
UC San Diego
UC San Diego Previously Published Works

Title
Reconstructing Breakage Fusion Bridge Architectures Using Noisy Copy Numbers

Permalink
https://escholarship.org/uc/item/6cc310dk

Journal
Journal of Computational Biology, 22(6)

ISSN
1066-5277

Authors
Zakov, Shay
Bafna, Vineet

Publication Date
2015-06-01

DOI
10.1089/cmb.2014.0166

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6cc310dk
https://escholarship.org
http://www.cdlib.org/

Reconstructing Breakage Fusion Bridge

Architectures Using Noisy Copy Numbers

SHAY ZAKOV and VINEET BAFNA

ABSTRACT

The Breakage Fusion Bridge (BFB) process is a key marker for genomic instability, producing
highly rearranged genomes in relatively small numbers of cell cycles. While the process itself
was observed during the late 1930s, little is known about the extent of BFB in tumor genome
evolution. Moreover, BFB can dramatically increase copy numbers of chromosomal segments,
which in turn hardens the tasks of both reference-assisted and ab initio genome assembly.
Based on available data such as Next Generation Sequencing (NGS) and Array Comparative
Genomic Hybridization (aCGH) data, we show here how BFB evidence may be identified, and
how to enumerate all possible evolutions of the process with respect to observed data. Spe-
cifically, we describe practical algorithms that, given a chromosomal arm segmentation and
noisy segment copy number estimates, produce all segment count vectors supported by the
data that can be produced by BFB, and all corresponding BFB architectures. This extends the
scope of analyses described in our previous work, which produced a single count vector and
architecture per instance. We apply these analyses to a comprehensive human cancer dataset,
demonstrate the effectiveness and efficiency of the computation, and suggest methods for
further assertions of candidate BFB samples. Source code of our tool can be found online.

Key words: algorithms, combinatorial proteomics, computational molecular biology, dynamic

programming, genetic variation, RNA, sequence analysis.

1. INTRODUCTION

The origin of a tumor cell is marked by genomic instability (Hanahan and Weinberg, 2011).

Spontaneous, viral, or other kinds of mechanisms may cause genomic segment deletions, duplications,

translocations, inversions, etc., producing rearranged genomes with a possibly malignant nature. Thus,

decoding mechanisms that generate rearranged genomes is critical to understanding cancer. Numerous

mechanisms were proposed, including the faulty repair of double-stranded DNA breaks by recombination or

end-joining and polymerase hopping caused by replication fork collapse (Carr et al., 2011; Hastings et al.,

2009). These mechanisms are generally not directly observable, so their elucidation requires the deciphering

of often subtle clues after genomic instability has ceased. An important source of information in this respect is

the architecture of the rearranged genome, that is, the description of its chromosomes in terms of concate-

nations of segments from the original genome.

Department of Computer Science and Engineering, University of California San Diego, La Jolla, California.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 22, Number 6, 2015

Mary Ann Liebert, Inc.

Pp. 577–594

DOI: 10.1089/cmb.2014.0166

577

Breakage Fusion Bridge (BFB) is one model of a genome rearrangement process, which was first proposed

by Barbara McClintock in the 1930s (McClintock, 1938, 1941). Recently, it has seen renewed interest as a

possible mechanism in tumor genome evolution (Bignell et al., 2007; Campbell et al., 2010; Greenman et al.,

2012). BFB begins with a telomeric loss on a chromosome, including a loss of a sequential pattern that signals

the location of chromosome termination. During cell division the telomere-lacking chromosome replicates,

and its two sister chromatids fuse together (possibly due to some DNA repair mechanism falsely induced by

the cell). This fusion produces a dicentric chromosome of palindromic structure, which is later torn apart at

some random point as the centromeres of the dicentric chromosome migrate to opposite poles of the cell. One

part of the torn chromosome includes the fusion region and some tandemly inverted chromosomal suffix

duplication, and the other part lacks the corresponding suffix. The two daughter cells receive these rearranged

chromosomes, both are missing the telomeric region, and the cycle can repeat (Fig. 1).

In contrast to other mechanisms, BFB can actually be observed in progress using methods that have been

available for decades (McClintock, 1941). Cytogenetic techniques can reveal the anaphase bridges, di-

centric chromosomes, and homogeneously staining regions that have long been the canonical evidence for

BFB. However, these techniques are useful only in cases where the BFB cycles are ongoing. While useful

in understanding the mechanism, they do not address the question of whether BFB occurs extensively in

evolving tumor genomes.

Recently, researchers (including us) have started looking at modern available data in order to demonstrate

BFB occurrence after the process has ceased, including Fluorescent In Situ Hybridization (FISH), Array

Comparative Genomic Hybridization (aCGH), and Next Generation Sequencing (NGS) data. These methods

take advantage of distinctive BFB features exposed by such data, including the abundance of fold-back

inversions (i.e., duplicated chromosomal segments arranged in a head-to-head orientation (Bignell et al.,

2007; Campbell et al., 2010), patterns of interleaving segments of alternating orientations (Kitada and

Yamasaki, 2008; Reshmi et al., 2007), and combinatorial properties of segment counts when copy number

variations are due to BFB (Kinsella and Bafna, 2012; Zakov et al., 2013). In fact, if the architecture of the

rearranged genome is known, it is possible to decide if this architecture can be produced by BFB (Kinsella

and Bafna, 2012). Properties of the space of different BFB evolutions are explored in Greenman et al. (2012).

Partial knowledge regarding the architecture can be revealed by FISH analyses (Kitada and Yamasaki,

2008), which uses fluorescence markers to identify the physical locations of predetermined sequences on

the rearranged genome. However, such experiments are relatively expensive and can only be performed in a

small number of cases. A more common measurement is NGS data, which contain a big set of short

sequenced reads extracted from a donor genome. Such data is typically used for predicting the entire donor

genomic sequence by computationally assembling the reads, sometimes facilitated by consulting a similar

presequenced reference genome. Unfortunately, BFB and other mechanisms can produce massively

c
a

b

d

e

f

a

b

c

d

e

f

g

FIG. 1. The BFB process. To the left, the different stages of a BFB cycle are presented. To the right, corresponding

modifications over an exemplary chromosomal arm are shown. (a) A normal chromosome. (b) The chromosome loses its

telomere. (c) The chromosome is duplicated during cell division. (d) Sister chromatids are fused together. (e) Centromeres

migrate to opposite poles of the cell. (f) The fused chromosome is torn apart at some random position between the two

centromeres, causing one copy to have an inverted suffix duplication, while the other copy has a trimmed suffix. Both

copies lack a telomere and therefore may undergo additional BFB cycles. (g) After several BFB cycles, the chromosome

architecture exhibits significant increases in segment copy numbers, as well as fold-back patterns.

578 ZAKOV AND BAFNA

rearranged and highly repetitive genomes. This complicates the task of assembly-based sequencing due to

the multiple ambiguous manners the repetitive reads may be assembled, and the lack of a relevant reference

template. Nevertheless, NGS data can still be analyzed in order to infer some indirect information regarding

the donor genome architecture (Alkan et al., 2009; Chiang et al., 2009; Medvedev et al., 2009; Yoon et al.,

2009). After aligning the reads against a reference genome, their genomic location distribution can be used

in order to identify segments on the reference genome of coherent read coverage, and to estimate the

number of times each such segment repeats in the donor genome. We will refer to the output of the latter

kind of analysis as copy number data. Other methods to obtain copy number data are based on analyzing

aCGH data (Eckel-Passow et al., 2011; Greenman et al., 2010; Olshen et al., 2004; Venkatraman and

Olshen, 2007) (Fig. 2). Due to the noisy nature of both NGS and aCGH data, count estimates may be

inaccurate, and the true segment count is likely to fall within some interval of integers around the estimated

value. We use the term noisy copy number data when referring to information regarding such intervals of

possible count values. In addition to copy number data, NGS data can be used in order to produce contigs

(chromosomal segments that may be assembled unambiguously), and aberrant segment adjacencies can be

exposed by discordant reads, restricting the set of possible contig-based architectures.

In previous work (Kinsella and Bafna, 2012; Zakov et al., 2013), we showed how to analyze noisy copy

number data in order to decide if it is likely to observe the input data under the assumption that the

underlying rearrangement process is BFB. Specifically, we designed algorithms that produce a single BFB

architecture over the given segments in which segment counts are supported by the data, if such an

architecture exists. We applied these algorithms in order to analyze a comprehensive aCGH dataset of

cancer cell lines (Bignell et al., 2010), as well as sequence data from primary tumors (Campbell et al.,

2010), and identified a small subset of candidate samples exhibiting BFB hallmarks. Here, we extend the

scope of the analysis and describe algorithms that report all count settings supported by the data, which can

be explained by BFB, and all corresponding BFB architectures. Although the theoretical time bounds for

these new algorithms may be exponential, we show that in practice they are efficient and apply an informed

search (Pearl, 1984) optimization that further improves their practical efficiency.

Therefore, our proposed algorithms satisfy an important need. While our work postulates the existence of

BFB using statistical arguments, additional physical assertions can be obtained with FISH and aberrant read

analyses. Starting with noisy copy number data, our tool can be used to enumerate all possible BFB

architectures. These candidate architectures can then be used toward a small set of FISH experiments (with

a limited number of fluorescence markers) to validate and refine the predicted genomic architecture.

2. PROBLEM DEFINITION

Computational BFB-related problems were previously formulated in Kinsella and Bafna (2012) and

Zakov et al. (2013). For completeness, we give here the main definitions from these works and formulate

new problems first addressed here.

FIG. 2. (a) aCGH data for a part of the q-arm of human chromosome 14 in the NCI-H508 cell line. Each data point

corresponds to a probe on the array, where its x-coordinate gives the probe’s sequence chromosomal position, and y-

coordinate gives its measured intensity (log-ratio). The data points are clustered into segments, and an estimated

segment copy number appears above each segment. (b) A visualization of the corresponding noisy copy number data.

