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Abstract  

The organization of nuclear proteins is linked to cell and tissue phenotypes. When cells arrest 

proliferation, undergo apoptosis, or differentiate, the distribution of nuclear proteins changes. 

Conversely, forced alteration of the distribution of nuclear proteins modifies cell phenotype. 

Immunostaining and fluorescence microscopy have been critical for such findings. However, 

there is an increasing need for quantitative analysis of nuclear protein distribution to decipher 

epigenetic relationships between nuclear structure and cell phenotype, and to unravel the 

mechanisms linking nuclear structure and function. We have developed imaging methods to 

quantify the distribution of fluorescently-stained nuclear protein NuMA in different mammary 

phenotypes obtained using three-dimensional cell culture. Automated image segmentation of 

DAPI-stained nuclei was generated to isolate thousands of nuclei from three-dimensional 

confocal images. Prominent features of fluorescently-stained NuMA were detected using a novel 

local bright feature analysis technique, and their normalized spatial density calculated as a 

function of the distance from the nuclear perimeter to its center. The results revealed marked 

changes in the distribution of the density of NuMA bright features as non-neoplastic cells 

underwent phenotypically normal acinar morphogenesis. In contrast, we did not detect any 

reorganization of NuMA during the formation of tumor nodules by malignant cells. Importantly, 

the analysis also discriminated proliferating non-neoplastic cells from proliferating malignant 

cells, suggesting that these imaging methods are capable of identifying alterations linked not 

only to the proliferation status but also to the malignant character of cells. We believe that this 

quantitative analysis will have additional applications for classifying normal and pathological 

tissues. 
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Introduction 

The organization of proteins within the cell nucleus appears to play a central role in 

directing nuclear functions necessary for cell proliferation and differentiation (1,2). Several 

nuclear proteins have been reported to display a specific compartmentalization (e.g. within the 

nucleolus, nuclear domains, or chromatin), and distribution (e.g., diffuse or aggregated), which 

change during the cell cycle (3,4), upon a switch between proliferation and growth arrest (5), or 

following cell differentiation (6-9). Studies using three-dimensional (3D) culture of breast 

epithelial cells in the presence of laminin-rich extracellular matrix have revealed that the 

distribution of certain nuclear proteins is dependent also on tissue morphogenesis (5,10). These 

culture models mimic the formation of specific tissue structures, where cells display both the 

function and the spatial arrangement typically found in a given organ (11,12). As a consequence, 

3D cell culture models are being recognized as the systems of choice for unraveling critical 

cellular events involved in the development of pathologies such as cancer (13). 

The HMT-3522 cancer progression series of human mammary epithelial cells (HMECs), 

cultured in 3D, constitutes a physiologically relevant model for studying the relationship 

between cellular organization and gene expression in normal and malignant cells (5,14-17). In 

such cultures, non-neoplastic HMT-3522 S1 HMECs (18) reproduce the formation of 

phenotypically normal, tissue-like glandular structures referred to as acini (17). Acinar 

morphogenesis proceeds by stepwise events including a proliferation stage from days 1 to 6 of 

culture, followed by growth arrest and the formation of the baso-apical polarity axis. Upon 

completion of acinar morphogenesis at day 10, S1 cells are organized into spherical and hollow 

structures delineated by a basement membrane at their basal pole, and a lumen at their apical 

pole. On the other hand, malignant T4-2 cells, which were derived from S1 cells (19), continue 
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to proliferate, and form disorganized and invasive tumor-like nodules under the same culture 

conditions (17,20). The distribution of nuclear proteins including retinoblastoma protein Rb, 

splicing factor SRm160, and nuclear mitotic apparatus (NuMA) protein is remarkably different 

between S1 cells in the early stage of acinar morphogenesis and S1 cells in fully formed acini 

(5). NuMA is diffusely distributed within the nuclei of proliferating cells, but aggregates into 

foci of increasing size as cells arrest proliferation and complete acinar morphogenesis. 

Importantly, the distribution of NuMA in acinar S1 cells is similar to that observed in biopsies of 

normal breast tissue, indicating that the 3D model of acini formation reproduces physiologically 

relevant features of NuMA organization. 

