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Abstract

Towards Optimal Cosmological Analysis with Simulation-Based Inference

by

Biwei Dai

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Uroš Seljak, Chair

The large-scale structures (LSS) of the Universe contain significant information about the cosmos,
providing insights into its composition and the underlying physical laws. Current and upcoming
cosmological surveys aim to measure the LSS and the evolution of the universe with multiple probes,
allowing us to constrain cosmological parameters to high precision and search for deviations from
the standard cosmological model. To realize the full potential of these datasets, it is crucial to
develop robust analysis methods capable of extracting the maximum amount of information.

Simulation-based inference (SBI) leverages high-fidelity cosmological simulations for inference
and holds promise for extracting rich non-Gaussian information from these data. However, its
application is limited by several challenges. This dissertation focuses on addressing these challenges
to facilitate the deployment of SBI approaches in upcoming survey analyses.

On the simulation side, running a large number of high-resolution, large-volume cosmological
simulations for training the SBI model is computationally challenging. We develop effective
machine learning models to improve the modeling of non-linear gravity and baryonic physics in
low-resolution fast simulations. By combining these models with fast N-body simulations, we can
predict various baryonic observables and accurate weak lensing signals at a low computational cost.

On the inference side, we integrate physical constraints (symmetries) and domain knowledge
(the hierarchical structure of the data) into the SBI models, and apply them to learn the field-
level data likelihood function for optimal cosmological analysis. Inaccurate modeling of physical
processes and systematic effects could bias the SBI constraints. To address this, we use field-level
data likelihood and multiscale analysis for anomaly detection of model misspecification, enabling
robust SBI analysis. Additionally, we perform a large-scale comparative study to identify the best
hyperparameter and loss function choices for optimal SBI performance.

These developments mark a substantial step toward the full deployment of SBI approaches into
cosmological survey analysis pipelines, offering the promise of a deeper understanding of our
Universe and the potential discovery of new physics beyond the current model.
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Chapter 1

Introduction

Over the past few decades, cosmology has transitioned into a precision science thanks to the abun-
dant cosmological observations, revolutionizing our understanding of the Universe. At the heart of
modern cosmology lies the standard cosmological model, often referred to as the ΛCDM model.
This model provides a comprehensive framework for interpreting a vast array of observational data,
ranging from the cosmic microwave background (CMB) to the large-scale distribution of galax-
ies. The ΛCDM model is grounded in the framework of General Relativity and the cosmological
principle, which holds that the universe is homogeneous and isotropic on large scales. It combines
two crucial components: dark energy, represented by the cosmological constant (Λ), and cold
dark matter (CDM). Dark energy accounts for approximately 70% of the total energy density of
the universe [257] and is thought to be responsible for the observed accelerated expansion. Cold
dark matter, making up about 25% of the universe’s mass-energy content, interacts gravitationally
but not electromagnetically, influencing the formation and clustering of galaxies and large-scale
structures. The remaining 5% consists of ordinary baryonic matter, including stars, planets, and
interstellar gas.

According to the ΛCDM model, the universe began approximately 13.8 billion years ago with
the Big Bang, followed by a brief period of exponential expansion known as inflation. This rapid
expansion smoothed out any initial irregularities and set the stage for the formation of large-
scale structures. Around 380,000 years after the Big Bang (around redshift 1100), the universe
cooled sufficiently for protons and electrons to combine and form neutral hydrogen atoms. This
recombination event made the universe transparent to radiation, resulting in the release of the
CMB, which we observe today as a relic of this early epoch. Following recombination, the universe
entered a period known as the dark ages, characterized by the absence of luminous sources. The
formation of the first stars and galaxies several hundred million years later initiated the reionization
era, where photons from these early objects reionized the intergalactic medium. Over billions of
years, small density fluctuations seeded by inflation grew under the influence of gravity, leading to
the formation of galaxies, clusters, and the cosmic web. Cold dark matter played a crucial role in
this process by providing the gravitational potential in which baryonic matter could coalesce. About
4 or 5 billion years ago (redshift 0.4), the influence of dark energy began to dominate, causing
the expansion of the universe to accelerate. This acceleration continues to shape the large-scale
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Figure 1.1: The cosmic history according to the ΛCDM model from Big Bang to the present day.
Credit: NASA.

dynamics and fate of the cosmos. A visualization of the cosmic history is shown in Fig. 1.1.
The ΛCDM model has been remarkably successful in explaining a wide range of cosmological

observations. Its predictions are consistent with the CMB data from Planck [257], the large-scale
structure observed by, e.g., SDSS [25], DES [2] and HSC [3], the cosmic acceleration inferred
from supernovae, and the observed abundances of light elements. However, several tensions and
mysteries challenge the model and prompt ongoing research and debate, including the inconsistent
measurement between the early universe and late-time universe on the expansion rate of the universe
H0 (the “Hubble tension”) [271] and the amplitude of matter fluctuations S8 (the “S8 tension”)
[130, 2, 183]. Moreover, the nature of the two building blocks of ΛCDM, dark matter, and dark
energy, remains unknown. The extensive searches for dark matter particles have so far ruled out
much of the parameter space but still shown no detection, and for dark energy constraints, recent
LSS analysis has shown deviations from the cosmological constant model [65].

The next generation of cosmological surveys, known as stage IV surveys, promises to address
these tensions and mysteries and provide unprecedented insights into the universe’s structure
and evolution. These ambitious projects include DESI [66], Euclid[9], SPHEREX [74], Rubin
Observatory LSST [195], Roman Space Telescope [75], and CMB S4 [1]. These surveys will
provide unprecedented amounts of data across different cosmological probes. It is thus an important
task to build the theory and analysis tools to optimally extract cosmological information and fully
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realize the potential of these vast datasets, which is the main focus of this dissertation.

1.1 Large-Scale Structures
The matter is not randomly or uniformly distributed in the universe. On large scales it is clustered
and forms structures like halos, filaments, and voids, a complex and vast network known as the
cosmic web, or large-scale structure (LSS). The LSS is seeded by small quantum fluctuations in the
early Universe and grows under gravitational evolution and cosmic expansion, therefore it contains
significant information about primordial physics, the gravity law, the matter and energy content of
our universe, and its accelerated expansion. Studying LSS allows us to put strong constraints on our
current cosmological model, to understand its mysterious components such as the nature of dark
energy, and to explore new physics such as modified gravity. To model the LSS and its evolution,
let us first define the density contrast δ as

δ(x, a) =
ρ(x, a)

ρ̄(a)
− 1, (1.1)

where ρ(x, a) is the matter density at comoving coordinate x and scale factor a. The gravitational
potential ϕ sourced by the matter density fluctuation δm is given by the Poisson equation

∇2ϕ(x, a) =
3

2
H2(a)Ωm(a)δm(x, a), (1.2)

where H is the conformal Hubble parameter and is related to Hubble parameter H(t) = ȧ(t)/a(t)

as H = aH , Ωm(a) = ρm(a)/ρc is the mean matter density in the universe and ρc(a) = 3H2(a)
8πG

is
the critical density.

Now let us adopt the Lagrangian description of the LSS, and consider a particle at comoving
coordinate x. Its equation of motion in the Newtonian limit is given by

ẍ+H(τ)ẋ = −∇ϕ, (1.3)

where the derivative is taken with respect to the conformal time τ = a(t)t. Combining the Poisson
equation 1.2 and the equation of motion 1.3, and with the cosmic background evolution a(t) given
by Friedmann equations, one can solve for the evolution of LSS.

This set of differential equations can be solved analytically with perturbation theory (i.e.,
Lagrangian perturbation theory, LPT). In LPT, one solves the differential equations perturbatively
by expanding the particle displacement field Ψ(q, τ) successively to different orders

Ψ(q, τ) = x(τ)− q = Ψ(1)(q, τ) + Ψ(2)(q, τ) + · · · , (1.4)

where q is the Lagrangian (comoving initial) coordinate. While perturbation theories work well
on large scales, they are not able to model shell crossing and the performance worsens as we go
to non-linear scales. To accurately model the LSS down to small scales, one normally solves the
dynamics numerically with cosmological simulations, which are discussed in the next section.
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1.2 Cosmological Simulations
Cosmological simulations are computational models used to simulate the evolution of the Universe
in a periodic box. They provide a bridge between theoretical models and observational data,
allowing for a detailed and quantitative understanding and prediction of the LSS we observed in
the universe. Here we introduce the basics of cosmological simulations, focusing on gravity-only
N-body simulations, which enables many works done in this dissertation.

N-body simulations use discrete particles as tracers for the matter distribution. The initial
condition (IC) of these particles is often set with first [362] or second [151, 99], or third-order LPT
[221] at an early enough time when the gravity evolution is only mildly nonlinear and can be well
described by low-order perturbation theories. The particles are then evolved under gravitational
potential ϕ by numerically integrating the equation of motion (equation 1.3).

A popular method for estimating the gravitational potential ϕ is the particle-mesh (PM) ap-
proach, which solves the Poisson equation (equation 1.2) using a mesh-based method. The particles
are firstly painted on a mesh to estimate the overdensity field δ, and then the discretized Poisson
equation can be solved efficiently in Fourier space using fast Fourier transform. The PM method is
computationally efficient (O[N log(N )]), whereN is the mesh size) and can be easily parallelized,
but the force accuracy is fixed at the grid size.

To estimate the gravitational force at scales below the grid size, one can use the particle-particle
(PP) method to solve the Poisson equation in its integral form:

ϕ(xi) ∝ −
N∑
j=1

{
mj

|xj − xi|+ ϵ (|xj − xi|)

}
. (1.5)

Here ϵ (|xj − xi|) is a softening kernel that prevents the singularity at close separations. P3M
combines the PM approach with the direct PP method, by computing the short-range gravity from
direct PP summation, and computing long-range gravity with PM. The PP summation can also be
approximated by the oct-tree algorithm [15] to reduce its computational cost, leading to the TreePM
method [13].

Numerically integrating the equation of motion (equation 1.3) usually takes hundreds to thou-
sands of time steps and can be computationally expensive. Several works have tried to reduce the
number of time steps while maintaining accuracy at large scales, by incorporating the perturbation
theories into the N-body solvers [89, 189, 312]. In a leapfrog numerical integrator, the particle
positions x and velocities p are updated with [261]

x(a1) = x(a0) +Dp(ar) (1.6)
p(a1) = p(a0) +Kf(ar), (1.7)

where f is the force, a0 is the initial scale factor, a1 the final scale factor, ar the reference scale
factor, and D and K are drift and kick factors. The basic idea of FastPM [89] and perturbation
theory-informed integrators [189] is to modify the drift and kick factors to be compatible with LPT,
such that the large-scale matter distribution can be predicted accurately with only a few time steps.
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However, as discussed in the previous section, perturbation theory breaks down at the scale of
shell crossing, and these perturbation theory-informed integrators begin to lose power at non-linear
scales when the number of time steps is reduced. In chapter 2, 3 and 4 we develop numerical
models to compensate for this effect and improve the small-scale modeling.

So far we have focused on modeling the evolution of dark matter and ignored the baryonic
physics. Hydrodynamical simulations also model the baryon component, with additional physics
processes including gas pressure, cooling, heating, star formation, stellar feedback, massive black
hole seeding, accretion, feedback, and dynamics. Due to the finite resolution of cosmological
simulations, most (if not all) of these baryonic processes have to be simulated effectively with
subgrid models. While being most realistic, hydrodynamical simulations are computationally
too expensive to run in cosmological volumes comparable to current LSS surveys. Empirical
models such as halo occupation distribution (HOD) [21], abundance matching [322], and baryonic
correction models [281] are widely used to model baryon observables from N-body simulations.
In chapter 5 and 6, we also introduce effective machine learning models that connect dark matter
from N-body simulations to baryons with low computational cost.

1.3 Cosmological Inference
Cosmology relies heavily on Bayesian inference to interpret complex observational data and draw
meaningful conclusions about the universe and the underlying physical law. Bayesian inference
is a powerful statistical framework that provides a coherent and principled approach to updating
our knowledge about unknown model parameters based on observed data. It is based on Bayes’
theorem, which produces the posterior probability distribution of model parameter θ, given the
observed data D (e.g., some tracer field of LSS) and the underlying model assumption M

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M)
, (1.8)

where p(D|M) =
∫
p(D|θ,M)p(θ|M)dθ is a normalization and also known as Bayesian evidence,

p(θ|M) is the prior, and p(D|θ,M) is the likelihood function. While Bayesian evidence can be
important in model comparison, in parameter inference we are mostly interested in estimating
posterior with Monte Carlo sampling and the evidence can be ignored. We can also drop the
dependence on model M since in parameter inference we normally consider a single model (e.g.,
Λ CDM).

The prior function encodes the degree of belief about the values of θ before the observation.
Its choice can be important when the likelihood is not very informative and when there is a large
number of nuisance parameters that correlate with the parameter of interest. In these cases, even
the naive uniform prior can lead to significant bias in parameter constraints, which is also known as
the prior volume effect, and has been observed in LSS analysis with effective field theories (EFT)
[293, 40]. For field-level simulation-based inference (SBI, discussed in the next section), this is not
likely to be a problem, since the field-level likelihood is much more informative, and SBI usually
comes with much fewer nuisance parameters than EFT.
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The likelihood function p(D|θ) is of central importance in statistical inference. In the LSS
analysis, however, the exact likelihood function is intractable due to nonlinear gravity evolution and
baryonic process. In traditional LSS analysis, cosmologists usually make two simplifications to the
likelihood function. Firstly, the observed high-dimensional tracer field (or catalog)D is compressed
into low-dimensional summary statistics S(D), and likelihood is defined on the summary statistics
p(S(D)|θ). A natural choice of S(D) is the two-point correlation function ξ(r)

ξ(r) = ⟨δ(x)δ(x+ r)⟩. (1.9)

It describes the excess probability of finding two galaxies or tracers separated by a distance r.
The Fourier analog of the two-point correlation function, the power spectrum P (k), is defined by
averaging over Fourier modes δ(k)

(2π)3P (k)δD(k − k′) = ⟨δ(k)δ∗(k′)⟩. (1.10)

While the two-point statistics are natural choices even in the nonlinear regime, they do not capture all
the information in the LSS data, and adding higher-order information is less straightforward. Even
adding the three-point function means adding a function of three parameters, which is considerably
more complex to describe than the two-point function. Numerous other ad-hoc statistics have
been proposed, from peak counts to void counts, void profiles, etc.. Recently, machine learning
algorithms are also applied to construct informative summary statistics[41, 270, 202]. While they
have all been shown to provide complementary information to the power spectrum, it is not clear if
any or the combination of all of these statistics can fully capture the full information content in the
data, and how to design the most informative summary statistics is still a popular research topic.

For a given summary statistic S(D), the likelihood function p(S(D)|θ) is usually approximated
by a multivariate Gaussian distribution

p(S(D)|θ) = 1√
(2π)n|C|

exp

(
−1

2
(S(D)− S(θ))TC−1(S(D)− S(θ))

)
, (1.11)

where the mean expectation S(θ) needs to be evaluated as a function of cosmological and nuisance
parameters θ. For two-point statistics, this can be a good approximation due to the central limit
theorem, but it may not hold for some non-gaussian statistics [86].

An alternative approach is using the reconstruction of initial conditions and performing the
marginal integral over these latent variables so that we are left with marginal data likelihood as a
function of cosmological parameters p(x|y):

p(x|y) =
∫
p(x|y, z)p(z|y)dz, (1.12)

where z stands for the initial conditions, p(z|y) is a Gaussian distribution fully specified by the
linear power spectrum, and p(x|y, z) involves running a simulation to predict the noiseless data,
and a noise model which is usually approximated by a Gaussian. In this approach, the inference
is performed at the field level, and in principle it is able to extract all the information in the data.
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However, performing this marginal integral over initial conditions z has proven to be difficult.
One can sample over z and y using Hamiltonian Monte Carlo (HMC) [147, 163, 346], but the
samples are usually very correlated in high dimensions even if HMC is used, and thousands of
full N-body simulation steps may be needed between two independent samples. An alternative
to this marginalization approach is maximum a posteriori (MAP) estimation of z, followed by
an MAP-based unbiased estimator of the cosmological parameters [287, 224]. While obtaining
the MAP of z is faster, making the estimate unbiased and obtaining the cosmological parameter
posterior is still expensive and can be suboptimal.

1.4 Simulation-Based Inference
Simulation-based inference (SBI, sometimes also known as likelihood-free inference) [51] uses
numerical simulations to perform statistical parameter inference without relying on analytical
likelihood function assumptions like Equation 1.11. Many different approaches belong to the SBI
family, ranging from Approximate Bayesian Computation (ABC), amortized likelihood approach,
amortized posterior approach, amortized likelihood ratio approach, etc. Strictly speaking, the
forward modeling reconstruction method discussed in the previous section is also a form of SBI,
where the simulators are used directly during inference [51].

In this dissertation, we will focus on the amortized likelihood approach (i.e., neural likelihood
estimation, NLE) and amortized posterior approach (i.e., neural posterior estimation, NPE). In
both cases, one firstly runs a large number of cosmological simulations to generate mock data x
with random realizations and cosmological parameters θ drawn from the prior (For NPE, this prior
has to be the same as the prior in parameter inference. For NLE, it does not have to be). Then
from this set of {xi, θi} pair, one tries to estimate the conditional probability distribution p(x|θ)
(NLE) or p(θ|x) (NPE) using density estimation machine learning models such as normalizing
flows (introduced below). The learned likelihood function p(x|θ) or posterior p(θ|x) can then be
used for parameter inference given observation data.

Normalizing Flows play a central role in SBI. They are powerful frameworks for density
estimation [71, 239] and sampling [161]. These models map the data x to latent variables z through
a sequence of invertible transformations f = f1 ◦ f2 ◦ ... ◦ fn, such that z = f(x) and z is mapped
to a base distribution π(z). The base distribution π(z) is normally chosen to be a standard normal
distribution, i.e. a Gaussian white noise with zero mean and unit variance, π(z) = N (0, I). The
probability density of data x can be evaluated using the change of variables formula:

p(x) = π(f(x))
∣∣∣det(∂f(x)

∂x

)∣∣∣
= π(f(x))

∏n
l=1

∣∣∣det(∂fl(x)
∂x

)∣∣∣ . (1.13)

To sample from p(x), one first samples latent variable z from π(z), and then transform variable z
to x through x = f−1(z). The transformation f is usually parametrized with neural networks fϕ,
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and the parameters ϕ are estimated using Maximum Likelihood Estimation (MLE):

ϕ∗ = argmax
ϕ

1

N

N∑
i=1

log pϕ(xi), (1.14)

where the data likelihood p(x) is given by Equation 1.13. The MLE solution minimizes the
Kullback-Leibler (KL) divergence between the model distribution pϕ(x) and the true data distri-
bution. The parameterization of f must satisfy the requirements that the Jacobian determinant
det(∂fl(x)

∂x
) is easy to compute for evaluating the density, and the transformation fl is easy to invert

for efficient sampling.
SBI is promising as it leverages high-fidelity cosmological simulations and allows extracting

non-Gaussian information from non-linear scales that cannot be modeled analytically. While it has
been successfully applied to a few cosmological inference problems so far[114, 148, 100], it still
faces several challenges that limit its applications:

• Distribution shift (model misspecification): If the simulations do not realistically represent
our universe (due to, e.g., missing physics, inaccurate physical models, or not fully accounting
for systematic effects), there would be a shift between the training distribution (simulations)
and the test data (observations), known as distribution shift or model misspecification. Dis-
tribution shift could lead to significant bias in parameter inference [37].

• High computation cost of cosmological simulations: It is computationally challenging to
run cosmological simulations that satisfy the following 3 requirements simultaneously: 1)
with high enough resolution to avoid model misspecification (first point); 2) in a volume
comparable to the upcoming cosmological surveys; and 3) with enough number of simulations
to fully sample the parameter space for training the SBI model [225].

• Unfaithful posterior uncertainty: It has been suggested that all SBI methods could produce
overconfident posterior constraints in some applications [128]. It is therefore crucial to
validate that the trained SBI model is well-calibrated before applying it to real data.

• Lack of interpretability: Normalizing flows are based on neural networks, which are con-
sidered black boxes by many researchers in the community. For high-dimensional summary
statistics and field-level SBI analysis, it is not clear where the model is extracting information
from.

1.5 Dissertation Outline
As discussed in previous sections, SBI provides a promising framework for extracting rich non-
Gaussian information from current and upcoming surveys. However, it faces several challenges
that limit its applications. To facilitate the deployment of SBI approaches into upcoming survey
analysis pipelines, in this dissertation, we try to answer the following two questions
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• How can we simulate the LSS accurately with low computational cost, so that we can
efficiently run many simulations across the parameter space for SBI training?

• How to design and train the SBI models for optimal and robust performance in cosmological
applications?

We divide the dissertation into two parts to answer these two questions separately. In chapters
2 - 6, we focus on developing effective models to accurately simulate LSS with low computation
cost. In chapter 2, we develop gradient-based models to improve the modeling of nonlinear
gravity and baryonic feedback on small scales in low-resolution fast simulations. These models
are incorporated into lightcone simulations in chapter 3 for efficient and accurate modeling of
weak gravitational lensing. We also modify the halo finder to improve the predicted halo catalogs
in fast simulations. In chapter 4, we rewrite our models and fast weak lensing simulations with
differentiable programming and make them publicly available to the community.

We turn to the modeling of baryons in chapter 5 and 6. In chapter 5 we develop a Lagrangian
Deep Learning (LDL) model for modeling various baryonic observables from N-body simulations.
By combining N-body solver FastPM with LDL, we are able to predict a wide range of baryonic
observables including stars, kinematic and thermal Sunyaev–Zeldovich effect, with nearly four
orders of magnitude lower computation cost compared to the hydrodynamical simulations. In
chapter 6, we find an efficient way to model the baryonic feedback on the total matter distribution,
and build an emulator of baryonic effect at the field level using Gaussian processes. This method
and our emulator enable field-level weak lensing SBI analyses with baryonic effects.

In the second half of this dissertation (chapter 7, 8 and 9), we focus on the development
of field-level SBI models. For superior performance in cosmological applications, we integrate
physics constraints and domain knowledge into ML models. In chapter 7, we develop a Translation
and Rotation Equivariant Normalizing Flow (TRENF) model that satisfies symmetry constraints.
We apply TRENF to learn the high-dimensional field-level data likelihood, and show that it leads
to significant improvements in constraining power over the standard power spectrum summary
statistic. In chapter 8, we introduce Multiscale Flow (MSF) for optimal and robust field-level
analysis. MSF uses hierarchical decomposition of cosmological fields via a wavelet basis, and then
models different wavelet components separately as Normalizing Flows. This decomposition allows
us to separate the information from different scales and identify distribution shifts in the data such
as unknown scale-dependent systematics, thus making our analysis robust to some distribution
shifts. In chapter 9, we perform a comparative study and explore the impact of different analysis
choices on parameter constraints for Convolutional Neural Network (CNN) based SBI models. By
performing a large number of control experiments, we identify the best hyperparameter choice and
training loss functions that improve on previous CNN-based SBI models by a factor of 2. Finally,
we conclude in chapter 10.
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Chapter 2

A gradient-based method for modeling
baryons and matter in halos of fast
simulations

The contents of this chapter were originally published in [53],

A gradient based method for modeling baryons and matter in halos of fast simulations
Dai B., Feng Y., Seljak U.(arXiv:1804.00671) JCAP 11 (2018) 009

Fast N-body PM simulations with a small number of time steps such as FastPM or COLA have
been remarkably successful in modeling the galaxy statistics, but their lack of small-scale force
resolution and long-time steps cannot give accurate halo matter profiles or matter power spectrum.
High-resolution N-body simulations can improve on this, but lack baryonic effects, which can only
be properly included in hydro simulations. In this chapter, we present a scheme to calibrate the
fast simulations to mimic the precision of the hydrodynamic simulations or high-resolution N-body
simulations. The scheme is based on a gradient descent of either effective gravitational potential,
which mimics the short-range force, or of effective enthalpy, which mimics gas hydrodynamics and
feedback. The scheme is fast and differentiable, and can be incorporated as a post-processing step
into any simulation. It gives very good results for the matter power spectrum for several of the
baryonic feedback and dark matter simulations, and also gives improved dark matter halo profiles.
The scheme is even able to find the large subhalos, and increase the correlation coefficient between
the fast simulations and the high-resolution N-body or hydro simulations. It can also be used to add
baryonic effects to the high-resolution N-body simulations. While the method has free parameters
that can be calibrated on various simulations, they can also be viewed as astrophysical nuisance
parameters describing baryonic effects that can be marginalized during the data analysis. In this
view, these parameters can be viewed as an efficient parametrization of baryonic effects.
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2.1 Introduction
Extracting accurate cosmological information from the current and future sky surveys requires
high-precision simulations. Computer simulations with quasi N-body numerical schemes provide
an alternative to the full N-body or hydro simulations for creating fast realizations of the large-scale
structure (LSS), but lack resolution on small scales. Methods in this family includes FastPM [89],
COLA [312], subcycle TreePM [307], and PPM-GLAM [168].

Although the halo catalog from the quasi N-body simulations is well correlated to a true N-body
simulation of the same initial condition [89], the dark matter density distribution is less accurate,
since it requires not just the center of mass of a dark matter halo but also its density profile. For
example, a 10 step FastPM N-body simulation misses about 15%− 20% of power at the Nyquist
frequency of the PM grid [89, 312]. Accurate modeling of the dark matter requires more time steps.
For example, Izard et al. [142] proposed ICE-COLA, in which the code parameters are optimized
to achieve a matter power spectrum within 1 percent for k ≲ 1hMpc−1, at the cost of using 40-time
steps and a force mesh that is 3 times smaller than the particle mean separation. This leads to about
an order of magnitude higher cost than a 10-step simulation without a higher force mesh resolution.

The suppression in the power spectrum is due to the inability of these methods to resolve the
internal structures of halos. With such large time steps, the halo is not fully virialized, resulting
in a much shallower density profile than the NFW profile [230, 229]. This severely undermines
the application of quasi-N-body simulations to the applications where modeling underlying dark
matter fields is crucial, including SZ effects and weak lensing.

On the other hand, even the most accurate N-body simulation cannot model the effect of baryons
without introducing costly and complex numerical schemes to model the hydrodynamics, cooling,
star formation, and AGN feedback. The effects of baryon on the density profile are also important.
Gravity leads to collapse, but baryons, due to the gas pressure, resist the collapse. In addition,
the feedback from AGN and supernovae can transport a large amount of gas to the outskirts of the
halos. This can even lead to an expansion of the dark matter halo and the reduction of the halo mass
[79, 317, 214, 328]. It has been shown that these effects can reduce the matter power spectrum by
more than ten percent for 1 ≲ k ≲ 30hMpc−1 [326, 342].

In this chapter, we introduce a simple numerical scheme that allows an arbitrary calibration
of the dark matter density field against high-resolution N-body simulations and hydrodynamical
simulations. Our method is based on the motion of particles along the gradient direction of
a scalar field that is generated from the existing density field. While keeping the large-scale
structure unchanged, our model adds additional displacements to the particles to help resolve the
small-scale structures in quasi-N-body simulations, or to effectively model the baryonic feedback.
This spirit is similar to the Augmented Lagrangian Perturbation Theory (ALPT) [164] and the
baryonic correction model [281]. Other similar methods include one-point remapping [180] and
MUSCLE [233]. However, ALPT assumed the analytical spherical collapse model and determined
the small-scale displacement with local density, while our method is based on a PM solver and
solves a modified potential. Our method is more flexible in terms of matching to high-resolution
simulations (see Section 2.3).

Our method is simple in the sense that the Jacobian of the method has a very simple form,
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and can be easily embedded into a parameter inference framework. It is essentially data-driven
learning and can be viewed as a form of machine learning (ML): rather than having a full dynamical
model for the matter density distribution, we train the low-resolution simulation to reproduce the
results of the more expensive high-resolution simulations. Training is performed on the comparison
between the low and high-resolution simulations. However, our specific approach is gradient-based
rather than using standard ML techniques, which we argue offers several advantages, primarily low
dimensionality of parameter space to be optimized against.

The plan of the chapter is as follows: we first describe the mathematics and motivation of the
numerical schemes in Section 2.2. In Section 2.3 we show the performance of the gradient-based
schemes in an example, with the emphasis on matter power spectra, halo profiles, and sub-halo
statistics. We present a recommendation of the parameter choices in Section 2.4. Finally, we
conclude in Section 2.5.

2.2 Gradient-based learning: theory and motivation
In this section, we introduce the gradient-based method and derive several forms depending on the
problem we wish to solve. The basic goal is that we would like to have a scheme that mimics the
physics that is missing in low-resolution simulations. This can be either short-range force in the
case of gravity, or hydrodynamic force effects in the case of hydrodynamic simulations. Our main
idea is that instead of performing a full simulation we can partially account for these effects as
a post-processing step, which will perform the effective missing short-range force operation only
once. Since force is a gradient of some effective potential this leads to the idea of descending
along its gradient. The parameters controlling the model can be learned from the high-resolution
simulations themselves, or more precisely by comparing high and low-resolution simulations. This
is a form of data-driven learning, but since it is based on some notion of missing physics it can be
parametrized with relatively few free parameters. We describe several versions of this idea below.

Descent along the gradient of gravitational potential: Particle-Particle
interaction
Without the short-range particle-particle force, quasi-nbody schemes such as FastPM[89] do not
resolve the structures with scales smaller than the mesh resolution, resulting in halo profiles that
are shallower than their full N-body counterparts. A straightforward way to improve this would be
adding a short-range Particle-Particle (PP) force in every step during the simulation, which would
however also induce a large additional computational cost. However, the effect of this short-range
PP force is to aid the collapse of halos, which is a radial motion of the particles. We thus propose a
simple model in which we move the particles along a short-range PP force after the simulation has
finished. The displacement bypasses the momentum of the particles, corresponding to the case of
a fluid with infinite viscosity. The direction of the short-range PP force points towards the potential
minimum. Therefore, displacing particles along this direction can sharpen the profile of halos.
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A tree can be built to accelerate the calculation summation of short-range PP force,

FPP =
∑

r<rmax

Gm1m2

(r + ϵ)3
· r (2.1)

where rmax determines the largest separation of particle pairs to calculate the force, and ϵ is the
force softening. The KDTree implementation in kdcount is improved to compute the short-range
force [90].

The displacement is proportional to the force and given by

S = (αPP/H
2
0 ) FPP (2.2)

where αPP is a free parameter in our model and H0 is the Hubble parameter induced here to make
αPP dimensionless.

We can vary the 3 parameters (αPP , ϵ, and rmax) to match the power spectrum against N-body
and hydrodynamical simulations or against averaged halo profiles. This is discussed further in
section 2.7.

Descent along the gradient of gravitational potential: Particle-Mesh interaction

Particle-Mesh (PM) force is significantly cheaper to compute than a PP force. We therefore consider
a faster scheme where the short-range force is instead computed with a Fourier space particle mesh
solver. The full gravitational potential of a particle mesh solver is given by

ϕ = 4πGρ̄∇−2δ, (2.3)

where the force is given by the gradient of the potential.
Drifting the particles along the gradient of the gravitational potential will act as an additional

time step, increasing the large-scale growth. We can eliminate the large-scale component of the
potential with a high pass filter Ô1,

Ôl(k) = exp (−k
2
l

k2
) (2.4)

where kl is the long range scale parameter. The spirit of the high pass filter is similar to the rmax

parameter in our PP model: this filter removes the long-range force by damping the potential modes
with scales larger than kl. On small scales, to reduce the numerical effect induced by the mesh
resolutions, we introduce another low-pass filter

Ôs(k) = exp (−k
4

k4s
) (2.5)

where ks is the short range scale parameter. The low pass filter has a similar effect as force softening
ϵ, although the cut-off is slightly sharper. We show an example of the filter in Figure 2.1.
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Figure 2.1: The filter as a function of k.

We compute the displacement with the filtered potential:

S = (αPM/H
2
0 ) FPM (2.6)

= (αPM/H
2
0 )∇ÔlÔsϕ (2.7)

= (4πGρ̄αPM/H
2
0 )∇ÔlÔs∇−2δ (2.8)

In Figure 2.2, we show that Equation 2.8 achieves a similar effect comparing Equation 2.2, but
the former one is much faster, suggesting that a full resolution PP force solver is unnecessary. We
will only show the results from the PM method in the rest of this chapter. We name this scheme
the Potential Gradient Descent model (hereafter PGD).

In figure 2.3 we show how the parameters influence the matter power spectrum. Here we focus
on the parameter α in the PGD model fixing the parameters kl and ks. As expected, as α increases,
the halo profiles are sharpened and the small-scale power spectrum increases. When α ≳ 0.015, the
particles begin passing the halo centers, and increasing α will smooth the density field, making the
small-scale power spectrum decrease. The maximum power enhancement is achieved at α = 0.015
(depending on kl and ks). We see from the figure that varying α can match both the effects of
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Figure 2.2: A visualization of the descent along the gradient of the gravitational potential. The
thick black arrows show the displacements calculated from particle-mesh interaction (Equation 2.8),
while the thin yellow color presents the displacements from particle-particle interaction (Equation
2.2). The yellow arrows mostly overlap with the black ones. Here we only show the displacements
of a sample of particles in the halo.

pure dark matter high-resolution simulation (IllustrisDark) and of the hydrodynamic simulation
(Illustris).

Descent along the gradient of enthalpy
The effect of baryons on the power spectrum can be viewed from two aspects. On scales k ≈
[0.3, 30]hMpc−1, pressure, stellar, and AGN feedback smooths the density field and reduces the
power. On even smaller scales, the power is increased because of the cooling [e.g., 326, 342]. We
will focus on k < 10hMpc−1, where the effect of cooling is sub-dominant. The two remaining
effects are modeling pressure and feedback, both of which transfer matter from the high-density
regions to the low-density regions.

Motivated by the hydro-PM (HPM) simulation [106], we define a pressure-like potential (spe-
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Figure 2.3: The power spectra of 10 step FastPM simulation using PGD models with differentα. At
α = 0.025 we can match the effects of pure dark matter high-resolution simulation (IllustrisDark)
and at α = 0.005 that of the hydrodynamic simulation (Illustris).

cific enthalpy). We assume that to the first order, the distribution of baryon, dark matter, and the
total matter are the same. The density field is first smoothed with a Gaussian kernel

ÔJ(k) = exp(−(krJ)
2

2
) (2.9)

where rJ is the smoothing scale and we set it to be 0.1h−1Mpc, of the order of the Jeans scale. We
also assume a power law equation of state, [e.g. 106],

T (δ) = T0(1 + δb)
γ−1 (2.10)

where T0 is a constant and we set it to be the characteristic temperature of IGM (104K). The HPM
method typically takes γ = 1.4 ∼ 1.6 for the low-density IGM. In our case, the equation of state is
an effective one due to the feedback of star formation and AGN feedback, and therefore we expect
γ to be a free parameter. The pressure P can be easily calculated once the temperature and density
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are known:

P (δ) = nbkBT (δ) (2.11)

=
ρ̄bkBT0
µ

(1 + δ)γ (2.12)

where ρ̄b is the averaged baryon density, kB is the Boltzmann constant, and µ is the averaged atomic
mass of the gas which we set to be the Hydrogen atomic mass. Now we introduce the specific
enthalpyH:

H =
P (ρ)

ρ
+

∫ ρ

1

P (ρ′)

ρ′
dρ′

ρ′
(2.13)

The displacement is given by:

Sb = − β

H2
0

∇H(δ) (2.14)

= − β

H2
0

kBT0
µ

γ

γ − 1
∇[ÔJ(1 + δ)]γ−1 (2.15)

where β is the scale factor and a free parameter in the model, H0 is the Hubble parameter to make
β dimensionless. T0 and µ is degenerate with the parameter β, so here we only assign them with
the correct order of magnitudes and do not attempt to model their accurate values. It is clear in the
above equation that the effective equation of state γ essentially determines how the displacement
depends on the density field, so we expect that changing this parameter will be able to model the
halo mass dependence of AGN feedback. We note that [106] applied a pressure uniformly to all
particles, while in our model each particle has the probability of Ωb

Ωm
to be identified as a baryon and

hence be displaced. The rest of the dark matter particles are not displaced in this model. We found
in practice that this scheme performs best for our applications. Specifically, the cross-correlation
between N-body simulation and hydrodynamical simulation is higher if we assign only a fraction
of particles as baryons, compared to treating all particles similarly. We will refer to this model as
Enthalpy Gradient Descent (EGD) in the rest of this chapter.

Radial flows towards the halo center
Here we describe an alternative approach that is not gradient-based. The models presented above
move particles without any knowledge of where the halos are located or which halo a given particle
belongs to. Instead, we asserted that the centers of halos have minimum potential and maximum
density (therefore maximum pressure), even if they are not sufficiently prominent to be identified
by any halo finder. If a particle is located within a halo, it is likely to be moving along the
radial direction; and if it is outside the halo, the gradient will be small and so is the displacement.
Alternatively, we can directly solve for the radial displacement of particles toward halo centers
such that the spherical averaged radial density profile matches the halos found in hydrodynamical
simulations.
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In such a scheme, first, the friends-of-friends (FOF) halo finder is performed to find all the
halos that we wish to calibrate the profiles in both the reference and the quasi-N-body simulations.
Then the centers of halos (defined as the potential minimum)1 are found, and particles are assigned
labels according to their host halo. We assign unlabeled particles to the nearest halo.

The halo profiles and baryonic feedback are halo mass-dependent. We can divide the halos into
different mass bins and measure the averaged enclosed mass as a function of radius Mi(r), where
i denotes different halo mass bins. We represent the halo number in each mass bin as Ni. For
the reference simulation, we sort the halos by their mass and then also divide them into different
bins so that each bin has the same number of halos as Ni (Abundance Matching). We measure
the corresponding enclosed mass Mref,i(r) in the reference simulation. Mref,i(r) is a monotonic
increasing function so we can write its inverse function

rref,i(M) =M−1
ref,i(r) (2.16)

We define the radial displacement D(r) as a function of radius:

D(r) = rref,i[Mi(r)]− r (2.17)

The definition above ensures the enclosed mass after calibration is the same with the reference
simulation, so that the halo profile, which corresponds to the derivative of Mi(r), also matches.
Equation 2.17 also makes sure that the spherical shells of a halo do not cross with each other during
the calibration.

A naive displacement may leave gaps at the edge of halos. We therefore apply a smooth
truncation to the displacement according to a characteristic radius r500 = (

3Mfof

2000π
). If a particle is

located outside this radius, we suppress the displacement by a factor of exp(1− r
r500

).
The full formula for the displacement is

S =

{
D(r)er r ≤ r500

D(r) exp(1− r
r500

)er r > r500
(2.18)

where er is the unit vector of the radial direction.
This method is the most direct way to manipulate the halo profiles, but it is not gradient-based, or

based on any other physical considerations. Since this model requires lots of computations including
running FOF halo finder, finding the potential minimum as the halo centers, and measuring the halo
profiles, it is much slower than the potential and enthalpy gradient descent models introduced above.
Reconstructing the initial conditions [345, 287] requires taking a gradient of the final density with
respect to initial modes (the Jacobian), which is also problematic here, as the process involves non-
differentiable procedures, such as peak finding, binning, and connecting friends-of-friends halos.
The method does not enhance the internal substructures of a halo because the radial displacement
is not aware of any substructures. Because of all these reasons this method is less suitable for our
purposes, but we have nevertheless developed it and present results below. This method will be
referred to as the Radial Flow (RF) model.

1Density maximum is noisy due to the small scale fluctuations.
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2.3 Example application: matching a set of hydrodynamical
and N-body simulations

As an example, we calibrate 3 ”inaccurate” simulations against Illustris hydrodynamical simulations
[231, 342, 341, 102]: FastPM with 10 steps, FastPM with 40 steps, and high resolution dark-
matter-only simulation (IllustrisDark). These simulations use the same linear power spectrum and
the same random seed as the hydrodynamical simulation. The Python version of FastPM was
improved to perform the FastPM simulations used in this work [88]. The power spectra of these
simulations at redshift 0 before calibration are shown in Figure 2.5:

• The 10 step FastPM lacks small scale power. Therefore we apply the potential gradient
descent model to sharpen the halos and increase the power on small scales.

• The high-resolution N-body simulations are over-clustered at a small scale due to the lack of
feedback processes. Therefore we mimic the baryonic effects and lower the power using our
enthalpy gradient descent model.

• FastPM with 40 steps: on scales 0.5hMpc−1 ≲ k ≲ 5hMpc−1 it has more power than
the reference simulation because of the absence of baryonic feedback, while on scales k ≳
5hMpc−1, the power is reduced and is similar to 10 steps. Therefore, we apply both potential
and enthalpy models to 40 steps FastPM.

We vary the free parameters in the models to fit the power spectra and find the best-fit solutions
with the maximum likelihood defined in Equation 2.24.

There are 3 free parameters in the potential gradient descent model: αPM, kl and ks, and 2
parameters in the enthalpy gradient descent model: γ and β. We ask γ > 1 during our fitting, so
that the matter is moving from high-density regions to low-density regions.

Visual Inspection
Before quantitatively presenting the results of our calibration, we first show a visual impression
of how our models modify the matter distribution in a single halo in Figure 2.4. Compared to
dark-matter-only simulation, AGN feedback in hydrodynamical simulation moves a large amount
of gas from the center of halos to large radii [79, 214]. We can see this effect in Figure 2.4, where
the halo from Illustris appears fuzzier at the outskirts than IllustrisDark (the upper right corner, in
the upper left panel and upper middle panel). Our enthalpy gradient descent procedure successfully
models this effect by pushing particles away from the halo, producing a smoother density field.
The projected density field (especially at large radii) looks closer to the hydrodynamical simulation
after applying our model.