Estimated counts appear in light blue, and the column around each count represents possible deviations from the

estimation. The region under the red curly bracket reflects a BFB candidate. Its corresponding estimated counts are [5,

12, 5, 11, 7, 12, 7, 14, 4, 14, 4], which under minor modifications yield the two BFB vectors [5, 13, 5, 11, 7, 12, 8, 14, 4,

14, 4] or [5, 11, 5, 11, 7, 12, 8, 14, 4, 14, 4]. Data is taken from Bignell et al. (2010) [segmentation and copy number

analysis were computed using the PICNIC software (Greenman et al., 2010)].

RECONSTRUCTING BFB ARCHITECTURES 579

A DNA segment r is a string over the DNA nucleotide alphabet A, C, G, T. The reversed segment of a

segment r, denoted here by r, is the string obtained by reading r backwards and replacing each nucleotide

with its complementary nucleotide (A 4 T, C 4 G). For example, the reverse of a segment r = CGGAT is

the segment r = ATCCG. In the rest of this article, it is assumed we operate on a given chromosomal arm with

a fixed segmentation and denote its list of k segments by S= r1‚ r2‚ . . . ‚ rkf g, ordered from the centromeric

segment r1 to the telomeric segment rk. The term ‘‘string’’ refers to a genomic architecture over these

segments, that is, a concatenation of segments from S and their reversed forms. Greek letters a, b, c, and q
denote strings, and bar notation indicates reversed strings. For example, if a = r1r3r2‚ a = r2r3r1. An empty

string is denoted by e. The notation al,t represents the continuous chromosomal region rlrl + 1 . . . rt, where

al,t = e when t < l. To facilitate reading, r1‚ r2‚ r3‚ . . . are replaced by A‚ B‚ C‚ . . . in concrete examples.

A BFB cycle applied over a chromosomal arm can be viewed as a special rearrangement procedure, in which

some telomeric suffix of the arm is duplicated, inverted, and concatenated tandemly at the telomeric end of the

arm. A string b can be derived from a string a via a BFB process if it is possible to apply a series of zero or more

BFB cycles over a and obtain b (Fig. 3a). This notion is formally captured by the following definition.

Definition 1 For two strings a, b, say that a BFB�! b if a = b, or there are some strings q, c such that

c s e, a = qc, and qcc BFB�! b. Say that a is an l-BFB string if al‚ t
BFB�! a for some t, and say that a is a BFB

string if it is an l-BFB string for some l.

It is worth mentioning that in reality a BFB cycle can also delete a suffix of a chromosome in case

we consider the trimmed chromosomal arm. It is simple to show that for any BFB process that con-

tains such suffix-trimming cycles there is an equivalent process in which only elongation cycles occur

(Kinsella and Bafna, 2012). For example, the BFB string ABCD�D obtained by the process

a1‚ 4 = ABCD BFB�! ABCD�D�C�B BFB�! ABCD�D can also be obtained by the process a1‚ 4 = ABCD BFB�! ABCD�D.

Thus, we can assume without loss of generality that all BFB cycles are of the form of a tandem suffix

duplication.

By definition e = al,l - 1 is an l-BFB string for every l ‡ 1. For a nonempty string a, define top(a) = max

{t : rt appears in a} and define top(e) = 0. It is simple to observe that when a is an l-BFB string, it must start

with the prefix al,t for t = top(a), since BFB cycles can only duplicate previously appearing letters and

never generate new ones.

a

b

FIG. 3. (a) A BFB process generating a string a: ABCD BFB�! ABCD�D BFB�! ABCD�DD�D�C�B BFB�! ABCD�DD�D�C�BB BFB�!
ABCD�DD�D�C�BB�BBC. (b) The layers of the BFB palindrome b = aa. The block collections are B4 = {4b1}, B3 = {2b2,

b3}, B2 = {2b4, b5, 2b6}, and B1 = {b7}.

580 ZAKOV AND BAFNA

The count vector ~n(a) = [n1‚ n2‚ . . . ‚ nk] of a string a is a vector of integers, where for every 1 £ l £ k, nl

is the total number of occurrences of rl and rl in a. For example, for a = ABCD�D�CC‚~n(a) = [1‚ 1‚ 3‚ 2]. Say

that a vector~n is a BFB vector if there exists some BFB string a such that~n =~n(a). In the previous example

~n(a) is a BFB vector due to the BFB process a1‚ 4 = ABCD BFB�! ABCD�D�C BFB�! ABCD�D�CC = a.

The computational analyses presented in this article aim to detect evidence for BFB, given a preanalyzed

segmentation of the genome and corresponding copy number data. We assume that noisy copy number data

is represented by a weight function W = fwl‚ n j 1plpk‚ n = 0‚ 1‚ 2‚ . . .g, where wl,n is a nonnegative

weight associated with the copy number n for the l-th segment. It may be assumed w.l.o.g. that all weights

wl,n satisfy 0 £ wl,n £ 1. The weight of a count vector ~n = [n1‚ n2‚ . . . ‚ nk] is given by W(~n) =
Q

1pipk wi‚ ni
,

and by assumption 0pW(~n)p1. In some cases, we refer to prefixes~n1‚ l - 1 = [n1‚ n2‚ . . . ‚ nl - 1] and suffixes

~nl‚ k = [nl‚ nl + 1‚ . . . ‚ nk] of ~n, which may be empty if l = 1 or l = k + 1, respectively. Define the weights of

such subvectors accordingly, that is, W(~n1‚ l - 1) =
Q

1pi< l wi‚ ni
and W(~nl‚ k) =

Q
lpipk wi‚ ni

, where the weight

of an empty vector is 1 by definition. Thus, for every 1plpk + 1‚ W(~n) = W(~n1‚ l - 1) �W(~nl‚ k).
If some data analysis produces segment count probabilities Pr (nl = n) for every segment rl and every count

n = 0‚ 1‚ 2‚ . . ., weights can be set to these probabilities choosing wl,n = Pr (nl = n). This way, the weight of a

count vector is the probability this vector reflects the true segment counts given the observed data. Another way

to set weights given such probabilities would be to choose weights by setting wl‚ n = Pr(nl = n)
Pr(nl = n�

l
), where n�l is the

most likely count for the l-th segment. Here, the weight of a count vector gives the ratio between its probability

and the probability of a most likely vector. Nevertheless weights are more general than probabilities and can be

used as a heuristic count error modeling even when no probabilistic model is available.

In Zakov et al. (2013), several variants of BFB problems were formulated. Below we restate these

problems and add two new variants addressed in the current work:

BFB problem variants

Input: A count vector ~n, or a weight function W and a minimum weight threshold 0 < g £ 1.

1. The decision variant (Zakov et al., 2013): given ~n, decide if ~n is a BFB vector.

2. The string search variant (Zakov et al., 2013): if ~n is a BFB vector, find a BFB string a such that

~n =~n(a).
3. The vector search variant (denoted the distance variant in Zakov et al., 2013): given W and g,

report a maximum weight BFB vector ~n in case there exists such a vector with W(~n)qg, and

otherwise report ‘‘FAILED.’’

4. The exhaustive vector search variant: given W and g, report all BFB vectors ~n with W(~n)qg.

5. The exhaustive string search variant: given W and g, report all BFB strings a such that W(~n(a))qg.

For a count vector ~n, define N(~n) =
P

1plpk nl and ~N(~n) =
P

1plpk log (nl). Note that N(~n) is the total

length of a string admitting ~n, and ~N(~n) is proportional to the number of bits needed for representing ~n. For

a weight function W and a weight g, define N(W‚ g) = max N(~n) : W(~n)qgf g, and ~N(W‚ g) = max ~N(~n) :
�

W(~n)qg)g. In Zakov et al. (2013), it was shown that the BFB decision variant can be solved using O(~N(~n))
bit operations (i.e., linear time in the input length), the string search variant can be solved in O(N(~n))
operations (i.e., linear time in the output length), and that the vector search variant can be solved using at

most a subexponential number of operations 2O(log2 N(W,g)). Here, we give algorithms for the two new

exhaustive search variants. While theoretically the output of these algorithms can be exponential with

respect to N(W, g), we show that for realistic inputs this output is manageable. In addition, we describe an

Informed Search (IS) approach that significantly reduces the running time in practice by eliminating

irrelevant search paths and traversing only paths that are guaranteed to produce valid solutions.

3. ALGORITHMS

In this section we develop algorithms for the two exhaustive search variants of the BFB problem. Next,

we describe some ideas taken from Zakov et al. (2013), upon which the algorithms presented here are built.

3.1. Notation and previous results

An l-BFB palindrome is an l-BFB string of the form b = aa. It can be shown that b = aa is an l-BFB

palindrome if and only if a is an l-BFB string. By definition, e = ee is an l-BFB palindrome for every l ‡ 1.

RECONSTRUCTING BFB ARCHITECTURES 581

In addition, observe that when b = aa we have that~n(b) = 2~n(a). This allows replacing the question ‘‘is there

a BFB string admitting the count vector ~n’’ by the equivalent question ‘‘is there a BFB palindrome

admitting the count vector 2~n’’.

An l-block is a string of the form b = rlb
0rl, where b0 is an (l + 1)-BFB palindrome. It can be shown that

an l-block is a special form of an l-BFB palindrome, and that every l-BFB palindrome is some palindromic

concatenation of l-blocks. Nevertheless, not every palindromic concatenation of l-blocks yields a valid

l-BFB palindrome. For example, two copies of the 2-block BC�C�B and one copy of the block B�B can be

concatenated to form the 2-BFB palindrome BC�C�BB�BBC�C�B. The validity of this palindrome can be

asserted from the process a2‚ 3 = BC BFB�! BC�C�B BFB�! BC�C�BB BFB�! BC�C�BB�BBC�C�B. On the other hand, the

only palindromic concatenation of one copy of BC�C�B and two copies of B�B is the string B�BBC�C�BB�B.

This string is not a valid BFB string, since a BFB string over the letters {B, C} must start with the prefix

a2,3 = BC. Claim 1 in Zakov et al. (2013), recited here in the Appendix, gives a required and sufficient

condition for block concatenations that form valid BFB palindromes.