Earlier reports described the distribution of NuMA as a single aggregate in the center of 

the cell nucleus in different cell types undergoing apoptosis (21,22) and as diffuse in cells 

cultured under non-differentiating condition (i.e., on plastic surfaces producing a flat monolayer 

of cells) (5,23). NuMA has since been reported to be organized in distinct foci in differentiated 

muscle (24) and differentiated lens cells (8). Another report has shown an association between a 

more punctate distribution of NuMA and a higher susceptibility to apoptosis induction in 

lymphocytes (25). Thus, NuMA distribution appears highly dependent on cell and tissue 

phenotypes and, as such, it has been proposed to constitute a reliable indicator of cell behavior 

(5,21,25). 

For decades, it has been known that cancer cells display alterations in nuclear size and 

chromatin organization (26,27). Yet despite extensive use of the cell nucleus as a central 

diagnostic tool in cancer, there is little information available regarding specific alterations in 

nuclear organization in neoplasia. Understanding the relationship between nuclear organization 

and cell behavior has gained recent attention because it may help decipher signaling and 
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structural events involved in differentiation and cancer (28). With the recent refinements in 

confocal imaging technology, three-dimensional high-resolution imaging has become a powerful 

method for recording subtle organizational features in the cell nucleus. However, although a 

number of recent techniques for the quantitative analysis of three-dimensional images have been 

reported (29-35), the availability and application of robust image analysis tools in biology remain 

in their infancy (26,36,37). 

Here, we report the use of confocal imaging to record the changes in the pattern of NuMA 

staining in HMECs expressing different phenotypes, and the development of an image analysis 

technique to translate the visual observations of the complexity of NuMA staining into 

quantitative results. In the original report (5), NuMA organization was determined by manually 

measuring foci sizes. However, such measurements are not possible when NuMA is diffusely 

organized and do not take into account the spatial reorganization of NuMA that is apparent in the 

differentiated cells. To circumvent this we have developed the radial local bright feature (radial-

LBF) analysis. In this method, regions of local brightness in images of fluorescently-

immunolabeled NuMA are isolated by an adaptive LBF analysis technique. The density of local 

bright features is then calculated within a set of concentric, volumetric terraces that subdivide the 

nucleus radially from its periphery to its center. The distribution of the bright features of NuMA 

can be represented by a simple graph, which permits an easy quantification of the changes in the 

spatial organization of this protein associated with different mammary phenotypes. The method 

relies on the delineation of individual nuclei, and in order to analyze thousands of nuclei in a 

short period of time, we have also developed a novel automated, three-dimensional segmentation 

technique. Using the radial-LBF analysis, we measured a striking reorganization of NuMA 

during acinar morphogenesis; no such reorganization occurred during the formation of tumor-
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like nodules. Importantly, the radial-LBF analysis of NuMA distribution permitted a clear 

discrimination also between proliferating non-neoplastic cells and proliferating malignant cells, 

which to our knowledge has not been achieved so far using other evaluation methods. 
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Results  

Radial-LBF distribution analysis in phenotypically normal breast acinar cells reveals a peak of 

density of NuMA bright features centered on a shell located midway between the periphery and 

the center of the nucleus. 

The organization of NuMA in the nucleus displays intricate spatial distributions that vary 

with cell and tissue phenotypes (5,8,25). Visual analysis of NuMA immunostaining showed the 

formation of bright NuMA foci in a sea of diffuse NuMA staining during acinar morphogenesis 

(5). To quantify the distribution of bright NuMA foci, we calculated the radial distribution of the 

density of NuMA bright features isolated with the LBF analysis (described in the Materials and 

Methods section) within the three-dimensional volume of each nucleus (Fig. 1a). S1-HMECs 

were cultured in 3D to induce phenotypically normal acinar morphogenesis where NuMA 

domains are most abundant. Acini were immunostained for NuMA and counterstained with 

DAPI (Fig. 1b and c). A segmentation mask, which describes the position and extent of 

individual nuclei in 3D, was created from the DAPI image (Fig. 1d). Bright NuMA features were 

isolated from diffuse staining in the NuMA image using the LBF analysis. To visualize the 

localized accumulation of NuMA foci in the nucleus, the resulting bright features were overlaid 

on the segmentation mask (Fig. 1e). This visualization indicated that the density of NuMA bright 

features was low at the periphery of the nucleus and varied with the depth, radially, into the 

nucleus. To quantify NuMA bright features, a distance transform was applied to the 

segmentation mask to subdivide each nuclear volume into a set of concentric terraces of equal 

thickness, starting at the nuclear perimeter (Fig. 1f). The distance transformed-segmentation 

mask was combined with the LBF image to calculate the variation of the relative density of 

