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ABSTRACT OF THE THESIS 

 

Identifying Markers of Sensitivity in  

Cancer Cells with Focal Amplifications  

 

by  

 

Rachana Jayaraman 

Master of Science in Bioinformatics 

University of California, Los Angeles, 2022 

Professor Thomas Graeber, Chair 

 

Focal amplifications (FAs) are important contributors to genomic instability within cancer cells 

and can influence their response to targeted therapies. FAs can take on two different forms: 

double minutes (DMs), which are circular segments of extrachromosomal DNA (ecDNA), or 

homogeneously staining regions (HSRs), which are intrachromosomal regions of amplification. 

DMs, or ecDNAs, are particularly known for enrichment of oncogenes and their contribution to 

cell plasticity, especially in conjunction with BRD4 which promotes overexpression of the 

oncogenes. However, while FAs confer advantages upon the cells, there are also weaknesses that 

are introduced due to the increased instability of the genome. This project aims to identify weak 

points in cells with FAs through large-scale computational analysis of drug screens. The area 

under the dose response curve (AUC) was chosen as a measure of sensitivity for this analysis 

since a smaller AUC indicates that the sample responded more quickly to the drug. We 

performed linear regressions for hundreds of drugs to identify those with a smaller AUC value 

when treating samples with FA compared to samples without FA. The targets associated with 
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these drugs were then compared to differential expression analysis and network correlation 

analysis modules to identify if they were differentially expressed or part of a larger network 

specific to cells with DMs and HSRs. We found several targets that appeared to be consistently 

associated with our criteria for sensitivity including AKT1, BRD2, BRD3, BRD4, DNMT3A, 

FLT3, KIT, and PDGFRB. These targets appeared even when removing samples with known 

driver genes and reducing tissue-specific effects on the linear regressions. A subset of these 

targets has been demonstrated to be associated with DNA repair and genomic instability in 

cancer cells from previous studies. Most importantly, AKT1 and FLT3 were found to be 

effective targets for joint inhibition with BRD4 in previous research, which introduces potential 

for targeting ecDNA and DM hubs. Transcriptome (RNA-seq) data found that numerous genes 

scoring in the drug sensitivity analysis were differentially regulated. Network analysis of co-

expressed gene modules identified by network correlation analysis showed interactions between 

identified drug targets and differentially expressed genes and support the existence of gene 

interactions that were not apparent from the sensitivity analysis alone. These results provide 

more insight into potential targeted therapies for cells with FA and the potential weak points 

within the cells.  
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CHAPTER 1 

Introduction 

 

The progression of tumors is dependent upon the dysregulation of cellular pathways and 

mechanisms that control cell division and proliferation, allowing them to rapidly divide even in 

cellular conditions that would normally trigger senescence or apoptosis [29]. This dysregulation 

can be attributed to the accumulation and selection of beneficial genomic abnormalities over 

time. For instance, tumor cells often contain amplifications of genes and chromosomes that 

provide a growth advantage under certain conditions or in conjunction with specific mutations 

[32]. Amplifications in cancer cells can occur at large scales; whole genome doubling is 

commonly observed in advanced tumors and is an example of polyploidy, or the existence of 

extra sets of chromosomes [3]. On the other hand, amplifications can also exist as smaller 

regions of the genome which are enriched for specific sets of genes. These smaller 

amplifications, known as focal amplifications (FAs), can exist in two different forms. The first 

mode of FA is double minutes (DMs), which are small circular segments of extrachromosomal 

DNA (ecDNA) that arise from a chromosomal segment (Figure 1). They can also exist as 

intrachromosomal regions of amplifications, also known as homogeneously staining regions 

(HSRs), seen as a large uniform band (Figure 1) [30].  

 ecDNAs are of particular interest because of their independent nature within the cell. 

According to a study conducted by Turner et al., ecDNA was detected in nearly 40 percent of the 

cancer samples they studied, but their presence varied greatly across cells within the same 

sample since they segregate randomly and unevenly into daughter cells [32]. Sequencing of 

ecDNAs also demonstrated enrichment of oncogenes such as EGFR, MYC, CDK4, and MDM2 

[33]. The copy numbers of these oncogenes tend to vary across ecDNAs, creating more 
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heterogeneity in the genome of the cells within the cancer sample. The genes on the ecDNAs 

have also been shown to have higher expression, as quantified by transcript counts, and there 

appears to be higher chromatin accessibility due the reduced compaction of nucleosomes [33]. 

To promote oncogene overexpression, clusters of 10 to 100 ecDNAs, known as ecDNA hubs, 

form to increase enhancer-gene interactions. These ecDNAs are tethered by BRD4, a BET 

protein, and it has been shown that disrupting BRD4 with JQ1, a BET inhibitor, reduces 

oncogene expression [13].  Furthermore, ecDNAs have been shown to be able to re-integrate into 

chromosomes and form HSRs [32]. All these characteristics of ecDNAs together show the 

selective advantages and plasticity they provide to cancer cells, particularly due to their ability to 

adapt and increase oncogene expression.  

 

Figure 1.1: Two modes of focal amplification (FA). Bottom: Double minutes, extrachromosomal 

circular segments containing N-Myc. Right: Homogeneously staining regions, uniform stretch of 

chromosome with gene amplified in tandem.   
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While gene amplifications can promote tumor growth through selection of oncogenes, 

they can also unintentionally lead to genomic vulnerabilities in less obvious ways. For instance, a 

2021 study by Cohen-Sharir et al. found that aneuploid cells are sensitive to the inhibition of the 

spindle assembly checkpoint. This was due to the increased accumulation of defects, which lead 

to the activation of cell death [5]. Another study by Quinton et al. on cells with whole genome 

doubling (WGD) found similar dependencies on signals from the spindle-assembly checkpoint, 

DNA replication factors, and proteasome function. In particular, it was found that the mitotic 

kinesin protein KIF18A was required for the cells with whole genome doubling to survive since 

its loss led to many mitotic errors [26]. These findings have important implications for treating 

cells with large-scale duplication, however not all cancer cells have aneuploidy or whole genome 

doubling. In many cases they have DMs or HSRs, which may not lead to mitotic errors as easily 

since they are smaller segments. However, the amplification of genes, especially as ecDNA, can 

still lead to unintended consequences by disrupting the activity of important pathways and are a 

point of interest for drug sensitivity studies. By identifying genes that contribute to weak points 

in the tumor cells, they may serve as more effective therapeutic targets for cells with FA 

compared to the oncogenes.  

In this study, we performed a large-scale comparison of drug response between cancer 

cell lines with and without FA to identify markers of sensitivity and potential drug targets. Using 

copy number data for CCLE cell lines, we classified samples as FA positive and negative based 

on the highest amount of amplification present. We then performed two linear regressions to 

identify drugs with a negative trend between the area under the curve (AUC), an indicator of 

sensitivity, and the FA term: one with a control for tissue type and one for each tissue-drug pair. 

Differential expression analysis of RNA-seq data from melanoma cells with DMs and HSRs 
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further showed the extensive dysregulation in cells with FA, including differential expression of 

identified targets.  
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CHAPTER 2 

Methods 

2.1 Drug Sensitivity Analysis 

2.1.1 Data 

For this analysis, the following data was obtained from the DepMap portal’s 21Q4 release: 

Cancer Cell Line Encyclopedia (CCLE) cell line sample information, CCLE segment-level 

DNA copy number data [9], and drug screen data from three resources: GDSC, CTRP, and 

PRISM 19Q4 [6, 14, 22, 28].  

2.1.2 Gene-level Copy Number Calculation 

       

Figure 2.1: CCLE copy number data. a. Segmentation artifact, identified by uniform amplicons 

in the majority of samples, b. Example of a normal FA copy number distribution 

The segment-level copy number data was visually inspected in a genome viewer (IGV) to check 

for sequencing artifacts. These were identified by looking for uniform amplicon blocks across 

samples, typically defined by harsh borders and a consistent color (Figure 2.1.a). Segments 

a b 
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identified as artifacts were removed from the copy number data prior to calculating the 

weighted copy number for each gene. 

                              𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑖  =  
∑ 𝑝𝑖𝑠𝑖𝑖

∑ 𝑝𝑖𝑖
     

 𝑖 ∈ [𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑔𝑒𝑛𝑒 𝐴], 𝑝𝑖: 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑣𝑒𝑟𝑙𝑎𝑝, 𝑠𝑖: 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑚𝑒𝑎𝑛 

For each CCLE sample, GenomicRanges’ findOverlaps function was used to identify segments 

in the copy number data that overlapped with genes in the reference GRCh38 genome. The 

percent overlap for the segments was then calculated by using pintersect to identify the 

overlapping region between the gene and the segment. For each gene, the weighted copy 

number was calculated using the percent overlap and segment mean for the overlapping 

segments (Equation 2.1.1). If a gene was wholly contained within a segment, then the segment 

mean was used on its own. The weighted copy number for each gene was then log2 transformed 

to compress the values.  

2.1.3 Focal Amplification Classification 

For this analysis, samples were classified as FA high (FA+) or FA low (FA-) only based on the 

maximum log2 copy number (log2CN), irrespective of the gene that was amplified in the 

sample. To classify samples as FA positive (FA+) or FA negative (FA-), several thresholds 

were used: (2.3, 3), (2,3), (1.8, 3), (1.5, 3), (2.3, 3.5), (2, 3.5), (1.5, 3.5), (1.8, 3.5), (2.3, 4), (2, 

4), (1.8, 4), and (1.5, 4). In the notation for the thresholds, the first number served as the upper 

bound for the maximum log2CN of FA- samples, and the second number served as the lower 

bound for the maximum log2CN of FA+ samples.  

(2.1.1) 
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The maximum log2CN for each sample was compared to each threshold, and the sample 

was classified as FA- if it fell below the first number or FA+ if it fell above the second number. 

Any samples with a log2CN between the two bounds were considered neither FA- or FA+ and 

were removed from further analysis. This created a binary classification in which a sample 

either had enough amplification at any locus in the genome to be considered focally amplified, 

or the sample had little to no amplification compared to the normal genome. 

 To ensure there were enough samples for comparison within each tissue type, only 

tissues with at least three FA+ and at least three FA- samples were kept for further analysis. For 

instance, in PRISM there were insufficient FA+ samples for the last seven tissues in the plot so 

all samples within those tissue types were removed (Figure 2.2.b). The samples from uterus and 

skin tissues were also removed (Figure 2.2.b). This filtering and classification process was 

performed for each set of thresholds and each dataset.  

 
a 
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Figure 2.2: Maximum gene-level copy number for each CCLE sample, by tissue type, a) 

samples in CTRP, b) samples in PRISM, c) samples in GDSC 

b 

c 
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2.1.4 Linear Models 

Sample (cell line) Drug ID AUC Tissue FA 

ACH-000004 1788 14.709 Blood low 

ACH-000074 1788 14.056 Blood low 

ACH-000122 1788 14.279 Blood low 

… … … … … 

ACH-000146 1788 14.299 Blood high 

ACH-000326 1788 12.489 Blood high 

ACH-000406 1788 14.968 Blood high 

… … … … … 

ACH-000035 1788 13.838 Lung low 

ACH-000086 1788 15.379 Lung low 

ACH-000121 1788 13.096 Lung low 

… … … … … 

ACH-000012 1788 14.201 Lung high 

ACH-000309 1788 14.361 Lung high 

ACH-000335 1788 13.204 Lung high 

… … … … … 

Table 2.1: Example of data frame for linear regression, taken from drug 1788 in CTRP. 

Multiple tissue types, FA low and FA high samples within each tissue. 

For each dataset, the following data was aggregated for each drug: sample, drug id, AUC, tissue 

of sample, and FA classification. The table above shows an example of the data collected for the 

threshold (2.3, 3) within the CTRP dataset. Among all measures of drug response provided in 

the screens, AUC was chosen as a measure of sensitivity for this analysis since it reflects the 
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maximum dosage and the IC50 values, both of which are important for understanding how 

responsive cancer cells are to a given drug [24]. A sample that is more sensitive will have a 

smaller AUC value since it responds more quickly to the drug and has a narrower dose response 

curve.  

