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ABSTRACT OF THE THESIS

Extensions and an explanation module for the iRODS Rule Oriented Verifier

by

Vikram Mavalankar

Master of Science in Computer Science

University of California, San Diego, 2008

Professor Alin Deutsch, Chair

Data grids provide data sharing environments for the management of glob-

ally distributed data. Software systems such as iRODS simulate an adaptive

middleware architecture that is required for data grids, so that interoperabil-

ity mechanisms needed to interact with legacy storage systems, as well as the

logical name spaces needed to identify files, resources and users, can be con-

trolled. The rule-oriented programming approach is used in the implementation

of the iRODS framework wherein management policies are mapped onto rules

which can be calibrated by the end user in order to meet existing demands. The

Rule-Oriented VErifier (ROVE) framework provides an interface to verify user-

specified properties against the underlying iRODS rule base. The actual verifi-

cation is carried out at the back end by the Web Application VErifier (WAVE) -

which is a verification framework for interactive data-driven web applications.

The ROVE framework is hence modeled along WAVE web page semantics. The

entire process of verification must be performed transparently from end-to-end.

viii



The main focus of this thesis is to analyze the problems associated with the di-

rect application of the existing WAVE explanation module to the ROVE frame-

work. Additionally, this document explains the extensive efforts that have been

taken to extend the current capabilities of ROVE so that it can support a more

complex underlying iRODS rule-base.
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Chapter 1

Introduction

Next generation data handling systems around the world are being de-

signed as data grids to support sharing, publishing, and preserving data resid-

ing on storage systems located in multiple administrative domains [10]. A data

grid controls sharing and management of large amounts of distributed data.

More specifically, it provides logical namespaces for users, digital entities and

storage resources in order to create persistent identifiers for controlling access,

enabling discovery, and managing wide area latencies. The data grid creates

virtual collaborative environments that support distributed but coordinated sci-

entific and engineering research [10, 14].

The Storage Resource Broker (SRB) is a data grid middleware software

system designed by the San Diego Supercomputer Center (SDSC) that is operat-

ing in many national and international computational science research projects.

The SRB creates a data grid based upon the configuration, use patterns, and

policies of the underlying system [2]. Further need-based modifications require

changes to the SRB code that might introduce unintended side-effects on other

operations. These pitfalls led to research and development of a system that

1
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provided greater flexibility by easily adapting to changes in the requirements.

Hence, a new adaptive middleware system called iRODS - Integrated Rule Ori-

ented Data System was designed as a glass box where users observe the system

functionalities and customize the controls to meet their demands. The power of

rule oriented programming has been exploited for achieving the adaptive mid-

dleware architecture as required by iRODS. The ultimate goal for iRODS is to

delineate management policies and to automate the application of these poli-

cies for a vast multitude of data management services. The management poli-

cies are mapped onto rules that control the execution of all data management

operations.

The Rule Oriented VErifier (ROVE) is a formal verification framework

which detects both incorrect or forbidden patterns as well as lack of informa-

tion prevalent amongst the underlying rule base. ROVE makes use of the Web

Application VErifier (WAVE) at the back end. WAVE has been designed to ver-

ify a user-defined property in the context of a web-based database application

due to which the ROVE framework has been modeled along the template of a

web application. The ROVE framework reads in a comprehensive iRODS rule

base and invokes the WAVE verifier at the back end to prove or disprove a user-

specified property. This verification framework is most useful in determining

whether changes to the rule bases would affect desired behavior or violate ex-

isting dependency constraints.

The result of the verification is displayed to the user through the ’ex-

planation module’ of ROVE. So far, results of the verification demonstrated by

the explanation module follow WAVE semantics and are hence out of purview

for the ROVE user. Thus, the main problem is the requirement of a translator

that translates the verification results presented by WAVE into ROVE semantics.

This would help the ROVE user understand the verification results easily. This
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thesis focuses primarily on the requirements and design of a comprehensive

explanation module for the ROVE user.

The rest of this manuscript is organized as follows: Chapter 2 briefly in-

troduces data grids with examples of the SDSC SRB and iRODS; Chapter 3 de-

scribes the architecture and language semantics or iRODS; Chapter 4 discusses

the Web Application VErifer and its semantics; Chapter 5 describes the Rule

Oriented VErifier; Chapter 6 discusses the extensions made to the ROVE frame-

work and current state-of-art, Chapter 7 distinguishes the requirements and de-

sign of an explanation module; and Chapter 8 concludes.



Chapter 2

Data Grids: SRB and iRODS

2.1 Data Grids

The design of today’s generic data management systems is threatened

by the set of multiple requirements imposed by user communities. In addition,

the volume of data is growing exponentially and data sources are distributed

across multiple sites, with data being generated in multiple administration do-

mains. The goal of a generic data management system is to build a software

infrastructure that can meet the requirements imposed by the user communi-

ties. Data grids provide transparency and abstraction mechanisms that appli-

cations exploit in order to access and manage data as if they were local to their

home system. Moreover, they support virtualization mechanisms for resources,

users, and metadata. In summary, data grids provide the required generic data

management abstractions needed to manage distributed data [12, 10, 14]. We

now concentrate on two specific data grid infrastructures namely, the SRB and

iRODS.

4
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2.2 SRB: Storage Resource Broker

An example of a data grid is the Storage Resource Broker (SRB) devel-

oped at the San Diego Supercomputer Center. The SRB manages context (ad-

ministrative, descriptive, and preservation metadata) about content or digital

entities such as files, URLs, SQL command strings, directories. The content may

be distributed across multiple types of storage systems across independent ad-

ministration domains.

By separating the context management from the content management,

the SRB easily provides a means for managing, querying, accessing, and pre-

serving data in a distributed data grid framework [2, 9]. SRB abstracts data

object names, resources, users and groups, and provides uniform methods for

dealing with them. SRB hides the underlying physical infrastructure from users

by providing global, logical mappings to the digital entities registered into a

shared collection. Hence, the peculiarities of storage systems and their access

methods, the locations of data, user authentication and access across systems,

are hidden from the users. Hence, a user can access files from an online file

system or the web without worrying about their location and other connection

details. Thus, SRB provides a grid-level middleware for sharing data and meta-

data distributed across heterogeneous resources using uniform APIs and GUIs.

2.3 iRODS:

An Integrated Rule-Oriented Data System

iRODS is a data grid software system built on the foundation of its prede-

cessor, SRB. iRODS extends the architecture of SRB in order to achieve a higher
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level of virtualization. The virtualization of policy and constraints was not seen

before in SRB and has been implemented in the iRODS framework. SRB im-

plements internal consistency constraints within itself as part of the hard-coded

infrastructure. This lacks a much-required flexibility as SRB internal code struc-

ture is difficult to modify, thus users are often forced to design policies that cater

to SRB functionalities.

iRODS goes a step further and seeks to strengthen the areas of flexibility

and customizability. This is implemented by having the functionalities made

to fit user-designed policies instead. In other words, users observe the system

functionalities and customize the controls to meet their demands [13, 8]. This

migration from a primitive black box philosophy - like that used in SRB, to a

transparent glass box philosophy - like that used in iRODS is a major design

objective for iRODS.

Regular middleware systems are designed around the black box philos-

ophy in which the flow of operations are immutable programmatically, except

configuration changes that may allow one to set the initial environment con-

ditions of the middleware. The transparent glass box philosophy, in contrast,

forms the basis for the design of an adaptive middleware system. There are

multiple ways for achieving adaptive middleware architecture. In the iRODS

approach, the power of Rule Oriented Programming (ROP) has been exploited.

In ROP, the power of controlling the functionality rests more with the users than

with system and application developers. Hence, any change to a particular pro-

cess or policy can be easily constructed by the user and tested and deployed

without the aid of system and application developers.

The final design goal for iRODS is to distinguish management policies

and to automate the application of these policies for a multitude of data man-

agement services. These management policies are mapped onto rules that con-
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trol the execution of all data management operations. This provides a means

for encoding customization of data management functionalities in an easy and

declarative fashion using Rule Oriented Programming.

