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Abstract 14 

It is important to understand temporal and spatial variations in the structure and photosynthetic 15 

capacity of tropical rainforests in a world of changing climate, increased disturbances and human 16 

appropriation. The equatorial rainforests of Central Africa are the second largest and least 17 

disturbed of the biodiversly-rich and highly productive rainforests on Earth. Currently, there is a 18 

dearth of knowledge about the phenological behavior and long-term changes that these forests are 19 

experiencing. Thus, this study reports on leaf area seasonality and its time trend over the past two 20 

decades as assessed from multiple remotely sensed datasets. Seasonal variations of leaf area in 21 

Congolese forests derived from MODIS data co-vary with the bimodal precipitation pattern in this 22 

region, with higher values during the wet season. Independent observational evidence derived from 23 

MISR and EPIC sensors in the form of angular reflectance signatures further corroborate this 24 

seasonal behavior of leaf area. The bimodal patterns vary latitudinally within this large region. 25 

Two sub-seasonal cycles, each consisting of a dry and wet season, could be discerned clearly. 26 

These exhibit different sensitivities to changes in precipitation. Contrary to a previous published 27 

report, no widespread decline in leaf area was detected across the entire extent of the Congolese 28 

rainforests over the past two decades with the latest MODIS Collection 6 dataset. Long-term 29 

precipitation decline did occur in some localized areas, but these had minimal impacts on leaf area, 30 

as inferred from MODIS and MISR multi-angle observations. 31 

 32 

Keywords: leaf area, remote sensing, Congolese rainforests, phenology, long-term trends, MODIS, 33 

MISR, DSCOVR EPIC 34 

  35 
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1. Introduction 36 

Tropical rainforests play an essential role in modulating regional climate, surface energy 37 

partitioning and the Earth’s carbon cycle (Chen et al. 2020; Cook et al. 2020). Understanding the 38 

spatial patterns and temporal variations and trends in the structure and functioning of rainforests, 39 

and the underlying mechanisms and their drivers, is crucial to gaining insights on how these 40 

biodiversly-rich and productive ecosystems will respond to future climate change, disturbances 41 

and human appropriation (Bi et al. 2015). The seasonal transition between wet and dry seasons is 42 

a distinct feature of tropical rainforests, which leads to intra-annual patterns of leaf flushing and 43 

abscission (Bi et al. 2015; Samanta et al. 2012). The growth-limiting impact of water deficit on 44 

rainforest during the dry season could be alleviated through deep roots and hydraulic redistribution 45 

(Oliveira et al. 2005; Pierret et al. 2016). However, a continued decline in leaf area and 46 

photosynthetic capacity attributed to long-term drying may alter forest composition and structure, 47 

such as large-scale tree mortality and dominance of drought-tolerant species (Adams et al. 2009; 48 

Fauset et al. 2012; Martínez-Vilalta and Lloret 2016). 49 

 50 

Seasonal variations in the Amazonian rainforests has been an active research topic in recent 51 

years (Brando et al. 2010; Huete et al. 2006; Morton et al. 2014; Myneni et al. 2007). The 52 

community-consensual view is that higher greenness and leaf area appear during the sunlight-rich 53 

dry season in well-hydrated Amazonian rainforests (Bi et al. 2015; Brando et al. 2010; Huete et al. 54 

2006; Myneni et al. 2007), even though this view has been questioned (Galvão et al. 2011; Morton 55 

et al. 2014). Science questions surrounding the functionality of Amazonian rainforests such as 56 

drought induced carbon sink variation and impacts of human interference are at the center of 57 

debates nowadays (Aragão et al. 2018; Brienen et al. 2015; Pires and Costa 2013; Yang et al. 58 

2018b). The equatorial rainforests of Central Africa, the second largest and least disturbed of the 59 

biodiversly-rich and highly productive rainforests on Earth (Cook et al. 2020), have attracted less 60 

attention compared with its Amazonian counterpart. 61 

 62 

The bimodal precipitation pattern (two wet and two dry seasons per year) in the Congo basin 63 

controlled by the migration of the tropical rain belt, is much different from that in the Amazon 64 

(Jiang et al. 2019; Nicholson 2018; Raghavendra et al. 2020; Sorí et al. 2017). For all vegetation 65 

types within the Congo Basin enhanced vegetation index (EVI) profiles were found to be highly 66 
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seasonal and strongly correlated to rainfall and to a lesser extent to light regimes (Gond et al. 67 

2013). Two-band enhanced vegetation index (EVI2) from the geostationary Spinning Enhanced 68 

Visible and Infrared Imager (SEVIRI) and polar-orbiting Moderate Resolution Imaging 69 

Spectroradiometer (MODIS) also revealed similar bimodal seasonal pattern (Yan et al. 2016a). It 70 

was found (Yan et al. 2017) that the spatial variation in wet season timing within the Congo Basin 71 

exhibited distinct latitudinal gradients whereas the variation in the canopy greenness cycle timing 72 

was relatively small. Analyses of MODIS EVI and solar-induced chlorophyll fluorescence (SIF) 73 

and fraction of absorbed radiation from the Global Ozone Monitoring Experiment-2 (GOME-2) 74 

suggest that an annual rainfall threshold of approximately 2000 mm yr-1 determines whether the 75 

supply of seasonally redistributed subsurface water storage from the wet season can satisfy plant 76 

water demands in the subsequent dry season; thus water availability exerts a first-order control on 77 

photosynthetic seasonality in tropical forests (Guan et al. 2015; Ndehedehe et al. 2019).  78 

 79 

Recent studies have also revealed a large-scale and long-term drying trend during the 1979 to 80 

2010 period over the Congolese rainforests in central Africa (Jiang et al. 2019; Raghavendra et al. 81 

2020; Zhou et al. 2014). This has been linked to a shift in tropical Walker circulation (Hua et al. 82 

2018; Hua et al. 2016), intensifying thunderstorm activities (Raghavendra et al. 2018) and 83 

Madden-Julian oscillation (Raghavendra et al. 2020). This drying was supposed to have led to a 84 

widespread loss in greenness of Congolese forests during 2000 to 2012 as they were claimed to be 85 

more sensitive and less resilient to climate change as compared to its Amazonian counterpart 86 

(Hirota et al. 2011; Jiang et al. 2019; Zhou et al. 2014) . On the other hand, some recent studies 87 

based on latest versions of satellite data reported no significant browning signals during the 2000 88 

to 2017 period (Chen et al. 2019; Piao et al. 2020). As such, the question of greening or browning 89 

of Congolese rainforests over the past 20 years is still unclear and in debate, especially in the 90 

context of increasing drying durations and from the perspective of biophysical parameters. 91 

Moreover, a drying climate over the past two decades has been associated with changes in forest 92 

composition, leaf phenology and community-level functional traits in tropical forests (Aguirre-93 