NuMA bright features as a function of the relative radial distance measured from the perimeter 
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of the nucleus to its center. To demonstrate the consistency of this radial-LBF analysis, the radial 

distribution was plotted for 77 nuclei analyzed within a single image (Fig. 1a, graph). As the 

visual representation indicated (Fig. 1e), the density of NuMA bright features was below average 

at the perimeter of the nuclei. And as the radial depth into the nucleus increased, the density of 

bright features increased and reached a peak, above the average density, at radial distance 

0.55±0.05. Then the density decreased to a value close to the average density as the center of the 

nucleus was reached. 

 

The distribution of NuMA bright features changes as a function of acinar morphogenesis.  

Previous analysis of the distribution of NuMA in S1 HMECs during the cell proliferation 

stage (day 3 of 3D culture) and upon acinar differentiation (day 10 of 3D culture), suggested that 

there was an increase in the foci-like aggregation of NuMA upon completion of acinar 

morphogenesis (5). This analysis was based on visual estimation and the manual measurement of 

the size of NuMA foci on images of NuMA staining. To assess the efficiency of the radial-LBF 

analysis in measuring the changes in NuMA distribution reproducibly along the morphogenesis 

process, we analyzed images of S1 HMECs cultured in 3D as a function of time, over a period of 

12 days. At day 3, the density of NuMA bright features was the highest in a region towards the 

perimeter of the nucleus (Fig. 2). After 10 days of culture, there was a clear reorganization of 

NuMA away from the perimeter and towards the center of the nucleus (Fig. 2). This 

reorganization was accompanied by a significant decrease of the density of NuMA bright 

features at the perimeter of the nucleus. Visual inspection of images of NuMA distribution in 

acinar cells showed that this protein was usually absent from regions located at the periphery of 

the nucleus (Fig. 3). Similar density distributions were obtained with two different antibodies 
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directed against NuMA (not shown). To establish the statistical significance of the differences 

measured for NuMA distribution between proliferating S1 cells, cultured for five days or less, 

and differentiated S1 cells, cultured for 10 days or more, we compared the average radial 

position of the distribution maxima, shown by the vertical black line in Figure 2. The p-value 

between days 5 and 10 was 0.023, indicating significant difference between the distributions at 

those days. Thus, these results quantitatively confirmed our initial visual observation that acinar 

morphogenesis is accompanied by the reorganization of NuMA foci (5). 

 

The distribution of NuMA bright features in malignant T4-2 cells differs from both proliferating 

and differentiated non-neoplastic S1 cells. 

In proliferating S1 cells, NuMA distribution is more diffuse than in growth-arrested (day 

5 of 3D culture) and fully differentiated (day 10 of 3D culture) acinar cells. We asked whether 

the diffuse distribution of NuMA was a characteristic of a cell population that was actively 

proliferating, regardless of whether or not it was malignant. As expected, immunostaining of 

malignant T4-2 cells for NuMA after 10 days of 3D culture showed that this protein was mostly 

diffusely distributed (Fig. 3), and that overall this distribution did not appear to be visually 

different from that observed in proliferating non-neoplastic S1 cells. To quantitatively assess this 

visual observation, we applied the radial-LBF analysis to 3D cultures of T4-2 cells as a function 

of time up to 11 days. During this culture period, T4-2 cells formed disorganized tumor-like 

nodules of increasing sizes. In contrast to non-neoplastic S1 cells, the radial-LBF analysis 

showed a fairly flat distribution of NuMA bright features in malignant cells, regardless of the 

number of days in 3D culture (Fig. 4a). Thus, despite the increase in mass, there were no 

significant alterations in the phenotype of tumor nodules during 11 days of 3D culture, and there 
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was no apparent change in the density of NuMA bright features in the nuclei of tumor cells 

during the entire culture period. 