The FA values were converted to factors for the linear regression and took on binary 

values: 0 for FA- and 1 for FA+. The tissue values were also converted to factors, with the 

levels assigned alphabetically. The data was further filtered to remove drug-sample 

combinations with missing AUC values. Any drug that failed to meet the following criteria was 

then removed from the analysis: at least two tissue types, at least 3 FA+ samples within each 

tissue, and at least 3 FA- samples within each tissue.  

𝑎𝑢𝑐 =  𝛽0  +  𝛽1 ∗ 𝐹𝐴 +  𝛽2 ∗ 𝑇𝑖𝑠𝑠𝑢𝑒 +  𝜀 

Equation 2.1.2 shows the first regression run for each drug within each data set. This 

model aimed to identify the amount of change in the AUC value for each drug that could be 

attributed to the presence of FA while controlling for tissue-specific differences. Given that the 

FA term takes on a binary classification, the beta estimate for the FA term, denoted βFA, is the 

predicted change in AUC between the FA- samples and FA+ samples. For each drug, the 

summary function was used to obtain the beta estimates and the p-values for each term in the 

model as well as the intercept. 

𝑎𝑢𝑐 =  𝛽0  +  𝛽1 ∗ 𝐹𝐴 +  𝜀 

Another linear regression modeled after equation 2.1.3 was then performed for each drug-tissue 

combination to look at tissue-specific changes in AUC between FA- and FA+ samples. The 

(2.1.2) 

(2.1.3) 
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same summary statistics were obtained for each drug-tissue combination. Within each 

regression analysis, the false discovery rate was calculated using the BH correction.  

2.2 Transcriptome Analysis 

2.2.1 Data 

Our lab generated transcriptome (RNA-seq) data for 15 melanoma samples from the m249_vsr 

line, and they fell under three karyotypic categories: five DM-&HSR-, five DM+&HSR-, and 

five DM-&HSR+. Given that most genes within FAs are those that code for proteins, the counts 

data was filtered for only protein coding genes in the GRCh38 assembly.  

2.2.2 Differential Gene Expression 

To identify up- and down-regulation of genes, we performed differential gene expression 

analysis and looked for changes that can be attributed to the presence of DMs or HSRs.  The 

DESeq2 package in R [17] was used on raw counts to perform three separate comparisons: 

DM+&HSR- versus DM-&HSR+, DM+&HSR- versus DM-&HSR-, and DM-&HSR+ versus 

DM-HSR-. For each comparison, we filtered genes that had a log2-transformed fold change 

(log2FC) in expression that was greater than 0.5 or less than -0.5. The genes were also filtered 

for a BH-corrected p-value less than 0.05 to ensure that the differential expression was 

significant. To identify the biological role of the differentially expressed (DE) genes, the filtered 

DE genes from each comparison were run through Gene Ontology [2]. 
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2.2.3 Network Correlation Analysis 

To further explore the specific gene interactions and protein networks, Weighted Gene 

Correlation Network Analysis (WGCNA) [15] was performed using log2 counts per million 

(CPM) data of all differentially expressed genes identified earlier. As with the differentially 

expressed genes, we performed gene ontology analysis of the modules created by WGCNA. 

 

Sample Karyotype DM-&HSR- DM+&HSR- DM-&HSR+ 

Sample 1 DM-&HSR- 1 0 0 

Sample 2 DM-&HSR- 1 0 0 

Sample 3  DM+&HSR- 0 1 0 

Sample 4 DM-&HSR+ 0 0 1 

Sample 5 DM-&HSR+ 0 0 1 

… … …. … … 
 

 

ME 

0.7 

-0.1 

0.5 

1.2 

0.1 

… 
 

Table 2.2: Analysis design for correlating karyotype with module eigengene (ME). Left half, 

binary karyotype assignment for each sample: 1 if it falls under the karyotype and 0 if it does 

not. Right: example of module eigengenes (MEs) used to correlate with each vector on left. 

To look at the relationship between modules and focal amplifications, we created a binary list 

for each karyotypic category and assigned a 1 if the sample had that karyotype and 0 if it did not 

(Table 2.2). Each of these karyotypic lists were then correlated with each of the module 

eigengenes (MEs). The ME is the first principal component of the expression matrix for the 

module and serves as a representative expression profile of each sample within the module [15]. 
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The strongest correlations will show the modules that are most associated with a given 

karyotype. For each correlation, the correlation coefficient and the p-value were calculated to 

quantify the strength and significance.  
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CHAPTER 3 

Drug Sensitivity Analysis Results 

3.1 Threshold-Specific Results 

After running the linear regression, drugs were filtered based on two criteria: a negative βFA and 

a p-value or FDR below 0.05. A negative βFA indicates that the AUC for FA+ samples was 

lower compared to the AUC for FA- samples, suggesting that a smaller dosage of the drug is 

needed to treat FA+ samples.  

 
a 
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Figure 3.1: Visualization of linear regression results for two drugs. FA value of 0 represents 

FA- samples and FA value of 1 represents FA+ samples, binary value used in regression. Box 

plot shows distribution of AUC values for each group. Dashed line is estimated regression line 

with slope equal to βFA, listed at the top, and estimated intercept is the AUC value at FA = 0. a) 

Distribution and regression for I-BET151, a BRD inhibitor. b) Distribution for GTP-14564, a 

FLT3 inhibitor 

 This is observed in Figure 3.1, which demonstrates that on average FA+ samples had 

lower AUC values compared to FA- samples when treated with I-BET151 and GTP-14564. The 

regression lines for both drugs captured this difference given they both had negative slopes, 

which were quantified by the βFA estimates listed at the top. It is also apparent from the 

distributions in Figure 3.1 that the difference in the mean AUC between FA+ and FA- samples 

was larger for I-BET151 compared to GTP-14564. This was captured by the βFA estimates for 

the two regression lines since the βFA estimate for I-BET151 had a larger magnitude. The p-

value or FDR below 0.05 serves as the criteria for statistical significance and provides 

confidence that the FA term predicts the change in AUC. By using both criteria for filtering 

b 
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drugs, we have confidence that the associated targets for the drugs are points of weakness and 

contribute to the observed differences in drug response for FA+ samples.  

In PRISM, the threshold (1.8, 4) had the greatest number of drugs that met the two 

criteria, and the second most was under the threshold (2, 4). This suggests that the most 

significant differences in drug response were observed between FA- samples with a maximum 

log2CN less than 2 and FA+ samples with a maximum log2CN greater than 4. Among all 

thresholds in PRISM, only (1.8, 3.5) had a drug with an FDR value below 0.05. The drug was 

GTP-14564 which is a FLT3 and tyrosine kinase inhibitor. Similarly, in CTRP the thresholds 

(1.8, 4) and (2, 4) had the most drugs that met the two criteria, but there were more drugs with 

an FDR value below 0.05. The drug purmorphamine, an activator of SMO, appeared to have a 

significant FDR for the following thresholds: (2.3, 3), (2, 3), (1.8, 3), (1.5, 3), (2, 3.5), and (1.8, 

3.5). The threshold (2, 3) also had the following drugs: MI-1, an MEN1 inhibitor; CI-976, 

which inhibits ACAT1; and GW-405833, which inhibits CNR2. The threshold (1.5, 3) also had 

CI-976 in addition to ML203, which activates PKM. ML203 appeared to have a significant 

FDR for the thresholds (2.3, 3.5), (1.8, 3.5), and (1.5, 3.5) as well. The following two drugs 

both had significant FDRs for the threshold (2.3, 3.5), (2, 3.5), and (1.8, 3.5): axitinib, a 

VEGFR, c-KIT, and PDGFR inhibitor, and canertinib, an EGFR and ERBB2 inhibitor. MK-

2206, an AKT1 inhibitor, had significant FDRs for the thresholds (2.3, 3.5), (2.3, 4), and (2, 4). 

The final drug with a significant FDR was MGCD-265 under the threshold (2.3, 4), which is 

also a c-MET and VEGFR inhibitor.  

Looking across drugs filtered in both PRISM and CTRP, the total frequency of each 

gene target was counted for each threshold. In particular, there are several genes associated with 

FA that were of interest when looking at the distribution: TSC1, TSC2, RHEB, TBC1D7, 
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AKT1, RPTOR, MTOR, RICTOR, YWHAE, DDIT4, MLST8, AKT3, STAT1, PDE4, IFI16, 

RCOR1, HDAC1, HTT, SIN3A, CTDSP1, KDM1A, SIN3B, HIST1H2BD, HIST1H2BJ, 

HIST1H2BH, ATR, H2AX, H2AZ, H2AB1, DDX, RBP, BRD2, BRD3, BRD4, BRDT, PARG, 

VDAC2/3, SLC17A11, NEDD4, NEDD4L, PNKP, DNMT3A, DNMT3B, and TERT.  

3.1.1 Threshold (2.3, 3) 

Gene PRISM CTRP Total 

ADRA1A/B 4 0 4 

BCL2 1 3 4 

FLT3 2 2 4 

HTR2A/C 4 0 4 

KIT 2 1 3 

PDGFRB 2 1 3 

BCL2L1/2 0 3 3 

EGFR/ERBB2 0 3 3 

BRD2/3/4 3 0 3 

DNMT3A 1 0 1 

AKT1 0 1 1 

TERT 0 1 1 

PIK3CD 0 1 1 

PIK3CG 0 1 1 

Table 3.1: Frequency of top targets among filtered drugs for threshold (2.3, 3). First column is 

frequency among drugs in PRISM regression analysis, second column is frequency among 

drugs in CTRP regression analysis 
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The genes of interest, based on our pre-defined list of genes associated with FA, that appeared 

under this threshold are BRD2, BRD3, BRD4, DNMT3A, AKT1, and TERT. BRD2, BRD3, 

and BRD4 appeared together three times in PRISM with the following drugs: I-BET151, 

OTX015, and bromosporine. Of these BRD inhibitors, I-BET151 and OTX015 had the largest 

βFA estimates across all the filtered drugs. This suggests that among the statistically significant 

results, BRD inhibition elicited the biggest change in drug response for FA+ samples. 

DNMT3A appeared once with the drug azacitidine in PRISM, and TERT appeared once under 

CTRP with the drug BIBR-1532. AKT1 appeared once under CTRP as well with the drug MK-

2206, which had a significant FDR in other thresholds but not this one.  

BCL2, FLT3, KIT, and PDGFRB are the few genes that appeared across both datasets. 

BCL2 appeared under venetoclax in PRISM and under three combinations of navitoclax in 

CTRP.  BCL2L1 and BCL2L2 were also listed as targets for these three drugs in CTRP, 

accounting for the frequency seen in the table above. In both PRISM and CTRP, the genes 

FLT3, KIT, and PDGFRB were grouped together under the same drugs. In PRISM, the three 

genes appeared under GTP-14564 and crenolanib. In CTRP, FLT3 appeared alone under 

MGCD-265, and all three genes appeared under axitinib. MGCD-265 also targets FLT1, KDR, 

and MET, and axitinib targets FLT1, KDR, and PDGFRA in addition to the other three targets.  

EGFR had some of the largest βFA estimates for CTRP, appearing under canertinib, neratinib, 

and afatinib. Of these three drugs, canertinib had the largest estimate and second largest 

estimate across all the filtered drugs. PIK3CD and PIK3CG, known to be associated with the 

AKT pathway, appeared under PIK-93 and CAL-101 respectively.  

  PRISM and CTRP did not appear to have overlapping drugs for any of the targets listed 

above. GDSC also did not appear to have an overlap with PRISM, but it did have navitoclax, 
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which was observed in CTRP. However, many of the drugs identified in GDSC did have similar 

targets to those observed in the other two datasets. Osimertinib is an EGFR inhibitor, and 

savolitinib is a c-MET inhibitor. Amuvatinib is a KIT, PDGFRA, and FLT3 inhibitor, following 

the grouping seen in the other datasets. One target that appeared only in GDSC was HDAC, 

which was under the drug panobinostat.  