Gutiérrez et al. 2020), which requires further explorations. 94 

 95 

In addition to climatic factors mentioned above, degradational transitions in land cover and 96 

agricultural expansion also drive the vegetation dynamics in rainforests (Costa et al. 2007). Since 97 
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the Congolese rainforests are less disturbed by human activities compared with other equatorial 98 

forests (Cook et al. 2020), the climatic influence is our main focus. This study is focused on 99 

exploring the intra-annual seasonality and its controls, inter-annual variability and long-term 100 

trends in leaf area of the Congolese rainforests. More specifically, our primary objectives are to (i) 101 

document seasonal variation in leaf area of Congolese rainforests and how do seasonal patterns 102 

vary latitudinally within this large region; (ii) estimate the sensitivity of leaf area to changes in 103 

precipitation for different regions and seasonal cycles; (iii) analyze long-term trends in leaf area; 104 

and (iv) assess impact of long-term drying on leaf area and leaf optics. Multiple remote sensing 105 

datasets and vegetation proxy metrics are analyzed to achieve our objectives.  106 

 107 

Monitoring of dense vegetation such as equatorial rainforests represents one of the most 108 

complicated case in optical remote sensing because reflection of solar radiation saturates and 109 

becomes weakly sensitive to vegetation changes. At the same time, the satellite data are strongly 110 

influenced by changing sun-sensor geometry. This makes it difficult to discriminate between 111 

vegetation changes and sun-sensor geometry effects. As such, the above-mentioned leaf area 112 

seasonal variation and long-term greening/browning trends revealed by single-viewing remotely 113 

sensed datasets require more evidence. Our secondary objective is to demonstrate value of multi-114 

angle observations to unambiguously detect changes in properties of dense equatorial forests. 115 

 116 

2. Materials and Methods 117 

 118 

2.1 Datasets 119 

Various variables from several independent satellite sensors over the Congo basin were 120 

analyzed in this research. These include leaf area index (LAI), normalized difference vegetation 121 

index (NDVI) (Rouse et al. 1974), EVI (Liu and Huete 1995), land cover maps, land surface 122 

temperature (LST) and evapotranspiration (ET) from MODIS. Additionally, the following datasets 123 

were also utilized in this research: precipitation from Tropical Rainfall Measuring Mission 124 

(TRMM), photosynthetically active radiation (PAR) from Clouds and Earth’s Radiant Energy 125 

System (CERES), surface bidirectional reflectance factor (BRF) and directional hemispherical 126 

reflectance (DHR) from Multi-angle Imaging SpectroRadiometer (MISR) on the Terra platform 127 
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and BRF from Earth Polychromatic Imaging Camera (EPIC) on Deep Space Climate Observatory 128 

(DSCOVR). Table 1 shows datasets used in this study. 129 

 130 

2.1.1. MODIS data 131 

The Terra and Aqua MODIS Collection 6 (C6) 8-day composite LAI products (MOD15A2H 132 

and MYD15A2H) for the period of February 2000 to December 2019 were used in this study. The 133 

data are at 8-day temporal frequency and projected on a 500-m sinusoidal grid. The C6 MODIS 134 

LAI product correctly accommodates structural and phenological variability in all biome types and 135 

agree with ground truth data within root mean square error (RMSE) of 0.66 LAI (Yan et al. 2016b; 136 

Yan et al. 2016c). 137 

 138 

C6 Terra MODIS monthly NDVI and EVI products (MOD13C2) from February 2000 to 139 

December 2019 were also used as radiometric measures of vegetation greenness. The NDVI is a 140 

vegetation index widely used in many studies of vegetation dynamic. It is calculated as the 141 

difference between BRFs at near-infrared (NIR) and red spectral bands normalized by their sum. 142 

The EVI is calculated as the difference between BRFs at NIR and red spectral bands normalized 143 

by a linear combination of BRFs at blue, red and NIR bands. It was found especially useful for 144 

monitoring vegetation in high biomass tropical broadleaf forests (Brando et al. 2010; Xu et al. 145 

2011; Zhou et al. 2014). The C6 MOD13C2 product is projected on a 0.05° geographic Climate 146 

Modelling Grid (CMG) (Huete et al. 2002). In addition, monthly gridded Collection 5 (C5) 147 

MODIS NDVI/EVI product (MODVI) from February 2000 to December 2012 in CMG 1° 148 

resolution was also used in our study for comparisons. 149 

 150 

C6 Terra and Aqua MODIS land cover product (MCD12C1) from 2001 to 2019 at yearly 151 

intervals and at a 0.05° spatial resolution was used to identify our study area. Maps of several 152 

classification schemes are available in the MCD12C1 dataset (Friedl et al. 2002). The map of LAI 153 

classification scheme was adopted in this research (Supplementary Information Figure S1). 154 

 155 

Daytime LST from C6 Aqua MODIS (MYD11C3) for the period July 2002 to December 2019 156 

was used to quantify temperature variations related to changes in leaf area and other climate 157 

variables. MYD11C3 measures the temperature of Earth’s surface thermal emission at local time 158 
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~13:30, which is believed to provide the largest LST contrast between vegetated and non-vegetated 159 

surfaces compared to other MODIS LST measurements. Monthly LST values from the MYD11C3 160 

product are derived by compositing and averaging values from the corresponding month of 161 

MYD11C1 daily files, and projected on a 0.05° CMG grid (Wan 2014). 162 

 163 

The Terra MODIS C6 8-day composite evapotranspiration product (MOD16A2) projected on 164 

a 500-m sinusoidal grid from January 2000 to December 2019 was used to quantify climatic water 165 

deficit variations. The algorithm used to generate MOD16A2 is based on the logic of the Penman-166 

Monteith equation, which includes inputs of daily meteorological reanalysis data along with other 167 

MODIS products such as vegetation property dynamics, albedo, and land cover (Mu et al. 2007; 168 

Mu et al. 2011). 169 

 170 

2.1.2. TRMM Precipitation and CERES PAR Fluxes 171 

Monthly precipitation data from the TRMM (3B43 version 7) at 0.25° spatial resolution for 172 

the period January 2000 to December 2019 was used in this study. The 3B43 version 7 TRMM 173 

data provides the best-estimate precipitation rate and root-mean-square precipitation-error 174 

estimates by combining four independent precipitation fields (Huffman et al. 2007). Monthly at-175 

surface all-sky downward PAR, calculated by summarizing direct and diffuse PAR fluxes from 176 

CERES (SYN1deg_L3 product) at 1° resolution for the period of March 2000 to November 2019 177 

was used (Rutan et al. 2015). 178 

 179 

2.1.3. Terra MISR and DSCOVR EPIC data 180 

Level 2 land surface and aerosol products from MISR (version 3) for the period of January 181 

2000 to December 2019 were used in this study. The MISR sensor views the Earth’s surface with 182 

nine cameras simultaneously and enables direct measurements of angular variation of forest 183 

reflected radiation over a wide range of the phase angle that the single-viewing sensors (e.g., Terra 184 

and Aqua MODIS) can provide only in very limited cases (Bi et al. 2015; Song et al. 2018). MISR 185 

has a ground track repeat cycle every 16 days and achieves global coverage every 9 days. The 186 

surface reflectances, DHR and BRF, are at 1.1 km spatial resolution. The aerosol optical depth 187 

(AOD) is available at 4.4 km spatial resolution. The surface and aerosol products are projected on 188 
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Space Oblique Mercator (SOM) projection, in which the reference meridian nominally follows the 189 

spacecraft ground track. The land surface product provides BRF at nine MISR view angles (nadir, 190 

