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Sediment and Turbidity Associated with Offshore
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Physical Sciences, James Cook University, Townsville, Queensland, Australia

Abstract

In recent decades, coral reef ecosystems have declined to the extent that reefs are now threatened globally. While many
water quality parameters have been proposed to contribute to reef declines, little evidence exists conclusively linking
specific water quality parameters with increased disease prevalence in situ. Here we report evidence from in situ coral health
surveys confirming that chronic exposure to dredging-associated sediment plumes significantly increase the prevalence of
white syndromes, a devastating group of globally important coral diseases. Coral health surveys were conducted along a
dredging-associated sediment plume gradient to assess the relationship between sedimentation, turbidity and coral health.
Reefs exposed to the highest number of days under the sediment plume (296 to 347 days) had two-fold higher levels of
disease, largely driven by a 2.5-fold increase in white syndromes, and a six-fold increase in other signs of compromised coral
health relative to reefs with little or no plume exposure (0 to 9 days). Multivariate modeling and ordination incorporating
sediment exposure level, coral community composition and cover, predation and multiple thermal stress indices provided
further confirmation that sediment plume exposure level was the main driver of elevated disease and other compromised
coral health indicators. This study provides the first evidence linking dredging-associated sedimentation and turbidity with
elevated coral disease prevalence in situ. Our results may help to explain observed increases in global coral disease
prevalence in recent decades and suggest that minimizing sedimentation and turbidity associated with coastal
development will provide an important management tool for controlling coral disease epizootics.
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Introduction

Over the last 30 years, hard coral cover has decreased by an

average of 50% on Indo-Pacific reefs and 80% on Caribbean reefs

[1–3]. While these declines have been attributed to a number of

factors, including water pollution, habitat destruction, overfishing,

invasive species, and global climate change [1,2], coral diseases

have recently emerged as a significant driver of global coral reef

decline [4,5]. The destructive potential of coral disease is most

clearly exemplified in the Caribbean where successive disease

outbreaks have decreased acroporid cover by up to 95% and

contributed substantially to observed ecological phase shifts from

coral to algal-dominated reefs [6–8]. Furthermore, the incidence

of coral epizootics has increased globally over the last 20 years

[3,6,9,10], highlighting the need to understand and manage the

factors underlying coral disease outbreaks.

Reduced water quality caused by explosive human population

growth is often cited as an important factor driving coral disease

epizootics [11–13]. Land clearing exposes 1% of the Earth’s

surface to eroding processes annually and urbanization of coastal

areas is expanding disproportionally to population growth [14,15].

Consequently, coastal coral reefs, like many other marine

ecosystems, are increasingly subjected to elevated levels of

eutrophication, sedimentation and turbidity, factors proposed to

compromise disease resistance of corals and/or increase pathogen

virulence [13,16]. Coastal dredging for land reclamation, beach

nourishment and port construction further exacerbates terrestrial

nutrient and sediment influx by resuspending benthic sediments

[17]. Additionally, more frequent and intense storms associated
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with climate change amplify water quality declines by promoting

coastal runoff and sediment resuspension [18]. Eutrophication,

and more specifically nutrient enrichment, has been shown to

exacerbate existing coral disease infections and shift coral-

associated microbial communities towards communities typical

of diseased corals, but little is known about the role of nutrients in

disease initiation [13,19,20].

Sedimentation and turbidity, associated with both weather

events and anthropogenic activities, are also frequently proposed

to contribute to increased coral disease prevalence [16], although

empirical evidence is lacking. Hodgson [21] suggested sedimen-

tation as a potential mechanism for the transmission of coral

pathogens from marine or terrestrial substrates onto nearby corals.

Silt-associated bacteria were identified as a possible cause of

necrosis in sediment-damaged corals, since antibiotic-treated water

reduced tissue damage in experimentally silted corals. In field-

based observations, Haapklyä et al. [22] noted a correlation

between seasonal coastal runoff, including increased sedimentation

and turbidity, and the prevalence of coral disease on inshore reefs.