 

Figure 3.2: Distribution of regression results for threshold (2.3, 3). X-axis: βFA, Y-axis: -log10 

p-value for FA term. Red dot: all drugs in the dataset, Blue dot: drug that targets the gene or 

protein listed above the plot. Solid line is the 0.05 p-value cut-off for significance with smaller 

p-values above the line. a) Distribution for PRISM drugs, b) Distribution for CTRP drugs.  

a 

b 
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Looking at the distribution of drugs for each of the targets in Figure 3.2, DNMT3A, 

BRD2, and BRD4 have the strongest skews towards the negative βFA estimates. With the 

exception of one drug in CTRP and PRISM, all drugs for BRD2 and BRD4 appear to have 

negative βFA estimates. DNMT3A, which is observed only in PRISM, appears to have only 

negative βFA estimates as well. Other genes appear to have a slightly mixed distribution based 

on the dataset. AKT1 appears to have a roughly symmetric distribution in PRISM, with the 

lowest p-value falling on the positive βFA side of the violin plot, however in CTRP all the 

estimates for AKT1 are negative. Similarly, for FLT3 and KIT, the distribution in PRISM is 

roughly symmetric for positive and negative estimates, but there is more of a skew towards 

negative estimates in CTRP. However, in both PRISM and CTRP, there are only significant p-

values for negative βFA estimates for both genes, providing more confidence in the skew 

towards negative estimates. 

EGFR also appears to have a more symmetric distribution for positive and negative 

estimates in PRISM, however the only significant p-values appear on the positive estimate side 

(Figure 3.2.a). In contrast, CTRP has primarily negative estimates for EGFR drugs, and there 

are only significant p-values for negative estimates (Figure 3.2.b). Similar patterns were seen 

for PIK3CD and PIK3CG, with one drug attaining a significant p-value in PRISM on the 

positive estimate side.  

3.1.2 Threshold (2, 3) 

Gene PRISM CTRP Total 

ADRA1A/B 4 0 4 

FLT3 2 2 4 
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EGFR/ERBB2 0 4 4 

DNMT1/3A 3 0 3 

HTR2A/C 3 0 3 

KIT/PDGFRB 2 1 3 

BCL2/2L1/2L2 0 3 3 

BRD2/3/4 3 0 3 

AKT1 0 1 1 

HDAC1/2 0 1 1 

TERT 0 1 1 

PIK3CG 0 1 1 

Table 3.2: Frequency of top targets among filtered drugs for threshold (2, 3) 

For the threshold (2,3), the following genes of interest appeared: BRD2, BRD3, BRD4, 

DNMT3A, AKT1, TERT, and HDAC1. BRD2, BRD3, and BRD4 appeared together under the 

same three drugs as the previous threshold in PRISM, and I-BET151 and OTX015 had the 

largest βFA estimates again. AKT1 and TERT appeared in CTRP under the same drugs as well. 

DNMT3A appeared under azacitidine again in PRISM, and it also appeared twice under 

decitabine, which was tested in two batches. HDAC1 was the new target to appear in this 

threshold and was seen in CTRP with the broad ID BRD-K80183349.  

Like the last threshold, the targets FLT3, KIT, and PDGFRB were seen together in 

PRISM and CTRP under the same drugs. BCL2 did not appear in PRISM for this threshold, but 

it did appear under two of the three navitoclax combinations from the last threshold in CTRP. 

The third observation of BCL2 in CTRP for this threshold was under navitoclax on its own. 

EGFR had the same three drugs that were observed in the last threshold, in addition to lapatinib. 
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PIK3CG also appeared under PIK-93 again in CTRP for this threshold. GDSC had panobinostat 

again under this threshold, which appeared to be the only significant result.  

Looking at the distribution of drugs in Figure 3.3, BRD2, BRD4, and DNMT3A have 

the strongest skews towards negative βFA estimates. Again, with the exception of one drug in 

CTRP and PRISM, both of which have very weak p-values, all estimates for BRD2 and BRD4 

are negative DNMT3A also appears to have only negative βFA estimates in PRISM, with no data 

in CTRP to compare with. Three of the four drugs for DNMT3A also have a significant p-value. 

The distributions for AKT1, FLT3, and KIT appear to be the same as before, with all three 

having a stronger skew towards negative estimates in CTRP and only significant p-values for 

negative βFA estimates (Figure 3.3.b). HDAC1 and MET also appeared to follow a similar 

distribution. EGFR also has the same contrast between PRISM and CTRP as in the previous 

threshold, with PRISM primarily having significant p-values for positive βFA estimates and 

CTRP having only significant p-values for negative estimates. This pattern was observed again 

for PIK3CG as well. BCL2 appeared to have no strong skew, especially in CTRP where there 

were significant p-values for both positive and negative estimates (Figure 3.3.b).  

 
a 
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Figure 3.3: Distribution of regression results for threshold (2, 3). X-axis: βFA, Y-axis: -log10 p-

value for FA term. Red dot: all drugs in the dataset, Blue dot: drug that targets the gene or 

protein listed above the plot. Solid line is the 0.05 p-value cut-off for significance with smaller 

p-values above the line. a) Distribution for PRISM drugs, b) Distribution for CTRP drugs.  

3.1.3 Threshold (1.8, 3) 

Gene PRISM CTRP Total 

EGFR 1 4 5 

FLT3 2 3 5 

KIT/PDGFRB 3 2 5 

FLT1/KDR 1 3 4 

PDGFRA 2 2 4 

ERBB2 0 4 4 

ADRA1A/D 3 0 3 

BRD2/3/4 3 0 3 

ADRA1B 2 0 2 

HTR2A/C 2 0 2 

b 
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MET 1 1 2 

BCL2/2L1 0 2 2 

DNMT3A 1 0 1 

PIK3CA 1 0 1 

PIK3CG 0 1 1 

Table 3.3: Frequency of top targets among filtered drugs for threshold (1.8, 3) 

For the threshold (1.8,3), the following genes of interest appeared: BRD2, BRD3, BRD4 and 

DNMT3A, which is fewer than the last two thresholds. BRD2, BRD3, and BRD4 appeared 

under the same three drugs as the previous two thresholds in PRISM, and I-BET151 and 

OTX015 had the largest βFA estimates as observed the last two times. DNMT3A appeared only 

once under decitabine for this threshold. PIK3CA, a gene involved in AKT signaling, appeared 

for the first time in PRISM under the drug taselisib. Like the last threshold, the targets FLT3, 

KIT, and PDGFRB were seen together in PRISM and CTRP under the same drugs. Lenvatinib 

appeared for the first time under this threshold in CTRP, and it accounted for the increased 

frequencies of FLT1, KDR, and PDGFRA compared to the last threshold. MGCD-265 also 

appeared for the first time in PRISM, marking the first overlap between CTRP and PRISM. 

Another drug that appeared in PRISM under this threshold is semaxanib, which targets FLT1, 

KDR, KIT, PDGFRA, and PDGFRB.  

BCL2 did not appear under this threshold in PRISM again, however it did appear under 

the drugs TW-37 and navitoclax in CTRP, marking a departure from the navitoclax 

combinations that appeared in previous thresholds. EGFR had the same four drugs that were 

observed for the last threshold in CTRP, and rociletinib appeared in PRISM, marking the first 
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EGFR inhibitor in the dataset to meet both criteria.  GDSC did not appear to have any 

significant results for these targets under this threshold.  

 

 

Figure 3.4: Distribution of regression results for threshold (1.8, 3). X-axis: βFA, Y-axis: -log10 

p-value for FA term. Red dot: all drugs in the dataset, Blue dot: drug that targets the gene or 

protein listed above the plot. Solid line is the 0.05 p-value cut-off for significance with smaller 

p-values above the line a) Distribution for PRISM drugs, b) distribution for CTRP drugs  

a 

b 



26 

Like before, BRD2, BRD4, and DNMT3A have the strongest skews towards negative 

βFA estimates. The remaining genes – BCL2, EGFR, ERBB2, FLT3, KIT, KDR, MET, 

PDGFRA, PIK3CA, and PIK3CG - appear to have a roughly symmetric distribution for both 

positive and negative estimates in PRISM but a skew towards negative estimates in CTRP 

(Figure 3.4). In particular, the distribution looks more even for both sides of the x-axis 

compared to previous thresholds. However, the following genes only had significant p-values 

for negative estimates in PRISM: FLT3, KDR, KIT, PDGFRA, MET, and PIK3CA (Figure 

3.4.a).   

3.1.4 Threshold (1.5,3) 

Gene PRISM CTRP Total 

BCL2 2 3 5 

BCL2L1 1 3 4 

BCL2L2 1 2 3 

MET 2 0 2 

EGFR/ERBB2 0 2 2 

ADRA1A/B/D 1 0 1 

FLT3 1 0 1 

HTR2A/C 1 0 1 

PIK3CA 1 0 1 

HDAC1/2/3/6/8 0 1 1 

PIK3CG 0 1 1 

Table 3.4: Frequency of top targets among filtered drugs for threshold (1.5, 3) 
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The only notable gene of interest from the pre-defined list above is HDAC1, which appeared in 

CTRP with a vorinostat-carboplatin combination. This marks the first threshold in which BRD2, 

BRD3, BRD4 and DNMT3A did not appear under the filtered drugs list in PRISM. FLT3 

appeared again under GTP-14565 in PRISM, and PIK3CA appeared under taselisib again as 

well. MET appeared under MGCD-265 in PRISM, as well as tivantinib, which has not appeared 

in previous thresholds. BCL2 appeared under navitoclax for both PRISM and CTRP in this 

threshold, and PRISM also had gambogic-acid. The other two BCL2 drugs in CTRP were TW-

37, which appeared in the last threshold, and a navitoclax combination that was seen in the first 

threshold. GDSC did not appear to have any significant results for this threshold.  

Compared to previous thresholds, there are no targets in PRISM that appear to have a 

skew towards negative estimates. HDAC1 appears to have a slight skew towards positive 

estimates, with only significant p-values on the positive side of the x-axis (Figure 3.5.a). FLT3 

also has a significant p-value for a positive estimate in this threshold. However as before, most 

drugs in CTRP have a skew towards negative estimates for these targets (Figure 3.5.b).  

 a 

a 
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Figure 3.5: Distribution of regression results for threshold (1.5, 3). X-axis: βFA, Y-axis: -log10 

p-value for FA term. Red dot: all drugs in the dataset, Blue dot: drug that targets the gene or 

protein listed above the plot. Solid line is the 0.05 p-value cut-off for significance with smaller 

p-values above the line. a) Distribution for PRISM drugs, b) Distribution for CTRP drugs.  

3.1.5 Threshold (2.3, 3.5) 

Gene PRISM CTRP Total 

EGFR 1 4 5 

BCL2 1 3 4 

ERBB2 0 4 4 

FLT3 1 2 3 

BCL2L1/2 0 3 3 

PDGFRB 1 1 2 

FLT1/KDR 0 2 2 

PIK3CD 0 2 2 

PIK3CG 0 2 2 

HDAC3 0 2 2 

b 
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AKT1 0 1 1 

HDAC1/2/6/8 0 1 1 

MET 0 1 1 

PIK3CB 0 1 1 

Table 3.5: Frequency of top targets among filtered drugs for threshold (2.3, 3.5) 

For this threshold, the genes of interest that appeared were: AKT1 and HDAC1, each of which 

appeared once in CTRP. AKT1 appeared under MK-2206 again and HDAC1 appeared under 

tacedinaline again. All four drugs for EGFR and ERBB2 in CTRP were the same as for 

previous thresholds, but gefitinib was the new drug for EGFR in PRISM. As for the remaining 

targets seen in PRISM, GTP-14564 accounted for both FLT3 and PDGFRB, and venetoclax 

accounted for BCL2, both of which were observed in previous thresholds. Most of the drugs 

observed in CTRP were seen in previous thresholds as well. BCL2 and BCL2L1 were observed 

under navitoclax and two navitoclax combinations again. The drugs axitinib and MGCD-265 

also appeared again in CTRP, accounting for FLT3, FLT1, KDR, PDGFRB, and MET. PIK3CG 

and HDAC1 appeared under PIK-93 and tacedinaline respectively as well. The new drugs 

present in this threshold were Repligen 136, ZSTK474, and CAL-101 which target HDAC3, 

PIK3CB/D/G, and PIK3CD respectively.  

There were many drugs identified in GDSC that target some of the genes listed above. In 

particular, navitoclax and lapatinib overlap with CTRP. Other notable drugs include CP-

724714, osimertinib, and dacomitinib, which target ERBB2 and EGFR. ACY-1215, 

trichostatin-a, and panobinostat were also the notable HDAC inhibitors for this threshold. 