The next chapter focuses on the architecture of iRODS for further clarity.

The language semantics used by the iRODS framework for specifying rules,

actions and other system functionalities are described in detail.



Chapter 3

iRODS: Architecture and Semantics

3.1 Architecture

The main design concept as mentioned earlier in the iRODS framework

is the rule oriented approach. Data management and control functionalities are

provided in a declarative and user-friendly manner via the rule oriented pro-

gramming model [13, 8]. System functionalities being performed in the iRODS

data grid system are coded as ’rules’. When a rule is invoked, it explicitly sig-

nifies the execution of a system operation that performs a particular task. These

operations are called micro services in iRODS. Micro services, in other words,

are simple programming language level function calls that are executed while

reading the rule body. While executing the rules, the flow of tasks can be modi-

fied in different ways. For example, new micro-services could be interposed in

a given rule or the micro service code could be modified appropriately and re-

compiled. Further, a new rule with a higher priority could be added in the rule

base in place of another rule for the same task, so that this new rule gets chosen

before the existing rule. The importance of this additional level of redundancy

8
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is significant. The new pre-emptive rule will be executed before the original rule

and so, if there is a failure in the execution of any part of this new rule then the

original rule gets executed.

There are three main design concepts of the iRods architecture. Firstly,

the iRODS data grid architecture is based on a client/server model. Secondly,

the iRODS distributed storage is a database system for maintaining operations,

attributes and states of data. The third and significantly important design con-

cept is the support of a comprehensive rule based system for enforcing and

executing adaptive rules. The main focus of this chapter is to introduce the lan-

guage semantics primarily used by the iRODS rule system. Before this, it is

important to understand the iRODS rule system and associated components.

3.2 Rule System

The iRODS rule system comprises of an iRODS rule engine at the kernel

of the framework. This rule engine runs on all iRODS servers and is responsible

for invoking a number of predefined micro services. The rule being executed

is interpreted and the corresponding micro service invocation is invoked by the

rule engine.

There are different kinds of rules based on the high level operation that

they are meant to perform. For example, system level rules are responsible

for data management policies and automation of system level services. Sys-

tem level rules can be invoked on the servers internally to enforce and execute

management policies for the system. Another class of rules allows users to re-

quest the iRODS servers to perform a sequence of operations on behalf of the

user. This is done when clients externally invoke the rule engine by a prede-
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Figure 3.1: iRODS Architecture

fined command (such as irule) or API. Some rules require immediate execution

while others may be executed at a later time in the background. The iRODS rule

system supports both these kinds of rules.

The iRODS architecture and its various components can be shown graph-

ically in Figure 3.1. The two main components are the client interface and the

administrator interface. The client interface middleware follows the conven-

tional ’black box’ design philosophy in which the user utilizes the methods of

the rule invoker. These methods of the rule invoker are instrumental in invoking

metadata-based and resource-based services. The services in turn are invoked

by the rules and are responsible for updating the metadata or the resources.

Rules are stored collectively in iRODS rule base (IRB) files.
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The second main component of the iRODS architecture is the adminis-

trator interface. The administrator interface follows the ’glass box’ design phi-

losophy. This is implemented by having various modifier modules that permit

the administrator to customize the functionality of the software without directly

modifying the code. For example, the user may alter policies via the rule mod-

ifier module. Since there is a scope for the user to change policies by altering

the rules, there needs to be a consistency-checking module to eliminate unde-

sirable side effects as a result of modifying the rules. In other words, alterations

to the rules must not violate desired restrictions and the consistency module is

thus used to verify the syntax and semantics of the rule-oriented specification

language.

3.3 Virtualization in iRODS

The iRODS framework allows the virtualization of policy and constraint

management. Alternatively, it can be viewed as a way of providing a new ab-

straction for the data management processes and policies themselves. Data

management policies are mapped onto rules that control the execution of all

data management operations. iRODS supports management policy virtualiza-

tion. The rules can be implemented independently of the remote storage sys-

tem. For each desired outcome, corresponding rules are defined. These rules

control the execution of the standard remote operations. The operations that

are performed by the rule-based data management systems can be abstracted in

terms of micro-services. A logical name space can be constructed for the micro-

services. The next section describes the semantics of iRODS micro-services. The

logical namespaces make it possible to organize micro-services without having

to change the management policies. Thus iRODS supports service virtualiza-

tion. Similar strategies help support rule virtualization.
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3.4 iRODS Micro-services

When a rule is invoked, it explicitly signifies the execution of a system

operation that performs a particular task. This operation is called a micro-

service in iRODS. Micro-services, in other words, are well-defined procedures

that perform a certain task. They are simple programming language level func-

tion calls that are executed while reading the rule body. Micro-services are de-

veloped and made available by programmers and compiled into the iRODS

server code. Users and administrators can interleave these micro-services to

implement a higher macro-level operation. While executing the rules, the flow

of tasks can be modified in different ways. For example, new micro-services

could be interposed in a given rule or the micro service code could be modified

appropriately and recompiled. Further, a new rule with a higher priority could

be added in the rule base in place of another rule for the same task, so that this

new rule gets chosen before the existing rule. Using priorities and validation

conditions, at run-time, the system chooses the ’best’ micro-service chain to be

executed.

Micro-services can perform an operation that can be quite small or very

involved. It is up to the micro-service developer to choose the appropriate level

of granularity for distinguishing between operations. Conventionally, a large

operation can be divided into sub-tasks with well-defined interfaces and each

of these sub-tasks can be defined as a micro-service. If two such sub-tasks are

always executed together, it would be best to group them into one micro-service.

On the other hand, defining a large operation as a single micro-service takes

away the control that is given to the end user/administrator who might want

to choose not to do some portions of the operation.
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3.5 iRODS Actions

As mentioned in the previous section, system users can interleave micro-

services to implement complex macro-level functionalities. These macro-level

functionalities are called actions. It is possible to have more than one chain of

micro-services for an action. In other words, a system can have multiple ways

of performing the same action and using priorities and validation conditions, at

run-time, the system chooses the ’best’ micro-service chain to be executed.

In the iRODS architecture, collections of rules that pertain to data grid

management and manipulation of modules reside in the iRODS Rule Base (IRB)

files. On a higher level, the macro-level functionalities of the system are repre-

sented by actions. Every rule in an IRB is a particular definition of an action.

In other words, an action is the name given to a rule. This is synonymous to

the head atom in a Prolog rule, or trigger-name in a relational database. Each

action can consist of a chain of other actions or micro-services. The next section

describes the rule semantics used for defining actions and micro-services.

3.6 iRODS Rule/Action Semantics

Rules are used for action definitions and consist of micro-services and

other actions. The iRODS server has a built-in rule engine that interprets rules

and invokes the appropriate micro-services as needed. The rules are stored in

iRODS Rule Base (IRB) files. There can be more than one IRB file. The adminis-

trator can include more than one rule base file and in this case, the files will be

read in order.

A rule is specified as a regular line of text that contains four parts sepa-
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rated by the ’|’ separator:

actionName | condition | workflow-chain | recovery-chain

• ’actionName’ is the name of the rule. It is an identifier which can be used

by other rules or external functions to invoke the rule.

• ’condition’ is the condition under which this rule applies. i.e., this rule

will apply only if the condition is satisfied.

• ’workflow-chain’ is a sequence of micro-services or rules that are exe-

cuted by this rule. They are separated by the ’##’ separator. Each may

contain a number of input/output parameters.

• ’recovery-chain’ is a sequence of micro-services or rules that must be in-

voked when execution of any one of the micro-services or rules in the

workflow-chain fails. There should be an equal number of micro-services

or rules in the recovery-chain as there are in the workflow-chain. Note

that if any sub-task in the workflow-chain fails, then the entire set of

changes made by the rule invocation must be undone. If no recovery ac-

tion is needed for a given micro-service or rule, a ’nop’ action should be

specified.