Elevated turbidity reduces the amount and quality of ambient light

available for photosynthesis by the corals’ endosymbiotic algae

(Symbiodinium) and excess sedimentation inhibits the heterotrophic

feeding efficiency of corals, reducing the energy intake of both

symbiotic and asymbiotic corals [23,24]. While corals are able to

shed some sediment through mucus production and ciliary action,

these mechanisms are energetically expensive and further burden

the corals’ already reduced energy budgets [25,26]. Despite a

wealth of circumstantial evidence indicating sedimentation and

turbidity as potential coral disease drivers [15,22,27], no studies

have directly linked sedimentation, turbidity and coral disease in

the field. Given that nearly 40% of coral reefs are located adjacent

to large population centers and coastlines under rapid develop-

ment to accommodate expanding urban activities [28], effective

coastal management will increasingly depend upon a comprehen-

sive understanding of the impacts of sediment, turbidity and

associated water quality decline, on all aspects of coral reef health.

Here, we describe the first study to examine the influence of

elevated sedimentation and turbidity on coral disease levels in situ.

We performed detailed coral health assessments along a gradient

of exposure to a sediment-laden dredge plume within the

Montebello and Barrow Islands off the northern coast of Western

Australia. The otherwise relatively pristine conditions of these

offshore reefs enabled an empirical examination of the relationship

between sedimentation, turbidity and coral disease prevalence in

the absence of other confounding influences. Our results indicate

that elevated sedimentation and turbidity can significantly increase

coral disease prevalence and highlight the urgent need to manage

coastal development near coral reef ecosystems.

Methods

Ethics statement
This research was conducted under the following permits: Western

Australia Department of Environment and Conservation Collection

Permit number SF008340 and Western Australia Department of

Environment and Conservation Export Permit number ES002169.

Study site
The Montebello and Barrow Islands are situated in the Pilbara

region of Northwest Australia, approximately 1,600 km north of

Perth (see Figure 1). The Montebello and Barrow Islands Marine

Protected Areas (MBIMPA), incorporating the Montebello Islands

Marine Park, Barrow Island Marine Park and the Barrow Island

Marine Management Area, were gazetted in 2004. The environ-

ment within the MBIMPA is considered to be relatively pristine as

a consequence of low human usage, minimal terrestrial influence

and strict management controls on industrial developments in the

area [29].

The Gorgon Project, based on Barrow Island (20.80uS,

115.40uE), is one of the world’s largest natural gas projects and

the largest single resource natural gas project in Australia’s history.

The Gorgon Project dredging program involved the removal and

dumping of approximately 7.6 million tons of marine sediment

over an 18-month period from 19 May 2010 to 7 November 2011.

Satellite-derived assessment of sediment plume extent
The area affected by the dredging-induced sediment plume area

was quantified daily over the duration of the dredging program

Figure 1. Map showing study site and coral health survey
locations at Montebello and Barrow Islands, Western Australia.
Colored overlays (gradient from red to blue) indicate satellite-derived
sediment plume exposure days determined by hot spot analysis of
MODIS satellite imagery. Pie charts indicate the proportion of colonies
at each site (n = 3 transects per site) recorded as apparently healthy
(blue), diseased (red) or displaying other signs of compromised coral
health (green). Numbers inset on pie charts indicate satellite-derived
sediment plume exposure days at each site. Colors ringing pie charts
indicate plume exposure categories, i.e. white: low (0 to 9 exposure
days); blue: moderate (40 to 78 exposure day); and red: high (296 to 347
exposure days).
doi:10.1371/journal.pone.0102498.g001
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using Moderate Resolution Imaging Spectroradiometer (MODIS)

satellite imagery, as described by Evans et al. [30]. Briefly, the

sediment plume boundary was interpreted manually using one of

up to two MODIS images captured daily. A single practitioner

manually assessed plumes visible in MODIS images and

distinguished these sediment plumes from benthic substrates.