Amuvatinib and savolitinib were the c-MET inhibitors, and BIBR-1532 targets TERT.  
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Figure 3.6: Distribution of regression results for threshold (2.3, 3.5). X-axis: βFA, Y-axis: -log10 

p-value for FA term. Red dot: all drugs in the dataset, Blue dot: drug that targets the gene or 

protein listed above the plot. Solid line is the 0.05 p-value cut-off for significance with smaller 

p-values above the line. a) Distribution for PRISM drugs, b) Distribution for CTRP drugs.  

 

None of the targets appear to be skewed towards the negative estimates in PRISM and 

compared to other thresholds, there appears to be more positive estimates with a significant p-

value (Figure 3.6.a). HDAC1 and HDAC3 appear to be slightly skewed towards the positive 

a 

b 
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estimates. In CTRP, AKT1, EGFR, ERBB2, FLT3, MET, and PDGFRB appear to have the 

strongest skews towards the negative estimates. These targets all have at most two drugs with a 

positive estimate, and all the positive estimates appear to have relatively weak p-values (Figure 

3.6.b). HDAC1, HDAC3, KIT and KDR also appear to have a skew towards negative estimates, 

however they do not appear to be as strongly skewed as the other six targets since they have 

more drugs with positive estimates. The PI3K genes, BCL2, and BCL2L1 don’t appear to have 

a skew in any direction. Unlike PRISM, however, all drugs with a significant p-value have a 

negative estimate, with the exception of one drug that targets BCL2 and BCL2L1 (Figure 3.6.b).  

3.1.6 Thresholds (2,3.5), (1.5, 3.5), and (1.8, 3.5) 

 Threshold 

 2, 3.5 1.8, 3.5 1.5, 3.5 

Gene PRISM CTRP Total PRISM CTRP Total PRISM CTRP Total 

EGFR 2 4 6 2 4 6 1 4 5 

ERBB2 0 4 4 0 4 4 0 4 4 

FLT3 1 2 3 1 2 3 1 2 3 

BCL2 0 3 3 0 3 3 0 2 2 

BCL2L1/2 0 3 3 0 3 3 0 2 2 

BRD2/3/4 0 0 0 2 0 2 0 0 0 

KIT/ 

PDGFRB 

1 1 2 1 1 2 1 1 2 

FLT1/ 

KDR 

0 2 2 0 2 2 0 2 2 

PIK3CG 0 2 2 0 1 1 0 1 1 
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ADRA1/B/D 1 0 1 1 0 1 2 0 2 

HTR2A/C 1 0 1 1 0 1 1 0 1 

PIK3CA 1 0 1 1 0 1 1 0 1 

HDAC3 0 1 1 0 0 0 0 0 0 

MET 0 1 1 0 1 1 1 1 2 

MTOR 0 1 1 0 1 1 0 1 1 

PDGFRA 0 1 1 0 1 1 0 1 1 

PIK3CB 0 1 1 0 0 0 0 0 0 

PIK3CD 0 1 1 0 0 0 0 0 0 

Table 3.6: Combined frequency of top targets among filtered drugs for thresholds (2, 3.5), (1.8, 

3.5), and (1.5, 3.5). Each set of three columns specific to the labeled threshold 

Across all three thresholds, the only new drug was sirolimus in CTRP, which is a MTOR 

inhibitor. Other drugs observed under all three thresholds in CTRP include neratinib, afatinib, 

canertinib, lapatinib, MGDC-265, axitinib, navitoclax, and PIK-93. For the threshold (2, 3.5) in 

CTRP, PIK3CB, PIK3CD, and PIK3CG appeared under ZST474, and HDAC3 appeared under 

Repligen 136. In PRISM, the drugs GTP-14564 and taselisib appeared across all three 

thresholds. For EGFR in PRISM, gefitinib appeared in the thresholds (2, 3.5) and (1.8, 3.5), and 

rociletinib appeared in (1.8, 3.5) and (1.5, 3.5). BRD2, BRD3, and BRD4 appeared again after 

several thresholds under (1.8, 3.5) in PRISM with the drugs I-BET151 and OTX015. 

Bromosporine did not appear in the results for the threshold despite being observed in previous 

results with I-BET151 and OTX015. Under the threshold (1.5, 3.5), the drug tivantinib was 

observed with MET as its target. 
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Some of the notable drugs from the threshold (2, 3.5) in GDSC were ACY-1215, 

amuvatinib, panobinostat, osimertinib, and BIBR-1532 which were observed in the previous 

threshold. Pilaralisib, a PI3K inhibitor, appeared under this threshold as well. For the threshold 

(1.8, 3.5), the drugs amuvatinib, panobinostat, and osimertinib appeared again. Other ERBB2 

and EGFR inhibitors under this threshold were CP-724714, dacomitinib, and lapatinib. 

Lapatinib overlapped with CTRP under this threshold. For the threshold (1.5, 3.5), afatinib was 

the only notable drug and overlapped with CTRP. 

Like under previous thresholds, most of the targets do not appear to have a strong skew 

in any direction with PRISM (Figures 3.7.a, 3.8.a, 3.9.a). For the threshold (2, 3.5), FLT3, 

PIK3CA, and KIT only have a significant p-value on the negative estimate side. BRD2 and 

BRD4 have drugs that have nearly significant p-values and negative estimates, however, there 

does not appear to be as strong of a skew as observed in previous thresholds. For (1.8, 3.5), 

BRD2 and BRD4 have two significant drugs as seen earlier, and there is a slightly more 

noticeable skew for BRD4 since only two drugs appear to have a positive estimate. Like the 

previous threshold, FLT3, KIT, and PIK3CA only have significant p-values for drugs with 

negative estimates (Figure 3.8.a). The distributions of targets for the threshold (1.5, 3.5) were 

similar to those in (2, 3.5), with no strong skew for any of the targets, including BRD2 and 

BRD4. FLT3, KIT, MET, and PIK3CA were the three targets with significant p-values only for 

negative estimates (Figure 3.9.a).  
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Figure 3.7: Distribution of regression results for threshold (2, 3.5). X-axis: βFA, Y-axis: -log10 

p-value for FA term. Red dot: all drugs in the dataset, Blue dot: drug that targets the gene or 

protein listed above the plot. Solid line is the 0.05 p-value cut-off for significance with smaller 

p-values above the line. a) Distribution for PRISM drugs, b) Distribution for CTRP drugs.  

a 
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Figure 3.8: Distribution of regression results for threshold (1.8, 3.5). X-axis: βFA, Y-axis: -log10 

p-value for FA term. Red dot: all drugs in the dataset, Blue dot: drug that targets the gene or 

protein listed above the plot. Solid line is the 0.05 p-value cut-off for significance with smaller 

p-values above the line. a) Distribution for PRISM drugs, b) Distribution for CTRP drugs.  
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Figure 3.9: Distribution of regression results for threshold (1.5, 3.5). X-axis: βFA, Y-axis: -log10 

p-value for FA term. Red dot: all drugs in the dataset, Blue dot: drug that targets the gene or 

protein listed above the plot. Solid line is the 0.05 p-value cut-off for significance with smaller 

p-values above the line. a) Distribution for PRISM drugs, b) Distribution for CTRP drugs.  

For CTRP, the targets EGFR, ERBB2, FLT3, HDAC3, KDR, MET, and PDGFRA had 

the strongest skews towards negative estimates, with only one or two drugs that had a positive 

parameter estimate (Figures 3.7.b, 3.8.b, 3.9.b). This was observed across all three thresholds, 

with the exception of HDAC3 under the threshold (1.5, 3.5). The other targets do not appear to 
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have a strong skew in any direction. Apart from BCL2 and BCL2L1, none of the targets had a 

positive estimate with a significant p-value in CTRP.  

3.1.7 Thresholds (2.3, 4), (2,4), and (1.8, 4) 

 Threshold 

 2.3, 4 2,4 1.8, 4 

Gene PRISM CTRP Total PRISM CTRP Total PRISM CTRP Total 

EGFR 11 4 15 10 4 14 9 4 13 

ERBB2 7 3 10 7 3 10 6 3 9 

HDAC3 3 5 8 4 6 10 3 5 8 

HDAC1 3 4 7 4 5 9 3 4 7 

HDAC6 3 4 7 4 5 9 3 4 7 

HDAC8 3 4 7 4 5 9 3 4 7 

HDAC2 2 4 6 2 5 7 2 4 6 

FLT3 2 3 5 4 3 7 3 5 8 

KDR 1 3 4 2 3 5 2 6 8 

BCL2 1 2 3 1 2 3 2 0 2 

FLT1 0 3 3 0 3 3 0 5 5 

ADRA1A 2 0 2 2 0 2 2 0 2 

HTR2A 2 0 2 2 0 2 2 0 2 

MET 1 1 2 0 1 1 0 1 1 

BCL2L1/2 0 2 2 0 2 2 0 0 0 

KIT 0 2 2 1 3 4 1 4 5 

PDGFRB 0 2 2 1 2 3 1 3 4 
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AKT1 1 2 3 1 2 3 1 0 1 

ATR 1 0 0 1 0 0 2 0 2 

DNMT3A 1 0 1 2 0 2 2 0 2 

MTOR 1 0 1 1 2 3 1 1 2 

PIK3CG 1 0 1 1 1 2 1 1 2 

PDE4A 1 0 1 1 0 1 0 0 0 

AKT3 0 1 1 0 1 1 0 1 1 

PDGFRA 0 1 1 1 1 2 1 3 4 

PIK3CA 0 0 0 0 1 1 0 1 1 

PIK3CB 0 0 0 0 1 1 0 1 1 

Table 3.7: Combined frequency of top targets among filtered drugs for thresholds (2.3, 4), (2, 

4), and (1.8, 4). Each set of three columns specific to the labeled threshold 

The genes of interest that appeared in these thresholds were HDAC1, AKT1, ATR, DNMT3A, 

MTOR, PDE4A, and AKT3. All HDAC targets in PRISM were under the drugs belinostat, 

trichostatin-a, and resminostat, none of which appeared under previous thresholds. Belinostat 

also appeared for HDAC1 in CTRP, along with the drugs tacedinaline, vorinostat, and 

entinostat. AKT1 appeared in PRISM for all thresholds under the drug A-674563. For CTRP, 

AKT1 was observed under the thresholds (2.3, 4) and (2, 4) with the drugs MK-2206 and 

AT7867, which also targets AKT3. MTOR appeared in PRISM under the drug VE-822, which 

also targets ATR and PIK3CG, and in CTRP with the drugs sirolimus and temsirolimus. In 

addition to VE-822, ATR was observed under the drug VE-821 in PRISM for the threshold (1.8, 

4).  Similar to previous thresholds, azacitidine appeared in PRISM for DNMT3A in addition to 
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SGI-1027 for the thresholds (2, 4) and (1.8, 4). PDE4A also appeared in PRISM under the drug 

GSK256066.  

Under these thresholds, there was a large increase in the number of EGFR inhibitors in 

PRISM that had a negative βFA estimate and a p-value less than 0.05. Rociletinib and gefitinib 

were the two drugs that overlapped with previous thresholds. The new ones to appear in PRISM 

were XL-647, pelitinib, lapatinib, osimertinib, poziotinib, dacomitinib, WZ8040, and afatinib. 

Of these drugs, half of them were observed in CTRP and GDSC. Most instances of ERBB2 fell 

with the EGFR inhibitors lapatinib, poziotinib, dacomitinib, afatinib, and XL-647. Tucatinib, an 

ERBB2 inhibitor, was a new drug that appeared in PRISM across all three thresholds. In CTRP, 

the drugs neratinib, canertinib, and lapatinib appeared again for EGFR and ERBB2 across all 

three thresholds. The fourth instance of EGFR was WZ8040, which overlapped with GDSC in 

addition to lapatinib.  

FLT3 also appeared under different drugs in PRISM compared to previous thresholds: 

TG-02, pacritinib, and ENMD-2076. GTP-14564 appeared under the thresholds (2, 4) and (1.8, 

4) as well. The drugs XL-647 and ENMD-2076 also target KDR, accounting for the frequency 

observed across the thresholds. FLT3 appeared under axitinib, lenvatinib, and MGCD-265 in 

CTRP as observed under previous thresholds, but additional drugs also appeared for these three 

thresholds: pazopanib and tivozanib. BCL2 appeared across all three thresholds in PRISM with 

the drug venetoclax, and it appeared under navitoclax combinations in CTRP.  

