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Exploring Individual Differences via Clustering Capacity Coefficient Functions
Joseph W. Houpt (joseph.houpt@wright.edu)

Wright State University, Department of Psychology, 3649 Colonel Glenn Highway, Dayton, OH 45435 USA

Leslie M. Blaha (leslie.blaha@us.af.mil)
711th Human Performance Wing, Air Force Research Laboratory, 2255 H Street, Wright-Patterson AFB, OH 45433 USA

Abstract
The capacity coefficient function is a well-established, model-
based measure comparing performance with multiple sources
of information together to performance on each of those in-
formation sources in isolation. Because it is a function across
time, it may contain a large amount of information about a
participant. In many applications, this information has been ig-
nored, either by using qualitative assessment of the function or
by using a single summary statistic. Recent work has demon-
strated the efficacy of functional principal components analysis
for extracting important information about the capacity func-
tion. We extend this work by applying clustering techniques to
examine individual capacity differences in configural learning.

Keywords: Configural Learning; Individual Differences; Ca-
pacity Coefficient; Human Information Processing Modeling

Introduction
A critical facet of characterizing the cognitive mechanisms
involved human information processing is capturing changes
as information sources change. These models are applied
to individual participant data, so they have strong potential
to indicate individual differences. However, because of the
functional nature of many information processing modeling
approaches, it is challenging to find meaningful ways to ag-
gregate the individual analyses to identify group trends while
accounting for the variability of the processes of interest. We
implement a rigorous approach to quantifying individual dif-
ferences and group patterns in a functional statistic measuring
the processing of multiple information sources, the capacity
coefficient function (CCF). We then employ clustering tech-
niques to capture both qualitative and quantitative trends in
CCF data from a configural learning study (Blaha, 2010).

CCF analysis models the effects of changing information
demands on an individual’s information throughput. Informa-
tion throughput refers to how much information can be pro-
cessed in a given amount of time. The CCF is a model-based
analysis comparing response times (RTs) in a task with mul-
tiple sources of information to RTs from task with a single
isolated source of information (Townsend & Wenger, 2004;
Houpt, Blaha, McIntire, Havig, & Townsend, 2014). There
are a number of factors known to change performance as
the number of information sources increases. These include
correlated processing of the sources, facilitation/inhibition
among the processes, processing strategy, and task demands.
The CCF controls for the effects of task demands by utilizing
a baseline prediction from an unlimited capacity, independent
parallel (UCIP) model. UCIP predictions depend on the stop-
ping rule for the task, and in this paper we will model ex-
haustive (AND) and a single-target self-terminating (ST-ST)
tasks.

We use the cumulative reverse hazard function, defined by
Ki(t) = ln [Fi(t)], where for channel i, Fi(t) = P(Ti ≤ t). K(t)
is interpreted as the amount of work left to be done by the
system after t time has passed. In a system with more efficient
throughput, the K(t) increases faster to reach 0 earlier than a
less efficient system.

In an UCIP model, individual sources of information are
processed simultaneously without statistical interactions, and
the addition of more sources never helps nor hurts the pro-
cessing speeds of other sources. Under AND stopping, all
sources must be completely processed before a response can
be made. The exhaustive UCIP model predicts that the in-
formation throughput during the joint processing of multiple
sources is the sum of their individual throughput measures.
The CCF compares this prediction for a set of n information
sources to the observed RT distribution from a condition re-
quiring the simultaneous processing of all n sources together,
as defined by Eq. 1.

Cand(t) = Kn(t)−
n

∑
i=1

Ki(t) (1)

AND processing is often juxtaposed with ST-ST process-
ing. This is when target information is presented either alone
or among distracting information. For ST-ST, the UCIP
prediction is that the information throughput for the target
source, i, will be the same regardless of whether or not there
are additional, non-target sources of information presented.
The CCF for ST-ST processing is

Cstst(t) = KiX(t)−Ki(t). (2)

CCFs are interpreted relative to 0. If C(t) = 0, then observed
throughput is equal to the UCIP model and unlimited capac-
ity is inferred. C(t) > 0 indicates super capacity processing,
i.e., additional information sources resulted in more efficient
performance. C(t) < 0 indicates limited capacity, wherein
additional sources resulted in less efficient performance. Ex-
amples of the C(t) classes are shown in Figure 1.