The idea of decomposing BFB palindromes into blocks allows us to adopt a layeresd view of BFB palindromes,

as follows (Fig. 3). Let b = aa be a 1-BFB palindrome, where ~n(b) = 2~n(a) = [2n1‚ 2n2‚ . . . ‚ 2nk]. As claimed

above, b is a palindromic concatenation of 1-blocks. Denote by B1 the collection of all 1-blocks whose con-

catenation forms b. Every 1-block in B1 is a string of the form Ab0 �A, where b0 is some 2-BFB palindrome. As there

are 2n1 occurrences of A and �A in b, and each block in B1 contains exactly two such occurrences, the total number

of blocks in B1 is exactly n1. Masking the letters A and �A from all blocks in B1, the collection becomes a 2-BFB

palindrome collection of size n1. The 2-BFB palindromes in this collection can be further decomposed into two-

blocks, yielding a collection B2 of two-blocks. Similarly as above, B2 contains exactly n2 blocks. This process can

continue inductively, yielding for every 1 £ l £ k a corresponding collection Bl of l-blocks, whose size is nl. One

may also imagine an additional collection in this series Bk + 1, containing zero (k + 1)-blocks.

This layered view is exploited in a reversed order by the algorithms in Zakov et al. (2013), developing a

BFB palindrome given an input count vector~n = [n1‚ n2‚ . . . ‚ nk]: Starting with an empty collection Bk + 1 of

(k + 1)-blocks, the algorithm computes iteratively a sequence of collections Bk‚ Bk - 1‚ . . . ‚ B1, each col-

lection Bl is an l-block collection of size nl. In order to generate Bl, the algorithm first concatenates (l + 1)-

blocks from Bl + 1, forming a collection B of (l + 1)-BFB palindromes of size nl (this procedure is called

folding). Then, each (l + 1)-BFB palindrome b0 ˛ B is wrapped with a pair of rl segments, rendering it into

an l-block b = rlb
0rl, and Bl is set to be the collection containing all these l-blocks. The final collection of 1-

blocks B1 is folded one more time into a single 1-BFB palindrome b = aa, and the algorithm returns the

half-length prefix a of this palindrome as a BFB string admitting the input count vector ~n.

Figure 3b illustrates a possible run of the algorithm over the input count vector ~n = [1‚ 5‚ 3‚ 4]. First, the

algorithm initializes an empty collection of blocks B5. In the first iteration, there is a need to perform concate-

nations of blocks in B5 and produce n4 = 4 BFB palindromes. Such palindromes may only be obtained by

concatenating zero elements (as there are no elements in B5), and so four empty strings are generated in this

folding process, yielding the BFB palindrome collection {4e}. Next, each palindrome in this collection is wrapped

by r4 = D and r4 = �D, producing the collection of blocks B4 = 4De�Df g = 4b1f g. In the next iteration, the

collection B4 needs to reduce its size from n4 = 4 into n3 = 3 by concatenating its elements to produce BFB

palindromes. In this example, there are two concatenations of two elements the form b1b1, and one concatenation

of zero elements that produces an empty string e. The BFB palindromes in the resulting folded collection {2b1b1,

e}, are wrapped by r3 = C and r3 = �C, yielding the block collection B3 = 2Cb1b1
�C‚ Ce�Cf g = 2b2‚ b3f g. This

process continues for two more iterations, generating similarly the collections B2 = {2b4, b5, 2b6} and B1 = {b7}.

All elements in the last collection B1 are then concatenated into a single BFB palindrome b (in this example B1

contains a single element b7, and so b = b7), and the returned string a is the half-length prefix of this palindrome.

The ability of the schematic algorithm above to process the entire input vector ~n and produce a corre-

sponding BFB string depends on its ability to fold intermediate collections Bl computed along its run. In

cases where it cannot fold some intermediate block collection, it returns a fail message, implying no BFB

string admits the input vector ~n.

A case where folding cannot be applied is, for example, the case where n2 = 2, B2 = fBC�C�B‚ B�Bg, and

n1 = 1. In this case, since both possible concatenations BC�C�BB�B and B�BBC�C�B of the two elements in B2

are non-palindromic, the folding procedure must fail at this stage. Another example of a fail folding is the

case where n2 = 3, B2 = fBC�C�B‚ 2B�Bg, and n1 = 1. In this case, though there exists a palindromic con-

catenation B�BBC�C�BB�B of all three elements in B2, this concatenation is not a valid BFB palindrome (see

example above), and so the collection may not be folded.

582 ZAKOV AND BAFNA

In Zakov et al. (2013), it was shown that the ability to fold a block collection depends on a property

called the signature of the collection. A signature~s =~s(B) of an l-BFB palindrome collection B is an infinite

sequence of integers [s0‚ s1‚ s2‚ . . .] with the following properties: (1) the first nonzero element in~s (if there

is such an element) must be positive, (2) the cardinality of ~s, defined by k~sk =
P1

d = 0 2dabs(sd) (where

abs(sd) is the absolute value of sd), equals the size of B, and (3) the values sd depend only in multiplicities of

distinct elements in B and their top values. The prefix of a signature~s up to its d-th element is denoted by

~sd = [s0‚ s1‚ . . . ‚ sd]. The formal definition of a signature is given in the Appendix, and we refer intrigued

readers to Zakov et al. (2013) for an elaborated discussion on its properties.

We will use the notation~s = [s0‚ s1‚ . . . ‚ sd‚ 0‚ . . .] to imply that the remaining signature elements after

position d are all zeros. From property (2), it follows that for a signature~s such that k~sk = n, all signature

elements sd for d > log n are zeros, thus signatures can be explicitly represented by a relatively small

number of nonzero elements. In particular, from properties (1) and (2) it follows that the only signature of

an empty collection is~s = [0‚ 0‚ . . .], and that the only signature of a collection containing a single element

is~s = [1‚ 0‚ . . .]. Otherwise, two collections of the same size may have different signatures. From property

(3), wrapping an l-BFB palindrome collection (i.e., replacing each l-BFB palindrome b in the collection

with an (l - 1)-block rl - 1brl - 1) does not affect its signature.

Signatures can be ranked according to their lexicographic order. That is, say that~s < ~s 0 if there exists an

index d such that ~sd - 1 =~s 0d - 1 and sd < s0d, and say that ~sp~s0 if ~s < ~s 0 or ~s =~s 0. Lemma 2 below implies

that the signature series~sk + 1‚~sk‚ . . . ‚~s1 corresponding to the block collections series Bk + 1‚ Bk‚ . . . ‚ B1 in a

layered representation of a BFB palindrome is lexicographically nondecreasing.

Lemma 2 Let B be an l-block collection with a signature ~s. For any folding B0 of B and its corre-

sponding signature ~s 0‚~sp~s 0. In addition, for any signature ~s 0 such that (1) ~sp~s 0 and (2) ~s 0 is the lexi-

cographically minimal signature among all signatures of cardinality k~s 0k that meet (1), there exists a

folding B0 of B whose signature is ~s 0.

The proof of Lemma 2 follows from Claims 14 and 28 in Zakov et al. (2013) (Supporting Information). The

signatures corresponding to the four block collections in Figure 3b are ~s 4 = [0‚ 0‚ 1‚ 0‚ . . .]‚~s3 =
[1‚ - 1‚ 0‚ . . .]‚~s2 = [1‚ 0‚ - 1‚ 0‚ . . .], and~s1 = [1‚ 0‚ . . .], respectively. Observe that the cardinality of each

signature equals the size of the corresponding collection (i.e., the corresponding count in~n = [1‚ 5‚ 3‚ 4]), and

that~s l + 1p~s l for every 1 £ l < 4.

3.2. Valid signature series

Definition 3 A valid signature series for a vector ~n = [n1‚ n2‚ . . . ‚ nk] is a series of lexicographically

nonincreasing signatures ~s1‚~s2‚ . . . ‚~s k, satisfying k~s lk = nl for every 1plpk‚~s1p[1‚ 0‚ . . .], and

[0‚ 0‚ . . .]p~sk.

For convenience, we will sometimes consider the signatures [1‚ 0‚ . . .] and [0‚ 0‚ . . .] as fixed sentinel

additions at the beginning and ending of a valid signature series and mark them respectively by~s0 and~sk + 1. If~n
is a BFB count vector, there exists a BFB palindrome b with~n(b) = 2~n, and a corresponding collection series

B0 = bf g‚ B1‚ . . . ‚ Bk‚ Bk + 1 = ; in the layers representation of b. Lemma 2 implies that the corresponding

signature series for this collection series is a valid signature series for~n, since for every 0 £ l £ k, Bl is obtained

by applying a folding operation over Bl + 1 that can only increase the lexicographic signature rank, and a

wrapping operation that does not change the signature. On the other hand, if there exists a valid signature series

~s 0 = [1‚ 0‚ . . .]‚~s1‚ . . . ‚~s k‚~s k + 1 = [0‚ 0‚ . . .] for ~n, it is possible to generate a BFB palindrome b with

~n(b) = 2~n as follows. Run the schematic layered algorithm described above with respect to~n, where each time a

folding operation is applied it is such that yields the minimal signature increment with respect to its input and

output collections. Since~s(Bk + 1) =~sk + 1 = [0‚ 0‚ . . .]p~sk and k~s kk = nk, Lemma 2 implies that it is possible to

fold Bk + 1 into a (k + 1)-BFB palindrome collection of size nk, and that the lexicographically minimal signature

~s 0k of such a collection satisfies~sk + 1p~s 0kp~skp~sk - 1. Inductively, each generated block collection Bl in this

process has a corresponding signature~s 0l that satisfies~s 0lp~s lp~s l - 1, and from Lemma 2 it can be folded into the

next collection in the series Bl - 1 without a folding failure. We hence get the following conclusion:

Conclusion 4 A vector ~n is a BFB vector if and only if it has a valid signature series. Moreover, any

subsequence of a BFB vector is also a BFB vector, evident by the corresponding subseries of a valid

signature series for the full vector.

RECONSTRUCTING BFB ARCHITECTURES 583

For example, the vector~n = [3‚ 4] is a BFB vector, due to the valid signature series~s1 = [1‚ - 1‚ 0‚ . . .]‚~s2 =
[0‚ 0‚ 1‚ 0‚ . . .]. A corresponding BFB string may be obtained by AB BFB�! AB�B BFB�! AB�BB�B�A BFB�! AB�BB�B�AA.

