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Fast Non-line-of-sight Imaging with Non-planar
Relay Surfaces

Chaoying Gu, Talha Sultan, Khadijeh Masumnia-Bisheh, Laura Waller, and Andreas Velten

Abstract—Non-line-of-sight imaging methods reconstruct images from light captured off a relay surface. In most prior work this relay

surface is a diffuse plane. It has been shown that even small deviations from a planar relay wall geometry quickly degrade

reconstruction quality. Although existing methods can account for relay surface geometry in a straightforward way, they typically have

high computational complexity and take orders of magnitude longer time to compute than state-of-the-art planar methods. In this work,

we propose a fast algorithm that can perform non-line-of-sight reconstruction on arbitrary non-planar relay surfaces. Our algorithm has

the same computational and memory complexity as the fastest existing algorithms, yet it achieves comparable reconstruction quality to

the widely-used slower algorithms.

Index Terms—Computational Photography, Time-of-flight Imaging, Non-line-of-sight Imaging

✦

1 INTRODUCTION

T RADITIONAL LiDAR 3D imaging systems use pulsed
lasers and Time-of-Flight (ToF) detectors to measure the

ToF of the pulse from the laser to the object to the detector
and generate a 3D image of the scene using this directly re-
flected signal. To generate 3D images of scenes that are hid-
den from the Line-of-Sight (LOS) of the observer, the directly
visible LOS surface becomes a relay surface that reflects light
from the hidden scene [1], [2]. In a ToF Non-Line-of-Sight
(NLOS) measurement, a short laser pulse is reflected off
points on the relay surface and the light returning from a
hidden scene is measured to generate 3D reconstructions
of the hidden scene. This NLOS imaging system has uses
in diverse applications, such as autonomous navigation,
disaster response, and infrastructure assessment.

Different approaches have been proposed to tackle the
challenging problem of NLOS imaging [3]–[14]. Active ToF-
based methods that utilize a pulsed laser and fast Sin-
gle Photon Avalanche Diode (SPAD) detectors have been
demonstrated to perform robust high quality 3D reconstruc-
tions of arbitrary room-sized hidden scenes [15]–[18].

However, most existing ToF-based reconstruction algo-
rithms are limited to datasets acquired from planar relay
surfaces with uniform sampling grids. Recent work has
used data acquisition with multi-pixel SPAD detectors to
improve light collection efficiency and reduce acquisition
times [18]. While live video reconstructions have been
demonstrated using this system and video rate reconstruc-
tion speeds are possible with multiple methods, these algo-
rithms require the use of planar relay surfaces sampled with
uniform grids.

The few algorithms that can handle general relay sur-
faces and sampling patterns while producing state-of-the-art
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reconstructions are computationally expensive [19]. Recon-
struction times ranging from minutes to hours make them
inappropriate for most real-world applications and incon-
venient for research. Data-driven algorithms can provide
fast high-quality reconstructions, but they are trained with a
specific relay wall geometry and won’t easily generalize to
other geometries. Other deep methods learned to invert the
light transport use a known forward model [20], [21]. These
methods may be extendable to non-planar relay surfaces,
but the necessity to retrain for each new relay surface
typically results in a reconstruction time of hours.

The ability to reconstruct scenes from surfaces other
than perfect planes, while maintaining speeds and quality
comparable to existing state-of-the-art algorithms, is an im-
portant requirement for practical NLOS imaging systems.
However, this task has received relatively little attention. In
this paper, we aim to address these challenges by proposing
a new 3D Rayleigh-Sommerfeld Diffraction(RSD) algorithm
for NLOS imaging, which:

• can handle arbitrary non-planar relay surfaces
• can handle datasets collected with irregular sampling

grids and non-confocal acquisition schemes on the
relay surface

• has the same computational and memory complexity
and has similar runtime as existing fast algorithms
for planar relay surfaces

• yields similar reconstruction quality to the state-of-
of-art (slow) algorithms

The experimental data and implementation code can be
found in [22]. Our method can be applied to both confocal
and non-confocal capture schemes. In a confocal measure-
ment, an illumination laser and a single pixel detector scan
together to match the illuminated and imaged points on
the relay surface. This scheme simplifies the reconstruction
process, but also limits light collection to a single detector
pixel and a small area on the relay surface, resulting in light
inefficiency [15]. Algorithms that can handle non-confocal
datasets where the location of the detector pixel and laser
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illumination does not match can be extended to efficient
capture systems with SPAD arrays [18].

The primary limitation of our algorithm is its inability
to model non-linear light transport effects such as partial
occlusion within the relay surface and partial reflection of
the illumination laser at the edge of objects or at partially
transmissive surfaces.

2 RELATED WORK

2.1 Time of Flight based NLOS

The first method to successfully demonstrate ToF-based
NLOS imaging used expensive Streak cameras and an el-
lipsoidal back-projection algorithm that operated on the
time domain light transport of the measured signal [2].
Subsequent work sought to use cheaper SPAD detectors
[23], decrease computation times by choosing to reconstruct
along ellipsoidal surfaces in the hidden scene [24], and
improve reconstruction quality by employing slow iterative
algorithms [25], [26]. However time-domain reconstruction
algorithms are computationally expensive, limiting the use
of such methods “in the wild”.