Quality control measures were utilized to ensure the collection of

consistent, high-quality data (see Evans et al. [30] for details). A

‘hotspot’ analysis was performed on the cumulative daily plume

boundaries, for the total number of days available, to provide a

dataset describing the number of days the sediment plume was

present at any position within the waters surrounding the

Montebello and Barrow Islands. These data were used to

determine sediment plume exposure days, which are defined here

as the cumulative number of days a suspended sediment plume

was visible in satellite images at a given location throughout the

duration of dredging operations. One year of pre-dredging

MODIS imagery was also analyzed to identify a baseline for

naturally occurring turbidity events.

Coral health and community composition surveys
Coral health surveys were conducted in December 2011, one

month after the completion of the 18-month Gorgon Project

dredging program. Eleven sites were selected, extending both

north and south from the dredging site, representing a gradient of

sediment plume exposure (Figure 1). At each site, three 15 m 6
2 m belt transects, placed haphazardly at least 5 m apart, were

surveyed along depth contours at 2 to 6 m, consistent with

standardized protocols developed by the Global Environment

Facility and World Bank Coral Disease Working Group [31].

Within each 30 m2 belt transect, every scleractinian coral colony

over 5 cm in diameter was identified to genus-level and classified

as either diseased [i.e., affected by one or more of the following

diseases: white syndromes (WS), brown band disease, skeletal

eroding band, black band disease, and/or growth anomalies];

showing other signs of compromised health (i.e., tissue necrosis

associated with sediment accumulation, bleaching, pigmentation

response, and/or sponge, red algae, or green algal overgrowth); or

healthy (i.e., no visible signs of disease lesions or other indicators of

compromised health) using indicators described by Willis et al.

[32]. Additionally, signs of coral predation by Drupella sp. and/or

Acanthaster planci (crown-of-thorns seastar; COTS) were recorded.

Standard line-intercept surveys were used to determine coral cover

and coral community composition to the genus-level by estimating

the linear extent of each coral to the nearest centimeter along the

central line of each 15 m belt transect. These protocols allow the

data collected in this study to be directly compared to other similar

standardized coral disease datasets worldwide.

Assessment of temperature-based risk of disease
Relationships between diseases and anomalously warm temper-

ature have been determined for various marine and terrestrial

organisms [15]. To evaluate the role that thermal stress might

have played in shaping the spatial patterns of coral disease and

other signs of compromised coral health observed, we analyzed

temperature-based predictors of disease outbreak risk based on

published empirical relationships between temperature metrics,

coral cover and disease abundance (summarized in Heron et al.

[33]). While these temperature-disease relationships were derived

for only one disease type (WS) affecting one coral genus (Acropora

spp.) on the Great Barrier Reef, the thermal stress predictors of

disease risk provide useful indicators of host susceptibility and

potentially pathogen loads [33]. Briefly, retrospective Pathfinder

satellite sea-surface temperature (SST) time-series for the period

1985 to 2009 were concatenated with NOAA’s near real-time

11 km SST time-series (February 2009 to December 2011);

concatenation was performed by bias-adjusting the latter dataset

to match the former based on the overlap period. The resulting

weekly dataset provided a SST time-series for each survey location

throughout the dredging period (May 2010 to November 2011)

and an internally consistent climatological baseline for the

calculation of thermal stress metrics. Five temperature-based

stress metrics associated with disease likelihood were derived (see

Table 1 for definitions): Hot Snap, Cold Snap and Winter

Conditions (see [34] for full details); and mean positive summer

anomaly (MPSA) and predicted abundance [35]. Predicted

abundance of disease cases per 1,500 m2 (Adisease) was calculated

using MPSA and total hard coral cover for all species (TCC) from

the field surveys, following the model of Maynard et al. [35];

Adisease~MPSAaTCCb ð1Þ

where a = 1.07 and b = 1.59 [37]. All temperature-based metrics

were assessed at the site level (i.e., no replication at the transect

level) due to the limited resolution of satellite-derived SST data.