The results for GDSC were similar to other thresholds. Under (2.3, 4), the drugs ACY-

1215, afatinib, BIBR-1532, entinostat, gefitinib, osimertinib, navitoclax, and lapatinib were 

identified. Under (2,4), the following drugs were identified: ACY-1215, amuvatinib, AT7867, 

BIBR-1532, CP-724714, dacomitinib, entinostat, gefitinib, lapatinib, navitoclax, osimertinib, 
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panobinostat, trichostatin-a, and vorinostat. The results under (1.8,4) were a combination of 

drugs from both thresholds.  

 

 

Figure 3.10: Distribution of regression results for threshold (2.3, 4). X-axis: βFA, Y-axis: -log10 

p-value for FA term. Red dot: all drugs in the dataset, Blue dot: drug that targets the gene or 

protein listed above the plot. Solid line is the 0.05 p-value cut-off for significance with smaller 

p-values above the line. a) Distribution for PRISM drugs, b) Distribution for CTRP drugs.  
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Figure 3.11: Distribution of regression results for threshold (2, 4). X-axis: βFA, Y-axis: -log10 p-

value for FA term. Red dot: all drugs in the dataset, Blue dot: drug that targets the gene or 

protein listed above the plot. Solid line is the 0.05 p-value cut-off for significance with smaller 

p-values above the line. a) Distribution for PRISM drugs, b) Distribution for CTRP drugs.  
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Figure 3.12: Distribution of regression results for threshold (1.8, 4). X-axis: βFA, Y-axis: -log10 

p-value for FA term. Red dot: all drugs in the dataset, Blue dot: drug that targets the gene or 

protein listed above the plot. Solid line is the 0.05 p-value cut-off for significance with smaller 

p-values above the line. a) Distribution for PRISM drugs, b) Distribution for CTRP drugs. 

Unlike previous thresholds, there appears to be a stronger skew for the following targets 

in PRISM: AKT3, ATR, DNMT3A, and HDAC3 (Figures 3.10.a, 3.11.a, 3.12.a). For all these 

targets, all drugs, with the exception of two or three, had negative estimates and there were only 

significant p-values for negative estimates. These targets had a consistent skew across all three 
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thresholds. AKT1 also appeared to have a strong skew towards negative estimates, however 

there were two drugs with significant, or nearly significant, p-values and positive estimates for 

the thresholds (2.3, 4) and (2, 4) (Figures 3.10.a, 3.11.a). Other targets with a less-strongly 

defined skew towards negative estimates were: BCL2, EGFR, ERBB2, FLT3, and HDAC1. 

Compared to the other targets, these have more drugs with a positive estimate, but roughly three 

fourths of the drugs appear to have negative estimates. BCL2 and EGFR also appear to have 

one or two drugs with a significant p-value for a positive estimate (Figures 3.10.a, 3.11.a, 

3.12.a). The remaining targets KDR, KIT, MET, and MTOR have a roughly even split between 

positive and negative estimates. In CTRP, most targets appeared to have a strong skew towards 

negative estimates as seen in previous thresholds. Among all targets, BCL2 and BCL2L1 had 

the weakest skew since they had the most drugs with a positive estimate. The remaining targets 

had around two drugs at most with a positive estimate.  KIT and MTOR are the only two targets 

in CTRP that appear to have a significant p-value for a positive estimate (Figures 3.10.b, 

3.11.b).  

3.1.8 Threshold (1.5,4) 

Gene PRISM CTRP Total 

EGFR 5 2 7 

KDR 2 5 7 

ERBB2 4 2 6 

FLT1 1 4 5 

FLT3 1 4 5 

KIT 1 4 5 
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BCL2 2 2 4 

HDAC1/2/3/6/8 1 3 4 

PDGFRA/B 1 3 4 

MET 1 1 2 

MTOR  1 1 2 

PIK3CG 1 1 2 

BCL2L1/2 0 2 2 

AKT1 1 1 2 

ATR 1 0 1 

BRD2/3/4 1 0 1 

TERT 0 1 1 

Table 3.8: Frequency of top targets among filtered drugs for threshold (1.5, 4) 

For the threshold (1.5, 4), AKT1 appeared once in CTRP under MK-2206 and once under A-

674563 in PRISM. HDAC appeared once in PRISM with trichostatin-a and three times in CTRP 

under tacedinaline, entinostat, and belinostat. ATR and MTOR appeared once in PRISM with 

VE-822, and MTOR appeared once in CTRP under sirolimus. BRD2, BRD3, and BRD4 

reappeared under this threshold in PRISM with I-BET-762, marking the first threshold in which 

OTX015 was not observed with it. TERT appeared once in CTRP with the drug combination 

piperlongumine:MST-312 (1:1 mol/mol).  

EGFR appeared five times in PRISM with the drugs XL-647, pelitinib, rociletinib, 

poziotinib, and dacomitinib, all of which were observed in previous thresholds. CTRP only had 

two drugs for EGFR, neratinib and lapatinib, which also target ERBB2. FLT3 appeared under 

the drugs MGCD-265, pazopanib, axitinib, and lenvatinib in CTRP, and most of these drugs 
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also target KDR, KIT, and PDGFRB. Pazopanib also appeared in PRISM along with TG-02 for 

FLT3. Similar to previous thresholds, navitoclax appeared in CTRP for BCL2 and venetoclax 

appeared in PRISM. Under GDSC, the following drugs were identified as observed in previous 

thresholds: ACY-1215, afatinib, gefitinib, lapatinib, and vorinostat. One of the new drugs that 

did not show up previously across any dataset was JQ1, which is a BRD4 inhibitor.  

 

 

Figure 3.13: Distribution of regression results for threshold (1.5, 4). X-axis: βFA, Y-axis: -log10 

p-value for FA term. Red dot: all drugs in the dataset, Blue dot: drug that targets the gene or 
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protein listed above the plot. Solid line is the 0.05 p-value cut-off for significance with smaller 

p-values above the line. a) Distribution for PRISM drugs, b) Distribution for CTRP drugs. 

In PRISM, ATR, BCL2, BCL2L1, BRD2, and BRD4 have the strongest skews towards 

negative estimates, with all but one or two of the drugs having negative estimates (Figure 

3.13.a). None of these targets appeared to have a significant p-value for a positive estimate. 

EGFR, ERBB2, and HDAC1 also appear to have a skew towards negative estimates, but they 

have more drugs with positive estimates in comparison to the other five targets, and EGFR has 

one significant p-value for a positive estimate (Figure 3.13.a). The remaining drugs appear to 

have a roughly even split between positive and negative estimates, with some targets having a 

slight skew towards positive estimates. As seen in previous thresholds, almost all targets, with 

the exception of BCL2 and BCL2L1, have a strong skew towards negative estimates. Only one 

to two drugs have a positive estimate for most of these targets and there appear to be no positive 

estimates with a significant p-value (Figure 3.13.b). 

3.2 Effect of Driver Genes and Tissue-specific Effects 

3.2.1 Tissue-specific Associations 

Across all thresholds, there appeared to be drugs that had a significant p-value and a negative 

βFA estimate within specific tissue types. These results were generated by linear regressions 

modeled after equation 2.1.3, which was run for each drug-tissue combination. For example, in 

PRISM under the thresholds (2.3, 3), (2, 3), (1.8, 3), and (1.8, 3.5), the BRD inhibitors 

OTX015, I-BET151, and bromosporine had negative βFA estimates in lung samples. Venetoclax 

also had negative estimates in lung, pancreas, and breast samples under the thresholds (2.3, 3) 

and (2.3, 3.5). GTP-14564 had negative estimates in bone and liver samples under the first eight 
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thresholds. DNMT3A inhibitors had more varying associations. Under (2.3, 3) and (2, 3), 

azacitidine had a negative estimate in the lung samples. Decitabine had negative estimates in the 

pancreas and gastric samples for (2, 3) and (1.8, 3). Across all thresholds, EGFR and HDAC 

inhibitors primarily had negative estimates in lung samples. AKT1 and ATR/MTOR inhibitors 

A-674563 and VE-822 also had negative estimates in lung samples.  

CTRP also had numerous drug-tissue associations. The AKT1 inhibitor MK-2206 had 

negative estimates in lymphocyte, colorectal, and lung samples for the thresholds (2.3, 3) and 

(2, 3). This was also observed for MK-2206 with colorectal and lung samples under (2, 3.5) and 

(1.8, 3.5). Across the thresholds, the EGFR inhibitors neratinib, canertinib, afatinib, and 

lapatinib had numerous associations with breast, lung, and urinary tract samples.  Under the first 

two thresholds, neratinib had negative estimates in urinary tract, breast, lung, uterus, and 

lymphocyte tissues. Canertinib and afatinib also had negative estimates in breast and urinary 

tract tissues. Sirolimus, the MTOR inhibitor, had negative estimates in colorectal, central 

nervous system, and lung samples for the threshold (1.5, 3.5). Negative estimates for sirolimus 

were also observed in colorectal and lung samples under (1.8, 3.5), (2, 4), (1.8, 4), and (1.5, 4). 

Axitinib and MGCD-265, the FLT3 inhibitors, also had many associations. For instance, under 

the threshold (1.8, 3.5), axitinib had negative estimates in colorectal, lung, central nervous 

system, pancreas, and urinary tract samples. MGCD-265 had negative estimates in central 

nervous system, gastric, and lung samples. The association between gastric samples and 

MGCD-265 appeared across the last eight thresholds from (2.3, 3.5) and onwards.  

3.2.2 Impact of Driver Genes 

Looking at the copy number distribution for these targets, many do not appear to contribute to 

the maximum copy number of FA+ samples and are likely not the driving force behind the 
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difference in drug response. For PRISM, the genes with more than two log2 copy numbers 

greater than 3 are ERBB2 and EGFR, both of which are known driver genes (Figure 3.14). In 

CTRP, ERBB2 and MET appear to have more samples with a log2 copy number greater than 3. 

EGFR has a few as well, but not as much compared to the other two genes (Figure 3.15).  

 

 

 



49 

Figure 3.14: Distribution of the log2CN for genes observed in first linear regression. PRISM 

samples, broken down by tissue type.  

 

 

 
Figure 3.15: Distribution of the log2CN for genes observed in first linear regression. CTRP 

samples, broken down by tissue type.  
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Apart from EGFR and ERBB2, other driver genes could contribute to the differences 

within specific tissues. For PRISM, there are a few liver samples with high amplifications of 

CCND1 and a significant number of lung samples with highly amplified MYC (Figure 3.16). 

For CTRP, the following gene-tissue pairs may have an impact on the results: CCND1 in the 

liver, MYC in the lung, MYCL in the lung, and MYCN in the lung and nervous system (Figure 

3.17). As noted earlier, ERBB2 may also affect the results in breast samples (Figure 3.17). One 

notable pattern is the association of BRD2, BRD3, BRD4, EGFR, and DNMT3A in lung tissue 

within PRISM. MYC is one of the most highly amplified genes in lung samples and is known to 

have interactions with BRD proteins and DNMT3A. Across lung samples in PRISM, and all 

samples in PRISM, ACH-000481 has the highest maximum log2CN of approximately 6.78 due 

to a MYC amplification.  

 

 

Figure 3.16: Distribution of the log2CN for known driver genes. PRISM samples, broken down 

by tissue type.  
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Figure 3.17: Distribution of the log2CN for known driver genes. CTRP samples, broken down 

by tissue type.  

To check if the MYC amplification is driving many of the associations observed above, 

the second linear model was used to compare lung samples with MYC amplification greater 

than 3 and lung samples with a maximum log2CN less than 1.8. These samples were classified 

as FA+ and FA- respectively. As predicted, the BRD inhibitors I-BET151, OTX015, and 

bromosporine displayed significant negative βFA estimates for the comparison between high-

MYC CN lung samples and FA- lung samples. This aligns with the observation of the negative 

estimate for all three drugs in lung samples. As the Table 3.9 demonstrates, the βFA was larger 

for the MYC-specific comparisons for the three drugs, and OTX015 and bromosporine’s βFA 

estimates had significant p-values. Similarly, rociletinib and taselisib’s βFA estimates became 

larger for the MYC-specific comparison, however their p-values were just below 0.1 and not 

0.05. Decitabine had the least significant change among the drugs, with a p-value of roughly 0.5 
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for this comparison, and the pan-cancer estimate was larger compared to the MYC-specific 

comparison. Apart from EGFR, BRD4, and DNMT3A, the two FLT3 inhibitors crenolanib and 

GTP-14564 also had larger βFA estimates for the MYC-specific comparison, and both had 

significant p-values around 0.01.  