The light cone transform (LCT) [27] solves this problem
of high computational complexity by utilizing a confocal ac-
quisition scheme to formulate the forward model as a shift-
invariant convolution. Then the inverse can be solved as
a computationally efficient frequency-based deconvolution.
However, this algorithm is restricted to singe pixel confocal
data acquisition on planar relay wall with regular sampling
grids.

2.2 Wave-Based NLOS

To enhance the efficiency and accuracy of LCT, new wave-
based NLOS methods have been proposed. These methods
utilize fast Fourier transforms and operate on the frequency
domain of the measured signal [16], [17]. Individual fre-
quency components of the measured signal are treated as
waves, employing wave propagation techniques to model
and propagate these virtual waves back into the hidden
scene.

For the confocal acquisition, the measurement can be
treated as a spatial boundary condition and the hidden
scene as a temporal boundary condition. Then Frequency-
Wavenumber (FK) migration algorithm from seismic imag-
ing can be utilized to generate high-quality reconstructions
[16]. While this algorithm is computationally efficient, the
inefficiency of the confocal scan necessitates long acquisition
times or the use of retroreflective objects.

In contrast, non-confocal schemes with independent
laser and detector positions on relay surfaces can uti-
lize multi-pixel ToF detectors to reduce data acquisition
time [18]. Wave imaging methods can be used to gener-
ate state-of-the-art reconstructions of the hidden scene for
both confocal and non-confocal acquisition schemes [15]
using Rayleigh Sommerfeld Diffraction (RSD) propagator.
Among the wave-based methods, the phasor field light
transport formalism [28]–[35] can be understood as con-
verting the visible relay surface into a virtual LOS camera.
Fast frequency-domain reconstruction methods [17] paired
with non-confocal acquisition schemes can generate dy-
namic reconstructions of the hidden scene [18]. However,

aforementioned FK-migration and phasor field algorithms
all require the use of a regular sampling grid on a planar
“relay wall”.

2.3 Non-Planar NLOS

In principle, time-domain ellipsoidal back projection meth-
ods [2], [15] can be used to reconstruct the hidden sene via
arbitrary relay surfaces and sampling patterns, as long as the
LOS geometry is known. The first method to experimentally
validate this capability utilized a second SPAD detector to
form a LiDAR system that dynamically updated the laser
positions on the relay surface [36]. This setup enables high-
quality reconstructions even when the relay surface is a
moving curtain. However, the ellipsoidal back projection
algorithm used [15] has high computational complexity re-
sulting in hours of compute time for a single reconstruction.

Among wave-based methods, FK migration is the only
approach that attempts to handle non-planar relay sur-
faces [16]. However, the two data pre-processing methods
proposed for handling non-planarity have their limitations.
One method increases the computational complexity to be
greater than the ellipsoidal back projection, while the other
is restricted to handling only minor deviations from planar
walls as we will see in the comparisons below.

2.4 Computer-generated holography

Computer-generated holography (CGH) computes holo-
grams from 3D description on an object, utilizing wave
propagation similar to that in the phasor field NLOS re-
construction. However it generally relies on the Fresnel
Transform, a simplified form of the RSD propagator used
in our wave-based NLOS methods. The fast methods to per-
form volume-to-plane wave propagation and thus generate
digital holograms are well-studied in point-based CGH [37].
For example, the wavefront recording plane (WRP) method
accelerates this process, introducing an intermediate WRP
in close proximity to the object. This method assumes that
the thickness of the object space is small such that all the
object points are contributing to a limited zone on WRP.
Our methodology deviates from WRP, relaxing the surface
thickness assumption and ensuring rapid propagation via
3D convolution. With the same derivation introduced in the
following sections, our method is adaptable to the field of
CGH. However, it is worth noting that digital holograms
often have much higher resolution than what we process,
so computational cost may still be an issue. Exploring this
extension would be interesting future research.

3 THEORETICAL BACKGROUND

We base our method on the phasor field formalism. This
method converts captured NLOS data into a wavefront
and employs diffraction theory that is typically used for
LOS imaging systems to perform the reconstruction. The
captured temporal data is encoded into a phasor field wave-
front at the relay surface, then the reconstruction operator
propagates this wavefront backward into the hidden scene
to reconstruct the NLOS objects. We start with a brief
introduction to the phasor field algorithm based on RSD
[15], a fast NLOS reconstruction limited to a planar relay
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wall. Then we introduce a time domain equivalent of RSD,
which can deal with any given surface and sampling, but is
very slow.

3.1 RSD

The phasor field RSD algorithm provides fast non-
approximative scene reconstructions of room-sized scenes
from non-confocal measurements with less computational
and memory requirements than the prior art [17]. With its
fast data acquisition and reconstruction capabilities, RSD
has been applied for real-time NLOS imaging applications
[18].

The core idea of RSD algorithm is that it codes the mea-
sured temporal signal into phasors in the Fourier domain,
and accelerates the calculation of diffraction by Fourier-
based convolution. However, it should be noted that the
fast convolution requires uniform grid sampling of the relay
surface. As a result, the fast RSD algorithm is naturally
limited to scenarios that involve plane-to-plane propagation
with uniform sampling.