The next section analyzes and describes what happens when iRODS executes a

rule.

3.7 iRODS Execution Environment

The execution of a rule in iRODS translates to the execution of a chain

of micro-services. Although there might be actions in the chain, from the pre-
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vious sections it is clear that these actions can be flattened to a list of under-

lying micro-services. Thus, the fundamental atomic unit in rule execution is

the micro-service execution. To better understand micro-service execution, it is

useful to understand the iRODS execution environment.

The data components of iRODS can be divided into three categories:

• Session Attributes - Each running instance of iRODS has its own set of

session attributes. These attributes have an external namespace and are

mapped onto internal data structures. The session (denoted as ’$’) repre-

sents the transient memory of iRODS.

• Database Attributes - Like the session attributes, database attributes also

have an external namespace which is mapped onto internal database

schema. The database (denoted as ’#’) represents persistent storage that

is shared across all sessions.

• Side Effect Set - The side effects (denoted as ’%’) represent changes to the

external environment, such as the creation of a file or the sending of a

message.

When a micro-service is executed, the following occurs:

• A value of a session variable ($) gets modified in the temporary session

memory. This affects other rules and micro-services executed in the same

session.

• A row in the database gets inserted, deleted or modified. This also affects

the current and subsequent sessions.

• An operation outside the iRODS system is performed. For example, file

creation, modification or deletion in a remote file system.
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3.8 iRODS Rule Engine Execution Workflow

This section examines the actions performed by the iRODS rule engine.

When the rule engine is presented with an action name, it selects all the rules

whose action names are the same. These rules are prioritized based on the order

in which they were read into the rule base of the rule engine. The next phase is

condition validation. The first rule in the ordered list is checked for validation

of its condition. If the condition fails, then the next rule is tried. If no more

rules are available then the action fails and a failure status (negative number) is

returned to the calling routine.

Figure 3.2: iRODS Rule Engine workflow
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On the other hand, if the condition succeeds, then the micro-services and

action chain in the rule are executed orderly from left to right. If all of the micro-

services succeed then the action is considered a success and a success status

(0) is sent to the calling routine. In the event of a failure of one of the micro-

services/actions in the chain, the rule engine starts a recovery procedure. It

applies the corresponding recovery procedure that is defined in the rule. The

recovery for the failed micro-service/action is first performed, followed by the

recovery of all the previously successful micro-services/actions in reverse order.

At the end of recovery, the values of the session variables ($), database variables

(#) and side-effect set (%) are rolled back.

This entire process is shown in Figure 3.2.

3.9 Extended Normal Form for Micro-services

The execution of micro-services can be encapsulated as a the execution

of a flow of input-output relationships. The data components which are modi-

fied can be viewed as the output and the previous changes can be viewed as the

input. It is clear from the previous sections that at the lowest level, all actions

are composed of micro-service calls. Hence, studying the input-output relation-

ships for the micro-services would be significantly helpful in understanding the

semantics of the macro-level actions. In order to achieve this, it is necessary to

describe the micro-services in an abstract form. The normal form language for

iRODS rule specification currently does not support the abstraction of a micro-

service. Hence, for the purpose of verification, an extension to the existing lan-

guage has been proposed so that the micro-services can be decomposed into

even smaller components such as their individual effects.
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The new abstraction enables micro-services to be written in the form of

rules, in order to abstract the behavior of the micro-service. It demonstrates the

effect of the micro-service on data components such as the transient session, the

persistent database, and other side effects. The existing normal form language

has been extended instead of creating a new language for a variety of reasons.

For example, it is easier for the verification framework to create pseudo rule

bases that contain rules of both formats, which could be parsed and translated

with a single parser.

A rule for a micro-service, just like that for an action, is specified as a

regular line of text that contains three parts separated by the ’|’ separator:

microserviceName | Condition | Effects

• microserviceName - The name or unique identifier of the micro-service.

Unlike actions, there can be only one definition for each micro-service.

• Condition - The condition that must hold for the micro-service to exe-

cute. This condition, like the condition for an action, applies to the entire

body.

• Effects - The set of effects produced as a result of successful execution of

the micro-service. (Separated by ’##’)

Unlike actions, micro-service rule definitions do not have a recovery segment.

This is because it is assumed that an alternative micro-service exists to unroll

the effects.

The following chapter introduces the Web Application VErifier (WAVE)

that is used for the verification phase of the iRODS framework.



Chapter 4

WAVE: Web Application VErifier

The Web Application VErifier (WAVE) is a framework for high level spec-

ification and verification of interactive, data-driven web applications [5, 3]. Ver-

ification of data-driven web applications, in particular, is important as it leads

to further assurance in the preciseness of the web applications. WAVE was de-

signed and developed by the Database Group at the Department of Computer

Science and Engineering of University of California, San Diego. WAVE not only

provides a comprehensive verification framework, but more specifically, WAVE

can prove whether a property formula is observed throughout all runs of the

web application, given the various possibilities of user input and page transi-

tions. A property formula in this case would pertain to either or both the status

of the web application and the state of the underlying database.

The correctness of the iRODS framework can be enhanced significantly

by verification of properties such as checking appropriate user permissions re-

quired to invoke certain micro-services. WAVE is complete for a broad class

of applications and temporal properties. For other applications, WAVE can

be used as an incomplete verifier, as commonly done in software verification

19
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[5, 4, 6]. Experimental results on WAVE demonstrated that the verification

times were in the order of seconds. Hence, interactive applications controlled

by database queries (such as iRODS) may be well suited to automatic verifica-

tion. The experimental results obtained also illustrate the effectiveness of the

unification of model checking with database optimization techniques as used in

the implementation of WAVE.

4.1 WAVE Architecture

The main workflow of the WAVE framework is that it takes the specifica-

tions of a web application and a property as the input, and outputs whether the

specified property is true or false. In case the property evaluates to false, WAVE

displays a counter-example which is a run of the web application violating the

property [7]. There are four main components or modules that form the core

of the WAVE framework. These modules interact with each other as shown in

Figure 4.1 and their individual functionalities are described below:

• Specification module

This module is responsible for representing or modeling the web appli-

cation in the form of a web page schema. On a higher level, the web page

schema specifies the input options available to the user at each page of

the web application. Further, it also specifies how the state of the under-

lying database or environment would be modified as the user transitions

through the various pages of the web application. More specifically, a

page schema specifies user inputs accepted at the current page, as well

as the logic using a collection of rules governing input options generated

for the user. Once the user supplies an input, the rules specify subsequent

state modifications; actions performed and transition information to the
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Figure 4.1: WAVE Architecture

next page. The web schema specifications are stored in a specification

file which conforms to a grammar. The WAVE parser reads this specifi-

cations file and generates an internal representation of the specification,

which is consumed by the verification module and the code generation

module.

• Verification Module

The verification module performs the function of searching for a counter-

example run or a run that violates the specified property. To generate the

counter example requires examining all the underlying databases which
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is not feasible. It has been demonstrated in [5] that it is sufficient to con-

sider a finite set of constants for values in the database, yielding a fixed

number of databases. WAVE executes runs based on each database and

for each run, the user specified property is checked and violations are

detected. The final result is a true or false truth value for the property

along with a counter-example run in the case of a false truth value for

the property.

• Explanation module

The explanation module is responsible for conveying the results of the

verification to the user in an understandable manner. If the specified

property evaluates to false, the counter example generated shows the

exact sequence of user inputs and corresponding evolution and point of

failure of the web application. This thesis focuses primarily on the needs

and requirements for an explanation module when utilizing the WAVE

verifier for the iRODS framework.

• Code generation module

If the verification completes successfully, then the specification is used to

automatically generate the code implementing the web application. It is

the responsibility of the code generation module to read in the specifi-

cation file and generate JSP pages which can be deployed on a Tomcat

server in order to be viewed in a browser.