In early CCF applications, analysis was limited to visually
assessing the function. Houpt and Townsend (2012) recently
derived statistics for testing a null hypothesis of UCIP pro-
cessing. While this statistic improves upon visual-only as-
sessment, it marginalizes information about the shapes of the
CCF.

Burns, Houpt, Townsend, and Endres (2013) demonstrated
the use of functional principal components analysis (fPCA;
Ramsay & Silverman, 2005) for analyzing differences in the
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Figure 1: Example capacity coefficients. The left plot demon-
strates data simulated from super, unlimited and limited ca-
pacity generating models. The right plot demonstrates capac-
ity functions estimated from participant data (Day 4 of the
configural learning study).

forms of the capacity functions. fPCA is similar to standard
PCA. In PCA, the data are described as a linear combina-
tion of orthogonal vectors which are ordered by the amount
of variance in the data along that vector. In fPCA, the data
are described as a linear combination of orthogonal functions
(
∫

fi f j = 0) which are ordered by the amount of variance in
the data along that function (i.e., fi maximizes ∑

N
k=1 (

∫
fixk)

2

where xk are the observed functions, subject to the constraint
that

∫
fi f j = 0 for j < i).

fPCA and PCA are often used to describe a dataset with
a dimensional subspace than the original data by only us-
ing the first n bases (effectively projecting the data onto a
lower dimensional subspace). Each individual datum is de-
scribed by its factor scores on those n bases. For example, if
xi = a1 f1 +a2 f2 . . .am fm where the f j are the basis functions
from fPCA, then we can use a lower dimensional representa-
tion of xi given by xi ≈ a1 f1 +a2 f2. fPCA reduction can pro-
vide us with a tractable vector space together with represen-
tative functions to describe CCF data. In particular, similarity
in the vector fPCA score space captures similarity in CCF
shapes, thereby providing a way to quantify properties of the
full functions. Thus, fPCA quantifies the shapes among a set
of CCFs derived from individual participants, and we can fur-
ther analyze the fPCA weights to identify trends among the
individual differences.

Clustering
We applied two popular clustering methods to the fPCA-
reduced capacity coefficients. Our goal is systematically and
quantifiably capturing patterns of similarity and differences

in CCFs only previously described in qualitative ways. K-
means clustering refers to a technique in which a set of points
(in any finite dimensional vector space) are modeled as mem-
bers of one of K different clusters. The free parameters of the
model are the locations of the center of each of the K clusters,
chosen to minimize the Euclidean distance between each da-
tum and its nearest cluster center. The number of clusters
to use, K, is experimenter-specified, either using a scree plot
or comparing the ratio of within cluster variation to between
cluster variation across different values of K. We employ k-
means clustering to determine the number of unique shapes
among a set of CCFs.

Hierarchical clustering builds successively more inclusive
groupings of data (agglomerative) or successively dividing
the data into more exclusive groupings (divisive). We use
a basic agglomerative procedure which first clusters the clos-
est nodes. The next cluster is formed by either grouping a
different pair of nodes which have the next smallest distance
between them or by clustering a datum with the previously
formed cluster if the distance between the datum and the clus-
ter is less then the distance between any pair of data. This
procedure iterates until a single cluster forms. We use hier-
archical clustering to examine group trends emerging from
individual participant CCF modeling.

Configural Learning Data
We analyzed the data from a configural learning study by
Blaha (2010) in which the CCFs qualitatively changed over
the course of training. Configural learning is the process by
which individual object features are unified into a single per-
ceptual unit. Configural learning through unitization changes
the perceptual representation of the objects, and Blaha and
colleagues demonstrated that this not only changes the in-
formation throughput supporting object classification (Blaha,
2010) but also changes the supporting scalp-level neural re-
sponses (Blaha, Busey, & Townsend, 2009).