Data analyses
Prevalence values for coral diseases and other signs of

compromised health were calculated within each 30 m2 belt

transect by dividing the number of colonies with signs of any of 5

diseases recorded or of 6 other indicators of compromised health

by the total number of colonies present. To assess the effect of

dredging on disease prevalence and on other indicators of

compromised health along the plume gradient, sites were assigned

to one of three exposure categories based on the number of days a

dredging-associated suspended sediment plume was visible in

usable MODIS satellite images (Figure 1):

N low-exposure (0–9 sediment plume exposure days; 18 tran-

sects),

N moderate-exposure (40–78 sediment plume exposure days; 9

transects) and

N high-exposure (296–347 sediment plume exposure days; 6

transects).

To analyze patterns of coral disease and other signs of

compromised health among broad coral growth forms within

each sediment plume exposure category, coral genera were

assigned to one of three growth form categories: massive, plating

or branching (see Methods S1 in File S1). Associations between the

prevalence of disease and other compromised coral health

indicators and sediment plume exposure days were tested with

Pearson product-moment correlations. Differences in mean

prevalence levels among the three sediment plume exposure

groups were analyzed using two-way (sediment plume exposure

category, site) nested analyses of variance (ANOVA), with site

treated as a random factor that was nested within the fixed factor,

plume exposure. Plume exposure days, coral predation by COTS

and Drupella, and total hard coral cover were compared among

plume exposure groups using the two-way ANOVA design

described above. Differences in mean prevalence of disease and

compromised health indicators were compared among growth

forms within each dredge exposure category using one-way

ANOVAs. Similarly, all temperature-based measures of disease

likelihood were compared using one-way ANOVAs. Associations

between sediment-exposure days and prevalence of coral health

and disease were tested with Pearson product-moment correla-

tions. Prior to analyses, assumptions of normality (Shapiro-Wilks)
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and homogeneity of variance (Levene’s test of homogeneity) were

tested. Post-hoc comparisons between groups were performed

using Tukey’s HSD tests. All univariate statistical analyses were

performed using STATISTICA 10 (StatSoft, Tulsa, Oklahoma).

Coral community composition (at the genus-level) was com-

pared among reefs within the three sediment plume exposure

categories to ensure that community structure was homogenous

across treatments. To test for differences in community compo-

sition, a nested permutational analysis of variance (PERMA-

NOVA) was used, in which site was treated as a random factor

nested within the fixed factor, plume exposure [36]. Similarities

among coral communities were illustrated using a non-metric

multidimensional scaling plot (nMDS) [36].

A non-parametric distance-based linear model (DISTLM) was

used in combination with distance-based redundancy ordination

analysis (dbRDA) to explore the hypotheses that variability in

patterns of disease and other compromised health indicators could

be explained by environmental variables known to impact coral

condition and distribution (i.e., sediment plume exposure days,

hard coral cover, predation, and calculated thermal stress; see

Table 1). The DISTLM models the relationship between these

environmental variables and the multivariate coral health preva-

lence dataset based on a multiple regression model. This routine

finds the linear combination of variables that explains the greatest

amount of variation in the coral health dataset and examines the

amount of variance explained by each environmental variable,

providing a pseudo-F statistic. The best-fit model, based on

corrected Akaike’s Information Criterion (AICc), was then

visualized in multidimensional space using dbRDA ordination

[36]. Preliminary diagnostics to assess multi-collinearity among

predictor variables using draftsman plots reveal two thermal stress

indicators, Peak SST and Peak SSTA, were highly correlated with

Hot Snap (r = 0.87 and 0.79, respectively). To avoid redundancy,

Peak SST and Peak SSTA were not included in the DISTLM or

dbRDA. Predictors that best explained the data were overlaid as

biplots representing the strength (vector length) and direction of

influence [36]. All multivariate analyses were conducted in

PRIMER v6 [37] and PERMANOVA+ [36] using Bray-Curtis

similarity matrices based on fourth-root transformed data.