4.2 Web Application Specification Schema

This section describes the semantics used by WAVE for specification of

interactive, data-driven web applications. On a higher level, external users or

programs supply the required input to the web application. On receiving this
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input, the application responds by carrying out an action such as updating its

internal state database and moving to a new web page. The web application

generates web pages dynamically by queries on an underlying database.

More specifically, the web application is modeled in the form of a web

page schema describing the structure of the web pages as viewed by the user at

any point of time. The web page schema specifies the input options available to

the user at each page of the web application and how the state of the underlying

database would change as the user transitions through various pages of the

web application. All inputs, actions, states and the database are modeled as

relations.

A typical web page schema for WAVE has the following components:

• Static schema

– Page - A page represents each web page in the schema. Pages are

identified by a unique name. A ’homepage’ is specified as the start-

ing point of the application.

– Input options - They specify which input options are available to the

user at the current page and the conditions that each input option

can be selected under.

• Transitions

– Target Webpage - Each page must have a set of target pages ap-

proachable from it by certain user actions.

– State - All modifiable values of the web application are represented

as states. A state is essentially a relation table.

– Actions - The actions represent all the actions performed by the page

under consideration.
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For example, the specification of a home page for an online bookstore

site might look like the specification as outlined below. The online bookstore

site would sell books and music CDs to its customers.

Page: Home-page(HP)

Input:

clickbutton(x);

Input Rules:

Option@clickbutton(x) := x= "home" or x="book"

or x="music" or x="view cart";

State Rules:

not home():= clickbutton("book") or

clickbutton("music");

book():= click("book");

music() := clicknutton("music");

Action Rules:

Target Webpages: BBP, BMP, CAP, MWP

Target Rules:

BBP := clickbutton("book");

HP := clickbutton("home");

BMP := clickbutton("music");

CAP := clickbutton("view cart");

In the schema above,

• The pages are:

BBP - ’Buy a book’ page

HP - ’Home page’
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BMP - ’Buy a music CD’ page

CAP - ’View cart’ page

• The input option is:

Click Button - This represents the various buttons that can be pressed

by the user. As the specification shows, there are four possible options

(Home, Book, Music, View cart) that when clicked on, would invoke the

corresponding target pages.

• The action and transition rules are:

The target webpage is dependent on which button was pressed by the

user.

4.3 Property Specification

Along with the specification of a web application, WAVE also takes a user

specified property as the input, and outputs whether the specified property is

true or false. In case the property evaluates to false, WAVE displays a counter-

example which is a run of the web application violating the property. A run

is a sequence of configurations through which the web application evolves in

response to user inputs. Examples of properties can range from basic soundness

of the specification to semantic properties. Such properties are expressed using

LTL-FO, an extension of linear-time temporal logic (LTL) [1, 6]. For example,

the LTL-FO formula

∀x∀y∀id [(pay (id, x, y) ∧ price (x, y)) B ship (id, x)]

states that whenever item x is shipped to customer id, a payment for x

in the correct amount must have been previously received from customer id.



Chapter 5

ROVE: Rule Oriented VErifier

The Rule Oriented VErifier (ROVE) [11] is a formal verification frame-

work which detects incorrect patterns as well as lack of information prevalent

among the underlying rule base. At the back end, ROVE makes use of WAVE for

the verification process. Based on the concepts discussed in the previous chap-

ter, WAVE has been designed to verify a user specified property in the context

of an interactive, web-based database application. Hence, the ROVE framework

has been modeled along the template of a web application. The iRODS rule base

is stored in a set of iRODS Rule Base (IRB) files which are read by ROVE along

with a user specified property. ROVE then invokes the WAVE verifier to prove

or disprove the user-specified property. This verification framework is most

useful in determining whether changes to the rule bases would affect desired

behavior or violate existing dependency constraints.

A basic prototype of the ROVE framework has been designed and imple-

mented previously [11]. The focus of this thesis is the extensions implemented

for ROVE which is discussed in the following chapter. Before describing the

extensions, it is helpful to understand the semantics used by ROVE.

26
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5.1 Architecture

The main components in the ROVE framework perform completely dif-

ferent functionalities and are shown in Figure 5.1. One component is responsi-

ble for the graphical user interface required in order to get the user input. This

front-end interface prompts the user for specification of the rule base, property

to verify and other options. The other component performs the verification pro-

cess at the back end. The inputs received from the front-end interface are passed

on to this component which translates the received inputs and performs the ac-

tual verification.

Figure 5.1: ROVE Architecture
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The complete verification process performed by ROVE consists of two

distinct phases corresponding to the functionalities performed by the above-

mentioned two main components of the ROVE architecture [11].

5.2 User Input Phase

The first phase of the verification process is the user input phase or the

specification phase. This is divided into two sub-phases that are described be-

low:

5.2.1 File Input Interface

Initial information required for the verification phase is entered by the

user through the front-end interface. Through a series of web pages which

are part of the front-end interface, the user is first instructed to enter informa-

tion pertaining to the rule base, session variable mappings and rule definitions.

Next, the user is presented with templates to alter or change the existing micro-

service definitions. Once the user inputs are received, they are forwarded to the

parser which translates the inputs into an output file in the format of the WAVE

web page schema.

There are primarily two kinds of files that are used by the ROVE frame-

work. The iRODS Rule Base (IRB) files define the underlying comprehensive

rule base against which the user-specified property is verified. The user can in-

put a set of IRB files. Each of these files contains iRODS rule definitions. When

the user enters multiple IRB files, the rules in each of them are combined and

formed into a single ’master’ rule base. The other kind of files that ROVE uses

are the Data Variable Mapping or DVM files. As the name suggests, these files
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provide a mapping between all the session attributes and their internal names.

Similar to IRB files, in the case of DVM files too, the user can enter multiple

DVM files which are aggregated into a single ’super’ DVM file that contains

all the mappings. Both the combined rule base and DVM temporary files are

consumed by the back-end parsers in the subsequent phase.

5.2.2 Template Interface

The other part of the specification phase is the part where the user is

presented with templates either to modify existing micro-service definitions or

to enter a property for verification. Both these interfaces are discussed next.

Micro-service Templates

In this part, the user is presented with a choice of templates to choose

from and then the user is prompted to enter property-pertinent information. As

before, these inputs are forwarded to the parser which translates them into an

LTL-FO file containing the corresponding formula.

However, the typical iRODS user should not be expected to, write entire

rule base files using the extended rule language. Hence, an interface [11] has

been provided to ease the process of specification which ultimately provides a

richer user experience. The template interface facilitates the user to enter vari-

able dependency information. Because of this, users need not hand-code the

micro-service rules in the extended language. On modifying the current micro-

service as desired, the entered values are parsed into a rule in the extended lan-

guage format and appended to the master rule base file. Current micro-services

are read from a separate micro-service rule base file (which stores all existing
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micro-service definitions) and displayed to the user on the micro-service tem-

plate page.

Property Templates

In this part, the user is presented with a choice of templates to choose

from and then the user is prompted to enter property-pertinent information.

As before, these inputs are forwarded to the parser which translates them into

a LTL-FO (linear temporal logic first-order) file containing the corresponding

formula. The extended LTL-FO syntax was explained previously in Section 3.9.

At the back end, the WAVE verifier is invoked to perform verification

on properties written in the LTL-FO format. Property templates are a easy and

transparent mechanism through which the user can specify properties easily

without knowledge of the extended LTL-FO syntax. Three property templates

are available currently. They are described below:

• Permission Templates - These templates evaluate the property based on

currently held user permissions against the micro-services. The micro-

service name and currently held permissions are specified by the user.

The property evaluates to true if the micro-service specified is invoked

successfully with the given list of permissions.

• Containment Templates - Invocation of rules may or may not have resul-

tant side effects. Containment templates provide a means to check rules

and effects caused by them. The user is presented with a list of actions. It

is important to remember that each action is modeled as a rule in iRODS.