An example for a vector that does not have a valid signature series is the vector~n = [4‚ 3]. The only signatures

with cardinality 4 that rank lexicographically between [0‚ 0‚ . . .] and [1‚ 0‚ . . .] are the signatures

[0‚ 0‚ 1‚ 0‚ . . .] and [0‚ 2‚ 0‚ . . .], and the only such signature with cardinality 3 is [1‚ - 1‚ 0‚ . . .]. The latter

signature does not precede lexicographically any of the two possible 4-cardinality signatures, therefore no valid

signature series for ~n exists.

A valid signature series for a given count vector, if exists, can be computed iteratively by processing the

counts in the vector one by one. This process can be done either by traversing the counts from n1 to nk, or

traversing them in a reversed order. Next, we describe this computation.

Let ~n = [n1‚ n2‚ . . . ‚ nk] be a BFB vector, and let 1 £ l £ k + 1. Define the right-maximal signature

R(~n1‚ l - 1) of the prefix ~n1‚ l - 1 = [n1‚ n2‚ . . . ‚ nl - 1] of ~n to be [1‚ 0‚ . . .] if l = 1, and otherwise to be the

lexicographically maximal signature~s l - 1 in some valid signature series~s1‚ . . . ‚~s l - 1 for ~n1‚ l - 1. Similarly,

define the left-minimal signature L(~nl‚ k) of the suffix ~nl‚ k = [nl‚ nl + 1‚ . . . ‚ nk] of ~n to be [0‚ 0‚ . . .] if

l = k + 1, and otherwise to be the lexicographically minimal signature ~s l in some valid signature series

~s l‚ . . . ‚~sk for ~nl‚ k.

Lemma 5 Let ~n = [n1‚ n2‚ . . . ‚ nk] be a BFB vector. For every 1 £ l0 £ l £ k + 1, L(~nl‚ k)pR(~n1‚ l - 1)‚
R(~n1‚ l - 1)pR(~n1‚ l0 - 1), and L(~nl‚ k)pL(~nl0‚ k).

Proof: We start by showing the first inequality in the lemma. If l = 1 or l = k + 1‚ L(~nl‚ k)pR(~n1‚ l - 1)
follows immediately. Otherwise, consider a valid signature series~s1‚~s2‚ . . . ‚~sk for ~n. Note that its prefix

~s1‚~s2‚ . . . ‚~s l - 1 is a valid signature series for~n1‚ l - 1, and its suffix~s l‚~s l + 1‚ . . . ‚~sk is a valid signature series

for ~nl‚ k. Thus, by definition, L(~nl‚ k)p~s lp~s l - 1pR(~n1‚ l - 1).
To show the second inequality in the lemma, let ~s1‚~s2‚ . . . ‚~s l - 1 be a valid signature series for ~n1‚ l - 1

such that ~s l - 1 = R(~n1‚ l - 1). Observe similarly as above that R(~n1‚ l - 1) =~s l - 1p~s l0 - 1pR(~n1‚ l0 - 1). The last

inequality in the lemma is shown symmetrically. -

The MIN-DECREMENT procedure (Algorithm 1) gets as an input a signature [0‚ 0‚ . . .]p~s and an

integer n ‡ 0, and returns the lexicographically maximal signature ~s 0 such that [0‚ 0‚ . . .]p~s 0p~s and

k~s 0k = n if such a signature exists, and otherwise it returns a fail message. Here, for an integer m s 0, the

notation dm represents the maximum integer such that m divides by 2dm . Thus, for example, d13 = d13�20 = 0,

and d - 12 = d - 3�22 = 2. The correctness of this computation is shown in the Appendix. Symmetrically, the

MIN-INCREMENT procedure gets as an input a signature~sp[1‚ 0‚ . . .] and an integer n ‡ 0, and returns

the lexicographically minimal signature ~s 0 such that ~sp~s 0p[1‚ 0‚ . . .] and k~s 0k = n if such a signature

exists, and otherwise it returns a fail message. The pseudocode for this procedure is given in the Appendix,

and its proof is symmetric to that of the MIN-DECREMENT procedure.

Algorithm 1: MIN-DECREMENT(~s‚ n)

Input: A signature [0‚ 0‚ . . .]p~s and an integer n ‡ 0.
Output: The lexicographically maximal signature [0‚ 0‚ . . .]p~s 0p~s such that k~s 0k = n, or the message

‘‘FAILED’’ if there is no such signature.
1 Let m = k~sk - n. If m = 0 then return ~s.
2

3 Else if there is an integer 0 £ d £ dm such that nqk~sd - 1k + 2d max - sd + 1‚ 0f g then
4 Let d be the maximum integer meeting the condition above. Initialize~s 0 so that

~s 0d - 1 =~sd - 1‚ and s0d = sd - 2 if d<dm‚ or s0d = sd - 1 if d = dm.

5 If nqk~s 0dk then set s0d + 1)
n - k~s 0

d
k

2d + 1 .
6

7 Else set s0d)
n - k~s 0

d - 1
k

2d .
8

9 If [0‚ 0‚ . . .]p~s 0 then return ~s 0,
10 else return ‘‘FAILED’’.

11 Else return ‘‘FAILED’’.

584 ZAKOV AND BAFNA

Lemma 6 If~n1‚ l - 1 = [n1‚ . . . ‚ nl - 1] is a BFB vector,~s = R(~n1‚ l - 1), and MIN-DECREMENT(~s‚ nl) does not

fail and returns a signature ~s 0, then ~s 0 is the right-maximal signature for the BFB vector ~n1‚ l = [n1‚ . . . ‚

nl - 1‚ nl]. Symmetrically, if ~nl + 1‚ k = [nl + 1‚ . . . ‚ nk] is a BFB vector, ~s = L(~nl + 1‚ k), and MIN-IN-

CREMENT(~s‚ nl) does not fail and returns a signature~s 0, then~s 0 is the left-minimal signature for the BFB

vector ~nl‚ k = [nl‚ nl + 1‚ . . . ‚ nk].

Proof: We show the first part of the lemma, where the second part is shown symmetrically. First, note

that the constructed vector ~n1‚ l is indeed a BFB vector, due to the corresponding valid signature series

obtained by adding ~s 0 to a valid signature series for ~nl - 1 whose last signature is ~s. Note that

kR(~n1‚ l)k = k~s 0k = nl. From Lemma 5 R(~n1‚ l)p~s, and since ~s 0 = MIN-DECREMENT(~s‚ nl) it follows that

R(~n1‚ l)p~s 0. From the maximality of R(~n1‚ l)‚ R(~n1‚ l) =~s 0. -

Lemma 6 implies a simple algorithm for deciding if a given vector ~n is a BFB vector. Such an algorithm

tries generating a valid signature series for ~n either by starting from the first signature~s0 = [1‚ 0‚ . . .], and

generating each signature~sl by applying the MIN-INCREMENT procedure with respect to~s l - 1 and nl, or

by starting from the last signature~sk + 1 = [0‚ 0‚ . . .], and generating each signature~sl by applying the MIN-

DECREMENT procedure with respect to ~s l + 1 and nl. If the MIN-INCREMENT or MIN-DECREMENT

procedures fail at some stage, then the algorithm reports~n not to be a BFB vector. Otherwise, the algorithm

succeeds to generate a valid signature series for ~n, and reports ~n to be a BFB vector. As a matter of fact,

Algorithm DECISION-BFB in Zakov et al. (2013) is equivalent to the right-to-left version of the above

algorithm.

3.3. Solving the exhaustive BFB variants

In this section, let W be a weight function, and 0 < g £ 1 some weight threshold. Let 0 £ l £ k, and

consider the set of all signature-weight pairs of the form ÆR(~n1‚ l)‚ W(~n1‚ l)æ such that~nl = [n1‚ n2‚ . . . ‚ nl] is a

BFB vector and W(~n1‚ l)qg. Say that the pair Æ~s‚ wæ within this set dominates the pair Æ~s 0‚ w0æ if~s 0p~s and

w0 £ w. Define the l-th boundary curve Cl with respect to W and g as the maximal subset of these pairs

satisfying that no pair in Cl dominates another pair in Cl, and note that Cl is unique. Traversing the pairs in

Cl from lowest to highest lexicographic signature rank, the series of signature values strictly increases,

while the series of weight values strictly decreases, yielding a steplike curve (Fig. 4). Given W and g,

Algorithm 2 generates boundary curves Cl for every 0 £ l £ k, which will later be exploited by algorithms

for the BFB exhaustive vector and string search variants.

Proof: [Algorithm 2] Note that a pair in C0 corresponds to a right-maximal signature and a weight of

an empty vector. By definition, the only such pair is the pair Æ[1‚ 0‚ . . .]‚ 1æ, and the algorithm correctly sets

C0 to contain this single pair (line 1). Now, assuming inductively the algorithm has computed correctly the

curve Cl - 1, we prove it also computes correctly Cl. It is clear from lines 6 and 7 of the algorithm that no

pair in the set Cl computed by the algorithm dominates another pair in this set. It therefore remains to show

that after the l-th loop iteration was executed: (1) for every BFB vector ~n1‚ l = [n1‚ . . . ‚ nl] with W(~n1‚ l)qg
there exists a pair Æ~s‚ wæ 2 Cl, which dominates ÆR(~n1‚ l)‚ W(~n1‚ l)æ, and (2) for every pair Æ~s‚ wæ 2 Cl there

exists some BFB vector ~n1‚ l = [n1‚ . . . ‚ nl] such that ~s = R(~n1‚ l) and w = W(~n1‚ l).

Algorithm 2: BOUNDARY-CURVES (W, g)

Input: A weight function W and a weight g.

Output: Boundary curves Cl for every 0 £ l £ k with respect to W and g.

1 Set C0) Æ[1‚ 0‚ . . .]‚ 1æf g.
2 For l) 1 to k do

3 Set Cl) ;.
4 For each n and Æ~s 0‚ w0æ 2 Cl - 1 s.t. w0 $ wl,n ‡ g and MIN-DECREMENT (~s 0‚ n) does not fail do

5 Let~s be the output of MIN-DECREMENT (~s 0‚ n), and let w = w0 � wl‚ n.

6 If Æ~s‚ wæ is not dominated by any pair in Cl then

7 Add Æ~s‚ wæ into Cl, and remove from Cl all pairs dominated by Æ~s‚ wæ.
8 Return C0‚ C1‚ . . . ‚ Ck

� �
.