Drug Target Pan-cancer  MYC-specific 

Rociletinib EGFR -0.04832583 -0.1183139 

I-BET151 BRD2/3/4 -0.1464473 -0.2652055 

OTX015 BRD2/3/4 -0.1367176 -0.4044675 

Bromosporine BRD -0.09642211 -0.3362152 

Decitabine DNMT3A -0.07524976 -0.0535432 

Taselisib PIK3CA -0.1058979 -0.1954229 

Crenolanib FLT3/KIT/PDGFRB -0.02430631 -0.07150869 

GTP-14564 FLT/KIT/PDGFRB -0.06245684 -0.20615271 

Table 3.9: Change in estimate for βFA between pan-cancer linear regression and MYC-specific 

linear regression for drugs with significant negative βFA within lung samples. Pan-cancer model 

was the first linear regression across all tissue types for these drugs. Myc-specific model was 

linear regression for lung samples, with MYC log2CN > 3 as FA high and max log2CN < 1.8 as 

FA low.  

For the comparison between high-CCND1 CN liver samples and FA- liver samples in PRISM, 

GTP-14564 was the main drug that appeared to have a significant negative estimate for βFA 

within the liver tissues. Under the threshold (1.8, 3), the βFA estimate was -0.2137, which was 
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larger than the estimate of -0.06245684 from the pan-cancer analysis. This aligns with the 

observation of GTP-14564 having a negative estimate across multiple thresholds for liver 

samples.  

  For the threshold (1.8, 3) in CTRP, the drugs neratinib, MGCD-265, and PIK-93 all had 

negative βFA estimates and p-values below 0.05 for the regression between highly amplified 

MYC lung samples and FA- lung samples. As observed with MYC in PRISM, the βFA estimates 

in this model were larger than the estimates for the pan-cancer analysis. Of these three drugs, 

MGCD-265 and neratinib had negative βFA estimates between the FA term and AUC within 

lung samples for this threshold. Neratinib also had a negative βFA estimate in breast samples for 

the regression between highly amplified ERBB2 samples and FA- samples, with a parameter 

estimate of -6.633 and a p-value of 3e-8. The drugs canertinib, lapatinib, and afatinib also had 

negative βFA estimates for the regression of highly amplified ERBB2 samples, each with a 

parameter estimate between -5 and -6 and a p-value less than 1e-4.  

For the MYCL-specific analysis, the following drugs had a negative βFA estimate in lung 

samples with a p-value less than 0.05: axitinib, navitoclax, and lenvatinib. Axitinib, however, 

did not have a significant negative βFA estimate across all lung samples under the threshold (1.8, 

3). MYCN did not appear to have any drugs with a negative association in lungs and a p-value 

less than 0.05. There appeared to be insufficient samples with low FA for the peripheral nervous 

system comparison of MYCN across the drugs.  

Under (1.8, 3), the drugs navitoclax, TW-37, and PIK-93 demonstrated significant 

negative βFA estimates within the liver between highly-amplified CCND1 samples and FA- 

samples. The estimates for the FA term in this analysis were significantly greater across all 

three drugs, each with an estimate less than -1 and an estimate less than -5 for navitoclax. The 
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final comparison of highly amplified MET gastric samples demonstrated that MGCD-265 had a 

significant negative βFA estimate, which aligns with the consistent observation of an association 

between MGCD-265 and liver samples across multiple thresholds in the second round of linear 

regressions. Lenvatinib, while having a significant p-value for the MET analysis, showed a 

positive association.  

All high-MYC amplified samples were removed from the PRISM data set, and the first 

model was rerun to see how the results change without the driving amplifications. Of the drugs 

seen previously in the threshold (1.8, 3), the following still had a significant association without 

the MYC samples: GTP-14564, rociletinib, I-BET151, decitabine, and MGCD-265. OTX015 

and bromosporine, the BRD inhibitors with a significant association for the MYC samples, no 

longer appeared in the results. I-BET151 also remained in the thresholds (2.3, 3) and (2, 3) 

without the highly amplified MYC samples. Under (2.3, 3), the drugs for DNMT3A and FLT3 

no longer appeared, however they were still observed under (2, 3). Across all thresholds, targets 

like BCL2, EGFR, HDAC, FLT3, and PIK3CA still appeared at similar frequencies as 

previously observed.  

Removing highly amplified EGFR samples did not drop rociletinib, which was the 

EGFR inhibitor identified in PRISM for the threshold (1.8,3). Across other thresholds with 

higher frequencies of EGFR inhibitors in the first regression analysis, EGFR inhibitors persisted 

in addition to most other drugs. For instance, under (2.3, 4), the drugs lapatinib, poziotinib, 

dacomitinib, afatinib, and XL-647 still appeared.  Removing highly amplified CCND1 samples 

dropped semaxinib, a VEGFR inhibitor.  

To test the effects of all three driver genes, the model was rerun with only samples that 

did not have a high amplification for any of the genes. The following drugs were dropped from 
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the results for the threshold (1.8, 3): rociletinib, OTX015, bromosporine, taselisib, MGCD-265, 

and semaxanib. Within these results, the following targets still appeared: ADRA1A, BRD2, 

BRD3. BRD4, FLT3, KIT, PDGFRB, and DNMT3A under one drug each. The following 

targets, however, no longer appeared for (1.8, 3): EGFR, PDGFRA, MET, PIK3CA, and 

PIK3CG.  I-BET151 appeared in all three thresholds it was initially observed in (2.3, 3), (2, 3), 

and (1.8, 3), and decitabine still appeared in the thresholds (2, 3) and (1.8, 3). GTP-14564, XL-

647, lapatinib, tucatinib, resminostat, dacomitinib, venetoclax, and afatinib still appeared in at 

least one threshold. GTP-14564 was not observed for threshold (2.3, 4) to (1.5, 4), which is 

when the EGFR and BCL2 inhibitors began to re-appear. Another target that appeared 

consistently in the first eight thresholds was CHEK1 with the drug CHIR-124. 

The process was repeated with the following driver genes for CTRP: CCND1, ERBB2, 

MET, MYC, MYCN, and MYCL. When highly amplified CCND1 samples were removed, the 

following drugs no longer had a significant negative estimate for (1.8, 3): axitinib, navitoclax, 

TW-37, and lenvatinib. Dropping ERBB2 led to a loss of significant associations for all four 

EGFR and ERBB2 inhibitors: afatinib, neratinib, canertinib, and lapatinib. Only MGCD-265 

dropped when highly-amplified MET samples were removed, and no drugs of interest were 

dropped with the removal of highly-amplified MYCN samples. Dropping MYC led to a loss of 

significant associations for axitinib, TW-37, and lenvatinib as observed with CCND1, and 

dropping MYCL also affected TW-37 and lenvatinib.  

After dropping all driver genes for CTRP, the following drugs still appeared to have a 

significant negative estimate under (1.8, 3): canertinib, afatinib, neratinib, and PIK-93.  One 

new drug that appeared was BRD-K24690302, which is an HDAC1 inhibitor. The number of 

targets decreased significantly between the initial model and the model without drivers for each 
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threshold, however the targets of interest did appear across various thresholds. PIK-93 and 

canertinib appeared across a few thresholds.  MK-2206, the AKT1 inhibitor, still appeared 

across (2.3, 3), (2.3, 3.5), (2.3, 4), (2, 4), and (1.8, 4). AT7867 also appeared in a few thresholds 

with MK-2206. Axitinib appeared under (1.8, 3.5), marking the only FLT3 drug that remained 

across all thresholds.  
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CHAPTER 4 

RNA-Seq Results 

4.1 DE Analysis and Gene Ontology Results 

RNA-seq of melanoma cell lines was used to identify changes occurring at the molecular level 

in the presence of focal amplifications. When comparing cells with DMs to cells without FA, 

there were a total of 561 genes upregulated with a log2FC greater than 1. Gene ontology 

analysis of these results showed two-fold enrichment of multiple biological processes: action 

potential, extracellular matrix organization, axonogenesis, regulation of transmembrane 

transport, regulation of plasma membrane bounded cell projection organization, and regulation 

of ion transport. Other GO terms that were enriched included cell adhesion, positive regulation 

of cell communication, positive regulation of signaling, negative regulation of cellular process, 

RNA processing, ncRNA metabolic process, immune effector process, and adaptive immune 

response. The last four GO terms had the least enrichment, under 1-fold. Roughly 75 genes 

made up the enrichment of the positive regulation of signaling and cell communication GO 

terms, including several transmembrane signal receptor proteins such MET, RET and NTRK2.  

G-protein coupled receptors like ADRA2A and HTR2B, which appeared in PRISM for the drug 

sensitivity analysis, also contributed to the term.  

For the same gene expression comparison, there were 563 genes downregulated with a 

log2FC less than -1. Many processes were enriched in the gene ontology analysis, with negative 

regulation of plasminogen activation having the highest enrichment of 17.93.  Other top GO 

terms were negative regulation of chemokine-mediated signaling pathway, negative regulation 

of oligodendrocyte differentiation, positive regulation of keratinocyte differentiation, positive 



58 

regulation of TGF-B production, and substrate-dependent cell migration. Some GO terms had 

less enrichment, 5-fold or less, but appeared to be pertinent: cellular response to VEGF 

stimulus, negative regulation of the ERK1 and ERK2 cascade, positive regulation of MAPK 

activity, and regulation of epithelial to mesenchymal transition. There were also numerous 

terms about negative regulation of cell growth and proliferation, and one term was positive 

regulation of apoptotic processes. FLT1, FLT4, EGF, and KDR were all within this DE list, 

which contributed to numerous GO terms such as regulation of endothelial cell proliferation.  

In comparison, cells with HSRs had 301 genes upregulated with a log2FC greater than 1 

compared to parental cells. Gene ontology had fewer processes enriched for these differentially 

expressed genes: serine family amino acid biosynthesis, nephron epithelium development, and 

generation of neurons. Serine family amino acid biosynthesis had the highest enrichment with a 

16.88-fold enrichment.  

As for downregulated genes in cells with HSRs, there were 636 that had a log2FC less 

than -1 compared to parental cells. Similar to cells with DMs, the downregulated genes 

produced an expansive list of GO terms. Many of the top hits were related to axons such as 

synapse assembly, axon regeneration, and axon extension. Terms that were observed in the DM 

down regulation enrichment and in this enrichment analysis were: negative regulation of 

oligodendrocyte differentiation, cellular response to VEGF stimulus, negative regulation of 

ERK1 and ERK2 cascade, positive regulation of MAPK activity, and regulation of endothelial 

cell proliferation along with other terms. New GO terms for these downregulated genes include 

cellular response to UV-A, negative regulation of fibroblast growth factor receptor signaling 

pathway, and mesoderm formation. Some of the key genes that contribute to the term 
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endothelial cell proliferation are FLT4, EGF, KDR, FLT1, and STAT1. These genes, in addition 

to PDGFRA, also contribute to VEGF response.  

Comparing the gene expression patterns of cells with DMs versus the cells with HSRs, 

there were 149 genes with a log2FC greater than 1 and 12 genes with a log2FC less than -1. The 

up-regulated genes had three-fold or more enrichment of the GO terms: cGMP-mediated 

signaling, positive regulation of synapse assembly, cranial nerve development, calcium-

mediated signaling, synapse organization, axon development, cell adhesion, and tube 

morphogenesis. Other GO terms with roughly two-fold enrichment were regulation of cellular 

component movement, negative regulation of signal transduction, positive regulation of signal 

transduction, and tissue development. The down-regulated genes however did not have any GO 

enrichment.  