Figure 2.4 also shows that the inner profile of the halo in 10-step FastPM is not cuspy enough.
As discussed above, this is mostly due to the limited force resolution of particle mesh and the
insufficient number of steps which limits the nonlinear effects. Both the potential gradient descent
model and radial flow model produce a cuspy center by moving the particles towards the center
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Figure 2.4: The projection of the same halo in Illustris, IllustrisDark, and FastPM, before and after
applying our models. The top left panel is from Illustris-3, the top middle panel shows IllustrisDark,
and the top right one is IllustrisDark after applying our enthalpy gradient descent model (see Section
2.2). The enthalpy gradient descent model moves some particles from the halo center to the outer
region to simulate AGN feedback, making the outskirts of IllustrisDark closer to Illustris (see the
upper right corner of each plot in the upper panel). The bottom panels show the halos in FastPM
simulation with 10 steps, before and after applying our potential gradient descent model and radial
flow model, respectively. The halo in FastPM does not fully collapse and no density peak can be
found. After applying our models, the peaks appear. The radial flow model produces a smooth
density profile with the correct spherical density profile, but the potential gradient descent model
creates some of the substructures that look closer to Illustris.

and contracting the halo. However, the density field is still relatively smooth after applying the RF
model because the particles are moved isotropically, and no evident substructures can be found.
The potential gradient descent model, on the other hand, is able to model some of the substructures.
This is not surprising. Even though halos in FastPM simulation have not fully collapsed, we expect
that the seeds of these substructures remain in the density field, and the gradient descent can amplify
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these density fluctuations.
In the rest of this subsection, we will present in detail how these models improve the matter

power spectra, halo profiles, and sub-halo statistics.

Power Spectra of Matter
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Figure 2.5: The ratio of matter power spectra (left panel) and cross-correlation coefficients (right
panel) of FastPM with 10 steps, 40 steps, and dark-matter-only simulation, before and after
using our models, compared to hydrodynamical simulations. The solid lines show results before
calibration, while the dashed line and dotted line present the results after applying the models. After
calibration, the deviations of matter power spectra compared to hydrodynamical simulation are
within 5%. The cross-correlation coefficients also improve after calibration in most circumstances.
The power spectrum is calculated using Nbodykit [118].

Figure 2.5 shows the matter power spectra and cross-correlation coefficients of FastPM and
dark-matter-only simulations compared to hydrodynamical simulations, before and after applying
the model. For 10 step FastPM and dark-matter-only simulation, the potential and enthalpy gradient
descent models work fine, reducing the relative deviations of power spectra to within 5%.

We also observe that the cross-correlation coefficient of 10-step FastPM improves after cali-
bration. We point out that the improvement is better than the 11-step FastPM simulation, although
the computational cost is the same.

The RF model is not based on optimizing the power spectra, as it calibrates the halo profiles
and improves the one halo term in the halo model, leading to better small-scale power spectra. We
notice that the improvement of cross-correlation coefficients of PGD and RF are similar.
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Figure 2.6: The halo power spectrum for different halo mass (upper panels), halo cross-correlation
coefficient between FastPM and Illustris-Dark (lower left panel) and the ratio of halo mass function
between FastPM and Illustris-Dark (lower right panel). The halo catalogs used for calculating the
halo power spectrum and cross-correlation are selected from abundance matching. The upper left
panel shows the power spectrum of the first 500 massive halos, which approximately correspond
to halos larger than 5 × 1012M⊙ in Illustris-Dark; and the upper right panel shows the first 2000
massive halos, approximately corresponding to halos larger than 1012M⊙. The power spectrum
shown above has already been subtracted from the shot noise.

Halo Statistics
Before looking into the halo inner structures, we first examine if the halo statistics are reproduced
in FastPM simulation. We show the halo power spectrum, halo cross-correlation coefficient, and
the halo mass function in Figure 2.6. Here we compare our results against Illustris-Dark, because
we use the FOF mass to represent the halo mass and it is difficult to define an equivalent halo mass
in a hydrodynamical simulation. We can see that FastPM produces similar halo statistics as the
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high-resolution N-body simulation Illustris-Dark. This is consistent with the FastPM paper[89].
We also notice that the PGD model can improve the halo mass function, but has little influence
on the halo power spectrum. This is as expected. The PGD model moves the particles toward the
center of the halo, therefore increasing the FOF halo mass as well as the halo mass function. The
centers of halos and the rank orders sorted by halo mass are almost unaffected during this process,
leaving the halo power spectrum at the same abundance unchanged.

Mass Profile of Halos

1011

1012

1013

1014

1015

1016

[h
3 M

M
pc

3 ]

log M > 14

FastPM Force Resolution

Illustris
IllustrisDark
IllustrisDark + EGD
FastPM 10 step
FastPM 10 step + PGD
FastPM 10 step + RF
FastPM 40 step
FastPM 40 step + PGD + EGD

101 102 103

r [h 1 kpc]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
(r)

/M
hy

dr
o(r

)

13 < log M < 14

101 102 103

r [h 1 kpc]

12 < log M < 13

101 102 103

r [h 1 kpc]

Figure 2.7: The spherical averaged halo density profile (upper panels) and enclosed mass as a
function of radius (lower panels), in different halo mass bins. Black color shows Illustris, yellow
represents Illustris-Dark, blue displays 10-step FastPM, and red shows 40-step FastPM. The solid
line shows results before calibration, and the dashed line and dotted present results after using
different calibration models. The spherically averaged matter distribution gets closer to Illustris
after calibration. The effect is stronger for larger halos.

Figure 2.7 shows the calibrated FastPM and Illustris-Dark halo profile against the reference
Illustris-3 simulation. We see that both density profiles and matter profiles improve after calibration.
This translates to a particularly large improvement of PGD for massive halos, but for smaller halos
that are barely resolved, the profile improvement is less evident. This is probably due to the fact that
in smaller halos the gravitational force is too small and therefore the displacement is not enough. In
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[325] it was shown that on scales 2 ≲ k ≲ 10hMpc−1, the power is dominated by the contribution
from massive halos m200 ≳ 1013.5M⊙. This explains why the profiles of small halos are not very
good, while at the same time, the power spectrum is matched very well.

Ideally, the halo profiles after applying the RF model should be identical to the profiles in the
reference simulation, therefore the blue dotted line in Figure 2.7 should be the same as the black
solid line. However, our results show differently, and it may be due to the following reasons: 1. In
the RF model we define the potential minimum as the halo center (In FastPM simulation the halo
profile is flatter, where the density maximum is noisy and difficult to find), but in Figure 2.7 for
Illustris we choose the density maximum as the halo center. These two centers are always different
in halos. 2. The halo mass increases after applying the RF model, so some halos will transit to
higher halo mass bins, making average halo profiles different from the reference simulation.

Substructures
Our numerical schemes only affect the matter distribution inside halos, leaving the clustering of
halos intact. We do however expect to see an improvement in the internal structure of halos. In this
section, we investigate this via the clustering of sub-halos.

The Illustris-3 simulation provides a sub-halo catalog identified by the SubFind algorithm. Here
we choose the satellite sub-halos with M > 1012h−1M⊙ as our reference sub-halo catalog. For
FastPM and the calibrated FastPM simulations, we use a Friends-of-Friends with a short linking
length lFOF = 0.05 to find the sub-halos. Then we remove the central sub-halos, and combine
those sub-halos that are closer to each other than r < 0.2h−1Mpc. Finally, the rest sub-halos are
abundance matched with our reference catalog.

In Figure 2.8 and 2.9 we show a visual inspection of the identified substructures before and after
calibration, compared against the Illustris-3 hydrodynamical simulation. We notice that our scheme
significantly increases the number of substructures in 10-step FastPM, although they usually tend
to be at the wrong locations.

In Figure 2.10 we show the power spectrum, cross-correlation coefficient, stochasticity and
abundance. The stochasticity is defined as the power spectrum of the residue field δres(k), where
δres(k) = δref(k)−T (k)δFastPM(k), and T (k) is the transfer function between reference simulation
and FastPM. We see that our scheme significantly improves all of the statistics. Notably, for 10-step
simulation, the cross-correlation coefficient improves from 80% to 95% at the largest scale, and the
stochasticity decreases to the shot noise level.

2.4 Parameter Selection of PGD
The selection of parameters depends on the baryonic physics models, and the parameters of the
quasi-N-body simulation, such as mass resolution (typically lower than that of the hydro simulation)
and number of time steps. Redshift evolution needs to be calibrated as well. On the other hand,
we only have a handful of parameters, and their resolution and redshift dependencies need to be
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Figure 2.8: Visualizations of some large halos and their satellite sub-halos in Illustris and 10 step
FastPM. The satellite sub-halos are indicated with ”+” (Illustris) and ”×” (FastPM). The PGD
model greatly improves the identifications of substructures in 10-step FastPM.

calibrated only once. We note that for 10-step FastPM, PGD alone can provide a significant
improvement on the power spectrum for a wide range of tests we tried, as seen in Figure 2.3.

We then analyzed the degeneracy of parameters with MCMC of the PGD model in Figure 2.11.
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Figure 2.9: Visualizations of some large halos and their satellite sub-halos in Illustris and 40 step
FastPM. The satellite sub-halos are indicated with ”+” (Illustris) and ”×” (FastPM).

We see that the scheme allows a wide range of kl or ks depending on the targeted simulation for
calibration.

It is therefore possible to propose a relatively simple set of parameters that cover a set of
resolutions. We define the dimensionless resolution parameter ∆ = δ

1h−1Mpc
, where δ is the mean
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Figure 2.10: The satellite sub-halo power spectra (upper left), cross-correlation coefficients with
the reference simulation (upper right), stochasticity (lower left), and the average numbers per halo
(lower right). Here we show the results of FastPM 10 step (blue color) and 40 step (orange color)
before (straight line) and after (dashed lines) applying our models. We also show the IllustrisDark
in black color as a comparison.

separation of particles. For different resolutions and different redshifts (as cosmic scale factor
a), we find the best-fit parameters, and then fit them with parametrized curves. This gives us an
approximated empirical relation of the PGD model parameters as a function of ∆ and a:

kl = (1.52− 0.3∆) h Mpc−1 (2.19)
ks = (33.4− 30∆) h Mpc−1 (2.20)
α = α0 · aµ (2.21)
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Figure 2.11: The marginalized posterior probability distribution of the 3 parameters in the potential
gradient descent model when fitting the power spectra of 10 steps FastPM against Illustris (blue
color) and Illustris-Dark (red color). The dashed lines show the values of the best-fit parameters.
Here we set flat priors for these parameters. Because the uncertainties we choose in Section 2.7 are
quite arbitrary, the contours here do not show the true locations of 1 σ or 2 σ. However, they do
show us the degeneracy of these parameters (shape of the contours) and the approximated locations
of the best-fit parameters. Emcee [95] is used for sampling.

where
α0 = 0.0061∆25 + 0.0051∆3 + 0.00314 (2.22)
µ = −5.18∆3 + 11.57∆2 − 8.58∆ + 0.77 (2.23)
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Figure 2.12: The power spectra of FastPM simulation after applying the PGD model. The
parameters of the PGD model are determined using Equation 2.19 - Equation 2.23. We show the
results of different redshifts and of different simulation resolutions (δ represents the mean separation
of particles). At low redshifts, these parameter choices work well for all resolutions; while at high
redshifts, low resolutions fail due to shot noise.

The above relation works when 0.3 < ∆ < 1 and 0 < z < 2.
We show the calibrated power spectra using this parameter choice in Figure 2.12. Because

these relations are obtained from fitting the best-fit parameters and therefore are not accurate, the
power spectrum here does not look as good as Figure 2.5. Still, they provide us a fair choice of
these model parameters when we are not able to fit the power spectrum ourselves. At low redshifts,
the power can be calibrated at all resolutions. At high redshift (z=2) the low resolutions do not
work well, especially at small scales due to the shot noise. Therefore we recommend using high
resolution (∆ ≲ 0.5) for high redshifts (z ≳ 2).

We note that the parameter choice presented above is for the Illustris baryonic model only. How-
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ever, it is believed that the Illustris AGN feedback model is too strong and probably unrealistic[102,
115]. Therefore it is unknown how accurate this parameter choice is.

2.5 Conclusions
In this chapter, we introduce a gradient-based method to improve the modeling of matter distribution
within halos in low-resolution quasi-N-body simulations. We train the method on the full N-body
and hydro simulations, with the goal of making the two as close as possible in terms of summary
statistics such as matter power spectrum and halo profiles. We introduce two versions of the gradient
descent method. The Potential Gradient Descent model drifts the particles along the gradient of
modified gravitational potential to help virialize the halos in quasi-N-body simulations. In the
Enthalpy Gradient Descent model, the particles are moved along the gradient of estimated thermal
pressure to model the feedback from AGN and supernovae in a hydro simulation. The latter can
also be used by high-resolution pure N-body simulations to transform them into a hydro simulation.
We also compare these to the Radial Flow scheme, which naively moves the halo particles along
the radial directions to achieve the desired profiles. PGD and EGD are much faster and can create
some of the substructures, but have very few free parameters, while RF has a lot more freedom and
can work in all simulations, as long as the halo profiles are given.

We show that all of these models are able to improve the halo profiles and small-scale power
spectra. The calibrations of PGD and EGD are based on fitting the power spectra. PGD sharpens
the halo profiles, especially for massive halos. EGD simulates the AGN feedback by moving the
matter to the outskirts of the halos. The effect of cooling and adiabatic contraction is on scales
smaller than we are interested in, so here we do not attempt to model these effects. RF calibration is
based on calibrating the halo profiles. Both PGD and RF improve the cross-correlation coefficients.
The PGD model can also improve the subhalo statistics by magnifying the density fluctuation in
the halos.

We also present empirical equations of parameter choices for 10 step FastPM, as a function
of simulation resolutions and redshifts. This parameter choice gives good results at low redshifts.
For high redshifts, we recommend using high simulation resolutions to reduce the shot noise and
improve the small-scale power.

PGD and RF can be used to improve the dark matter field in quasi N-body simulations such as
FastPM and COLA. Given the reference simulation, the parameters of PGD can be determined by
optimizing the power spectrum, and this set of parameters can be used in different realizations, as
long as the simulation resolutions, number of steps, and redshifts remain unchanged. We present
expressions for these parameters as a function of redshifts and resolutions. These models will be
particularly useful for data analyses where halo internal structures are important, such as weak
lensing around galaxies and clusters. PGD will also be useful in galaxy surveys, as it improves
the subhalo statistics. EGD can be used to add the baryonic effects to existing dark-matter-only
simulations as a first-order approximation. One limitation of the PGD model is that it does not
work that well for small halos. If halo profiles at low mass are important, one must increase the
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force resolution of PM. Alternatively, one can use RF method which can give the correct average
halo profile even at low halo masses.

There are three free parameters in PGD and two free parameters in EGD. These parameters
depend not only on baryonic physics models, but also on simulation resolutions, redshifts, and the
number of steps. These parameters cannot be derived from the first principles. To achieve the best
results, they need to be optimized for different situations. This can be viewed as a positive aspect
of this approach: we do not fully understand the physical processes that govern feedback models
and their impact on the halo mass profiles, so these astrophysical uncertainties must be modeled
with free parameters. Our approach manages to compress the number of free parameters down to a
few only, so it can be used as a useful parametrization of our astrophysical ignorance that needs to
be marginalized over. In this sense, one can argue that high-resolution N-body simulations are no
better than low-resolution simulations: they are both missing baryonic effects, and if these effects
can be incorporated with a few unknown nuisance parameters into either scheme with equal results
then the advantages of the high-resolution N-body simulations are eliminated.

In the future, we plan to incorporate this scheme into FastPM and its gradient of the final
density field with respect to initial density modes, which are needed for the reconstruction of initial
conditions [287]. This will be particularly important if the data for reconstruction include weak
lensing, which can resolve halo mass profiles, at least statistically. We also plan to investigate ways
of embedding the scheme directly into the simulation as additional viscous drifting that bypasses
the momentum, as a way to alleviate the redshift dependency of the parameters, and as a way to
produce further enhanced weak lensing maps. Finally, it is well known that the AGN feedback
model of Illustris is too strong, so in some sense the parameters we determine span the maximal
range of baryonic effects. In the future we plan to test the method on several additional baryonic
feedback simulations, to verify and if needed expand the parameter space of baryonic parameters,
and determine their most likely values.
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2.6 Appendix A: Simulation data sets

Illustris-3/IllustrisDark-3
Illustris [231, 342, 341, 102] is a series of cosmological hydrodynamic simulations, carried out
with the moving-mesh code AREPO [299]. Each simulation evolved a periodic volume 106.5 Mpc
on a side, over the redshift range z = 127 to the present in a ΛCDM cosmology(ΩM = 0.2726,
Ωb = 0.0456, H0 = 70.4km s−1 Mpc−1, ns = 0.963, σ8 = 0.809). Illustris follows the evolution
of the dark matter, cosmic gas, stars and supermassive black holes, with a full set of physical
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models including primordial and metal-line gas cooling, star formation and evolution, gas recycling,
chemical enrichment, supernova feedback and AGN feedback (for more details see [343, 320]).

Illustris has three runs (Illustris-1,2,3) at different resolutions. Since the scale we are interested
in this study is larger than k = 10hMpc−1, we focus on Illustris-3, which has a mass resolution
mDM = 2.8 × 108h−1M⊙, m̄baryon = 5.7 × 106h−1M⊙ and a force resolution ϵDM = 5.68kpc,
ϵbaryon = 2.84kpc. As a comparison, we also make use of Illustris-3-Dark, a dark-matter-only
analog of Illustris-3.

FastPM
FastPM is a quasi N-body particle-mesh (PM) solver, in which the drift and kick factors are
modified following the Zel’dovich equation of motion so that the correct linear theory growth at
large scale can be produced at a limited number of steps. We generate the initial condition with the
same random seed and linear power spectrum as Illustris, starting at z = 9 and using the second-
order Lagrangian perturbation theory. However, for simulations with a small volume (75h−1Mpc)
the contribution to the large-scale growth due to non-linear evolution at the box scale becomes
significant (percent level), which is why the ratio of large scale power in Figure 2.5 and 2.12 is a
little smaller than 1. In this chapter all FastPM simulations have the same resolution as Illustris-3
(Nparticle = 4553).

2.7 Appendix B: Cost Function and Choice Covariance
The calibrations of potential gradient descent and enthalpy gradient descent models are based on
minimizing the discrepancies of the power spectra. The covariance matrix of the power spectrum
in the fully nonlinear scale is unknown. To avoid this complication, we assume a simple Gaussian
likelihood that weights different scales equally.

p(Pref(k)|θ) =
∏

k<10h Mpc−1

1√
2πσ2

k

exp[
(Pref(k)− Pcalib(k))

2

2σ2
k

]. (2.24)

where θ represents the parameters in our models, and σk is the error of Pref(k). One natural choice
for σk is σk =

√
2
N
Pref(k), where N is the number of k modes in this bin. However, in practice,

we find that this choice often overemphasizes the small-scale power, as on small scales σk is quite
small due to the large number of k modes. As a result, on scale k ≈ 3h Mpc−1 the fitting is quite
poor, even though on smaller scales the power matches well. We argue that in observation the error
of small-scale power is often dominated by systematic error, and is much larger than

√
2
N
Pref(k).

We try to avoid this by choosing σk = 0.1Pref(k). The factor 0.1 here does not change the best-fit
parameters. We find that this σk choice works well, as shown in the chapter.

We also attempt to maximize the cross-correlation coefficient, which gives a similar improve-
ment in the correlation coefficient but a drastically different small-scale power spectrum.
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A third cost function we attempted is directly matching the density field in configuration space
by minimizing the residual,

y =
∑
xi

(δcalib(xi)− δref(xi))2. (2.25)

We find that the configuration residual down-weights the large-scale power (due to fewer modes),
preferring parameters that produce incorrect large-scale power.
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Chapter 3

High mass and halo resolution from fast
low-resolution simulations

The contents of this chapter were originally published in [58],

High mass and halo resolution from fast low resolution simulations
Dai B., Feng Y., Seljak U., Singh S.(arXiv:1908.05276) JCAP 04 (2020) 002

Generating mocks for future sky surveys requires large volumes and high resolutions, which is
computationally expensive even for fast simulations. In this chapter, we try to develop numerical
schemes to calibrate various halo and matter statistics in fast low-resolution simulations compared
to high-resolution N-body and hydrodynamic simulations. For the halos, we improve the initial
condition resolution and develop a halo finder “relaxed-FoF”, where we allow different linking
lengths for different halo mass and velocity dispersions. We show that our relaxed-FoF halo finder
improves the common statistics, such as halo bias, halo mass function, halo auto power spectrum,
cross-correlation coefficient with the reference halo catalog, and halo-matter cross power spectrum.
We also calibrate small-scale velocities of small halos to improve the power spectrum in redshift
space. For matter statistics, we incorporate the potential gradient descent (PGD) method into fast
simulations to improve the matter distribution at nonlinear scales. By building a lightcone output,
we show that the PGD method significantly improves the weak lensing convergence tomographic
power spectrum. With these improvements FastPM is comparable to the high-resolution full N-
body simulation of the same mass resolution, with two orders of magnitude fewer time steps. These
techniques can be used to improve the halo and matter statistics of FastPM simulations for mock
catalogs of future surveys such as DESI and LSST.

3.1 Introduction
Numerical simulations of large-scale structure formation are essential for extracting cosmological
information from current and future sky surveys. N-body simulations with semi-analytic galaxy
formation models have achieved great success in cosmological analysis [165, 152, 199], but they are
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also computationally expensive. Quasi-N-body PM simulations with a small number of steps such
as FastPM [89] and COLA [312] provide an alternative and fast way to model galaxy statistics. It
has been shown that these fast simulations predict accurate halo statistics compared to full N-body
simulations of the same resolution [89, 312]. However, to generate accurate mocks for future sky
surveys such as DESI [181] and LSST [195], high mass resolution and large box volumes are
needed, which makes the computational cost quite high even for fast simulations. For example,
DESI aims at measuring the bright emission line galaxies up to z = 1.7, the analysis of which
requires accurate modeling of 1011h−1M⊙ halos [66]. Considering that using halos with less than
200 particles could lead to large systematic errors [62], and that to cover the sky up to z = 1.7 the
box should be around 3h−1Gpc per side, we need at least 4 trillion dark matter particles in the
simulation. This is computationally expensive in itself even with fast simulations like FastPM, not
to mention that we may need lots of different realizations to measure the covariance matrices or to
study the influence of cosmological parameters. Therefore, we need to find a model that reduces
the computation cost while maintaining the accuracy.

Another difficulty in these quasi-N-body simulations is the deficiency of their matter power on
small scales due to insufficient force resolution. The potential gradient descent (PGD) model has
been proposed to improve the modeling of matter distribution on nonlinear scales [53]. PGD was
used as a post-processing correction on the static snapshot. In this chapter, we incorporate PGD
into FastPM at each time step, so that it can be used in generating time-continuous light-cone
mocks for weak lensing analysis.

The goal of this paper is to produce reliable predictions for halo and dark matter statistics in
low-resolution FastPM simulations by training them on high-resolution N-body simulations. The
plan of the chapter is as follows. In section 3.2 we try to improve the identification of small halos
by modifying the FoF halo finder and removing fake halos. The small-scale velocities of halos are
calibrated to improve the modeling of redshift space distortion. For the matter field, we incorporate
PGD into FastPM simulation in section 3.3. By building a light-cone output we show that the
method can improve the weak lensing convergence field. Finally, we conclude in Section 3.4.

3.2 Halo statistics and clustering
In this section, we examine and improve the halo statistics in FastPM simulation. We use Illus-
trisTNG [300] as our reference simulation. IllustrisTNG is a suite of cosmological hydrodynamic
simulations with different box sizes and resolutions. We will mainly compare our results with
TNG300-2-Dark, a dark-matter-only run in a 205h−1Mpc periodic box and with 12503 particles.
Since previous study shows that halo statistics have around 2% deviations for halos consisting of
200 particles [62], TNG300-2-Dark may not be accurate enough for the halo mass we consider
(halos of 180 particles), so we also examine the TNG300-1-Dark simulation, which has an 8 times
higher resolution. The agreement between TNG300-2-Dark and TNG300-1-Dark should give us
an estimate of the accuracy of our reference simulation. Besides, we also show the results from
the TNG300-2 hydrodynamic simulation to study the baryonic effects on these halo statistics. All
these simulations share the same initial linear density field.
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To perform a direct comparison with the reference simulation, we run FastPM in the same
205h−1Mpc periodic box with the same linear density field by matching the random seed and
linear power spectrum. We generate the initial condition at z = 9 using 2LPT, and then evolve
the field to redshift 0 with 40 steps distributed uniformly on the scale factor a. Unlike TNG300-2-
Dark with 12503 dark matter particles, we run FastPM simulation with 8 times lower resolution,
i.e., 6253 particles. In this section we will mostly focus on M > 1011M⊙ = 6.7 × 1010h−1M⊙
halos, corresponding to halos of more than 22 particles in FastPM. For most comparisons in this
chapter, the halo catalogs are generated from abundance matching. In the following analysis, we
also compare our results with TNG300-3-Dark, which has the same resolution but is a full N-body
simulation. As we will see, with standard linking length l = 0.2, most of the comparisons with
TNG300-3-Dark are quite good, consistent with previous study [89], but the agreement is not so
satisfying when compared to the higher resolution reference simulation. This suggests that halos
with less than a hundred particles cannot be modeled well even with a full N-body simulation, and
the deficiency of FastPM at this mass range is mostly a resolution issue. This provides additional
motivation for our approach: by training on Illustris TNG300-2-Dark, which has a higher overall
resolution (mass, time, and force), we can obtain results with FastPM that can exceed even Illustris
TNG300-3-Dark despite its higher time and force resolution. We do so by modifying the standard
Friends-of-Friends (FoF) algorithm to improve the situation for these small halos. All the halos in
the Illustris TNG simulations are identified using the FoF algorithm with a linking length of 0.2.

Relaxed-FoF
Large halos in FastPM can be modeled accurately, but small halos cannot be well resolved. For
example, in Figure 3.1 we show the same halo in the high-resolution reference simulation, FastPM,
and a full N-body simulation with the same resolution TNG300-3-Dark. We see that the lower
mass resolution halo is more diffuse than the reference. The FoF algorithm with a standard 0.2
linking length cannot link all the particles, and breaks the halo into 2 or 3 smaller halos. As a
result, FastPM and TNG300-3-Dark tend to underestimate the halo mass at this mass range, and
therefore underestimate the mass function, as we can see in Figure 3.4. Because halos are broken
into several small halos, they appear to be more clustered and produce a larger halo bias (Figure
3.3).

We try to improve this situation by increasing the linking length l in the FoF halo finder as a
function of halo mass. In the middle panel of Figure 3.1, we see that with a larger linking length, we
can successfully link all the particles and reproduce the correct halo mass and position. However,
increasing the linking length for all the particles will bias the halo mass for large halos, since we
know that the standard linking length l = 0.2 is already good for large halos at redshift 0 [89].
Therefore, we make the linking length a function of the halo particle number, with a larger linking
length for smaller halos. Since the linking length is not fixed, we call this method relaxed-FoF. As is
shown in Figure 3.4, the 0.2 linking length predicts less massive halos at high redshifts, suggesting
that the linking length should also be a function of redshift as well.

Another issue with these low-resolution simulations is that in the high-density regions, unbound
clusters of nearby particles are linked by the FoF algorithm, therefore producing lots of fake halos.
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Algorithm 1 Relaxed-FoF algorithm
1: procedure RelaxedFoF(x, Np, l, r) ▷ x is the set of particles, Np is the halo bin

in ascending order, l is the corresponding
linking length, and r is the velocity disper-
sion threshold.

2: for i← 1, len(Np) do
3: halo← FoF(x, l[i])
4: for j ← 1, Nhalo do
5: if halo[j].Np < Np[i] and halo[j].Vdisp < r Vstd,disp(halo[j].mass) then
6: save halo[j] in halocat
7: remove particles that form halo[j] from x
8: end if
9: end for

10: remove particles that do not form halos from x
11: end for
12:
13: L← l[len(Np)]
14: while x is not empty do ▷ keep reducing the linking length and save

true halos & reject fake halos until no halos
can be found

15: L← 0.9L
16: halo← FoF(x, L)
17: for i← 1, Nhalo do
18: if halo[j].Vdisp < r Vstd,disp(halo[j].mass) then
19: save halo[j] in halocat
20: remove particles that form halo[j] from x
21: end if
22: end for
23: remove particles that do not form halos from x
24: end while
25: end procedure
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Figure 3.1: The projected map of the same halo in TNG300-2-Dark (left panel), FastPM (middle
panel) and TNG300-3-Dark (right panel). The halo mass is around 1.6×1011h−1M⊙, corresponding
to 425 particles in TNG300-2-Dark simulation, and 53 particles in FastPM and TNG300-3-Dark.
We perform the standard FoF algorithm with a linking length of 0.2 on each of them, and the halo
centers of mass are represented as red crosses (the size of the cross is proportional to the halo
mass). The blue cross in the middle panel shows the center of mass of the halo identified with a
larger linking length. In the middle and right panels, we also show the true position (identified in
TNG300-2-Dark) as orange dashed crosses.

With larger linking lengths, we expect this issue to be more severe. We find that these fake halos
are likely to have larger velocity dispersion. This is expected, since the particles that make up those
fake halos are “accidental” close neighbors and are not gravitationally bound. Therefore, for each
small halo we calculate the quantity r =

Vdisp

Vstd,disp(M,z)
, where Vdisp is the velocity dispersion we

measured from simulation, and Vstd,disp(M, z) is the expected velocity dispersion of a halo at this
mass predicted by the common scaling relation [87].

Vstd,disp(M, z) = V0

(
E(z)M

1015h−1M⊙

)α

(3.1)

where V0 ≃ 1100kms−1, E(z) = H(z)/H(0) is the dimensionless hubble parameter, and the slope
α is around 0.3. If the quantity r is larger than a threshold r0, we consider the halo as a fake one
and reject it from the halo catalog. Since the fake halos we remove are mostly in the high-density
regions, we expect this procedure to reduce the bias of small halos.

We increase the linking length for small halos to better identify the halos in low-resolution
quasi-N-body simulations, and use velocity information to help remove the misidentified halos.
Several previous papers have made similar attempts and achieved good results. For example, [205]
generated PTHalos from a 2LPT field using a much larger linking length (b = 0.38), and then
calibrated the halo mass to match the given halo mass function. Iteratively decreasing the linking
length is commonly used in sub-halo finders (e.g., HFOF [169], ROCKSTAR [19]). Particle
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Figure 3.2: The ratio of missed halos as a function of halo particle number in different simulations
and various redshifts. Here we choose TNG300-2-Dark as the reference (same for Figure 3.3 to
Figure 3.8). The nonzero ratio of missed halo in the massive end is mostly because of the bridging
effect.

velocities have been incorporated in many modified FOF halo finders and phase space finders(e.g.,
6DFOF [68], HSF [200], ROCKSTAR [19]), and many algorithms remove particles that are not
dynamically bound to the halos. Considering that the small-scale velocities are not very accurate
in our simulation, here we do not try to find halos in the phase space, and only use the dynamical
information to decide whether a halo is real or not. We also tried removing unbounded particles
from the halos, but we did not find improvements in our case.

We divide the halos into several bins Np,i (Np,i is the maximum halo particle number of bin
i), and for each bin we have the corresponding linking length l(Np,i, z). We first run the FoF halo
finder on all the particles in the snapshot with linking length l(Np,1, z) for the smallest halo bin.
Then we select all the halos that are larger than the halo particle number Np,1 and the halos that
are rejected by the velocity dispersion criterion, and rerun the FoF halo finder on the particles that
form these halos with the linking length l(Np,2, z) of the next bin. We repeat this procedure until
we finish the largest halo bin. For the rest of the particles that form the fake halos, we keep running
the FoF halo finder and reducing the linking length, with fake halos rejected at each iteration, until
there are no particles left. The function l(Np,i, z) and r0(z) are simple functions we choose to
produce the correct halo mass function and halo bias:



CHAPTER 3. HIGH MASS AND HALO RESOLUTION FROM FAST LOW-RESOLUTION
SIMULATIONS 40

Np,i = {20, 40, 80, 160, 320, inf} (3.2)

l(Np,1, z) = l1 −
A1

1 + z
(3.3)

l(Np,6, z) = max(l6 −
A2

1 + z
, 0.2) (3.4)

l(Np,i, z) =
(6− i)Np,1 + (i− 1)Np,6

5
(3.5)

r0(z) = B1 −B2 log(1 + z) (3.6)

where l1, l6, A1, A2, B1 and B2 are free parameters. In our setup we find l1 = 0.25, l6 = 0.235,
A1 = 0.012, A2 = 0.06, B1 = 4.28 and B2 = 2.17 give us good halo statistics for 0 ≤ z ≤ 2.

Even though relaxed-FoF calls a standard FoF algorithm more than 6 times, it does not take
6 times longer, because after each iteration the number of remaining particles quickly decreases.
For example, only about 50% particles are left after the first iteration. In practice, we find that
relaxed-FoF normally takes around twice as much time as standard FoF.

In addition to improving the halo finder algorithm, we also find that the small-scale power in
the initial condition is crucial for the identification of small halos. We find it necessary to generate
the linear density map with a mesh that is twice finer than the particle grid, which helps to improve
the various halo statistics (Figure 3.2 to Figure 3.6). We tried further increasing the resolution
of the initial condition, but the halo statistics did not improve. Note that in this study the force
resolution is also twice the resolution of particles, so we can use the same force mesh to generate the
initial condition, and increasing the resolution of IC does not require more memory than standard
FastPM.

Before we examine any halo statistics in the next subsection, we first take a look at how well
each individual halo can be reproduced. If two halos from two simulations are within 0.4h−1Mpc
and if their mass is within a factor of 2, then we say they are the same halo, and each halo cannot be
matched with more than one halo. In Figure 3.2 we show the ratio of missed halos as a function of
halo mass for different redshifts. We define missed halos as the halos that cannot find a counterpart
in the other simulation. We see that as we go to smaller halos, the ratio of missed halos increases
and reaches around 18% (25% if the linear density map has the same resolution as particle grid) at
1011h−1M⊙ halos for FastPM with constant 0.2 linking length. After switching to our relaxed-FoF,
the ratio of missed halos decreases at all redshifts and all halo masses. The improvement is larger
at higher redshift. In particular, the ratio of missed halos is reduced to about 6% for 1011h−1M⊙
halo at redshift 2, comparable to the full N-body simulation TNG300-3-Dark.

In Figure 3.2 we also show the ratio of missed halos for higher resolution N-body simulation
TNG300-1-Dark and hydro simulation TNG300-2. Here the ratio is not zero even for large halos,
due to the bridging effect. If two nearby halos are linked together in one simulation, while they are
identified as two separate halos in another simulation, they will not be matched using our algorithm
and therefore produce a nonzero fraction of missed halos.
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Figure 3.3: The ratio of halo bias as a function of abundance measured in different simulations and
various redshifts. The halos are selected by abundance matching, and the x-axis shows the halo
abundance. Larger abundance means smaller halos. The dotted vertical line shows the abundance
of a 1011h−1M⊙ halo, corresponding to 33 particles. The shaded region represents 3% deviation.
The power spectrum is calculated using Nbodykit throughout the paper [118].

Halo statistics in real space
We first examine the halo bias defined with the halo-matter cross-correlation

b = lim
k→0

Phm(k)

Pmm(k)
. (3.7)

We present the halo bias results in Figure 3.3. We see that the bias given by different simulations
fluctuates a lot even for the largest halos (lowest abundance). This is because the halo mass is
scattered in different simulations so the same abundance does not guarantee the same halo catalog.
However, comparing the three N-body simulations of different resolutions, we can see a tendency
that higher resolution simulation shows a lower halo bias, especially for small halos. Similarly,
FastPM also gives a very high bias for small halos, mostly due to its low resolution, but with our
relaxed-FoF halo finder, the halo bias is brought down to the normal level.

With larger linking lengths, the small halos can be better identified, so the improvement of the
halo mass function at the low mass end is expected (shown in Figure 3.4). With the same linking
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Figure 3.4: The ratio of halo mass function from different simulations and various redshifts. The
halo mass here is defined as the FoF mass. For the hydro simulation, the FoF algorithm is run on
the dark matter particles, and baryon particles are attached to the same groups as their nearest dark
matter particle. Poisson noise errors are shown.

length 0.2, FastPM shows a large discrepancy with full N-body simulations of all resolutions,
suggesting that this deficiency in halo mass function is not due to the resolution effect, but a failure
of the FoF with standard linking length to resolve small halos in FastPM, which relaxed-FOF
corrects for. Another interesting feature is that the baryonic feedback seems to reduce the mass
function by 10% to 20%, but this comparison is based on FoF mass and it is unclear if it is a
meaningful comparison against hydrodynamic simulations.

Next, we select halo catalogs from different simulations with abundance matching, and examine
their auto power spectrum (Figure 3.5), halo-matter cross power spectrum (Figure 3.6), and the
cross-correlation coefficient with the reference simulation TNG300-2-Dark (Figure 3.7). The halo
catalogs correspond to M ≥ 1011M⊙ = 6.8 × 1010h−1M⊙ halos (22 particles in FastPM). As
mentioned above, the same abundance does not guarantee the same halos, so we expect to see a
little scatter across different simulations. As long as the deviation of FastPM is comparable to the
scatter of TNG-1-Dark or TNG-2, we can say the predictions of FastPM are equivalent to those of
more expensive high-resolution full N-body simulations.

We see that with standard l = 0.2 linking length, the halo auto power spectrum and the
halo-matter cross power spectrum of FastPM are very similar (slightly worse) to those of the



CHAPTER 3. HIGH MASS AND HALO RESOLUTION FROM FAST LOW-RESOLUTION
SIMULATIONS 43

10 1 1000.9

1.0

1.1

1.2

1.3

1.4

P h
h

/P
TN

G3
00

2
Da

rk
hh

z=2.00

TNG300-1-Dark             Np = 25003

TNG300-2-Dark             Np = 12503

TNG300-2                      Np = 12503

z=1.53

TNG300-3-Dark             Np = 6253

FastPM + standard FoF Np = 6253, IC = 6253

z=1.04

FastPM + standard FoF Np = 6253, IC = 12503

FastPM + relaxed-FoF   Np = 6253, IC = 12503

10 1 100

k [hMpc 1]
0.9

1.0

1.1

1.2

1.3

1.4

P h
h

/P
TN

G3
00

2
Da

rk
hh

z=0.52

10 1 100

k [hMpc 1]

z=0.26

10 1 100

k [hMpc 1]

z=0.00

Figure 3.5: The ratio of halo auto power spectrum from different simulations and various redshifts.
Similar to Figure 3.2, TNG300-2-Dark is chosen as our reference. The halos are selected using
abundance matching, corresponding to M ≥ 1011M⊙ = 6.8 × 1010h−1M⊙ halos (22 particles in
FastPM.)

full N-body simulation with the same resolution. After changing to relaxed-FoF, the halo auto
power spectrum and halo-matter cross power spectrum improve on all scales and all redshifts.
In particular, their deviations from TNG300-2-Dark are consistent with the scatter induced by
abundance matching at high redshift (z ≥ 1), while at low redshift (z ≤ 0.5) on small scales
FastPM is overpredicting power. Note that at low redshift, even though the auto power spectrum of
FastPM is not consistent with our reference N-body simulation on small scales, its slope is actually
quite similar to the prediction of TNG300-2 hydrodynamical simulation. The cross-correlation
coefficient is consistent with the ratio of missed halos (Figure 3.2), that after improving the halo
finder the halo catalog from FastPM is similar to a full N-body simulation TNG300-3-Dark.

Here in this section we only show the results of M ≥ 1011M⊙ = 6.8× 1010h−1M⊙ halos. The
auto power spectrum of larger halos is shown in Appendix 3.5.

Velocity calibration and halo statistics in redshift space
In Figure 3.8 we show the halo auto power spectrum in redshift space. On large scales, similar to the
situation in real space, relaxed-FoF improves the power. On small scales, however, the velocities
of small halos cannot be accurately modeled by low resolution FastPM. Even with relaxed-FoF,
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Figure 3.6: The ratio of halo-matter cross power spectrum from different simulations and various
redshifts.

FastPM predicts too much power on small scales in redshift space. We try to calibrate the velocities
by adding an irrotational velocity term to the particles inside small halos:

ucalib = uCOM −
〈
1

a
∇V

〉
exp(−N/Nc) (3.8)

where uCOM is the measured halo center of mass velocity, N is the number of particles in the
halo, and Nc = 160 is the halo size which we believe can be modeled well by FastPM (shown in
Appendix 3.5). We do not intend to modify the velocities of the large halos, so we put a factor
exp(−N/Nc) in the equation. Since we assume the new velocity component is irrotational, it can
be written as the gradient of velocity potential V , and we average over all the particles in the halo to
give a center-of-mass velocity correction. We try to learn the velocity potential V from the matter
gravitational potential Φ, by assuming

V (a, k) = T (a, k)Φ(a, k) (3.9)

where a is the scale factor, and the transfer function T (a, k) should go to zero when k goes to zero
to prevent any modification of large-scale velocities. We further assume

T (a, k) = (C1a− C2) exp (−k2c/k2) exp (−k2/k2s) (3.10)
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Figure 3.7: The cross-correlation coefficient of the reference halo with halos from other simulations
in different redshifts.

where kc, C1 and C2 are free parameters. We find kc = 1h−1Mpc, C1 = 0.23, and C2 = 0.03 give
us good small-scale halo power in our setup. We introduce the factor exp (−k2/k2s) to reduce the
numerical effect induced by the mesh resolutions, and ks is fixed to 5h−1Mpc. The auto power
in redshift space of halos larger than 1011M⊙ = 6.8 × 1010h−1M⊙ is shown in Figure 3.8. The
results of other mass bins are shown in Appendix 3.5. Noting the similarity between Equation 3.8,
3.9, 3.10 and Equation 3.11, 3.12, our velocity calibration model can be seen as applying Potential
Gradient Descent (PGD) model to velocities, where both methods model correction vectors as the
gradient of modified gravitational potential.

3.3 Dark matter statistics
In this section, we focus on improving the matter distribution on small scales. We first incorporate
the PGD model into every step of FastPM, and show that the redshift evolution of the PGD parame-
ters can be parametrized by simple analytical functions. Then we build a light-cone simulation with
the output of FastPM, and show that the PGD model can improve the weak lensing convergence
power spectrum.