We show the notation of our NLOS measurement in
Fig.1. Because light transport at each spatial position is
linear and time-invariant, we can characterize the temporal
measurement as an impulse response H(xp,xc, t), where
xp is the laser illumination point on the relay surface, and
xc is the sensor detection point on the relay surface.

To perform the reconstruction, the RSD algorithm picks
a virtual illumination function P (xp, t) first, and then
computes the corresponding scene response. The temporal
measurement denotes the impulse response at each xc,
so we can use convolution to obtain the virtual captured
wavefront on the relay wall as:

P (xc, t) =

∫

[P (xp, t) ∗H (xp,xc, t)] dxp. (1)

The resulted phasors P (xc, t) are converted to the fre-
quency space quantity PF (xc, ω) where each frequency
component at a fixed ω is a monochromatic wave front
of a phasor reflected from the scene and captured at the
relay surface. This wavefront is then propagated by the RSD
kernel Rxv

back into the hidden scene as:

I (xv) =

∣

∣

∣

∣

∫ +∞

−∞
Rxv

(PF (xc, ω))
dω

2π

∣

∣

∣

∣

(2)

where xv is voxel in the reconstructed hidden scene.
Given that all the detection points on the relay wall xc

are distributed on a regular plane, the fast RSD algorithm
computes the diffraction integral by fast Fourier transform
(FFT) convolution:

Rxv
(PF (xc, ω)) = PF (xc, yc, 0, ω) ∗

2D
G (xc, yc, zv, ω)

(3)

where G (xc, yc, zv, ω) = ei
ω

c

√
xc

2+y2
c
+z2

v/
√

x2
c + y2c + z2v .

Thus, all the xv values with the same depth zv can be
computed simultaneously using a single 2D FFT convo-
lution. Typically, the reconstruction volume has the same
sampling distance and aperture as the relay surface. Fol-
lowing the convention in the literature [17], we denote
N as the number of sampling points along each spatial
dimension for both the relay surface and the reconstruction

scene. Consequently, the computational complexity of RSD
is O

(

N3log(N)
)

, as it involves calculating N convolutions
of size N2 for a fixed number of frequency components.

3.2 FBP

Back-projection algorithm, together with the filtered back-
projection (FBP) methods, are standard solutions to lin-
ear inverse problems. They are some of the most popular
methods for NLOS 3D reconstruction [38]. Besides, the FBP
algorithm is very similar to the phasor field algorithm with
the time-domain implementation of RSD in terms of the
underlying math.

While there are various kinds of filters that can be
applied to the measured signal, the basic reconstruction of
FBP at xv is represented by:

I (xv) =

∫∫∫

H (xp,xc, t) δ

(

t− |xp − xv|+ |xc − xv|
c

)

dxpdxcdt.
(4)

The back projection specifies a voxel xv in the hidden
scene, enumerates each pair of the illumination point xp and
the camera point xc on the relay wall, and searches for the
photons which have the correct time of flight to be scattered
by the specific voxel xv.

Some filters like Laplacian are often applied to the mea-
sured signal to accentuate the high-frequency components
of reconstruction and enhance its resolution. When filtered
by the illumination function P (xp, t) in RSD, FBP becomes
a time domain implementation of RSD. To ensure consis-
tency across various methods, we apply the same filter used
in RSD for all the subsequent FBP implementations.

In non-confocal experiments, we adopt one of the two
approaches: either fix the SPAD while scanning the laser
or fix the laser while employing a SPAD array. Owing
to Helmholtz reciprocity [39], the lights and cameras are
interchangeable, rendering these two measurement schemes
mathematically equivalent. For the subsequent derivation,
we fix the laser point xp for each measurement, then Eq.4 is
simplified to:

I (xv) =

∫∫

P (xc, t) δ

(

t− |xp − xv|+ |xc − xv|
c

)

dxcdt

(5)
where P (xc, t) is defined in Eq.1.

The computational complexity of FBP is O
(

N5
)

, as it
has to enumerate every possible pairs of N3 voxels in the
reconstruction volume and N2 sampling points on the relay
surface.

4 OUR METHOD

The most fundamental initiative of our proposed 3D RSD
algorithm is to extend the applicability of fast RSD to non-
planar scenes. Our method is based on the well-known
separability of the RSD [40], thus we can propagate our
wavefront to an intermediate plane in the hidden scene and
reconstruct the volume from that intermediate plane using
existing methods. We first introduce this intermediate plane,
and then propose a fast 3D convolutional version of FBP to
deal with non-planar surface and non-uniform sampling.
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1st stage 2nd stage

(a) FBP (b) Mask FBP (c) Phase mapping (d) 3D RSD

intermediate plane hidden scenenon-planar relay wall

・
・
・

・

RSD

・・

Fig. 1. 2-stage algorithm schematic. The top row shows the overall procedure for 2-stage non-planar reconstruction, and the bottom row illustrates
four possible algorithms to implement the first stage propagation from a non-planar relay surface to an intermediate plane. The second stage
involves the segmentation of the hidden scene into planar slices, and it is a standard planar reconstruction based on the RSD algorithm. (a) FBP:
all the points inside the camera aperture (xc) are contributing to a specific xt on the intermediate plane. (b) Mask FBP: only xc inside a certain
distance range are contributing to a specific xt. (c) Phase mapping: the intermediate plane is directly projected from the non-planar relay surface
through phase shift, where xc and xt are one-to-one mapped. (d) 3D RSD: xc is first fit into a 3D grid and then propagated by 3D convolution to
retrieve the intermediate plane.