Results

Satellite-derived assessment of sediment plume extent
Satellite images of the Gorgon Project sediment plume, of a

quality suitable for deriving plume extent, were available for 411

of the 538 dredging days (i.e. 76% of days). Poor quality images

(e.g., due to cloud cover or the sensor not capturing the study

region) during the remaining 127 days (24% of days) were omitted

from the analysis. Therefore, the number of sediment plume

exposure days reported here is conservative and likely underesti-

mate the true number of days sites spent under the sediment

plume. Hotspot analysis of satellite imagery revealed that the

sediment plume was most commonly detected around the dredge

channel and sediment spoil dumping sites (Figure 1). Cumulative

sediment plume exposure declined away from these sites, with the

plume typically dispersing to the south of the dredge and spoil sites

in response to prevailing wind and current patterns [30].

Impact of dredging on coral disease prevalence
A significant, positive correlation was found between overall

coral disease prevalence and sediment plume exposure days

(Figure S1a in File S1, Pearson’s r9 = 0.49, p,0.05). Mean disease

prevalence (6 SE) at high-exposure sites (7.2661.56%) was

greater than 2-fold higher than at low-exposure sites (3.160.6%)

and 1.5-fold higher than at moderate-exposure sites (4.761.5%)

(Figure 2a, Table S1 in File S1, F2,8 = 9.1, p,0.002). When results

from all sites were combined, WS (69%) and skeletal eroding band

(17%) dominated the disease cases observed. At the high-exposure

sites, elevated disease prevalence was largely the result of high WS

levels, which were 2.5-fold greater than at low- and moderate-

exposure sites (Figure 2a, Table S1 in File S1, F2,8 = 17.5, p,

0.001). In contrast, the highest prevalence of brown band disease

was recorded at moderate-exposure sites, where it was more than 9

times greater than at high- or low-exposure sites (F2,8 = 0.9, p,

0.001). The prevalence of black band disease, growth anomalies

and skeletal eroding band did not differ significantly between

exposure categories (Figure 2a, Table S1 in File S1, all p.0.05).

Impact of dredging on other signs of compromised coral
health

There was a significant, positive correlation between the

prevalence of other compromised health indicators and sediment

plume exposure days (Figure S1b in File S1, Pearson’s r9 = 0.79,

p,0.001). Mean prevalence of these indicators was more than 6-

fold greater at high-exposure sites (47.9%611.2) than at low-

(8.061.4%) or moderate-exposure sites (7.960.9%) (Figure 2b,

Table S1 in File S1, F2,8 = 50.8, p,0.001). Sediment-associated

tissue necrosis was 57 times more prevalent at high-exposure sites

compared to low- and moderate-exposure sites (Figure 2b,

F2,8 = 154.9, p,0.001). Bleaching, sponge overgrowth and pig-

mentation responses were also significantly greater at high-

exposure sites relative to low- or moderate-exposure sites

(Figure 2b, Table S1 in File S1, all p,0.001). The prevalence of

red and green algae did not differ significantly between exposure

categories (all p.0.05).

Influence of coral community composition and
morphology on disease and other signs of compromised
health

There was no significant difference in coral community

composition between sediment plume exposure categories, indi-

cating that reefs within the three groupings were comparable in

regards to coral structure (Figure S2 in File S1, pseudo-F = 1.38,

p.0.1). However, coral community composition did vary signif-

icantly among sites within exposure categories (Figure S2 in File

S1, pseudo-F = 7.54, p,0.001).

Disease levels did not differ significantly among growth forms

(i.e., massive, plating and branching colonies) at high or low

exposure sites (Figure S3a in File S1, all p.0.05). However,

massive corals at moderate-exposure sites sustained significantly

less disease than branching and plating colonies (Figure S3a in File

S1, all p.0.05). The prevalence of other compromised coral health

indicators did not differ between growth forms within any

sediment plume exposure category (Figure S3b in File S1, all p.