±26.1°, ±45.6°, ±60.0° and ±70.5°) in four spectral bands (446, 558, 672, and 866 nm). The MISR 191 

view directions form “view” lines on the polar plane (Supplementary Information Figure S2). Each 192 

view line sees a certain part of the MISR 360 km swath. 193 

 194 

Level 2 Multi-Angle Implementation of Atmospheric Correction (MAIAC) surface BRF 195 

retrieved from DSCOVR EPIC observations from 2016 to 2019 was also used. The EPIC 196 

instrument provides imageries in near backscattering directions with the phase angle between 4° 197 

and 12° at ten ultra-violet to NIR narrow spectral bands. This feature complements MISR 198 

observations since it extends MISR angular sampling to the near backscattering directions. The 199 

MAIAC BRF are available at four spectral bands; they are 443, 551, 680 and 780 nm. Data are 200 

projected on a 10-km sinusoidal grid and available at 65 to 110 min temporal frequency. 201 

 202 

2.2. Data processing 203 

This study was focused on structurally intact and undisturbed region of Congolese tropical 204 

moist broadleaf forests in Central Africa (5°N-6°S, 14°E-31°E), which were defined as a region 205 

with no changes in land cover type during the 2000 to 2019 period. First, evergreen broadleaf 206 

forest pixels in the LAI classification scheme at 0.05° resolution for which no land use/cover 207 

change was detected during the 2000 to 2019 period were selected. Second, the binary 0.05° 208 

evergreen broadleaf forest images were spatially aggregated into a 0.25° coarser resolution map to 209 

match the spatial resolution of rainfall TRMM dataset. Pixels at 0.25° resolution were labeled as 210 

rainforest only if at least 80% of its 0.05° sub-pixels (i.e., 20 in 25 sub-pixels) were forested. Third, 211 

those isolated pixels in the Congolese forest border were removed at 0.25° mask map to minimize 212 

human impact. The 1,653 pixels at 0.25° resolution identified by this procedure were considered 213 

as structurally intact and undisturbed forests.  214 

 215 

All vegetation and climate variables were selected using flags indicating highest retrieval 216 

quality. The 8-day 500 m LAI products from Terra (MOD15A2H) and Aqua (MYD15A2H) 217 

MODIS sensors were used to generate monthly average LAI values. The cloud contaminated 218 

pixels were removed. Only the best quality LAI values generated using main algorithm were used 219 
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in our analyses. The monthly LAIs were then spatially aggregated onto a 0.05° CMG grid (Chen 220 

et al. 2019). The evapotranspiration data used in our study was generated by selecting best-quality 221 

retrievals in the MODIS C6 ET product first and then degraded to 0.05° CMG monthly composites 222 

following the same procedure used to obtain LAI dataset. The LAI and NDVI/EVI were further 223 

refined by removing low quality data by consulting NDVI/EVI quality assurance (QA) flags. We 224 

selected highest quality LST based on LST QA. The LAI, NDVI/EVI, ET and LST datasets over 225 

intact and undisturbed region of the Congolese forests were then spatially aggregated to 0.25° 226 

resolution. During the process of spatial aggregation, only pixel whose sub-pixels are all valid was 227 

retained. Climatic water deficit (CWD) was calculated as the difference between potential 228 

evapotranspiration and actual evapotranspiration from the ET dataset. Nearest neighbor 229 

interpolation was adopted to resample data to 0.25° for the C5 NDVI/EVI and CERES PAR dataset 230 

at a spatial resolution coarser than 0.25°. 231 

 232 

The MISR surface BRF and DHR were first refined by removing pixels with AOD over 0.3. 233 

EPIC images at local solar time around 10:30 am were used in our analyses, which were also 234 

refined by removing pixels with AOD over 0.3. MISR and EPIC datasets were further re-projected 235 

to 0.01° and 0.1° CMG grids, respectively. We expressed BRF and DHR values in a coordinate 236 

system with the polar axis pointed towards the Sun. The view zenith angle in this “sun-tracking” 237 

coordinates was given by the phase angle, γ, i.e. the angle between the directions to the sun and 238 

sensor and calculated as 239 

 240 

� = acos�cos 	
� cos �
� + sin 	
� sin �
� cos(	�� − ���)� (1) 

 241 

where SZA, VZA, SAA, VAA are solar zenith angle, view zenith angle, solar azimuthal angle and 242 

view azimuthal angles (Bi et al. 2015). We assigned the sign “plus” to the phase angle if the 243 

direction to the MISR sensor approached the direction to sun from North, and “minus” otherwise 244 

(Supplementary Information Figure S2). In our sun-tracking coordinate system, the MISR BRF 245 

was a function of SZA, phase angle and MISR view line, the latter specified by VZA of the MISR 246 

nadir camera.  247 

 248 
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Monthly BRFs and DHRs accumulated over the 20-year period (2000 to 2019) were used to 249 

analyze seasonal variation of forest canopy reflectance. For each month, a median BRF value at 250 

each phase angle was calculated using all 20-year (2000 to 2019) valid observations of a given 251 

pixel in our study area. Histograms of valid MISR spectral DHR at each SZA accumulated over 252 

the 20-year period (2000 to 2019) were calculated for each pixel. The most probable values were 253 

used to represent spectral DHR of regions as a function of SZA. For analysis of interannual 254 

changes, we used median BRFs over the period of 2000-2002 and 2017-2019 to represent the start 255 

and the end period, respectively. 256 

 257 

2.3. Interpretation of forest BRF 258 

Reflectance of dense vegetation such as the Congolese forests saturates and becomes weakly 259 

sensitive to vegetation changes. At the same time, the satellite data are strongly influenced by 260 

changing sun-sensor geometry. This makes it difficult to discriminate between vegetation changes 261 

and effects of sun-sensor geometry. This section provides an overview of a new approach to detect 262 

changed in properties of dense vegetation using angular distribution of forest reflected radiation 263 

as a source of diagnostic information. This methodology will be used in Section 3.1 and Section 264 

3.4 to corroborate seasonal and long-term variation in leaf area. 265 

 266 

In the case of vegetation canopies with a dark background or sufficiently dense vegetation 267 

where the impact of the canopy background is negligible, the BRF can be approximated as 268 

(Knyazikhin et al. 2013): 269 

 270 

BRF�(Ω�, Ω) =
�(Ω�, Ω)��

1 − �
×

 !(1 − �)

1 − � !