RECONSTRUCTING BFB ARCHITECTURES 585

We start by showing (1). Let ~n1‚ l = [n1‚ . . . ‚ nl - 1‚ nl] be a BFB vector with W(~n1‚ l)qg, and consider its

prefix ~n1‚ l - 1 = [n1‚ . . . ‚ nl - 1]. Observe that W(~nn‚ l - 1) = W(~n1‚ l)
wl‚ nl

qg. As ~n1‚ l - 1 is also a BFB vector, the

inductive assumption implies that Cl - 1 contains a pair Æ~s 0‚ w0æ that dominates ÆR(~n1‚ l - 1)‚ W(~n1‚ l - 1)æ. From

Lemma 5, R(~n1‚ l)pR(~n1‚ l - 1)p~s 0. Since kR(~n1‚ l)k = nl, running MIN-DECREMENT (~s 0‚ nl) does not fail,

and returns a signature~s such that R(~n1‚ l)p~sp~s 0 and k~sk = nl. As w0 � wl‚ nl
qW(~n1‚ l - 1) � wl‚ nl

= W(~n1‚ l)qg,

it follows that the algorithm runs the code in lines 5–7 with respect to nl and Æ~s 0‚ w0æ. In particular, the

algorithm updates Cl with the pair Æ~s‚ wæ for w = w0 � wl‚ nl
qW(~n1‚ l) (lines 6–7). Therefore, at the end of the

l-th iteration, either Cl contains Æ~s‚ wæ, or it contains some other signature-weight pair that dominates Æ~s‚ wæ,
and so it contains a pair that dominates ÆR(~n1‚ l)‚ W(~n1‚ l)æ.

To show (2), assume that Cl contains a pair Æ~s‚ wæ. This pair was added to Cl in line 7 of the algorithm,

which means there exists some pair Æ~s 0‚ w0æ 2 Cl - 1 such that for nl = k~sk‚~s = MIN-DECREMENT(~s 0‚ nl),
and w = w0 � wl‚ nl

qg. From the inductive assumption, there is BFB vector ~n1‚ l - 1 = [n1‚ . . . ‚ nl - 1] such that

~s 0 = R(~n1‚ l - 1) and w0 = W(~n1‚ l - 1). For the vector~n1‚ l = [n1‚ . . . ‚ nl - 1‚ nl], lemma 6 implies that~s = R(~n1‚ l). In

addition, W(~n1‚ l) = w, and the lemma follows. -

In Appendix section 6.2 we show that the number an of all signatures with cardinality n satisfies

an = 2Y(log2 n). Since no two pairs in a boundary curve share the same signature, the number of pairs in a

boundary curve with cardinality n is bounded by 2O(log2 n). It would be quite realistic to assume that for a

segment l and its corresponding most likely count n�l , all counts n such that wl,n ‡ g satisfy n = O((n�l)x) for

some constant x. This implies that the total number of different elements in a boundary curve is bounded by the

subexponential term O((n�l)x) � 2O(log2 n�
l
) = 2O(log2 n�

l
). In particular, the number of candidates n‚ Æ~s 0‚ w0æ ex-

amined in line 4 of Algorithm 2 is O((n�l)x) � 2O(log2 n�
l - 1

). Over each such candidate, the condition in line 6 is

examined, and it may induce at most one insertion of a pair into Cl, and possibly one future deletion from Cl

(if the inserted pair is dominated by a pair that is inserted into Cl later on). It is possible to maintain the

pairs in Cl sorted, and implement the condition check in line 6 and insertions and deletions from Cl in line 7

in O(log jClj) = O(log2 n�l) time per operation, for example, using a self-balancing binary search tree

(Knuth, 1998). Thus, the l-th iteration of the algorithm runs in O((n�l)x(log2 n�l)) � 2O(log2 n�
l - 1

) =
2O(maxflog n�

l
‚ log2 n�

l - 1
g) time, and the total running time of the algorithm is

Pk
l = 1 2O(log2 n�

l
).

Next, we present Algorithm 3 for the BFB exhaustive vector search variant. The algorithm processes

the segments of the input one by one, starting from the k-th segment down to the first segment. The

notation [n‚~n] is used for denoting a vector whose first element is the integer n, and its remaining suffix is

the vector ~n.

0

1

W
ei

g
h

t

Signature [1, 0, ...][0, 0, ...]

FIG. 4. A boundary curve. Points correspond to pairs of the form Æ~s‚ wæ, with x-coordinate reflecting the lexico-

graphic rank of ~s, and y-coordinate equaling w. Blue points belong to the boundary curve, and green points are

dominated by points on the curve.

586 ZAKOV AND BAFNA

Proof: [Algorithm 3] By definition, if the boundary curve Ck is empty, it implies there is no BFB vector~n =
[n1‚ . . . ‚ nk] with W(~n)qg. In this case, the algorithm correctly reports there is no solution to the input (line 1).

Otherwise, we show for every 1 £ l £ k + 1 that the following invariant holds: After Ql is fully computed,

Ql contains ~nl‚ k = [nl‚ . . . ‚ nk] if and only if ~nl‚ k is a suffix of some BFB vector ~n = [n1‚ . . . ‚ nk] of weight

W(~n)qg. In particular, this invariant proves that the returned value Q1 (line 9) is indeed the solution for the

BFB exhaustive vector search variant, and so it only remains to establish the correctness of the invariant.

Algorithm 3: EXHAUSTIVE-VECTOR-SEARCH (W, g)

Input: A weight function W and a weight 0 < g £ 1.

Output: All BFB vectors ~n = [n1‚ n2‚ . . . ‚ nk] satisfying W(~n)qg.

1 Generate all boundary curves C0‚ C1‚ . . . ‚ Ck with respect to W and g using Algorithm 2. If Ck is empty,

return the message ‘‘NO SOLUTION’’ and halt.

2 Set Qk + 1 to be the collection containing a single empty vector.

3 For l) k down to 1 do

4 Set Ql) ;.
5 For each ~nl + 1‚ k 2 Ql + 1 and count n such that W([n‚~nl + 1‚ k])qg and MIN-INCREMENT

(L(~nl + 1‚ k)‚ n) does not fail do

6 Let ~nl‚ k = [n‚~nl + 1‚ k], and let ~s = MIN-INCREMENT(L(~nl + 1‚ k)‚ n).
7 If there exists a pair Æ~s0‚ w0æ 2 Cl - 1 such that ~sp~s 0 and w0 �W(~nl‚ k)qg then

8 Add ~nl‚ k to Ql.

9 Return Q1.

For l = k + 1, the fact that Qk + 1 contains a single empty suffix (line 2) derives the invariant in a

straightforward manner. Otherwise, assuming inductively the invariant holds with respect to Ql + 1, we

prove it also holds with respect to Ql.

Let ~n = [n1‚ . . . ‚ nk] be a BFB vector of weight W(~n)qg, and consider its two suffixes

~nl‚ k = [nl‚ nl + 1 . . . ‚ nk] and ~nl + 1‚ k = [nl + 1 . . . ‚ nk]. From the inductive assumption, ~nl + 1‚ k 2 Ql + 1. From

Lemma 6, ~s = L(~nl‚ k) satisfies that ~s = MIN - INCREMENT(L(~nl + 1‚ k)‚ nl). Since W(~nl‚ k)qW(~n)qg, the

condition in line 5 holds, and lines 6–8 are executed with respect to ~nl‚ k and ~s. Note that the prefix

~n1‚ l - 1 = [n1‚ . . . ‚ nl - 1] of ~n is a BFB vector with W(~n1‚ l - 1)qW(~n)qg. From the definition of Cl - 1, there

exists a pair Æ~s 0‚ w0æ 2 Cl - 1 that dominates the pair ÆR(~n1‚ l - 1)‚ W(~n1‚ l - 1)æ. From Lemma 5,

L(~nl‚ k)pR(~n1‚ l - 1)p~s 0. In addition, w0 �W(~nl‚ k)qW(~n1‚ l - 1) �W(~nl‚ k) = W(~n)qg, and so the condition in

line 7 holds, and the algorithm adds ~nl‚ k into Ql in line 8.

For the other direction of the invariant, let ~nl‚ k = [nl‚ nl + 1‚ . . . ‚ nk] 2 Ql. Due to the manner it was

constructed (lines 5–6), its suffix~nl + 1‚ k = [nl + 1‚ . . . ‚ nk] is in Ql + 1, and from Lemma 6,~nl‚ k is a BFB vector

with L(~nl‚ k) =~s. From line 7, there exists a pair Æ~s 0‚ w0æ 2 Cl - 1 such that~sp~s 0 and w0 �W(~nl‚ k)qg, and so

from the definition of Cl - 1 there exists a BFB vector ~n1‚ l - 1 = [n1‚ . . . ‚ nl - 1] for which R(~n1‚ l - 1) =~s 0 and

W(~n1‚ l - 1) = w0. The concatenation of ~n1‚ l - 1 and ~nl‚ k gives the vector ~n = [n1‚ . . . ‚ nl - 1‚ nl‚ . . . ‚ nk], whose

weight satisfies W(~n) = W(~n1‚ l - 1) �W(~nl‚ k) = w0 �W(~nl‚ k)qg. In addition, ~n is a BFB vector, due to the

corresponding valid signature series obtained by concatenating a valid signature series for ~n1‚ l - 1 that ends

with ~s 0 and a valid signature series for ~nl‚ k that starts with ~s, concluding this direction of the proof. -

Finally, we describe an algorithm for the exhaustive BFB string search variant. This algorithm applies a

similar approach to the exhaustive vector search algorithm in order to produce all BFB strings whose count

vector weights are at least g. The pseudocode for this computation is given in Algorithm 4. It starts by

generating signature curves exactly as done by Algorithm 3. Then, in each iteration l, instead of computing

a set Ql of count vectors, the algorithm computes a set Pl of l-block collections. The initial collection Pk + 1

contains a single empty (k + 1)-block collection. In the l-th iteration, for each (l + 1)-block collection

Bl + 1 ˛ Pl + 1, all possible foldings of Bl + 1 are enumerated, and each such folding is rendered into an l-block

collection Bl as described in section 3.1 (the term ‘‘wrapped folding’’ in line 5 of the algorithm refers to

these l-block collections). The notation W (Bl) is used for denoting the weight of the vector ~nl‚ k such that

2~nl‚ k is the summation of count vectors of all strings in Bl. The signature and weight of Bl are examined

against Cl - 1 similarly as done in line 7 of Algorithm 3, and if meeting the condition Bl is added into Pl.