4.1 2-stage decomposition

The RSD is derived as an operator that propagates a wave
from any closed surface (denoted by points xc on the relay
wall) to a different surface (denoted by points xv in the
hidden scene). For a closed or infinitely large surface, the
operator is deterministic and inevitable. It can also be bro-
ken up into multiple steps by propagating to intermediate
planes (denoted by xt on the intermediate plane).

To utilize the fast RSD for our main reconstruction, we
add an extra intermediate plane. This modification allows
the slow algorithm, which involves non-planar geometries,
to solely focus on the propagation to a single planar slice,
rather than the entire hidden volume. Formally we define
our 2-stage reconstruction algorithm as follows: the first
stage propagates the measured field on the non-planar relay
surface to an intermediate plane, and the second stage
propagates from the intermediate plane to the hidden scene
space through the familiar plane-to-plane RSD. The imple-
mentation of the first stage propagator will be discussed in
more detail in the following two subsections.

4.2 Non-uniform sampling

In typical NLOS imaging setups, access to the occluded
regions of a scene is infeasible, so the calibration of the relay

surface must be angled. In situations where the relay surface
is planar, it is possible to determine the angle between
the wall and the camera axis, and subsequently, account
for irregular sampling by adjusting the scanning pattern
of galvos. However, in realistic non-planar scenarios, the
deformation of relay surfaces makes it exceedingly arduous
to mechanically compensate for uniform sampling. It would
also require multiple iterative scans of the relay wall. Since
the grid has to be uniform when viewed from the direction
of the hidden scene, surfaces with self occlusions can create
shadows that make complete uniform sampling as assumed
by existing reconstruction algorithms impossible. As such, it
is essential for reconstruction algorithms to be able to handle
non-uniform sampling.

However, in most of the previous work capture systems
are carefully calibrated to collect a sampling grid that ap-
pears uniform from the location of the hidden target [16],
[17]. The 2D RSD approach achieves fast reconstruction
owing to the uniform sampling grid in the x and y di-
mensions, which allows convolutional operations using FFT.
Therefore, a regular grid is desired and a natural remedy
for the non-planar and non-uniform sampling could be to
interpolate the data. However, given that the points on the
relay surface are scattered and have no structure between
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their relative locations, the computational overhead can be
extremely high when scaling. For example, generating the
Delaunay triangulation using Bowyer-Watson algorithm has
the complexity of O(N4) for N2 points on the relay surface
[41].

With our intention to accelerate the existing FBP algo-
rithm that can deal with irregular sampling, we opt for a
more efficient way to interpolate. Specifically, we construct
a uniform 3D grid and map the measurement on xc to the
nearest grid point. The spacing of the resampled 3D grid is
determined by the average sampling spacing on the relay
surface, and the range is determined by the aperture size on
the relay resurface.

The proposed simple interpolation method is particu-
larly valid in the context of phasor field reconstruction. This
is because, when viewing the object in the hidden scene
as sources of spherical waves, the relay surface is almost
tangential to the wavefront for the finite area inside the
aperture. As a result, the gradient of the data along the relay
surface is rather small at the scale of non-planar surface dis-
placement. In our experimental datasets, surface gradients
are typically small relative to the virtual wavelength and
steps are limited to a few edges. The effectiveness of our
approach, and how it measures up against more complex
interpolation methods, is thoroughly discussed in Sec. 5.3.

However, it is worth noting that sharp discontinuities
in the relay surface may result in substantial errors due
to large gradients, especially parallel to wave propagation.
However, the slow FBP might also yield unsatisfactory
results due to the ringing artifacts introduced by sharp cut-
offs in the sampling scheme. While we examined gradient-
adapted windowing techniques for aliasing mitigation on
more discontinuous surfaces, these often resulted in the loss
of valuable high-frequency signals in reconstruction. Thus,
addressing sharp discontinuities in non-planar relay sur-
faces without artifacts remains a compelling future research
direction.

4.3 3D RSD

After the interpolation, we can derive the fast algorithm
using tricks similar to 2D RSD. The 3D RSD algorithm
first decomposes the measured signal into distinct frequency
components and propagates them separately. Starting from
Eq.5, we define the 4D reconstruction I (xv, t) as below and
calculate its Fourier transform with expanded convolution:

I (xv, t) ≜

∫

H (xc, t) δ

(

t− |xp − xv|+ |xc − xv|
c

)

dxc

IF (xv,Ω) =

∫

H (xc,Ω) ∗ e−j Ω
c
(|xp−xv|+|xc−xv|)dxc

=

∫∫

H (xc, ω) e
−j Ω−ω

c
(|xp−xv|+|xc−xv|)dωdxc.