  (2) 

 271 

The first factor on the right-hand side of Eq (2),�(Ω�, Ω)�� (1 − �)⁄ , is the Directional Area 272 

Scattering Factor (DASF), which describes the canopy BRF if the foliage does not absorb 273 

radiation. The second factor,  !(1 − �) (1 − � !)⁄ , is the Canopy Scattering Coefficient (CSC), 274 

i.e., the fraction of intercepted radiation that has been reflected from, or diffusively transmitted 275 

through, the vegetation. Unlike canopy reflectance and transmittance, the CSC quantifies 276 

scattering event per unit leaf surface and therefore conveys information about leaf optical 277 
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properties. Here Ω�~(SZA, SAA) and Ω~(VZA, VAA) are unit vectors directed from target to the 278 

sun and sensor, respectively; �� is the canopy interceptance defined as the portion of photons from 279 

the incident solar beam that collide with foliage elements for the first time. The symbol � 280 

designates the directional escape probability, i.e., the probability by which a photon scattered by a 281 

foliage element will exit the vegetation in the direction Ω through gaps. Spherical integration of 282 

)*+� ∙ -./(�
�) results in 1 − �, where � is the recollision probability, defined as the probability 283 

that a photon scattered by a foliage element in the canopy will interact within the canopy again 284 

(Yang et al. 2017). Finally,  !  is the wavelength dependent leaf albedo, i.e., the fraction of 285 

radiation incident on a leaf surface that is reflected or transmitted (Huang et al. 2007; Knyazikhin 286 

et al. 2011; Wang et al. 2003). We used Eq. (2) to interpret the BRF of Congolese forests. A short 287 

summary of its key properties is given below. 288 

 289 

The spectrally invariant DASF is a function of canopy geometrical properties, such as the tree 290 

crown shape and size, spatial distribution of trees on the ground, and within-crown foliage 291 

arrangement (Knyazikhin et al. 2013). Since our study is focused on structurally intact and 292 

undisturbed region of the Congolese forests (i.e., no changes in forest geometry), only variation in 293 

leaf area can cause variation in DASF. At a given SZA, DASF increases with LAI in all phase 294 

angles. At a given LAI, the DASF exhibits a sharp increase as phase angle tends to zero and reaches 295 

its maximum value in the retro-illumination direction. This phenomenon is known as the hot spot 296 

effect. Increasing SZA with constant LAI results in an asymmetric transformation of the DASF, 297 

i.e., increase in its magnitude in backscattering directions, and changes in the range of DASF 298 

variations for positive and negative phase angles. This asymmetric transformation also can cause 299 

the two DASF signatures to intersect. More details about the effects of changing SZA and LAI on 300 

BRF can be found in (Bi et al. 2015).  301 

 302 

The spectrally varying CSC is a function of the recollision probability and leaf optics. It 303 

increases with the leaf albedo: the more the leaves scatter, the brighter the canopy. As the 304 

recollision probability increases with LAI, an increase in LAI triggers an opposite tendency: more 305 

photon-foliage interactions and consequently a higher chance for photon to be absorbed. This tends 306 

to lower CSC. Such variations trigger a competing process: increase in LAI tends to darken the 307 

vegetation while increase in leaf albedo suppresses it. Note that DASF increases with LAI. This 308 
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not only compensates for a decrease in the CSC but also makes the BRF an increasing function 309 

with respect to leaf albedo and LAI.  310 

 311 

The leaf albedo is close to unity,  !~1 at weakly absorbing wavelengths such as NIR. In the 312 

case of dense vegetation, the recollision probability saturates and become weakly sensitive to LAI. 313 

In many instances, variation in LAI with leaf albedo unchanged cannot explain the magnitude of 314 

observed variation in CSC under the reflectance saturation conditions. Leaf albedo becomes a key 315 

parameter that controls changes in the CSC. A detailed mathematical analysis of variation in the 316 

CSC when LAI and leaf albedo vary simultaneously can be found in (Samanta et al. 2012).  317 

 318 

The leaf albedo is close to zero,  !~0 at strongly absorbing wavelengths. The contribution of 319 

multiple scattered photons to BRF and CSC is negligible. A decrease in LAI while holding leaf 320 

optics constant necessarily causes a decrease in BRF. The lack of BRF decrease indicates an 321 

increase in leaf albedo. Clearly this is also true for DHR, which is just hemispherically integrated 322 

BRF. We will use this property to detect changes in leaf albedo.  323 

 324 

We followed a methodology documented in (Marshak and Knyazikhin 2017; Song et al. 2018) 325 

to approximate DASF. In this approach, the green and NIR wavelengths are used. Given the BRF 326 

at these two wavelengths, the estimate DASF is as: 327 

 328 

DASF =
BRF23445BRF678

BRF23445 − 9(BRF678 − BRF23445)
 .  (3) 

 329 

Here BRF23445  and BRF678  are BRF at green and NIR wavelengths, 9 = (1 −  678) 23445/330 

( 678 −  23445), and  23445 and  678  stand for leaf albedo at green and NIR spectral bands. 331 

DASF defined by Eq. (3) does not vary with variation in  23445  and  5<3  as long as canopy 332 

structure remains unchanged. We used the leaf level albedo of the brightest leaf, whose values at 333 

green and NIR spectral bands were  === = 0.472,  AB= = 0.978 for MISR and  ==+ = 0.490, 334 

 EEF = 0.979 for EPIC. These values were obtained from Lewis and Disney’s approximation 335 

(Lewis and Disney 2007) of the PROSPECT model (Féret et al. 2008) with the following 336 

parameters: chlorophyll content of 16 μg cm−2; equivalent water thickness of 0.005 cm−1, and dry 337 
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matter content of 0.002 g cm−1. It was shown that retrieval of DASF using this methodology is 338 

weakly sensitive to the uncertainties in the spectral properties of the atmospheric optical depth 339 

above the canopy, and the spectral CSC is very sensitive to the presence of chlorophyll in the scene 340 

(Marshak and Knyazikhin 2017). 341 

 342 

2.4. Correlation and trends analysis 343 

Correlation of monthly average leaf area and the corresponding climatic variables (e.g., 344 

precipitation, PAR) was assessed using Pearson’s correlation coefficient. Trends in seasonal 345 

average variables (e.g., LAI) for the period of 2000 to 2012 and 2000 to 2019 were evaluated by 346 

ordinary least square (OLS) regression test using noise-removed dataset, and the trends with P ≤ 347 

0.1 were considered as statistically significant in this study to make our results comparable with 348 

those reported in (Zhou et al. 2014).  349 

 350 

3. Results 351 

3.1. Seasonal variation of leaf area and leaf optics 352 

Monthly precipitation data over the Congolese forests show a bimodal variation that suggests 353 

two wet and two dry seasons during the year. It varies between its maximum of about 219 mm in 354 

October and the minimum of about 86 mm in January (Figure 1). The wet seasons occur in March-355 

April-May (MAM, wet season 1) and September-October-November (SON, wet season 2), while 356 

dry season months are December-January-February (DJF, dry season 1) and June-July-August 357 

(JJA, dry season 2) (Figure 1 and Supplementary Information Figure S3a). The PAR data exhibit 358 

a quasi-bimodal pattern, although somewhat less distinctly: clear-cut variations from December to 359 

October and a weak oscillation from October to December (Figure 1 and Supplementary 360 

Information Figure S3). The sub-seasonal cycle 1 from December to May (dry season 1 and wet 361 

season 1) shows less precipitation and more PAR, while cycle 2 from June to December has more 362 

precipitation and less PAR (Figure 1 and Supplementary Information Figure S3). Monthly average 363 

LAI and EPIC NIR BRF data over the Congolese forests also exhibit notable bimodal seasonal 364 

variations, which follow the patterns of precipitation (Figure 1 and Supplementary Information 365 