(Section 3.5) The user selects an action and is then prompted to select

variables in order to check if these variables might get affected by invok-
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ing the selected action. If all the variables added by the user are modified

by the selected action, then the property evaluates to true.

• Adequacy Templates - The successful completion of a micro-service re-

quires a set of variables to be pre-filled with non null values. Adequacy

templates supply a method to check if the user-specified variables are

enough or adequate for the selected action to execute completely. It must

be remembered that actions at the lowest granularity are composed of

micro-service calls and each micro-service requires a set of variables to

be pre-filled in order to complete the required updates. The interface

provided enables the user to enter a list of variables and select an action.

The property evaluates to true if the given list of variables are adequate

for the successful execution of the selected action.

When the user selects the desired property template, the input received

from the template pages is parsed and translated into an LTL-FO formula and is

stored in a temporary property file. Now, the WAVE verifier is invoked in order

to verify this property. WAVE generates the web page schema from the user

specified rule base and performs the verification of the property as described in

Section 4.2. Finally, the results of the verification are displayed to the user. If the

property evaluates to false, a counterexample is displayed.

5.3 Verification Phase

The second phase is where ROVE performs the actual verification. At

the end of the user input phase, the user inputs are translated and ready to be

consumed by the verification framework. ROVE uses WAVE at the back end

for verification. On a higher level, the translated inputs are read by WAVE and
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verified according to WAVE semantics as explained earlier. The final result of

the verification is shown to the user.

More specifically, when the user completes a property template entirely,

the inputs received are parsed into a LTL-FO formula. This LTL-FO formula is

stored in a temporary property file. WAVE translates this to the corresponding

web page schema with the help of the user specified rule base and ultimately

verifies the LTL-FO property formula. The results of the verification are dis-

played to the user. If the property evaluates to false, a counterexample gener-

ated during the verification process is also displayed. Finally, the user is pre-

sented with two options - either to verify a new property using the same rule

base or return to the start page to verify an entirely new rule base.

The next two chapters describe the extensions made to the ROVE frame-

work, bugs resolved and the requirements for a comprehensive explanation

module.



Chapter 6

ROVE Extensions: Part 1

Debugging and Grammar

In the preceding chapters it has been demonstrated that the iRODS rule

base can be modeled as a reactive system described in the form of a web page

schema. By doing so, WAVE can be used as the back end verifier to validate

user specified properties against the rule base. In the previous implementation

of ROVE [11] , various functionalities such as micro-service templates, property

templates, etc. were provided to the user. These functionalities are only a subset

of the entire set of utilities required for realizing the ultimate goal which is to

design and implement an exhaustive and comprehensive verifier for the iRODS

framework. This chapter and the next describe the extensions made to ROVE

since the last implementation. The extensions provide support for a more com-

plex iRODS rule base and augment the existing capabilities of the verifier, thus

making it more sophisticated and robust.

This chapter describes the first part of the extensions made that enable

ROVE to handle a richer iRODS rule base file. The second part described in the

33



34

next chapter focuses on the problem with the existing implementation of the

verification results and the necessity of an explanation module for the ROVE

user.

6.1 Comments

Support for comments is a highly desirable feature in any rich program-

ming language. Comments describe what is happening, how it is being done,

what parameters mean, which globals are used and which are modified, and

any restrictions or bugs. Readability of both the DVM and IRB files in iRODS is

highly enhanced with support for comments. Any line that is preceded by a ’#’

symbol in the iRODS rule-base is treated as a comment. The ROVE parser did

not support comments so far. The discovery of the lack of support for comments

took longer than the actual implementation. Once discovered, a regular expres-

sion was added to the backend ROVE parser. This modification ignored any line

that was a comment. For example, in Figure 6.1 a sample IRB file is shown. This

is how typical iRODS rule base files appear within the iRODS framework. An

example of increasing the readability in the code can be seen when comments

are used as in Lines 1 through 9 and beyond too.

6.2 Micro-service names

Towards a later stage in development it was discovered that the previous

implementation of ROVE [11] required that all iRODS micro-services follow a

strict nomenclature. The names of the micro-services needed to be of the form

’msi*’ (For example, ’msiCreateUser’). However, the iRODS syntax for rule def-



35

initions within rule-bases does not impose any restriction of this form. Hence,

the parser had to be modified to accept all valid strings as micro-service names.

Figure 6.1: A sample IRB file

6.3 Call by Reference

To provide for a more powerful programming experience, like other pro-

gramming languages, iRODS rule syntax also allows call by reference. The

iRODS rule definition syntax allows arguments to be passed as ’call by refer-

ence’ in between micro-services as references. An example demonstrating the
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call by reference scheme can be seen on analyzing Figure 6.1. Lines 10, 17 and

21 in the code of the sample IRB file as shown in the figure use call by reference.

The best example is Lines 20 and 21 as shown in Figure 6.2. Line 20 contains

a previous definition for the action ’acCreateCollByAdmin’ which does not use

call by reference in its arguments and is hence commented out. Line 21 on the

other hand states:

Figure 6.2: Snippet from the sample IRB file

which is the definition for the action ’acCreateCollByAdmin’ using call by ref-

erence. The arguments ’parColl’ and ’childColl’ are passed as references to the

micro-service ’msiCreateCollByAdmin’. The ROVE infrastructure was modified

to incorporate support for call by reference.

6.4 Cut and Fail

The two keywords ’cut’ and ’fail’ are part of a special group of workflow

services in iRODS. The functionalities of ’cut’ and ’fail’ keywords are somewhat

similar and related. Both keywords are permitted by the iRODS rule syntax to

be used within the rule body. Specifically, the ’cut’ and ’fail’ keywords can be

placed in the section of the rule body that contains function calls and micro-

service invocations. The following sections elucidate the process of backtrack-

ing and the functionalities of the ’cut’ and ’fail’ keywords.
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6.4.1 Backtracking

Rule execution in iRODS follows the PROLOG semantics to a certain ex-

tent. When a rule fails, alternative definitions of the rule are retried. For exam-

ple, consider the following set of rules from an iRODS rule base file:

Rule 1: acA||acB1##acB2##acB3|nop##nop##nop

Rule 2: acA||acC1##acC2|nop##nop

The rules above present two possible definitions for action ’acA’. Assume

acB1, acB2, acB3, acC1 and acC2 are also actions. For sake of simplicity and

future references, the rules have been named as ’Rule 1’ and ’Rule 2’ respec-

tively. Now assume action ’acA’ needs to be invoked. The rule definitions are

consulted and Rule 1 and Rule 2 are found to match action ’acA’. Rule 1 gets

invoked and according to the rule body, action ’acB1’ gets invoked which com-

pletes successfully. Action ’acB2’ is now invoked and assume that it fails for

some reason. If no further definition for action ’acA’ is available in the rule

base, iRODS ’backtracks’ to the previous action (in this case ’acB1’) and retries

it or consults rule base for an alternate definition for ’acB1’. This backtracking is

similar to backtracking observed in rule based languages such as PROLOG. In

the case where an alternative definition for action ’acA’ is found (such as above

in Rule 2), iRODS consults the alternative rule (Rule 2) and proceeds as usual. It

is vital to understand the concept of backtracking in order to study the seman-

tics of the ’cut’ and ’fail’ keywords. The following section demonstrates the ’cut’

and ’fail’ operations.
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6.4.2 Cut operation

Cut and fail are primarily used to selectively turn off backtracking. The

cut effectively freezes all the decisions made so far in the current rule. That is, if

required to backtrack, it will automatically terminate without trying other alter-

natives. In other words, when the cut is encountered, it re-routes backtracking.