The study entailed two categorization tasks based on
Goldstone (2000). A conjunctive categorization task was de-
signed to require AND processing of the category 1 object by
systematic variation of the category 2 object features. Manda-
tory AND processing encouraged participants to chunk the
features into a single object; thus, we expected (and previ-
ously observed) unitization of this object. Unitization in-
creases information throughput over the course of learning,
captured by CCFs shifting from limited to super capacity
over training. A single-feature categorization task served as
a baseline estimate for the UCIP predictions. Each category
in this task only contained a single object, with one feature
differing between the two objects. Thus, RTs in this task cap-
tured the speed of responding as participants learned to dis-
tinguish individual visual features. A total of fourteen partic-
ipants completed 10-14 experimental sessions, including 5-7
training sessions of both the conjunctive and single-target cat-
egorization tasks. Each one-hour session consisted of 1200
trials. In all, the statistical learning herein utilized 12,000-
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Figure 2: AND Capacity coefficients for all participants over all training. The upper half gives the absolute Cand(t) data, and
the lower half gives the relative Cand(t) data. The thickness of each line indicates the training session where the thinnest lines
are the first session and the thickest line in each plot is that participant’s final day of training. Line colors indicate the K = 5
K-means cluster assignment for each Cand(t) curve.

16,800 trials for each of the 14 participants (see Blaha, 2010, for full study details).
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For every day of training, four CCFs were estimated for
each participant. First, based on the mandatory AND stop-
ping rule, the unitized object was examined with Cand(t). The
complementary non-conjunctive responses required the iden-
tification of features unique to category 2, engaging an ST-
ST response rule. Thus, category 2 RTs were analyzed with
Cstst(t). For both Cand(t) and Cstst(t), absolute and relative
capacity coefficients were estimated. Absolute learning mea-
sured changes in the CCFs with the UCIP estimate derived
from the first training day, to give an overall estimate of ca-
pacity improvement from the start of the learning process.
Relative learning varied the UCIP estimate for each day, to
account for the single-target discrimination learning occur-
ring in parallel with configural learning.

Figure 2 illustrates the AND CCF data for all participants.
Day 1 of training is shown in the thinnest line, and the last day
of training is the thickest in each plot. All participants exhib-
ited Cand(t) improvements over training, but as Figure 2 high-
lights, there was a variety of individual differences observed
by Blaha (2010). For example, Subject 4 exhibited a gradual
improvement from limited Cand(t) < 0 to super Cand(t) > 0,
whereas Subjects 8 and 11 showed a more step-like shift from
limited directly to super capacity. Subjects 9, 3, and 12 had
strong speed-accuracy trade-offs, with super capacity early
in training at the cost of lower accuracy. By applying un-
supervised learning to systematically determine the numbers
of unique patterns in the data we can quantify these verbal
descriptions of the various learning patterns that would other-
wise be merely observational inferences.

K-means Clustering
For all four CCF estimates, we extracted the first 4 fPCs, cre-
ating four 4-dimensional vector spaces in which we could
compare the capacity data. fPCA analysis was performed
separately for each of the four types of CCFs, and so we first
analyze the unique components within each of the those C(t)
classes. K-means analysis was used to identify the number of
unique C(t) function shapes exhibited within each condition.

In all conditions, K = 5 clusters of functions fit the data.
Figure 3 illustrates the five clusters for both the absolute
(top) and relative (bottom) Cand(t) fPCA score spaces, with
similar results for Cstst(t) fPCA scores. The CCFs plot-
ted in Figure 3 illustrate the Cand(t) functions representative
of the centroids of each cluster. These were computed by
xi ≈ a1 f1 +a2 f2 +a3 f3 +a4 f4 where {a1, . . . ,a4} are the 4D
centroid score values.