After P1 is computed, all foldings of collections B1 in P1 into 1-BFB palindromes are enumerated, and all

RECONSTRUCTING BFB ARCHITECTURES 587

half-length prefixes of such palindromes are reported. Algorithm 4 can be proven similarly to Algorithm 3,

using the following invariant: At the end of the l-th iteration, Pl contains all l-block collections Bl such that

there exists some 1-BFB palindrome b in which the l-th layer’s block collection is Bl, and the weight of the

vector ~n such that ~n(b) = 2~n satisfies W(~n)qg.

Algorithm 4: EXHAUSTIVE-STRING-SEARCH (W,g)

Input: A weight function W and a weight 0 < g £ 1.

Output: All BFB strings a satisfying W(~n(a))qg.

1 Generate all boundary curves C0‚ C1‚ . . . ‚ Ck with respect to W and g using Algorithm 2. If Ck is empty,

return the message ‘‘NO SOLUTION’’ and halt.

2 Set Pk + 1 to be the collection containing a single empty collection Bk + 1.

3 For l) k down to 1 do

4 Set Pl) ;.
5 For each Bl + 1 ˛ Pl + 1 and for every wrapped folding Bl of Bl + 1 do

6 If there exists a pair Æ~s‚ wæ 2 Cl - 1 such that ~s(Bl)p~s and w $ W(Bl) ‡ g then

7 Add Bl to Pl.

8 For each B1 ˛ P1 and for every folding of B1 into a collection with a single 1-BFB palindrome aaf g do

9 Report a to be a BFB string with W(~n(a))qg.

4. RESULTS

In order to test our algorithms we have used cancer data taken from the Cancer Genome Project dataset

(Bignell et al., 2010). This data covers aCGH samples (Affymetrix Genome-Wide Human SNP Array 6.0)

from 746 human cancer cell lines. Segmentation and segment copy numbers are as reported by Bignell

et al. (2010), who used the PICNIC software (Greenman et al., 2010) for this analysis. In total, the dataset

contains about 35,000 chromosomal arms (746 samples, 23 or 24 chromosomes per sample, 2 arms per

chromosome), each arm is segmented, and each segment is assigned an estimated copy number based on

the observed aCGH data. As shown in Zakov et al. (2013), short BFB-like count vectors have a high

probability to emerge even when the genome was rearranged with mechanisms different from BFB. Thus,

in order to detect significant BFB evidence we have filtered the set of chromosomal arms to include only

arms with at least eight consecutive segments such that no adjacent segments share the same copy number

estimation. After this filtration, the remaining subset included 6589 chromosomal arms. As the estimated

counts reflect the expected segment copy numbers in all copies of the chromosome in the sample, we have

corrected the counts by reducing p - 1 from each count, where p is the ploidy (i.e., the number of copies) of

the chromosome in the sample. Typically p = 2, but since these are heavily rearranged cancer genomes,

chromosomal losses and whole chromosomal duplications are not rare. We therefore allowed the value of p

to vary between 1 and 5, and run the BFB analyses for each value.

As currently no analysis tool available produces count weights, we have derived such weights from the expected

counts reported by PICNIC (after correcting for ploidy). Specifically, for a segment whose observed count is n, the

weight of a count n0 was defined by
Pr(njn0)
Pr(njn) , where Pr(xjk) = kxe - k

x! is the probability to observe the value x for a

random variable distributing according to the Poisson distribution with parameter k. For each of the

obtained weight functions, we used the DISTANCE-BFB algorithm from Zakov et al. (2013) to report all

longest BFB subvectors with weight at least g = 0.7. Out of the 6589 samples, 54 samples had for at least

one ploidy value 1 £ p £ 5 a BFB subvector of length at least 8. Some samples had long BFB subvectors

with respect to more than one ploidy value, and the total number of obtained BFB vectors was 86.

Then, we considered the segment coordinates and weight functions corresponding to the obtained

subvectors and ran Algorithm 3 in order to find all BFB vectors of weights at least g = 0.7 with respect to

these weight functions. For these 86 instances, a total number of 19154 heavy BFB vectors were found,

with an average of 222 solutions per instance. This reveals an interesting property of the problem when

applied over this data: the vast majority of samples, 6535 out of 6589, cannot be explained by any BFB

count vector (and thus are unlikely to be obtained from BFB), yet each one of those 54 samples that can be

explained by BFB has about several tens or hundreds of corresponding count vectors.

588 ZAKOV AND BAFNA

The above analysis was run by two variants of our algorithm—the IS variant described by Algorithm 3,

and a variant that runs a similar procedure without applying the IS optimization (essentially, it runs the

same code as Algorithm 3, with the exceptions that it does not generate the boundary curves in line 1 and

does not apply the condition in line 7 before adding new elements to collections Ql). The disadvantage of

the non-IS variant is in that sets of the form Ql maintains BFB vectors~nl‚ k = [nl‚ . . . ‚ nk], which may not be

suffixes of some BFB vectors~n = [n1‚ . . . ‚ nk] of weight at least g. To measure the gain of the IS algorithm,

we count the number of signature increment attempts the algorithms perform (line 5). On average, the IS

variant performed 57-fold less increments, with a total number of 5672346 increment attempts over all 86

vectors, versus 325343441 for the non-IS algorithm. While the IS variant has a clear efficiency advan-

tage over the non-IS variant, this advantage might be considered more modest than expected. A possible

reason for that is that maximum copy number values reported in Bignell et al. (2010) were limited to

14, even when the data suggests higher copy numbers. In general, higher copy numbers usually imply

a higher number of alternative heavy counts, which in turn induce a higher number of possible heavy

count vectors. For example, when comparing the two algorithms over the synthetic count vector ~n = [3, 8,

111, 8, 5, 150, 11, 170, 4, 53, 100, 75, 49, 10, 42, 18], using the same Poisson-based weights as described

above and requiring that output vectors weigh at least g = 0.85, the non-IS algorithm runs 218 seconds1 and

performs over 20 million signature increments, whereas the IS algorithm runs 120 milliseconds and

performs 635 signature increments. Both algorithms return exactly the same output—a set of 18 BFB

vectors. Other simulated inputs can cause memory explosion for the non-IS variant, while being handled

efficiently by the IS variant.

5. DISCUSSION AND CONCLUSIONS

The problem of detecting breakage fusion bridge is challenging, but significant progress has been made

in the last few years. Our work suggests that while rare, BFB does occur in tumor-derived cell lines and also

in primary tumors. In this work, we describe algorithms that can be used to enumerate all possible BFB

architectures given uncertain copy number data.

The results of our analyses heavily depend on the input weights, which in turn depend on separated

analyses applied to biological data. While we used here a simple Poisson-based model in order to render

fixed available count estimations into weight functions, it is clear that more realistic weighing can be

applied. Examining Figure 2, for example, one can observe that different segments demonstrate different

variance in signal intensities, implying that some count estimates are more reliable than others. In-

corporating segment lengths and signal variance information when choosing count weights is likely to

produce more meaningful weights and improve the quality of the analyses output.

Different measurements can yield other types of BFB evidence. For example, deep sequencing exper-

iments can sequence reads spanning genomic breakpoints. In a BFB modified genome, it is expected that

many of these breakpoints reflect fold-back inversions (i.e., concatenations between reference segments and

their inverted form), while such fold-back patterns are less common in other rearrangement mechanisms

(Campbell et al., 2010). Thus, identification of high or low fold-back pattern frequencies can support or

weaken the conjecture BFB has occurred, respectively. Such evidence is less frequent in currently available

data, as reliable breakpoint information requires sequencing to a relatively high depth of coverage (while

copy number data can be obtained also from sequencing with a lower depth of coverage or from aCGH

experiments). When given though, such information can be integrated and improve the quality of BFB

calling (Zakov et al., 2013).

As a last note, we would like to point out the fact that the concept of Informed Search (IS) was used here

in a slightly unorthodox manner. Generally, IS methods attempt to reduce computation time in practice by

exploiting additional information about the search space (given as an input to the algorithm or such that can

be efficiently computed). Typically, such methods apply heuristic information for prioritizing the order in

which different regions of the search space are examined to accelerate the search for a single solution to the

input instance (e.g., the A* and AO* algorithms in Pearl, 1984). In contrast, the two search algorithms

1Running time was measured for an intel Core i7 processor with Microsoft Windows 7 operating system; code is
implemented in Java.

RECONSTRUCTING BFB ARCHITECTURES 589

described in this article exploit exact information encapsulated in the computed boundary curves, utilize it

for pruning the search space from regions that are guaranteed to contain no solution to the given instance,

and thus accelerate the search for all solutions.

6. APPENDIX

In this Appendix we complete some of the technical details omitted above. We show how BFB palindromes

are composed recursively from shorter palindromes, describe how to derive signatures of BFB palindrome

collections, show there are 2Y(log2 n) different signatures of cardinality n, prove the MIN-DECREMENT

algorithm correctness, and give the pseudocode for the MIN-INCREMENT algorithm. Most of the material

in this section appears in Zakov et al. (2013) and is given here for completeness, except for the lower bound

over the number of signatures with a given cardinality, which is first established here.

6.1. Recursive decomposition of BFB palindromes

Definition 7 A string a is a convexed l-palindrome if a = e, or a = cbc, c is a convexed l-palindrome,

b is an l-BFB palindrome, and top(c) < top(b).

Thus, for example, the following strings are all convexed 1-palindromes: c = eA�Ae [a 1-block with

top(c) = 1], c0 = A�AAB�B�AA�A = cbc [for the 1-bock b = AB�B�A, with top(c0) = top(b) = 2], and c00 =
A�AAB�B�AA�AABC�C�BBC�C�B�AA�AAB�B�AA�A = c0b0c0 [for the 1-BFB palindrome b0 = ABC�C�BBC�C�B�A,

with top(c00) = top(b0) = 3]. Note that every l-BFB palindrome a is also a convexed l-palindrome, since

either a = e or a = eae.