CHAPTER 3. HIGH MASS AND HALO RESOLUTION FROM FAST LOW-RESOLUTION
SIMULATIONS 46

10 1 1000.9

1.0

1.1

1.2

1.3

P s
(k

,
=

0.
9)

PTN
G3

00
2

Da
rk

s
(k

,
=

0.
9)

z=2.00

TNG300-1-Dark             Np = 25003

TNG300-2-Dark             Np = 12503

TNG300-2                      Np = 12503

z=1.53

TNG300-3-Dark             Np = 6253

FastPM + standard FoF Np = 6253, IC = 6253

z=1.04

FastPM + standard FoF Np = 6253, IC = 12503

FastPM + relaxed-FoF   Np = 6253, IC = 12503

FastPM + relaxed-FoF + velocity calibration

10 1 100

k [hMpc 1]
0.9

1.0

1.1

1.2

P s
(k

,
=

0.
9)

PTN
G3

00
2

Da
rk

s
(k

,
=

0.
9)

z=0.52

10 1 100

k [hMpc 1]

z=0.26

10 1 100

k [hMpc 1]

z=0.00

Figure 3.8: The ratio of the halo power spectrum in redshift space from different simulations and
various redshifts. Here we only show the power spectrum of k parallel to the line of sight, i.e.,
µ = 0.9, where µ = k∥/k. The k mode perpendicular to the line of sight is not affected by RSD,
and therefore the RSD halo power spectrum with µ = 0 is similar to the halo power spectrum in
real space presented in Figure 3.5.

PGD embedded in FastPM
The basic idea of the potential gradient descent (PGD) model is to add an additional displacement
on the output position of particles to mimic the missing sub-grid physics in simulations. The
additional displacement is modeled by the gradient of a modified gravitational potential, given by

S = (α/H2
0 )∇(ÔlÔsϕ)

= (4πGρ̄α/H2
0 )∇(ÔlÔs∇−2δ)

(3.11)

where ϕ is the gravitational potential field, δ is the matter overdensity, ρ̄ is the averaged matter
density, α is a free parameter, Ôl and Ôs are a high pass filter and a low pass filter, respectively

Ôl(k) = exp

(
−k

2
l

k2

)
, (3.12)

Ôs(k) = exp

(
−k

4

k4s

)
. (3.13)
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Figure 3.9: The matter power spectrum of FastPM simulation, before and after the calibration, and
the reference simulation (TNG300 and TNG300-Dark) in different redshifts. Here we are trying
to match the power spectrum of both TNG300-Dark and TNG300 (to account for the baryonic
effects). The shadow region shows the 1% deviation. The resolution of FastPM is 125 times lower
than TNG300-2-Dark.
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Here kl and ks are also free parameters.
[53] showed that the PGD model improves the halo profiles and the small-scale power spectrum.

The PGD model can be treated as a single post-processing correction on the output snapshot, but it
would be hard to do the correction on a lightcone output in this way, since the correction parameters
are functions of redshift, and the redshift is not fixed in a lightcone output. Here we try to solve the
problem by incorporating PGD correction into FastPM. We perform a PGD correction after each
FastPM step, and then feed the corrected particle position into the next time step. Because the PGD
is coupled into the simulation, both the static snapshots and the lightcone output are consistently
corrected.

The parameters α and kl are functions of redshift, and we model their redshift dependence by

log

(
α

α0

)
= Aa2 −Ba, (3.14)

kl = kl,0a
γ, (3.15)

where α0, A, B, kl,0 and γ are free parameters. ks = ks,0 is another free parameter and is fixed for
all redshifts. These parameters are fitted by matching the matter power spectrum at all redshifts
simultaneously. In figure 3.9 we show the matter power spectrum of original FastPM, and FastPM
after the correction. Unlike [53] where they are comparing the same resolution simulation, here
the mass resolution of FastPM is 125 times lower than the TNG300-2-Dark, yet we show that we
can match the power spectrum quite well. The cross-correlation coefficient also improves on all
redshifts, e.g., it improves approximately from 0.5 to 0.6 at the scale of k = 10h−1Mpc.

Light-cone simulation
To test how the PGD model improves the weak lensing map, We build a light-cone output from the
FastPM simulation. The FastPM simulation is run in a 3200h−1Mpc periodic box with 15363 dark
matter particles. The simulation starts at redshift 9, with time steps separated by constant spacing in
the scale factor. The FastPM without PGD correction has 40 time steps, while after implementing
the PGD correction we reduce the time steps to 20, since it has a comparable computation cost
as a 40-step FastPM. The positions and velocities of the particles located between the steps are
interpolated from the nearest steps and are saved as the particle positions intersect the observer’s
light-cone. An optional FoF halo finder can be run on the fly as the light-cone is generated,
which uses padding to handle the continuity between light-cone slices. Given that the volume of
the simulation box can be smaller than the light-cone, the simulation box is tiled (duplicated) as
necessary to cover the required volume of the lightcone. The light-cone module of FastPM allows
configurations on the position of the observer, the field of view angle ( determines the sky-area),
the direction of sightlines, the replication (tiling) matrix, the list of culling octants, and the redshift
range of interest.

In this work, we assume the observer sits at the origin of the simulation box, and integrates the
sightlines up to z = 2.2. Note that the comoving distance to redshift 2.2 is around 3.8h−1Gpc,
and the box is replicated along all directions to include the extra 600h−1Mpc.
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Figure 3.10: The redshift distribution of source galaxies of an LSST-like survey (left panel), and the
zoomed-in convergence field of FastPM (middle panel) and FastPM with PGD correction (right
panel).

Weak lensing convergence
Under the Born approximation, we estimate the weak lensing convergence map produced by the
source galaxies between redshift zmin and zmax as (see e.g. [134, 159])

κ(θ) =
3H2

0Ωm

2c2

∫ zmax

zmin

p(zs)dzs

∫ χs(zs)

0

dχ
(χs(zs)− χ)χ

χs(zs)a
δ(χ, θ) (3.16)

where θ is a 2D angular vector, δ is the matter overdensity at radial comoving distance χ and
angular position θ, χs(zs) is the comoving distance to redshift zs, and p(zs) is the normalized
redshift distribution of source galaxies between redshift zmin and zmax. Weak lensing maps are
generated in the post processing after the simulation has ended and the particle lightcone has been
saved. In the post-processing step, the lightcone particles are read in, integrated along the line
of sight using the weights based on lensing kernel, and then a pixelized map is generated with
NGP (nearest grid point) window function using HEALPY[368], the python version of healpix
[109]. While there is one I/O overhead due to lensing maps being generated in this manner, the
post processing provides flexibility to generate multiple lensing maps for different lensing source
configurations, and saving the lightcone also allows one to generate lightcones for different probes in
general (the line of sight integration kernel can be different from the lensing kernel). Furthermore,
for the case of cross correlations, it is also possible to generate the maps integrating over a narrow
lens redshift range rather than over a complete redshift range from sources to observers, if necessary
to reduce the I/O load.

In this work, we assume a source galaxy redshift distribution of an LSST-like survey (second
panel of Figure 3.10). We divide the source into 3 tomographic bins: z ∈ [0, 0.7], [0.7, 1.4], and
[1.4, 2.1], and generate the convergence maps produced by these 3 source bins separately. In Figure
3.10 we show the all-sky convergence map as well as the zoomed-in maps of the last tomographic
bin. We see that the PGD correction makes the peaks more evident. Thus we expect that the
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Figure 3.11: The weak lensing convergence auto power spectrum (upper panel) and cross power
spectrum (bottom panel). The bin number 1, 2 and 3 correspond to tomographic bin z ∈ [0, 0.7],
[0.7, 1.4], and [1.4, 2.1], respectively. The theoretical weak lensing convergence power spectrum is
calculated using Equation 3.17 with halofit nonlinear matter power spectrum. Black dashed lines
show the shot noise power spectrum from the particles, which we subtract from the measured power
spectrum.

correction to help with non-Gaussian statistics such as peak statistics. Below we will examine the
auto power spectrum and cross-power spectrum of these convergence maps.

Under the Limber approximation, the angular power spectrum of the weak lensing convergence
can be written as

Cκ(l) =

(
3H2

0Ωm

2c2

)2 ∫ zmax1

zmin1

p1(zs,1)dzs,1

∫ zmax2

zmin2

p2(zs,2)dzs,2∫ χs(min(zs,1,zs,2))

0

dχ

(
χs(zs,1)− χ
χs(zs,1)a

)(
χs(zs,2)− χ
χs(zs,2)a

)
Pm(k =

l + 0.5

χ
, z(χ))

(3.17)

where Pm(k, z) is the 3D matter power spectrum. We have assumed that p1(z) and p2(z) are
normalized. p1(z) and p2(z) will be the same in the case of auto power spectrum, and different
for the cross power spectrum. In Figure 3.11 we show the theoretical convergence power spectrum
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calculated using halofit nonlinear matter power spectrum [310], as well as the power spectrum we
measure using the simulated convergence map. After the PGD correction, the power spectrum
matches the halofit predictions.

3.4 Conclusions
In this chapter, we improve the halo statistics and small-scale matter distribution in low-resolution
fast quasi-N-body simulations. For halos, we introduce relaxed-FoF, a modification to the standard
FoF algorithm so that the linking length is a function of the halo mass. For smaller halos, relaxed-
FOF increases the linking length to enhance the identification of small halos, to improve agreement
on the halo mass function, and to reduce the fraction of missed halos. We reject fake halos by
reducing the linking length for the halos with large velocity dispersions. The rejection procedure
removes fake halos found in the high-density regions, and therefore improves the halo bias. We
find that using a high-resolution mesh for the 2LPT initial condition enhances the identification of
small halos. We also calibrate the small-scale velocities of small halos by adding an irrotational
velocity term. This extra term is written as the gradient of the velocity potential, which is learned
from the gravitational potential. We verify the results on several halo statistics, including halo bias,
halo mass function, halo auto power spectrum in real space and in redshift space, cross-correlation
coefficient with the reference halo catalog, and halo-matter cross power spectrum. We find that
our relaxed-FoF halo finder improves all of these. The ratio of missed halos and the halo catalog
cross-correlation coefficient suggests that our halo catalog from FastPM is comparable to the halo
catalog from a full N-body simulation of the same mass resolution, while our catalog has a better
large-scale auto power spectrum in real space and redshift space, as well as better halo-matter cross
power spectrum.

We also incorporate the potential gradient descent (PGD) method into FastPM simulation to
improve the matter distribution at nonlinear scales. We couple the PGD correction into the FastPM
time steps. We show that the fully coupled PGD correction improves the matter power spectrum
measured from static snapshots at all redshifts, just as the previously studied static PGD method
[53]. We build a light-cone simulation from a PGD-enabled FastPM simulation, by interpolating
the particle location between the steps. We show that the PGD correction significantly improves
the convergence tomographic power spectrum measured from the light-cone output.

There are several free parameters in relaxed-FOF and PGD. In principle, these free parameters
depend on simulation resolutions, the number of steps, and potentially cosmological parameters.
To achieve the best results, they need to be optimized for different situations. One could obtain
the parameters by fitting them to a small volume high-resolution simulation with the same random
seed. Here we do not try to study the parameter dependence besides the redshift dependence,
which contains the dominant effect of amplitude dependence. While we expect the dependence on
cosmological parameters other than amplitude to be small, this needs to be verified explicitly and
is beyond the scope of this paper.

We plan to use FastPM for mock catalogs of both spectroscopic surveys such as DESI and
photometric/weak lensing surveys such as LSST. The techniques we developed here will be useful
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to improve the halo and matter statistics in those simulations, thus enabling one to simulate the
whole survey at the required mass resolution. For example, for DESI one needs to resolve halos
down to 1011h−1M⊙ and to cover the entire survey one needs volumes in excess of (3h−1Gpc)3,
which can be achieved with 1012 particle FastPM simulations, similar to the one that has recently
been run [223].
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facilities Edison and Cori, billed under the cosmosim and m3058 repository. National Energy
Research Scientific Computing Center (NERSC) is a U.S. Department of Energy Office of Science
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IllustrisTNG simulations. This material is based upon work supported by the National Science
Foundation under Grant Numbers 1814370 and NSF 1839217, and by NASA under Grant Number
80NSSC18K1274.

3.5 Appendix A: Halo power spectrum of higher mass
thresholds
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Figure 3.12: The ratio of halo auto power spectrum in real space from different simulations and
various redshifts. The halos are selected using abundance matching, corresponding to M ≥
2× 1011M⊙ = 1.35× 1011h−1M⊙ halos (45 particles in FastPM).
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Figure 3.13: The same as Figure 3.12, but for halos M ≥ 1012M⊙ = 6.8 × 1011h−1M⊙. For this
mass range (200 particle halos) we expect the predictions from FastPM to be accurate, and the
difference between relaxed-FoF and standard FoF should be small.
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Figure 3.14: The ratio of halo auto power spectrum in redshift space from different simulations
and various redshifts, for halos M ≥ 2 × 1011M⊙ = 1.35 × 1011h−1M⊙. For RSD halo power
spectrum with µ = 0 see Figure 3.12.
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Figure 3.15: The same as Figure 3.14, but for halos M ≥ 1012M⊙ = 6.8× 1011h−1M⊙. For RSD
halo power spectrum with µ = 0 see Figure 3.13. Again, we expect the predictions from FastPM
to be accurate for this mass range (200 particle halos), and the difference between relaxed-FoF and
standard FoF should be small.
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Chapter 4

MADLens, a python package for fast and
differentiable non-Gaussian lensing
simulations

The contents of this chapter were originally published in [28],

MADLens, a python package for fast and differentiable non-Gaussian lensing simulations
Böhm V., Feng Y., Lee M.E., Dai B.(arXiv:2012.07266) A&C 36 (2021) 100490

We present MADLens, a python package for producing non-Gaussian lensing convergence
maps at arbitrary source redshifts with unprecedented precision. MADLens is designed to achieve
high accuracy while keeping computational costs as low as possible. A MADLens simulation
with only 2563 particles produces convergence maps whose power agree with theoretical lensing
power spectra up to L=10000 within the accuracy limits of HaloFit. This is made possible by
a combination of a highly parallelizable particle-mesh algorithm, a sub-evolution scheme in the
lensing projection, and a machine-learning-inspired sharpening step. Further, MADLens is fully
differentiable with respect to the initial conditions of the underlying particle-mesh simulations and
a number of cosmological parameters. These properties allow MADLens to be used as a forward
model in Bayesian inference algorithms that require optimization or derivative-aided sampling.
Another use case for MADLens is the production of large, high-resolution simulation sets as they
are required for training novel deep-learning-based lensing analysis tools. We make the MADLens
package publicly available under a Creative Commons License �.

4.1 Introduction
Measurements of the weak cosmic shear signal will be among the major experimental drivers for
advancing cosmology in the next decade. Next generation surveys such as the Vera C. Rubin
Observatory [195], the Roman Space Telescope [298] and the EUCLID satellite [85] will provide
an unprecedented amount of high resolution weak cosmic shear data, which creates a demand for

https://github.com/VMBoehm/MADLens
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novel data analysis and modeling techniques. The weak cosmic shear signal is sensitive to the
evolution of matter clustering over several orders of magnitude of scales, ranging from well within
the linear to the highly non-linear regime. Tomographic lensing measurements are sensitive to the
total matter content, Ωm0, the amplitude of clustering, σ8, and the time evolution of clustering,
which allows to constrain dark energy [137, 139, 297] and the sum of neutrino masses. Weak
cosmic shear measurements can further be used to test general relativity [125, 280, 119].

Traditional lensing analyses mostly rely on two-point statistics or related observables [167, 129,
166, 6, 132, 64, 314, 131] to extract cosmological information. However, since the lensing conver-
gence field is inherently and significantly non-Gaussian, two-point statistics do not exploit its full
information content. In fact, a long list of studies have shown that non-Gaussian summary statistics,
such as higher order correlation functions [248, 309, 145, 290, 98, 49] or peak statistics [144, 69,
211, 207, 254, 251, 38, 187, 192, 193, 155, 247, 186] can break parameter degeneracies that cumber
power spectrum analyses and lead to significantly tighter constraints. While inference from these
summaries offers improvements over power spectra analyses, their choice is somewhat ad hoc and
the question of how to best extract cosmological information from non-Gaussian lensing scales is
still an active field of research.

A number of works have recently suggested machine-learning tools for identifying informative
summaries [112, 270] and even successfully applied them to real data [92, 149]. Machine learning
methods generally require a large amount of training data. If applied correctly, these methods
extract features in the lensing map which are highly informative about cosmological parameters. A
recent study finds that these models are mostly sensitive to extreme values in the lensing field [210].
This underlines the importance of training data that accurately mimics real cosmic shear data and
its dependence on cosmological parameters down to very small scales.

Another approach, and in principle the optimal one, is to build a differentiable non-linear data
model that starts from the Gaussian initial conditions and forward models them accurately to the
measured lensing signal. This forward model is used to model the posterior of the parameters of
interest (these can be cosmological parameters, the modes of the initial field or the bandpowers
of the initial power spectrum). Analyzing this posterior generally relies on powerful sampling or
optimization schemes, which in turn require many model evaluations and often the derivatives of
the model with respect to the parameters of interest. Forward-model based inference schemes have
been developed for a range of of observables in cosmology [288, 287, 146, 147] including weak
cosmic shear [29, 258].

All of these new avenues for lensing analyses create the need for fast and differentiable simu-
lations of the lensing field that at the same time accurately capture the nonlinear features of that
field.

Realistic lensing simulations are challenging because a range of scales in the three dimensional
matter distribution contribute to a single angular scale in the lensing field making even intermediate
lensing scales sensitive to the non-linearity of structure formation on small scales [143]. Accurate
lensing simulations rely on lightcones constructed from high resolution N-body simulations. These
N-body simulations must accurately resolve small scales, but must at the same time be large enough
to produce lensing maps with an extent of several degrees.

A number of recent works have studied the applicability of deep generative models, in particular
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generative adversarial networks (GANs) for producing accurate lensing convergence maps at low
computational costs [227, 249]. These models do not aim at simulating the underlying physics, but
are trained to mimic the training data to a degree where their output becomes indistinguishable from
the training data for a neural network. While these early studies look promising, future research
will have to show that these models indeed learn the correct data distribution or that using their
outputs for inference leads to unbiased parameter posteriors. Another, more safeguard approach
is to use machine-learning inspired techniques to boost the accuracy of low resolution N-body
simulations [58, 54] and to construct lightcones from those. This is the avenue we have chosen in
this work to create high resolution lensing simulations from approximate N-body solvers.

In this publication we describe a new, weak gravitational lensing package, MADLens. MADLens
is a python package that allows one to compute fully nonlinear lensing convergence maps at different
source redshifts and low computational cost while accurately modeling the non-Gaussianity of the
field down to scales of several tens of arcseconds. MADLens is built on top of a particle-mesh
solver that evolves an initial linear density field into non-linear late time density fields. It provides
derivatives with respect to the initial conditions of the particle-mesh simulation and a number
of cosmological parameters through automated differentiation. MADLens fills the gap in the
accuracy-speed space between computationally expensive, high accuracy lensing simulations and
fast approximate simulations. In particular, MADLens correctly captures scales down to L=10000
at a field of view (FOV) of 6.2◦ with percent level precision at a runtime of 30 seconds with 32
processes. MADLens can be run at different levels of resolution and approximations, allowing the
user to choose the speed to accuracy trade-off that is optimal for their application.

We begin this paper with a brief introduction of the cosmological-scale weak lensing formalism
and our notation in Section 4.2. This is followed by a in depth discussion of the package design
in Section 4.3. We demonstrate the packages abilities in a number of tests in Section 4.4 and
conclude with a summary and outlook in Section 4.5. 4.6 provides details on the novel feature of
differentiability with respect to cosmological parameters.

4.2 Weak Gravitational Lensing, Notation and Conventions
Weak gravitational lensing observations provide insight into the projected matter density distribu-
tion between an observer and a source through correlated image distortions. Here, we provide a
brief overview and define our usage of the lensing kernel, lensing convergence, and power spectrum
of cosmic shear used throughout MADLens (for a detailed discussion of weak gravitational lensing
and especially cosmic shear, see [16, 159, 17]).

The image of a source galaxy at a comoving distance χs is distorted along the line of sight
by some lensing potential Ψ. The potential of an extended lens under the Born approximation
representing all density fluctuations along a line of sight at some angular position θ⃗ can be found
by integrating individual Weyl potentials Φ up to the comoving distance of the galaxy,

Ψ(θ⃗) =
2

c2

∫ χs

0

dχ
χs − χ
χsχ

Φ(χθ⃗, χ), (4.1)
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where χθ⃗ is the angular perpendicular component of the potential and χ is the parallel component.
The lensing deflection and convergence are defined as,

α⃗ = ∇⃗Ψ,
2κ = ∇2Ψ,

(4.2)

where the derivatives are taken with respect to θ⃗. Using the Poisson equation and neglecting the
derivative along the line-of-sight direction, the lensing convergence can be rewritten as,

κ(θ) =
1

2
∇2Ψ(θ) =

3H2
0Ωm0

2c2

∫ χlim

0

dχ

a(χ)
q(χ)δ(χθ, χ) (4.3)

q(χ) =

∫ χlim

χ

dχ′n(χ′)
χ(χ′ − χ)

χ′ , (4.4)

where δ represents the density contrast from the mean density, H0 is the Hubble parameter and
q is the lensing kernel describing the projection of sources selected by the redshift selection
function n(χ′). MADLens evaluates the integral in Eq. 4.3 numerically. The most commonly
used summary statistic in lensing analyses that can also be computed analytically is the power
spectrum. To compute the convergence power spectrum we use Limber’s approximation and the
flat sky approximation which are both valid on intermediate and small scales,

Cκκ
L =

[
3H2

0Ωm0

2c2

]2 ∫ χs

0

dχ

(
χs − χ
χs

)2

Pm

(
k =

l + 0.5

χ
, z(χ)

)
. (4.5)

Since the lensing power spectrum is very sensitive to non-linear corrections to the matter power
spectrum, we use HaloFit [310] to model Pm(k) throughout this paper.

4.3 MADLens package design
The MADLens package is based on FastPM [89], a highly scalable particle-mesh solver, that evolves
particle positions through a kick and drift scheme enforcing correct linear displacement in each step.
FastPM has been implemented in C and Python and two versions of FastPM support automatic
differentiation, including the MPI based version used in this work, and the recently published
FlowPM [222] package, which is based on TensorFlow. A FastPM particle-mesh simulation
requires the choice of a particle-mesh resolution, equivalent to the number of particles in the
simulation, the force resolution, the resolution of the grid onto which the particles are painted to
compute the forces, the box size of the simulation and the number of steps in which the particle
positions are evolved. The initial conditions and particle evolution depend on the cosmological
parameters σ8 and Ωm0.

MADLens runs a FastPM simulation. As the simulation evolves, MADLens projects the
particles in the simulation weighted by the lensing kernel at each simulation step to 2D meshes
at the desired source redshifts. The field of view, i.e. the size of the convergence map, and its
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Parameter Description Typical Value(s)
BoxSize side length of the simulation box 128-1024 Mpc/h
Nmesh resolution of the particle-mesh simulation 643 − 5123

B force resolution factor 2
Nsteps number of steps in the FastPM simulation 11− 40
N maps number of output maps ≥ 1
Nmesh2D resolution of the convergence map 2562 − 20482

BoxSize2D size of the convergence map in degrees 2.5◦ − 22◦

zs source list of source redshifts 0.3− 2.0
Omega m total matter density 0.32
sigma 8 amplitude of matter fluctuations 0.82
PGD whether to use PGD enhancement or not True/False
interpolation whether to use the sub-evolution scheme True/False

Table 4.1: List of MADLens simulation parameters that can be set by the user and their typical
values.

resolution can be set by the user given the simulation box covers the entire field of view at the
most distant source redshift. Each FastPM step evolves particles in redshift steps, ∆zi = zi+1−zi.
MADLens constructs the lightcone by translating these redshifts into distances∆χi = χi+1−χi and
projecting particles at the correct evolution step corresponding to that distance onto the convergence
map. If the distance between two simulation steps is larger than the extent of the box, the box
is replicated at the same redshift as often as is needed to fill the entire extent. In order to avoid
spurious correlations, the simulations box is rotated before being repeated. In these techniques,
MADLens is constructed similarly to other lightcone packages. We provide an overview of all
MADLens parameters that can be set by the user in table 4.1.

To reach extraordinary accuracy at low computational costs, MADLens employs two special
techniques:

• Particle Gradient Descent (PGD) [53] is an additional particle evolution step that corrects
for the difference between particle distributions in a low resolution simulation and a high
resolution simulation. The correction is applied after each simulation step. PGD introduces
4 additional nuisance parameters, which are fitted on training simulations. PGD allows
simulations to run at lower resolution while still obtaining results that are comparable and
highly correlated with a high resolution simulation. For details we refer the reader to chapter
2.

• A sub-evolution step allows for a massive reduction of the number of simulation steps. When
using sub-evolution, particles are evolved according to the redshift of their position within
the simulation box before projection, rather than by the redshift of the FastPM step. We
provide more details on this scheme in 4.7.
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Finally, MADLens is made differentiable through numerically accurate tape-based automatic dif-
ferentiation. Specifically it uses the Virtual Machine Automated Differentiation package (VMAD).
VMAD builds a computational operation graph that is traversed for the model evaluation, during
which all operations are recorded on a sequential tape. Gradient graphs generated from the tape are
used to compute Jacobian vector products (Jijvj) and vector Jacobian products (viJij , commonly
referred to as back-propagation). MADLens is made available in two variants. In its main version
it is built to provide differentiability with respect to the initial, Gaussian modes of the simulation.
A second package version, that is included in this release, adds differentiability with respect to the
cosmological parameters, Ωm0 and σ8. Differentiability with respect to the PGD parameters (kl,
ks, α0, µ) will be included in a future release.

4.4 Results
We analyze the performance of MADLens, the PGD enhancement, the sub-evolution scheme and
computation times as well as the accuracy of the gradient computation. Testing the accuracy of
MADLens output is challenging, because of the lack of a ground truth. We will use theoretical
power spectra based on Halofit matter power spectra and high resolution runs for comparison.
These can serve as a reasonable baseline, but as should become evident from our analysis, should
not be mistaken for the ground truth.

In Figure 4.1 we show an example of a convergence map produced with MADLens. The
non-Gaussian structure is clearly visible by eye and also evident in the corresponding histogram in
Figure 4.2. The map resolves sub arcmin scales and extends over more than 6◦ on the sky showing
that MADLens overcomes one of the key challenges in lensing simulations: the accurate modeling
of both large and small scales.

We compare the histogram of pixel values in Figure 4.2 with a log-normal distribution. Log-
normal distributions have been used in the past to model lensing PDFs, but are not strictly theoreti-
cally motivated. The log-normal fit captures the rough shape of the distribution, but underestimates
the probability of high values and overestimates the probability of low values.

Accuracy
In Figure 4.3 we compare the power spectra measured from MADLens outputs at different source
redshifts with the analytical model of Eq. 4.5 based on a HaloFit matter power spectrum. For this
comparison we average the power spectra of five simulations to reduce the variance. Overall we
find that the MADLens power spectra trace the theoretical predictions well within 10% up to scales
of a few thousand. At very small scales shot noise starts to contribute significantly to the power. To
put the importance of this shot noise into perspective we further plot the experimental noise level
expected in a typical future experiment, such as LSST, and find that the shot noise is subdominant
to the expected noise levels in real data.

Figure 4.4 delves further into the comparison with theoretical power spectrum and quantification
of the shot noise. We translate the HaloFit accuracy (5% for k ≤ 1 hMpc−1 at 0 ≤ z ≤ 10 and
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Figure 4.1: A MADLens convergence map at z=1.0, based on a 3D simulation of side length
256 Mpc/h and 2563 particles. The 2D lensing map has an angular extent of 6.2◦. It was down-
sampled to a map of pixel size 43 arcsec and Nyquist frequency L=15000. The Non-Gaussianity
is clearly visible by eye.
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Figure 4.2: PDF of convergence values in the map in Figure 4.1. The distribution is clearly non-
Gaussian with a pronounced skewness. A lognormal χ2 fit to the distribution (green) approximates
its shape to some extent but does not accurately capture the tails.

10% for 1 ≤ k ≤ 10 hMpc−1 at 0 ≤ z ≤ 3) into accuracy in the lensing power spectrum and
show these intervals as gray bands. The MADLens power spectrum lies well within these bands
up to wavenumbers of a few thousand, where it becomes dominated by shot noise. We estimate
the shot noise level by running a number of MADlens simulations with random particle positions
(dark gray line) and subtract the result from the MADLens power spectrum (dark blue). The result
lies within the HaloFit accuracy up to L=10000.

Figure 4.5 shows that the PGD enhancement allows to reach these high accuracies at much lower
computational cost than conventional lensing simulations. We compare the output of MADLens
simulations at a resolution of 1 particle per Mpc/h cubed to a conventional simulation (MADLens
without PGD) with an eight times higher resolution. The higher resolution simulation not only
requires about eight times more memory, but also takes more than twice as long. The high resolution
run is of comparable resolution to other state-of-the-art lensing simulations which have been used
for cosmological parameter inference studies [191], but the lower resolution MADLens simulation
traces the theoretical convergence power spectrum up to much higher wavenumbers.

In Figure 4.6 we show cross correlations defined by

r(L) =
CXY

L√
CXX

L CY Y
L

, (4.6)

whereX is the high resolution run without PGD enhancement, andY are lower resolution MADLens
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Figure 4.3: MADLens outputs (box length 512 Mpc/h, 5123 particles, with sub-evolution and PGD
enhancement) for different source redshifts but same initial conditions (no shot noise subtraction).
The measured power spectra agree with theoretical predictions up to very high wavenumbers
independent of the source redshift. Lower source redshifts show slightly higher shot noise due
to the lower number of particles that contribute to the projection. For comparison we plot the
experimental noise for a typical galaxy density expected for future lensing experiments (pink
dashed-dotted line and shaded area), showing that areas with significant shot noise contribution lie
well within the experimental noise dominated regime.
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Figure 4.4: Shot noise and comparison to a theoretical convergence power spectrum based on
a HaloFit matter power spectrum: The MADLens simulation traces the HaloFit power spectrum
within the accuracy of HaloFit (gray band). At high wavenumbers (L>4000) the shot noise (dark
gray line) that is due to the small number of particles in the simulation (2563) starts to contribute
significantly to the signal. After subtraction of the shot noise, the convergence power lies well
within the uncertainty band up to L=10000.

outputs that have either been produced with or without PGD enhancement. As expected, the PGD
enhanced lower resolution map shows higher correlation (dark blue) with the high resolution run
than the one without enhancement (light blue) on intermediate scales. The results of this cross
correlation analysis must be taken with a grain of salt: since the high resolution run is suffering
from a significant lack of power on small scales, this could also be an indication of inaccurate
particle positions. A lower cross correlation on small scales simply states that the simulations differ
significantly, but does not show which one is more correct.

The accuracy of MADLens is further boosted by a sub-evolution projection scheme, where
particles are moved to the position corresponding to their actual distance to the observer before
being projected on the lensing map. We illustrate the efficacy of this scheme in Figure 4.7. An
11-step simulation naturally overestimates the total lensing power (light blue). The sub-evolution
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Figure 4.5: The PGD enhancement recovers lensing power on small scales in a low resolution sim-
ulation: We show a comparison between the convergence power spectra of a MADLens simulation
with 5123 particles in a box of side length 512 Mpc/h that was run with PGD enhancement (light
green) and an otherwise identical simulation with 8 times more particles that was run without PGD
(orange). The latter corresponds to a setting used in some state-of-the-art simulations. The PGD
enhanced simulation tracks the theory power spectrum (dark green) well beyond L=1000, while
the standard simulation suffers from a significant loss in power on small scales.

scheme is able to correct for this overestimation up to scales L>2000 (dark blue). In a 40 step
simulation the discrepancy between actual particle positions and their true evolution stage is smaller
(light red), however, even the accuracy of a 40 step simulation can be enhanced by the sub-evolution
scheme (dark red).

The MADLens derivatives have been thoroughly tested and verified with VMAD built-in test
functions. Here we show that the derivatives are accurate by means of a single example: we build
a finite difference test by slightly changing a single pixel value in the initial field. We then take the
difference of the output maps generated from runs with slightly different values in this initial pixel
and compare it with the output of the Jacobian-vector-product (Jvp), where the vector encapsulates
the change in the initial field. If the Jvp vector product is correct, the result should agree with the
difference of the output maps. That this is indeed the case is shown in Figure 4.8. The first two
panels show the Jvp and the finite difference result, respectively. They are indistinguishable by eye.
The next panel shows the difference between the first two panels, revealing insignificant numerical
inaccuracies, five magnitudes smaller than the signal. In the last panel we compare the outputs in
terms of their histograms, finding again an excellent match.



CHAPTER 4. MADLENS, A PYTHON PACKAGE FOR FAST AND DIFFERENTIABLE
NON-GAUSSIAN LENSING SIMULATIONS 67

102 103 104

L

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

r(L
)

BoxSize=512, no PGD
BoxSize=512, PGD

Figure 4.6: Cross correlation between a low resolution MADLens run with and without PGD
enhancement, and a simulation with 8 times more particles and no PGD enhancement (same as
Fig 4.5). The PGD enhancement increases the cross correlation on intermediate scales demonstrat-
ing that PGD moves particles in a physically sensible way. Note that the high resolution simulation
is not the truth as it lacks a significant amount of power on small scales.

Run times
We conducted timing tests for MADLens on Intel® Xeon® Processors E5-2698 v3 (NERSC Cori
Haswell nodes), and show results in Figures 4.9-4.12. A single MADLens simulation that achieves
accuracies as shown in the last section takes of the order of 10-60 seconds with 32 processes. The
scaling of the run-time with source redshift is roughly linear and reducing the number of particles
by a factor of 8 reduces the run-time to about one third (Figure 4.9).

The computation time can be further reduced by parallelizing with up to 128 processes, after
which the communication overhead starts to dominate the time budget (Figure 4.10).

Reducing the number of FastPM steps leads to significant savings in run time as we demonstrate
in Figure 4.11. A conventional lightcone code requires about 40 steps in order to reach percent
accuracies in the lensing power spectrum up L≈1000. With PGD enhancement and sub-evolution
scheme, MADLens reaches percent accuracies up to L=2000 with only 11 FastPM steps: a factor
of 3 in time-savings.

The use of back-propagation to calculate the derivatives results in run times that are similar to
the forward model. This is shown in Figure 4.12, where we find run times of 1.1-1.6 times the run
time of the forward model for either Jvp and vJp.
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Figure 4.7: The sub-evolution scheme corrects for a systematic overestimation in power that occurs
when snapshots are projected at the end of every FastPM step instead of at the exact position/redshift
that corresponds to their distance to the observer (light blue). While the discrepancy can be reduced
by using more simulation steps and hence higher computational cost (light red), a sub-evolution
step before each projection significantly improves the output at a fixed number of simulation steps
(dark blue and red).

4.5 Summary & Outlook
We have presented MADLens, a fully differentiable python package for producing non-Gaussian
convergence maps of weak gravitational lensing on cosmological scales. MADLens reaches un-
precedented accuracy even when compared to many non-differentiable lensing simulations, and
operates at run times of a factor of 2-20 below conventional N-body simulation based lightcone
packages. These advancements are made possible by several features, including a machine learning
inspired post processing step, that allows the N-body simulation to run at a lower resolution and
with less steps without paying a significant penalty in accuracy. The post-processing step is a phys-
ically motivated model which approximates the particle positions in a high resolution simulation.
It introduces 4 additional nuisance parameters which are calibrated against training simulations.
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Figure 4.8: The MADLens automatic derivative agrees excellently with the result of finite differ-
encing. To show this here, we measure the response of the convergence map by slightly changing
the initial field in a single pixel. The corresponding MADLens Jacobian-vector-product in the first
plot and the finite difference result in the second plot agree to the order of 10−5, as can be seen in
the difference map (third plot) and by comparing their histograms (fourth plot).
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Figure 4.9: Computation time for a single simulation run with 11 steps and a box size of 256
Mpc/h for different source redshifts. We compare a run with 2563 particles (res = 1 [h/Mpc]3)
particles to a run with 1283 particles (res = 0.125 [h/Mpc]3). All simulations were run on a single
node with 32 processes in this test.
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Figure 4.10: Scaling of the computation time with the number of processes for a 2563 particle/
256 Mpc/h box simulation. Different lines represent different source redshifts.

Taking the derivative through a MADLens simulation with respect to the initial modes of the
N-body simulation and the two key cosmological parameters σ8 and Ωm0 is made possible through
back-propagation. This means that evaluating the derivatives has comparable computational cost as
the forward simulation. With these features MADLens constitutes a milestone towards the devel-
opment of fully differentiable inference pipelines for weak cosmic shear. In the future MADLens
will be integrated into the tensorflow-based FlowPM framework. Package updates will also feature
differentiability with respect to nuisance parameters, such as the PGD parameters.

In the interest of scientific advancement and reproducibility, we make the MADLens package
publicly available on github 1.
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4.6 Appendix A: Differentiability with respect to Cosmological
Parameters

Since the forward model itself depends on cosmological parameters through the evolution of
particle positions and the angular diameter distance which enters the lensing projection, an accurate
inference algorithm needs to take these dependencies into account. To this end MADLens provides
the additional functionality of derivatives with respect to the cosmological parameters Ωm0 and σ8.

This novel application of derivatives requires both power spectra, particle evolution, and comov-
ing distance calculations written as functions of cosmological parameters. The comoving distance
calculation and derivative are trivial, and we use the standard definition [244],
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Figure 4.12: Computation time of vector-Jacobian (vJp) and Jacobian-vector product (Jvp) in units
of computation time of the forward model for different source redshifts. The vJp and Jvp require
only slightly longer computation times than the forward model.

χ =
c

H0

∫ z

0

dz′

E(z′)1/2
, (4.7)

where E = Ωm0(1 + z)3 + Ωk0(1 + z)2 + ΩΛ0. For a flat cosmology, we take Ωk0 ∼ 0 and
Ωλ0 ∼ 1− Ωm0.

For the power spectrum that is applied to the initial density field, we use the transfer function
defined in [82] (EH-Transfer) with the inclusion of baryonic acoustic oscillation (BAO) wiggles.
This is much simpler and computationally less involved than obtaining gradients of standard Boltz-
mann solvers with respect to cosmological parameters. Compared to the matter power spectrum
obtained from the Boltzmann package, CLASS [26], which is used for cosmological calculation
throughout MADLens, we find discrepancies at a maximum of the ∼ 5% level. We find that by
using the EH-transfer, we slightly overestimate power on all scales with the largest discrepancies at
those corresponding to BAO wiggles.

To show that this overestimation is within reason, we generate multiple convergence maps with
both the CLASS and differentiable Eisenstein and Hu power spectrum. We show the absolute
difference of the power spectra of these maps in Figure 4.13 and plot the cosmic variance for
comparison. We find that the difference lies below the 1σ limit which we take to imply that our
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Figure 4.13: We calculate 20 convergence maps using both CLASS and Eisenstein & Hu transfer
functions and see a strong agreement in values. The percent error of the power with respect to the
CLASS transfer function convergence maps (red line) remains below the cosmic variance (dotted
black line) for most modes with negligible deviations above at small scales.

implementation of the EH-transfer function and power describes the initial spectrum well within
the required accuracy.

The particle initial conditions and evolution, too, is dependent on the cosmology and we use
a finite differencing scheme on the Lagrangian Perturbation Theory initial conditions, as well as
the momentum and position updates in FastPM. This allows the computation of derivatives for the
initial conditions, kick, and drift factors without the need for analytical solutions to the derivatives
with respect to Ωm0. This method works by storing the finite difference of a function on the
gradient tape, and caches the cosmology variables to avoid re-computation of the particle mesh.
During forward propagation, the function is run as normal, and during back propagation two cached
cosmology objects with perturbed parameter values are used to compute the finite difference. This
scheme can be made applicable to any function which is not highly sensitive to parameters, and
while we use the analytic solution for derivatives such as the EH-transfer function, it should be
noted that it is feasible to apply the finite differencing method to linear power and cosmology
methods from Boltzmann codes such as CLASS.

Similar to the finite difference test in section 4.4, we test the accuracy of the Jvp for σ8. We add
and subtract a small offset δ from σ8 (δ = 10−10), compute convergence maps from both of these
configurations and take their difference. We then compare this to the Jvp at the central σ8 value
with a vector of 2δ to multiply the Jacobian. The resulting histograms are shown in Figure 4.14.
The derivative of σ8 is in excellent agreement with the finite differencing result.
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Figure 4.14: We show that the automatic derivative and finite differencing agree well for σ8. We
used a small offset δ = 10−10 and histogram the finite-differenced convergence maps (blue) and
Jvp outputs (gold)

While σ2
8 only enters linearly, the model’s dependence on Ωm0 is more complicated. The deriva-

tive with respect to Ωm0 therefore requires a more in depth testing to ensure accurate derivatives are
being taken. We test the Jacobian against finite differencing results for multiple modes individually.
In Figure 4.15, we show the results of cross-correlating the finite difference results with the Jvp
outputs and verify the accuracy of the automatic derivative.

As a check for the vJp against Ωm0, we construct a scalar by computing the finite differencing
of the sum of the squared convergence maps and ensure that this value is equal to the vJp when the
central convergence map is used as the vector in automatic differentiation.∑N

i=0 κ
2
i,+δ −

∑N
i=0 κ

2
i,−δ

2δ
= 2vjpΩm0(v = κ) (4.8)

We find that the values agree at the ∼ 5% level irrespective of the choice of δ.

4.7 Appendix B: Details about FastPM and the sub-evolution
scheme

The FastPM evolution equations are based on the Zeldovich approximation. A FastPM step from
scale factor ai to af starts by calculating the gravitational potential from the current particle posi-
tions. This step involves Fourier transforms and is the computational bottleneck of the algorithm.
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Figure 4.15: On each scale, the finite difference and automatic derivative of Ωm0 agree to high
accuracy. We show this by randomly selecting 3 modes to excite individually while setting all other
modes to zero. In this plot, each line corresponds to the cross correlation between convergence
maps generated when each of these selected modes is set to one, while the rest of the field is set to
0 for a 643 mesh, and the corresponding Jvp. The indices used are specified in the legend. We find
that irrespective of index choice, these correlations agree at the 10−5 level.