(6)

Eq. 5 indicates that the integration of the 4D reconstruc-
tion over time is essentially the reconstruction intensity
at xv. Thus, we can rewrite the reconstruction as the DC
component of the pre-defined 4D function:

I (xv) =

∫

F−1 {IF (xv,Ω)} dt = IF (xv, 0) . (7)

We further use Eq. 6 to evaluate IF (xv,Ω) at Ω = 0. The
sorted expression becomes a diffraction integral weighted
by a phase mask depending on xp:

I (xv) =

∫∫

H (xc, ω) e
−j ω

c
(|xp−xv|+|xc−xv|)dωdxc

=

∫

e−j ω

c
|xp−xv|

[
∫

H (xc, ω) e
−j ω

c
|xv−xc|dxc

]

dω

(8)
where the inner integral can be accelerated through 3D FFT.

Let the grid-discretized xc = (xc, yc, zc),xv =
(xv, yv, zv), and we fix zv = z0 and consider one specific
plane, which is exactly the intermediate plane in our specific
case. Thus, the input field xc is centered at zc = 0 and
the propagated volume is centered at zv = z0. With these
assumptions the inner integral simplifies into:

∫

H (xc, ω) e
−j ω

c
|xv−xc|dxc

=
∑

xc

∑

yc

∑

zc

H (xc, yc, zc, ω) e
−j ω

c

√
(xv−xc)

2+(yv−yc)
2+(zv−zc)

2

= H (xv, yv, zv − z0, ω) ∗
3D

G(xv, yv, zv, ω)

∣

∣

∣

∣

zv=z0
(9)

where G(xv, yv, zv, ω) = e−j ω

c

√
(xv)

2+(yv)
2+(zv)

2

.

It should be noted that while our input field,
H (xv, yv, zv, ω), has finite support, the diffraction kernel
G(xv, yv, zv) does not. Consequently, 3D convolution can-
not be used to calculate propagation to an entire volume.
We observe that the 3D convolution relationship remains
valid if the shifted kernel overlaps with the input, yielding
the correct calculation for the central plane where zv = z0.
Despite not being as efficient as whole volume-to-volume
3D convolution, this volume-to-plane propagation method
still presents superior computational complexity when com-
pared with the FBP integral.

Furthermore, the RSD operator describes propagation
between 2D surfaces [42], so the extension to a 3D integral
performed is not necessarily physically valid. In fact, since
different planes within a volume are related through an
RSD propagator, most 3D volumes are not valid inputs
for this operator. Although Eq. 9 accurately represents the
operator without necessitating any additional assumptions
or approximations, regardless of the non-planar relay sur-
face, there are limitations to our algorithm. Specifically,
it does not account for occlusion or partial illumination,
and operates under the presumption that the input data
constitutes a surface. It is therefore necessary to have a valid
input volume, which is one describing a 2D surface without
occlusions and partially transparent voxels, with remaining
voxels at zero.

The first stage computational complexity is a 3D convo-
lution of N3 size, and the second stage is 2D convolution of
N2 size repeated for N times. Therefore, the overall compu-
tational complexity can be expressed as O(N3 log(N)). This
complexity is the same as that of the existing fast planar
RSD algorithm and is promising for real-time applications.
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M L Manna et al, Opt. Express (2020)

(b) 3D RSD

20s, MATLAB 560s, C++

(c) FBP(a) Relay surface

Fig. 2. NLOS reconstruction on existing non-uniform and non-planar datasets [36]. (a) Point cloud measured on the relay surface, representing a
curtain adjacent to an air fan set on high. (b) Reconstruction using our 3D RSD algorithm, taking 20 seconds in MATLAB. (c) Reconstruction using
standard FBP, as employed in the original paper, taking 560 seconds even with the accelerated C++ implementation.

5 EXPERIMENTAL RESULTS

5.1 Performance analysis

In this section, we evaluate our algorithm on an existing
dataset from a published paper [36]. The relay surface is
a curtain blown by an air fan set to ‘high’ mode located
beside it. Fig. 2(a) displays the measured point cloud on the
relay surface, which is highly non-planar with non-uniform
sampling. The original paper showed that the reconstruction
assuming planar geometry failed to provide any informa-
tion about the hidden scene. As a result, it is crucial to
measure the non-planar relay surface and incorporate this
information into the reconstruction process.

Fig. 2 demonstrates that the 3D RSD algorithm’s recon-
struction is slightly less sharp compared to the FBP method
used in the original paper. As indicated by the blue frame,
the 3D RSD algorithm also introduces more artifacts. This
occurs because the intermediate plane cannot be infinitely
large; we set it to the same size as the aperture on the relay
surface to conserve computational resources. Additionally,
errors are introduced by the nearest neighbor interpolation.
However, most of the artifacts are common to both 3D
RSD and FBP, likely resulting from partial occlusion that
the linear light propagation cannot model. In general, the
two reconstructions are visually similar, while our proposed
method requires significantly less time.

While the FBP algorithm takes 560s with an efficient C++
version implementation, our 3D RSD reconstruction takes
only 20s in MATLAB. In particular, fitting the measured
data to a uniform 3D grid takes 14 seconds, while the actual
2-stage propagation requires only 6 seconds in total. This
duration is essentially the same as that for the fast 2D RSD
algorithm as introduced in Sec. 3.1.