Figure S3a and b). LAI varies between its maximum of about 5.7 during the wet seasons and a dry 366 

season minimum of about 4.6.  367 
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 368 

Congolese forests can be further divided into four phenological regions based on normalized 369 

20-year mean monthly climatology of precipitation, PAR and LAI using a K-means clustering 370 

method, which is an unsupervised measure to find similar features from multiple inputs (Celik 371 

2009; Xu et al. 2015). We use the four-cluster partition in this study because clusters are big 372 

enough to accumulate valid data for statistical analyses and their respective homogeneities are 373 

preserved (Figure 2). Other numbers of clusters are also tested to find an optimal partitioning, and 374 

all clusters were generally parallel to the Equator (Supplementary Information Figure S4), likely 375 

because the seasonality of these forests is mainly controlled by the migration of the tropical rain 376 

belt and variation of solar radiation along the latitude. Distinct seasonal patterns of climatic and 377 

vegetation variables are clearly seen in all phenological regions across the Congo Basin (Figure 378 

3). The amplitude of all variables tends to increase from region 1 (north) to region 3 (south) 379 

between March and October, which makes the bimodality more distinct. The highland forest 380 

(region 4) is characterized by lower LAI values and higher rainfall compared to its lowland 381 

counterparts, which is typical of montane forests. The EPIC sensor likely sees different slopes of 382 

the mountains; hence the NIR BRF is somewhat less synchronized with LAI compared to other 383 

regions. We exclude this region from further analyses given its smaller areal extent and specific 384 

character. 385 

  386 

Spectrally invariant DASF is a function of canopy geometrical properties, such as the tree 387 

crown shape and size, and leaf area density within the canopy. The DASF derived from MISR and 388 

EPIC observations of selected regions during wet and dry seasons are different (Figure 4, left 389 

Panels), showing a districting decrease in all directions from wet (October, November) to dry 390 

(January) seasons. Such a downward shift in DASF can only result from a negative change in LAI 391 

because other structural variables, such as tree crown shape and size do not vary seasonally in our 392 

forests. BRF at NIR spectral band exhibits similar behavior: a decrease in reflected radiation in all 393 

directions from October (November) to January (Supplementary Information Figure S5), which 394 

suggests more green leaves during the wet season. The CSC shows an opposite tendency, i.e., a 395 

positive increase between wet and dry seasons at all spectral bands (Figure 4, right panels). The 396 

decline in LAI is one reason for the observed increase (Section 2.3). A change in leaf albedo is 397 

another reason that can impact this coefficient (Section 2.3). Decrease in leaf albedo lowers the 398 
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CSC value whereas its increase results in the positive change of the CSC value. The question then 399 

arises whether one can detect changes in the leaf albedo given changes in the CSC.  400 

 401 

A reduction of leaf area tends to decrease forest canopy reflectance (BRF and consequently 402 

DHR). At strongly absorbing red (672 nm) wavelength, however, the DHR has increased between 403 

wet and dry seasons from 0.014 to about 0.024 in regions 1 and 2 and from 0.015 to 0.018 in region 404 

3 (Figure 4, left panels). This increase in DHR with decreasing LAI necessarily indicates an 405 

increase in leaf albedo (Section 2.3). This also takes place for strongly absorbing blue (446 nm) 406 

and moderately absorbing green (551 nm) wavelengths: no decrease in DHR from wet to dry 407 

season. This suggests an increase in leaf albedo at visible spectral bands. At NIR (866 nm) 408 

wavelength, forest canopy reflectance and CSC show opposite tendencies, namely, BRF (and 409 

DHR) decrease whereas CSC increases between wet and dry seasons. Similar tendencies were 410 

documented for the Amazonian rainforests (Köhler et al. 2018) and for sufficiently dense broad- 411 

and needleleaf forests in the USA (Knyazikhin et al. 2013). A decrease in LAI (and consequently, 412 

the recollision probability) tends to increase the CSC (Section 2.3). Under saturation conditions, 413 

however, the change in the recollision probability is negligible. The observed variation in CSC is 414 

therefore likely due to a positive change in the leaf albedo. 415 

 416 

The sensitivity analyses based on the PROSAIL model (Jacquemoud et al. 2009) suggest that 417 

under saturation conditions (LAI>4), the scattering coefficient is nearly insensitive to variations in 418 

LAI and SZA (Supplementary Information Figure S6, panels a and b). The observed changes in 419 

the CSC between wet and dry seasons therefore are not due variation in LAI and SZA. In the 420 

spectral interval between 450 nm and about 750 nm, chlorophyll is the dominant pigment that 421 

absorbs radiation primarily in the blue and red regions of the spectrum, less in in the green and 422 

essentially none in NIR. This feature makes the CSC sensitive to its concentration in the green and 423 

flat in NIR spectral bands (Supplementary Information Figure S6, panel c). The chlorophyll 424 

absorption spectrum declines rapidly with wavelength near the red spectral region and vanishes at 425 

about 770 nm, resulting in a sharp jump in the spectrum of leaf albedo from its minimum to a 426 

plateau around 800 nm. The magnitude of this plateau is controlled by the amount of dry matter. 427 

This imparts sensitivity of the NIR CSC to the concentration of dry matter (Supplementary 428 

Information Figure S6, plot d).  429 
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 430 

In summary, seasonal variation of leaf area in Congolese forests co-varies with the bimodal 431 

precipitation pattern, with higher values during the wet seasons. The bimodal pattern is different 432 

in the three identified regions, with its bimodality more distinct from the south to the north. The 433 

canopy scattering coefficient exhibits an opposite tendency: its value increases from wet to dry 434 

and decreases from dry to wet seasons. These variations can be linked to variation in the 435 

concentrations of chlorophyll and/or dry matter in green leaves.  436 

 437 

3.2. Sensitivity of leaf area to changes in precipitation 438 

Pearson’s correlation coefficients between monthly average precipitation, PAR and LAI for 439 

the identified regions (Figure 2) and seasonal periods are shown in Table 2. With the exception of 440 

region 3 and seasonal cycle 1, a significant positive correlation between precipitation and LAI is 441 

observed. Moreover, the time series of 20-year monthly precipitation and LAI over the Congolese 442 

forests are also significantly positively correlated (R=0.67, P<0.01, Supplementary Information 443 

Figure S7). Such correlations between LAI and PAR (P<0.01) are found in regions 1 to 3 during 444 

the cycle 2 (June through November) and in region 3 during the cycle 1 (December through May). 445 

These variables are negatively correlated (P<0.1) in region 1 during cycle 1 (Table 2). 446 

 447 

We estimate the sensitivity, ∆LAI ∆precipitation⁄ , of monthly LAI to changes in precipitation 448 

for different regions and seasonal cycles using the slopes of linear regressions. The overall 449 

sensitivity of LAI to changes in precipitation varies between regions and depends on the seasonal 450 

cycle. It tends to decrease from north to south for the full seasonal cycle (December to November) 451 

(Figure 5a). The regions show weak variation of the sensitivity within seasonal cycles (cf. Figure 452 

5b and 5c). LAI exhibits a stronger response to changes in the precipitation during the seasonal 453 

cycle 1 (December to June). This difference is due to very different distributions of precipitation, 454 