It short-circuits backtracking in the actions to its left in the rule body. Consider

the same rules as before, but with a slight modification as shown below:

Rule 1: acA||acB1##cut##acB2##acB3|nop##nop##nop

Rule 2: acA||acC1##acC2|nop##nop

Notice that in Rule 1, the keyword ’cut’ has been added. As before, as-

sume action ’acA’ needs to be invoked. Rule 1 gets invoked and according to

the rule body, action ’acB1’ gets invoked which completes successfully. As men-

tioned before, ’cut’ is ignored for now and the next available action from the

workflow chain is invoked. In this case, the next available action in the work-

flow chain is action ’acB2’ - which is invoked. Assume that action ’acB2’ fails

or completes unsuccessfully for some reason. Now, iRODS starts the process of

backtracking as mentioned in the previous section. It backtracks through the

workflow chain to the previous action. In this case, it encounters a ’cut’. Due to

this, it fails action ’acA’ entirely without trying alternative definitions for action

’acB1’. This is exactly how the cut operation functions. The current action is

terminated and no further retries or recoveries are possible.

Performance is the main reason to use the cut. It can sometimes also

have an effect on code readability and maintainability. The cut is analogous to

the ’goto’ statement seen in many programming languages. It is used when it

would be desirable to force a rule to fail in a certain situation, and no further

lookups are required.
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The ’cut’ keyword is modeled as any other micro-service/action with a

slight distinction. During the parsing phase, when a ’cut’ keyword is encoun-

tered, it is simply ignored and the parser moves on to the next token. However,

the ’cut’ is stored as a token like the other action/micro-services in the rule body.

During the WAVE page construction phase, when a ’cut’ is detected, the target

rules for the ’cut’ page specify a return to the action name that contains the

’cut’ keyword in its rule body. This is done while constructing the WAVE page

objects by keeping track of the appropriate page status and the top of stack in-

formation that is annotated with each rule. The truth value ’false’ is assigned

to the target rule thus signifying that the property evaluates to a false. Since no

further backtracking is required, the action simply evaluates to a false.

6.4.3 Fail operation

The fail operation is slightly different from the cut operation in that fur-

ther recoveries and retires are possible. The rule fails entirely on encountering

fail. This might seem similar to the cut operation, but the difference is that

although the rule is forced to fail entirely, further retries and recoveries are pos-

sible. For example, consider the same rules as before with the keyword ’cut’

replaced by ’fail’, as shown below:

Rule 1: acA||acB1##fail##acB2##acB3|nop##nop##nop

Rule 2: acA||acC1##acC2|nop##nop

As before, assume action ’acA’ needs to be invoked. Rule 1 gets invoked

and according to the rule body, action ’acB1’ gets invoked which completes suc-

cessfully. Now, ’fail’ is encountered. The rule evaluates to false and backtrack-

ing starts. Action ’acB1’ is retried and if it does not complete successfully, the

appropriate recovery action is invoked. The fail operation allows for a negation-
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like operator. In other words, a typical use of fail is in defining the negation of

a rule.

The modeling and implementation of the ’fail’ keyword is similar to the

’cut’ keyword with the difference in the WAVE page construction phase. As be-

fore, during the parsing phase, when a ’fail’ keyword is encountered, it is sim-

ply ignored and stored as a token like the other action/micro-services in the rule

body. During the WAVE page construction phase, when a ’fail’ is detected, the

target rules for the ’fail’ page specify a return to the action/micro-service name

that precedes the ’fail’ keyword in the rule body. Similar to the implementa-

tion of the ’cut’, the target rules are specified while constructing the WAVE page

objects by keeping track of the appropriate page status and the top of stack in-

formation that is annotated with each rule.



Chapter 7

ROVE Extensions: Part 2

Explanation Module

The existing version of ROVE [11] has concentrated primarily on the ap-

plication of the specification and verification modules from the WAVE frame-

work to the iRODS domain. In section 4.1, the architecture of the WAVE frame-

work was described in detail. One of the modules in the WAVE architecture was

the explanation module. As mentioned before, the primary responsibility of the

explanation module is to present the results of the verification to the ROVE user

in an understandable and user-friendly way. When the user-specified prop-

erty evaluates to false, a counterexample is generated by WAVE. The generated

counterexample (which is actually a directed graph) shows the exact sequence

of user inputs and corresponding evolution and point of failure of the web ap-

plication.

The ROVE user is unaware of the fact that at the back end all inputs re-

ceived from the user are parsed into WAVE web page schemas and forwarded

to the verification module of WAVE which performs the actual verification pro-

41
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cess. It would be highly desirable to maintain this degree of transparency till the

very end of the verification process. Hence, when the results of the verification

(i.e., the generated counterexample graph) are presented to the user, they must

be displayed in a format that the ROVE user understands. This chapter focuses

mainly on the above mentioned problem and describes the requirements of a

comprehensive module by examples from the current implementation.

In order to understand the examples presented in the later sections, it is

helpful to study the algorithms used for translating the ROVE inputs into WAVE

web page schema [11]. The web page schema further translates into an interme-

diate graph representation. The algorithm used for this purpose is described

as well. A WAVE generated counterexample is then described. Finally, the last

section outlines a desired graphical representation of the generated counterex-

ample that can be understood by the ROVE user.

7.1 Translation from Normal Form to WAVE

Translating the iRODS rules into a WAVE web application is not a simple

process. This section attempts at breaking down the complex process involved

in the translation. The previous implementation of ROVE [11] has implemented

this translation. Section 5.2 details the user input phase of ROVE. An important

step in the user input phase is where the user-specified IRB files are concate-

nated into single rule base file that defines the entire iRODS rule base. On a

higher level, as a first step into the translation process, this concatenated rule

base is treated as a directed acyclic graph where each node represents an ac-

tion, a micro-service or an effect. These nodes are later transformed into WAVE

pages conforming to the WAVE web page schema as described in Section 4.2.

More specifically, there are two parsing phases that accomplish these tasks. The
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first phase parses the input specification rules and creates an intermediate repre-

sentation and the second phase takes the intermediate representation and gen-

erates the corresponding WAVE web page schema. These steps are formalized

through algorithms implemented in [11] which are described below.

7.1.1 Phase 1: Intermediate Form Generation

The main concept here is that each rule for an action, micro-service or

an effect is modeled as a directed acyclic graph. This is similar to modeling a

finite state machine with user inputs and corresponding state transitions (as de-

fined in the iRODS rules). The CRB (Concatenated Rule Base) parser is initially

invoked to parse the concatenated rule bases and construct a graph containing

’node’ objects. The directed acyclic graph that is generated as the intermediate

form at the end of this phase has two kinds of nodes:

• Non-leaf nodes : A node of this kind in the directed graph can symbolize

an operation which could be an action, micro-service or effect invoca-

tion. These nodes can expand into other child nodes that correspond to

actions, micro-services or effects. Each non-leaf node would maintain a

list of its child nodes.

• Leaf nodes : A node can be a leaf. Such a leaf node would have no child

nodes and would hence correspond to an effect because having no chil-

dren implies that the task does not expand into sub-tasks.

Formally, the algorithm is shown in Figure 7.1.

Ultimately, when the algorithm completes, the result is a set of disjoint,

directed, acyclic graphs. Each node in these graphs represents an action, micro-

service (non-leaf nodes) or in the case of leaf nodes - an effect. These disjoint
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graphs are then unified into a single directed acyclic graph that is rooted at a

particular node. This root node is a newly created node with all the macro-

level actions as its children. Macro-level action nodes correspond to the starting

nodes in each of the disjoint, directed acyclic graphs that were created as a result

of executing the algorithm shown in Figure 7.1.

Figure 7.1: Intermediate graph generation algorithm
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7.1.2 Phase 2: WAVE Web Page Schema Generation

At the end of the first phase, an intermediate representation in the form

of a rooted directed acyclic graph is generated. ROVE uses the WAVE verifier at

the back end. Hence, in order to use the verification functionalities of WAVE, the

intermediate form generated at the end of the first phase needs to be translated

into a WAVE web page schema.