5.2 Segmentation validation

To investigate whether the non-planar part indeed provides
useful information in the reconstruction, we segmented the
measured point cloud and perform NLOS reconstruction
separately on planar and non-planar subsets of the relay
surface. Fig.3 shows the results, including a side-by-side
comparison with the FBP reconstruction. Our algorithm
achieves comparable reconstruction quality to FBP with

significantly less computational overhead on subsets recon-
struction.

For the mannequin scene in Fig. 3(a), the non-planar part
is contributing a noisy but significant part to the recon-
struction. However, our method breaks for the tree scene
in Fig. 3(b), where the segmented non-planar points fail to
generate useful information of the hidden scene. We also
demonstrate that the baseline FBP method is unable to get
better reconstruction.

We conclude that the inverse problem becomes ill-posed
when the relay surface has too much inter-reflection and
occlusion. For example, in the tree dataset, one single
laser pulse may illuminate multiple small leaves at varying
depths, consequently producing multiple bounces. Addi-
tionally, the tree has complicated self-occlusion, eliminating
some bounces which could have been propagated back.
These factors remain unaccounted for in the linear wave-
based light transport model. Learning-based methods or
advanced neural rendering algorithms have potential to cor-
rect the forward model for extremely complex relay surfaces
and are interesting topics for further research.

5.3 Interpolation comparison

Fig. 4 offers a detailed and quantitative analysis of inter-
polation methods. The analysis is performed on the most
challenging non-planar dataset in Fig. 5 (d). The out-of-
the-box application of MATLAB function to interpolate the
whole 3D volume takes hours, and the fully-interpolated
input volume is no longer valid as we defined in Sec. 4.3 ,
which accounts for the reconstruction in Fig. 4 (d).

When interpolating onto a regular 3D grid, we can
identify the nearest grid points by simply dividing point po-
sitions by grid spacing. Therefore, during interpolation, we
confine query points to these nearest grid points. This opti-
mized approach makes the runtime of linear interpolation
similar to nearest neighbor interpolation and marginally
improves performance as Fig. 4 (e) shows.

In our method, we use optimized grid resolution as an
alternative to more sophisticated interpolation, mainly serv-
ing the purpose of maintaining the O(N3logN) complexity.
Increasing resolution is subject to the same O(N3logN)
complexity as 3D convolution. Even the optimized interpo-
lation method necessitates initial triangulation, which raises
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FBP3D RSD(a) mannequin
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Fig. 3. NLOS reconstruction on segmented relay-surfaces. The sub-
reconstructions using the same method are adjusted into the same
intensity scale.

Linear,
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13118s
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(a)

Nearest neighbor,

N/A,

40s, SSIM = 0.79

(c) noised

Fig. 4. The first line shows the interpolation method, the second line
displays the query scheme, and the third line is the runtime alongside
structure similarity with the FBP generated reconstruction.

computational complexity of the entire method to O(N4),
counteracting our aim. We demonstrate the sufficiency of
our grid resolution by introducing random noise, uniformly
distributed between −d/2 and d/2 (grid spacing d=1cm), to
the measured positions. The reconstruction is unaffected as
shown in Fig. 4 (c). Based on this analysis and our intuitive
understanding we also optimize the grid size to have higher
resolution in the depth dimension than lateral dimensions.
Should an efficient and accurate interpolation algorithm
emerge, it could be easily incorporated and allow reducing
grid resolution.

6 COMPARISON TO ALTERNATIVE METHODS AND

DISCUSSION

The existing literature on NLOS reconstruction for non-
uniformly sampled and non-planar relay surfaces is limited.
To the best of our knowledge, only FBP is inherently capable
of handling such situations. Moreover, data-driven methods
require a time-consuming training stage for each specific
relay surface, rendering them unsuitable for fast reconstruc-
tion purposes.

To establish the effectiveness and necessity of our 3D
RSD algorithm, we conduct a comparative analysis with
the two background algorithms in the literature, along with
three other possibly intuitive implementations of the first
stage propagation, as depicted in the bottom row of Fig. 1.

6.1 FBP-based methods

FBP can be employed either as the initial stage operator to
propagate from the non-planar surface to an intermediate
plane, or to propagate to the entire volume directly. In the
former case, the computational complexity of the algorithm
is O

(

N4
)

, as it has to examine every feasible pairing of
two planes, each containing N2 elements. The schematic
is shown in Fig.1 (a). In the latter case, the computational
complexity is O

(

N5
)

because it has to repeat this for every
reconstructed depth slice.

An intuitive observation is that when calculating the
propagation kernel, the closest points contribute the most.
So we introduce a modified version of mask FBP, as Fig. 1(b)
depicts. We manually specify a radius threshold R, and only
calculate the contribution from the source points inside the
given radius ball. Eq. 4 is modified to:

I (xv) =

∫∫∫

H (xp,xc, t) δ

(

t− |xp − xv|+ |xc − xv|
c

)

M (|xc − xv|) dxpdxcdt.
(10)

where the mask function is defined as:

M(x) =

{

1, x ⩽ R
0, x > R

(11)

The method has superior computational complexity to
FBP, as it collapses the N2 factor in the first stage to a con-
stant parameter. Consequently, in theory, the computational
complexity is solely dependent on the second stage of plane-
to-plane RSD, and is scaled by O

(

N3log(N)
)

.