The shapes of the centroid CCFs (Figure 3) are consistent
with the generally observed trends over learning. One clus-
ter shows strict limited capacity Cand(t) < 0 values, consis-
tent with the inefficient performance early in training. Other
clusters show mixed values above and below 1, reflecting the
functions in the middle of training that tend to shift from lim-
ited to unlimited to super capacity, as well as often showing
non-flat shapes (e.g., super capacity for fast RTs, limited ca-
pacity for slow RTs). A final cluster exhibits strict super ca-
pacity Cand(t) > 0 values, consistent with participants reach-

500 1000 1500 2000 2500 3000

−
1

5
−

5
0

5
1

0
1

5
2

0

Absolute AND Centroid Capacity Coefficients

Cluster 1 (n=16)

Cluster 2 (n=24)

Cluster 3 (n=27)

Cluster 4 (n=6)

Cluster 5 (n=12)

500 1000 1500 2000 2500 3000

−
1

0
0

1
0

2
0

Relative AND Centroid Capacity Coefficients

Cluster 1 (n=6)

Cluster 2 (n=8)

Cluster 3 (n=37)

Cluster 4 (n=2)

Cluster 5 (n=32)

Figure 3: Representative Cand(t) functions for each K-means
cluster in both the absolute (upper) and relative (lower) fPCA-
reduced capacity spaces. Centroid Cand(t) functions deter-
mined by the linear combination of the centroid scores and
the fPCs for each space.

ing highly efficient throughput by the end of training. K-
means clustering shows that the raw CCF data in configural
learning can be classified into 5 fundamental shapes.

Hierarchical Clustering
In order to look for groupings among the learning trends, we
mapped the functional learning traces into a high-dimensional
linear space by aggregating each participant’s fPCA scores
over all days of training. Participants exhibiting similar func-
tional learning traces are represented by vectors close in this
space. Note that because fPCA scores further represent a
standardization of CCFs, we can map both the Cand(t) and
Cstst(t) learning into the same high-dimensional space. Hier-
archical clustering was performed on 20-dimensional fPCA
score space. In this space, each participant was represented
by four vectors, one for each type of CCF (relative and abso-
lute Cand(t) and Cstst(t)). The 20D vectors contained the four
fPC weights over five days of training (the first five days if
a participant trained longer). Distance between vectors, D,
was estimated with the Euclidean metric. A heatmap of D is
shown in Figure 4, with the rows ordered according to the hi-
erarchical clustering results. Agglomerative clustering on D
was performed with Ward’s minimum variance method, min-
imizing total within-cluster variance (Ward, 1963).

Figure 5 depicts the dendrogram resulting from the hier-
archical clustering analysis. It is immediately obvious that
there is a clear division in fPCA score space between the
data from the STST and AND conditions. The red bound-
ing boxes illustrate a cut tree with four groupings. Note that
increasing the number of groups in the cut tree further di-
vided the Cand(t) half of the dendrogram, leaving the Cstst(t)
portion clustered into a single group. One group contains all
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Figure 4: Heatmap of Euclidean distances in the 20D fPCA
scores space. The columns are ordered according to the den-
drogram depicted in the margins from the Wald hierarchi-
cal clustering. Green coloring gives smaller distances; white
gives the largest distances.

the Cstst(t) fPCA vectors, indicating that all participants ex-
hibited similar changes in Cstst(t) over the course of learning.
The D values illustrated in Figure 4 confirm that all Cstst(t)
fPCA scores were highly similar.

The AND scores were split into three groups. Subject 9
separates early into her own cluster (confirmed by pairwise D
values at the high end of the range), reflecting a unique pat-
tern of AND learning different from all other participants. As
illustrated in Figure 2, Subject 9 exhibited a unique combina-
tion of an increasing, strictly super absolute capacity learning
curve with a U-shaped relative capacity learning pattern, re-
sulting from a strong speed-accuracy trade-off.

