Interruption—Treating patients 

with other anti-cancer agents occasionally restores sensitivity to EGFR TKIs (Figure 2A) 

[108]. A chemotherapy regimen that interrupts the TKI therapy for a period of time, i.e. a 

“drug holiday,” may effect a restoration of the TKI's efficacy [8]. Nevertheless, there is a 

risk that dormant cancer cells might rapidly expand in some cases when the TKI treatment is 

suddenly stopped [99, 100].

T790M-specific EGFR TKIs—In contrast to the first-generation reversible EGFR TKIs 

(i.e., gefitinib and erlotinib), the second-generation TKIs such as afatinib (Gilotrif) [109], 

dacomitinib (PF-00299804) [110], and neratinib (HKI-272) [111] bind irreversibly to EGFR 

and other EGFR family members, including HER2 [8]. Therefore, the agents were thought 

to be effective for patients with the T790M EGFR drug-resistant mutation [112, 113]. 

However, early-phase clinical trials found no objective response in this population 

[114-116].

In contrast, the third-generation TKIs (AZD9291 [117], rociletinib (CO-1686) [118], and 

WZ4002 [119]) inhibit both mutations of EGFR activation and resistance, while they have a 

modest activity with wild-type EGFR (Figure 2B) [8]. In early-phase studies, AZD9291 and 

rociletinib demonstrated promising response rates (~60%) in tumors with acquired T790M 

EGFR mutation [117, 120, 121]. Unfortunately, acquired resistance to both developed in 

EGFR with or without the T790M mutation, demonstrating intratumor heterogeneity 

[122-126].

Of the third-site EGFR mutations (L718Q, L844V and C797S [125]), C797S was found in 

approximately 40% of AZD9291-resistant T790M-positive tumors. L858R, T790M, and 

C797S EGFR mutation-positive cells showed a partial sensitivity to cetuximab, a 

monoclonal antibody against EGFR [125]. More recently, additional mechanisms of drug 

resistance to AZD9291 have been reported: loss of the T790M mutation and EGFR gene 

amplification; and SCLC histologic transformation [122]. These findings suggest that 
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stepwise monotherapies represent a formidable challenge in drug-resistant cells and that 

simultaneous multi-drug combination therapies should be considered [127].

Targeting Drug-tolerant Persister Cells—The drug-tolerant persister cells could be a 

therapeutic target, as reduction of this subset may prevent emergent resistance to EGFR 

inhibitors (Figure 2C) [97, 98]. Drug-tolerant cells were previously shown to be sensitive to 

histone deacetylase (HDAC) inhibitor [102]. However, the combined therapy of erlotinib and 

entinostat, an HDAC inhibitor, did not improve clinical outcome [128].

Recently, we proposed combined EGFR and MEK inhibition therapy [96-98, 106, 107]. Our 

study demonstrated that addition of a MEK inhibitor enhances programmed cell death by 

rewiring apoptotic signaling after EGFR inhibition in persister cells. Therefore, to decrease 

the probability of emergent resistance to EGFR TKIs in NSCLCs, combined TKI and MEK 

inhibitor treatment should be considered. A recent report from another laboratory has also 

proposed this novel therapy, which is thought to be effective not only in TKI-sensitive 

activating EGFR mutations, but also in acquired resistance with the T790M second-site 

EGFR mutation [129]. Interestingly, a separate report showed that ERK1/2 reactivation 

accompanied DUSP6 reduction after L858R/T790M EGFR-selective inhibition in gefitinib-

resistant cells [130]. Thus, a clear rationale for combined treatment exists, regardless of 

whether drug resistance is persistent or acquired. A randomized double-blind trial is 

necessary before this novel therapy can be integrated into the management of EGFR-

mutated NSCLCs in the clinical setting.

Conclusions

Over the past decade, EGFR-targeted therapies have dramatically changed the treatment of 

patients with lung adenocarcinoma. However, drug resistance has become a substantial 

issue. Recent studies have identified the mechanisms of primary, acquired, and persistent 

drug resistance to TKIs (Table 1), and researchers and clinicians have used these findings to 

develop therapeutic approaches (Table 2). However, the stepwise use of single agents 

presents a formidable challenge. This suggests that researchers and clinicians should 

consider multi-drug combinations to overcome drug resistance. In this era of precision 

medicine, oncologists must promptly obtain an accurate diagnosis of drug resistance during 

the individual clinical course to design the most relevant combination to overcome the 

patient-specific drug resistance in this population [131].
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Figure 1. 
Schematic of the molecular mechanism of EGFR inhibition and drug resistance in EGFR-

mutated NSCLC cells. Increases and decreases in activity/expression of signaling molecules 

or biological outcomes resulting from EGFR inhibition are indicated by red arrows.
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Figure 2. 
Different strategies to overcome drug resistance to EGFR inhibitors.

(A) Retreatment with the same TKI after a treatment interruption. Resistant tumors are often 

composed of mixed populations of sensitive and resistant cancer cells. A chemotherapy 

regimen that interrupts the TKI therapy for a period of time, i.e. a “drug holiday,” may effect 

a restoration of the TKI's efficacy.

(B) Administration of T790M-specific EGFR TKIs. The third-generation TKIs inhibit both 

mutations of EGFR activation and resistance. Early-phase studies demonstrated promising 

response rates in tumors with acquired T790M EGFR mutation. Unfortunately, acquired 

resistance developed in EGFR with or without the T790M mutation.

(C) Targeting drug-tolerant persister cells. The drug-tolerant persister cells could be a 

therapeutic target, as reduction of this subset may prevent emergent resistance to EGFR 

inhibitors. We and others recently proposed combined EGFR and MEK inhibition therapy.

Tetsu et al. Page 21

Chemotherapy. Author manuscript; available in PMC 2017 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tetsu et al. Page 22

Table 1

Mechanisms of Drug Resistance to EGFR TKIs

Primary Resistance Acquired Resistance Persistent Resistance

Wild-type EGFR [30, 41] Target alterations AKT inhibition [96]

KRAS mutation [31] T790M EGFR [65] Epigenetics [102]

BRAF mutation [32] L747S [42], D761Y [72], or T854A [73] EGFR

Bim polymorphism [33] Activation of alternative pathways

EGFR exon 20 insertions or duplications [45, 46] MET amplification [50, 81]

T790M EGFR [47, 48] HER2 amplification [52, 53]

Tumor microenvironment [35-37] HER3 activation [75, 76]

NF-κB signaling activation [38] IGF-1R activation [77, 78]

FGF1 activation [79, 80]

BRAF mutation [54]

PTEN loss [55, 56]

NF1 reduction [57]

Histologic Transformation

SCLC histologic transformation [58-60]

EMT histologic transformation [61-63]

Intratumor heterogeneity [64]

Chemotherapy. Author manuscript; available in PMC 2017 February 25.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tetsu et al. Page 23

Table 2

Targeted Therapy: EGFR TKIs

1st-generation 2nd-generation 3rd-generation

Gefitinib [23, 24] Afatinib [109] AZD9291 [117]

Erlotinib [24-26] Dacomitinib [110] Rociletinib [118]

Neratinib [111] WZ4002 [119]
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