0.05).

Environmental drivers of disease and compromised
health

ANOVA and DISTLM (visualized through dbRDA) both

identified sediment plume exposure level as the most significant

environmental driver of elevated levels of disease and other

indicators of compromised health. Among all environmental

parameters assessed (see Table 1), sediment plume exposure days

was the only metric that differed significantly among exposure

categories (F2,11 = 285.7, p,0.001). Furthermore, the abundance

of disease predicted by satellite-derived temperature-based stress
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metrics did not differ significantly among sediment plume

exposure groups (Table 1, p.0.05).

The dbRDA diagram depicting coral disease composition

(based on the simplest best fit DISTLM, AICc = 215.12,

R2 = 0.47), showed a cluster of high-exposure sites away from

moderate- and low-exposure sites (Figure 3a). The greatest amount

of variation in the disease prevalence data was explained by

sediment plume exposure days (pseudo-F4,30 = 3.97, p,0.05) and

total hard coral cover (pseudo-F4,30 = 4.28, p,0.05) (Figure 3a). The

temperature metric Hot Snap (pseudo-F4,30 = 3.31, p,0.05) ex-

plained a lesser, but still significant amount of variation in the

disease dataset (Figure 3a). The overlay vector for sediment plume

exposure days corresponded to the axis separating high-exposure

sites from low- and moderate-exposure sites, while the vectors for

hard coral cover and Hot Snap largely corresponded to the axis

separating sites within low- and moderate-exposure categories

(Figure 3a).

Figure 2. Mean prevalence of (a) coral disease and (b) other
signs of compromised coral health at sites within three
sediment plume exposure categories: low (0 to 9 plume
exposure days; n = 18 transects), moderate (40 to 78 plume
exposure days; n = 9 transects), and high (296 to 347 plume
exposure days; n = 6 transects). Stacked bars indicate disease or
other compromised coral health indicator prevalence by category and
error bars indicate standard error among transects for total prevalence
of disease or other compromised coral health indicators. Letters
indicate post-hoc groupings (Tukey’s HSD, p,0.05) between sediment
plume exposure categories.
doi:10.1371/journal.pone.0102498.g002

Figure 3. Distance-based redundancy analysis (dbRDA) ordi-
nation plots illustrating the relationship between environmen-
tal predictors that best explain the variation of (a) coral
disease and (b) other compromised coral health indicators
among sites. The dbRDA was constrained by the best-fit explanatory
variables from a multivariate multiple regression analysis (DISTLM) and
vectors overlays are shown for predictor variables explaining a
significant proportion of the variation in the prevalence of (a) coral
disease and (b) other compromised coral health indicators.
doi:10.1371/journal.pone.0102498.g003
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The dbRDA diagram depicting the composition of other

compromised health indicators (based on the simplest best fit

DISTLM, AICc = 215.57, R2 = 0.28) also showed a clear separa-

tion between tightly clustered high-exposure transects and the

more dispersed low- and moderate-exposure transects (Figure 3b).

Sediment plume exposure days (pseudo-F4,30 = 5.99, p,0.005) and

Drupella (pseudo-F4,30 = 3.65, p,0.05) explained the greatest amount

of variation in the datacloud. The overlay vector for plume

exposure days corresponded to the axis separating high-exposure

sites from low- and moderate-exposure sites, while the vector for

Drupella largely corresponded to the axis separating sites within low

and moderate-exposure categories (Figure 3b).

Discussion

This study provides the first empirical evidence linking turbidity

and sedimentation with elevated levels of coral disease and other

indicators of compromised coral health in situ. We found two-fold

higher disease prevalence, largely driven by increases in WS, and

six-fold higher levels of other compromised health indicators at

high sediment plume exposure sites. Since these in situ health

assessments were conducted more than 18 months after com-

mencement of dredging, it is likely that the most susceptible corals

experienced complete mortality prior to surveys being undertaken.