The second AND cluster (dendrogram middle) contains the
majority of the absolute Cand(t) results. This indicates that
in fPCA-reduced space, most participants exhibited similar
learning-based changes in their CCFs. From Figure 2, we
can see similarities in their profiles based on the K-means
clustering of the individual curves. The colors in Figure 2 il-
lustrate that participants in this cluster have CCFs landing in
all 5 clusters. That is, their learning trajectories move through
all the average function shapes illustrated in the absolute ca-
pacity centroid AND CCFs of Figure 3. This cluster also con-
tains a subgroup of relative fPCA score vectors, which clus-
ter with each other before clustering with the AND vectors.
Similarly, the final AND cluster contained mostly relative ca-
pacity fPCA score vectors. Referring back to the K-means
color coding for the relative capacity coefficients in Figure 2,

this cluster represents those participants whose learning tra-
jectories, measured by relative capacity, contain at least one
function falling into all the CCF shapes illustrated by the rel-
ative centroid functions in the lower part of Figure 3. Again,
there is a small subgroup of absolute capacity vectors that
clustered into a similar part of 20D fPCA-reduced space.

We note that the small subgroup of relative (absolute) ca-
pacity scores clustering with the majority of the absolute (rel-
ative) capacity scores doesn’t mean the original CCFs were
the same between these two groups. This is because the fPCA
scores were derived separately on the two types of capacity
measures, and the weights in the fPCA-reduced space refer
to different fPCs. What is important is that the separation of
these small subgroups implies that whether measured in ab-
solute or relative terms, configural learning can be supported
by two different learning trends (three if you count the trend
of Subject 9). With few exceptions in this data set, the sub-
groups consist of individual participants whose absolute and
relative capacity measures clustered into similar portions of
the fPCA-reduced space. Further analysis is needed to un-
derstand how this relates to similarity between the fPCs and
other functional measures.

Discussion
In this paper we have demonstrated the use of clustering tech-
niques to find group trends among individual differences in
configural learning. The CCF gives a model-based measure
of how people are using the information sources together
without making specific assumptions about the RT distribu-
tions. Although the raw functions may be unwieldy for ex-
ploring sub-groups of participants, fPCA can be used to cap-
ture the important variation across CCFs. We then used stan-
dard clustering techniques to examine different performance
patterns. The cluster memberships attained with these meth-
ods can either be used for additional exploratory analysis or
for further comparisons with other types of data (e.g., clinical
diagnosis or working memory capacity). Importantly, cluster-
ing and other statistical learning approaches can provide prin-
cipled methods for finding generalizable patterns or trends in
individual data without losing the characteristics in the indi-
vidual participant data, which can be particularly challenging
for functional or time series data.

In previous CCF applications, analysis had been confined
to either qualitative, verbal descriptions of different patterns
across capacity functions or to an aggregate statistic from
Houpt and Townsend (2012). The approach presented in
this paper allowed us to objectively identify different patterns
across participants using the full functional information from
the CCFs. From this we are able to conclude that configural
learning requires at least five unique CCF shapes to describe
all the observed stages of learning captured in C(t) functions.
Each participant fell into one of three learning patterns iden-
tified by hierarchical clustering. So while all participants uni-
tized the objects in the task and showed overall information
throughput increases, there were three different trajectories
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Figure 5: Dendrogram visualization of hierarchical clustering
on 20D fPCA score vector space. The red boundaries indicate
the cut tree segmentation into group groupings.

through CCF space to get to that same trained end state. But
this analysis also revealed that multiple ways of measuring
capacity (absolute and relative) were needed to identify these
learning patterns.

An alternative to summary statistics is comparing parame-
ters of a fitted model (cf. Eidels, Donkin, Brown, & Heath-
cote, 2010). The downside to the model fitting approach is
that it relies on many more assumptions about how RTs are
generated that are ancillary to analyzing the effect of increas-

ing information sources (and hence the degree of configu-
ral learning). Ancillary assumptions are necessary in most
approaches, including the present analyses (e.g., Euclidean
distances metrics). However, measurement assumptions are
far less constraining with respect to the potential underlying
cognitive processes than direct assumptions about the RT dis-
tributions. Clustering and other statistical learning methods
applied to the full functional CCF data enables principled,
quantified individual differences analysis with minimal as-
sumptions about the best parametric model for capturing the
underlying cognitive processes.
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