The gravitational force is then used to update the particle momenta. The particle positions x(a0)
are updated by the increment

∆x = p(ac)D(ai, ac, af ), (4.9)

where p(ac) are the particle momenta at the central scale factor ac =
√
aiaf , and D(ai, ac, af ) is

the drift factor that approximates near ac the integral∫ ai

af

da

a3E(a)
. (4.10)

For more details on the algorithm, we refer the reader to [89]. In the sub-evolution scheme, the
particle positions update is split into two steps. We start by taking half a step,

∆x1/2 = p(ac)D(ai, ac, ac), (4.11)

and pass these positions to the projection function, where they are further evolved (in either
direction) according to the individual particle scale factors aparticle,

∆xinterp = p(ac)D(aparticle, ac, ac), (4.12)
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before being projected onto the source planes. This update does not get saved, which is why another
step by

∆x1/2 = p(ac)D(ac, ac, af ), (4.13)

reaches the final positions of a full FastPM step. Taking these additional steps does not require
additional Fourier transforms, and hence does not add significantly to the computational complexity
of the simulation.
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Chapter 5

Learning effective physical laws for
generating cosmological hydrodynamics
with Lagrangian Deep Learning

The contents of this chapter were originally published in [54],

Learning effective physical laws for generating cosmological hydrodynamics with Lagrangian
Deep Learning

Dai B., Seljak U.(arXiv:2010.02926) PNAS 118.16 (2021)

The goal of generative models is to learn the intricate relations between the data to create
new simulated data, but current approaches fail in very high dimensions. When the true data-
generating process is based on physical processes, these impose symmetries and constraints, and
the generative model can be created by learning an effective description of the underlying physics,
which enables scaling of the generative model to very high dimensions. In this work we propose
Lagrangian Deep Learning (LDL) for this purpose, applying it to learn outputs of cosmological
hydrodynamical simulations. The model uses layers of Lagrangian displacements of particles
describing the observables to learn the effective physical laws. The displacements are modeled
as the gradient of an effective potential, which explicitly satisfies the translational and rotational
invariance. The total number of learned parameters is only of order 10, and they can be viewed
as effective theory parameters. We combine the N-body solver FastPM with LDL and apply them
to a wide range of cosmological outputs, from the dark matter to the stellar maps, gas density and
temperature. The computational cost of LDL is nearly four orders of magnitude lower than the full
hydrodynamical simulations, yet it outperforms it at the same resolution. We achieve this with only
of order 10 layers from the initial conditions to the final output, in contrast to typical cosmological
simulations with thousands of time steps. This opens up the possibility of analyzing cosmological
observations entirely within this framework, without the need for large dark-matter simulations.
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5.1 Introduction
Numerical simulations of large scale structure formation in the universe are essential for extract-
ing cosmological information from the observations [81, 141, 298, 66, 9, 303, 63]. In principle
hydrodynamical simulations are capable of predicting the distribution of all observables in the uni-
verse, and thus can model observations directly. However, running high resolution hydrodynamical
simulations at volumes comparable to the current and future sky surveys is currently not feasible,
due to its high computational costs. The most widely used method is running gravity-only N-body
simulations, and then populating baryons in the halo catalogs with semi-analytical approaches
such as halo occupation distribution (HOD) [21], or halo assembly models [18]. However, these
methods make strong assumptions such as the halo mass being the main quantity controlling the
baryonic properties. In addition, many of the cosmological observations such as X-ray emission
and Sunyaev-Zeldovich emission are based on hydrodynamic gas properties such as gas density,
temperature, pressure etc., which cannot be modeled in the dark matter only simulations.

Deep learning methods provide an alternative way to model the cosmological observables.
A number of papers view the task as an image-to-image translation problem, i.e., they take in
pixelized matter density field as input data, and output the target pixelized observable field. These
methods either model the conditional probability distribution p(ytarget|xinput) using deep generative
models such as GANs [107] and VAEs [162, 269], or learn a mapping xinput 7→ ytarget with deep
convolutional neural networks (DCNN). Previous work in this area covers a wide array of tasks,
such as identifying halos (protohalos) [224, 20, 264, 22], producing 3D galaxy distribution [364],
generating tSZ signals [321], predicting dark matter annihilation feedback [188], learning neutrino
effects [105], emulating high resolution features from low resolution simulations [171, 184] etc.

Unlike these methods that work in pixel (Eulerian) space and treat the field as images, another
way to model the dynamics is to adopt the Lagrangian scheme, i.e., trace the motion of individual
particles or fluid elements by modeling their displacement field. The displacement field contains
more information than the density field, as different displacement fields can produce the same
density field, and is in general more Gaussian and linear than the density field. Existing methods in
this space only cover the dark matter, e.g. approximate N-body solvers [312, 89] and DCNN [124].

In this work we propose a novel deep learning architecture, Lagrangian Deep Learning (LDL),
for modeling both the cosmological dark matter and the hydrodynamics, using the Lagrangian
approach. The model is motivated by the effective theory ideas in physics, where one describes
the true process, which may be too complicated to model, with an effective, often coarse grained,
description of physics. A typical example is the effective field theory, where perturbative field
theory is supplemented with an effective field theory terms that obey the symmetries, and are
an effective coarse-grained description of the non-perturbative small scale effects. The resulting
effective description has a similar structure as the true physics, but with free coefficients that one
must fit for, and that account for the non-perturbative small scale effects.
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5.2 Lagrangian Deep Learning
Cosmological dark matter and baryon evolution can be described by a system of partial differential
equations (PDE) coupling gravity, hydrodynamics, and various sub-grid physics modeling processes
such as the star formation, which are evolved in time from the beginning of the universe until today.
One would like to simulate a significant fraction of the observable universe, while also capturing
important physical processes on orders of magnitude smaller scales, all in three dimensions. As
a result the resulting dynamical range is excessive even for the modern computational platforms.
As an example, the state of the art Illustris TNG300-1 [252, 228, 208, 302, 232] has of order 1010
particles, yet simulates only a very small fraction of the observable universe. The lower resolution
TNG300-3 reduces the number of particles by 64, at a cost of significantly reducing the realism of
the simulation.

An effective physics approach is to rewrite the full problem into a large scale problem that we
can solve, together with an effective description of the small scales which we cannot resolve. In
theoretical physics this is typically done by rewriting the Lagrangian such that it takes the most
general form that satisfy the symmetries of the problem, with free coefficients describing the effect
of the small scale coarse-graining. In cosmology the large scale evolution is governed by gravity,
which can easily be solved perturbatively or numerically. Effective descriptions using perturbative
expansions exist [39], but fail to model small scales and complicated baryonic processes at the
map level. While spatial coarse graining is the most popular implementation of this idea, one can
also apply it to temporal coarse graining as well. A typical PDE solver requires many time steps,
which is expensive. Temporal coarse graining replaces this with fewer integration time steps, at
a price of replacing the true physics equations with their effective description, while ensuring the
true solution on large scales, where the solution is known [312, 89].

Here we take this effective physics description idea and combine it with the deep learning
paradigm, where one maps the data through several layers consisting of simple operations, and
trains the coefficients of these layers on some loss function of choice. While machine learning
layers are described with neural networks with a very large number of coefficients, here we will
view a single layer as a single time step PDE solver, using a similar structure as the true physical
laws. 1 This has the advantage that it can preserve the symmetries inherent in the problem. The
main symmetry we wish to preserve in a cosmological setting is the translational and rotational
symmetry: the physical laws have no preferred position or direction. But we also wish to satisfy
the existing conservation laws, such as the dark matter and baryon mass conservation.

A very simple implementation of these two requirements is Lagrangian displacements of
particles describing the dark matter or baryons. We displace the particles using the gradient
of a potential, and mass conservation is ensured since we only move the particles around. To
ensure the translation and rotation symmetry within the effective description we shape the potential

1In the rest of this paper we will refer to each step of the model as one layer, to emphasize the fact that our model
is parametrized by free parameters that need to be trained on hydro simulations. However, one should note that in this
research we do not use any actual neural networks. Since the FastPM time step can be viewed as a special case of our
model, we will also refer to each FastPM time step as one layer, even though the parameters (e.g. kick and drift factors)
are determined by physics rather than fitting to some loss functions.
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in Fourier space, such that it only depends on the amplitude of the Fourier wave vector. The
potential gradient can be viewed as a force acting upon their acceleration via the Newton’s law, and
the shaping of the potential is equivalent to the radial dependence of the force. This description
requires particle positions and velocities, so it is a second order PDE in time. We will use this
description for the dark matter. However, for baryons we can simplify the modeling by assuming
their velocity is the same as that of the dark matter, since velocity is dominated by large scales
where the two trace each other. In this case we can use the potential gradient to displace particle
positions directly, so the description becomes effectively first order in time. Moreover, by a simple
extension of the model we can apply this concept to the baryonic observables such as the gas
pressure and temperature, where conservation laws no longer apply. A complete description also
requires us to define the source for the potential. In physics this is typically some property of the
particles, such as mass or charge. Here we wish to describe the complicated nonlinear processes
of subgrid physics, as well as coarse graining in space and time. Motivated by gravity we will
make the simplest possible assumption of the source being a simple power law of the density, using
a learned Green’s function to convert to the potential. Since we wish to model several different
physics processes we stack it into multiple layers. Because the model takes in the particle data and
models the displacement field from the Lagrangian approach using multiple layers, we call this
model Lagrangian Deep Learning (LDL).

Our specific goal is to model the distribution of dark matter and hydrodynamic observables
starting from the initial conditions as set in the early universe, using an effective description that
captures the physics symmetries and conservation laws. An example of such a process applied
to time and spatial coarse graining is the dark matter evolution with a few time steps only, which
combines ideas such as the approximate N-body solvers, with a force sharpening process called
the Potential Gradient Descent (PGD) to capture the coarse graining [53, 58]. We first use FastPM
[89], a quasi particle-mesh (PM) N-body solver, which ensures the correct large scale growth at
any number of time steps, since the kick and drift factors of the leapfrog integrator in FastPM
are modified following the linear (Zel’dovich) equation of motion. FastPM has a few layers only
(typically 5-10) and uses particle displacements. It is supplemented by one additional layer of
PGD applied to position only to improve the dark matter distribution on small scales. All of the
steps of this process are in the LDL form, so can be viewed as its initial layers. The resulting
dark matter maps are shown in figure 5.1 and show an excellent agreement with the full N-body
simulation of Illustris TNG, which is also confirmed by numerical comparisons presented in [53].
This application is not learning new physics, but is learning the effective physics description of
both time and spatial coarse graining: instead of 1000+ time steps in a standard N-body simulation
we use only 10, and instead of the full spatial resolution we will use a factor of 64 reduced mass
resolution.

Here we wish to extend these ideas to the more complex and expensive problem of cosmological
hydrodynamics, where we wish to learn its physics using an effective description. Baryons are
dissipative and collisional, with many physical processes, such as cooling, radiation, star formation,
gas shocks, turbulence etc. happening inside the highest density regions called dark matter halos.
One can add displacements to the dark matter particles to simulate these hydrodynamic processes,
such that the particles after the displacement have a similar distribution as the baryons. Enthalpy
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Gradient Descent (EGD) is an example of this idea [53]: one adds small scale displacement to the
dark matter particles to improve the small-scales of the low resolution approximate simulations,
and to model the baryonic feedback on the total matter distribution. Motivated by these methods,
we propose to model this displacement field by

S = α∇ÔGf(δ), (5.1)

where α is a learnable parameter, δ is the matter overdensity as output by the initial layers (FastPM
and LDL on dark matter layer), f(δ) is the source term and can be an arbitrary function of δ. Here
we choose it to be a power law

f(δ) = (1 + δ)γ, (5.2)

with γ a learnable parameter. ÔG is the Green’s operator, and can be written explicitly as

ÔGf(δ) =

∫
G(x− x′)f(δ(x′))dx′, (5.3)

where G(x− x′) is the Green’s function and we have used G(x,x′) = G(x− x′) due to transla-
tional symmetry. The convolution in above equation can be easily calculated in Fourier space as
ÔGf(δ) = G(k)f(δ), and we further have G(k) = G(k) because of the rotational symmetry of
the system. Following the PGD model, we model ÔG in Fourier space as

ÔG = exp(−(kh/k)2) exp(−(k/kl)2) kn, (5.4)

where kh, kl and n are additional learnable parameters. The high pass filter exp(−(kh/k)2)
prevents the large scale growth, since the baryonic physics that we are trying to model is an
effective description of the small scale physics, while the large scales are correctly described by the
linear perturbative solution enforced by FastPM. Together with the low pass filter exp(−(k/kl)2),
which has the typical effective theory form, the operator ÔG is capable of learning the characteristic
scale of the physics we are trying to model. Note that both the source f(δ) and the shape of ÔG

characterize the complex baryon and subgrid physics and cannot be derived from first principles.
They can only be learned from high resolution hydrodynamical simulations. As a special case,
Equation 5.1 can be used to represent the gravitational force if we set α = 4πGρ̄, γ = 1, kh = 0,
kl = ∞ and n = −2, but we allow all these parameters to vary in order to model the physics
that is different from gravity. Equation 5.1 - 5.4 defines the displacement field of one Lagrangian
layer. We can stack multiple such layers to form a deep learning model, where each layer takes the
particle output from the previous layer (which determines δ in Equation 5.1) and adds additional
displacements to the particles. Such a deep model will be able to learn more complex physics. The
idea is that different layers can focus on different physics components, which will differ in terms
of the scale dependence of the potential and its gradient, as well as in terms of the source density
dependence.

We have made the assumption that the displacement field can be approximated by a sequence
of irrotational vector fields, which are modeled by the gradient of some effective potential fields.
This parameterization, though motivated by physics, is not derived from first principles and its
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effectiveness has to be examined by experiments. In principle, one could also use second order
equations for modeling the displacement fields, just like the true dynamics, at the cost of introducing
one more free parameter per layer. Note that here we are only trying to effectively mimic the missing
baryonic physics rather than actually simulating it, so the order of the equation does not matter. As
we show in this paper, the first order equation works well enough for the resolution we considered,
and thus we do not consider the second order parametrizations.

The final output layer is modeled as a nonlinear transformation on the particle density field:

F (x) = ReLU(b1(1 + δ′(x))µ − b0), (5.5)

where F is the output target field, ReLU(x) is the rectified linear unit, which is zero if x < 0 and x
otherwise, δ′ is the particle overdensity field after the displacement, and b0, b1 and µ are learnable
parameters. This is motivated by the physics processes that cannot be modeled as a matter transport
(i.e. displacement). In the example of stars, the Lagrangian displacement layers are designed to
learn the effect of gas cooling and collapse. After these displacement layers, the particles are moved
towards the halo center, where protogalaxies are formed and we expect star formation to happen
in these dense regions. This star formation process will be modeled by Equation 5.5: the ReLU
thresholding aims at selecting the high density regions where the star formation happens. Such
thresholding is typical of a subgrid physics model: in the absence of this thresholding we would
need to transport all of the particles out of the low density regions where the star formation does
not happen, a process that does not have a corresponding physical model.

The baryon process in the universe also leaves imprints on the total matter distribution [275,
326, 138]. This feedback is crucial for accurately predicting the total matter distribution (e.g. in
weak lensing applications). In this research, however, we mainly focus on modeling the distribution
of baryon tracers and do not consider this feedback effect. We would like to refer interested readers
to the Enthalpy Gradient Descent (EGD) model [53], which is a special case of LDL and has been
shown to successfully model the baryonic feedback on the total matter distribution. We expect that
LDL can also be applied to model this effect in a similar manner.

In this work we use both FastPM and N-body simulations, combining them with LDL to
predict the baryon observables from the linear density map. We consider modeling the stellar
mass, kSZ signal, tSZ signal and X-ray at redshift z = 1, z = 0.5 and z = 0. The dark matter
particles are firstly evolved to these redshifts with FastPM, and then passed to the LDL networks
for modeling the baryons. The parameters in LDL are optimized by matching the output with
the target fields from TNG300-1 hydrodynamical simulation [252, 228, 208, 302, 232]. Since the
kSZ signal is proportional to the electron momentum nevz, the tSZ signal is proportional to the
electron pressure neT , and the X-ray emissivity is approximately proportional to n2

eT
0.5 (we only

consider the bremsstrahlung effect and ignore the Gaunt factor), we will model these fields in the
rest of this paper. See the Materials and Methods Section at the end of the paper for details on the
FastPM/N-body + LDL hybrid simulations, as well as the training of the LDL parameters.

Apart from FastPM, we also consider combining LDL models with full N-body simulations.
We take the particle data at redshift z = 1, z = 0.5 and z = 0 from TNG300-3-Dark, a low
resolution dark-matter-only run of the TNG300 series, and feed the particles to LDL models. In the
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Table 5.1: The numerical parameters of LDL hybrid simulations, low resolution TNG300-3 and
the target TNG300-1 hydrodynamical simulations

FastPM + LDL TNG300-3-Dark
+ LDL

TNG300-3 TNG300-1

Nparticle 6253 6253 NDM = 6253

Ngas = 6253
NDM = 25003

Ngas = 25003

Force / Mesh Res-
olution (h−1ckpc)

164 (FastPM)
328 (LDL)

4.0 (TNG-Dark)
328 (LDL)

ϵDM,∗ = 4.0
ϵgas = 1.0

ϵDM,∗ = 1.0
ϵgas = 0.25

Number of Time
Steps / layers

NFastPM = 10
NLDL,∗ = 4

NTNG = 9201
NLDL,∗ = 3

209, 161 6, 203, 062

CPU Time TIC = 2.3 h
TFastPM = 5.1 h
TLDL,∗ = 0.4 h

TTNG = 5.9 kh
TLDL,∗ = 0.3 h

0.05 Mh 34.9 Mh

The LDL parameters for generating stellar mass. The architecture for other observables can be found in
Table 5.2. The total CPU time for LDL is 7.8 hours, compared to 5× 104 for the full hydro TNG300-3.
Despite this the LDL outperforms the full hydro at the same resolution in all of the outputs. In this paper
we are primarily concerned with a proof of principle and both FastPM and LDL are run with Python.
We expect the CPU time to be further reduced if running them with C.

next section we will compare the performance of these two hybrid simulations against the target
high resolution hydrodynamical simulation.

We summarize the numerical parameters of these simulations in Table 5.1. We also list
TNG300-3, the low resolution hydrodynamic run of TNG300. TNG300-3 has the resolution of
our hybrid simulations, and is a natural reference to compare the performance of our models with.
Note that the mass resolution, force / mesh resolution and time resolution of our hybrid simulations
are significantly lower than the target simulation, and the N-body simulation and deep learning
networks are also much cheaper to run compared to simulating hydrodynamics. As a result, the
FastPM-based and N-body-based hybrid simulations are 7 and 4 orders of magnitude cheaper than
the target simulation, respectively. When comparing to TNG300-3, our hybrid simulations are still
4 and 1 orders of magnitude cheaper, respectively, and we show that by being trained on the high
resolution TNG300-1 our simulations are superior to TNG300-3, and comparable to TNG300-1.

5.3 Results
We show in Figure 5.1 the visualization of slices of the input linear density field and the output
dark matter of our FastPM-based hybrid simulation, as well as the target fields in hydrodynamical
simulation. Visual agreement between the two is very good. The results are shown for the dark
matter density, stellar mass density, electron momentum density nevz, where ne is electron density
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Figure 5.1: Visualization of slices of the simulations: the first row is the input linear density
field. The 2nd, 4th, 6th, 8th, and 10th rows are predictions of dark matter overdensity, stellar
mass, electron momentum density nevz (kSZ signal), electron pressure neT (tSZ signal) and n2

eT
0.5

(X-ray signal) from our FastPM+LDL hybrid simulation, respectively. The 3rd, 5th, 7th, 9th, and
11th rows are the corresponding target fields from the TNG300-1 hydrodynamical simulation. The
left panel, middle panel and right panel are from redshift z = 0, z = 0.5, and z = 1, respectively.
The slices are from a 90.2× 90.2× 32.8h−1Mpc sub-box of the test set.
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and vz radial velocity, electron pressure neT , where T is the gas temperature, and X-ray emission
proportional to n2

eT
0.5.

Power Spectrum
We measure the summary statistics of these fields and compare them quantitatively. We firstly
compare the power spectrum, the most widely used summary statistics in cosmology. We define
the transfer function as:

T (k) =

√
Ppredict(k)

Ptarget(k)
, (5.6)

and the cross correlation coefficient as:

r(k) =
Ppredict,target(k)√
Ppredict(k)Ptarget(k)

, (5.7)

where Ppredict,target(k) is the cross power spectrum between the predicted field and the target field.
We show the 3D or 2D power spectrum, transfer function and cross correlation coefficient of the
stellar mass overdensity δ∗, electron momentum nevz, electron pressure neT and X-ray intensity
n2
eT

0.5 in Figures 5.2, 5.3, 5.4 and 5.5, respectively. On large scale and intermediate scale our
hybrid simulations in general match well with the target fields (except for the case of X-ray, where
FastPM-based hybrid simulations fail to predict correct large scale power at redshift 0.5 and 1),
while TNG300-3 agreement is generally worse, especially for the stellar mass. The large bias
of TNG300-3 stellar mass might be partially due to the fact that the low resolution TNG300-3
cannot resolve the stars in small halos. In contrast, by training on high resolution hydro simulations
TNG300-1, our low resolution hybrid simulations are able to model those small galaxies better
than the full hydro simulation at the same resolution.

On the small scales all of the predicted fields show some deviations from the targets. We
discuss possible reasons for these in the next Section. We also see that the full-N-body-based
hybrid simulation normally predicts larger small scale power than the FastPM-based simulation.
This is likely due to the fact that the 10-layer FastPM cannot fully model the small halos and
halo internal structures, and its simulated dark matter distribution is less clustered on small scale
compared to full N-body simulations, making its predicted baryon fields less clustered. Overall,
the predicted power spectrum from the N-body-based hybrid simulation is better, although it can
predict too much small scale power (e.g. the kSZ signal at redshift 1). This inaccuracy of the small
scale matter distribution of FastPM could also explain the inconsistency of its predicted large scale
power of X-ray at redshift 0.5 and 1. Since the X-ray signal is proportional to n2

e, its large scale
power is correlated to the small scale fluctuations of ne field. This modeling task is not easy for
FastPM, but N-body-based hybrid simulation is able to model it pretty well (Figure 5.5).

The cross correlation coefficients are also shown in these Figures. We observe that the hybrid
simulations are significantly better than those of TNG300-3, with the N-body-based hybrid simu-
lation a bit higher than the FastPM-based simulation. Note that in principle the cross correlation
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Figure 5.2: Comparison of the test set 3D power spectrum (top panel), transfer function (middle
panel) and cross correlation coefficient (bottom panel) of the stellar mass overdensity. We compare
LDL hybrid simulations, TNG300-3 and the target TNG300-1 hydrodynamical simulation, at
redshifts 0, 0.05 and 1.
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Figure 5.3: Comparison of the test set 2D power spectrum (top panel), transfer function (middle
panel) and cross correlation coefficient (bottom panel) of the electron momentum density nevz (pro-
portional to kSZ signal) between the LDL hybrid simulations, TNG300-3 and the target TNG300-1
hydrodynamical simulation. The 90.2h−1Mpc sub-box of the test set is projected along the z-axis
for the calculation of 2D power spectrum.
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panel) and cross correlation coefficient (bottom panel) of the electron pressure neT (proportional
to tSZ signal) between the LDL hybrid simulations, TNG300-3 and the target TNG300-1 hydrody-
namical simulation.
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Figure 5.6: The ratio of the test set cross power spectrum of different observables between the LDL
hybrid simulations and the target TNG300-1 hydrodynamical simulation. The first row show the
cross power spectrum of matter and stellar mass (1st panel), matter and tSZ signal (2nd panel), 2D
stellar momentum density and kSZ signal (3rd panel), and stellar mass and tSZ signal (4th panel).
The second row shows the cross power spectrum of matter and X-ray (1st panel), stellar mass and
X-ray (2nd panel), and tSZ and X-ray (3rd panel).

coefficient, which quantifies the agreement of phases of Fourier modes, is a more important statis-
tics than the transfer function, because the transfer function can always be corrected to unity by
multiplying the predicted fields with the reciprocal of the transfer function. This again suggests that
the baryon maps of our models are closer to the ground truth than full hydrodynamical simulations
at the same resolution.

Cross Correlations between different tracers
Probes of the large-scale structure, such as weak lensing, galaxy survey and clusters, are strongly
correlated because they are all determined by the same underlying matter distribution. There is
additional information in the cross correlations between these probes which cannot be obtained by
analyzing each observable independently. The cross correlation also has the advantage that the noise
does not add to it. Our hybrid simulation is able to generate various observables simultaneously
with a low computational cost, so it is potentially promising for cross correlation analysis. Here
we investigate the predicted cross correlations between weak lensing convergence, mass weighted
galaxies, tSZ and X-ray, as well as the cross correlation between the galaxy momentum and kSZ
signal. We show the ratio of the predicted cross power spectrum and the TNG300-1 in Figure
5.6. Similar to the auto power spectrum analysis, our predicted cross power spectrum is in general
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consistent with the target simulation on large scale (except for the cases involving X-ray predicted
with FastPM, and we discuss possible reasons in the previous section), while TNG300-3 does not
agree that well. On small scales FastPM-based hybrid simulation tends to underestimate the power,
while TNG300-3 tends to overestimate the power. One can compare the second panel of Figure
5.6 (cross power spectrum between the matter and tSZ) with Figure 2 of [321], where GAN and
VAE is used to predict the gas pressure from N-body simulations. We observe that the deviation
of full-N-body-based hybrid simulation is comparable to the deviations of GAN and VAE. We
note that for the standard deep learning architectures employed by GAN or VAE the number of
parameters being fit is very large, in contrast to our approach.

5.4 Discussion
We propose a novel Lagrangian Deep Learning (LDL) model for learning the effective physical laws
from the outputs of either simulations or real data. Specifically, in this paper we focus on learning
the physics that controls baryon hydrodynamics in the cosmological simulations. We build hybrid
simulations by combining N-body / quasi N-body gravity solver with LDL models. We show that
both the FastPM-based and N-body-based hybrid simulations are able to generate maps of stellar
mass, kSZ, tSZ and X-ray of various redshifts from the linear density field, and their computational
costs are 7 and 4 orders of magnitudes lower than the target high resolution hydrodynamical
simulation. We perform the auto power spectrum analysis and the cross correlation analysis among
these fields, and we show that they generally outperform the hydrodynamical simulation at the same
resolution.

The LDL model is motivated by the desire to provide an effective description of the underlying
physics. Such a description must obey all the symmetries of the problem, and rotation and
translation invariance are the two key symmetries, but other symmetries of the problem such as
mass conservation may also appear. In this paper we argue that implementing these symmetries
creates a generative model that is learning an effective description of the physical laws as opposed
to learning the data distribution. This is because the symmetries are the only constraints on the
generative model that must be implemented explicitly, everything else can be learned from the data.
Here we propose that the learning of the generative model can be implemented by composing layers
of displacements acting on the effective particles describing the physical properties of a system
such as a fluid, moving the particles following the Lagrangian approach. The displacement of the
particles can be understood as a result of the underlying physical processes, with particle transport
a consequence of processes such as gas cooling and heating, feedback, turbulence etc. The output
layer is a nonlinear transformation with thresholding on the particle density field, which models
physics processes such as star formation.

Translational and rotational symmetry of the system put strong constraints on the model and
therefore the Green’s operator can be written as a function in Fourier Space that only depends on
the amplitude of k. This allows us to use very few parameters to model the complex processes
and produce maps of observables. Thus even though we want to describe systems of extremely
high dimensionality (108 or more), the underlying effective physics description requires a handful
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of parameters only.
The small number of free parameters also make the model stable and easy to train. An important

advantage is that we can use the small number of parameters as an effective physics description of
a complicated microphysics model, similar to the free parameters that arise from renormalization
in the effective field theory descriptions of microphysics. This suggests that our LDL approach
can replace other effective descriptions used to model the process of star formation. In cosmology
such simplified models are often based on first identifying the dark matter halos in a dark matter
simulation only, followed by some effective description of how to populate these halos with stars.
Compared to such semi-analytical approaches which often rely on non-differentiable models, our
approach is explicitly differentiable, such that we can use backpropagation to derive a gradient of
the final observables with respect to the initial density field. This can be easily embedded into the
forward modeling framework to reconstruct the initial conditions from the observations [287].

Our current implementation generally outperforms the full hydro simulation at the same res-
olution, but does not match perfectly the higher resolution hydro simulation. LDL deviates from
the full simulation results mostly on small scales. This is expected, since the factor of 64 lower
mass resolution means there is some information in the full simulation that cannot be recovered.
Specifically, we use a low resolution mesh for calculating the displacements in the LDL model (cell
size 0.328h−1Mpc, see Table 5.1). The low resolution mesh limits the ability of LDL to model
the small scale baryon distribution. Moreover, to ensure the correct large scale distribution, we
apply a smoothing operator (Equation 5.9) to the fields before calculating the loss function, which
downweights the small scale contribution to the loss function.

LDL trains on hydrodynamic simulations and is not meant to replace but to complement them:
for example, it can interpolate a coarse grid and scale them to larger volumes and higher resolutions.
In contrast, LDL has the potential to eliminate the need for the semi-analytic methods, which are
the current standard paradigm in the large scale structure. These methods run N-body simulations
first and then populate their dark matter halos using a semi-analytic prescription for the observable.
LDL can not only achieve results that are on par with the full hydro at the same resolution, which
is superior to these semi-analytic approaches, it also achieves this with of order 10 time steps, in
addition to up to 6 LDL layers, in contrast to 103 in an N-body simulations. We expect this will
lead both to development of realistic simulations that cover the full volume of the cosmological
LSS surveys, and to analysis of these LSS surveys with LDL effective parameters as the nuisance
parameters describing the astrophysics of the galaxy formation.

5.5 Appendix A: Materials and Methods

Dataset
IllustrisTNG is a suite of cosmological magneto-hydrodynamical simulations of galaxy forma-
tion and evolution [252, 228, 208, 302, 232]. It consists of three runs of different volumes
and resolutions: TNG50, TNG100 and TNG300 with sidelengths of 35h−1Mpc ≈ 50Mpc,
75h−1Mpc ≈ 100Mpc and 205h−1Mpc ≈ 300Mpc, respectively. IllustrisTNG follows the evo-
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lution of the dark matter, gas, stars and supermassive black holes, with a full set of physical
models including star formation and evolution, supernova feedback with galactic wind, primor-
dial and metal-line gas cooling, chemical enrichment, black hole formation, growth and multi-
mode feedback. The IllustrisTNG series evolves over a redshift range z = 127 to the present
z = 0 in a ΛCDM cosmology, with parameters Ωm = 0.3089, Ωb = 0.0486, ΩΛ = 0.6911,
H0 = 67.74km s−1 Mpc−1, σ8 = 0.8159 and ns = 0.9667.

In this paper we train our models against TNG300-1, the highest resolution of the TNG300
run. TNG300-1 evolves 25003 dark matter particles and an initial number of 25003 gas cells,
with a comoving force resolution ϵDM,stars = 1.0h−1kpc, ϵgas,min = 0.25h−1kpc and ϵBH,max =
5.84h−1kpc. The dark matter mass resolution is 4.0 × 107h−1M⊙, and the target baryon mass
resolution is 7.6× 106h−1M⊙ (see Table 5.1).

We also compare the model performance with TNG300-3, the hydro run with the same resolution
as our hybrid simulations. The mass resolution and force resolution of TNG300-3 are 64 and 4
times lower than TNG300-1, respectively.

Details of the Hybrid Simulation
The 10-step FastPM is run in a 205h−1Mpc periodic box, but with only N = 6253 particles and
force resolution B = 2. We generate the initial condition at redshift z = 9 using second order
Lagrangian perturbation theory (2LPT), with the same random seed and linear power spectrum as
Illustris-TNG. The linear density map is generated with aN = 12503 mesh to improve the accuracy
on small scale [58]. The box is then evolved to redshift 0 with 10 time steps that are linearly
separated in scale factor a. Three snapshots are produced at redshift z = 0, 0.5 and 1, which
are passed to LDL for generating maps of baryonic observables at these redshifts. Note that our
mass, force and time resolutions are 64, 164 and 620,000 times lower than the target simulation
TNG300-1, respectively.

Instead of running 10-step FastPM, we also tried using the particle data from the full N-body
simulation TNG300-3-Dark. TNG300-3-Dark is the dark-matter-only run of the low resolution
TNG300-3. It includes N = 6253 dark matter particles (same as our FastPM setup), but the force
and time resolution is significantly higher. A detailed comparison between FastPM, TNG300-3-
Dark and TNG300-1 can be found in Table 5.1.

The details of the LDL model are described in the main text. We use a N = 6253 mesh
for calculating the displacement and generating the hydro maps. The architecture of the model
is shown in Table 5.2. Specifically, for FastPM input, we firstly add a Lagrangian displacement
layer and the output is matched to the density field of the full N-body simulation TNG300-3-Dark.
This layer is intended to improve the small scale structure of FastPM and is shared by all hydro
outputs (we do not add this layer for TNG300-3-Dark input). Then for different observables, we
train different displacement layers and output layer: 1. For stellar mass, we add two displacement
layer to mimic gas cooling and collapse, and one output layer to model star formation. 2. For kSZ
signal, we use one displacement layer and one output layer to model the electron number density
field. We assume that the velocities of gas trace dark matter, so the velocity field can be directly
estimated from the dark matter particles: v(x) = p(x)

ρ(x)
, where p(x) is the momentum density field
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Table 5.2: The LDL architecture for predicting different baryon observables

stellar mass kSZ tSZ X-ray
ne vz ne T ne T

Displacement Layer (Eq. 5.1) 2 1 0 1 2 2 2
Output Layer (Eq. 5.5) 1 1 0 1 1 1 1
Total number of layers 3 (4) 2 (3) 5 (6) 6 (7)
Total number of free parameters 13 (18) 8 (13) 21 (26) 26 (31)

For FastPM-based hybrid simulation, we add one more displacement layer to improve the small scale
dark matter distribution. The corresponding Nlayer and Nparameter are shown in parentheses.

and ρ(x) is the matter density field. The kSZ map is obtained by multiplying the electron density
field and the velocity field. 3. For tSZ signal map, we generate the electron number density field
with one displacement layer and one output layer, and generate the gas temperature map with two
displacement layers and one output layer. Then the two fields are multiplied to produce the tSZ
signal. 4. The modeling of X-ray is similar to tSZ, except that now we use two displacement layer
to model the electron density.

Model Training and Loss Function
As described above, the output of the LDL model is aN = 6253 mesh. We retain 77.7% of the pixels
for training, 13.8% for validation and 8.5% for test. Similar to [364], we split between training,
validation, and test set following a “global” cut. The test set forms a sub-box of 90.2h−1Mpc per
side, and the validation set is a 90.2× 114.8× 114.8 h−1Mpc sub-box. The rest of the 205h−1Mpc
box is used for training.

For stellar mass and the electron number density field in kSZ map, we define the loss function
as:

L =
N∑
i=1

∥ÔsFLDL(xi)− ÔsFTNG(xi)∥, (5.8)

where ∥ is L1 norm, i labels the mesh cell, FLDL(x) is the generated map from LDL, FTNG(x) is
the true hydro map from IllustrisTNG, and Ôs is a smoothing operator defined in Fourier space:

Ôs = 1 + (
k

1hMpc−1
)−n. (5.9)

Here n is a hyperparameter that determines the relative weight between the large scale modes and
the small scale modes. Without the Ôs operator, the model focuses on the small scale distribution
and results in a biased large scale power due to the small number of large scale modes relative to
small scale modes. We apply Ôs operator to put more weight on the large scale distribution. For
most of the baryon maps we fix n = 1, except for the X-ray map we optimize the hyperparameter
n.
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For the tSZ map, we use a different loss function to improve the performance. We firstly train
the electron density map with the following loss function:

LtSZ
ne

=
N∑
i=1

∥Ôs[neLDL
(xi)TTNG(xi)]− Ôs[neTNG

(xi)TTNG(xi)]∥, (5.10)

where neLDL
(x) is the learned electron number density map, neTNG

(x) is the true electron number
density map, and TTNG is the true temperature map. This means we multiply the electron number
density field with the temperature field before calculating the loss function. This procedure puts
more weight on the large clusters and improves the quality of the generated tSZ maps. Note
that this electron density field is different from the electron density field for predicting the kSZ
signal. Similarly, after we obtain the learned electron number density field neLDL

(x), we train the
temperature map with the following the loss function:

LtSZ
T =

N∑
i=1

∥Ôs[neLDL
(xi)TLDL(xi)]− Ôs[neTNG

(xi)TTNG(xi)]∥. (5.11)

Here neLDL
(x) is the electron density field we just learned and is fixed, and TLDL(x) is the target

temperature field that we are trying to optimize.
For the X-ray map, similar to the tSZ signal, we train the electron density and gas temperature

maps successively with the following loss functions:

LX
ne

=
N∑
i=1

∥Ôs[n
2
eLDL

(xi)T
0.5
TNG(xi)]− Ôs[n

2
eTNG

(xi)T
0.5
TNG(xi)]∥, (5.12)

LX
T =

N∑
i=1

∥Ôs[n
2
eLDL

(xi)T
0.5
LDL(xi)]− Ôs[n

2
eTNG

(xi)T
0.5
TNG(xi)]∥. (5.13)

Again, the electron number density field and gas temperature field for X-ray are different from
the fields used for generating kSZ and tSZ.

Because the number of free parameters is relatively small, in this work we use the L-BFGS-B
algorithm [36] for optimizing the model parameters. The training time varies with the target.
A typical training (e.g. stellar mass) takes a couple of hours on 4 NERSC Cori nodes, which
corresponds to a few hundred CPU hours.
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Chapter 6

A field-level emulator for modeling baryonic
effects across hydrodynamic simulations

The contents of this chapter were originally published in [292],

A field-level emulator for modeling baryonic effects across hydrodynamic simulations
Sharma D., Dai B., Villaescusa-Navarro F., Seljak U.(arXiv:2401.15891) (submitted to

MNRAS)

We develop a new and simple method to model baryonic effects at the field level relevant for
weak lensing analyses. We analyze thousands of state-of-the-art hydrodynamic simulations from
the CAMELS project, each with different cosmology and strength of feedback, and we find that
the cross-correlation coefficient between full hydrodynamic and N-body simulations is very close
to 1 down to k ∼ 10 hMpc−1. This suggests that modeling baryonic effects at the field level down
to these scales only requires N-body simulations plus a correction to the mode’s amplitude given
by:

√
Phydro(k)/Pnbody(k). In this paper, we build an emulator for this quantity, using Gaussian

processes, that is flexible enough to reproduce results from thousands of hydrodynamic simulations
that have different cosmologies, astrophysics, subgrid physics, volumes, resolutions, and at different
redshifts. Our emulator is accurate at the percent level and exhibits a range of validation superior
to previous studies. This method and our emulator enable field-level simulation-based inference
analyses and accounting for baryonic effects in weak lensing analyses.

6.1 Introduction
Weak gravitational lensing is a powerful tool for measuring the clustering of matter in our universe,
and thus obtaining information about matter content and initial conditions of our universe [159]
through various summary statistics. However, deriving precise cosmological constraints from
weak lensing observations necessitates highly accurate theoretical models that account for baryonic
physics, which redistributes matter on small scales via processes such as Active Galactic Nuclei



CHAPTER 6. A FIELD-LEVEL EMULATOR FOR MODELING BARYONIC EFFECTS ACROSS
HYDRODYNAMIC SIMULATIONS 98

(AGN) feedback. These processes remain poorly understood and inadequately constrained by
current observations, leading to challenges in formulating a predictive theory.

While causality ensures that baryonic effects are negligible on large scales [182], baryonic
effects gain significance on smaller scales, affecting structure formation through hydrodynamic
processes. These processes, including AGN and stellar feedback, can heat gas and inject large
amounts of energy into galaxies and the surrounding halo. Specifically, AGN feedback can eject gas
to very large distances, which can further modify the dark matter distribution through gravitational
interactions.

Studies have shown that probing the small scales contains a wealth of information, leading to
stronger parameter constraints [196], while ignoring small scale information leads to significant
deterioration of these constraints [173, 174, 131]. This small-scale information is heavily influenced
by baryonic effects, and the large uncertainty associated with these effects makes them one of the
primary sources of systematic error in weak lensing analyses. Hence, accurate modeling of baryonic
effects is crucial when probing the information-rich small scales for an unbiased cosmological
analysis.

At present, numerical simulations remain the sole comprehensive method for precise simulation
of baryonic effects and the deeply non-linear evolution of cosmic structures. Hydrodynamic
simulations provide a detailed and accurate representation of the behavior of baryonic matter
by modeling complex physical processes such as gas dynamics, star formation, and feedback
mechanisms [316, 67, 150]. However, these simulations are not ab initio parameter free, but
instead must parametrize the lack of physics understanding via free parameters that can be varied.
Furthermore, hydrodynamic simulations require substantial computational resources as compared
to dark matter only N-body simulations.

The development of emulators has emerged as a powerful technique to overcome this computa-
tional challenge, enabling rapid and accurate predictions of physical properties without the need for
running costly simulations. These emulators interpolate simulation results and have been shown to
be remarkably accurate. Various emulators have been developed for cosmology, catering to various
observables, encompassing the matter power spectrum [126, 84, 354, 10, 170], mass function [217,
27], and the galaxy correlation function and Lyman-α Forest [363, 23].

While most previous work has focused on modeling the baryonic effects on the matter power
spectrum [138, 219, 12, 283, 282, 104], there is an increasing need for developing fast baryon models
at the field level for analysis beyond two-point statistics. For example, simulation-based inference
methods [51] show great promise in extracting rich non-Gaussian information either through high-
order statistics [e.g., 114], or directly from the fields [e.g., 54, 56, 333, 335]. These approaches
rely on fast and accurate cosmological predictions from numerical simulations. Previous field-level
baryon models, such as Baryon Correction Model [281] and Enthalpy Gradient Descent [53], move
the dark matter particles from N-body simulations to mimic the baryonic effects. While they have
been shown to accurately predict the power spectrum from hydrodynamical simulations [283], they
can be computationally expensive when the particle resolution is high.

By analyzing a diverse range of baryonic feedback hydrodynamics simulations across multiple
redshifts, we will show that adding baryons to N-body simulations can be achieved using a field-
level transfer function to augment N-body fields with a Fourier mode amplitude, k, dependent
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transfer function correction. We develop a transfer function emulator using Gaussian process for
modeling the baryonic effects in terms of Phydro(k)/Pnbody(k), where Phydro(k) is the total matter
power spectrum, and Pnbody(k) is the dark matter power spectrum.