Therefore, these prevalence figures likely underestimate the true

impact of dredging-associated sedimentation and turbidity on

coral health.

While previous studies have suggested a myriad of environ-

mental stressors as potential drivers of coral disease [21,22,38], the

current study highlights a direct link to sedimentation and

turbidity. On Australia’s east coast, the UNESCO World Heritage

Committee recently cited increasing coastal development and

catchment runoff as serious threats to the ‘‘outstanding universal

value’’ of Australia’s Great Barrier Reef World Heritage Area

[39], and on Australia’s west coast, an estimated 200 million cubic

meters of sediment will be dredged and dumped in projects

currently passing through Western Australia’s approvals and/or

regulatory system alone [40]. Clearly, these findings will have

direct implications for coastal managers charged with balancing

economic development with the imperative to maintain healthy

coral reefs. As the rate of coastal development near coral reef

ecosystems continues to escalate in many parts of the world, a

comprehensive understanding of the impacts of sediment and

turbidity on coral health will become increasingly important.

Impact of dredging on coral disease prevalence
Elevated disease levels at high sediment plume exposure sites

were primarily the result of the more than 2.5-fold higher

prevalence of WS, an important group of diseases that have

affected reefs throughout the Indo-Pacific and which are

characterized by a distinct band of sloughing coral tissue revealing

underlying coral skeleton [32,41,42]. WS prevalence is often

correlated with environmental stress, and strong correlations

between warm temperature anomalies and elevated WS levels

have shown that thermal stress is an important driver of some

types of WS [34,35]. However, we found no differences in multiple

thermal stress metrics or predicted disease abundance among the

three sediment plume exposure groups and while Hot Snap and

total hard coral cover helped to explain the distribution of disease

among sites, this metric largely correlated with differences among

low and moderate-exposure sites. Both univariate analysis and

multivariate modeling identified sediment plume exposure as the

main driver of elevated WS levels in the current study, providing

further evidence for the role of environmental stress, specifically

increased sedimentation and turbidity, in WS pathogenesis.

The greater prevalence of brown band disease at moderate-

exposure sites compared to high- and low-exposure sites may

reflect differences in ciliate proliferation rates under specific

turbidity/light levels. Brown band disease is characterized by a

dense, brown mat of ciliates packed with Symbiodinium derived from

consumed coral tissue [32,43]. Since Symbiodinium cells residing

within ciliates are photosynthetically competent during brown

band disease progression, it has been proposed that brown band

disease-associated ciliates could derive nutrition from photosyn-

thates produced by ingested Symbiodinium, while also benefiting

from an additional oxygen source within the densely populated

and presumably oxygen-limited brown band mat [32,43]. At

highly turbid, high sediment plume exposure sites, Symbiodinium

photosynthesis would be hindered, potentially removing the

advantage of brown band ciliates over their presumably

immune-compromised coral hosts. However, medium-exposure

sites could provide the right balance of compromised host

immunity and sufficient light availability to facilitate infection

and proliferation of brown band ciliates. Further studies specifi-

cally investigating the influence of reduced light levels on the

partitioning of photosynthates between Symbiodinium and ciliates

are required to test this hypothesis.

Total mean disease levels at low-exposure sites (3.160.6%) were

similar to levels reported from nearby Ningaloo Marine Park [44],

indicating that these low-exposure sites provide a good approx-

imation of background disease levels in the region. Prevalence

levels of black band disease, skeletal eroding band disease and

growth anomalies did not differ significantly among sediment

plume exposure groups and all were consistent with levels reported

from Ningaloo Reef [44].

Impact of dredging on other compromised coral health
indicators

The greater prevalence of other indicators of compromised

coral health at high sediment plume exposure sites was largely the

result of elevated levels of sediment-associated necrosis and

bleaching, which were 57-fold and 9-fold higher, respectively.