The distribution curves of the density of bright features of NuMA in T4-2 cell nuclei did 

not show a clear peak at any of the time points, suggesting that there was a difference in NuMA 

distribution not only between malignant T4-2 cells and acinar S1 cells, but also between 

malignant T4-2 cells and proliferating S1 cells. To better visualize the differences in the 

distribution of the bright features of NuMA for the different phenotypes at the time points 

described above, we plotted the cumulative density of NuMA bright features that exceeded unity 

as a function of the distance from the nuclear boundary. The cumulative plots unambiguously 

show that the distribution of the bright foci of NuMA is consistently similar for the different 

culture time points of the malignant T4-2 cells and that such a distribution is remarkably 

different from any of the stages of acinar morphogenesis for S1 cells, including the proliferation 

phase (Fig. 4b). To establish the statistical significance of the differences measured for NuMA 

distribution between S1 and T4-2 cells, we calculated the p-values of the average maxima 

accumulation. Figure 4b shows that the average maximum accumulation in S1 cells lies greater 

than seven standard deviations away from the average maximum accumulation for T4-2 cells. 

This results in a p-value of less than 0.001, indicating that the distributions for S1 and T4-2 cells 

are significantly different. 

 

Discussion 

We have developed an automated image analysis method that quantifies the radial 

distribution of nuclear proteins, on a per nucleus basis. Although the focus here has been the 

analysis of NuMA distribution, the tools developed are expected to be fully applicable to many 
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other nuclear proteins. The analysis identified individual nuclei within an image, revealed bright 

features of NuMA staining within each nucleus, and calculated the relative density of the bright 

features of NuMA staining as a function of the distance from the perimeter of the nucleus to its 

center. The results demonstrate quantitatively that the organization of NuMA is dynamic, and is 

linked directly to the phenotype of the HMECs. During the process of acinar morphogenesis, 

there is a marked decrease in the relative density of NuMA bright features at the perimeter of the 

nucleus and a marked increase in this same parameter towards the center of the nucleus. In 

contrast, the relative density of NuMA is more uniformly distributed in malignant cells and there 

is no measurable variation in its distribution during the growth of tumor-like nodules. 

Furthermore, the distribution of NuMA in malignant cells is clearly different from that in non-

neoplastic cells regardless of the stage of acinar morphogenesis. 

One of the key steps of the image analysis is the delineation of individual nuclei from 3D 

fluorescence images. To permit the analysis of large numbers of nuclei, we have developed a 

segmentation method that is automated. Our method builds upon approaches previously 

described (29,38-40). Irinopoulou and colleagues (30) used a global threshold, a distance 

transform, and a watershed method to segment nuclei on a per image-slice basis. Their final 3D 

reconstruction was then produced by implementing a rule-set to correctly join nuclei in adjacent 

slices. Our technique uses an adaptive threshold (29) that enables us to correct for inherent image 

anisotropy, and work directly in three dimensions. Then, much like Irinopoulou and colleagues, 

we apply a distance transform, but instead of a watershed method, we use template matching and 

region growing techniques, which are directed by the results of the distance transform. These 

techniques allow us to use the known geometry of the nuclei and produce a more accurate 

segmentation than an unconstrained watershed technique (41-44). Our segmentation method is 
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optimized with the help of tools that present a user with the raw DAPI-stained image overlaid 

with the corresponding segmentation mask and permit the visual scoring of the segmentation 

accuracy. Application of these tools shows that although some segmentation errors occur, the 

number of errors is insignificant compared to the number of correctly segmented nuclei. Our 

ongoing efforts are focused on improving the nuclear segmentation technique in order to 

maintain accuracy and efficiency in cases where the morphology of the nuclei is even more 

complex. 

A major concern of using 3D confocal images for quantitative analysis is the inherent 

image anisotropy which is linked to the nature of image acquisition. Confocal images are more 

highly resolved in directions perpendicular than parallel to the optical axis. This is due to the 

spatial asymmetry of both the point-spread function of the excitation illumination and the 

microscope's "pinhole" spatial filter. Also, the collection efficiency and hence the brightness of 

confocal images decreases with depth into the object. The severity of this penetrative loss 

depends on the physical properties of the object, the mounting medium, and the objective lens. 