4.2 Network Correlation Modules Analysis 

We then performed network correlation (WGCNA) analysis with all the differentially expressed 

genes and obtained 8 distinct modules. To look at the relationship between the modules and 

karyotypes, we plotted the transformed count data as a heat map between the karyotype and 

module; red indicates low log2CPM and yellow indicates high log2CPM (Figure 4.1). Visually 

inspecting the heatmap, there is some similarity in expression across a karyotype for specific 

modules. For instance, there is a substantial number of genes in the green-yellow module and 

dark olive green module that have high log2CPM values among the DM-&HSR- samples. 

Conversely, many of the genes in the orange module display low log2CPM values for those 

samples (Fig. 4.1). 
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To further look at the relationship between the karyotypes and the modules, we 

performed three separate correlations between the module eigengenes and the karyotypic 

assignments for the samples. We found many strong and significant correlations between the 

karyotypes and modules, confirming some of the patterns seen in the heatmap. Particularly, 

DM+&HSR- samples show positive correlations with several modules and DM-&HSR+ 

samples show negative correlations with those same modules: midnight blue, sienna, white, and 

yellow green (Figure 4.2). These four modules show opposite correlations between 

DM+&HSR- and DM-&HSR+ samples, but the strength and significance of the correlation 

differs across the modules. In particular, the sienna module does not have a strong correlation 

with DM-&HSR+ samples, and the white module does not have a strong correlation with 

DM+&HSR- samples, but the correlation is strong for the other karyotype.  

  

Figure 4.1: Heatmap of log2CPM transformed RNASeq data, with genes sorted by WCGNA 

modules, color indicated on left axis, and samples sorted by karyotype, indicated on top axis. 
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Figure 4.2: Each square represents the correlation between binarized karyotype assignment for 

the column’s karyotype and the module eigengene for the given row’s module, with p-value in 

parentheses. 

To understand the processes represented by the modules, we performed gene ontology 

enrichment on them. The largest module created is the orange module, which had 1456 genes. 

Gene ontology analysis resulted in numerous enriched biological processes: regulation of 

platelet aggregation, regulation of fatty acid oxidation, positive regulation of gliogenesis, 

regeneration, myeloid leukocyte activation, and regulation of angiogenesis. Those with under 2-

fold enrichment include positive regulation of GTPase activity, response to peptide, 

transmembrane receptor protein tyrosine kinase signaling, and regulation of DNA-binding 

transcription factor activity.  Looking at Figure 4.2, these processes are positively correlated 

with DM+&HSR- samples and negatively correlated with DM-&HSR- samples. It also 

coincides with enriched processes seen in the gene ontology analysis for upregulated genes in 

samples with DMs such as cell adhesion and regulation of plasma membrane bounded cell 

projection organization.  

The second largest module from WGCNA was the dark olive-green module with 954 

genes, and it appears to capture differences between DM- & HSR- samples and DM- & HSR+ 
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samples (Figure 4.2). Gene ontology analysis of the module showed enrichment of peripheral 

nervous system axon regeneration, leucine transport, positive regulation of receptor clustering, 

and negative regulation of pathway-restricted SMAD protein phosphorylation. Other notable 

GO terms include intrinsic apoptotic signaling pathway in response to DNA damage, negative 

regulation of protein processing, positive regulation of epithelial to mesenchymal transition, 

TGF-Beta receptor signaling pathway, and positive regulation of endothelial cell migration. 

EGF, MET, and HDAC9 were some of the genes that contributed to the last GO term. DDIT4, 

one of the genes associated with FAs, was mapped for the intrinsic apoptotic signaling pathway 

term.  

The third largest module from WGCNA was the green yellow module, which contained 

776 genes. Gene Ontology only identified two processes with at least one-fold enrichment: 

columnar/cuboidal epithelial cell development and negative regulation of cellular process. 

Along with the limited GO results, the module only showed significant correlation with the 

samples lacking focal amplifications (Figure 4.2). The remaining five modules, while having 

strong correlations with the karyotypic assignments, also lacked significant Gene Ontology 

enrichment.  

4.3. Comparing Results From Drug Sensitivity Analysis 

Of the genes associated with FAs and the targets identified in the drug sensitivity analysis, the 

following were downregulated in DM+&HSR- samples with a log2FC below -0.5 compared to 

parental cells: FLT1, FLT4, HDAC2, HDAC8, IFI16, KDM1B, KDR, MYCL, PDE4B, 

RCOR2, STAT1, and YWHAE. Those that were upregulated in DM+&HSR- samples with a 

log2FC greater than 0.5 were ADRA2A, BRAF, BCL2, BCL2L11, CTDSP1, CTDSP2, DDIT4, 

http://amigo.geneontology.org/amigo/term/GO:0060394
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DNMT3A, ERBB2, HDAC5, HDAC10, HDAC11, HTR2B, MET, and MYC. The following 

genes were downregulated in DM-&HSR+ samples with a log2FC of less than -0.5 compared to 

parental cells: FLT1, FLT4, HDAC2, HDAC9, KDR, PDE4B, PDGFRA, PNKP, RCOR2, 

RCOR3, and STAT1. Those that were upregulated with a log2FC greater than 0.5 include 

BRAF, BRCA2, DDIT4, MET, MYC, and STAT4. For the DM+&HSR-vs DM+&HSR- 

comparison, the genes ADRA2A, BCL2L11, HDAC5, HTR2B, PDGFRA, and STAT2 were 

upregulated with a log2FC greater than 0.5. No genes from the drug sensitivity analysis were 

downregulated.  

The genes associated with FAs and the identified drug targets were also distributed 

across the different modules. For the dark olive green module, the genes PDGFRA, MET, 

FLT1, HDAC9, IFI16, BRAF, DDIT4, and PNKP were identified. Other genes such as FLT4, 

EGF, and RCOR2 were not immediate genes of interest but were part of the same gene families. 

The largest module, orange, encompassed the following genes: ADRA2A, HDAC5, STAT2, 

BCL2, BCL2L11, CTDSP2, ERBB2, HDAC11, KDM1B, PDE4B, STAT1, YWHAE. The 

green yellow module encompassed the genes CTDSP1, DNMT3A, HDAC2, HDAC8, KDR, 

and RCOR3.  

 The remaining four modules did not appear to contain as many identified drug targets or 

genes associated with FAs. However, looking at protein interaction networks, there appears to 

be connections between the genes within the modules and genes associated with FAs. There 

also appears to be connections between the genes in the modules and targets identified in the 

drug sensitivity analysis. For instance, in the midnight blue module there is an interaction 

between JMJD6, which was in the module, and BRD4, which then connects to RCOR1 and is 

linked to a larger protein network. Other genes like RAD54L, SMC5, RMI1, and POLE2 
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connect to ATR and TERT, which also link back to the denser portions of the network. TXNIP 

also appears to be connected to three drugs associated with FA: HDAC1, DDIT4, and 

NEDD4L. Similarly in the sienna module, there is a large cluster on the top containing genes 

that link to ATR, which then links to other targets from the drug sensitivity analysis. Of the four 

modules, the white module appears to have the most continuous connections among all the 

genes observed in the network, however it has fewer genes specific to the module. The yellow 

green module, which is the smallest of the four, has very few genes with high-confidence 

interactions or associations with genes of interest from the drug sensitivity analysis. The few 

that do include GSN, PRKCQ, HRK, SATB1, PDGFA, ADRB2, and CACNA1C.  

  

Figure 4.3: STRING-DB Network for genes in ‘Midnight blue’ module, filtered for only 

connected nodes and confidence of at least 0.700. Red boxes indicate genes within the module 

a b 
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and not from sensitivity analysis. a) Network looking at all genes of interest for FA, b) Network 

looking at genes of interest from drug sensitivity analysis.  

 

 

Figure 4.4: STRING-DB Network for genes in ‘Sienna’ module, filtered for only connected 

nodes and confidence of at least 0.700. Red boxes indicate genes within the module and not 

from sensitivity analysis, and connected with the main network instead of independent 

interactions (i.e. not like SRPK1, LBR, C1Q8P). Network looking at genes of interest from drug 

sensitivity analysis.  
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Figure 4.5: STRING-DB Network for genes in ‘White’ module, filtered for only connected 

nodes and confidence of at least 0.700. Red boxes indicate genes within the module and not in 

sensitivity analysis. a) Network looking at all genes of interest for FA, b) Network looking at 

genes of interest from drug sensitivity analysis.  

 

a b 

a b 
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Figure 4.6: STRING-DB Network for genes in ‘Yellowgreen’ module, filtered for only 

connected nodes and confidence of at least 0.700. Red boxes indicate genes within the module 

and not in sensitivity analysis. a) Network looking at all genes of interest for FA, b) Network 

looking at genes of interest from drug sensitivity analysis.  
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 CHAPTER 5 

Discussion 

The drug sensitivity analysis was able to identify candidate targets for treating cells with focal 

amplifications, many of which have been shown to be associated with ecDNA and focal 

amplifications in previous literature. By running the first linear regression across multiple 

thresholds of FA levels, we were able to capture a wide range of potential targets, including 

several that are implicated in genomic instability or focal amplifications from previous research:  

AKT1, ATR, BRD2, BRD3, BRD4, DNMT3A, HDAC1, MTOR, STAT1, PDE4B, and TERT. 

Other targets that appeared consistently across analyses were BCL2, EGFR, FLT3, PDGFRB, 

KIT, and PI3K. However, not all targets appeared at the same frequency, and some did not 

appear to have a skew towards negative βFA estimates. Rather, it appeared that there were more 

drug-specific patterns of sensitivity in cells with FA as opposed to the target itself contributing 

to the response. For instance, targets such as EGFR, ERBB2, BCL2, and KDR had a roughly 

even split between positive and negative βFA across most thresholds in PRISM. Another factor 

was the presence of driver amplifications that could affect the results of the pan-cancer model. 

Removing samples with MYC, EGFR, and CCND1 amplifications significantly reduced the 

number of drugs that met the filtering criteria along with the number of potential targets. 

Considering all these factors, the following targets remained skewed towards negative estimates 

and significant even without the presence of highly amplified driver genes: AKT1, PIK3CG, 

DNMT3A, FLT3 along with KIT and PDGFRB, and most importantly BRD2, BRD3, and 

BRD4. EGFR and BCL2 still appeared as well.  

Past research and literature provide some insight into how cancer cells can become 

dependent on the targets identified above as well as their interactions with BRD4, which is 
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known to play a role in ecDNA tethering as mentioned previously. For instance, AKT1 is 

known to contribute to genomic instability by repressing homologous recombination when 

overexpressed or constitutively expressed [23]. The study suggests that AKT1 activation results 

in BRCA1 retention in the cytoplasm, thus preventing double stranded repair and allowing the 

mutations to accumulate. JQ1, a drug that blocks BRD4 and inhibits c-Myc, has been shown to 

downregulate the AKT pathway [25]. After treatment of PTEN-positive cells with JQ1, the 

authors observed an increase in PTEN activity and decrease in the PI3K/AKT function. These 

cells were found to be more sensitive to JQ1 compared to cells with a PTEN knockdown and 

PI3K/AKT upregulation. Another association with BRD4 is the inhibition of the FOXO3a-

BRD4 complex or CDK6 to reduce AKTi resistance [16].  

FLT3 is another gene that is known to impact genomic instability. In patients with acute 

myeloid leukemia (AML), there are often internal tandem duplications (ITDs) of the FLT3 

juxtamembrane domain. A study showed that the presence of FLT3 with ITDs leads to cells 

using an alternative nonhomologous end joining pathway, which allows double stranded breaks 

to be repaired but in a more error-prone manner [7] . In doing so, cells continue to survive but 

the consequences of genomic instability increase over time. FLT3 has also been observed to be 

harbored on a double minute in a patient with chronic myelomonocytic leukemia [36], and 

FLT3 amplifications have been observed in metastatic colorectal cancer patients [10]. High 

FLT3 amplifications were typically not observed with amplification of other driver genes and 

were believed to act like a RAS mutation by signaling-based promotion of proliferation [10]. 

Another study showed that the combined use of JQ1 and an anti-FLT3 drug like quizartinib 

induced apoptosis in AML cells with FLT3-ITD. It is believed that joint inhibition of FLT3 and 

BRD4 decreased the levels of oncogenes like c-MYC, BCL2, and CDK4 in the cells [8].  
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While MTOR and TERT were not as robust targets after looking at the skew of βFA 

estimates and the impact of driver genes, they still have notable impacts on cancer cells and are 

known to be associated with BRD4. TERT is often a dependency for survival in cancer cells. 