The second phase is responsible for the actual translation. It takes the

intermediate graph representation as input and produces the corresponding

WAVE web page schema. Technically, the second phase generates ’WAVEPage’

objects from the nodes of the intermediate graph. The intermediate graph is

traversed recursively, starting at the root which contains all the macro-level ac-

tion nodes as it children. At each step of the traversal, the buildPage() method

is called to annotate the pages with input rules, state rules, target pages, and

target rules. The algorithm [11] shown in Figure 7.2 formalizes these steps.

When the algorithm terminates, various ’WAVEPage’ objects are created

and the generated schema is printed out to a file. Having outlined the trans-

lation algorithms above, the following sections outline the problem with the

existing display of the verification results to the ROVE user and then focus on

the requirements for an explanation module.
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Figure 7.2: WAVE Web Page Schema Generation Algorithm
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7.2 Verification Results Page

When the user completes a property template entirely, as described pre-

viously, the inputs received are parsed into a LTL-FO formula which is trans-

lated by WAVE to the corresponding web page schema and verified at the back

end. The results of the property verification are displayed to the user. If the

property evaluates to false, a counterexample generated during the verification

process is also displayed. Finally, the user is presented with two options - either

to verify a new property using the same rule base or return to the start page to

verify an entirely new rule base. A sample screenshot of the verification results

page is shown in Figure 7.3.

Figure 7.3: Verification Result Page
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The result page shown in Figure 7.3 displays results of verification of a

user specified property. It is evident from the figure, the property has evaluated

to false and hence a counterexample has been displayed. The counterexample

is displayed according to WAVE semantics. It is a graphical representation of

the traversal of a subset of the nodes in the intermediate graph created in phase

1 (as described in subsection 7.1.1). The ROVE user is familiar with iRODS

semantics and rule definitions and is completely unaware of the invocation of

WAVE as the verifier at the back end. Hence, it is vital to present the results

of the verification - more specifically, the counterexample, in a jargon that will

be understood by the ROVE user. The next section illustrates the creation of

a counterexample when an example property is verified against a sample rule

base.

7.3 A ROVE Verification Result Counterexample

This section presents an example demonstrating a user specified prop-

erty that evaluates to false against a simple rule base. The main purpose is to

point out the complexity of the counterexample generated in comparison to the

simplicity of the sample rule base read in. By doing so, it is clear that there

is an urgent requirement to modify the presentation of the verification results

and devise an algorithm that generates a graphical counterexample that is easily

understood by the ROVE user.

The ROVE framework accepts from the user a set of iRODS Rule Base

(IRB) and Data Variable Mapping (DVM) files as described in Section 5.2. As

an example, consider that the sample IRB and DVM files shown in Figure 7.4

are fed into ROVE as an input. While running the ROVE application in the

browser, once the IRB and DVM files are accepted, the user navigates away
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Figure 7.4: Sample IRB and DVM Files

from the input page and reaches the page where modifications to an existing

action/micro-service (as defined in the input IRB files) can be made.

The IRB and DVM files in Figure 7.4 are chosen to be relatively simple.

The DVM file contains just one mapping and the IRB file contains a rule that

defines one action. Action ’acA’ is defined by the rule in the IRB file. Invocation

of action ’acA’ results in invoking micro-services ’msiB’ and ’msiC’ respectively.

In order to keep it simple, recovery operations are ’nop’s (no recovery routine

defined). The user is presented with the edit micro-service page, where the defi-

nitions of micro-services ’msiB’ and ’msiC’ can be changed. Figure 7.5 illustrates

the edit micro-service page for clarity. Assume that for the given IRB and DVM

files, the user makes the following changes to the micro-services.

• For micro-service ’msiB’ the user adds the condition ’$vaB==abc’

• For micro-service ’msiC’ the user adds a dummy effect ’$vaB<−$vaB’
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Figure 7.5: Micro-service Edit Page
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Figure 7.6: Generated Counterexample

To reiterate, the rule definitions, actions, conditions and effects have been

kept as simple as possible to illustrate the complexity of the counter example

generated with an uncomplicated environment. After making these changes,

the user is prompted with the property template selection page listing the three

available property templates as described in subsection 5.2.2. Assume that the

user selects the ’Permission Template’ to verify a property pertinent to permis-

sions held. On the add permissions page, the user enters a dummy permission

’$vaB==v’ and checks to see if given this permission, micro-service ’msiC’ can

be invoked. The result of the property verification is false and a counterexample

is displayed on the results page. The counterexample is a graph consisting of a

multitude of nodes showing an execution sequence composed of micro-services

’msiB’ and ’msiC’ along with action ’acA’. It is shown in Figure 7.6. (To accom-

modate the entire graph on one page, it has been split-up line wise.)

From the context of WAVE, this counterexample is complete and suffi-

cient. However, for a ROVE user, the counterexample is not easy to under-

stand. For example, the transitions between the nodes of the graph are labeled

as ’clickbutton ’ which actually refers to transition rules within the WAVE web

page schema - something the ROVE user is unaware of. Hence, it is important to
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depict the counterexample in a manner that the ROVE or iRODS user can under-

stand. The next section presents an example of such a graphical, user-friendly

counterexample.

7.4 An Ideal ROVE User-Friendly Counterexample

The ROVE user is familiar with iRODS rules and the execution envi-

ronment. The iRODS framework architecture and environment have been de-

scribed in detail in Chapter 3. The ultimate design goal for iRODS is to define

management policies and to automate the application of these policies for a

multitude of data management services. Using the paradigm of rule-oriented

programming, these management policies are mapped onto rules that control

the execution and customization of all data management operations in an easy

and declarative fashion. The complete power of iRODS can be exploited only

when the customizability is maintained throughout the graphical user interface

that is presented to the user. Hence, the counterexample that is produced at the

end of the verification process must contain the same actions, micro-services

or effects that the user started with at the beginning of the verification process.

The existing format of the counterexamples generated has been presented via

an example in the previous section. The problem is now to translate the WAVE

produced counterexample into a format that the ROVE user can assimilate.

Firstly, let us take a closer look at the existing method of representing

the counterexample. The counterexample is presented as a directed graph (as in

Section 7.3). The directed graph demonstrates the transitions in between various

stages of the verification process. However, the generation of the counterexam-

ple graph is a part of WAVE and hence, the nomenclature used in the generated

graph is in the context of WAVE. Hence, the main problem is in translating this
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generated graph into a more meaningful and intuitive form that the ROVE user

can comprehend. For example, instead of having ’web pages’ the counterexam-

ple should have action/micro-service names and it should be able to capture

the input-output relations existing therein.

The next section outlines the architecture, explains the functions and jus-

tifies the completeness of the representation generated by the new explanation

module.

7.5 Explanation Module: Architecture

The main goal of the explanation module is to translate the counterex-

ample generated by WAVE[3] into a more meaningful and lucid representation.

The explanation module accomplishes this translation in two distinct phases.

The first phase involves the generation of the counterexample through WAVE

in a text-based format. The text-based counterexample generated by WAVE con-

sists of significantly scattered but relevant data that is logged as WAVE gener-

ates the counterexample for the false property. When the user reaches the ’Veri-

fication Results’ page within the ROVE interface, at the back-end, a specification

file ’temp spec.txt’ is generated. This file contains a text-based representation of

the ROVE rule-base as WAVE objects. The algorithm for generating this text file

has been outlined in Figure 7.2. A snapshot of the file is shown below (Figure

7.7). This file serves as a ’dictionary’ for looking up the input/output relations

between the various actions and micro-services defined in the rule-base.
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Figure 7.7: Specification File ’temp spec.txt’ generated by WAVE [3]
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7.5.1 Temporary output

At the end of the verification, the results are logged into another text file

called ’temp output.txt’. This file contains the actual result of the verification

and additional temporary data logged during the process. A snapshot of the

file can be seen in Figures 7.8 and 7.9. The important essence from this file to

use is the counterexample data.

Figure 7.8: WAVE[3] Verification Output ’temp output.txt’

The counterexample generated by WAVE [3] is written at the end of the

text file (’temp output.txt’). This information is extracted and written to a file

’output.txt’ in the format showin in Figure 7.10.