Standard image analysis techniques are often based on ideal imaging assumptions, which neglect 

inherent properties of confocal images. In such cases, images must be preprocessed using 

restoration techniques to remove artifacts created by confocal imaging before the quantitative 

analysis may proceed. In contrast, our analysis techniques take inherent properties of confocal 

images into account and allow results from different images to be quantitatively compared, 

independently of variations in fluorescence staining efficiency and acquisition parameters. The 

LBF analysis isolates local bright and local dark features within an image using an adaptive 

approach where a kernel of neighboring imaging pixels is defined around each point in the 

image. The LBF analysis then uses the relative brightness of the neighboring pixels in the kernel 
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to classify each pixel. These types of non-linear techniques are powerful because they mimic 

human visual perception, especially the ability to isolate rare events, such as a small number of 

foci in a diffuse background. Furthermore, the size of the kernel sets a spatial sensitivity limit to 

the LBF technique and its relative dimensions can be easily adjusted to match the spatial 

sampling asymmetry of the microscope. Consequently, the LBF technique is not affected by the 

absolute brightness of an image or long scale brightness variations like penetrative loss, and 

restoration techniques such as background subtraction, attenuation correction, and image 

interpolation are not necessary. 

The ability to quantify the spatial distribution of fluorescent bright cellular features has 

many biological applications ranging from the study of gene expression and protein movement in 

live cells, and the exploration of the structural aspects of cell division, to the investigation of the 

role of nuclear alterations in pathologies (30,31,35,45-49). We believe that the LBF analysis, 

which isolates local bright features, and the radial-LBF analysis, which quantifies the distribution 

of the bright features, are examples of powerful tools capable of measuring differences in the 

complex distribution of endogenously expressed nuclear proteins from 3D images acquired 

following simple immunostaining procedures. Radial-LBF analysis has led to findings that 

strongly support the concept that specific cell and tissue phenotypes are reflected by the 

organization of nuclear components. These findings underline the importance of reorganization 

within the nucleus during the differentiation process and the alterations in nuclear organization 

that may be associated with tumor behavior. It was not the purpose of this study to measure 

independently the effect of specific cellular events that may account for tumor phenotypes, like 

the cell cycle phase or changes in the number of chromosome, on the distribution of NuMA. 
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However, the investigation of such effects will be of great value to refine the phenotypic 

classification, especially when working with small numbers of cells.  

We are currently developing methods to turn the ability to quantify nuclear protein 

distributions into a robust classification technique to define the probability that individual nuclei 

belong to a specific cell phenotype. We are adding new feature-extraction algorithms and 

focusing on the distribution of several nuclear proteins. We have also started using the LBF-

based imaging techniques to investigate the remodeling of protein distributions in normal and 

diseased cells in clinically-derived tissue samples. Our goal is to create a new quantitative 3D 

“view” of cells and tissues, based on the remodeling of nuclear proteins that helps understand the 

organization of the nucleus and aids in the classification of pathological samples. 



 15

Materials and Methods 

 

Cell culture 

HMT-3522 non-neoplastic (S1) cells (18) and HMT-3522 malignant T4-2 cells (19) were 

cultured in serum-free H14 medium as described (17,20). To induce acinar morphogenesis, S1 

cells were cultured in 3D for up to 12 days on 40 µl/cm2 MatrigelTM (BD Biosciences)-coated 

surfaces in the presence of culture medium containing 5% Matrigel (10). Tumor-like nodule 

formation was achieved by culturing T4-2 cells under similar conditions but for a maximum of 

11 days in order to avoid overgrowth. 

 

Immunostaining and image acquisition 

3D cultures of S1 and T4-2 cells in 4-well chamber slides were permeabilized with 0.5% 

peroxide and carbonyl-free triton X-100 (Sigma Biosciences) in cytoskeleton buffer (100 mM 

NaCl, 300 mM sucrose, 10 mM pipes, pH6.8, 5 mM MgCl2) containing protease and 

phosphatase inhibitors (1 mM pefabloc, 10 µg/ml aprotinin, 250 µM NaF), prior to fixation in 

4% paraformaldehyde and immunostaining (5). Primary monoclonal antibodies against NuMA 

were from clone 204.4 (Oncogene Research products) and B1C11 (a gift from Dr. Jeffrey 

Nickerson, University of Massachusetts). Secondary antibody was Texas-red conjugated 

(Jackson ImmunoResearch Laboratories). Nuclei were counterstained with 4', 6-diamidino-2-

phenylindole (DAPI). Following immunostaining, 3D cultures were mounted in anti-fade 

medium (ProLong®, Molecular Probes) under #1 coverglass. Optically sectioned images of 

DAPI-stained DNA and Texas Red-labeled NuMA were acquired sequentially throughout the 

volume of the acini and assembled into three-dimensional images. DAPI and Texas Red signals 
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were acquired simultaneously into separate channels using a Zeiss 410 Confocal Laser Scanning 

Microscope with a planapochromatic 63x, 1.4 NA objective. The resulting voxel dimensions of 

the three-dimensional images was 0.08µm x 0.08µm in the plane of the slide and 0.5µm along 

the optical direction. 