In this paper, we develop the emulator and show that it is accurate at a percent level over our
whole parameter space, which covers scales 0.01 ≤ k ≤ 10 h/Mpc and redshifts 0 ≤ z ≤ 1.5.
We validate the performance of our emulator against thousands of hydrodynamical simulations and
their respective gravity-only counterparts. In particular, we make use of CAMELS-Astrid [237],
CAMELS-IllustrisTNG, CAMELS-SIMBA[337, 338], BAHAMAS [215, 216], Horizon AGN [78],
Owls [279, 326], and Eagle [278, 50, 212, 127] simulations. We also compare against commonly
utilized emulators like BACCO [12], HMcode [219], and BCemu [104] on all simulations. Finally,
we show the improvement of the field-level baryon model against hydrodynamic fields at varying
redshifts. This emulator is fast as it only requires a single FFT and its inverse, which enables
large-volume N-body simulations for generating realistic weak lensing mock data for cosmological
analysis at the field level.

This paper is organized as follows: in section 6.2, we describe the suite of simulations that
are used for training and testing our emulator. In section 6.3 we explain how our emulator can
be used to emulate baryonic effects at the field level. In section 6.4 we describe the methods and
construction of the Gaussian process emulator. In section 6.5 we test the emulator’s robustness on
multiple hydrodynamic test simulations, compare it with currently available emulators, and show
field-level improvements using our emulator. We summarize and conclude in section 6.6.

6.2 Simulations
In this section, we describe the simulations that we employ throughout this paper. Our main suites
of simulations are part of the Cosmology and Astrophysics with MachinE Learning Simulations
(CAMELS) [337, 338, 237]. CAMELS is a suite of 10,421 cosmological simulations each with a
comoving volume of (25 h−1Mpc)3 evolved from z = 127 to z = 0 with 2563 dark matter particles
and 2563 gas particles in the initial conditions. These contain 5,097 N-body simulations and 5,324
hydrodynamic simulations. Notably, each hydrodynamic simulation in CAMELS pairs with an
N-body counterpart, sharing identical cosmological parameters and initial random seeds.

Simulations in CAMELS are categorized into various suites (Astrid, IllustrisTNG, and SIMBA)
and sets based on the employed code for running the simulations and the arrangement of cosmolog-
ical and astrophysical parameters (Ωm, σ8, ASN1, AAGN, ASN2, AAGN2), as well as the initial random
seeds. The Astrid suite comprises 1,092 hydrodynamic simulations executed using the MP-Gadget
simulation code [91], employing analogous subgrid physics as the original Astrid simulations [236,
24]. Additionally, the IllustrisTNG suite [based on 343, 320] and the SIMBA suite [based on 60],
with 1,092 hydrodynamic simulations each, are executed using the AREPO code [299, 351] and
the GIZMO code [135], respectively.

Each simulation is characterized by its cosmology (given by Ωm and σ8) and its astrophysical
feedback (given by ASN1, AAGN, ASN2, AAGN2). In particular, throughout CAMELS’ suites, the
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astrophysical parameters represent the value of subgrid physics parameters that influence stellar
and Active Galactic Nuclei (AGN) feedback mechanisms.

We made use of the Latin Hypercube, LH, set within each suite of CAMELS, which con-
tains 1,000 simulations whose cosmological and astrophysical parameters are arranged in a latin-
hypercube within a very broad range1

Ωm ∈ [0.1, 0.5] (6.1)
σ8 ∈ [0.6, 1.0] (6.2)

ASN1, AAGN1 ∈ [0.25, 4.0] (6.3)
ASN2, AAGN2 ∈ [0.5, 2.0] (6.4)

and every simulation has a different value of the initial random seed. Within each LH set, CAMELS
provides 1,000 simulations for each redshift that span a wide range of cosmologies and baryonic
feedbacks, perfect for our purposes of capturing the underlying physics.

Importantly, each suite has been run with a different code and therefore the subgrid physics
model is completely different. So, notably, while the range of variation of the above parameters
remains consistent across all CAMELS suites, the precise definitions and overall impact of these
astrophysical parameters vary significantly across suites. These simulations are designed to train
and set machine learning algorithms given the way their cosmological, astrophysical, and initial
random seed parameters are set. We utilize this set for each suite throughout this paper to train and
test our methodology on simulations with significantly different cosmologies and astrophysics.

Figure 6.1 shows the baryonic effect in the matter power spectrum, Phydro(k)/Pnbody(k), across
different redshift values in all CAMELS suites utilized in this study. From the figure, it is clear
that baryonic feedback can have very diverse and strong effects on the matter power spectrum,
especially on small scales. SIMBA, with its aggressive AGN feedback, produces the most prominent
suppression of the matter power on large scales. On the other hand, IllustrisTNG exhibits a more
moderate impact on the matter power spectrum as a consequence of having milder AGN feedback,
and Astrid spans the widest range of baryonic feedback, encompassing effects seen in both SIMBA
and IllustrisTNG.

To cover the broadest range of baryonic feedback, based on Figure 6.1, we used simulations
from the Astrid suite at z = 0.0 to train our emulator. For selecting the training simulations, we
performed a random sampling of 800 simulations (out of the 1000 available) from the Astrid suite
within CAMELS at z = 0.0.

Post-training, we test the emulator using the remaining 200 simulations from Astrid at z = 0.0
alongside all other available hydrodynamic simulation suites in CAMELS. Figure 6.2 illustrates
the matter power spectrum ratio in the Astrid z = 0.0 test data. Additionally, the IllustrisTNG suite
and the SIMBA suite are part of the test dataset.

Previous studies [126, 295, 265, 126] have shown that both high physical resolution and large
box sizes are required to guarantee convergence of the power spectrum. [281] showed that deviations
of the power spectrum ratio using small boxes, like in CAMELS, are at the 5% level. However,

1We note that in the case of Astrid, the parameter AAGN2 varies between 0.25 and 4.
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Figure 6.1: The matter power spectra ratio observed across suites within CAMELS at various
redshifts. Each simulation suite’s median value is represented by the solid line, while the dashed
lines denote the extreme values, providing an overview of the suite’s variability. The shaded
region indicates 90 percentiles, reflecting the statistical distribution. During the training phase, our
emulator exclusively utilizes 800 Astrid simulations at z = 0.0. Post-training, we test the emulator
on all other CAMELS simulations shown here in addition to the remaining 200 Astrid z = 0.0
simulations in figure 6.2 and other simulations outside CAMELS in figure 6.6. Testing the emulator
for such varied simulations serves to evaluate the emulator’s reliability and generalizability across
a wide spectrum of redshifts and simulations.
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Figure 6.2: The ratio of matter power spectra in the 200 Astrid test simulations for z = 0.0. The
solid line denotes the median value across the simulations, while the dashed lines illustrate the
extreme values. The shaded region delineates the 90th percentile range. During emulator training,
800 simulations were randomly sampled from the Astrid (at z = 0.0) suite within CAMELS,
leaving these 200 remaining simulations for post-training Astrid z = 0.0 test analysis.
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Figure 6.3: Ratios of the matter power spectra in the Astrid z = 0.0 CV set. The solid line shows
the median value, while the shaded region shows the entire range of the ratios. All the simulations
share the value of the cosmological and astrophysical parameters; they only differ in the value of
their initial conditions random seed and hence can be used to study the effect of cosmic variance.

these could also be due to cosmic variance which affects the small CAMELS-like box volumes.
To study the effects of cosmic variance on the matter power spectrum ratio, we show the ratios for
simulations with the same cosmology and astrophysics from CAMELS-Astrid’s CV set in figure
6.3. From this, we can see that the matter power spectrum ratio is affected by cosmic variance up to
∼ 10% on small scales, suggesting that the deviations for small boxes are due to cosmic variance.

In addition to the diverse array of simulations in CAMELS, we extended the validation of
our emulator by testing it against simulations outside the CAMELS database. These external
simulations, including BAHAMAS [215, 216], Horizon AGN [78], Owls [279, 326], and Eagle
[278, 50, 212, 127], serve as crucial benchmarks to assess the robustness and generalizability of the
emulator’s predictions beyond CAMELS. These simulations encompass various diverse physical
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processes including AGN feedback, supernovae feedback, mass loss from Asymptotic Giant Branch
stars, radiative cooling, stellar winds, and stellar initial mass function, among others. Additionally,
these simulations differ from those in CAMELS in volume, resolution, and subgrid physics code
[327], enabling us to test the robustness of our emulator to these effects. The solid lines in the
left panel of Figure 6.6 illustrate the matter power spectrum ratio derived from these external
simulations, allowing us to assess how the emulator performs across varied simulations beyond the
scope of the CAMELS.

6.3 Baryonic effects at the field-level
In this section, we present our methodology to model baryonic effects at the field level for the
total matter density field. We start by computing the cross-correlation coefficient between the
matter field in full hydrodynamic simulations and their N-body counterparts. The cross-correlation
coefficient, r(k), is defined as:

r(k) =
Pcross(k)√

Pnbody(k)Phydro(k)
(6.5)

Here, Pcross(k), Pnbody(k), andPhydro(k) represent the cross-power spectrum, the N-body power
spectrum, and the power spectrum of the hydrodynamic fields respectively. This coefficient’s range
spans from −1 to 1, where values closer to 1 signify a strong positive linear relationship, −1
indicates a strong negative linear relationship and 0 implies no linear relationship between the
datasets.

Figure 6.4 shows the cross-correlation coefficients derived from all CAMELS suites at different
redshift values pertinent to this study. These coefficients serve as indicators of the correlation
strength between N-body and hydrodynamic fields within the simulations.

We can see that the calculated cross-correlation coefficients are very close to 1, down to k ∼ 10
h/Mpc, for all the simulations, with most deviations being within 5− 10%. On the other hand, we
see in Figure 6.1 that baryonic effects can cause deviations of up to ∼ 50% on the matter power
spectrum, with the effects getting more dominant at smaller scales. This suggests that the baryonic
effects predominantly impact the amplitude of the Fourier modes (given by the power spectrum)
rather than their phases (given by cross-correlation coefficients).

Since the amplitude and phase of the Fourier modes completely describe the fields, with
baryonic effects mainly changing the amplitudes, aligning the power spectra of N-body fields with
their hydrodynamic counterparts would also effectively align them at the field level, facilitating a
cost-effective field-level analysis using just N-body simulations.

We can achieve this power spectra alignment by applying a transfer function to the N-body
fields [31, 289]. Transfer functions operate by performing specific modifications to the field data.
In Fourier space, each mode of a field is represented by its amplitude, typically denoted by |k|, and
its phase. Transfer functions act on k to alter their amplitudes according to certain criteria [242,
73].
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The field-level transformation using a transfer function, T (k), is mathematically defined as:

F ′(k) = T (k) · F (k) (6.6)

Here, F (k) symbolizes the original field in Fourier space, and F ′(k) represents the transformed
field in Fourier space after the element-wise application of the transfer function T (k) to the original
field F (k). This transformation enables the adjustment of simulated fields to match desired
characteristics or observational data, enhancing the accuracy or realism of the simulation results.

In our context of incorporating baryonic effects in N-body simulations, we apply a transfer
function to the simulated field to adjust its power spectrum. Defining baryonic suppression as:

S(k) := Phydro(k)/Pnbody(k) (6.7)

Our field transformation on N-body fields is then:

δ′nbody(k) =
√
S(k) · δnbody(k) (6.8)

This could increase or suppress the power of certain scales and correct discrepancies arising from
missing baryonic physics effects in N-body simulations, aligning the power spectra of N-body fields
with the full hydrodynamic fields.

6.4 Gaussian Process Emulator
To fulfill the promise of field-level modeling of baryonic effects, we need to characterize
Phydro(k)/Pnbody(k) for our transfer function. In this section, we describe the main numerical
methods we use to create our emulator of Phydro(k)/Pnbody(k) using Gaussian Processes.

Gaussian Processes (GPs) [266] are a versatile tool within machine learning and statistics,
renowned for their efficacy in regression, interpolation, and uncertainty quantification. They
provide a flexible framework for modeling functions along with their associated uncertainties [e.g.
23, 273, 272, 243]. Moreover, a Gaussian process emulator is computationally efficient, enabling
its use within standard inference methodologies such as Markov Chain Monte Carlo (MCMC) for
evaluations.

For the length scales we want to model, the CAMELS simulations have 39 linearly-spaced k
bins spanning the range 0.36 < k < 9.93 h/Mpc. Hence, to model baryonic effects at small scales
down to k ∼ 10, our emulator delineates these 39 linearly-spaced k bins. We treat the baryonic
effects in each k bin as an individual Gaussian process, enabling independent training for each bin,
with every simulation serving as a training point for these k bins.

At a specific pointX = [Ωm, σ8, ASN1, AAGN, ASN2, AAGN2] in the parameter space, a Gaussian
process models the target function — S(k|X) := Phydro(k|X)/Pnbody(k|X) in our case — as an
assembly of random variables that form a joint Gaussian distribution. This model is defined via
S(k|X) ∼ N (0, K(X,Xi)), where Xi signifies the parameter values at the training simulations,
and K(X,X ′) represents a covariance kernel.
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Figure 6.4: The cross-correlation coefficients between N-body and hydrodynamic fields across
all suites within CAMELS at different redshifts. The solid line signifies the median value, while
the shaded region delineates the 90th percentile range, reflecting the distribution and variability
of these coefficients. Remarkably, the computed cross-correlation coefficients for all simulations
are very close to 1, denoting a strong relationship between N-body and hydrodynamic fields.
This suggests that the impact of baryonic effects predominantly alters the amplitude (power) of
the Fourier modes while exerting minimal influence on their phase (cross-correlation coefficient).
Consequently, we posit that field-level enhancements in N-body fields can be achieved by refining
their power spectra to closely align with the corresponding hydrodynamic fields. Targeting the
power spectra improvement holds promise for effectively reconciling the discrepancies between
N-body and hydrodynamic simulations, facilitating more accurate and cost-effective field-level
analyses across simulations.
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The choice of the kernel functionK(X,Xi) plays a pivotal role in characterizing the correlation
or similarity between data points X and Xi. This function serves as a prior, encapsulating the
expected behavior of the underlying function — baryonic effects in our case — to be modeled. For
our emulator, we adopt a Matérn 5/2 kernel, a generalized form of the radial basis function (RBF),
defined by:

K(X,X ′) = σ2
0

(
6∑

i=1

(
1 +

√
5r

ℓi
+

5r2

3ℓ2i

)
exp

(
−
√
5r

ℓi

))
(6.9)

Here, r = ||X − X ′||2 represents the L2 distance between two data points, σ2
0 denotes the

variance parameter, and ℓi signifies the length scale of each input dimension, influencing the
smoothness and range of correlations between data points. Our choice of this covariance kernel is
motivated by the need for flexibility, achieved through the squared exponential kernel, the efficacy
of linear interpolation, and allowing for noise in the training data.

At a test point X∗, the joint distribution of the test data S(k|X∗) and training data S(k|Xi) can
be expressed as:

[
S(k|Xi)
S(k|X∗)

]
∼ N

(
0,

[
K(Xi, Xi) + σ2

nI K(Xi, X∗)
K(X∗, Xi) K(X∗, X∗)

])
(6.10)

Here, σ2
n serves as a hyperparameter signifying Gaussian noise within the training data.

Consequently, our Gaussian process involves a total of 8 hyperparameters: 6 correlation lengths,
σ2
0 , and σ2

n. The hyperparameters are optimized by maximizing the marginal log-likelihood of the
training data [266].

The posterior predictive distribution over test data is obtained through:

S(k|X∗) ∼ N (µ,Σ) (6.11)

µ = K(X∗, Xi)
(
K(Xi, Xi) + σ2

nI
)−1

S(k|Xi), (6.12)

Σ = K(X∗, X∗)−K(X∗, Xi)
(
K(Xi, Xi) + σ2

nI
)−1

K(Xi, X∗) (6.13)

The mean and variance derived from the posterior predictive distribution, using the training
information at Xi, serve as estimators for the value and interpolation uncertainty associated with
S(X∗).

We implement our emulator using tinygp [96], a Python library for GP Regression (GPR) built
on top of the JAX library for numerical computing [35].

The GP model offers a broad prior across function space, enabling the modeling of the diverse
baryonic effects we see in figure 6.1 without imposing strong prior constraints on its parameter
dependencies. Since it is stochastic, this model provides predictions for the baryonic suppression
beyond the training points, accompanied by associated uncertainties that can be integrated into
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our statistical model. This emulation methodology provides a robust approach for modeling and
predicting the baryonic effects in simulations, enabling efficient and accurate interpolation, and
quantification of uncertainties.

6.5 Results
In this section, we use the trained Gaussian Process emulator to generate predictions for
Phydro(k)/Pnbody(k) as a function of four astrophysical parameters - ASN1, AAGN, ASN2, AAGN2

within their respective ranges. We emphasize that our emulator was trained on Astrid simulations
at z = 0, and therefore, the meaning of these astrophysical parameters is, in principle, associated
with the Astrid subgrid physics model. However, to make our emulator generic and robust, from
now on, we will consider these four astrophysical parameters as nuisance parameters that one needs
to tune to reproduce the result of one particular hydrodynamic simulation.

We employ the differential evolution global optimizer from the SciPy library [340] to obtain the
best-fit value of these nuisance parameters. This optimization technique is adept at exploring the
parameter space to seek optimal solutions, especially in scenarios with complex, multi-dimensional
parameter spaces. The differential evolution [305, 306, 260] method operates stochastically, offering
a non-gradient approach to locating the minimum and can search through large volumes in parameter
space.

We now show the accuracy of our emulator for simulations within and outside CAMELS,
showing its precision to changes in simulation cosmology, feedback, subgrid physics, resolution,
volume, and redshift. On top of that, we compare the accuracy of our emulator against other
emulators in the literature. Finally, we demonstrate the emulator’s efficacy in creating field-level
improvements when applied to the N-body fields of simulations within CAMELS, validating its
potential for advancing field-level weak-lensing analyses using cosmological simulations.

Emulator accuracy
We start by quantifying the accuracy of our emulator across hydrodynamic simulations.

• CAMELS simulations. Figure 6.5 shows the error achieved by our emulator for simulations
of three different suites of CAMELS (IllustrisTNG, Astrid, and SIMBA) at four different
redshifts. The solid lines represent the average percent error across simulations, while the
shaded regions denote the 90th percentile range. These results correspond to all the baryonic
effects illustrated in figure 6.1. Firstly, we can see that the emulator achieves a high accuracy
down to k ∼ 10 h/Mpc with deviations remaining typically less than 5%. We emphasize that
our emulator is robust to changes in redshifts and baryonic effects across CAMELS.
The performance of the emulator is similar across redshifts for the Astrid and IllustrisTNG
simulations at all scales, with higher accuracy at large scales and somewhat lower precision
at smaller scales. However, at z = 0.0 and 0.5, the prediction error for SIMBA can be as high
∼ 5% on large scales. This is likely due to the aggressive AGN feedback in SIMBA, which
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produces the most prominent suppression of the matter power on large scales [101] as seen
even in the comparison plots in Figure 6.1. Nonetheless, the prediction error is still within
∼ 5% and is comparable to the other two suites at z = 1.0, 1.5.

• Non-CAMELS simulations. While the above test shows the robustness of our emulator
to changes in cosmology, astrophysics, and subgrid physics, we note that all CAMELS
simulations share the same volume and resolution. In order to quantify how well our
emulator behaves to changes in volume, resolution, and other subgrid physics models, we
quantify how well it is able to reproduce the results of the BAHAMAS, Horizon AGN, Owls,
and Eagle simulations. We show the results in Figure 6.6.
The left panel shows the correction to the matter power spectrum in these simulations;
solid lines represent the simulation results, while the corresponding dashed line depicts our
emulator’s predictions. The emulator closely mirrors the inherent behavior of baryonic effects
across these varied simulations. In the right panel, the prediction errors for each simulation
are displayed. Consistently, the emulator maintains accuracy at the percent level up to k ∼ 10
h/Mpc, adeptly capturing the intricacies of baryonic effects across diverse scenarios. All the
above tests clearly illustrate the versatility and robustness of our emulator, which is capable
of reproducing the ratio Phydro(k)/Pnbody(k) for thousands of simulations with different
cosmologies, astrophysics, subgrid physics, volumes, resolutions, and redshifts.

Comparison against other emulators
In recent years, different groups have created emulators to model baryonic effects for 2-point
statistics. Given the findings of this work, we can also use those emulators to create field-level
baryonic effects corrections. In this subsection, we conduct comparative evaluations against widely
used emulators such as BACCO, HMcode, and BCemu, both within and beyond the CAMELS
simulations. Through the following comparisons, we show that, overall, our emulator offers greater
flexibility and robustness in modeling baryonic effects compared to the other emulators.

• BACCO: BACCO is a neural network-based emulator that accounts for baryonic effects in the
non-linear matter power spectrum [12]. BACCO encompasses a parameter set comprising
8 cosmological parameters, consisting of the standard 5 ΛCDM parameters combined with
massive neutrinos and dynamical dark energy. Additionally, it includes 7 free baryonic
parameters derived from physical principles, describing factors such as the gas fraction
retained in halos, the intensity of AGN feedback, the characteristic galaxy mass, and the
relationship between gas fractions and halo mass. In addition to the 7 free parameter
model, BACCO also has 3 and 1 parameter models. When not included in the model,
the baryonic parameters are fixed at their fiducial values. BACCO achieves an overall
precision of ∼ 1-5% across its models and its targeted scales (0.01 < k < 5 h/Mpc) and
redshifts (0 < z < 1.5), encompassing various cosmological hydrodynamic simulations.
However, BACCO’s capacity to confidently predict the baryon-corrected power spectrum is
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Figure 6.5: Emulator performance on all CAMELS test simulations. The percent error, calculated
as (True Value − Predicted Value) × 100%, of emulator predictions is shown as a function of
wavenumber. The solid line represents the average percent error across simulations, while the
shaded region denotes the 90th percentile range. Notably, the emulator demonstrates exceptional
predictive accuracy, with predictions of true baryonic effects consistently achieving accuracy at the
percent level. These accuracy results show that the emulator predictions are robust to changes in
redshift and hydrodynamic simulation.
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Figure 6.6: The emulator predictions alongside the reference hydrodynamic simulations for sce-
narios outside the CAMELS dataset. The left panel shows the matter power spectrum ratios.
Each solid line represents the ground truth from the respective hydrodynamic simulation, while
the corresponding dashed line showcases the emulator’s predictions. Notably, the emulator closely
matches the underlying behavior of the baryonic effects in these distinct simulations. The right
panel shows the prediction errors for each simulation. The emulator consistently achieves accuracy
at the percent level, accurately capturing the baryonic effects in these diverse scenarios. The pre-
dictions demonstrate robustness even amidst variations in hydrodynamic simulations, highlighting
the emulator’s capability to adapt and predict the impact of baryonic physics with high accuracy
across a broad spectrum of simulations outside the CAMELS dataset.

limited to a maximum wavenumber of k = 4.7 h/Mpc, notably smaller than our emulator’s
range. Furthermore, its range of validity is narrower than GPemu: σ8 ∈ [0.73, 0.9] and
Ωm ∈ [0.23, 0.4]. As a result, only 39 out of the 200 Astrid z = 0.0 test simulations are
within BACCO’s specified cosmology range.
The left panel of Figure 6.7 shows the comparison between BACCO’s predictions (including
the 7, 3, and 1 parameter models) and our emulator’s predictions on these limited 39 simu-
lations. The solid lines represent the average percent error, while the shaded regions depict
the 90th percentile of errors. The dash-dotted and dotted lines illustrate the 90th percentile
outputs for BACCO’s 3 and 1 parameter emulators, respectively. The comparison results for
the SIMBA and IllustrisTNG suites are similar. In Figure 6.8 we compare GPemu against
BACCO for the non-CAMELS simulations.
Overall, we find that GPemu exhibits an accuracy similar to that of BACCO, but its range of
validity, both in terms of scales and parameter-space, is wider.

• HMcode: The HMcode [219] is a simple halo model designed to simulate the influence of
baryonic feedback on the power spectrum. It incorporates a six-parameter physical framework
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that includes gas expulsion by AGN feedback and encapsulates star formation. The feedback
model was fitted to simulation data, taken from the library of [327].
In our evaluation, similar to the comparison conducted against BACCO, we conducted a side-
by-side analysis of HMcode’s predictions alongside our emulator’s outcomes using Astrid
test data. The results of this comparison are illustrated in the middle panel of Figure 6.7,
with solid lines representing the average percent error and shaded regions depicting the 90th
percentile of the errors. We can see that our emulator demonstrates comparable performance
to HMcode on larger scales while exhibiting higher accuracy on smaller scales where baryonic
effects are stronger. A similar conclusion can be reached by comparing HMCode against
GPemu for non-CAMELS simulations as shown in Figure 6.8.

• BCemu: The BCemu emulator [104] focuses on modeling the baryonic suppression of the
matter power spectrum. It is based on a slightly modified version of the baryonification model
[283] and features seven physically-meaningful free-parameters related to gas profiles and
stellar abundances within halos. BCemu demonstrated its capability to replicate the power
spectra of hydrodynamical simulations with sub-percent precision. Moreover, it established
a correlation between the baryonic suppression of the power spectrum and the gas and stellar
fractions within halos. However, similar to BACCO, BCemu is constrained by its limited
acceptance range for cosmological parameters (Ωm ∈ [0.196, 0.49]), encompassing only 148
out of the 200 Astrid test simulations.
The right panel of Figure 6.7 compares BCemu’s predictions with those of our emulator
within this subset, with solid lines representing the average percent error and shaded regions
depicting the 90th percentile of the errors. From Figure 6.8 we can see that GPemu performs
similarly to BCemu when used on non-CAMELS simulations. While both emulators display
comparable performance at all scales, our GP emulator shows greater flexibility and generality
in its predictions of baryonic effects across a wider range of hydrodynamic simulations.

Field-level emulation
From Figure 6.4 we found that baryonic effects do not significantly affect the phases of Fourier
modes down to k ∼ 10 hMpc−1. Thus, baryonic effects at the field level can be accounted for by
correcting the amplitude of Fourier modes from N-body simulations. Now that we have an emulator
for the ratio, S(k) = Phydro(k)/Pnbody(k), we can investigate how well our model performs at the
field level. The resulting field-level transformations exhibit effective improvements, evident across
multiple simulation suites at different redshifts.

In more detail, the procedure we employ to model baryonic effects at the field level is as follows.
First, we take a given hydrodynamic simulation and its N-body counterpart. We then compute the
power spectrum of each of them to compute the baryonic suppression: S(k) = Phydro(k)/Pnbody(k).
Next, we fit the four free parameters of GPemu to get the best match to S(k). Then, from
the N-body simulation, we compute the matter density field δnbody(x) and its Fourier transform:
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Figure 6.7: Comparison between our GP emulator and other personification emulators - BACCO
(left panel), HMcode (middle panel), and BCemu (right panel) - on Astrid test data at z = 0.0.
The solid lines represent the average percent error, while the shaded regions depict the 90th
percentile of errors. Left Panel: Within BACCO’s acceptable cosmological range, we use 39
test simulations for emulation, covering up to its maximum wavenumber k ∼ 5. The dash-
dotted and dotted lines illustrate the 90th percentile outputs for BACCO’s 3 and 1 parameter
emulators, respectively. Our GP emulator demonstrates the capability to investigate smaller scales,
exhibiting accuracy comparable to BACCO’s 7-parameter model while offering increased flexibility
and generality. Middle Panel: Using all 200 test simulations, our GP emulator demonstrates
comparable performance to HMcode on larger scales and exhibits higher accuracy on smaller scales.
Right Panel: Using the 148 test simulations that fall within BCemu’s acceptable cosmological
range, both emulators exhibit comparable performance, but our GP emulator showcases greater
flexibility and generality in its predictions.

δnbody(k) = Ake
iθk . Finally, we obtain the baryon-corrected field by Fourier transforming back

δpostTF(k), where
δpostTF(k) =

√
SGPemu(k)δnbody(k) (6.14)

with
√
SGPemu(k) being the transfer function predicted by our emulator GPemu.

Figure 6.9 illustrates the baryonic correction of our method on IllustrisTNG when applied
to N-body simulations across various redshifts. The first row displays a 2D projection of the
whole 3D matter field with dimensions 25× 25× 25 (h−1Mpc)3 from a hydrodynamic simulation
at four different redshifts. The second row shows the difference between the image from the
hydrodynamic simulation and its N-body counterpart. The third row shows instead the difference
between the hydrodynamic simulation and our field-level correction model. As expected, our field-
level correction is more accurate than the N-body simulation, and the residual fluctuations (shown
in red and blue) are due to small-scale modes where the cross-correlation coefficient deviates from
1.
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Figure 6.8: Comparison of our emulator against BACCO’s 7 and 3 parameter versions, HMcode, and
BCemu using hydrodynamic simulations outside of CAMELS. The simulations encompass varying
degrees of baryonic feedback. For BACCO, emulation is performed up to BACCO’s maximum
wavenumber of k ∼ 5. Despite differences in the length scales of emulation, all emulators achieve
percent-level accuracy in predicting baryonic effects, showcasing comparable performance within
their respective length scales.

6.6 Conclusions
Field-level approaches have the potential to extract all the available information from cosmological
surveys. Modeling and marginalizing over baryonic effects at the field-level becomes a key ingre-
dient in these efforts. In this work we have developed a new method to model baryonic effects for
the total matter density field, the relevant quantity for weak lensing analyses.

The key finding in this work is that by computing the cross-correlation between the total
matter density field in hydrodynamic and N-body simulations from thousands of simulations of the
CAMELS project (see Figure 6.4) we conclude that baryonic effects weakly affect the phases of
Fourier modes of the total matter density field down to scales as small as k ∼ 10 hMpc−1. This
finding implies that baryonic effects will predominantly modify Fourier mode amplitudes. Thus,
we can baryonify the total matter field of an N-body simulation by rescaling its Fourier mode
amplitudes.

In this work we have built an emulator using Gaussian processes for the total to dark matter
power spectrum ratio S(k) that takes as input 2 cosmological parameters (Ωm and σ8) and 4
astrophysical parameters (ASN1, ASN2, AAGN1, AAGN2). We have trained our emulator using 800
state-of-the-art hydrodynamic simulations from the Astrid suite of CAMELS. We then show that
our emulator is able to reproduce the baryonic effects of thousands of hydrodynamic simulations
that have different cosmologies, astrophysics, subgrid physics, resolutions, volumes, and redshifts
within a few percent precision.

We have compared our emulator against others in the literature, such as BACCO, HMCode,
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Figure 6.9: Field-level improvement comparison in the IllustisTNG simulation suite across different
redshifts. The top row presents the original hydrodynamic field, while the bottom row shows the
power spectra of the resultant N-body field after applying the transfer function, showcasing a
substantial enhancement in power spectra alignment with the hydrodynamic fields. The achieved
near-perfect calibration signifies improved field-level agreement, based on the implications from
figures 6.1 and 6.4. The second row displays the residual differences between hydrodynamic and
initial N-body fields, whereas the third row demonstrates the residuals post-application of the
transfer function (postTF). Notably, the post-transfer function residuals reveal a predominantly
white background, indicating significantly improved agreement on both large scales and around
clustered regions and halos on smaller scales. This illustrates the transfer function’s efficacy in
achieving notable field-level improvements, showcasing robustness across various redshifts.
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and BCemu. We find that our emulator shares a similar level of accuracy with those, but it has a
wider range of validity given that it has been trained on CAMELS, where variations in cosmology
and astrophysics are very large. We also showed explicitly how using our method reduces the
residuals when working at the field level by comparing the results of hydrodynamic simulations
against baryonified N-body simulations. A limitation of using CAMELS is that the box size is
very small, and baryonic effects may not be fully captured due to the absence of larger halos in
these simulation boxes. This will need to be investigated in more detail using a suite of simulations
varying box size.

Our emulator enables robust, cost-effective field-level weak lensing modeling and facilitates
precise power spectra analyses at the two-point level. The versatility and accuracy of our GP
baryonification emulator underscore its potential as a powerful tool in cosmological simulations,
offering opportunities for enhanced analyses and deeper insights into baryonic effects in large-scale
structures. However, whether this emulator suffices at the field level depends on the specifics of the
observational program. For example, for weak lensing, this will require making weak lensing maps
using ray-tracing techniques. The overall detectability of the effects that go beyond our field level
emulator in the weak lensing depends on the density of background galaxies and the observed area
of the sky. This analysis goes beyond the purpose of this paper, and will be presented elsewhere.
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Chapter 7

Translation and Rotation Equivariant
Normalizing Flow (TRENF) for Optimal
Cosmological Analysis

The contents of this chapter were originally published in [56],

Translation and Rotation Equivariant Normalizing Flow (TRENF) for Optimal Cosmological
Analysis

Dai B., Seljak U.(arXiv:2202.05282) MNRAS 516.2 (2022): 2363-2373

Our universe is homogeneous and isotropic, and its perturbations obey translation and rota-
tion symmetry. In this work we develop Translation and Rotation Equivariant Normalizing Flow
(TRENF), a generative Normalizing Flow (NF) model which explicitly incorporates these symme-
tries, defining the data likelihood via a sequence of Fourier space-based convolutions and pixel-wise
nonlinear transforms. TRENF gives direct access to the high dimensional data likelihood p(x|y)
as a function of the labels y, such as cosmological parameters. In contrast to traditional analyses
based on summary statistics, the NF approach has no loss of information since it preserves the
full dimensionality of the data. On Gaussian random fields, the TRENF likelihood agrees well
with the analytical expression and saturates the Fisher information content in the labels y. On
nonlinear cosmological overdensity fields from N-body simulations, TRENF leads to significant
improvements in constraining power over the standard power spectrum summary statistic. TRENF
is also a generative model of the data, and we show that TRENF samples agree well with the N-body
simulations it trained on, and that the inverse mapping of the data agrees well with a Gaussian
white noise both visually and on various summary statistics: when this is perfectly achieved the
resulting p(x|y) likelihood analysis becomes optimal. Finally, we develop a generalization of this
model that can handle effects that break the symmetry of the data, such as the survey mask, which
enables likelihood analysis on data without periodic boundaries.
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7.1 Introduction
The goal of optimal cosmological analysis is to extract the maximum amount of information of
cosmological parameters from the data. If the data are Gaussian distributed this task has a well-
known solution, as one can directly evaluate the Gaussian data likelihood p(x|y), where y are
cosmological parameters of interest. An implementation of this method is the optimal quadratic
estimator [117, 315, 30], which uses second-order expansion of the likelihood to achieve this task.
Often we must also model the likelihood as a function of nuisance parameters such as systematics,
astrophysical sources, etc. Evaluating either the quadratic estimator or the likelihood in high
dimensions is not an easy task in the presence of noise and survey mask [108], since it requires an
inversion and a determinant of the covariance matrix, which for large data is prohibitively expensive.
Often simplified versions such as the pseudo power spectrum analysis are adopted [133]. These
however are suboptimal and may not be amenable to a fast evaluation of covariance matrix, which
for optimal quadratic estimator is available in the form of the Fisher matrix.

In the nonlinear regime, such as the large -scale structure on small scales, nonlinear gravitational
effects in dark matter create a rapidly growing cascade of higher-order correlations, which quickly
get populated at all orders. In this regime we often rely on N-body simulations. Furthermore,
what we often observe are baryons, such as galaxy light or gas density, which have additional
astrophysical processes that need to be included in the simulation. These are handled with nuisance
parameters that try to parametrize the unknown physics.

When it comes to data analysis in this regime the exact likelihood analysis is deemed impossible,
and instead the focus has been on extracting information from a limited set of summary statistics.
This program has numerous challenges. The first is how to choose the most informative summary
statistics. While two-point function is a natural choice even in the nonlinear regime, adding higher
-order information is less straightforward. Even adding the three-point function means adding a
function of three parameters, which is considerably more complex to describe than the two-point
function or its Fourier analog, the power spectrum. Numerous other ad-hoc statisticsS(x) have been
proposed, from peak counts to void counts, void profiles, etc. In each case, one must evaluate their
mean expectation as a function of cosmological and nuisance parameters. Moreover, since these
are ad-hoc summary statistics their probability distribution must be evaluated numerically, usually
by approximating the probability distribution as a multi-variate Gaussian. Recent developments
such as Likelihood Free Inference [7, 8] or Simulation Based Inference [51] pursue this program
by combining the two tasks of mean and covariance estimate into estimating the full p(S|y), which
can also include effects beyond the mean and covariance of the Gaussian distribution. These have
the same underlying issues of summary statistics being ad-hoc and potentially sub-optimal. The
summary statistics can also be determined by some information maximizing Machine Learning
algorithms [41, 270, 202].

An alternative approach is using the reconstruction of initial conditions and performing the
marginal integral over these latent variables so that we are left with marginal data likelihood as
a function of cosmological parameters p(x|y). However, performing this marginal integral over
initial conditions z has proven to be difficult. One can sample over z and y using Hamiltonian
Monte Carlo (HMC) [147, 163, 346], but the samples are usually very correlated in high dimensions
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even if HMC is used, and thousands of full N-body simulation steps may be needed between two
independent samples. An alternative to this approach is maximum a posteriori (MAP) estimation of
z, followed by an MAP-based unbiased estimator of the cosmological parameters [287, 224]. While
obtaining the MAP of z is faster, making the estimate unbiased and obtaining the cosmological
parameter posterior is still expensive and can be suboptimal.

In this paper we propose instead to learn directly the data likelihood p(x|y) from the data
simulations conditioned on y. Since the data is very high dimensional, and the simulations are
expensive, this task has been deemed difficult or impossible. However, the universe is homogeneous
and isotropic on average, and its perturbations obey translational and rotational symmetry in a
statistical sense. If these symmetries can be imposed into the structure of p(x|y), the parametrization
of the model would be greatly restricted, allowing efficient learning of p(x|y). To see the power
of symmetries we consider a simple example of modeling an N-dimensional Gaussian Random
Field (GRF), where one needsN(N +3)/2 parameters to describe its mean and covariance matrix.
However, if the GRF satisfies translation and rotation symmetry, the mean vector is reduced to a
scalar, and the covariance matrix is reduced to a 1D function, i.e., the power spectrum, which can
usually be parameterized by only a few parameters assuming smoothness. This simple example
shows that symmetries can greatly reduce the degrees of freedom of the model and the sample
complexity. In this work we will use the framework of generative learning to learn the data
likelihood p(x|y) and build the symmetries into the model itself.

Latent variable generative models such as Normalizing Flows (NFs) [268, 70, 71, 161, 57],
Variational Auto-Encoders (VAEs) [162, 269] and Generative Adversarial Networks (GANs) [107,
262] aim to model the high-dimensional data distribution p(x) by introducing a mapping from a
latent variable z to x, where z is assumed to follow a given prior distribution π(z). While all
these three classes of models have been shown to produce realistic samples [161, 267, 157], NF
is the only one that allows exact density evaluation p(x), and when done conditionally as p(x|y)
this enables a direct likelihood analysis. Another family of density estimation models is called
autoregressive models [103, 238], which decompose the high dimensional Probability Distribution
Function (PDF) as the product of 1D conditional PDFs: p(x) =

∏N
i=1 p(xi|x1:i−1). These models

require choosing a specific ordering of the pixels x1:N and treat the pixels differently, making it
hard to enforce symmetries. For these reasons we will adopt NF as the method of choice for
cosmological data analysis.

Translation symmetry can be implemented by Convolutional Neural Networks, and in cosmol-
ogy these have been used for example to relate galaxies to dark matter [224, 42]. In machine
learning the symmetries other than translation are often included using brute force methods such as
data augmentation. This increases the amount of training data and does not reduce the complexity
of the model, which must instead learn the symmetries from the data samples. There is also no
guarantee that the symmetries can be perfectly learned. In such situations NFs can fail in their
primary tasks, either as a realistic data generator or as a data likelihood estimator. There are also
works trying to build the symmetries into the machine learning models [46, 348, 355, 347, 218],
but these models are mostly designed for supervised tasks such as classification [277] and high
dimensional mapping, and cannot be directly used in the NF framework, which requires the learned
mapping to be invertible and to have tractable Jacobian determinant. NFs have been applied to
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modeling cosmological fields [274, 121] for data generation, but in high dimensions, good sample
qualities do not necessarily imply accurate likelihood estimation [318], which is the primary goal
of this paper. Symmetries are also not incorporated in these models. In this work we develop
Translation and Rotation Equivariant Normalizing Flow (TRENF), which impose the symmetries
explicitly into the NF model.

The novel developments of this paper are:

• We develop a conditional NF architecture which is translation and rotation equivariant
(TRENF) for learning the likelihood p(x|y) of cosmological fields.

• We use TRENF as a map from latent space to data space for fast generation of high di-
mensional simulated data conditional on cosmological parameters. Note that cosmological
fields (e.g., Cosmic Microwave Background) are usually high dimensional distributions and
cannot be approximated by low dimensional manifolds, and therefore modeling them with
low-dimensional-manifold models like GANs could potentially introduce systematics in the
samples. TRENF, on the other hand, has no dimension reduction and can sample from the
full distribution p(x|y) without any manifold assumption.

• We use TRENF as a map from the data space to the latent space, enabling visual and
numerical inspection of the quality of the training: if the latent map is a perfect white noise
Gaussian at the true value of y, then we have optimally extracted all the information from the
data, encoding it into a single number p(x|y). TRENF thus can identify when the model is
incomplete, such as missing some systematic or modeling effect. Recent works on applying
CNNs [270] or novel summary statistics [44] to extract information from the fields have
shown improvements over traditional summary statistics like power spectrum, but are not
providing any guarantees of optimality, and it is unclear how much information has remained
unused. Our generative model provides a natural way to investigate this and improve upon
these methods.

• We use TRENF p(x|y) as a function of y to directly provide uncertainty quantification via the
posterior p(y|x) = p(x|y)p(y)/p(x), which is the ultimate goal of a cosmological analysis.

• We introduce non-symmetric components into TRENF for modeling observational effects
that break the symmetry of the data, such as the survey mask.