This corresponds to a ’run’ of events that falsifies the user-specified prop-

erty. As evident from the figure above, it is clear that the format of the generated

counterexample shown in Figure 7.10 is not self-explanatory. This data is now
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Figure 7.9: WAVE[3] Verification Output ’temp output.txt’

broken down in order to generate a cleaner representation. Each of the tuples

in the format above corresponds to a single node in a directed graph with the

specified inputs. It must be noted that WAVE stops as soon as the first coun-

terexample is generated. It is not necessary that the generated counterexample

is minimal. There might be optimal runs of the ’web pages’ that produce a

smaller and more optimal counterexample, but that is out of the scope of this

project.

Figure 7.10: Text representation of the counterexample
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The final result of the explanation module is the generation of a format-

ted, text-based ’explanation output’ file (output.txt) that contains the translated

counterexample which is completely in the context of ROVE and iRODS. Aux-

iliary data is also written out to enable readability for the end user.

An example of the final output file generated for a simple counterexam-

ple is shown in Figure 7.11.

The following subsections illustrate how the output file is generated.

7.5.2 Generation of the output file

To reiterate, the format of the counterexample generated by WAVE [3] is

shown in Figure 7.10.

This corresponds to a ’run’ of events that falsifies the user-specified prop-

erty. To generate a readable result, a translation process is performed. Each of

the tuples in the format above corresponds to a single node in a directed graph

with the specified inputs. The following subsections break up each individual

piece of data and demonstrate the translation of each of them into the corre-

sponding iRODS components.

WAVE Pages

The first piece of information contained in each tuple in the generated

counterexample is the WAVE page corresponding to the current action or micro-

service. The input parameters for each of these action/micro-service pages are

explained in the next section. Extracting only the name of the WAVE page

is not enough as this information needs to be ’reverse-mapped’ to the corre-
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Figure 7.11: Output of the explanation module
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sponding iRODS action/micro-service. The ’temp spec.txt’ file is consulted to

get the precise specification of the current WAVE page. The corresponding

iRODS action/micro-service name is extracted and written to the output file.

The ’temp spec.txt’ file also gives information about all possible combinations

of input constants associated with each WAVE page. To make the explanation

module comprehensive, the final output file also contains a list of the iRODS

actions/micro-services that can be invoked from the current action/micro-service.

This reinforces the validity of the underlying rule-base to the end user.

Inputs

The inputs seen in Figure 7.8 are labeled as ’Fx’ or ’Xx’ where ’x’ is an

integer. The ’F’ inputs denote a flag; signifying whether the inputs to the cor-

responding micro-services have been used or not. If set to ’1’, it denotes that

the inputs are not used, if set to ’0’, it denotes that the inputs are used. On the

other hand, if the ’X’ inputs are set to ’true’, it signifies that the condition asso-

ciated with the micro-service either holds or there is no condition. In the WAVE

terminology, the ’X’ inputs correspond to the simulation of a button click on a

webpage. In the case of ROVE, they correspond to ’dummy’ buttons so that the

actions/micro-services can be modeled as web pages to be verified by WAVE.

The information of each ’X’ input is stored in the ’temp spec.txt’ file. The ’F’ and

’X’ input variables are important in reconstructing the counterexample during

the translation process. Similar to looking up definitions of words in a dictio-

nary, the ’dictionary’ file (’temp spec.txt’) is now consulted for decoding each of

the pieces in the counterexample data. To capture the input/output dependen-

cies, it is not enough to lookup the ’dictionary’ file as it only has information for

the WAVE pages.
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Conditions and Effects

The input/output conditions for each micro-service and action are ob-

tained from the rule-base. In the case where the user makes a change to an

existing micro-service definition by altering a condition or an effect, while on

the ’MSI Template Insertion Page’ of the ROVE user interface, these must also

be captured. Any changes made to the ’MSI Template Insertion Page’ are logged

appropriately in the background as this information is useful while comparing

and checking for the correct conditions and effects associated with each micro-

service. The changes made to any micro-service are stored in the ’conds.txt’ file

within the ROVE package. A sample ’conds.txt’ file is as shown in Figure 7.12.

Figure 7.12: Conditions captured by explanation module

The ’conds.txt’ file essentially captures all the user inputs on the ’MSI

Template Insertion Page’ of the ROVE user interface. The explanation module

checks the conditions associated with each micro-service/action present in the

counterexample that is generated by WAVE. These are written out to the output

file so that the user can also view the conditions entered (if any) or existing

conditions associated with each micro-service/action.
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Final Output

The output file is the final result of the explanation module and it is

shown in Figure 7.11. The starting point is always a ’Home Page’ or start point.

Then, on the basis of data generated by WAVE [3] for the counterexample (Fig-

ure 7.10), the explanation module output is written out. The appropriate user-

input status is printed - whether a user made any changes to the micro-service

definition or not. The conditions and effects are also displayed, if a change has

been made. Then, a possible list of micro-services or actions is displayed af-

ter consulting the rule-base. The next invoked action/micro-service should be

from this list and is defined as the next node while traversing the counterex-

ample graph generated by WAVE. A sample final output file after running the

explanation module is shown in Figure 7.11.

To summarize, the interdependencies of all the components of the expla-

nation module can be illustrated in Figure 7.13.

Figure 7.13: Components of the Explanation module
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Conclusion and Future Work

A powerful data grid such as the iRODS framework provides compre-

hensive mechanisms needed to manage distributed data, the tools that simplify

automation of data management processes, and the logical name spaces needed

to assemble collections. Additionally, it seeks to fortify significantly important

aspects of software engineering such as flexibility and customizability. The user

designs, implements and controls data management policies to meet specific

demands. At the very core, this is done by utilizing the design philosophies of

rule-oriented programming.

The ROVE framework [11] is used as a formal verification framework to

verify user specified properties against an iRODS rule base. At the back end,

ROVE invokes the Web Application VErifier (WAVE) for carrying out the veri-

fication. This thesis has outlined the goals for iRODS and has described in great

detail each of the components that are involved in achieving these goals. More

specifically, the main focus problem is the establishment of the requirements for

a better explanation module for the ROVE user. Extensions to the framework

that make it more robust and efficient have also been detailed. However, the

62
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project still involves and presents a significant scope for additional future work

that is outlined below.

• Formalizing the Counterexample Representation

This thesis has outlined and described the existing problem with the

counterexample representation. An ideal alternative representation has

also been proposed. However, this area is still open to further research

that can facilitate a more optimal and user-friendly representation. Once

a representation has been selected, the developer would need to formal-

ize the algorithms involved.

• Debugging

In this version of ROVE, extensive detail has been laid on minimizing the

number of errors as the user transitions through the application. How-

ever, with varying complexity of the underlying rule-base, the probabil-

ity of erroneous behavior is not negligible. Exhaustive testing has al-

ways been stressed upon and it should continue with the addition of

each new functionality in the framework. This would enable the iRODS

framework as a whole to be more efficient, robust and easy to deploy and

maintain.

• Novel Property Templates

There are three property templates that are implemented presently in

ROVE [11]. There is a significant scope for exploring and designing

newer property templates that emulate commonly used properties in

iRODS.

• Extending Micro-service Modeling

The existing version of ROVE [11] captures micro-services as input out-

put variable dependencies. The behavior pattern of micro-services can
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be further researched. This would enable possibilities for a richer model

that could be used to emulate micro-services.

• Verification of Side-Effects

When actions are executed, underlying micro-services are invoked. In-

vocation of micro-services leads to certain side-effects that can alter the

existing state. Verification of the side-effects would enable a higher level

of security and robustness.

• Modeling Complex Conditions

ROVE supports the equality and inequality conditions in its current pro-

totype. Further research can be carried out to implement condition ex-

pressions containing complex arithmetic operators.

The aspiration is to ultimately incorporate all the above mentioned ideas

into the iRODS framework so that its complete power can be exploited.
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