 

Segmentation of Individual Nuclei 

To isolate individual nuclei in the three-dimensional DAPI-stained image, a model-based 

automatic nuclear segmentation method was developed on the assumption that nuclei of 

epithelial cells are of simple geometry in that they encompass a single spherical core. An 

adaptive threshold was first applied to the DAPI-stained image to produce the binary 

segmentation mask of the nuclei. The technique, which normalizes for penetrative loss along the 

optical direction, uses a difference-of-Gaussians filter (50) followed by a morphological closing 

filter and a flood-fill algorithm (41-44). While this technique accurately delineates nuclei from 

their background, it does not completely separate neighboring nuclei when they are tightly 

clustered. To separate nuclei that are connected by the binary mask, the central core of each 

nucleus was located, using standard template matching techniques, and dilated into the rest of the 

nucleus using standard region-growing techniques (41-44). Briefly, a template was constructed 

with dimensions that approximated those of the average spherical core of nuclei and was 

convolved with the binary nuclear mask. This convolution produced a map that indicated the 

percentage of the template that fit within the binary mask at each point in the image. Then, the 

template was stamped into the binary mask at locations where there were corresponding local 

maxima in the map that exceeded 70%. The templates were stamped at the center-of-mass of the 

local maximum, in an order ranked by their percentage, starting from the highest. A template was 
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not stamped if the local maximum was less than 70%, if it overlapped a previously stamped 

template by more than 70%, or if the local maximum was at the boundary of the binary mask. 

Once all the nuclear cores were located, each template was dilated in a semi-intelligent fashion. 

The template dilation was done independently in the positive and negative X, Y, and Z 

directions. Dilation along any direction was halted when 60% of the dilating template boundary 

reached the boundary of the binary mask. This prevented a dilating template from squeezing 

through narrow regions in the binary mask that connected two adjacent nuclei. Also, dilation was 

stopped in all directions if the volume of the dilated template exceeded nine times its original 

volume. This phenomenon occurred if nuclei were clustered so closely that the initial 

segmentation mask failed to separate them adequately. The resulting object was reported as an 

under-segmentation error. 

 

Distribution Analysis of NuMA 

Following immunostaining, image acquisition and nuclear segmentation, NuMA bright 

features were first isolated by the LBF analysis technique and then their radial distribution 

calculated by our radial-LBF technique. In the LBF analysis, pixel brightness in the raw NuMA 

images was normalized by the local average brightness using an extension of the difference-of-

Gaussians technique (50). The raw NuMA image was masked by the binarized segmentation 

result derived from the DAPI image as described above. Then, the image brightness within each 

nucleus was rescaled by dividing the brightness at each point by the average brightness within a 

local region surrounding that point. The dimension of the local region was chosen to be half that 

of the dimension of the nuclear core. This choice resulted in a local region that was significantly 

larger than the bright NuMA foci of interest but smaller than the nuclear dimension. This was 



 18

important because the LBF technique sensitively resolves light or dark features that lie within the 

local region while ignoring features that are larger. Using this approach allowed the bright foci 

and dark regions of interest within the nucleus to be resolved and the low-frequency brightness 

variations, due to nuclear geometry and finite axial resolution, to be correctly normalized. In the 

resulting LBF images, bright image features have values above unity while dark image features 

have values below unity. For the radial-LBF analysis, a distance transform (41-44) was applied 

to the nuclear segmentation mask. The transform calculates the shortest distance of each point 

within a nucleus to the nuclear boundary and in doing so, divides each nucleus into a set of 

concentric terraces of equal thickness. The LBF image was then used in conjunction with the 

nuclear segmentation mask and the distance transform to compute the density of local bright 

features in each terrace of each nucleus (see Fig. 1a). In each terrace, the density was calculated 

as the number of pixels in local bright features divided by the total number of pixels. The relative 

distribution of the density of bright features within each nucleus was revealed by normalizing the 

density per terrace, so that the average density of bright features was unity for each nucleus. The 

distances defined by the distance transform were also normalized so that the distance at the 

nuclear perimeter was 0 and the distance at the center of the nucleus was 1.0. This normalization 

was done to account for variation in the number of terraces per nucleus due to variations in 

nucleus size and shape. Finally, normalized density of bright features was plotted against 

normalized distance from the perimeter of the nucleus to its center.  