PAR and climatic water deficit during cycles 1 and 2 (Supplementary Information Figure S8). 455 

More precipitation occurs in cycle 2 than in cycle 1, causing a higher climatic water deficit. Thus, 456 

LAI in our forests is more sensitive to the changes in precipitation during cycle 1.  457 

 458 

3.3. Long-term trends in leaf area  459 
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A widespread decline in Congolese rainforest greenness over the 2000-2012 period has been 460 

recently reported (Jiang et al. 2019; Raghavendra et al. 2020; Zhou et al. 2014). This result 461 

however was questioned, suggesting no significant browning signal in the 2000 to 2017 period 462 

(Chen et al. 2019; Piao et al. 2020). These contradictory results justify a re-examination of the 463 

long-term trend in greenness of the Congolese forests. Here, we reproduce linear trends in C5 EVI 464 

and precipitation in April-May-June for the 2000 to 2012 period as reported in (Zhou et al. 2014) 465 

and for an extended period of 2000 to 2019 first, and then generate linear trends in C6 EVI, NDVI 466 

and LAI for the same periods.  467 

 468 

The MODIS C5 EVI declines over 98% of the study area, with 54% showing a significant 469 

negative trend (P<0.1) (Figure 6a). TRMM precipitation declines over 77% of the area with 13% 470 

indicating significant change with P<0.1 (Figure 6b). These results suggest decrease in rainfall and 471 

widespread decline in Congo rainforest greenness from 2000 to 2012. Note that “drying area” is 472 

reduced from 77% to 63% (13% to 5% with P<0.1) for the period of 2000 to 2019.  473 

 474 

The widespread decline of Congo rainforest greenness in the 2000 to 2012 period has 475 

disappeared in the latest Collection 6 MODIS data (Figure 6, middle panels). Our re-analyses 476 

suggest declines in EVI, NDVI and LAI over 43% to 51% of the study area with only 2% to 5% 477 

showing significant negative trends (P<0.1). For the longer period (2000 to 2019), the browning 478 

areas have been reduced to 19%-42%, with а negative trends below 4% (P<0.1) (Figure 6, lower 479 

panels). The difference in the trends is attributable to Terra MODIS sensor degradation found in 480 

C5 data (Wang et al. 2012; Zhang et al. 2017). 481 

 482 

The regional mean precipitation and PAR over 20 years do not show significant positive or 483 

negative trends for all seasons across the Congo basin because of strong interannual variability 484 

(Supplementary Information Figure S9). The regional mean LAI, however, increases by 0.0865 485 

(P=0.0168) per decade during wet season 1 (March to May) from 2000 to 2019 (Supplementary 486 

Information Figure S9b), and the leaf area trends are also positive but not significant for the other 487 

wet or dry seasons (Supplementary Information Figure S9a, c, d).  488 

 489 

3.4. Impact of drying trends on leaf area and leaf optics 490 
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Here we focus on a South-East part (0.5°N-2.5°S, 25.5°E-28.5°E) of our study area, where a 491 

significant precipitation decline is observed (Figures 7a and b), with the goal of understanding the 492 

impact of this event on changes in forest structure and leaf optics.  493 

 494 

With the exception of NDVI in the dry season 2 (June to August), no significant decline or 495 

increase in trends in regional mean NDVI, EVI and LAI over the past two decades are detected. 496 

The time series of LAI and EVI are found to be strongly correlated with R=0.56 (P<0.01) in wet 497 

season 1 (MAM) and R=0.74 (P<0.01) in dry season 2 (JJA).  498 

 499 
Next, we examine MISR BRFs at NIR (866 nm) spectral band over the region with significant 500 

drying happened during the early (2000-2002) and later (2017-2019) part of the 20-year 501 

observation period. Reflectance in April (wet season) and June (dry season) are under almost 502 

identical observation and illumination conditions (Figure 8 left panels). No significant differences 503 

in magnitude and shape of angular signatures of the reflected radiation at the beginning and the 504 

end of our observation period have been detected. Similarly, no changes in the canopy spectral 505 

coefficient at all MISR spectral bands are found. These findings suggest no changes in structure 506 

and leaf optics of the Congolese forests before and after the observed drying event. Thus we 507 

conclude, MODIS NDVI, EVI and LAI long-term records and MISR angular signatures of forest 508 

reflected radiation show no signs of long-term drying impact on structure and leaf optics of the 509 

Congolese forests. 510 

 511 

4. Discussion 512 

Tropical rainforests play an essential role in modulating regional climate, surface energy 513 

balance and the Earth’s carbon cycle (Chen et al. 2020; Cook et al. 2020). Understanding the 514 

seasonal and long-term variations in the structure and function of these ecosystems is crucial to 515 

prognosing their response to climate change (Bi et al. 2015). The equatorial central African 516 

rainforests, the second-largest on Earth after the Amazonian rainforests, is still lacking systematic 517 

analyses of its phenological behavior and interannual variation. The purpose of this study is to 518 

analyze seasonal changes and long-term trends in leaf area in intact and undisturbed regions of the 519 

Congolese rainforests (Supplementary Information Figure S1) using remote sensing data from the 520 

past two decades. We focus on the analysis on three regions identified with normalized 20-year 521 
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mean monthly climatology of precipitation, PAR and LAI by using a K-means clustering 522 

algorithm, an unsupervised measure to find similar features from multiple inputs (Figure 2). This 523 

clustering technique also localizes a highland region in the southeast part (Region 4 in Figure 2) 524 

that represents a montane ecosystem.  525 

 526 

Monthly precipitation data from TRMM show a bimodal variation over the Congolese 527 

rainforest, suggesting two dry (December-January-February and June-July-August) and two wet 528 

(September-October-November and March-April-May) seasons (Figure 3). This is consistent with 529 

other precipitation datasets, such as Global Precipitation Climatology Centre (GPCC), Global 530 

Precipitation Climatology Project (GPCP) and Climatic Research Unit (CRU) (Jiang et al. 2019; 531 

Raghavendra et al. 2020; Sorí et al. 2017). Monthly average LAI from MODIS and forest canopy 532 

reflectance from EPIC follow seasonal patterns of precipitation, with higher values during the wet 533 

seasons (Figure 3). The PAR incident on the forest canopy also exhibits a bimodal pattern, 534 

although somewhat less distinct: clear-cut variations from December to October and a weaker 535 

oscillation from October to December. Sub-seasonal cycle from December to May shows less 536 

precipitation and more PAR, while the cycle from June to December has more precipitation and 537 

less PAR (Figure 3). The bimodal patterns vary latitudinally with the amplitude increasing from 538 

North to South (Figure 3). 539 

 540 

The MODIS LAI values used in this research are mostly retrieved under the condition of 541 

reflectance saturation. The seasonality of satellite data-based LAI may therefore result from a 542 

decreased retrieval accuracy and/or variation in sun-satellite sensor geometry (Galvão et al. 2011; 543 

Morton et al. 2014). We develop a new approach that allows us to unambiguously detect changes 544 

in properties of the Congolese rainforest using angular variation of forest BRF as a source of 545 

diagnostic information. This methodology is applied to obtained independent observational 546 

evidence from MISR and EPIC data in support of the validity of the satellite derived seasonal 547 

variation in leaf area. Angular variations of forest DASF and canopy reflectance observed by the 548 