One limitation of the current work is that it is limited to two-dimensional fields. While we will
be presenting results on projected dark matter fields, there are many other projections available
observationally, such as weak lensing convergence, projected galaxy density fields, etc. In fact,
most of the large-scale structure data are 2D projections. Moreover, for 2D fields, most of the
complicating effects such as light-cone projections, baryonic effects, and redshift space distortions,
do not break translation and rotation equivariance. One effect that does break is the survey mask,
and we address it in detail in this paper.
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7.2 Method

Normalizing Flows
Flow-based models provide a powerful framework for density estimation [71, 239] and sampling
[161]. These models map the data x to latent variables z through a sequence of invertible trans-
formations f = f1 ◦ f2 ◦ ... ◦ fn, such that z = f(x) and z is mapped to a base distribution π(z).
The base distribution π(z) is normally chosen to be a standard normal distribution, i.e. a Gaussian
white noise with zero mean and unit variance, π(z) = N (0, I). The probability density of data x
can be evaluated using the change of variables formula:

p(x) = π(f(x))
∣∣∣det(∂f(x)

∂x

)∣∣∣
= π(f(x))

∏n
l=1

∣∣∣det(∂fl(x)
∂x

)∣∣∣ . (7.1)

To sample from p(x), one first samples latent variable z from π(z), and then transform variable z
to x through x = f−1(z). The transformation f is usually parametrized with neural networks fϕ,
and the parameters ϕ are estimated using Maximum Likelihood Estimation (MLE):

ϕ∗ = argmax
ϕ

1

N

N∑
i=1

log pϕ(xi), (7.2)

where the data likelihood p(x) is given by Equation 7.1. The MLE solution minimizes the Kullback-
Leibler (KL) divergence between the model distribution pϕ(x) and the true data distribution. The
parametrization of f must satisfy the requirements that the Jacobian determinant det(∂fl(x)

∂x
) is

easy to compute for evaluating the density, and the transformation fl is easy to invert for efficient
sampling.

Translation and Rotation Symmetry
It is useful to differentiate the concepts invariant and equivariant. A function f is invariant if its
output is unchanged when its input x is transformed by a symmetry group g:

f(g · x) = f(x). (7.3)

A relevant example is the PDF of the cosmological fields, which should be invariant under translation
and rotation of the fields. Similarly, a function f is equivariant if its output is transformed by the
same symmetry group g as its input x:

f(g · x) = g · f(x). (7.4)

In other words, an equivariant function commutes with the symmetry transformation. The physical
laws that govern the evolution of our universe are equivariant to translation and rotation, if we view
them as a mapping from the early universe to the present day. We want our NF transformation
f to have similar properties as the physical laws, thus to be equivariant to these symmetries. An
equivariant NF f also leads to invariant PDF from Equation 7.1.
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Translation and Rotation Equivariant Normalizing Flow (TRENF)
Our goal is to find a parametrization of the flow transformation f such that 1) its Jacobian determi-
nant and inverse can be efficiently calculated for likelihood evaluation (Equation 7.1) and sampling;
2) f is equivariant to translation and rotation. The simplest form of such transformation is the
Pixelwise Gaussianization (PG), which applies the same nonlinear transformation on all pixels such
that the resulting one-point PDF is a standard Gaussian. This method has been used to reconstruct
the primordial density fields [350]. However, PG is not very expressive and cannot model the
correlations between different pixels. Here we discuss how to go beyond PG.

We observe that for any non-Gaussian PDF that is invariant to translation, one can always find
a convolution kernel, such that the one-point PDF of the convolved field is non-Gaussian. This
can be proven by considering the non-zero high-order cumulant of the field. Suppose the m-point
cumulant is non-zero ⟨x1x2 · · ·xm⟩c ̸= 0 (m > 2). We can always define a convolution kernel T
that is nonzero at x1, x2, · · ·xm. The m-th cumulant of the one-point PDF of the convolved field
contains ⟨x1x2 · · ·xm⟩c and must be nonzero for some kernel T .

This motivates parametrizing the flow transformation f with convolutions followed by PG.
Intuitively, the convolution kernels look for maximal non-Gaussianity in convolved data, which
indicates non-Gaussian PDF and non-zero high-order cumulants (order above two). The PG maps
the one-point PDF of the convolved data to a Gaussian and reduces the high-order cumulants. By
stacking multiple such transformations, all high-order cumulants can be reduced to zero and the data
distribution is mapped to a white noise Gaussian. This process can be viewed as a generalization of
SINF (sliced iterative NF) [57] to translation equivariant data: SINF also searches for maximally
non-Gaussian directions, followed by PG. For translation equivariant data these directions are
replaced with convolutions.

Motivated by these ideas, we choose to parametrize f with convolutions and pixel-wise non-
linearity. Assuming periodic condition, the convolution of data x(r) can be written in Fourier
space as ∫

T (r − r′)x(r′) dr′ = F̂−1
(
T̃ (k) · x̃(k)

)
(7.5)

where T is the convolution kernel, F̂ denotes Fourier transform, T̃ = F̂ (T ) and x̃ = F̂ (x) are the
Fourier transform of T and x, respectively. We require the convolution to be rotational equivariant,
thus T̂ can only depend on k, the amplitude of k. We combine a convolution operation with a
pixelwise non-linearity Ψ to form the basic transformation of TRENF:

f = Ψ
(
F̂−1T̃ (k)F̂ x

)
. (7.6)

Both T̃ and Ψ are 1D functions learned from the data. We choose to parametrize T̃ (k) with cubic
splines. Ψ function is required to be monotonic and differentiable in order to sample and evaluate
density from TRENF. We parametrize Ψ with monotonic rational quadratic splines [110, 80]. We
will refer to each such transformation as one layer in the rest of this paper.
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Equation 7.6 satisfies the two requirements we set at the beginning of this section. Firstly, its
Jacobian determinant and inverse can be calculated via [156]:∣∣∣∣ dfdx

∣∣∣∣ =
(

pixels∏
i

dΨ

dx(ri)

)
·

(
k modes∏

j

T̃ (kj)

)
, (7.7)

f−1 = F̂−1(1/T̃ )F̂Ψ−1(x). (7.8)

Secondly, it can be easily verified that both the convolution and the pixel-wise non-linearity are
translational and rotational equivariant, so Equation 7.6 also satisfies the symmetry requirement.
To improve the expressivity of the model, one can stack multiple such transformations and form a
deep NF model.

The architecture of TRENF is similar to a Convolutional Neural Network (CNN): both of them
are composed of convolutions followed by non-linearities. While CNNs normally perform convolu-
tion in real space, this becomes too expensive for long range correlations typical of cosmology data.
TRENF compute the convolution in Fourier space, making it possible to easily calculate its inverse
and Jacobian determinant. The Fourier space also allows us to easily enforce rotational symmetry,
and parametrize arbitrarily large kernels. In the NF framework we keep the dimensionality of
the data, unlike CNNs which usually change the number of channels and side lengths. Another
difference between TRENF and CNN is that the non-linearity is learnable in TRENF, which in
CNN it is normally chosen to be a fixed function like ReLU. This extra degree of freedom increases
the flexibility of TRENF.

Conditional TRENF
To learn the model dependence on cosmology, baryonic physics, and other nuisance parameters,
we build conditional TRENF where the model parameters are functions of conditional variables y.
Specifically, we train a hyper neural network g to learn the conditional relation ϕ = g(y), where
ϕ consists of the spline parameters of all the kernel T̃ and non-linearity Ψ. The total number
of TRENF parameters ϕ is usually of order O(100), and they can be easily predicted by a single
fully-connected hyper network. An alternative is to interpolate between different y using a Gaussian
Process.

Training
We explore two kinds of training losses in this work: generative loss and discriminative loss. In
the generative loss we minimize the negative log-likelihood, which is the standard loss function of
NF (Equation 7.2 with conditional variable y):

Lg = −
1

N

N∑
i=1

log p(xi|yi). (7.9)

The generative training is suitable for sampling (Section 7.3) and conditional density estimation.
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For posterior analysis in Section 7.4, our task is to obtain the most accurate posterior distribution,
rather than the likelihood function. It has also been shown that discriminative learning with objective
p(y|x) generally has a lower asymptotic error on classification tasks than generative learning with
objective p(x|y) [235]. Therefore, we adopt a two-stage training strategy, where we firstly train
TRENF with a generative loss, and then we switch to the discriminative loss (− log p(y|x)) to
improve the accuracy of the posteriors. The first stage (generative learning) can be viewed as an
initialization (warm startup) of the discriminative learning and speeds up the training process. In
the second stage, the calculation of log p(y|x) involves computing the evidence p(x), which is
estimated using Importance Sampling (IS):

Ld = − 1

N

N∑
i=1

log p(yi|xi)

= − 1

N

N∑
i=1

[
log p(xi|yi) + log p(yi)− log

(∫
p(xi|y)p(y)dy

)]

≈ − 1

N

N∑
i=1

 log p(xi|yi) + log p(yi)

− log

 1

M

M∑
yj∼q(y|xi)

p(xi|yj)p(yj)
q(yj|xi)

 . (7.10)

During training, for each training data xi, we first find the MAP yi,MAP = argmax p(xi|y)p(y)
using ADAM optimizer, and then the IS distribution q(y|xi) is defined as a Gaussian centered at
yi,MAP with a fixed covariance matrix. The parameters of the covariance matrix are fitted to the
posterior distribution of the first stage training. Note that if we skip the first stage training and
directly train TRENF with Equation 7.10, the Gaussian q(y|xi) is normally a poor approximation
to the true posterior, and the optimization is difficult to converge due to inaccurate estimation of
p(x). The number of importance sampling points M is a hyperparameter, and we use M = 20 for
the datasets we considered in this paper.

Modeling Effects that Break the Data Symmetry
The physical fields satisfy translation and rotation symmetries, but our observed data usually do not.
There are several observational effects, such as the survey mask and foregrounds, that could break
the symmetry of the data. To model these effects we need to introduce non-equivariant components
into our model. The idea is that the non-equivariant component will model these observational
effects that break the symmetries, while TRENF takes care of the physical process that obeys the
symmetries.

As data preprocessing, we first sample Gaussian random noise to the missing pixels xmask so
that the data have rectangular shapes. We then add an affine coupling layer [71] which applies affine
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Figure 7.1: Test data (left panel) and uncurated TRENF samples (right panel) as a function of
conditional variables Ωm and σ8.

transforms on xmask, conditional on the neighboring pixels xneighbor and conditional variables y:

z = xmask ⊙ exp(s(xneighbor, y)) + t(xneighbor, y), (7.11)

where⊙ denotes element-wise product, and s and t are functions modeled by neural networks. The
other pixels are left unchanged in this layer. This step can be effectively seen as inpainting, even
though we do not explicitly train the layer to recover the missing pixels, but rather train the whole
model using NF objectives.

After the affine coupling layer, we add convolutions and pixel-wise non-linearities similar to
Equation 7.6 to map the data to a Gaussian. Here we introduce non-equivariant components
into these transforms to model effects like non-periodic boundaries and position-dependent noise.
Since these effects are usually position-dependent, in this work we choose to introduce position
dependence on the non-linearity Ψ(x) = Ψr(x). Specifically, we train two separate hyper networks
gT̃ and gΨ. gT̃ models the dependence of convolution kernel parameters ϕT̃ on conditional variable
y:

ϕT̃ = gT̃ (y), (7.12)

while gΨ models the conditional dependence of non-linearity parameters ϕΨ on position r and y:

ϕΨ = gΨ(r, y). (7.13)

7.3 Results: generative samples in data space and data
representation in latent space

Dataset: The dataset we will use throughout the paper is 2D projections of matter overdensity
fields. This example is most relevant for weak lensing applications, which are similar projections
of matter density field along the line of sight. Here, for the initial analysis, we want to have the
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data to be periodic, so that translation and rotation symmetry is not broken. In section 7.5 we will
generalize it to non-periodic boundaries.

The matter overdensity fields are generated by N-body solver FastPM [89]. We uniformly
sample Ωm and σ8 from the prior Ωm ∈ [0.2, 0.5] and σ8 ∈ [0.5, 1.1], and fix the other cosmological
parameters to Planck 2015 [256]. Ωm and σ8 are the conditional variable y in this study. Each
simulation is run in a 512 h−1Mpc box with 10 time steps using 1283 particles. The matter
overdensity field at redshift 0 is measured on a 1283 mesh. Then we divide the box into four
slices (128 h−1Mpc thick) along z-axis, and project each slice along z-axis to get four 1282 matter
overdensity fields.

TRENF: We build a TRENF model consisting of 5 transformation blocks (Equation 7.6),
with 8 spline points in T̃ and Ψ in each block. The hyper network is chosen to be a multilayer
perceptron with 2 hidden layers and 512 neurons in each hidden layer. Since our input data 1 + δ
is non-negative, the data preprocessing is performed by first removing the [0,+∞) boundary with
an inverse softplus transform

invsoftplus(1 + δ) = log(e1+δ + ϵ− 1), (7.14)

followed by a normalization layer x−µ
σ

to scale the data to zero mean and unity variance. Here µ
and σ are both scalars that are independent of conditional variable y. The generative loss function
(Equation 7.9) is used to optimize the model in the first stage.

Generative samples in data space
Once we have trained the NF we can draw a vector z from a white noise distribution and map
it into the data space via x = f−1

y (z). Figure 7.1 shows the resulting maps sampled from the
trained TRENF, comparing them to the test data. The training and sampling are conditioned on
cosmological parameters Ωm and σ8. We see that the samples have a similar structure as the test
data, and reproduce the nonlinear evolution of structure with σ8 (structure becoming more nonlinear
with σ8), and voids becoming smaller with Ωm.

In Figure 7.2 we show various statistics run on test data and on TRENF samples. We compare
them in terms of the power spectrum, one-point distribution function at the pixel scale, and the
bispectrum. In all cases the agreement is nearly perfect, suggesting that TRENF samples are not
only visually correct but also reproduce the low and high order statistics.

TRENF takes about 0.4 second to generate 100 images on a Tesla V100 GPU. The simulations
we trained on are computationally cheap, as they are generated with fast Particle-Mesh simulations
FastPM with only 10 time steps, so the computing time is about 40 seconds on a CPU. One could also
train TRENF on output maps obtained from full N-body simulations or hydrodynamical simulations,
and the computational gain in sampling time of a simulation image would be more significant. This
shows the promise of TRENF as a fast and realistic generative model for cosmological data such as
galaxy images, weak lensing maps, Sunyaev-Zeldovich maps (thermal and kinetic), etc.
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Figure 7.2: The pixel probability distribution function (upper left), power spectrum (upper right),
and bispectrum (lower panels) of FastPM, TRENF samples, and FastPM data in TRENF latent
space. All the results are measured over 10000 samples. The shadowed regions in the power
spectrum plot and the error bars in the bispectrum plot indicate 16% and 84% of the distribution.
The samples of TRENF agree well with FastPM on these summary statistics. In TRENF latent
space FastPM data is consistent with Gaussian white noise.
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Figure 7.3: Test data (left panel), latent data transformed with correct cosmology (Ωm = 0.309,
σ8 = 0.816, middle panel), and latent data transformed with incorrect cosmology (Ωm = 0.4,
σ8 = 0.5, right panel).

Data representation in latent space
The training of TRENF achieves its goal of optimal likelihood if it maps the data into the target
distribution, for which we use a Gaussian white noise distribution. To test this we compare the test
data mapped into the latent space with the standard Gaussian distribution. In Figure 7.3 we show
the visualization of the latent data transformed with the correct conditional variable y and incorrect
y. We can see that when the correct y is used the latent space is visually indistinguishable from
Gaussian white noise. We show their one-point PDFs, power spectra and bispectra in Figure 7.2.
On all these summary statistics the latent data are consistent with the standard Gaussian. This is
very encouraging: if the latent data distribution is a perfect Gaussian white noise, then we have
achieved optimal NF, and the resulting p(x|y) contains all the information of the data x. In contrast,
when we use an incorrect y the map is no longer white Gaussian. For example, we see strange
patterns in the latent map at the position of a large void in the data space (Figure 7.3).

7.4 Results: likelihood and posterior analysis
From the perspective of optimal cosmological analysis, the most powerful component of NFs is their
ability to provide conditional density or likelihood p(x|y). If the likelihood is extracted optimally
then we can achieve optimal cosmological analysis. To establish the ability of TRENF to extract
the likelihood we turn first to a Gaussian Random Field (GRF) example, where the information
content of the data and the likelihood of the data are both known analytically.

Gaussian Random Fields
Similar to the matter overdensity map, we generate GRFs δ(r) in 512 h−1Mpc boxes with 1282

resolution. The halofit power spectrum [310] at redshift 0 is used to generate the data with
cosmological parameters Ωm and σ8 uniformly sampled from the same range Ωm ∈ [0.2, 0.5] and
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Figure 7.5: The comparison of the learned convolutional kernel T̃ (k) (top panel) and non-linearity
Ψy(x) (bottom panel) with the optimal solution (Equation 7.16 and 7.17) for GRFs.

σ8 ∈ [0.5, 1.1] 1. We build a one-layer TRENF model with 16 spline points in T̃ and 8 spline points
in Ψ. The architecture of the hyper network and the training process are the same as Section 7.3.

1For simplicity, we assume the numerical value of the 2D GRF power spectrum is equal to the 3D halofit matter
power spectrum of the same k amplitude, i.e., PGRF(k) = Phalofit(k)hMpc−1.
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We compare the learned likelihood from TRENF with the true analytical likelihood

logLG = −
∑
k

|δ̃(k)|2

2P̂y(k)
− 1282

2
log(2π)− 1

2

∑
k

log P̂y(k), (7.15)

where P̂y(k) = N2

L2 Py(k) is the covariance of the dimensionless δ̃(k), with L = 512h−1Mpc
denoting the box size and N = 128 denoting the mesh size. In Figure 7.4 we show the likelihood
comparison on test data with random cosmology. We also show the posterior distribution from
TRENF on test data and compare it with the posterior from the analytical likelihoods. The TRENF
likelihood and posterior agree very well with the true answer, suggesting that TRENF is able to
extract all the information from the GRFs.

In fact, the optimal solution of TRENF can be written down analytically for the GRFs:

T̃y(k) =
1

a
√
P̂y(k)

, (7.16)

Ψy(x) = ax, (7.17)

where a ̸= 0 is a free coefficient that represents the degeneracy between T̃y(k) and Ψy(x), and
which cancels out in Jacobian determinant. This allows us to explicitly check whether TRENF has
found the optimal solution. In Figure 7.5 we show the learned (aT̃y(k))

−2 and compare it with
the scaled power spectrum P̂y(k) =

N2

L2 Py(k) for different cosmologies, where the coefficient a is
measured by fitting a linear relation between x and Ψy(x). We also present the difference between
the learned Ψy(x) and the true solution, Ψy(x)/a − x: the two agree with each other to about
one part in a thousand across the entire range of x. These results demonstrate that the training of
TRENF converges to the correct solution (Equation 7.16 and 7.17).

Matter Overdensity Fields
We have shown that TRENF is able to learn the likelihood function accurately for GRFs. Now we
explore the more challenging and more realistic dataset, the matter overdensity field. The dataset
and the architecture of TRENF are the same as in Section 7.3. We optimize TRENF using the
two-stage training strategy as described in Section 7.2 to improve the accuracy of posteriors.

In Figure 7.6 we present the 68% and 95% confidence regions of the posterior distribution on test
data (we assume Planck 2015 cosmology parameters). We compare the posterior constraints from
TRENF with the standard power spectrum analysis. TRENF models the full likelihood function of
the data vector x without any dimension reduction, so it provides much tighter constraints than the
power spectrum, which only uses two-point function information. We measure the figure of merit,
defined as the inverse of the area of 68% confidence region, on 100 test data for both methods.
We obtain 995 for TRENF and 176 for power spectrum, which means that TRENF significantly
improves the posteriors relative to the power spectrum.

On 100 test data, there are 65 cases where the true cosmology is within the 68% confidence
region, and 95 cases the true cosmology is within the 95% region. These numbers are consistent
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Figure 7.6: The posteriors from TRENF (green contour) and power spectrum (red contour) on
uncurated test data. Figure of merit: 995 for TRENF, and 176 for power spectrum.
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Figure 7.7: Comparison of the posterior constraints between generative learning (red contour) and
discriminative learning (green contour) for the outlier cases in generative learning. Discriminative
learning improves the posterior and results in properly calibrated posteriors, while generative
learning is overconfident in the posteriors.

with the 68% and 95% expectation, suggesting that the posteriors from TRENF are properly
calibrated. Note that we need second-stage discriminative learning to achieve this. If we train
TRENF only with the generative loss, we find the model is overconfident and we get more than 5%
outliers, where the true cosmology is outside the 95% region, which is not consistent with the 5%
expectation. In Figure 7.7 we show some outlier cases from the generative learning, and we see
that discriminative learning (two stage learning) improves the posterior.

7.5 Modeling the Data With Mask
In this section we present a generalization of TRENF to model the effects that break the data
symmetry. As described in Section 7.2, our strategy is to first use an affine coupling layer to inpaint
the missing pixels, and then introduce position dependence to the non-linearity Ψ in Equation 7.6
to model these effects.
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Figure 7.8: A visualization of the simplified mask we considered in this work (left panel), and
the data after the affine coupling (inpainting) layer (right panel). In the left panel the blue regions
represent missing pixels, and the white rectangle region denotes the data passed to the model.

Dataset: We consider a simple example where we take the central 91×91 pixels of the 128×128
matter overdensity fields so that the boundaries are no longer periodic, and then remove the 6× 6
pixels at the upper right corner of the data to mimic the non-rectangular mask, and remove 4× 13
pixels in the center of the data to mimic the observational effects, such as foregrounds, cosmic ray
hits, detector failures, etc. We show a visualization of this mask in the left panel of Figure 7.8.
During training and inference, we sample Gaussian noise in the 6 × 6 and 4 × 13 missing pixels,
and the full 91 × 91 region is passed to the model for estimating the likelihood. Note that this
is only a proof-of-principle study, and the mask we considered is a simplification to the realistic
survey mask, but the methods we developed here should also apply to more realistic survey masks.

Model: Similar to Section 7.3, we first apply an inverse softplus transform and a normalization
transform on the observed pixels to remove the [0,∞) boundary and rescale. We then apply affine
coupling transforms (Equation 7.11) on the Gaussian noise of the two missing regions. After the
inpainting, we add 5 layers of convolutions and position-dependent non-linearities. Here we have
two hyper networks gT̃ and gΨ (Equation 7.12 and 7.13), and both of them, as well as the conditional
networks in affine coupling layers, are chosen to be multilayer perceptrons with 2 hidden layers and
512 neurons in each hidden layer. The other hyperparameters and training strategies are the same
as Section 7.4.

We first show a visualization of the transformed data after inpainting in the right panel of Figure
7.8. Note that here we do not explicitly train the affine coupling layer to accurately recover the
correct structures in the missing pixels. Instead, the goal of these layers is to inpaint structures
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Figure 7.9: The posterior distribution from TRENF on test data with mask. 50% of pixels are
removed to mimic the survey mask. The figure of merit is 507.
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that are statistically consistent with the observed data so that these missing pixels do not spoil the
posterior analysis. To verify this, we show the posterior distribution of test data in Figure 7.9. We
have verified that the uncertainty quantification is not miscalibrated: on 100 test data, there are 93
cases where the true cosmology is within the 95% region, compared to the expected number of 95.
If we assume that most of the information comes from the small scales, we expect that the amount
of information would roughly be proportional to the area of the survey. Here we have removed
about 50% of the area as compared to the original dataset, so the constraining power should also
be reduced by this amount. This is confirmed by our experiment: the figure of merit is now 507, as
compared to 995 of the original dataset. This suggests that the amount of information extracted by
TRENF is still close to optimal in the presence of the mask.

7.6 Beyond spherical kernels
As discussed at the end of Section 7.2, TRENF can be viewed as a CNN with the number of
channels c = 1. In this section we will discuss TRENF in the framework of Steerable CNNs [48,
349, 47], which provides a general theory for equivariant networks. A steerable CNN defines the
feature maps as steerable feature fields v : R2 → Rc. Under translation t and rotation r, a steerable
feature field v(x) is transformed to [π(tr)v](x), given by

[π(tr)v](x) = ρ(r) · v(r−1(x− t)), (7.18)

where ρ(r) is the type of the feature field and is a representation of the symmetry group. For
example, in TRENF we have c = 1 and the feature field is a scalar field, which corresponds to the
trivial representation ρ(r) = 1. In general steerable CNNs one can also have vector fields, where
ρ(r) = r is the standard representation and Equation 7.18 becomes the familiar transformation law
of vector fields. We refer the readers to [48] and [47] for more details about steerable CNNs.

It has been shown that the most general linear map between steerable feature fields with type
ρin and ρout is given by convolutions with kernel T (x) satisfying [349, 47]

T (rx) = ρout(r)T (x)ρin(r
−1). (7.19)

In normalizing flows the transformation is invertible, so the dimensionality of the feature fields
should stay the same between different layers and the representation ρin and ρout must all be one
dimensional. For O(2) group (rotation and reflection) the only one dimensional real representation
is the trivial representation ρ = 1 [348], so we have T (rx) = T (x) for any rotation r. Therefore
spherical kernel is the only allowed kernel in TRENF.

There are several motivations to go beyond spherical kernels. One is to account for the effects
of the grid, which breaks isotropy. Another is to approximate the O(2) symmetry with DN group
(discrete rotations by angles multiple of 2π

N
and reflection). With a sufficiently largeN , 2π

N
→ 0 and

its multiples can approximate any angles. DN group has several 1D real representations. We refer
the readers to Appendix F.2 and Table 12 of [348] for irreducible representations of DN group, as
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Figure 7.10: Left panel: the loss curve of TRENF withM = 0 (spherical kernel) andM = 2, N =
16 on validation set. Right panel: the amplitude ratio Ã2(k) / Ã0(k) of the convolution kernels in
different layers of TRENF with M = 2, N = 16. See equation 7.21 for the definition of kernels we
used in this experiment. TRENF with angular dependency M = 2 performs worse than TRENF
with spherical kernels, and the amplitude of non-isotropic terms is small compared to the spherical
symmetric term Ã0.

well as all possible convolutional kernels between different DN representations. For simplicity and
invertibility considerations, we explore convolution kernels of the following forms:

T (r, ϕ) = A0(r) +
M∑
t=1

At(r) cos(tNϕ), (7.20)

where A0(r) and At(r) are arbitrary radial functions. The above kernel ensures that the feature
fields are all scalar fields and are equivariant under transformations of DN group. In Fourier space,
the kernel can be written as

T̃ (k, θ) = Ã0(k) +
M∑
t=1

(−i)tN Ãt(k) cos(tNθ), (7.21)

where θ is the polar angle of the Fourier k mode, and Ãt(k) is given by the Bessel function JtN :

Ãt(k) =

∫
JtN(kr)At(r)rdr. (7.22)

Similar to Section 7.2, we directly parametrize Ãt(k) in Fourier space using cubic splines and they
will be learned from the data. We replace the spherical TRENF kernel with Equation 7.21 and apply
the model on the 2D matter overdensity fields as described in Section 7.3. We tested different N
andM choices (N = {8, 16, 32}, M={1,2,3}), and compare their performance with the model with
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spherical kernels. For TRENF with high order terms M > 0 we increase the width of the hyper
network from 512 to 1024 for better conditional modeling, and keep the other hyperparameters the
same. We find no improvements in terms of model loss (averaged negative data log-likelihood),
sample quality, and posterior figure of merit. In Figure 7.10 we show that TRENF with spherical
kernels converges to a better loss than TRENF with M = 2, N = 16. We also show that high
order term Ã2 is relatively unimportant compared to the spherical symmetric term Ã0. On small
scales Ã2/Ã0 deviates from 0, and this is probably because of imperfect optimization. Ã2/Ã0 = 0
is a better solution (left panel of Figure 7.10), but the model doesn’t find it due to nonconvex
optimization. This suggests that for the datasets we considered in this work, introducing extra
angular dependence into the convolution kernel is not helpful and the spherical kernel is enough.

Another way to combine steerable CNNs with NFs is to adopt affine coupling transforms [71]
and use steerable CNN for the coupling network. The coupling network does not need to be
invertible and one can use more complex kernels with multidimensional steerable feature fields.
However, affine coupling transforms require splitting the data into two parts, and such splitting is
not generally equivariant. This approach is beyond the TRENF architecture, and we will leave it
for future studies.

7.7 Discussion
The main goal of this paper is to develop a Normalizing Flow with built in translation and rotation
symmetry (TRENF), for the purpose of generating new samples and data likelihood analysis in
cosmology. We argue that cosmological fields are high dimensional distributions which cannot
be approximated by low dimensional manifolds, so low-dimensional-manifold models such as
GANs or VAEs are not appropriate for this application. In addition, NFs give direct access to the
data likelihood, which is of crucial significance for the data analysis. Because NFs preserve the
dimensionality of the data, they usually do not scale well to high dimensions compared to other
generative models such as GANs or VAEs, but here we argue that taking advantage of translation
and rotation symmetries makes this task significantly easier.

We argue that TRENF enables a clear path towards optimal cosmological analysis of the data,
with a simple and computationally tractable approach. Specifically, we have shown that TRENF
with only five layers saturates the information content that can be extracted from this architecture
when applied to the 2D projections of cosmological N-body simulations, in the sense that adding
more layers and using more complex kernels does not further improve the results. While proving
optimality of the transport map from one distribution to another is a notoriously difficult problem
for high dimensional distributions, several lines of argument suggest our approach enables near
optimal analysis for the application developed in this paper.

First, when the method is applied to the Gaussian Random Fields with a known analytic solution,
it extracts all the information correctly and optimally. Second, the inverse map from the data to the
latent space is statistically indistinguishable from the target distribution of Gaussian white noise
when we use correct cosmological parameters, while when the parameters are incorrect the map
deviates from its target. This means that the non-Gaussian structures such as voids, filaments,
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and halos have all been mapped into Gaussian white noise, and all of their information has been
transferred via the Jacobian of the transformation into p(x|y). TRENF extracts all the information,
including from the two-point correlations, one point distribution, and bispectrum, which can be
observed from the fact that these statistics become non-informative once the data are mapped into
the latent space. The main power of TRENF is that it is able not only to extract information from
so many different statistics, but do it in a way that can be optimal, and for which the output is the
data likelihood itself.

TRENF can easily deal with noise in the data if noise is independent of position, as it preserves
translation and rotation symmetry, and we can simply train TRENF on data with noise. A more
difficult problem is that of cosmological data likelihood analysis in the presence of the survey mask.
The mask breaks the translation and rotation symmetries, and is a notoriously difficult problem
even for Gaussian fields: in the absence of the mask, the problem can be solved with Fast Fourier
Transforms with O(N lnN) for flat geometry or O(N3/2) for spherical geometry, while with
the mask it requires a linear algebra solution that scales as O(N3), which becomes prohibitively
expensive for large surveys. We introduce position dependence to the pointwise nonlinearity at each
layer as the non-equivariant component in our model. We show that this approach is fast to train
and to evaluate the likelihood. The constraining power (figure of merit) is reduced by the fraction of
the area of the mask, consistent with our expectations if we assume most of the information comes
from the small scales. This suggests that our approach is still optimal when the survey mask is
included. Note that this method can also model other processes that break translation and rotation
symmetry, for example, position-dependent noise, seeing, foregrounds, etc.

Potential applications and future generalizations of TRENF are numerous, here we list a few
examples:

• TRENF enables the possibility of fast training and generation of new cosmological data
outputs from a few existing simulations. This has numerous applications such as Lyman
alpha forest, 21cm, and other intensity maps, weak lensing maps, projected galaxy clustering,
X-ray and thermal SZ maps, etc. We expect that TRENF can learn efficiently with fewer
training input maps (less data complexity), as compared to previous generative approaches, a
consequence of translation and rotation symmetry built into the model. TRENF should also
be generalized to output multiple maps of different tracers on the same area of the sky.

• TRENF training of latent space does not directly impose a spatial structure, although in
practice we observe a strong correlation between the latent space and data space. It may be
possible to make that more explicit, by enforcing the latent space to be the initial conditions
of a simulation. In addition, one can also train TRENF as a function of time. In this case,
TRENF would become an Eulerian N-body or hydro simulation. TRENF can also be used
to learn the velocity field jointly with density, to describe the full phase space information.

• TRENF has the ability to perform nearly optimal posterior inference analysis of cosmological
parameters via the data likelihood, given the TRENF’s ability to evaluate p(x|y). We
emphasize that TRENF learns the data likelihood directly, and there is no need to learn the
probability distribution of the summary statistics. One can view TRENF as a way to optimally
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combine all of the summary statistics proposed in the cosmology literature, such as two-point,
three-point, and higher order correlations, one-point distribution of various smoothing scales,
void profile and void-void correlations, void and halo mass functions, topological statistics,
etc. To the extent that the data have been mapped to Gaussian white noise, all of these
summary statistics have been used optimally, by extracting their contribution to the Jacobian
in p(x|y).

• In addition to cosmological parameters, one can also train TRENF on astrophysical parame-
ters, such as baryonic processes. These can be incorporated into the full likelihood analysis,
by training TRENF on hydrodynamic simulations [336] or baryon maps generated by fast
machine learning [54, 53], or semi-analytical approaches [11]. Once we have the likelihood
of the data as a function of these parameters we can marginalize over these effects in the
posterior analysis.

• TRENF can be generalized to 3D galaxy redshift space data, where observed redshift is the
sum of position and velocity of the galaxy, and we no longer have exact rotation symmetry.
Instead, we must describe the data in terms of the line of sight and perpendicular to the line
of sight coordinates or their harmonic transforms, similar to our 2D expansion in equation
7.21.

• TRENF can be used to search for primordial non-Gaussianity in the latent space. Because the
non-Gaussianity from the nonlinear evolution of structure is eliminated in the latent space, it
becomes easier to search for other non-Gaussian effects, such as primordial non-Gaussianity.

If the promise of TRENF can be realized, its payoff will be the optimal extraction of cosmological
information from the cosmology data. The remaining question, that applies to all cosmology LSS
analyses, not just ours, is one of robustness: how do we know which information is reliable, and
which is not, because it is corrupted by effects that are not included in the model? One way to
address this is by separation of scales, with very small scale information likely being hopelessly
corrupted by many astrophysical nuisance effects, and very large scale information likely being
very robust. This argues for a scale-dependent version of TRENF, where we can verify robustness
and optimality as a function of scale so that we can decide what scales to include and what to
exclude. In the future, we plan to develop TRENF along these lines.
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Chapter 8

Multiscale Flow for Robust and Optimal
Cosmological Analysis

The contents of this chapter were originally published in [55],

Multiscale Flow for Robust and Optimal Cosmological Analysis
Dai B., Seljak U.(arXiv:2306.04689) PNAS 121.9 (2024): e2309624121

We propose Multiscale Flow, a generative Normalizing Flow that creates samples and models
the field-level likelihood of two-dimensional cosmological data such as weak lensing. Multiscale
Flow uses hierarchical decomposition of cosmological fields via a wavelet basis, and then models
different wavelet components separately as Normalizing Flows. The log-likelihood of the original
cosmological field can be recovered by summing over the log-likelihood of each wavelet term. This
decomposition allows us to separate the information from different scales and identify distribution
shifts in the data such as unknown scale-dependent systematics. The resulting likelihood analysis
can not only identify these types of systematics, but can also be made optimal, in the sense that
the Multiscale Flow can learn the full likelihood at the field without any dimensionality reduction.
We apply Multiscale Flow to weak lensing mock datasets for cosmological inference, and show
that it significantly outperforms traditional summary statistics such as power spectrum and peak
counts, as well as novel Machine Learning based summary statistics such as scattering transform
and convolutional neural networks. We further show that Multiscale Flow is able to identify
distribution shifts not in the training data such as baryonic effects. Finally, we demonstrate that
Multiscale Flow can be used to generate realistic samples of weak lensing data.

8.1 Introduction
Numerous upcoming cosmological weak lensing surveys such as Euclid, the Vera Rubin Observa-
tory (Rubin), or Nancy Grace Roman Space Telescope (Roman) hold the promise of revolutionizing
our understanding of the universe, its origins, content, and its future evolution. How to efficiently
extract the maximum amount of cosmological information from these data is a long-standing ques-

https://sci.esa.int/web/Euclid
https://lsst.org
https://lsst.org
https://roman.gsfc.nasa.gov/
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tion in large-scale structure (LSS) analysis. Due to the high-order correlations induced by nonlinear
gravitational effects, the late-time cosmological fields are highly non-Gaussian with no tractable
likelihood functions. Extracting information from these non-Gaussian fields has been mainly at-
tempted through a limited set of summary statistics, with the most popular ones being the N-point
correlation functions [e.g., 245, 246, 286, 290, 98]. However, while the two-point function is a
natural choice even in the nonlinear regime, higher-order correlation functions are significantly
more difficult to use due to the large number of statistical coefficients, large variance and high
sensitivity to outliers [158]. Numerous other statistics have been proposed, including correlation
functions on transformed or marked fields [234, 352], peak counts [144, 176], void statistics [353,
255], Minkowski functionals [220], scattering transform coefficients [44, 5], statistics learned by
convolutional neural networks (CNNs) and other NNs [93, 41, 202, 112, 149], and many others.
These analyses have the same underlying issues of summary statistics being ad-hoc and potentially
sub-optimal. They require building effective likelihood functions from summary statistics using
multi-variate Gaussian or Simulation-Based Inference (SBI) methods [51], which can be costly
when the number of summaries is large. An alternative approach is using the reconstruction of
initial conditions and estimating the field-level likelihood function by marginalizing over all possi-
ble initial conditions using a variety of methods such as sampling or optimization [147, 163, 346,
287, 259]. These methods are expensive because they perform reconstructions or sampling of 3-
dimensional fields. They are also not well matched to the problem when the data is 2-dimensional,
such as weak lensing.

Recently, Dai & Seljak [56] proposed directly learning the field-level data likelihood with
Normalizing Flows (NFs). This approach does not require compressing the data into a low-
dimensional summary statistic, and instead tries to extract all the information in the data from the
field-level likelihood. Unlike the 3-d reconstructions, this approach does not require evaluating the
high dimensional integral, and computes the likelihood function in a single forward pass of the
flow network. Unlike SBI, it uses field level likelihood instead of summary statistics, performing
Simulation Based Likelihood Inference (SBLI). To reduce the degrees of freedom when modeling
the high-dimensional likelihood of the data they enforce translation and rotation symmetry into the
NF. The resulting Translation and Rotation Equivariant Normalizing Flow (TRENF) agrees well
with the analytical solution on Gaussian Random Fields, and it leads to significant improvement
over the standard power spectrum analysis on nonlinear matter fields from N-body simulations [56].
Similarly, NFs with different architectures have been applied to neutral Hydrogen (HI) maps for
fast sample generation and cosmological inference [121, 97].

Despite the differences in these LSS analysis methods, they all face the same challenge of
robustness: how do we know which information is reliable, and which is not, if it is corrupted
by effects that are ignored or inaccurately modeled? How do we detect distribution shifts in the
actual data that were not in the training data? For example, most of these methods require accurate
predictions from simulations, yet different hydrodynamical simulations and baryon models are
not quite consistent with each other [83, 138]. Villaescusa-Navarro et al. [333] train CNNs to
predict cosmological parameters from gas temperature maps. They find that their model, trained
using IllustrisTNG simulations [253], fails dramatically when applied to gas maps produced by
SIMBA simulations [61], due to the different subgrid models used in these two simulations. While
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marginalizing over the baryon parameters, subgrid models and various systematic effects are helpful
and necessary, there is no guarantee that current baryon and systematic models span all potential
realistic scenarios.

One way to mitigate the impact of such modeling uncertainties is by separation of scales, with
very small-scale information likely being contaminated by many astrophysical nuisance effects and
observation systematics, and large-scale information likely being more robust. This strategy is
widely used in current cosmological survey analyses of power spectrum or correlation function,
for example by directly removing the small-scale information with scale cuts [e.g., 177, 313, 178],
or by performing consistency checks between different scales [76]. The ability to perform a scale-
dependent analysis is viewed as a distinct advantage of power spectrum or correlation function
analysis when compared to other statistics.

In this paper, we apply the scale separation idea to the field-level likelihood modeling with NFs.
Specifically, we use a set of scale-separated basis functions to represent the pixelized data, and
decompose the data likelihood function into the contributions from different scales. Performing
consistency checks between different scales enables us to decide what scale to include and what to
exclude. While the Fourier basis is theoretically sound and widely used in such analysis, its kernels
are not local in pixel space and require additional procedures in the presence of survey masks
[56]. In this work we use a wavelet basis, which is localized in both real space and Fourier space,
allowing us to easily handle the survey mask and to separate the signals from different physical
scales. Such decomposition is also known as Multiresolution Analysis (MRA) in image processing.
Furthermore, our hierarchical analysis also combines likelihood information from different scales
to achieve optimality in the limit of sufficient training data.

8.2 Multiresolution Analysis with Fast Wavelet Transform
In this section we briefly introduce Multiresolution Analysis (MRA), which hierarchically de-
composes the data into components at different scales, allowing us to separate the information
from different scales and study them individually. This is particularly beneficial for cosmological
analysis, since on large scales the universe can be modeled with simple physics and the data anal-
ysis is robust, while on small scales modeling the structure formation is harder due to nonlinear
gravitational and astrophysical effects.

MRA is usually performed with Fast Wavelet Transform (FWT) [204]. While similar in concept
to the Fourier basis, wavelet bases are constructed to be localized spatially, which is beneficial when
analyzing maps with irregular footprints. Wavelet transform has been widely used in astronomical
image processing [304] and statistical description of cosmological fields [44, 5]. In this work, we
focus on decimated wavelet transform, which preserves the dimensionality of the data and can be
viewed as a special kind of NF transforms.

The basic idea of FWT is to recursively apply low-pass filters (also called scaling functions)
and high-pass filters (also called wavelet functions) to the data. In each iteration, the data x2n with
resolution 2n is decomposed into a low-resolution approximation x2n−1 , and detail coefficients of
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the remaining signal xd2n−1:

x2n−1 = (ϕ ∗ x2n) ↓ 2 (8.1)
xd2n−1 = (ψ ∗ x2n) ↓ 2 (8.2)

where ϕ is the low pass filter (scaling function), ψ is the high pass filter (wavelet function), ∗
is the convolution operation, and ↓ 2 is the operator to downsample the data by a factor of 2:
(x ↓ 2)i,j = x2i,2j . This is equivalent to a convolution with stride 2. For a 2D map x2n , we have
three high pass filters to match the dimensionality, and the dimension of xd2n−1 is 3× 2n−1 × 2n−1.
Then the low-resolution data x2n−1 is passed to the next iteration and treated as the input for further
decomposition. Note that this decomposition is bijective and in each iteration the input data can be
reconstructed with the inverse wavelet transform.