 

Statistical Analysis 

P-values were derived from the standard normal distribution using the z-score (Z=(X-µ)/σ). 

Two averages with a p-value less than 0.05 were considered significantly different. 
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Figure legends  

 

Figure 1. LBF analysis of NuMA distribution from 3D images. a. Flowchart of the 

imaging processing steps including a graph of the relative density of local bright features of 

NuMA in 77 nuclei from the three acini depicted in Fig 1b. The radial distributions of local 

bright features within each nucleus in the NuMA image are calculated by first generating a 

segmentation mask from the image of DAPI-stained DNA. The segmentation mask not only 

defines the extent of each nucleus, but it is also used to define a set of radial steps within each 

nuclear volume. The graph shows the mean and standard deviation of the relative density of 

NuMA bright features extracted by LBF analysis (ordinate) as a function of the relative distance 

from the perimeter (0.0) to the center (1.0) of the nuclei (abscissa). b-h. Distribution density of 

the bright features of NuMA in acinar cells. S1 HMECs were cultured in 3D to induce acinar 

morphogenesis. Each panel corresponds to the application of the different steps of distribution 

analysis starting from the same original image. b. Fluorescence micrograph of DAPI-stained 

nuclei from a single optical section containing three acini [1;2;3]. c. Fluorescence micrograph of 

Texas-red immunolabeled NuMA from the optical section corresponding to the DAPI image 

shown in a. d. Segmentation mask derived from the DAPI-stained image showing a single slice 

of individually enumerated nuclei. e. Composite view of the local bright features (light gray) 

extracted by the LBF analysis overlaid with the segmentation mask (dark gray). f. Concentric 

terraces resulting from the application of the distance transform on the segmentation mask. 

 

Figure 2. Average relative density of local bright features of NuMA during acinar  
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morphogenesis. S1 cells were cultured in 3D for 3, 5, 10 and 12 days. Plots represent the relative 

density of NuMA bright features extracted by LBF analysis (ordinate) of a population of nuclei 

as a function of the relative distance from the perimeter (0.0) to the center (1.0) of the nuclei 

(abscissa) for each time point. Vertical lines (black) represent the location of the peak of bright 

feature density in the nucleus. Horizontal lines (gray) represent the extent of nuclear volume with 

densities of bright features above the average. The number of days the cells were in culture and 

the number of nuclei analyzed are indicated above each corresponding graph. Bars represent the 

standard deviations of the relative density of NuMA bright features calculated from multicellular 

units of the same phenotype, on a per image basis.  

 

  Figure 3. Immunostaining of NuMA in acinar S1 and malignant T4-2 HMECs. S1 and 

T4-2 cells were cultured in 3D for 10 days. Each image shows an optical section through the 

center of the nucleus of NuMA immunostaining in acinar S1 cells (left) and malignant T4-2 cells 

(right). One nucleus is shown per image. Arrows indicate typical empty areas in NuMA staining 

at the periphery of the nucleus of the S1 cell. Size bar = 2 µm. 

 

Figure 4. Differences in the relative density of NuMA bright features between non-

neoplastic and malignant cells. a. T4-2 cells were cultured in 3D for 4, 5, 10 and 11 days. Plots 

represent the relative density of NuMA bright features extracted by LBF analysis (ordinate) of a 

population of nuclei as a function of the relative distance from the perimeter (0.0) to the center 

(1.0) of the nuclei (abscissa) for each time point. Vertical lines (black) represent the location of 

the peak of bright feature density in the nucleus. Horizontal lines (gray) represent the extent of 

nuclear volume with densities of bright features above the average. The number of days the cells 
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were in culture and the number of nuclei analyzed are indicated above each corresponding graph.  

b. Cumulative plots of the relative density of NuMA bright features above unity (ordinate) at 

different time points of 3D culture of S1 and T4-2 cells as a function of the relative distance from 

the perimeter (0.0) to the center (1.0) of the nucleus (abscissa). Cumulative plots for S1 and T4-2 

cells were prepared from the relative density data shown in figures 2 and 4a, respectively. Bars 

represent the standard deviations of the relative density of NuMA bright features calculated from 

multicellular units of the same phenotype, on a per image basis. 
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