MISR and EPIC sensors clearly show seasonal increases and decreases in the amount of radiation 549 

reflected by the Congolese forests in all directions simultaneously (Figure 4; Supplementary 550 

Information Figure S5). Such changes can only be attributed to corresponding seasonal increases 551 

and decreases of LAI. This corroborates the seasonal behavior of leaf area derived from the 552 
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MODIS observations. We also find that the canopy scattering coefficient exhibits an opposite 553 

tendency: its value increases from wet to dry and decreases from dry to wet seasons in the 554 

Congolese rainforests (Figure 4, right panels). Similar tendencies were also found in Amazonian 555 

rainforests (Köhler et al. 2018). Such variation can be linked to variation in the concentrations of 556 

chlorophyll and/or dry matter in green leaves (Supplementary Information Figure S6). In 557 

summary, our approach based on exploiting angular variation of forest reflected radiation as a 558 

source of diagnostic information, rooted in physics of radiative transfer, allows us to 559 

unambiguously detect changes in canopy structure and leaf optics. This undoubtedly offers the 560 

benefit of greater reliability of our conclusion. 561 

 562 

A significant positive correlation between precipitation and LAI is observed for our study area 563 

and seasonal cycles (Table 2). The time series of 20-year monthly precipitation and LAI over the 564 

Congolese forests are significantly positively correlated (R=0.67, P<0.01, Figure S7). Whereas 565 

LAI and precipitation are always positively correlated, correlation between LAI and PAR can be 566 

both negative as during cycle 1 in regions 1 and 2 and positive as in cycle 2 (Table 2). These 567 

findings suggest that the observed seasonality of LAI is mainly controlled by precipitation in the 568 

Congolese rainforests (Gond et al. 2013; Yan et al. 2016a), as contrast to its Amazonian 569 

counterpart, where LAI is positive correlated with PAR (Bi et al. 2015; Brando et al. 2010; Huete 570 

et al. 2006; Myneni et al. 2007). Abundant annual precipitation (2,332 mm yr-1) creates a well-571 

hydrated environmental condition in the Amazonian rainforests (Yang et al. 2018a), thus the water 572 

is not a main limitation and higher leaf area appears during the sunlight-rich dry season. А decrease 573 

in annual precipitation (1,775 mm yr-1) makes the leaf flushing and photosynthesis in the 574 

Congolese rainforests more dependent on water supply, especially in dry season when the monthly 575 

precipitation can fall below 90 mm (Figure 1). Less solar radiation during the dry season (Figure1 576 

and Supplementary Information Figure S3) may lead to lower leaf area in the Congolese 577 

rainforests. This, however, can only explain LAI decrease in dry season 2 (JJA). In addition, a 578 

low-level cloudiness developing during the dry season 2 causes high quality of light that sustain a 579 

more efficient photosynthesis (Mercado et al. 2009; Philippon et al. 2019), which should benefits 580 

leaf area growing. Hence, water supply is believed as the main limitation for seasonal leaf area 581 

variation. From the ecological perspective, the difference in the total annual precipitation and its 582 
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diverse intra-annual variability strongly influence phenological behavior of rainforests and other 583 

vegetation types in the tropical regions (Ndehedehe et al. 2019; Yan et al. 2017).  584 

 585 

Distinct spatiotemporal dependence of leaf area sensitivity to the seasonal variation in 586 

precipitation is observed in the Congo basin. The sensitivity of LAI to changes in precipitation 587 

tends to decrease from north to south for the full seasonal cycle (December to November, Figure 588 

5a). The phenological regions (Figure 2) show weak variations of the sensitivity within a seasonal 589 

cycle (cf. Figure 5b and 5c). LAI exhibits a stronger response to changes in precipitation from 590 

December to June compared to the second seasonal cycle (June to November). This difference is 591 

attributed to very different distributions of precipitation, PAR and climatic water deficit during the 592 

two seasonal cycles (Supplementary Information Figure S8). Note that only very few factors were 593 

accounted for in our analyses. Further analyses of combined effects of precipitation, PAR, and 594 

other factors are needed to obtain a comprehensive insight into the causes of leaf area seasonal 595 

variation. Besides, a better understanding of the phenological response of Congolese rainforests 596 

depends on further in situ studies as satellite data can only complement but not substitute field 597 

data. 598 

 599 

A widespread decline in Congolese rainforest greenness over the 2000-2012 period has been 600 

recently reported (Jiang et al. 2019; Raghavendra et al. 2020; Zhou et al. 2014). This result 601 

however was questioned, suggesting no significant browning signal in the 2000 to 2017 period 602 

(Chen et al. 2019; Piao et al. 2020). These contradictory results justify a re-examination of the 603 

long-term trend in greenness of the Congolese forests.  604 

 605 

We reproduce their result using the same Terra MODIS C5 EVI data (Figure 6, upper panels), 606 

which is then compared to that from the latest MODIS C6 EVI dataset. We find that the widespread 607 

decline of Congo rainforest greenness disappear in the latest C6 MODIS data (Figure 6, middle 608 

and lower panels): only 2% to 3% of the forests show significant negative trends in EVI, NDVI 609 

and LAI (P<0.1) compared to 54% (P<0.1) decline in EVI reported in (Zhou et al. 2014). The 610 

difference in the trends detected by C5 and C6 EVIs is attributed to the Terra MODIS sensor 611 

degradation for the period after 2007 (Lyapustin et al. 2014; Wang et al. 2012; Zhang et al. 2017). 612 

Moreover, a significant increase in total aerosols over the Congolese rainforests within the last 613 
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decade has been detected (Moparthy et al. 2019). This can amplify the apparent long-term trends 614 

of canopy greenness these changes in aerosol loads are not correctly taken into account. C6 data 615 

reprocessing has significantly alleviated these problems (Detsch et al. 2016; Zhang et al. 2017) 616 

and made the result more credible.  617 

  618 

A significant precipitation decline has been observed in the South-East part of our study area 619 

(Figures 7a and b). However, no significant decline or increase in trends in regional mean NDVI, 620 

EVI and LAI over the past two decades are detected (Figures 7c and d). The time series of LAI 621 

and EVI are found to be strongly correlated with R=0.56 (P<0.01) during wet (March-April-May) 622 

and R=0.74 (P<0.01) during dry (June-July-August) seasons. We also find no significant 623 

differences in magnitude and shape of angular distribution of forest reflected radiation and leaf 624 

optics at the beginning and the end of our observation period (Figure 8). Thus, MODIS NDVI, 625 

EVI and LAI long-term records and MISR angular signatures of forest reflected radiation show no 626 

signs of drying impact on structure and leaf optics even in the South-East part of the Congolese 627 

forests where a significant drying is observed.  628 

 629 

Long-term drying does not induce vegetation degradation, and possible explanations for the 630 

neutral response of leaf area to the declines in precipitations at the seasonal and inter-annual scales 631 

could be given as follows. First, the decrease in monthly precipitation under a long-term drying 632 

condition is much smaller compared to a wet-to-dry precipitation amplitude of about 219 mm to 633 