In this work, we use Haar wavelet [113], the simplest and the most spatially localized wavelet
function. Its scaling function and wavelet function can be represented by the following 2×2 kernel
in real space:

ϕ =
1

4

[
1 1
1 1

]
, ψ1 =

1

2

[
1 1
−1 −1

]
, (8.3)

ψ2 =
1

2

[
1 −1
1 −1

]
, ψ3 =

[
1 −1
−1 1

]
, (8.4)

where we have scaled the scaling function such that x2n−1 is exactly the low-resolution version of
x2n by taking the average of every 2 × 2 patch. The localized kernel of the Haar wavelet allows
us to handle the survey mask easily, but our method can be generalized to other more complicated
wavelet transforms, e.g., Daubechies wavelets [59].

With MRA, the log-likelihood of a map x2n with resolution 2n can be rewritten into an auto-
regressive form as

log p(x2n|y) = log p(x2n−1 , xd2n−1|y)
= log p(x2n−1|y) + log p(xd2n−1|x2n−1 , y)

= log p(x2n−2|y) + log p(xd2n−2|x2n−2 , y)

+ log p(xd2n−1|x2n−1 , y)

= · · ·
= log p(x2k |y) +

∑n
m=k log p(x

d
2m|x2m , y), (8.5)

where 2k is the scale where we stops the decomposition, and k can be any integer between 0 and n.
In practice, we can choose k such that it corresponds to the scale that either has extracted all the
information from the data, or is large enough not to be affected by unknown small-scale systematic
effects.
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8.3 Multiscale Flow

Normalizing Flows
Flow-based models provide a powerful framework for density estimation [71, 239] and sampling
[161]. These models map the data x to latent variables z through a sequence of invertible trans-
formations f = f1 ◦ f2 ◦ ... ◦ fn, such that z = f(x) and z is mapped to a base distribution π(z).
The base distribution π(z) is normally chosen to be a Gaussian with zero mean and unit variance,
π(z) = N (0, I). The probability density of data x can be evaluated using the change of variables
formula:

p(x) = π(f(x))
∣∣∣det(∂f(x)

∂x

)∣∣∣
= π(f(x))

∏n
l=1

∣∣∣det(∂fl(x)
∂x

)∣∣∣ . (8.6)

To sample from p(x), one first samples latent variable z from π(z), and then transform variable z
to x through x = f−1(z). The transformation f is usually parametrized with neural networks fϕ,
and the parameters ϕ are normally estimated using Maximum Likelihood Estimation (MLE):

ϕ∗ = argmax
ϕ

1

N

N∑
i=1

log pϕ(xi), (8.7)

where the data likelihood p(x) is given by Equation 8.6. The MLE solution minimizes the Kullback-
Leibler (KL) divergence between the model distribution pϕ(x) and the true data distribution. The
parameterization of f must satisfy the requirements that the Jacobian determinant det(∂fl(x)

∂x
) is

easy to compute for evaluating the density, and the transformation fl is easy to invert for efficient
sampling.

In cosmological analysis we are interested in the likelihood function p(x|y), which can be
estimated using conditional Normalizing Flows (NFs). In conditional NFs the flow transformation
is dependent on the conditional parameters y, i.e., f = fϕ,y. We discuss below how we parametrize
and train the conditional flow fϕ,y.

Multiscale Flow
With the likelihood decomposition Equation 8.5, our task now is to build NFs to model different
likelihood terms separately. For simplicity, we will drop the subscript 2m in this section, and simply
refer to the conditional likelihood term log p(xd2m|x2m , y) as log p(xd|x, y). The model described
here is similar to Wavelet Flow [359], even though they are developed independently. Following
Glow [161], our flow transformation f(x|y) consists of multiple block flows, where each block
consists of an actnorm, an invertible 1× 1 convolution, and an affine coupling layer (Fig. 8.1).
Actnorm: The actnorm layer applies an affine transformation per channel, similar to batch normal-
ization [140], but its scale and bias parameters are initialized such that the output has zero mean and
unit variance per channel given an initial minibatch of data, and then these parameters are treated
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Figure 8.1: Illustration of Multiscale Flow model. The input mapx2n with resolution 2n is iteratively
processed with a set of low pass filters (ϕ), high pass filters (ψ1, ψ2, ψ3) and downsampling (↓ 2),
resulting in a series of detailed maps xd2n−1 , xd2n−2 , · · · , xd2k and an approximation map x2k . These
maps are then transformed by several NF blocks to Gaussian latent maps zd2n−1 , zd2n−2 , · · · , zd2k , z2k ,
where each NF block is composed of an actnorm layer, an invertible 1×1 convolution, and an affine
coupling layer (Equation 8.8, 8.9), as shown on the top left of this figure. The NF transformation
is conditioned on the conditional variable y and approximation maps, which are represented by
dashed arrows in the illustration. The log-likelihood of the input map x2n can be calculated with
Equation 8.5.

as regular trainable parameters.
Invertible 1× 1 convolution: The invertible 1× 1 convolution is a learnable C×C matrix (where
C is the number of channels) that linearly mixes different channels.
Affine coupling: The affine coupling layer firstly splits the data xd to xd1 and xd2 based on the
channels, and then applies pixel-wise affine transformation to xd2, with scale and bias given by xd1:

(log s, t) = CNN(xd1, x, y) (8.8)
zd2 = exp(log s) · xd2 + t, (8.9)

where log s and t are scale and bias coefficient maps with the same dimensionality as xd2, and
CNN is a learned function parametrized by a convolutional neural network. The dependence of
conditional parameter y is modeled by introducing gating into CNN, i.e., each channel of CNN is
scaled by a value between 0 and 1 which is determined by parameter y. This gating allows the
conditional variable y to determine the relative weights between different features (channels). The
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output of the affine coupling layer is the concatenation of xd1 and zd2. In other words, the affine
coupling layer applies an affine transformation to xd2 and leaves xd1 unchanged. In this paper, we
consider 2D maps, so at each scale xd contains 3 maps (channels). We set the first channel to be
xd1, and the other two channels to be xd2.

To summarize, a Multiscale Flow consists of multiple NFs, and each NF models one term of the
likelihood decomposition (Equation 8.5) separately. The large-scale term log p(x2k |y) is modeled
by q flow blocks, and each other term log p(xd2m|x2m , y) is modeled with p flow blocks, where p
and q are hyperparameters in the model. Note that all of these NFs can be trained independently in
parallel to speed up the training process.

Training
Following Dai & Seljak [56], we adopt a two-stage training strategy in this work: we first train the
NF with the generative loss, which minimizes the negative log-likelihood and is the standard loss
function of NF (Equation 8.7 with conditional variable y):

Lg = −
1

N

N∑
i=1

log p(xi|yi). (8.10)

The generative loss is suitable for sampling and density estimation, but may lead to a biased or
overconfident posterior[56]. To solve this issue they propose further optimizing the posteriors by
training the model with the discriminative loss,

Ld =− 1

N

N∑
i=1

log p(yi|xi)

=− 1

N

N∑
i=1

[log p(xi|yi) + log p(yi)− log p(xi)] , (8.11)

where the evidence p(x) is estimated using Importance Sampling (IS):
log p(x) ≈ log 1

M

∑M
yj∼q(y|x)

p(x|yj)p(yj)
q(yj |x) , and q(y|x) is chosen to be a Gaussian distribution with

learned mean and fixed covariance matrix. However, we find that IS becomes inefficient when the
number of parameters y gets large and when the posterior becomes non-Gaussian. In this work, we
notice that

∇ϕLd =− 1

N

N∑
i=1

(
∇ϕ log pϕ(xi|yi)−

E
yj∼pϕ(y|xi)

∇ϕ log pϕ(xi|yj)
)
, (8.12)

where we have used a trick that is commonly seen in the training of energy-based models. Its
derivation can be found in [296]. In the training, we replace the expectation with a single Monte
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Figure 8.2: Percentage of test data that fall outside 95% confidence region for different λ values. A
perfectly calibrated posterior has 5% outliers (data that fall outside 95% confidence region). The
shaded region shows the measurement uncertainty due to the finite test data. This measurement is
made on weak lensing maps with 642 resolution and ng = 30arcmin−2 galaxy density.

Carlo sample of the posterior p(y|xi), and we obtain these samples by running a Hamiltonian
Monte Carlo (HMC) sampler [77]. These samples are saved, and then updated with a few HMC
steps every epoch of training [319]. An advantage of this gradient formula compared to naively
evaluating Eq 8.11 is that instead of evaluating the evidence term log p(x) = log

∫
p(x|y)p(y)dy,

we now evaluate
∫
log p(x|y)p(y|x)dy. The estimation of the former usually comes with a large

variance, while the latter can be estimated with only a few HMC samples.
After the generative training, we add this loss to the generative loss with a hyperparameter λ,

L =
1

1 + wλ
Lg +

wλ

1 + wλ
Ld, (8.13)

wherew = dx
dy

is a prefactor to balance the dimension difference between the data and the parameter
space, and we divide the loss by 1 + wλ to normalize the weights. In Figure 8.2 we show the
percentage of outliers in our posterior analysis with different λ values. For very small λ the posterior
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Figure 8.3: Multiscale Flow posterior comparison of different scales on 20 test data with galaxy
number density ng = 30arcmin−2.

is too narrow (underestimated errors) and the loss is dominated by the first loss term (generative
loss). For λ > 0.1 the posterior is well calibrated due to the second term L̃d. In this paper, we use
λ = 1 to calibrate the posterior.

8.4 Results

Cosmological constraints from noisy weak lensing maps
We apply Multiscale Flow to 3.5 × 3.5deg2 mock weak lensing convergence maps [270] for
field-level inference. We decompose the 5122 resolution map to four scales, with likelihood
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Table 8.1: Comparison of the constraining power between different methods.

Method ng = 10arcmin−2 ng = 30arcmin−2 ng = 100arcmin−2

Multiscale Flow p(x512|y) 89 248 740
Multiscale Flow p(x256|y) 82 226 631
Multiscale Flow p(x128|y) 76 191 472
Multiscale Flow p(x64|y) 62 130 298

power spectrum 30 (30) 52 (51) 81 (79)
peak count (40) (85) (137)

CNN (44) (121) (292)
scattering transforms0 + s1 + s2 (≲ 50) (≲ 140) (≲ 329)

1. Unless specified with Multiscale Flow, the analysis of other approaches are performed on maps with resolution
5122.

2. The numbers in parenthesis are estimated using maps with 1 arcmin Gaussian smoothing. We expect this
smoothing to have little effect on constraining power estimation, because the small-scale modes are dominated
by shape noise. This is also explicitly verified in the case of power spectrum, where we show FoM with and
without smoothing. We have also verified that CNN produces comparable results with and without smoothing.

3. The FoM of the scattering transform is estimated using the Fisher matrix, which is an upper limit of the true FoM
according to the Cramér-Rao inequality. It has been shown that Fisher forecast could potentially overestimate
the 1D parameter constraints by a factor of 2, due to the non-Gaussian distribution of the statistics. [240].

decomposition

log p(x512|y) = log p(x64|y) + log p(xd64|x64, y) +
log p(xd128|x128, y) + log p(xd256|x256, y). (8.14)

The posterior comparison of different scales on 20 test maps with galaxy number density ng =
30arcmin−2 is shown in Figure 8.3. The posterior constraints of all scales are consistent with
the true cosmological parameters, which are shown as black lines. The constraining power of
Multiscale Flow of different galaxy shape noise levels is shown in Table 8.1. We list the figure
of merit (defined as the reciprocal of the 1σ confidence area on the (Ωm, σ8) plane) of maps
with different resolutions, and compare them with summary statistics power spectrum, peak count,
scattering transform [44], and statistics learned by CNNs [270]. Multiscale Flow achieves the
best performance among all methods, outperforming power spectrum by factors of 3, 5 and 9 on
galaxy densities ng = 10, 30, 100arcmin−2, respectively. Multiscale Flow also achieves two to
three higher constraining power when compared to peak counts, CNN, and scattering transform.

Impact of baryons
Next, we apply Multiscale Flow to mock weak lensing maps with baryonic physics included [198].
Similar to the previous experiment, these maps also have a resolution of 5122, and we adopt the
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Figure 8.4: Comparison of posterior distributions between different scales of Multiscale Flow and
power spectrum on a 3.5× 3.5deg2 convergence map with ng = 20arcmin−2.

same likelihood decomposition as Equation 8.14. We have 6 physical parameters in total, i.e.,
cosmological parameters Ωm and σ8, and 4 baryon parameters [11]. The posterior distributions of
Multiscale Flow and power spectrum of a test data with ng = 20arcmin−2 are shown in Figure 8.4.
In Table 8.2 we compare the constraining power of Multiscale Flow, power spectrum, and CNN
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[198] on (Ωm, σ8) plane. With the presence of baryon physics, Multiscale Flow has 2.5− 4 times
higher constraining power on cosmological parameters when compared to the power spectrum. It
also outperforms CNN by a factor of 2.

Unfortunately, due to the small area of the lensing map, all these methods cannot constrain
baryon parameters very well (see also Figure 5 of Lu et al. [198] for CNN constraints), and the
posterior is dominated by the prior bounds, especially in the cases of high shape noise. Therefore,
marginalizing the baryon parameters has a small impact on the Figure of Merit. With smaller shape
noise and a more powerful model, the posterior becomes more dominated by likelihood rather
than the prior, and the degradation of FoM when marginalizing over the baryon parameters gets
larger. This explains why the degradation of baryon marginalization is larger for Multiscale Flow
compared to the power spectrum, and why the degradation is larger in high galaxy number density
cases. However, it is important to recognize that with better statistical power, and simpler baryonic
models, we expect field level inference to be able to break the degeneracies between baryonic and
cosmological parameters.

We apply Multiscale Flow to test data with fiducial parameters, and in Table 8.3 we report
the percentage of test data with true cosmological parameters to fall in 68% and 95% confidence
regions. In most cases the percentages are larger than the 68% and 95% expectation, suggesting
that our posterior constraint is conservative.

Identifying distribution shifts
Identifying distribution shifts from unknown effects that are present in the data, but not in the
training simulations, is one of the great challenges of modern Machine Learning. Here we propose
two different methods to identify such shifts. In the first approach, we evaluate the likelihood value
of test data at MAP log p(x|yMAP) and compare it with the distribution of training data. If it is
smaller than the typical likelihood values of training data, it is likely not in the typical set of training
distribution. In the second approach, we use consistency of information as a function of scale to
identify such shifts. Specifically, we evaluate

∆ log p(xm|y) = log p(xm|yMAP)− log p(xm|yMAP,m), (8.15)

where xm is the data of a specific scale, yMAP,m = argmaxy log p(y|xm) is the MAP of this scale,
and yMAP is the MAP of all the scales. If there are scale-dependent systematic effects that bias the
posterior in different ways, we expect yMAP and yMAP,m to be quite different, and ∆ log p(xm|y)
should be smaller compared to those of training data.

As a simple example, we train the Multiscale Flow with dark-matter-only convergence maps
[270], and apply the model to convergence maps with baryon physics included [198]. We show
the posterior distributions from different scales in the upper left panel of Figure 8.5. The baryon
physics modifies the matter distribution on small scales and biases the posterior constraints from
small scales. In this case, naively combining all of the scales leads to a posterior constraint
that is 2σ biased (dark green contour). The inconsistency of posterior between different scales
suggests a presence of unknown systematics (baryon physics) that is not modeled in the training



CHAPTER 8. MULTISCALE FLOW FOR ROBUST AND OPTIMAL COSMOLOGICAL
ANALYSIS 152

0.3 0.4 0.5
Ωm

0.7

0.8

0.9

1.0

1.1

S 8

0.8 1.0
S8

logp(x64|y)
logp(xd128|y, x64)
logp(xd256|y, x128)
logp(xd512|y, x256)
Total logp(x512|y)

0.3 0.4 0.5
Ωm

0.7

0.8

0.9

1.0

1.1

S 8

0.8 1.0
S8

logp(x64|y)
logp(xd128|y, x64)
logp(xd256|y, x128)
logp(xd512|y, x256)
Total logp(x512|y)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

logp(x64|y)
logp(xd128|x128, y)
logp(xd256|x256, y)
logp(xd512|x512, y)
small scales

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Δ logp(x64|y)
Δ logp(xd128|x128, y)
Δ logp(xd256|x256, y)
Δ logp(xd512|x512, y)
combined

Figure 8.5: Top panel: scale-dependent posterior analysis of a baryon-corrected convergence map
using Multiscale Flow trained on dark-matter-only maps (left), and Multiscale Flow trained on
BCM maps (right). Bottom panel: ROC curve of identifying distribution shift with log p (left) and
∆ log p (right). The ”small scales” in the lower left panel represent combining the three small scale
terms. In these experiments, we consider 30arcmin−2 galaxy shape noise.
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Figure 8.6: Illustration of Multiscale Flow sample generation (the reverse of Figure 8.1). The
sample of the lowest resolution is first generated, and then small-scale information is gradually
added. This process can also be viewed as super-resolution.

data. If we remove the small-scale information (because we believe the large scales are less likely
to be affected by systematics), we can recover an unbiased constraint of cosmological parameters
(orange contour). As a comparison, in the upper right panel, we show the posteriors from Multiscale
Flow trained using maps with baryon physics. There is no distribution shift in this case and the
information from the different scales is consistent.

In the bottom panel of Figure 8.5, we show the ROC curve of identifying this distribution
shift with log p and ∆ log p. As expected, the likelihood of large-scale term log p(x64|y) cannot
tell the difference between with and without baryon physics, while the likelihood of small-scale
terms can be used for detecting the shifts. By combining all the small-scale terms, we get the best
performance with AUROC of 0.84. We also find that ∆ log p work equally well in this task. In
this case the large-scale term ∆ log p(x64|y) achieves the best performance with AUROC of 0.80,
because the small-scale constraints bias yMAP away from yMAP,64. The two methods are essentially
independent, and combining them further improves OoD detection. These maps have a small
area (3.5 × 3.5deg2), and the 2048 test data used in this experiment span a wide range of baryon
parameters, of which many are likely indistinguishable from the no baryons given the sampling
variance between the maps. We expect our OoD detection methods will work even better for sky
surveys with larger areas and for models where baryonic effects are more significant.

Sample generation and super-resolution
We show an example of sample generation with Multiscale Flow in Figure 8.6. The process can
also be viewed as iterative super-resolution of the low-resolution samples. In Figure 8.7 we show
that Multiscale Flow samples and test data agree well in terms of the power spectrum and pixel
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Figure 8.7: Comparison of the power spectrum (left) and pixel probability distribution function
(right) between simulations and Multiscale Flow samples at fiducial cosmology.

probability distribution function. This demonstrates that Multiscale Flow samples can be used in
lieu of expensive N-body simulations and ray tracing as a fast generator of mock data.

Comparison with other machine learning models

Comparison with discriminative models
So far there are lots of works using machine learning models to extract cosmological information
at the field level. Most of these works either train models to directly learn the posterior constraints
[333, 339], or build models to perform data compression x→ s for cosmological inference, where
the summary statistics s can be a point estimate of the cosmological parameter [93, 92, 112, 270,
198, 197], or simply a data vector that contains rich information about cosmological parameter y
[202, 94]. These models are generally referred to as discriminative models.

Generative models, on the other hand, learn the data likelihood function p(x|y), and then
calculate the posterior distribution using Bayes rule. It has been suggested that while discriminative
models have less asymptotic error, generative models have less sample complexity [235, 358, 366].
In other words, there can be two distinct regimes of performance as the training set size is increased.
When the training size is small, the generative model achieves its asymptotic error much more
quickly as data increases and can outperform the discriminative model, because the latter is more
likely to overfit and requires more training data to converge.

For the weak lensing dataset considered in this work, the training set size is relatively small
(2.9 × 104 for maps without baryonic physics, and 7.7 × 104 for maps with baryonic physics)
compared to the dimensionality d = 5122 ≈ 2.6 × 105. This explains why Multiscale Flow,
which learns the data likelihood function, outperforms CNN in Table 8.1 and 8.2. This explanation
is further supported by the observation that Multiscale Flow never overfits when trained with
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generative loss, and there is only slight overfitting when trained using hybrid loss with a large λ,
which can be easily controlled with early stopping. The CNN training, on the other hand, overfits
more easily due to its high sample complexity and requires more regularization techniques. In the
future, we plan to investigate this topic more thoroughly and perform a detailed comparison of the
two approaches with varying training sizes.

The low asymptotic error of discriminative models and low sample complexity of generative
models can be understood as a bias-variance trade-off. To achieve the optimal balance of the trade-
off, several works have proposed building hybrid models [263, 213, 32, 190]. Multiscale Flow is
essentially a hybrid model, trained with a weighted combination of the generative loss (Equation
8.10) and discriminative loss (Equation 8.11). The interpolation parameter λ balances the tradeoff
of two approaches.

Apart from low sample complexity, another advantage of learning the likelihood function
is robustness. The likelihood value itself contains information about whether the data may be
contaminated by unknown systematic effects. As shown in the lower right panel of Figure 8.5, by
comparing the likelihood value of a given data to those of the training data, we can tell whether the
data is an outlier. It has also been suggested that generative models and hybrid models are more
robust to adversarial attacks [185, 190], which could bias the parameter inference [136]. In the
future, we plan to study more on making robust constraints against systematic effects.

Comparison with diffusion models
Diffusion models have been shown to generate realistic astrophysical fields [294, 226, 365], and to
achieve state-of-the-art performance on image density estimation tasks [160]. However, they seem
to have difficulty producing reliable posterior constraints [52]. After all, the posterior is determined
by the difference of log-likelihood across different conditional parameters, not the averaged log-
likelihood. It has been suggested that different metrics (e.g., well-calibrated posterior v.s. realistic
samples) are largely independent of each other in high dimensions, and good performance on one
criterion does not imply good performance on other criteria [318]. In our experiments, we find
that optimizing the model only with log-likelihood is not enough to produce reliable posteriors,
due to the high asymptotic error of generative models. We train the model with hybrid loss to
reduce the asymptotic error, which requires sampling the posterior during training with HMC.
Considering that diffusion models are computationally too expensive to run HMC on the fly, we
choose normalizing flows in this work.

Comparison with TRENF
Translation and Rotation Equivariant Normalizing Flow has been shown to produce reliable and
tight posterior constraints on Gaussian random field and mildly nonlinear matter density fields [56].
However, when we apply TRENF to weak lensing datasets in this work, it couldn’t produce well-
calibrated posteriors due to the restricted architecture. This motivates us to develop Multiscale Flow
with affine coupling transforms [71, 161], which is able to approximate any probability distributions
under mild conditions [172]. Moreover, the multiscale decomposition of the likelihood enables
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scale-dependent posterior analysis that helps to detect domain shifts between training simulations
and observed data.

8.5 Discussion
In this paper, we develop a Multiscale Flow model for field-level cosmological inference. Multiscale
Flow tries to model the likelihood function of the cosmological field without any dimension
reduction. If the field is learned perfectly, the resulting likelihood analysis becomes optimal. On
mock weak lensing convergence dataset we demonstrate that the constraining power of Multiscale
Flow outperforms the power spectrum in terms of Figure of Merit by factors of 2.5 - 4, depending
on the noise level, and outperforms CNN by a factor 2 for the most realistic case with a noise level
of 20arcmin−2 and with baryon marginalization.

Multiscale Flow enables field-level scale-dependent posterior analysis, which helps the iden-
tification of scale-dependent systematics that are not accurately modeled in training simulations.
We demonstrate that it is able to identify distribution shifts on weak lensing maps with baryonic
physics if the model is trained with dark-matter-only maps.

In this paper, our main focus is optimal and robust field-level likelihood analysis, but we also
show that Multiscale Flow can be used for fast sample generation and super-resolution, replacing
the need for expensive N-body simulations and ray tracing. We expect many other applications
of Multiscale Flow, such as 21cm and other intensity maps, weak lensing maps, projected galaxy
clustering, X-ray and thermal SZ maps, etc. Multiscale Flow can also be used to model 3D galaxy
fields or 1D spectrum data like Lyman alpha forest.

Multiscale Flow can be generalized to model maps with multiple channels x2n = {xc2n}Cc=1,
where c represents the index of channels, and C is the total number of channels. Here the channels
could represent different tomographic bins of cosmic shear analysis, or different tracers on the same
area of the sky, such as galaxies and weak lensing. We can still use Equation 8.5 to decompose the
likelihood of input maps with multiple channels, and each term can be further decomposed with

log p(x2k |y) =
∑C

c=1 log p(x
c
2k
|x1

2k
, · · · , xc−1

2k
, y),

log p(xd2m |x2m , y) =
C∑
c=1

log p(xd,c2m|x
d,1
2m , · · · , x

d,c−1
2m , x2m , y),

which allows us to check for consistency between different channels.
Multiscale Flow can also be generalized to model maps with survey masks. Following the

strategy developed in [56], one can first sample noise at the masked region, and then introduce
position-dependent flow transformation to the model to learn the effect of survey mask. It can thus
be applied to realistic surveys such as Hyper Suprime-Cam [4], Euclid [179], or Vera C. Rubin
Observatory Legacy Survey of Space and Time [141] for their robust and optimal analysis.
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8.6 Appendix A: Materials and Methods

Dark-matter-only weak lensing maps
The weak lensing convergence maps from Gupta et al.[112] are generated from a suite of 75 N-
body simulations with spatially flat ΛCDM cosmologies. Each simulation differs in cosmological
parameters Ωm and σ8, while the other cosmological parameters are fixed at Ωb = 0.046, h = 0.72
and ns = 0.96. The two cosmological parameters Ωm and σ8 are sampled non-uniformly with
density increases towards Ωm = 0.26 and σ8 = 0.8. Each simulation evolves 5123 dark matter
particles in a 240h−1Mpc box with N-body code gadget-2 [301]. A series of snapshots are saved
between redshifts 0 < z < 1 such that adjacent snapshots are separated by 80h−1Mpc in comoving
distance.

Weak lensing convergence maps with field of view 3.5 × 3.5 deg2 are then generated by ray-
traced the snapshots of N-body simulations to redshift z = 1 with multiple lens plane algorithm
[285]. 512 pseudo-independent maps are created from each simulation by randomly rotating,
flipping, and shifting the simulation snapshots. We refer the reader to Gupta et al.[112] for a
detailed description of how these data were generated.

Following Ribli et al.[270], we downsample the maps from resolution 10242 to resolution 5122

(∼ 0.4 arcmin), and add Gaussian galaxy shape noise to the maps with a standard deviation

σ =
σϵ√

2ngalApixel

, (8.16)

where σϵ = 0.4 is the mean intrinsic ellipticity of galaxies and Apixel the area of the pixel. For this
dataset we consider three different galaxy densities: ng = 10 arcmin−2, ng = 30 arcmin−2 and
ng = 100 arcmin−2. Ribli et al.[270] smooth the maps with a 1 arcmin Gaussian kernel to increase
the signal-to-noise (S/N) ratio and removes the information at very small scales where baryonic
physics alters the matter distribution. In our analysis, however, we do not smooth the noisy maps.
This is because our Normalizing Flow models the likelihood function by mapping the convergence
map to a Gaussian random field of the same dimensionality, implicitly assuming that the input
map is full-ranked. With Gaussian smoothing, the small-scale modes of smoothed maps become
degenerate and the probability distribution is no longer full-ranked, leading to model failure in our
analysis.

Weak lensing maps with baryon
To study the impact of baryonic effects in our analysis, we also consider weak lensing convergence
maps from Lu et al.[198]. These maps are generated from the same set of N-body simulations and
ray-tracing algorithms as the dark-matter-only maps described above, and have the same resolution
and field of view. The main difference is that the simulation snapshots are post-processed to include
the baryonic effects. We briefly describe this post-processing step below and refer the reader to Lu
et al.[196, 198] for more details.

Lu et al.[198] find all dark matter halos with mass > 1012M⊙ in the simulation snapshots, and
replace the halo particles with spherically symmetric analytical halo profiles to characterize the



CHAPTER 8. MULTISCALE FLOW FOR ROBUST AND OPTIMAL COSMOLOGICAL
ANALYSIS 158

matter distribution inside halos. The analytical halo profile is given by Baryon Correction Model
[BCM, 11], which describes the halos with four components: the central galaxy (stars), bounded
gas, ejected gas (due to AGN feedback), and relaxed dark matter. The masses and profiles of these
four components are parametrized by four free parameters: Mc (the characteristic halo mass for
retaining half of the total gas), M1,0 (the characteristic halo mass for a galaxy mass fraction of
0.023), η (the maximum distance of the ejected gas from the parent halo), and β (the logarithmic
slope of the gas fraction vs. the halo mass). This post-processing step removes the substructure
and non-spherical shape of the halos, but it has been shown that these morphological differences
between the simulated halos and spherical analytical profiles are not statistically significant when
compared to the uncertainties of the power spectrum and peak counts in an HSC-like survey [196].

Lu et al.[198] create 2048 maps with different baryon parameters for each cosmology. They
train CNN with the first 1024 maps, and use the other 1024 maps to measure the mean and
covariance matrix of the learned statistics. In our analysis, we only use the first 1024 maps to train
our Multiscale Flow and do not use the rest of the 1024 maps.

Similar to the preprocessed steps of the dark-matter-only maps (described in the previous
section), we downsample the maps to resolution 5122, and add Gaussian shape noise (Equation
8.16). For this dataset we consider four galaxy densities: ng = 10 arcmin−2, ng = 20 arcmin−2,
ng = 50 arcmin−2 and ng = 100 arcmin−2, to better compare our results with Lu et al.[198].

Multiscale Flow Hyperparameters
We use p = 12 block flows to model the large-scale term log p(x64|y), and q = 4 block flows to
model each of the three small-scale terms. The CNN in Equation 8.8 is chosen to be a convolutional
residual neural network with 2 residual blocks and 64 hidden channels in the residual blocks.

Summary Statistics Analysis
In this paper, we compare the performance of Multiscale Flow with analysis based on summary
statistics. We consider not only standard summary statistics such as power spectrum and peak count,
but also novel statistics such as scattering transform and convolutional neural networks (CNNs).

Power Spectrum

We compute the power spectrum of the convergence maps using the publicly available LensTools
package [250]. The power spectrum is calculated in 20 bins in the range 100 ≤ l ≤ 37500 with
logarithmic spacing, following the settings adopted in Ribli et al.[270] and Cheng et al.[44]. We
take the logarithm of the power spectrum to be observable for parameter inference.

Peak Count

Peak count has been widely used in current weak lensing analysis [209, 120, 370, 194]. In Table
8.1, we take the peak count measurement from Ribli et al. [270], who identify the local maxima
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of convergence maps and measure the binned histogram of the peaks as a function of their κ value.
They use 20 linearly spaced κ bins in total.

Scattering transform

Originally proposed by Mallat[203] as a tool to extract information from high-dimensional data,
scattering transform has recently been applied to cosmological data analysis and shown improve-
ment over the power spectrum in low noise regime [e.g., 44, 5, 43, 324]. For a given input
field, the scattering transform first generates a group of new fields by recursively applying wavelet
convolutions and modulus. The expected values of these fields are then defined as the scattering
coefficients and used as the summary statistics. In this paper we compare our results directly to
Cheng et al.[44], who estimate the constraining power of scattering transform using Fisher forecast
on the same dataset.

Convolutional Neural Networks (CNN)

Several studies have explored using CNNs to construct summary statistics for cosmological infer-
ence [93, 202, 112, 149, 270, 198, 197]. In this work we compare our results on dark-matter-only
weak lensing maps with Ribli et al.[270], and compare our results with Lu et al.[198] on weak
lensing maps with baryons. Ribli et al.[270] and Lu et al.[198] train CNNs to predict cosmological
parameters from the same convergence maps used in this work. Then they view these predicted
parameters as summary statistics, and build Gaussian likelihood on these statistics for inference.
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Chapter 9

A comparative study of cosmological
constraints from weak lensing using
Convolutional Neural Networks

The contents of this chapter were originally published in [291],

A comparative study of cosmological constraints from weak lensing using Convolutional
Neural Networks

Sharma D., Dai B., Seljak U.(arXiv:2403.03490) (submitted to JCAP)

Weak Lensing (WL) surveys are reaching unprecedented depths, enabling the investigation
of very small angular scales. At these scales, nonlinear gravitational effects lead to higher-order
correlations making the matter distribution highly non-Gaussian. Extracting this information us-
ing traditional statistics has proven difficult, and Machine Learning based summary statistics have
emerged as a powerful alternative. We explore the capabilities of a discriminative, Convolutional
Neural Networks (CNN) based approach, focusing on parameter constraints in the (Ωm, σ8) cos-
mological parameter space. Leveraging novel training loss functions and network representations
on WL mock datasets without baryons, we show that our models achieve ∼ 5 times higher figure
of merit in the σ8 - Ωm plane than the power spectrum,∼ 3 times higher than peak counts, and∼ 2
times higher than previous CNN-learned summary statistics and scattering transforms, for noise
levels relevant to Rubin or Euclid. For WL convergence maps with baryonic physics, our models
achieve ∼ 2.3 times stronger constraining power than the power spectrum at these noise levels,
also outperforming previous summary statistics. To further explore the possibilities of CNNs for
this task, we also discuss transfer learning where we adapt pre-trained models, trained on different
tasks or datasets, for cosmological inference, finding that these do not improve the performance.



CHAPTER 9. A COMPARATIVE STUDY OF COSMOLOGICAL CONSTRAINTS FROM WEAK
LENSING USING CONVOLUTIONAL NEURAL NETWORKS 163

9.1 Introduction
Weak gravitational lensing (WL) is the distortion of light from distant galaxies caused by the
gravitational influence of intervening large-scale structures that trace total matter in the universe.
This phenomenon creates a subtle cosmic shear pattern in the sky, altering the observed shapes and
orientations of background galaxies. The distortion of galaxy shapes, quantified through summary
statistics, holds valuable information about underlying cosmological parameters [17, 159]. Various
surveys, such as the Dark Energy Survey (DES), Hyper Suprime-Cam Survey (HSC), Euclid, the
Vera Rubin Observatory (Rubin), and the Nancy Grace Roman Space Telescope (Roman), aim
to map this cosmic shear across large areas of the sky. These surveys will provide observational
data that can be used to constrain fundamental cosmological parameters, particularly Ωm (matter
density) and σ8 (amplitude of matter fluctuations) that WL signals are most sensitive to in the
standard cosmological model [153, 174, 131, 116].

To extract information from WL data, various summary statistics are employed. At the two-
point level, WL data are analyzed using correlation functions such as the power spectrum of the
shear or convergence. However, these traditional summary statistics leave a wealth of information
untapped in the WL signal due to the highly non-Gaussian features at small scales. To address
this limitation, various other summary statistics have emerged, such as higher-order correlation
functions [308, 309, 284, 360, 245, 246, 286, 290, 98, 329, 330]. These are challenging because
of the large number of coefficients, and the difficulty to measure the associated covariance matrix,
as well as sensitivity to outliers [158]. Other methods that have been proposed are peak counts
[206, 69, 176, 357, 155, 369], Minkowski functionals [220, 276, 111, 175, 331, 241], scattering
transform coefficients [5, 44, 323, 100], and statistics learned by neural networks [93, 41, 202,
112].

Convolutional Neural Networks (CNNs) have been employed in various studies to estimate
cosmological parameters from WL convergence maps [112, 270, 93, 92, 334, 149, 202, 198,
197]. [112] trained CNNs on noise-free convergence maps, showcasing a 5 times improvement
in the precision of Ωm − σ8 constraints compared to the power spectrum analysis. [270] trained
CNNs with a different architecture on convergence maps with different levels of shape noise,
achieving a 2.4–2.8 times improvement over power spectrum in parameter constraints for surveys
like Rubin. [92] leveraged the KiDS-450 tomographic WL dataset, illustrating a 30% enhancement
in S8 = σ8(Ωm/0.3)

0.5 parameter constraints compared to power spectrum analysis. [210] reported
a 20% improvement in constraints over traditional methods (power spectrum, peak counts, and
Minkowski functionals) using their CNN framework. [149] [198] studied the impact of baryonic
effects on WL analysis with CNNs, and they further applied their framework to HSC first-year
data, finding a factor of 3 improvement in Ωm constraints over power spectrum [197]. [148] trained
CNNs on Dark Energy Survey (DES) Year 3 weak-lensing maps and illustrated more than a factor
of 2 improvement in S8 - Ωm constraints compared to power spectrum inference.

More recently, [56] and [55] proposed using generative Normalizing Flows to create samples and
model the field-level likelihood of weak lensing maps. On weak lensing mock datasets, [55] showed
that Multiscale Flow (MSF) outperforms the power spectrum by factors of 3− 9 for different noise
levels relevant to different surveys. It also achieves about two times higher constraining power

https://www.darkenergysurvey.org/
https://hsc.mtk.nao.ac.jp/ssp/
https://sci.esa.int/web/Euclid
https://lsst.org
https://roman.gsfc.nasa.gov/
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when compared to peak counts, CNNs, and scattering transform summary statistics. However,
CNNs are easier to train and work with than the generative Multiscale Flow model. Moreover, for
cosmological inference from surveys with large survey areas, CNNs can be applied effectively by
cropping the survey images and combining the summary statistics obtained from the CNNs [197].
Multiscale Flow, being a generative model with full dimensionality of the data, does not scale as
well with growing survey size.

The ability of MSF to outperform current implementations of CNN raises the question whether
this is inherently due to their generative training, as has been suggested in previous work [235].
An alternative explanation is that the existing CNN analyses have not been optimal in terms of
architectural choices and training methods. In this paper, we therefore explore the ability of CNNs
to constrain cosmology using a variety of novel techniques and loss functions that have been recently
proposed. We train our models on WL convergence maps with and without baryons and compare
their performance to that of the power spectrum, peak counts, scattering transform and previous
CNN works. We will show that our models outperform these statistics by considerable factors.

This paper is organized as follows: Section 9.2 provides a comprehensive overview of the maps
we used to train and test our models, the methodology employed during training, and post-training-
prediction procedures to obtain parameter constraints. In Section 9.3, we present and discuss our
results of parameter constraints derived from the trained models. Section 9.4 explores our results
employing transfer learning, where we adapt pre-trained models to predict cosmologies using the
same WL maps. We summarize and conclude in section 9.5.

9.2 Materials and Methods
In this section, we describe the data, models, and methods we use to get stringent parameter
constraints in Ωm − σ8 cosmological plane. First, we describe the weak lensing convergence maps
that we use for training and testing our models. We use two different datasets for the types of
convergence maps: one with only dark matter, and another dataset with baryonic physics added.
Second, we describe the CNN models used and the training loss functions and methodologies we
implemented during training to get varying degrees of constraining powers. Finally, we describe
how we use our trained CNNs’ outputs as a summary statistic for parameter inference as well as
the other summary statistics that we compare our results against.

Weak lensing maps
Dark-matter-only weak lensing maps

The dark-matter-only (DM-only) weak lensing convergence maps utilized in this study, obtained
from [112], stem from a suite of 80 N-body simulations characterized by spatially flat ΛCDM
cosmologies. Each simulation varies in cosmological parameters Ωm and σ8, while maintaining
fixed values for other parameters: Ωb = 0.046, h = 0.72, and ns = 0.96. Specifically, the sampling
of Ωm and σ8 is non-uniform, concentrating more densely around Ωm = 0.26 and σ8 = 0.8. These
simulations evolve 5123 dark matter particles within a 240h−1 Mpc box, employing the N-body



CHAPTER 9. A COMPARATIVE STUDY OF COSMOLOGICAL CONSTRAINTS FROM WEAK
LENSING USING CONVOLUTIONAL NEURAL NETWORKS 165

code Gadget-2 [301]. Snapshots are recorded between redshifts 0 < z < 1, spaced 80h−1 Mpc
apart in comoving distance.

Weak lensing convergence maps with a field of view of 3.5 × 3.5 deg2 are then generated
by ray-tracing the snapshots of N-body simulations to redshift z = 1 with a multiple lens plane
algorithm [285]. From each simulation, 512 pseudo-independent maps are derived by incorporating
random rotations, flips, and shifts to the snapshots. Following the setup from [112], all the source
galaxies are placed at redshift z = 1, and tomography is not considered. Detailed insights into the
map generation process can be found in [112]. In this work our primary goal is to understand
how much information can be extracted at the field level with CNNs, and how it compares with
various summary statistics. Therefore we directly take the simulated maps with simple setups from
previous works for a direct comparison. We plan to study more realistic setups and systematic
effects such as tomographic analysis and intrinsic alignment in our future works.

The convergence maps from [270] have a resolution of 10242. We first downscale the maps, using
average pooling of every 4×4 patch, to 2562 for faster training times, without seeing considerable
degradation in the constraining power of the trained models. Then, we add Gaussian shape noise
to the 2562 resolution maps. The standard deviation σ of the shape noise is computed as

σ =
σϵ√

2ngApixel
(9.1)

with σϵ ∼ 0.4 denoting the mean intrinsic ellipticity of galaxies, and Apixel signifying the pixel
area. This dataset incorporates three distinct galaxy density scenarios: ng = 10, 30, and 100
arcmin−2. A noise level of 10 galaxies arcmin−2 characterizes typical ground-based surveys like
CFHTLens, DES, or KiDS. Around 30 galaxies arcmin−2 represent the targeted noise level for
surveys like Rubin or Euclid, while future space missions like Roman might access between 50 and
75 galaxies arcmin−2. The scenario with 100 galaxies arcmin−2 stands as an optimistic anticipation
for forthcoming space-based surveys. While [270] apply a 1 arcmin Gaussian kernel for map
smoothing to augment signal-to-noise ratio (S/N) and mitigate small-scale information affected by
baryonic physics, we find no need for this procedure, and our analysis does not use smoothing
techniques on the noisy maps.