When TERT is overexpressed, the telomeres in the tumor genome are stabilized and this allows 

cancer cells to avoid senescence [35]. Furthermore, TERT amplifications have been found on 

ecDNAs, which can contribute to overexpression [4]. Inhibition of BRD4 has been shown to 

reduce TERT expression in neuroblastoma cell lines, slowing down the cell growth [12]. This 

was demonstrated to be caused by BRD4 activating and upregulating TERT expression in 

cooperation with transcription factors in the E2Fs and WNT pathway.  

MTOR, while not typically amplified or found in double minutes, can be crucial for 

replication and ensuring proper segregation of chromosomes. MTOR regulates DNA 

duplication, promotes the progression of the DNA replication fork, and stabilizes the fork [11]. 

If there is a stalled fork and accompanying replication stress, MTOR may be recruited. It has 

been observed that inhibiting MTOR causes errors during chromosome segregation, thus 

dysregulation of MTOR in cancer cells can create more instability. In particular, this appears to 

happen in conjunction with CTDNEP1, which typically counteracts the phosphorylation of 

lipin-1 by MTOR and allows for lipid homeostasis in the ER [19]. With the stabilization of lipid 

levels, error correction is facilitated due to the lower viscosity of the cytoplasm. In contrast, if 

CTDNEP1 is knocked out, MTOR is not inhibited and the viscosity of the cytoplasm increases, 

preventing error correction and allowing micronuclei to form [19]. A study on renal cell 

carcinomas showed that BRD4 was a resistance factor against a PI3K/MTOR dual inhibitor and 

that cotreatment with BRD4 inhibitors increased apoptosis in the cells [34].  
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In addition to the genes above, EGFR and BCL2 are oncogenes known to be crucial to 

cell growth and proliferation. In particular, EGFR has been found on double minutes and in 

focal amplifications, along with amplifications of other oncogenes like MYC, CCND1, and 

ERBB2 [32]. A computational screening of millions of compounds indicated that a EGFR-

BRD4 joint inhibitor may be valuable for treating cancers [1].  

The sensitivity analysis as a whole was able to identify multiple targets that have shown 

to contribute to instability in cancer cells when dysregulated. These targets also appear to be 

associated with BRD4 in numerous ways, often providing additional benefit when jointly 

inhibited. Our findings provide potential guidance on approaches for treating cells with ecDNA 

and focal amplifications, as well as indicating that replication and division stress may be a 

significant vulnerability in FA cells, similar to implications of previous studies on other forms 

of genomic instability such as aneuploidy and whole genome doubling. With inhibition of these 

candidate target genes, there may be less tolerance to ecDNA/DMs where replication and 

division do not occur properly since copy number imbalances and mutations can be exacerbated 

to a fatal point.  

One downside of the drug sensitivity analysis here is the lack of full consistency in 

results among the datasets, especially with JQ1 and other drugs targeting BRD2, BRD3, and 

BRD4. Across the different thresholds, there are very few overlapping results observed, and the 

frequency of targets varies greatly despite having many common drugs in the different datasets.  

There is furthermore a difference in the distribution of the βFA estimates for PRISM and CTRP, 

with CTRP skewing towards more negative estimates. This difference makes it difficult to 

conclusively interpret whether there is an inclination for cancer samples to be sensitive to a 

particular gene’s inhibition.  
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The transcriptome analysis did not show a clear signal for DMs and HSRs in terms of 

differential expression and gene ontology (GO) enrichment results. However, many of the 

individual genes from the drug sensitivity analysis, and other genes within the same gene 

family, appeared to be differentially expressed between FA cells and parental cells, with some 

overlap between the comparisons of DM+&HSR- vs DM-&HSR- and DM-&HSR+ vs DM-

&HSR-.  For instance, FLT1, FLT4, KDR, and STAT1 were down-regulated in both 

DM+&HSR- and DM-&HSR+ lines compared to parental cells, and BRAF and DDIT4 were 

up-regulated. However, there was no clear consistency of presence of differentially genes within 

the different network correlation (WGCNA) modules, and the GO results for the modules did 

not produce any terms that appeared relevant to FAs. In particular, the last four modules did not 

have any notable results from gene ontology enrichment analysis despite appearing to capture 

the expression differences between DM+&HSR- and DM-&HSR+ lines. However, a look into 

the potential protein networks for the modules does lend some evidence that targets play a role 

in DM and HSR biology. Across the last four modules, there are interactions with fairly high 

confidence between targets identified in the sensitivity analysis and the genes listed in the 

modules that correspond to differences between DMs and HSRs. This bolsters the support that 

the targets are needed to efficiently maintain cell states and proliferation in the context of 

genomic instability.  

In conclusion, this drug sensitivity analysis project provides valuable insight into the 

vulnerabilities of cancer cells with focal amplifications. The application of linear regression to 

data from multiple drugs screens enabled the identification of drugs associated with sensitivity 

by quantifying the difference in drug response between FA+ and FA- samples as well as the 

statistical significance of such differences. The targets for these drugs encompassed numerous 
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genes known to be associated with FAs from previous studies and provided new candidate 

markers of vulnerability and sensitivity in FA+ cells. Further analysis of tissue-specific and 

gene-specific drug responses allowed us to narrow down the candidate markers of sensitivity to 

a robust set of targets, many of which have been linked to genomic instability in previous 

research and that tend to contribute to replication and division stress when inhibited. A subset of 

these targets has also been demonstrated to have effective joint inhibition with BRD4, thus 

strengthening their candidacy as targetable vulnerabilities in cells with DMs. Network analysis 

of co-expressed gene modules in cells with FAs provided additional insight into gene 

interactions involving the identified drug targets that could maintain the cell state in the 

presence of FAs and the resulting genomic instability. The results from this project lay the 

groundwork for additional exploration into the targetable vulnerabilities of FA+ cells. This is an 

important area of research given that FAs, and the resulting instability, are unique to cancer 

cells and can have a significant influence on drug response, as demonstrated in this project. One 

benefit of identifying vulnerabilities of FA+ cells is that the treatment does not have to be 

tailored specifically to the oncogenes that are amplified. Rather, the treatment can depend on the 

inherent state of genomic instability in the cell. This can potentially help minimize the risk of 

developing drug resistance via inducing replication stress or conditions that trigger apoptosis 

due to the presence of FAs, as opposed to directly targeting oncogenes and creating selection 

pressures. Furthermore, studying the interactions between candidate drug targets and other 

genes can uncover additional gene networks that function to maintain FAs, particularly DMs, 

and provide more insight into mechanisms that regulate genomic instability in cancer cells. 

Overall, our understanding of vulnerabilities in FA+ cells has expanded through this project. 
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Our results combined with further analysis can better inform therapeutic approaches to 

exploiting the instability and vulnerabilities within these cells.  
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APPENDIX 

Drug PRISM Target Annotation CTRP Target Annotation 

Purmorphamine - SMO 

MI-1 - MEN1 

CI-976 - ACAT1 

ML203 - PKM 

PIK-93 - PIK3CG 

CAL-101 - PIK3CD 

Savolitinib* - - 

Amuvatinib* - - 

BRD-K80183349 - HDAC1, HDAC2 

Bromosporine Bromodomain inhibitor - 

Repligen 136 - HDAC3 

Pilaralisib* - - 

Piperlongumine:MS

T-312 

- TERT 

MK-2206 AKT1, AKT2, AKT3 AKT1 

Canertinib AKT1, EGFR, ERBB2, ERBB4 EGFR, ERBB2 

A-674563 AKT1, PKIA, PRKACA - 

AT7867 AKT2, GSK3B, PKIA, PRKACA AKT1, AKT2, AKT3, RPS6KB2 

VE-822 ATM, ATR, MTOR, PIK3CG - 

VE-821 ATR - 

ENMD-2076 AURKA, FLT3, KDR, PDGFRA, 

PTK2, SRC 

- 

MGCD-265 AXL, MET FLT1, FLT3, KDR, MET 

Venetoclax BCL2 - 

Gambogic-acid BCL2 - 

Navitoclax BCL2, BCL2L1, BCL2L2 BCL2, BCL2L1, BCL2L2 

TW-37 BCL2, BCL2L1, MCL1 BCL2, BCL2L1 

I-BET151 BRD2, BRD3, BRD4 BRD2, BRD3, BRD4 

OTX015 BRD2, BRD3, BRD4 - 

JQ1 BRD4, BRDT BRDT 

TG-02 CDK1, CDK2, CDK7, CDK9, FLT3, 

JAK2 

- 

GW-405833 CNR2 CNR2 

Pazopanib CSF1R, FGF1, FGFR1, FGFR3, 

FLT1, FLT4, ITK, KDR, KIT, 

PDGFRA, PDGFRB, SH2B3 

FLT1, FLT3, KDR, KIT, 

PDGFRB 

Axitinib CSF1R, FLT1, FLT4, KDR, PLK4 FLT1, FLT3, KDR, KIT, 
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PDGFRA, PGDFRB 

Crenolanib CSF1R, FLT3, KIT, PDGFRA, 

PDGFRB 

- 

GTP-14564 CSF1R, FLT3, KIT, PDGFRB - 

Azacitidine DNMT1, DNMT3A DNMT1 

Decitabine DNMT1, DNMT3A DNMT1 

SGI-1027 DNMT1, DNMT3A, DNMT3B - 

Osimertinib EGFR - 

Rociletinib EGFR - 

Gefitinib EGFR AKT1, EGFR 

Pelitinib EGFR - 

WZ8040 EGFR EGFR 

XL-647 EGFR, EPHB4, ERBB2, FLT4, KDR - 

Lapatinib EGFR, ERBB2 EGFR, ERBB2 

Afatinib EGFR, ERBB2, ERBB4 EGFR, ERBB2 

Dacomitinib EGFR, ERBB2, ERBB4 - 

Poziotinib EGFR, ERBB2, ERBB4 - 

Neratinib EGFR, ERBB2, KDR EGFR, ERBB2 

CP-724714 ERBB2 - 

Tucatinib ERBB2 - 

Sirolimus FGF2, FKBP1A, MTOR MTOR 

Semaxanib FGFR1, FLT1, KDR, KIT, 

PDGFRA, PDGFRB, RET 

- 

Pacritinib FLT3, JAK1, JAK2, JAK3 - 

Lenvatinib FLT4, KDR FLT1, FLT3, KDR, KIT, 

PDGFRA, PDGFRB 

Tacedinaline HDAC1 HDAC1, HDAC2, HDAC3, 

HDAC6, HDAC8 

Belinostat HDAC1 – HDAC11 HDAC1, HDAC2, HDAC3, 

HDAC6, HDAC8 

Panobinostat HDAC1, HDAC2, HDAC3, HDAC4, 

HDAC6, HDAC7, HDAC8, HDAC9 

- 

Vorinostat HDAC1, HDAC2, HDAC3, HDAC5, 

HDAC6, HDAC8, HDAC9, 

HDAC10, HDAC11 

HDAC1, HDAC2, HDAC3, 

HDAC6, HDAC8 

ACY-1215 HDAC1, HDAC2, HDAC3, HDAC6, 

HDAC8 

- 

Entinostat HDAC1, HDAC2, HDAC3, HDAC9 HDAC1, HDAC2, HDAC3, 

HDAC6, HDAC8 
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Resminostat HDAC1, HDAC3, HDAC6, HDAC8 - 

Trichostatin-a HDAC1-HDAC10 - 

Temsirolimus MTOR MTOR 

GSK256066 PDE4A - 

Taselisib PIK3CA - 

ZSTK-474 PIK3CB, PIK3CD, PIK3CG PIK3CB, PIK3CD, PIK3CG 

BIBR-1532 TERT TERT 

Drugs with a star * next to the name appeared only in GDSC and lacked annotation. From 

references online, the following targets were determined: 

Savolitinib: MET [19] 

Amuvatinib: c-Kit, c-MET, FLT3, PDGFRA [21] 

Pilaralisib: PI3K [22] 

 

Supplementary Table 1: Drugs observed in drug sensitivity analysis with a negative βFA and p-

value or FDR less than 0.05. First column shows target information included in PRISM drug 

screens. Second column shows target information included in CTRP drug screens. GDSC did 

not provide any target information  
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