86 mm (Figure 1), which still can satisfy plant water demands. Dry frequency is not high enough 634 

to suppress compensation of water supply from other months or seasons, allowing the forest to 635 

endure precipitation deficit. Second, decades of long-term drying in the Congolese rainforests may 636 

result in more drought-adapted species compared with other tropical forests, and this adaptive 637 

mechanisms by utilization of soil water reserves can tolerate water deficit short-time events (Asefi-638 

Najafabady and Saatchi 2013; Borchert 1998). Third, suitable climate conditions—slight 639 

temperature increase and climatic water deficit decline (Supplementary Information Figure S10), 640 

may benefit the growth of vegetation (Li et al. 2019) and in turn offset the negative impact from 641 

precipitation decline. More comprehensive explorations, such as model-based study, on this debate 642 

are still needed in the future investigation to get a better understanding. 643 

 644 
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5. Conclusion 645 

This study comprehensively evaluated the seasonality and long-term trends of leaf area in 646 

Congolese forests with multiple remotely sensed datasets. We found that the seasonal variations 647 

of leaf area from MODIS data co-vary with the bimodal precipitation pattern, with higher values 648 

during the wet season, and the bimodal patterns vary latitudinally within this large region. Angular 649 

reflectance signatures derived from MISR and EPIC data further corroborated this seasonal 650 

behavior of leaf area. Two sub-seasonal cycles, each consisting of a dry and wet season, exhibited 651 

different leaf area sensitivities to changes in precipitation. No widespread decline in leaf area was 652 

detected across the Congolese rainforest over the past two decades with the latest MODIS C6 653 

dataset. Long-term drying did happen in some local areas of Congolese forests; however, those 654 

had minimal impacts on leaf area detected from MODIS and MISR observations. 655 
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Fig. 1. Annual course of monthly-average precipitation, PAR, LAI, EPIC NIR BRF over the Congolese forests. The 

annual cycle is repeated two times for better demonstration. Precipitation, LAI and NIR BRF clear show bimodal 

variations with peaks in March-April-May (MAM, wet season 1) and September-October-November (SON, wet 

season 2).  
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Fig. 2. Four phenological regions clustered based on normalized 20-year mean monthly climatology of precipitation, 

PAR and LAI data using K-Means clustering method. Region 4 (0.2°S-3°S, 26.8°E-28.5°E) represents montane forests 

located at moderate elevations between 530 m and 1728 m. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 3. Annual course of monthly-average precipitation, PAR, LAI, EPIC NIR BRF over (a) region 1, (b) region 2, (c) 

region 3 and (d) region 4. Phenological regions are shown in Figure 2. The annual cycles are replicated two times for 

better demonstration. The peak-to-peak amplitude of bimodal curves tends to increase from north (region 1) to south 

(region 3).  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Fig. 4. Directional Area Scattering Factors (DASF) derived from MISR and DSCOVR EPIC data (left panels), 

MISR Directional Hemispherical Reflectances (DHR) and Canopy Scattering Coefficients (CSC) during wet and 

dry seasons over region 1 (panels a and b), region 2 (panels c and d) and region 3 (panels e and f). The circles and 

solid triangles represent MISR and DSCOVR EPIC observations. The lines show polynomial fits to MISR data. 

There were no enough valid reflectance data over region 3 in October. Therefore, we use November to represent the 

dry season in this region. 
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(a) 

 

(b) 

 

(c) 

 

Fig. 5. Relationship between regional monthly precipitation and LAI during (a) full annual seasonal cycle, (b) seasonal 

cycle 1 (December-May) and (c) cycle 2 (June-November). Slopes of the regression lines are taken as a measure of 

LAI sensitivity to changes in in the precipitation (ΔLAI/ΔPrecipitation).  
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(a) C5 EVI 

 

(b) TRMM precipitation 

 

(c) TRMM precipitation 

 

(d) C6 EVI 

 

(e) C6 NDVI 

 

(f) C6 LAI 

 

(g) C6 EVI 

 

(h) C6 NDVI 

 

(i) C6 LAI 

 

Fig. 6. Linear trends per decade in April-May-June for the period of 2000-2012 and 2000-2019. Pixels with the plus 

symbol indicate statistically significant trends (P<0.1). Percentages of pixels with negative trends and negative trends 

at P<0.1 are shown above each plot. The upper plots show trends in MODIS Collection 5 EVI from 2000 to 2012 

(panel a) and TRMM precipitations for the 2000 to 2012 (panel b) and 2000 to 2019 (panel c) periods. Trends in 

MOIDIS Collection 6 EVI, NDVI and LAI for the 2000 to 2012 and the 2000 to 2019 periods are shown in middle 

and lower plots, respectively.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 7. Upper panels. Precipitation linear trends per decade during (a) wet season 1 (MAM) and (b) dry season 2 (JJA) 

for the period of 2000-2019. Pixels with the plus symbols indicate statistically significant trends (P<0.1). A region 

between 0.5°N-2.5°S and 25.5°E-28.5°E where a significant precipitation decline was observed both during the wet 

and dry seasons is shown as a green rectangle. Lower panels. Standardized regional mean anomalies in LAI, NDVI 

and EVI for the selected region during (c) wet (MAM) and (d) dry (JJA) seasons for the 2000-2019 period. The linear 

trend (with 95% confidence interval) per decade and its significance level P are shown in legends. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 8. MISR BRF at NIR (866 nm) and canopy scattering coefficient (right panels) of the region with significant 

drought at the beginning (2000-2002) and at the end (2017-2019) of the 2000-2019 observation period. Upper and 

lower panels show BRF and the coefficient in April (wet season) and June (dry season), respectively. These variables 

other months show similar behavior. 
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Table 1 

Brief information of variables and datasets used in this study. 

Variable Product Spatial resolution Temporal resolution 

LAI C6 MOD15A2H & MYD15A2H 500 m  8 day 

EVI C6 MOD13C2 0.05° monthly 

EVI C5 MODVI 1° monthly 

NDVI C6 MOD13C2 0.05° monthly 

Land cover C6 MCD12C1 0.05° yearly 

LST C6 MYD11C3 0.05° monthly 

Evapotranspiration C6 MOD16A2 500 m 8 day 

Precipitation TRMM 0.25° monthly 

PAR CERES 1° monthly 

BRF Terra MISR 1.1 km 16 day 

DHR Terra MISR 1.1 km 16 day 

BRF DSCOVR EPIC 10 km 65 to 110 min 

 

 

Table 2 

Pearson’s correlation coefficients of regional mean monthly LAI and precipitation and PAR over different region and 

different seasonal cycle. (*P<0.1, **P<0.01) 

  Cycle 1 Cycle 2 annual 

R (TRMM, LAI) 

Entire region 0.68** 0.59** 0.63** 

Region 1 0.81** 0.41** 0.78** 

Region 2 0.58* 0.55** 0.56** 

Region 3 0.13 0.65** 0.48** 

R (PAR, LAI) 

Entire region 0.01 0.67** -0.01 

Region 1 -0.17* 0.46** -0.29** 

Region 2 -0.07 0.64** 0.07 

Region 3 0.25** 0.73** 0.52** 

 
 