Weak lensing maps with baryons

To understand the influence of baryonic effects within our analysis, we analyze weak lensing
convergence maps from [198]. These maps stem from an identical set of N-body simulations and
ray-tracing methodologies as the previous dark-matter-only maps, with identical resolution and
field of view. However, a key distinction lies in the post-processing of simulation snapshots to
incorporate baryonic effects. A concise overview of this post-processing step follows herein; for
more comprehensive details, readers are referred to [198, 196].

In their work, [198] identify all dark matter halos with masses greater than a mass threshold
of 1012M⊙ within simulation snapshots. These halos’ constituent particles are then substituted
with spherically symmetric analytical halo profiles, characterizing the matter distribution within
the halos. The analytical halo profile, derived from the Baryon Correction Model (BCM) [11],
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delineates halos through four components: the central galaxy (stars), bounded gas, ejected gas
(attributed to AGN feedback), and relaxed dark matter. Parameterized by four free parameters
– Mc (characteristic halo mass retaining half the total gas), M1,0 (characteristic halo mass for a
galaxy mass fraction of 0.023), η (maximum distance of the ejected gas from the parent halo), and
β (logarithmic slope of the gas fraction vs. the halo mass). This model eliminates the substructure
and non-spherical shapes of the halos, but it has been argued that the morphological disparities
between simulated halos and spherical analytical profiles are statistically insignificant compared to
uncertainties in the power spectrum and peak counts within an HSC-like survey [198].

[198] generate 2048 maps for each cosmology, each with distinct baryon parameters. They
utilize the first 1024 maps for training a CNN and employ the remaining 1024 maps to calculate
the mean and covariance matrix of the CNN-learned summary statistics. Aligned with their
methodology, our analysis also uses the first 1024 maps for training and the subsequent 1024 maps
for statistical inference. Similar to the preprocessing steps applied to the dark-matter-only maps,
we first downsample these maps to a resolution of 2562, using average pooling, and then introduce
Gaussian shape noise. This dataset encompasses three galaxy densities: ng = 20, 50, and 100
arcmin−2, facilitating a comprehensive comparison with the results of [198].

Neural network architectures
In our study, we leverage the learning power of deep residual neural networks (ResNets) [122, 123].
Specifically, we experimented with ResNet18, ResNet34, and ResNet50. These architectures have
played a pivotal role in image data based deep learning over the past several years. ResNet18,
ResNet34, and ResNet50 are characterized by their depth, a defining feature that allows them
to capture intricate patterns and nuances in the data. The innovative element of ResNets is the
introduction of residual connections, or skip connections, which facilitate the training of very deep
networks. This helps overcome the vanishing gradient problem and, as a result, enables the training
of neural networks with many layers. ResNet18, the smallest of the three, consists of 18 convolution
layers, ResNet34 is deeper with 34 layers, with ResNet50 being even deeper, featuring 50 layers.
These networks have demonstrated remarkable performance across a wide range of computer vision
tasks, making them invaluable tools for image based data such as weak lensing data.

Our empirical experiments show that the choice of neural network architecture does not signifi-
cantly influence our results. We present a comparison between different neural network architectures
using the same loss function in table 9.1. Hence, we opted to employ ResNet18 consistently for
all experiments detailed in this paper. We made this choice due to its relatively shallower depth
compared to ResNet34 and ResNet50, balancing computational complexity while preserving the
capacity to capture meaningful representations from our weak lensing data.



CHAPTER 9. A COMPARATIVE STUDY OF COSMOLOGICAL CONSTRAINTS FROM WEAK
LENSING USING CONVOLUTIONAL NEURAL NETWORKS 167

Training
Training Loss Functions

We utilized various loss functions to train our models, aiming to optimize the performance of our
networks in capturing and interpreting the complex cosmological parameter space. We detail the
loss functions in the following paragraphs. We find that CNNs achieve different constraining power
depending on the choice of the loss function, as detailed in section 9.3.

First, we employed the Mean Squared Error (MSE) loss, defined as:

MSE loss =
1

n

n∑
i=1

(yi − ŷi)2 (9.2)

This loss function measures the squared differences between predicted (ŷi) and actual (yi)
values across n data points. It corresponds to maximum likelihood estimation (MLE), under the
assumption that the likelihood is Gaussian with an identity covariance matrix.

Another loss function we use involves transforming cosmological parameters into approximately
uncorrelated parameters. Specifically, we introduced S8 as a function of σ8 and Ωm via S8 =

σ8
(
Ωm

0.3

)0.5, coupled with an approximately orthogonal parameter Ortho =
σ2
8

2
− Ω2

m. Using an
L2 loss function with custom weights, corresponding to the expected errors associated with these
parameters, we formulated the following loss:

MSENP loss = w1 · (S8 − S8,true)
2 + w2 · (Ortho− Orthotrue)

2 (9.3)

Here, w1 and w2 denote the expected inverse variance for S8 and Ortho, respectively. This loss
has the advantage of incorporating non-Gaussian correlations, due to the nonlinear nature of the
parameter transformation.

Next, we explored Principal Component Analysis (PCA) by transforming the original parameter
space into a different space with the same dimensionality (2 for DM-only maps and 6 for baryon
maps), with the goal of optimizing training parameters for the MSE loss. This transformed space,
characterized by principal components capturing data variations, allows us to use an L2 loss
function:

MSEPCA loss = (X− X̂)T ·W · (X− X̂) (9.4)

Here, X represents the parameter set in the transformed PCA space, X̂ indicates predicted values
in the same space, and W symbolizes a diagonal weight matrix holding expected inverse variance
values for each parameter. By utilizing PCA followed by an L2 loss, we improve model efficiency
over the regular MSE loss. However, the PCA transformation is linear and unable to account for
non-Gaussian posteriors.

Next, we integrated the Neural Posterior Estimation (NPE) methodology proposed by [149, 361]
for Simulation-Based Inference (SBI). This method aims to directly learn the posterior distribution
by employing a Neural Density Estimator (NDE) like a Normalizing Flow (NF). The loss function
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in this context, called the Variational Mutual Information Maximization (VMIM) loss [14] or
the expected Negative Log-Likelihood (NLL) loss (LNLL), minimizes the expected negative log-
posterior:

VMIM loss = Ep(θ,x) [− log pϕ(θ|x)] = LNLL (9.5)

This loss function involves compressing the WL maps using a neural network – a ResNet in our
case – into a summary statistic, and employing conditional normalizing flows to approximate the
posterior distribution pϕ(θ|x) given learned summary statistic. In our work, we used a conditional
normalizing flow based on RealNVP [71] with 4 layers to approximate the posterior distribution.

Hyperparameters and Training Strategies
Throughout the training phase, we conducted careful experimentation with various hyperparameters
to yield optimal model performance and convergence. To prevent overfitting and regularizing the
model, we used a weight decay factor of 1×10−3 using the AdamW optimizer with default settings
for optional parameters such as β1 = 0.9 and β2 = 0.999. We established this value of the weight
decay factor to be optimum after experimenting with a wide range of values. This factor played
a crucial role in constraining the complexity of the model and preventing excessive sensitivity to
noise in the training data.

As described in section 9.2, there are 512 DM-only WL maps per cosmology. Out of these,
we used 360 maps as training data, and 152 maps were used for parameter inference post-training.
Of the 152 maps used for parameter inference, 100 maps were used for calculating the mean and
covariance matrix of the CNN-learned summary statistic, and 52 maps were used for testing the
models and measuring the FoM. We removed the fiducial cosmological model from the training
data and only used it for validation, in order to prevent overfitting to the training cosmology and
test the accuracy of model interpolation between different cosmological models.

For WL maps with baryons, as described in section 9.2, we used 1024 maps per cosmology as
training data and the remaining 1024 maps per cosmology to calculate the mean and covariance
matrix of the CNN-learned summary statistics. For measuring the FoM, we used an additional 128
maps at fiducial parameters. As in the case of DM-only maps, we removed the maps at fiducial
cosmology from training data and only used them for testing.

Additionally, we organized the training data into batches during training, with each batch
containing randomly sampled 128 WL maps. This batch size was selected to balance computational
efficiency and model convergence while ensuring a manageable memory during training.

In our training process, a piecewise constant learning rate schedule was adopted to dynamically
adjust the learning rate at specific milestones throughout the training iterations. This adaptive
learning rate schedule was essential in controlling the rate of model parameter updates, enhancing
the model’s ability to navigate the loss landscape effectively and converge toward an optimal
solution.

Despite the use of regularization, we found ResNets to overfit the training data. To further
mitigate overfitting, we employed early stopping. As stated above, we separated fiducial cosmology
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maps from the training data and designated them for validation purposes. This ensures that the
model does not overfit since the model is not directly trained on fiducial cosmology maps. In
order to fix any bias in the CNN training, we treat our model outputs as summary statistics, using
maps with different realizations to calculate its mean and covariance, for parameter inference as
outlined in section 9.2. During training iterations, the model’s performance on the validation set
was monitored, and the model achieving the lowest loss on this validation set was saved. This
approach ensured that the model’s generalizability was preserved by preventing it from becoming
overly specialized to the training data and thereby improving its performance on unseen test data.

Parameter Inference
Neural network output predictions for cosmological parameters can be interpreted as summary
statistics, akin to conventional statistics like the power spectrum or peak counts, regardless of their
direct connection to the underlying parameters. This approach has been widely applied in prior
studies [112, 270, 210, 198, 197]. Hence, a statistic, in this context, denotes either the prediction
output by a network or a combination of various statistics. The advantage of this summary statistic
view is that it can be further improved if necessary, and that its density estimation is relatively
simple since it is very low dimensional. In contrast, high dimensional summary statistics suffer
from the need to have many simulations to learn their covariance matrix, and typically one needs
several times more training data than the number of summary statistics.

Following previous studies, given a summary statistic comprising d observables, we model the
likelihood of observing y as a multidimensional Gaussian distribution:

p(y|θ) ∝ 1√
det C

exp

(
−1

2
[y − y(θ)]TC−1(θ)[y − y(θ)]

)
. (9.6)

Here, θ represents the underlying cosmological and baryonic parameters, and we useN realizations
to estimate the covariancesC. For calculating the expected values, y(θ), and the covariances, C(θ),
we follow slightly different approaches for the two different WL map datasets, which the following
subsections outline.

Dark Matter Only Maps

To extend the likelihood across the entire Ωm−σ8 space from the 80 discrete cosmologies sampled
by the DM-only maps, we perform linear interpolation for both the expected value, y(θ), and the
covariances. Using Bayes’ theorem, we then estimate the posterior distribution of θ considering a
mock observation at the fiducial parameters y(θ0)while employing uniform priors on all parameters.

Baryon Maps

To extend the likelihood across the Ωm−σ8 space from the 75 discrete cosmologies sampled by the
baryon maps, we undertake a two-step interpolation for the expected value y(θ) following [198]:
(1) fitting a second-degree polynomial for the four baryonic parameters within each cosmology,
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and (2) linear interpolation between cosmologies. We assume constant covariances across different
baryonic parameters, estimating these covariances for each cosmology and interpolating them
linearly. Using Bayes’ theorem, we estimate the posterior distribution of θ based on a mock
observation at the fiducial parameters y(θ0), while adopting log-uniform priors on all parameters.

Power Spectrum
We take the power spectrum constraining power estimation from [55], who measure the power
spectrum of convergence maps using the publicly available LensTools package [250]. The power
spectrum is calculated in 20 bins in the range 100 ≤ l ≤ 37500 with logarithmic spacing, following
the settings adopted in [270] and [44]. The logarithm of the power spectrum is taken to be
observable for parameter inference.

Peak Count
For peak count constraining power, we take the peak count measurement from [270], who identify
the local maxima of convergence maps and measure the binned histogram of the peaks as a function
of their κ value. They use 20 linearly spaced κ bins in total.

Scattering Transform
Initially introduced as a method to extract information from high-dimensional data by [203], the
scattering transform has been recently applied to cosmological data analysis. In studies [44, 5, 43,
324], it showcased improvements over the power spectrum, especially in low noise scenarios. This
technique generates a cluster of new fields through recursive wavelet convolutions and modulus
operations. The expected values of these derived fields serve as scattering coefficients and act
as summary statistics. In this study, we compare our findings directly to the results obtained by
[44], who estimated the constraining capabilities of the scattering transform using Fisher forecast
techniques on the same dataset that we use.

9.3 Results
In this section, we present the constraining power of our trained CNN models for each loss
mentioned above and compare them to traditional summary statistics as well as previous CNN-
learned summary statistics. First, we describe the results for the DM-only WL maps dataset, and
then we explore the effects of baryons on our constraining power using the baryon maps dataset.

We use the same simulated maps and follow most data processing and inference setups as the
previous studies with which we compare our results. The only differences in our methods are
that we downscale the maps to 2562 resolution and that we do not smooth the maps after adding
shape noise. These differences do not significantly change our results, as shown in table 9.2. We
measured the FoM and 1D marginalized constraints using posterior samples. On the other hand,
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[44] estimate the FoM of the scattering transform using the Fisher matrix, which is an upper limit
of the true FoM according to the Cramér-Rao inequality.

Cosmological constraints from noisy weak lensing maps
First, we evaluate the efficacy of our trained CNNs using the 3.5 × 3.5 deg2 mock weak lensing
convergence maps from [270] to conduct field-level inference. The performance of our model is
assessed based on the constraining power, measured as the reciprocal of the 1σ confidence area on
the (Ωm, σ8) plane. Table 9.1 presents a comparative analysis showcasing the figure of merit of
our CNNs across different noise levels, combined with results obtained using traditional summary
statistics such as the power spectrum, peak count, scattering transform [44], and statistics derived
from CNNs in [270].

Our models achieve the best performance among all the methods, surpassing the other methods,
including the power spectrum, by substantial margins. Specifically, on galaxy densities ng = 10,
30 (relevant for Rubin or Euclid), and 100 arcmin−2, our CNNs outperform the power spectrum by
factors of 2.4, 5, and 5, respectively, using the VMIM loss. Notably, our best-performing model
demonstrates a marked enhancement in constraining power, achieving ∼ 1.5 − 2 times higher
performance compared to peak counts, previous CNN models, and scattering transform for all
noise levels.

Using MSENP and MSEPCA losses, our CNNs also outperform power spectrum analysis by
factors of ∼ 2, 3, and 4 for the three noise levels respectively. They also achieve ∼ 1.2 − 2 times
stronger parameter constraints than peak counts, previous CNN models, and scattering transform
for all noise levels. Using MSE loss, we achieve comparable constraining power to [270] who
also used MSE loss, but used a different CNN architecture and applied smoothing to the fields.
This suggests that the constraining power achieved by different deep models is fairly independent
of model architectures, and it is the choice of the loss function that is more important for optimal
performance.

To illustrate the impact of different losses on our model’s performance, we present the pos-
terior comparison of various losses using 16 test maps with galaxy number density of ng =
10, 30, 100 arcmin−2 in Figure 9.1. The posterior constraints are consistent with the true cosmo-
logical parameters (shown in black dashed lines) for all noise levels. In alignment with Table 9.1,
the VMIM loss achieves the most stringent parameter constraints, followed by MSENP, MSEPCA,
MSE losses, in that order. Additionally, we present the 1D marginal constraints of Ωm, σ8 and S8

in table 9.3.

Impact of baryons
To study the impact of baryons on parameter constraints achieved using our models, we apply
CNNs on mock weak lensing maps incorporating baryonic physics. Table 9.4 presents the observed
constraining power variations across diverse galaxy-shape noise levels. In the presence of baryons,
our models have∼ 2.3 times higher constraining power on cosmological parameters than the power
spectrum. Using the VMIM loss, our results also outperforms previous CNN results by a factor of
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Figure 9.1: Comparison of the constraining power of different losses on 16 test data with the panels
corresponding to galaxy number density ng = 10, 30, 100 arcmin−2 respectively. The posterior
constraints contain the true cosmological parameters (shown in black dashed lines) for all noise
levels. In correspondence with Table 9.1, the VMIM loss exhibits the most stringent parameter
constraints, succeeded by MSENP, MSEPCA, and MSE losses, respectively. The constraining
power achieved by the MSE loss is comparable to the results of [270]. The VMIM loss achieves
∼ 2 times smaller contours compared to the MSE loss and [270].

Table 9.1: Comparison of the constraining power between different methods at fiducial cosmology.
The figure of merit is measured by the reciprocal of the 1σ confidence area on the (Ωm, σ8) plane,
using a 3.5× 3.5 deg2 convergence map. The rows with bold figures of merit correspond to results
obtained using methods outlined in this study.

Method ng = 10 arcmin−2 ng = 30 arcmin−2 ng = 100 arcmin−2

ResNet18 + VMIM loss 72 236 400
ResNet34 + VMIM loss 72 234 403
ResNet50 + VMIM loss 75 239 407
ResNet18 + MSENP loss 70 170 351
ResNet18 + MSEPCA loss 50 140 290
ResNet18 + MSE loss 35 114 297
Power Spectrum 30 52 81
Peak Count 40 85 137
CNN [270] 44 121 292
Scattering Transform ≲ 50 ≲ 140 ≲ 329
Multiscale Flow (2562) 82 226 631
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Table 9.2: Comparison of the constraining power using different map processing methodology at
ng = 30 arcmin−2. We compare the figure of merit achieved by our models when they are trained
on (1) maps of 2562 resolution without smoothing after adding shape noise (our default setup), (2)
maps of 2562 resolution with smoothing, and (3) maps of 5122 resolution without smoothing. The
difference between these setups is less than 10% and is much smaller than the difference between
different methods in Table 9.1.

Method No smoothing, 2562 Smoothing, 2562 No smoothing, 5122
ResNet18 + VMIM loss 236 217 249
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Figure 9.2: Comparison of the constraining power of different losses on 16 test data with the panels
corresponding to galaxy number density ng = 20, 50, 100 arcmin−2 respectively in the presence of
baryons.

∼ 1.5. We present the 1D marginal constraints of Ωm, σ8, and S8 in the presence of baryons in
table 9.3.

Additionally, in Figure 9.2, we present the posterior comparison derived from assessing
various loss functions using 16 test maps characterized by a galaxy number density of ng =
20, 50, 100 arcmin−2. This comparison highlights the impact of different loss functions on the
model’s performance and inference outcomes.

9.4 Transfer Learning
Transfer learning is a Machine Learning (ML) technique where insights acquired from one task
are leveraged to enhance performance in a related task [34, 33, 367]. For example, a network
that has been trained to identify cars in image classification could be utilized, after fine-tuning,
when attempting to identify trucks. Due to its wide prospects of application in domains where the
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Table 9.3: Comparison of the 1σ constraints of cosmological parameters between different methods
at fiducial cosmology.

Dataset Method Galaxy Shape Noise Ωm σ8 S8

ResNet18 + VMIM loss ng = 10 arcmin−2 0.076 0.114 0.046
ng = 30 arcmin−2 0.033 0.064 0.027
ng = 100 arcmin−2 0.021 0.044 0.022

ResNet18 + MSENP loss ng = 10 arcmin−2 0.091 0.126 0.047
ng = 30 arcmin−2 0.034 0.067 0.029
ng = 100 arcmin−2 0.022 0.048 0.023

DM-only maps ResNet18 + MSEPCA ng = 10 arcmin−2 0.090 0.118 0.047
ng = 30 arcmin−2 0.046 0.087 0.036
ng = 100 arcmin−2 0.023 0.045 0.023

ResNet18 + MSE loss ng = 10 arcmin−2 0.124 0.135 0.067
ng = 30 arcmin−2 0.064 0.100 0.040
ng = 100 arcmin−2 0.024 0.046 0.024

Power Spectrum ng = 10 arcmin−2 0.124 0.160 0.061
ng = 30 arcmin−2 0.990 0.141 0.053
ng = 100 arcmin−2 0.072 0.121 0.048

ResNet18 + VMIM loss ng = 20 arcmin−2 0.059 0.099 0.046
ng = 50 arcmin−2 0.033 0.071 0.038
ng = 100 arcmin−2 0.031 0.063 0.036

ResNet18 + MSENP loss ng = 20 arcmin−2 0.065 0.104 0.048
ng = 50 arcmin−2 0.043 0.078 0.039
ng = 100 arcmin−2 0.034 0.071 0.038

Baryon maps ResNet18 + MSEPCA ng = 20 arcmin−2 0.064 0.106 0.049
ng = 50 arcmin−2 0.034 0.074 0.040
ng = 100 arcmin−2 0.039 0.074 0.039

ResNet18 + MSE loss ng = 20 arcmin−2 0.069 0.111 0.050
ng = 50 arcmin−2 0.051 0.089 0.044
ng = 100 arcmin−2 0.053 0.092 0.045

Power Spectrum ng = 20 arcmin−2 0.090 0.133 0.060
ng = 50 arcmin−2 0.065 0.107 0.052
ng = 100 arcmin−2 0.054 0.097 0.049
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Table 9.4: Comparison of the constraining power between different methods in the presence of
baryons. Here, we marginalize over baryon parameters.

Method ng = 20 arcmin−2 ng = 50 arcmin−2 ng = 100 arcmin−2

ResNet18 + VMIM loss 112 151 202
ResNet18 + MSENP loss 96 148 195
ResNet18 + MSEPCA loss 89 135 179
ResNet18 + MSE loss 87 121 150
Power Spectrum 48 68 84
[198] CNN ∼ 77 ∼ 109 ∼ 136
Multiscale Flow (2562) 137 242 338

amount of training and test data is limited, transfer learning has become an essential tool in modern
machine learning research [e.g. 72, 201, 154].

Transfer learning (TL) has also shown promise in astrophysics. [344] demonstrated the effective-
ness of transfer learning in classifying stellar light curves, enhancing the accuracy of categorizing
astrophysical phenomena and understanding of stellar behavior and properties. [332] highlighted
solutions that transfer learning introduces, particularly in dealing with the diverse range of data
types encountered in astronomy.

We use three different datasets for getting our pre-trained models. First, we harness models pre-
trained on the extensively benchmarked ImageNet dataset, known for its comprehensive compilation
of image classification challenges. Next, we pre-train our models on gaussian random fields —
a cost-effective option due to their straightforward production process. These models are then
fine-tuned on our WL maps. Finally, we extend our approach to include models initially trained on
log-normal fields, and these models also undergo subsequent refinement on our WL maps.

By leveraging a pre-trained neural network, our CNNs are endowed with a rich set of features
and insights garnered from extensive datasets, which are then intricately honed to suit the nuances
of our domain-specific task of cosmological inference. The fine-tuning phase is critical; it enables
the pre-existing neural architecture to recalibrate, aligning its learned patterns and intricacies with
the unique characteristics of our WL maps. Our results of the constraining powers achieved using
transfer learning are shown in tables 9.5 and 9.6.

ImageNet dataset TL
We used publicly available ResNet18 models pre-trained on the ImageNet dataset [122]. The
validation accuracy on the ImageNet dataset of these models is ∼ 90%. The pre-trained models
were then fine-tuned on our DM-only WL dataset, and parameter constraints were obtained using
the same methodology as training from scratch.

Despite the high validation accuracy on ImageNet, the final models did not attain a level of
performance on our WL dataset that was equivalent to that of models trained from scratch with
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Table 9.5: Comparison of the constraining power between different methods using Gaussian random
maps transfer learning. The results are similar to the results in table 9.1.

Method ng = 10 arcmin−2 ng = 30 arcmin−2 ng = 100 arcmin−2

ResNet18 + VMIM loss 70 221 412
ResNet18 + MSENP loss 74 154 360
ResNet18 + MSEPCA loss 55 142 281
ResNet18 + MSE loss 45 128 286

randomly initialized weights. This is not too surprising because of the stark differences in visual
features between the everyday objects of the ImageNet dataset and the complex cosmological and
astrophysical patterns present in WL maps.

Pre-training with Gaussian random fields
Next, we consider pre-training the networks on Gaussian Random Fields (GRFs) and test if it helps
reduce the overfitting and improves the constraining power. During the pre-training, we randomly
sample cosmological parameters from the prior and generate GRFs on the fly with the same power
spectra as the WL maps.

We first directly apply this pre-trained network for inference without any fine-tuning on numer-
ical simulations. Note that this network only serves as a data compressor. As long as we measure
the mean and covariance matrix in Equation 9.6 with realistic WL maps, the posterior inference
won’t be biased even if we train the network on GRFs. In this case, we find comparable constraining
power as the power spectrum analysis, which is not surprising since the GRFs only contain the
power spectrum information.

After fine-tuning the networks on DM-only WL maps, we present the figure of merit in Table 9.5.
We find comparable constraining power compared to training the models from scratch. Pre-training
the model with GRFs did not improve our posterior constraints.

Pre-training with log-normal fields
While GRFs provide a reasonable approximation of WL maps on large scales, they lack non-
Gaussian features, and pre-training on these GRFs does not help with the modeling of small-scale
non-Gaussian structures. We further explore pre-training with log-normal fields, which are a better
approximation to the non-Gaussian WL maps and are widely used for their modeling [311, 356,
45].

The log-normal fields κLN can be generated efficiently with

κLN(θ) = eκGRF(θ) − λ, (9.7)

where κGRF is a GRF, and λ is referred to as the shift parameter of the lognormal distribution. The
shift parameter depends on the scale at which the field is smoothed or pixelized. In this work, we
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Table 9.6: Comparison of the constraining power between different methods using lognormal maps
transfer learning. The results are similar to the results in table 9.1.

Method ng = 10 arcmin−2 ng = 30 arcmin−2 ng = 100 arcmin−2

ResNet18 + VMIM loss 65 240 396
ResNet18 + MSENP loss 67 165 347
ResNet18 + MSEPCA loss 48 130 295
ResNet18 + MSE loss 50 118 300

measure λ from the mock WL maps. The correlation function of κLN is related to the correlation
function of κGRF via [356]:

ξGRF(θ) = log

[
ξLN(θ)

α2
+ 1

]
, (9.8)

where α = exp (µ+ σ2/2), with µ and σ2 being the mean and variance of κGRF.
Similar to section 9.4, during pre-training, we randomly sample cosmological parameters and

generate log-normal fields on the fly with the same power spectrum as the simulated WL maps.
The power spectrum of κGRF is calculated numerically from Equation 9.8. Then we fine-tune the
pre-trained network on the simulated WL maps and perform posterior inference following the same
procedure described in section 9.2.

In table 9.6 we show the figure of merit of posterior constraints with networks pre-trained on
log-normal maps. Again, we find comparable performance as compared to training the network
from scratch. This is possibly due to the specific non-Gaussian features inherent in the weak lensing
data that are not fully captured by the log-normal approximation.

9.5 Conclusions
In this paper, we trained convolutional neural networks to constrain the underlying cosmological
parameters (σ8, Ωm) of simulated weak lensing convergence maps (with and without baryonic
effects) in the presence of shape noise levels corresponding to ongoing and future large weak
lensing surveys.

Our results indicate that discriminative CNN models, when trained using Mutual Information
Maximization-based and principal component analysis-enhanced loss functions, yield significantly
tighter constraints on the Ωm − σ8 parameter space than conventional methods such as power
spectrum analysis, peak counting, and CNN models trained with MSE loss.

Notably, the Variational Mutual Information Maximization (VMIM) loss function leads to an
improvement in parameter constraints, using DM-only WL maps, by factors of ∼ 5 over the power
spectrum, ∼ 3 over peak counts, and ∼ 2 over previous CNN models, even under varying noise
levels representative of surveys like LSST and Euclid. Using noisy WL convergence maps with
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baryons, we achieve ∼ 2.3 times stronger constraining power than the power spectrum and ∼ 1.5
over previous CNN models.

To further explore the possibilities of improvement for this task, we also discussed transfer
learning where we adapted pre-trained models, also called Foundation Models, trained on a large
number of different tasks or datasets, for cosmological inference. However, our results suggest that
the direct training on weak lensing maps still holds a slight edge, and pretraining on a large number
of Gaussian or log-normal maps provided no advantage. This is possibly due to the specific non-
Gaussian features inherent in the weak lensing data that are not fully captured by the log-normal
or Gaussian random approximations. This suggests that the use of Foundation Models may be of
limited use in some scientific tasks, specially when the Foundation Model training data differ from
the real data in some important aspects and there is enough realistic training data available so that
there is no need for Transfer Learning.

In previous work generative MultiScale Flow (MSF) [55] outperformed discriminative CNN,
but for realistic noise levels such as 10 or 30 arcmin−2 we find that our CNN results are comparable,
potentially suggesting both may have extracted the full information content from the training data.
For optimistic noise levels like 50 or 100 arcmin−2, MSF outperforms CNN by up to 60% in
Figure of Merit. Assuming they both give equal performance the choice of the method will thus
depend on other requirements: discriminative CNN is simpler to train, and scales well to the
higher dimensional data, while generative Normalizing Flow models also provide additional tests
of unknown systematics such as density estimation of the data (a generalized goodness of fit test).
We expect that future applications on simulated and real data will continue to explore both of these
approaches to extract maximal amount of information from the data, and to assess its robustness
against systematics and other effects.

In this paper, to directly compare our results with previous works, we adopt the same simple
setup in our analysis as previous studies and do not include realistic effects like source galaxy
redshift distribution, tomography, or astrophysical systematics (such as intrinsic alignment, shear
multiplication biases, etc.). We plan to explore the impact of these effects on our analysis in future
works.
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Chapter 10

Conclusions

The standard cosmological model ΛCDM has been a successful framework for predicting and ex-
plaining various observations. Nevertheless, it faces several challenges and significant components
of the model remain mysterious, such as the nature of dark energy, and the origin of S8 tension.
Could they lead to new physics? To answer these questions, current and upcoming sky surveys such
as HSC [3], DESI [66], Euclid[9], Rubin Observatory [195], and Roman space telescope [75] aim
to measure the large-scale structures and evolution of the universe with multiple probes, allowing
us to constrain cosmological parameters to high precision and search for deviations from ΛCDM.
However, traditional analysis based on two-point statistics can only extract a limited amount of in-
formation from these non-Gaussian data. Improved theoretical modeling and data analysis methods
are necessary to fully realize the potential of these observations.

Leveraging high-fidelity cosmological simulations, simulation-based inference (SBI) [51] pro-
vides a promising framework for extracting rich non-Gaussian information from non-linear scales.
However, several challenges limit its cosmological applications. On the simulation side, it is
computationally challenging to run a large number of high-resolution large-volume cosmological
simulations to fully sample the parameter space for training the SBI models. Reducing the sim-
ulation resolution and volume leads to model misspecification and could bias the cosmological
constraints. On the inference side, while performing SBI on low-dimensional summary statistics
is straightforward, field-level SBI can be challenging due to the high dimensionality of the data.

To facilitate the deployment of SBI approaches into upcoming survey analysis pipelines, in this
dissertation, we develop several physics-motivated machine-learning models to improve both the
numerical simulations and the SBI models. Fast N-body PM simulations are able to simulate the
LSS with low computational costs, making them suitable for the training SBI models, but their
lack of small-scale force and baryonic physics and long-time steps cannot accurately predict small-
scale matter distribution. In chapter 2, we develop a Potential Gradient Descent (PGD) model
to improve the modeling of nonlinear gravity on small scales. We also introduce the Enthalpy
Gradient Descent (EGD) model to effectively model the baryonic feedback. We show that these
models are able to improve the small-scale matter power spectrum, the cross-correlation coefficient
with full N-body simulation or hydrodynamical simulations, the halo profiles, and the identification
of subhalos. In chapter 3, we incorporate this model into lightcone simulations, and show that it
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significantly improves the small-scale modeling of weak gravitational lensing. In chapter 4, we
further develop a public differentiable package MADlens for accurately generating weak lensing
predictions with low computational cost. These developments focus on improving the small-scale
matter distribution, primarily targeting weak lensing analysis. In terms of galaxy clustering, we
develop a relaxed-FOF halo finder in chapter 3, for improving the halo statistics from low-resolution
fast N-body simulations.

In chapter 5 and 6, we focus on the modeling of baryons in N-body simulations. We develop a
Lagrangian Deep Learning (LDL) model for modeling various baryonic observables in chapter 5.
We combine the N-body solver FastPM with LDL and apply them to a wide range of cosmological
outputs, from dark matter to stellar maps, gas density, and temperature. The computational cost
of LDL is nearly four orders of magnitude lower than the full hydrodynamical simulations, yet it
outperforms hydro simulations at the same resolution. This opens up the possibility of analyzing
cosmological observations entirely within this framework, without the need for large full N-body
simulations. In chapter 6, we focus on modeling the baryonic effect on the total matter distribution
for weak lensing applications. By analyzing thousands of hydrodynamical simulations, we find
an efficient way to model the baryonic feedback and build an emulator at the field level using
Gaussian processes. This method and our emulator enable field-level SBI analyses and accounting
for baryonic effects in weak lensing analyses.

In the second half of this dissertation (chapter 7, 8 and 9), we focus on the development of SBI
models. Off-the-shelf ML models are not curated for astrophysical applications, and thus do not
take advantage of the characteristics of cosmological data (e.g., symmetries) or satisfy scientific
needs (i.e., well-calibrated and robust parameter inference). We integrate physics constraints and
domain knowledge into ML models for superior performance in scientific applications. In chapter
7, we develop a Translation and Rotation Equivariant Normalizing Flow (TRENF) model that
satisfies symmetry constraints. We apply TRENF to learn the high-dimensional field-level data
likelihood, and show that it leads to significant improvements in constraining power over the standard
power spectrum summary statistic. In chapter 8, we introduce Multiscale Flow (MSF) for optimal
and robust field-level analysis. MSF uses hierarchical decomposition of cosmological fields via a
wavelet basis, and then models different wavelet components separately as Normalizing Flows. This
decomposition allows us to separate the information from different scales and identify distribution
shifts in the data such as unknown scale-dependent systematics. We show that the resulting
likelihood analysis can not only identify these types of systematics (such as baryonic effect), but
can also be made optimal, in the sense that the Multiscale Flow can learn the full likelihood at
the field without any dimensionality reduction. Finally, the SBI machine learning models usually
come with a large number of hyperparameters and training choices, making them hard to use in
practice. In chapter 9, we perform a comparative study and explore the impact of different analysis
choices on parameter constraints for a Convolutional Neural Networks (CNN) based SBI model.
By performing a large number of control experiments, we identify the best hyperparameter choice
and training loss functions that improve on previous CNN-based SBI models by a factor of 2.

These developments mark a substantial step toward the full deployment of SBI approaches
into cosmological survey analysis pipelines, offering the promise of a deeper understanding of our
Universe and the potential discovery of new physics beyond the current model.
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Release”. In: ApJs 248.2, 32 (June 2020), p. 32. doi: 10.3847/1538-4365/ab908c.
arXiv: 1909.04667 [astro-ph.IM].

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1093/mnras/stu1536
https://arxiv.org/abs/1405.2921
https://doi.org/10.1038/nature13316
https://arxiv.org/abs/1405.1418
https://doi.org/10.1093/mnras/stt1789
https://arxiv.org/abs/1305.2913
https://arxiv.org/abs/2305.13745
https://doi.org/10.1088/0004-637X/772/1/63
https://doi.org/10.1088/0004-637X/772/1/63
https://arxiv.org/abs/1301.1348
https://doi.org/10.1088/0004-637X/794/1/94
https://doi.org/10.1088/0004-637X/794/1/94
https://arxiv.org/abs/1407.3451
https://openreview.net/forum?id=wta%5C_8Hx2KD
https://doi.org/10.1093/mnras/254.2.315
https://doi.org/10.3847/1538-4365/ab908c
https://arxiv.org/abs/1909.04667


BIBLIOGRAPHY 210

[352] Martin White. “A marked correlation function for constraining modified gravity models”.
In: Journal of Cosmology and Astroparticle Physics 2016.11 (2016), p. 057.

[353] Simon DM White. “The hierarchy of correlation functions and its relation to other measures
of galaxy clustering”. In: Monthly Notices of the Royal Astronomical Society 186.2 (1979),
pp. 145–154.

[354] Hans A. Winther et al. “Emulators for the nonlinear matter power spectrum beyondΛCDM”.
In: Physical Review D 100.12 (Dec. 2019). issn: 2470-0029. doi: 10.1103/physrevd.
100.123540. url: http://dx.doi.org/10.1103/PhysRevD.100.123540.

[355] Daniel E Worrall et al. “Harmonic networks: Deep translation and rotation equivariance”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2017, pp. 5028–5037.

[356] Henrique S Xavier, Filipe B Abdalla, and Benjamin Joachimi. “Improving lognormal
models for cosmological fields”. In: Monthly Notices of the Royal Astronomical Society
459.4 (2016), pp. 3693–3710.

[357] Xiuyuan Yang et al. “Cosmological information in weak lensing peaks”. In: Physical Review
D 84.4 (2011), p. 043529.

[358] Dani Yogatama et al. “Generative and Discriminative Text Classification with Recurrent
Neural Networks”. In: CoRR abs/1703.01898 (2017). arXiv: 1703.01898. url: http:
//arxiv.org/abs/1703.01898.

[359] Jason J Yu, Konstantinos G Derpanis, and Marcus A Brubaker. “Wavelet flow: Fast training
of high resolution normalizing flows”. In: Advances in Neural Information Processing
Systems 33 (2020), pp. 6184–6196.

[360] Matias Zaldarriaga and Roman Scoccimarro. “Higher Order Moments of the Cosmic Shear
and Other Spin-2 Fields”. In: The Astrophysical Journal 584.2 (Feb. 2003), pp. 559–565.
issn: 1538-4357. doi: 10.1086/345789. url: http://dx.doi.org/10.1086/345789.

[361] Justine Zeghal et al. Neural Posterior Estimation with Differentiable Simulators. 2022.
arXiv: 2207.05636 [astro-ph.IM].

[362] Ya. B. Zel’dovich. “Gravitational instability: An approximate theory for large density per-
turbations.” In: A&A 5 (Mar. 1970), pp. 84–89.

[363] Zhongxu Zhai et al. “The Aemulus Project. III. Emulation of the Galaxy Correlation
Function”. In: ApJ 874.1, 95 (Mar. 2019), p. 95. doi: 10.3847/1538-4357/ab0d7b.
arXiv: 1804.05867 [astro-ph.CO].

[364] Xinyue Zhang et al. “From Dark Matter to Galaxies with Convolutional Networks”. In:
arXiv preprint arXiv:1902.05965 2019 (2019).

[365] Xiaosheng Zhao et al. “Can Diffusion Model Conditionally Generate Astrophysical Im-
ages?” In: arXiv preprint arXiv:2307.09568 (2023).

https://doi.org/10.1103/physrevd.100.123540
https://doi.org/10.1103/physrevd.100.123540
http://dx.doi.org/10.1103/PhysRevD.100.123540
https://arxiv.org/abs/1703.01898
http://arxiv.org/abs/1703.01898
http://arxiv.org/abs/1703.01898
https://doi.org/10.1086/345789
http://dx.doi.org/10.1086/345789
https://arxiv.org/abs/2207.05636
https://doi.org/10.3847/1538-4357/ab0d7b
https://arxiv.org/abs/1804.05867


BIBLIOGRAPHY 211

[366] Chenyu Zheng et al. “Revisiting Discriminative vs. Generative Classifiers: Theory and
Implications”. In: International Conference on Machine Learning, ICML 2023, 23-29 July
2023, Honolulu, Hawaii, USA. Ed. by Andreas Krause et al. Vol. 202. Proceedings of Ma-
chine Learning Research. PMLR, 2023, pp. 42420–42477. url: https://proceedings.
mlr.press/v202/zheng23f.html.

[367] Fuzhen Zhuang et al. “A comprehensive survey on transfer learning”. In: Proceedings of
the IEEE 109.1 (2020), pp. 43–76.

[368] A. Zonca et al. “healpy: equal area pixelization and spherical harmonics transforms for data
on the sphere in Python”. In: The Journal of Open Source Software 4 (Mar. 2019), p. 1298.
doi: 10.21105/joss.01298.
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[370] Dominik Zürcher et al. “Dark energy survey year 3 results: Cosmology with peaks using an
emulator approach”. In: Monthly Notices of the Royal Astronomical Society 511.2 (2022),
pp. 2075–2104.

https://proceedings.mlr.press/v202/zheng23f.html
https://proceedings.mlr.press/v202/zheng23f.html
https://doi.org/10.21105/joss.01298
https://doi.org/10.1093/mnras/stad2212
https://arxiv.org/abs/2206.01450

	Contents
	List of Figures
	List of Tables
	Introduction
	Large-Scale Structures
	Cosmological Simulations
	Cosmological Inference
	Simulation-Based Inference
	Dissertation Outline

	A gradient-based method for modeling baryons and matter in halos of fast simulations
	Introduction
	Gradient-based learning: theory and motivation
	Example application: matching a set of hydrodynamical and N-body simulations
	Parameter Selection of PGD
	Conclusions
	Appendix A: Simulation data sets
	Appendix B: Cost Function and Choice Covariance

	High mass and halo resolution from fast low-resolution simulations
	Introduction
	Halo statistics and clustering
	Dark matter statistics
	Conclusions
	Appendix A: Halo power spectrum of higher mass thresholds

	MADLens, a python package for fast and differentiable non-Gaussian lensing simulations
	Introduction
	Weak Gravitational Lensing, Notation and Conventions
	MADLens package design
	Results
	Summary & Outlook
	Appendix A: Differentiability with respect to Cosmological Parameters
	Appendix B: Details about FastPM and the sub-evolution scheme

	Learning effective physical laws for generating cosmological hydrodynamics with Lagrangian Deep Learning
	Introduction
	Lagrangian Deep Learning
	Results
	Discussion
	Appendix A: Materials and Methods

	A field-level emulator for modeling baryonic effects across hydrodynamic simulations
	Introduction
	Simulations
	Baryonic effects at the field-level
	Gaussian Process Emulator
	Results
	Conclusions

	Translation and Rotation Equivariant Normalizing Flow (TRENF) for Optimal Cosmological Analysis
	Introduction
	Method
	Results: generative samples in data space and data representation in latent space
	Results: likelihood and posterior analysis
	Modeling the Data With Mask
	Beyond spherical kernels
	Discussion

	Multiscale Flow for Robust and Optimal Cosmological Analysis
	Introduction
	Multiresolution Analysis with Fast Wavelet Transform
	Multiscale Flow
	Results
	Discussion
	Appendix A: Materials and Methods

	A comparative study of cosmological constraints from weak lensing using Convolutional Neural Networks
	Introduction
	Materials and Methods
	Results
	Transfer Learning
	Conclusions

	Conclusions
	Bibliography