Claim 1 in Zakov et al. (2013) A string a is an l-BFB palindrome if and only if a = e, a is an l-block, or

a = bcb, such that b is an l-BFB palindrome, c is a convexed l-palindrome, and top(c) £ top(b).

Therefore, for the 1-BFB palindrome b = AB�B�A and the convexed 1-palindrome c = A�AAB�B�AA�A, the

string a = bcb = AB�B�AA�AAB�B�AA�AAB�B�A is a 1-BFB palindrome. A BFB process that yields this string

can be, for example, a1‚ 2 = AB BFB�! AB�B�A BFB�! AB�B�AA BFB�! AB�B�AA�AAB BFB�! AB�B�AA�AAB�B�AA�AAB�B�A.

More generally, the above claim lays the rules for constructing BFB palindromes by concatenating shorter

BFB palindromes and convexed palindromes, rather than applying a sequence of BFB cycles. Its proof is

given in Zakov et al. (2013). These composition rules are used in order to enumerate all foldings of a given

l-BFB palindrome collection by the exhaustive BFB string search algorithm.

6.2. Signature computation and counting

Let B = m1b1‚ m2b2‚ . . . ‚ mqbq

� �
be an l-BFB palindrome collection. Define mod2 (B) to be the

subcollection of B containing a single copy of each distinct element with an odd count in B. For example,

for B = {2ß1, ß2, 5ß3, 6ß4}, mod2 (B) = {ß2, ß3}. Define B
2

=
�

º m1

2 ß b1‚ º m2

2 ß b2‚ . . . ‚ º mq

2 ß bq

�
. In the above

example, B
2

= b1‚ 2b3‚ 3b4f g. Observe that B = mod2(B) + 2(B
2
).

In order to compute the signature of B, we first recursively decompose it into subcollections.

Define B0 = B. For every d ‡ 0, define Ld = mod2 (Bd), td = minb2Ld
top(b) or td = N when Ld = ;,

Hd = b 2 (Bd - Ld) : top(b)qtdf g, and Bd + 1 = Bd - Ld - Hd

2
. Now, the signature ~s =~s(B) = [s0‚ s1‚ . . .] is com-

puted as follows: s0 = jL0j, and sd = jLdj - jLd - 1j - jHd - 1j
2

+ max sd - 1‚ 0f g for every d > 0. Table 1 gives a

signature computation example for a collection B = {2b1,5b2,6b3,2b4,4b5}. We assume that elements are

ordered with decreasing top values, that is top(bi) ‡ top(bi + 1) for i = 1,2,3,4. It can be asserted that the

signature cardinality equals to the collection size: k~s(B)k =
P1

d = 0 2dabs(sd) = 1 � 1 + 2 � 1 + 4 � 2 +
8 � 1 = 19 = jBj.

Next, we show how to count the number of different signatures with a given cardinality. The only

signature with cardinality 0 is the signature [0‚ 0‚ . . .]. In a signature~s with cardinality k~sk > 0 there must

be at least one nonzero element. It can be asserted from the above signature definition that the first nonzero

element in a signature must be positive. Nevertheless, we will relax this requirement and assume a

signature can be any series of integers. Let bn denote the number of such relaxed signatures of cardinality n,

and let an denote the number of signatures of cardinality n in which the first nonzero element is positive.

The only signatures with cardinality 1 are the signatures [1‚ 0‚ . . .] and [- 1‚ 0‚ . . .]. Therefore, a0 = a1 = 1

590 ZAKOV AND BAFNA

and b0 = 1,b1 = 2. With the exception of n = 0, it is simple to observe that an = bn

2
, for example, by

observing that any signature ~s of the latter kind can be uniquely matched to a pair of signatures of the

former kind—~s itself, and the signature~s 0 in which all elements have the same absolute values as in~s and

opposite signs.

For n > 1, partition the set of all signatures~s = [s0‚ s1‚ . . .] with k~sk = n into two subsets: signatures with

abs(s0) > 1, and signatures with abs(s0) £ 1. Every signature ~s in the first group corresponds to a unique

signature~s 0 of cardinality n - 1, where s00 = s0 - 1 if s0 > 1 and s00 = s0 + 1 if s0 < - 1, and all other elements

in ~s 0 equal to the corresponding elements in ~s. Every signature ~s in the second group corresponds to a

unique signature~s 0 of cardinality º n
2ß, which is obtained by removing from~s its first element (i.e., setting

s0d = sd + 1 for every d ‡ 0). Therefore, the sizes of these groups are bn - 1 and bºn
2ß, respectively, and so

bn = bn - 1 + bºn
2ß. As an = bn

2
, we get that

an = an - 1 + aºn
2ß‚ (1)

with the initial terms a0 = a1 = 1. The series {an} is cataloged in the On-Line Encyclopedia of Integer

Sequences (OEIS), entry A033485 (Sloane, 2007). Next, we show subexponential lower and upper bounds

over an.

Claim 8 The series {an} satisfies an = 2Y(log2 n) for every integer n ‡ 0.

Proof: To show an upper bound, observe that for~s = [s0‚ s1‚ . . .] with k~s 0k = n it immediately follows

that abs(sd) £ n
2d for every d ‡ 0, and in particular sd = 0 for d > log n. For d £ log n, - n

2d psdp n
2d, and so

it is possible to represent sd using log n - d + 2 bits. Thus, the number of bits needed for representing~s can

be bounded by
P

0pdp log n(log n - d + 2)p log2 n, and the total number of different signatures with car-

dinality n is at most 2log2 n.

A lower bound over an is next given by showing that anq2
1
4

log2 n. For n < 4 the inequality can be asserted

in a simple manner. For n ‡ 4, assuming inductively that an0q2
1
4 log2 n0 for every n0 < n, we show that

anq2
1
4

log2 n. First, observe that an = an - 1 + aºn
2ß = an - 2 + aºn - 2

2 ß + aºn
2ßqan - 2 + 2aºn - 2

2 ß. When n divides by 4,

anqan - 2 + 2an - 2
2

qan - 4 + 2an - 4
2

+ 2an - 2
2
qan - 4 + 4an - 4

2

qan - 6 + 2an - 6
2

+ 4an - 4
2
qan - 6 + 6an - 6

2

..

.

qan
2
+

n

2
� an

4

From the inductive assumption, we get that anq n
2
� an

4
q2log (n) - 1 � 21

4
(log2 (n

4
)) = 2log (n) - 1 + 1

4
(log (n) - log (4))2

=
2log (n) - 1 + 1

4
(log2 (n) - 4 log (n) + 4) = 2

1
4

log2 (n). When n divides by 4 with a reminder of 1, 2, or 3, the inequality is

proven similarly. -

6.3. The MIN-INCREMENT and MIN-DECREMENT procedures

We next turn to prove the correctness of the MIN-DECREMENT procedure, and give the pseudocode of

the symmetric MIN-INCREMENT procedure. We start by showing in Lemma 9 an elementary property of

signatures, and then use this property to derive the procedures’ implementation.

Table 1. Signature Computation

d Bd Ld Hd sd

0 {2b1, 5b2, 6b3, 2b4, 4b5} {b2} {2b1, 4b2} 1

1 {3b3, b4, 2b5} {b3, b4} {2b3} - 1

2 {b5} {b5} ; - 2

3 ; ; ; - 1

4 ; ; ; 0
..
. ..

. ..
. ..

. ..
.

RECONSTRUCTING BFB ARCHITECTURES 591

Lemma 9 Let ~s and ~s 0 be two signatures, such that k~sk - k~s 0k = m 6¼ 0. Then, there exists an index

0 £ d £ dm such that sd 6¼ s0d. In addition, for the minimum such index d, sd - s0d is even when d < dm, and

sd - s0d is odd when d = dm.

Proof: By definition, m does not divide by 2dm + 1, and so

m modulo 2dm + 1 = (k~sk - k~s 0k) modulo 2dm + 1

=
X1
i = 0

2iabs(si) -
X1
i = 0

2iabs(s0i)

 !
modulo 2dm + 1

=
Xdm

i = 0

2iabs(si) -
Xdm

i = 0

2iabs(s0i)

 !
modulo 2dm + 1

= (k~sdm
k - k~s 0dm

k) modulo 2dm + 1 6¼ 0‚

therefore, there must be an index 0 £ d £ dm such that sd 6¼ s0d . Let d be the minimum such index (where

~sd - 1 =~s 0d - 1). Similarly as above,

m modulo 2d + 1 = (k~sdk - k~s 0dk) modulo 2d + 1

= (2d(abs(sd) - abs(s0d))) modulo 2d + 1:

Now, if d < dm then m modulo 2d + 1 = 0, therefore abs(sd) - abs(s0d) must be even, and in particular

sd - s0d is even. If d = dm, m modulo 2d + 1 s 0, abs(sd) - abs(s0d) must be odd, and in particular sd - s0d is

odd. Next, we show the correctness of the MIN-DECREMENT procedure (Algorithm 1). -

Proof: [MIN-DECREMENT] First, note that if k~sk = n, then~s satisfies the requirements on the output

of the procedure, and due to line 1 in the procedure ~s is indeed the returned signature.

Otherwise, assume there exists a signature ~s� such that ~s�p~s‚ k~s�k = n, and ~s� is the lexicographically

maximal signature among all signatures satisfying these requirements. For this purpose, we do not make the

assumption that [0‚ 0‚ . . .]p~s�. We will show that if~s� exists then the signature~s 0 computed in lines 3–5 of

the procedure equals to~s�, and that otherwise a fail message is returned in line 7. Note that when~s� exists

yet ~s� < [0‚ 0‚ . . .], the procedure returns a fail message in line 6.

Under the assumption~s� exists, the value of m computed line 1 is m = k~sk - n = k~sk - k~s�k. From Lemma

9, there exists an index 0 £ d* £ dm such that ~sd� - 1 =~s�d� - 1, and sd� 6¼ s�d� . Since ~s�p~s, it must hold

that s�d� < sd� , and so s�d�psd� - 1. Therefore, n = k~s�kqk~s�d�k = k~s�d� - 1k + 2d�abs(s�d�)qk~sd� - 1k + 2d�

max - sd� + 1‚ 0f g. In particular, d* satisfies the condition in line 2. Consequentially, if the condition in line

2 does not hold, it contradicts the existence of~s�, and the procedure indeed returns a fail message in this

case (line 7).