6.2 FK-based methods

The FK migration paper has attempted to extend for the
non-planar relay surfaces [16]. However, there are two sig-
nificant challenges to its practical implementation: first, the
FK migration method is designed for confocal measurement.
The performance on non-confocal datasets significantly de-
grades after data conversion and pre-processing [15], [18],
[19]. Therefore, it is not suitable for fast non-confocal data
acquisition. Secondly, the proposed extrapolation technique
for non-planar data pre-processing is computationally inten-
sive. It requires N2 times calculation of 3D FFT, which re-
sults in a computational complexity of N5log(N). This com-
plexity is worse than all the other non-planar algorithms,
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making the FK migration with their proposed extrapolation
method inapplicable for fast NLOS reconstruction.

In the FK paper [16], the authors present a more efficient
approximation for non-planar data pre-processing, which
is simply shifting the acquired histogram by the travel
time corresponding to the depth offset of the relay surface.
We adopt this idea and integrate it into the phasor algo-
rithm context, resulting in a first stage propagator executed
through phase mapping. Specifically, the intermediate plane
is generated via a direct projection from the non-planar relay
surface. This procedure involves the mapping of each xc to
its corresponding xt, which is achieved by introducing a
phase shift proportional to the distance between the two
points.

We map the non-planar points xc to planar grid points
xt by:

P (xt, ω) = P (xc, ω) e
iω

c
|xt−xc|. (12)

The computational complexity is O(N3log(N)), which
is the same as RSD. However, this approximation is only
valid if the relay wall has a modest level of deformation
and the intermediate plane can be very close to the relay
wall. Besides, it can not deal with non-uniform sampling in
x and y axis caused by off-center calibration of non-planar
geometry.

6.3 Performance comparison

To evaluate the performance of our proposed algorithm and
compare it with alternative methods, we fix the hidden
scene to be a single number ‘2’ and set up four relay surfaces
with varying degrees of non-planarity: (a) planar wall, (b)
(c) wall with several big boards in front, and (d) wall with a
walking mannequin in front. To avoid refocusing the SPAD
array between scans, we fix the SPAD array to look at the
same planar part of the relay wall for all four scans. This is
done mostly for convenience and is not a requirement for
the algorithm.

The comparison results for all the experiments are shown
in Fig. 5. The first row in Fig. 5 shows the photo of relay
surfaces. We apply the two one-stage algorithms in the
literature as introduced in Sec. 3, three alternative two-
stage algorithms, and our proposed 3D RSD algorithm to
each of the dataset. We displayed the 3D reconstruction
results using maximum intensity projection and labeled
each reconstruction’s runtime under the result. Providing
quantitative metrics of reconstruction quality is difficult
due to challenges acquiring hidden scene ground truth.
However, as our algorithm approximates FBP, we list the
structural similarity (SSIM) comparisons with FBP recon-
structions for each algorithm, measured on normalized and
projected reconstructions for visual perception alignment.

The comparison of time complexity and reconstruction
performance is shown in Tab. 1. The memory complexity for
all the algorithms is O(N3), although in practice previous
work has demonstrated that the phasor field methods based
on RSD require significantly less memory than other wave-
based methods like F-K migration [17]. We put a question
mark next to the performance of F-K migration method
with full extrapolation as this algorithm was not executed
on our datasets, primarily due to its high computational
complexity. Furthermore, previous research [15] indicates

that the F-K migration method yields inferior performance
compared to FBP when applied to non-confocal datasets.
Consequently, the performance of the F-K migration method
is upper-bounded by the FBP method.

The comparison experiments on our datasets lead to
the following conclusions: the direct application of the fast
RSD algorithm to highly non-planar relay surfaces results in
distorted reconstruction, indicating the knowledge of non-
planar geometry is necessary. In contrast, the FBP method
achieves faithful reconstruction with a substantial runtime
of up to 10 hours. Separating the reconstruction process
into two stages, with RSD applied in the second stage,
leads to limited improvement. While using FBP solely for
the first stage reduces the runtime by a factor of N and
still produces clean results, it remains orders of magnitude
slower than the second stage. Additionally, the mask FBP
can only reduce runtime further by at most two times.
The mask FBP method requires a sufficiently large mask
radius to maintain reconstruction quality for non-planar
geometries and keeping narrowing down the radius leads
to severe artifacts. The FK-based phase mapping method is
ineffective in correcting for non-planar geometry, since the
depth offsets in our measured datasets are all significantly
larger than the virtual wavelength. This method fails to
correct for the non-planar geometry and yields outcomes
that are almost identical to those produced by directly
applying the planar RSD algorithm.

In general, the comparison in Fig. 5 reveals that our
3D RSD algorithm has superior performance compared
with other alternative methods in two-stage reconstruction.
Also, it has comparable runtime with planar fast RSD and
generates faithful reconstruction comparable with the most
universal FBP solver. The proposed algorithm has stable
performance on non-planar datasets and non-uniform sam-
pling and is orders of magnitude faster than the FBP, making
it a promising technique for practical NLOS imaging appli-
cations.