Increased turbidity reduces the amount of light available for

photosynthesis, while sediment deposition further shades corals

and taxes energy budgets through the need to allocate energy to

sediment removal. Although corals are able to actively remove

sediment particles through ciliary and tentacular movement,

combined with polyp distension and mucus production [45–47],

these mechanisms can become overwhelmed during periods of

intense and/or chronic sediment deposition. When sediment stress

is chronic, even low-levels can dramatically alter coral energy

budgets by reducing Symbiodinium densities (i.e., bleaching) and by

decreasing the photochemical efficiencies (Fv/Fm) of the Symbio-

dinium that remain [45–47]. If resulting energy deficits are not

relieved through either metabolic depression or heterotrophic

feeding, bleaching can lead to mortality of the affected coral tissue

(i.e., sediment necrosis).

While bleaching and sediment necrosis observed in this study

were mostly confined to depressions on the coral surface, these

patches of partial mortality could expose the coral to further

mortality or subsequent infection by disease, even after the

completion of dredging operations. In laboratory sedimentation

experiments, Flores et al. [48] reported that corals with only 10%

partial mortality at the end of a period of sediment exposure

subsequently suffered complete mortality during a 4-week

‘‘recovery’’ period. Although bleaching and sediment necrosis

are known sources of coral mortality during periods of prolonged
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sediment exposure [49,50], future studies should investigate the

potential of sediment-induced lesions to develop into coral disease,

which could progress even after the sediment stress is removed.

Elevated prevalence of pigmentation responses (PR) at high

exposure sites provides further evidence of sediment plume-

induced coral stress. PR has been observed in corals subjected to a

suite of stressors and has been proposed to be a general immune

response to a variety of physical and biological challenges,

including competitors and pathogens [32,51,52]. Tissues associat-

ed with PR possess high levels of melanin, an important

component of invertebrate innate immunity that can act as a

defensive barrier against foreign bodies [52]. Elevated PR levels at

high exposure sites may represent an inflammatory-like response

by the coral to either sediment particles clogging tentacles and

polyp surfaces or to invading pathogens.

Effect of coral growth form on sediment plume-induced
disease and other compromised health indicators

The prevalence of disease and other compromised coral health

indicators did not vary between coral growth forms (i.e., massive,

plating and branching) at high sediment plume exposure sites. The

influence of coral morphology (i.e., growth from) on sediment

clearing rates has been well investigated [45,53,54], with

branching corals generally considered to be more effective at

passive sediment removal, while massive and plating forms retain

more sediment due to their shapes, which inhibit passive rejection

and removal [55]. However, sediment rejection rates and sediment

tolerance are not directly related [54]. For example, Stafford-

Smith [54] reported some plating species (e.g. Montipora aequitu-

berculata) with high sediment tolerance despite poor sediment

rejection capacity, whereas some massive species (e.g. Favia stelligera

and Leptoria phrygia) are efficient sediment rejecters but exhibit low

sediment tolerance. While previous investigations have focused on

only a few coral species in relatively artificial conditions, this is the

first field study to investigate the relationship between growth

form, sedimentation, turbidity and coral health among all hard

coral species present on a natural reef. Although this study

indicates that growth form is not a strong predictor of corals’

susceptibility to disease and other compromised health indicators

associated with increased sedimentation and turbidity, some

caution is required in this interpretation, as the most susceptible

corals may have died before these surveys were undertaken.

water quality has been suggested as a driver of coral disease

[13,56,57], little ecological evidence exists linking specific water

quality parameters and coral disease data. WS responded strongly

to elevated sedimentation and turbidity demonstrating a clear link

between water quality and coral disease, though the mechanisms

underlying this response remain unclear. Future studies that

investigate the response of the coral host (e.g., immune function

and energy reserves) and potential pathogens (e.g., shifts in

bacterial and viral communities on corals and in surrounding

seawater) to elevated sedimentation and turbidity are required. As

coastal development intensifies in many parts of the world, the

health of coral reefs will depend upon a thorough understanding of

the impacts of water quality changes on coral reef health.
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