Next, assume the condition in line 2 is met, and let 0 £ d £ dm be the maximum index satisfying

nqk~sd - 1k + 2d max - sd + 1‚ 0f g, as selected in line 3. Thus, d ‡ d*. Denote d = 1 if d = dm, and d = 2 if

d < dm. We will consider separately the two cases of computing the signature~s 0 in lines 3–5. In both cases,

the prefix ~s 0d - 1 of ~s 0 is set to be identical to the prefix ~sd - 1 of ~s.

Case 1: ~s 0 is computed according to lines 3 and 4. In this case, s0d is set to sd - d in line 3, and s0d + 1 is set

to
n - k~s 0

d
k

2d + 1 in line 4. All values s0i for i > d + 1 are implicitly set to zeros. Also, the condition nqk~s 0dk holds in

line 4, in particular s0d + 1 = n - k~s 0
d
k

2d + 1 q0, and so abs (s0d + 1) = s0d + 1. Observe that~s 0p~s (since ~s 0d - 1 =~sd - 1 and s0d
< sd), and that k~s 0k = k~s 0dk + 2d + 1 abs(s0d + 1 = k~s 0dk + n - k~s 0dk = n.

By definition,~s 0p~s�p~s. Since~s 0d - 1 =~sd - 1, it follows that~s 0d - 1 =~s�d - 1. In addition, since d* £ d and since

s�d� < sd� , it must be that d = d*. From Lemma 9, s�dpsd - d, and since sd - d = s0dps�dpsd - d it follows

that s0d = s�d, thus ~s 0d =~s�d. Finally, since s�d + 1p abs(s�d + 1) = k~s
�
d + 1
k - k~s �

d
k

2d + 1 p n - k~s 0
d
k

2d + 1 = s0d + 1, it follows that

s0d + 1 = s�d + 1. Now, as~s 0d + 1 =~s�d + 1, and since k~s 0d + 1k = k~s�d + 1k = n, it follows that for every i > d + 1, we have

that s0i = s�i = 0, and so ~s 0 =~s�.
Case 2: ~s 0 is computed according to lines 3 and 5. Here, the condition in line 4 does not hold, that is.

(and due to the initialization of~s 0 in lines 3–4), n < k~sd - 1k + 2d abs(sd - d). Now, s0d is set to be
n - k~s 0

d - 1
k

2d

in line 5, and all values s0i for i > d are implicitly set to zeros. We start by showing it that sd > 0 in

this case.

592 ZAKOV AND BAFNA

Assume by contradiction that sd £ 0. As d £ dm, the number m
2d = k~sk - n

2d is an integer. We get that
k~sd - 1k +

P1
i = d

2iabs(si) - n

2d = k~sd - 1k - n

2d + x is an integer for the integer x =
P1

i = d
2iabs(si)

2d , and so
n - k~sd - 1k

2d is an integer.

From the conditions in lines 2 and 4 and since sd £ 0 by assumption, - sd + 1 = max - sd + 1‚ 0f gp n - k~sd - 1k
2d

<- sd + d. Therefore, it must be that d = 2, and that n = k~sd - 1k + 2d(- sd + 1) = k~sdk + 2d. Moreover, since

d = 2, it follows that d < dm. Nevertheless, we get that m = k~sk - n = k~sdk +
P1

i = d + 1

2iabs(si) - k~sdk - 2d =
P1

i = d + 1 2iabs(si) - 2d. This implies that m does not divide by 2d + 1 £ 2dm, in con-

tradiction to the definition of dm.

As we have established that sd > 0, we can observe that s0d = n - k~sd - 1k
2d < k~sd - 1k + 2dabs(sd - d) - k~sd - 1k

2d =
abs(sd - d)psd. Therefore, ~s 0<~s. It can be shown similarly as in Case 1 that k~s 0k = n and that ~s�p~s 0,
completing the proof. -

Algorithm 5: MIN-INCREMENT (~s‚ n)

Input: A signature~sp[1‚ 0‚ . . .] and an integer n ‡ 0.
Output: The lexicographically minimal signature~sp~s 0p[1‚ 0‚ . . .] such that k~s 0k = n, or the message

‘‘FAILED’’ if there is no such signature.
1 Let m = k~sk - n. If m = 0 then return ~s.
2

3 Else if there is an integer 0 £ d £ dm such that nqk~sd - 1k + 2d max sd + 1‚ 0f g then
4 Let d be the maximum integer meeting the condition above. Initialize~s 0 so that ~s 0d - 1 =~sd - 1, and

s0d = sd + 2 if d<dm, or s0d = sd + 1 if d = dm.
5 If nqk~s 0dk then set s0d + 1)

k~s 0
d
k - n

2d + 1 .
6

7 Else set s0d)
k~s 0

d - 1
k - n

2d .
8

9 If~s 0p[1‚ 0‚ . . .] then return ~s 0,
10 else return ‘‘FAILED.’’

11 Else return ‘‘FAILED.’’

The MIN-INCREMENT procedure is proven symmetrically, and its pseudocode is given in Algorithm 5.

It is in fact a simplified version of the SIGNATURE-FOLD procedure in Zakov et al. (2013) (Supporting

Information).

ACKNOWLEDGMENTS

The authors are thankful to the anonymous JCB and RECOMB reviewers for their helpful comments.

The research was supported by grants from the NIH (RO1-HG004962) and the NSF (CCF-1115206, IIS-

1318386).

AUTHOR DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Alkan, C., Kidd, J.M., Marques-Bonet, T., et al. 2009. Personalized copy number and segmental duplication maps using

next-generation sequencing. Nat. Genet. 41, 1061–1067.

Bignell, G.R., Greenman, C.D., Davies, H., et al. 2010. Signatures of mutation and selection in the cancer genome.

Nature 463, 893–898.

Bignell, G.R., Santarius, T., Pole, J.C., et al. 2007. Architectures of somatic genomic rearrangement in human cancer

amplicons at sequence-level resolution. Genome Res. 17, 1296–1303.

Campbell, P.J., Yachida, S., Mudie, L.J., et al. 2010. The patterns and dynamics of genomic instability in metastatic

pancreatic cancer. Nature 467, 1109–1113.

RECONSTRUCTING BFB ARCHITECTURES 593

Carr, A.M., Paek, A.L., and Weinert, T. 2011. DNA replication: failures and inverted fusions. Semin. Cell Dev. Biol. 22,

866–874.

Chiang, D.Y., Getz, G., Jaffe, D.B., et al. 2009. High-resolution mapping of copy-number alterations with massively

parallel sequencing. Nat. Methods 6, 99–103.

Eckel-Passow, J.E., Atkinson, E.J., Maharjan, S., et al. 2011. Software comparison for evaluating genomic copy number

variation for Affymetrix 6.0 SNP array platform. BMC Bioinform. 12, 220.

Greenman, C., Bignell, G., Butler, A., et al. 2010. PICNIC: an algorithm to predict absolute allelic copy number

variation with microarray cancer data. Biostatistics 11, 164–175.

Greenman, C., Cooke, S., Marshall, J., et al. 2012. Modelling breakage-fusion-bridge cycles as a stochastic paper

folding process. arXiv. Available at: http://arxiv.org/abs/1211.2356

Hanahan, D., and Weinberg, R.A. 2011. Hallmarks of cancer: the next generation. Cell 144, 646–674.

Hastings, P.J., Lupski, J.R., Rosenberg, S.M., et al. 2009. Mechanisms of change in gene copy number. Nat. Rev. Genet.

10, 551–564.

Kinsella, M., and Bafna, V. 2012. Combinatorics of the breakage-fusionbridge mechanism. J. Comput. Biol. 19, 662–

678.

Kitada, K., and Yamasaki, T. 2008. The complicated copy number alterations in chromosome 7 of a lung cancer cell

line is explained by a model based on repeated breakage-fusion-bridge cycles. Cancer Genet. Cytogenet. 185, 11–19.

Knuth, D.E. 1998. The Art of Computer Programming, Volume 3: Sorting and Searching. International Monetary Fund,

Washington, DC.

McClintock, B. 1938. The production of homozygous deficient tissues with mutant characteristics by means of the

aberrant mitotic behavior of ring-shaped chromosomes. Genetics 23, 315–376.

McClintock, B. 1941. The stability of broken ends of chromosomes in zea mays. Genetics 26, 234–282.

Medvedev, P., Stanciu, M., and Brudno, M. 2009. Computational methods for discovering structural variation with

next-generation sequencing. Nat. Methods 6, 13–20.

Olshen, A.B., Venkatraman, E., Lucito, R., et al. 2004. Circular binary segmentation for the analysis of array-based dna

copy number data. Biostatistics 5, 557–572.

Pearl, J. 1984. Heuristics. Addison-Wesley Publishing Company, Reading, MA.

Reshmi, S., Roychoudhury, S., Yu, Z., et al. 2007. Inverted duplication pattern in anaphase bridges confirms the

breakage-fusion-bridge (bfb) cycle model for 11q13 amplification. Cytogenet. Genome Res. 116, 46–52.

Sloane, N.J. 2007. The on-line encyclopedia of integer sequences, 130. In Towards Mechanized Mathematical As-

sistants. Springer, New York. Available at: http://oeis.org/A033485

Venkatraman, E.S., and Olshen, A.B. 2007. A faster circular binary seg-71 mentation algorithm for the analysis of array

cgh data. Bioinformatics 23, 657–663.

Yoon, S., Xuan, Z., Makarov, V., et al. 2009. Sensitive and accurate detection of copy number variants using read depth

of coverage. Genome Res. 19, 1586–1592.

Zakov, S., Kinsella, M., and Bafna, V. 2013. An algorithmic approach for breakage-fusion-bridge detection in tumor

genomes. Proc. Natl. Acad. Sci. USA 110, 5546–5551.

Address correspondence to:

Dr. Shay Zakov

Department of Computer Science and Engineering

University of California–San Diego

9500 Gilman Drive

La Jolla, CA 92093

E-mail: szakov@eng.ucsd.edu

594 ZAKOV AND BAFNA