Additionally, to prove our algorithm’s versatility across
various scenes, we demonstrate it on a fixed relay surface
with varied scenes in Fig. 6.

TABLE 1
Complexity and performance comparison

Algorithm
Time

complexity

Non-planar

reconstruction quality

FBP O(N5) high

RSD O(N3log(N)) low1-stage

FK O(N5log(N)) medium?

FBP O(N4) high

Mask

FBP
O(N3log(N)) medium

Phase

mapping
O(N3log(N)) low2-stage

3D RSD O(N3log(N)) high
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Fig. 5. Comparison between two one-stage and four two-stage algorithms on experimental non-confocal datasets with different relay surfaces. The
real-world runtime is listed below, and the structure similarity (SSIM) with the FBP generated reconstruction is indicated in the bottom right corner
of each reconstruction.
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Fig. 6. 3D RSD reconstruction demonstrated on varied hidden scenes.
The relay surface and an exemplary hidden scene featuring two letters
at varying depths are displayed on the left.

7 DETAILS ON DATA ACQUISITION AND PROCESS-

ING

7.1 Set up hardware details

Our NLOS imaging system comprises an illumination
source and detector, as shown in Fig. 7(a). Specifically, we
employ a PM-1.03-25TM laser from Polar Laser Laboratories
as our illumination source, which is supplemented by a fre-
quency doubler to generate 515 nm pulses with a maximum
pulse width of 35 ps. The average power of the laser output
is 375 mW, and it operates at an average repetition rate of
5 MHz. To scan the different relay surfaces, we use a two-
mirror Thorlabs galvanometer (Thorlabs GVS012). While the
total scan area varies, the total scan time is set to 36 seconds
for each experiment. Our detector is a SPAD array [43] that is
focused on a 7.1 cm by 4.7 cm area of the relay surface using
a Canon EF 85 mm f/1.8 USM Lens. The temporal resolution
of the SPAD array is characterized by a Full-Width at Half
Maximum (FWHM) of approximately 60 ps and a deadtime
of less than 100 ns.

To calibrate the 3D geometry of various relay surfaces, a
secondary single-pixel, fast-gated SPAD module from MPD
[44] is used to form a confocal LiDAR system with our
PM-1.03-25TM laser. A Nikon AF NIKKOR 50mm f/1.8D
lens is used to focus the single pixel spad onto the relay
surface, as shown in Fig. 2(b). Since the direct reflection from
the relay surface is much brighter than the indirect reflection
from the hidden scene, this confocal system can sufficiently
infer the 3D coordinates of the relay surface with a 7s scan.

7.2 Algorithm details

The relay-surface has a aperture of roughly 2m×2m, and is
sampled at the distance of 1cm. Since the sampling grid is
projected to a non-planar surface, the scanning generates a
190× 190 non-uniform sampling grid. Since the span of the
16 × 16 SPAD pixels on the relay surface is much smaller
than the aperture, we simply add up all the data measured
by all SPAD pixels to boost SNR. This is equivalent to
treating the SPAD array as a defocused single pixel SPAD
detector.

The sampling theorem gives that the least virtual wave-
length for reconstruction is 2cm. To account for SPAD array
span and improve SNR, we set the virtual wavelength to
6cm. The virtual illumination function P (xp, t) in Eq.1 is a
wave packet of given frequency multiplied by a Gaussian
window:

P (xp, t) = e
i 2π
λC

t
e−

t
2

2σ2 (13)

where λC = 6cm and σ = 5 ∗ λC/c. The same filter is
applied in FBP and mask FBP to keep consistency.

The hidden space is set to a 2 m × 2 m × 1 m cube
sampled with 1 cm spacing. All the algorithms are im-
plemented with MATLAB and run on an Apple M1 Pro
CPU with 32 GB memory. The runtime of each algorithm
is measured using MATLAB’s timing function, with the
exception of FBP, due to its high computational complexity.
In the case of FBP, each reconstruction would have taken up
to 10 hours with the same conditions. Therefore, we turn to
a more efficient implementation using C++ [15] to generate
the reconstruction results. To enable fair comparison, we
calculated the theoretical time for FBP reconstruction under
the same conditions, which is the product of the number of
reconstructed depth slices and the runtime of the first-stage
FBP. This theoretical time is labeled as the FBP reconstruc-
tion time.

8 CONCLUSION

Fast and accurate reconstruction of non-confocal measure-
ments on non-planar relay surfaces is essential for practical
and real-time deployment of NLOS imaging systems in the
wild. By decomposing the reconstruction into two stages,
this separation allows for a combination of non-planar and
planar propagation algorithms. We leverage the fast RSD
algorithm in the second stage and reduce the computational
complexity of FBP by one order of magnitude without any
quality loss. Furthermore, our proposed 3D RSD algorithm
reduces the computational complexity even further to the
same as fast RSD for planar relay surfaces. When FBP takes
hours and fast RSD fails to generate useful reconstruction
under highly non-planar scenarios, our proposed 3D RSD
algorithm achieves comparable reconstruction quality to
state-of-the-art FBP algorithms in comparable time to the
existing fast algorithm for planar surfaces.
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