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Abstract

Probabilistic models of pattern completion have several ad-
vantages, namely, ability to handle arbitrary conceptual rep-
resentations including compositional structures, and explic-
itness of distributional assumptions. However, a gap in the
theory of induction of priors has hindered probabilistic mod-
eling of cognitive generalization biases. We propose a fam-
ily of methods parameterized along a value % that controls
the degree to which the probability distribution being in-
duced generalizes from the training set. The extremes of the
4-continnum correspond to relative frequency methods and
extreme maximum entropy methods. The methods apply
to a wide range of pattern representations including simple
feature vectors as well as frame-like feature DAGs.

Introduction

The motivations for this work arise from the shortcomings
of existing theoretical frameworks in two fields:

Many neural network pattern completion models have the
desirable characteristic of being inherently biased to gen-
eralize from training data. Two drawbacks, however, are:
(a) frequently there are no clearly specified desiderata on
the nature of statistical distributions to be learned by a
neural net, and (b) we are currently unable to efficiently
represent compositional structures as feature vectors.!

Probabilistic and statistical inductive models, being sym-
bolic, can easily handle compositional structures. How-
ever, there is a lack of models that can be biased to gener-
alize from training data; specifically, the most common
methods for inducing prior probability distributions—
relative frequency priors and maximum entropy priors—
are inadequate.

*This paper has benefitted greatly from helpful discussions with
Terry Regier and Steve Omohundro, and | am grateful to Marti Hearst
for implementing code to generate the induced distributions. Thanks to
Nigel Ward for proofreading, and also to Robert Wilensky, Jerome Feld-
man, and the members of the BAIR and Lg seminars. This research was
sponsored in part by the Defense Advanced Hesearch Projects Agency
(DoD), monitored by the Space and Naval Warfare Systems Command
under NO0039-88-C-0292, the Office of Naval Research under contract
N00014-89-J-3205, and the Sloan Foundation under grant 86-10-3.

! A number of recent proposals employ recurrent nets to achieve “dy-
namic compositionality” that can sequentially “‘expand out” composi-
tional structures (e.g., Pollack 1989, 1990), but there is little consensus
as to the limits of such approaches.
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To address this gap we propose a family of inductive meth-
ods, called the y-continuum, that can be thought of in several
ways:

e From the associationist point of view, a functional specifi-

cation for a class of pattern completion models.

From the learning point of view, a non-Bayesian inductive
learning method for a probabilistic inference engine. An
inductive bias is determined by a set of abstractive rela-
tions.

From the probability theory point of view, a method for
generating priors from a training set. The method incor-
porates an a priori abstractive bias that causes the model
to make generalizations.

Our driving application is probabilistic pattern completion
to support integrated natural language parsing and semantic
interpretation, where the patterns combine lexical, syntactic,
and semantic structures. In a probabilistic pattern comple-
tion model, the input is an abstract or partial pattern, and
the task is to select the most probable complete pattern.

The proposed methods are more flexible than neural net-
works with respect to representation constraints; concepts
need not be represented as feature vectors, but only need
to satisfy a weaker semi-lattice constraint, explained be-
low. Limited forms of compositional conceptual structure
are permitted. At the same time, the nature of the proba-
bility distributions that can be learned is clearly formulated,
and these distributions are better for modeling generaliza-
tion from a training set than either relative frequency or
maximum entropy priors.

Our proposal fills a gap in the existing theory of probabil-
ity distribution induction. However, it is not intended that
the distributions generated by our methods necessarily be
evaluable by computationally tractable means. The meth-
ods are information-theoretic functional specifications, for
which different approximation heuristics may be appropriate
depending upon the domain.

Pattern Structure and the Abstraction Space

We shall only consider examples where the patterns (in-
stances) are encoded using feature-vector and feature-DAG
(frame-like) representations, though the internal structure of
patterns is of no consequence to the inductive methods and
many other representations could be used as well. The set



Figure 1: Feature abstraction semi-lattices.
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Figure 2: Semi-lattices for (a) incomplete feature abstraction,
(b) position-insensitive feature abstraction.

of possible patterns must be finite (though arbitrarily large)
and forms the space of simple events. To perform pattern
completion using probabilistic inference, we need to know
the probability distribution over these events.

Compound events constitute abstractions over groups of
patterns. Note that all patterns are defined to be simple
events; compound events or abstractions are not proper pat-
terns, but partial or incomplete patterns. This usage should
not be confused with the conventional Al use of the notion
of abstraction as an epistemological relationship between two
concepts.

The shape of the abstraction hierarchy is determined by
a set of abstractive relations. Figure 1 shows, for 2- and
3-bit vector patterns, the hierarchy determined by a feature-
abstractive relation that substitutes “x” or “don’t care” bits
for feature values. The leaf nodes are complete patterns (sim-
ple events); the internal nodes are incomplete patterns (com-
pound events).

In a pattern completion task, the input is an internal node
representing an abstract or partial pattern. The task of com-
pleting the pattern corresponds to selecting the most prob-
able leaf node (complete pattern) under the internal node.
(The term “simple event” is somewhat counterintuitive when
speaking of complete patterns, which are more fleshed out
than incomplete ones.)

Minimal constraints are imposed on the shape of the ab-
straction space. In fact, the only constraint is that the ab-
stractive relations must determine a semi-lattice hierarchy,
meaning that for any two concepts there must be a unique
least upper bound (most specific common ancestor). Fig-
ure 2 shows other useful examples of abstractive relations.

The sorts of patterns that motivated development of the
v-continuum are more complex than feature-vectors. These
patterns, which derive from semantic network and predi-
cate logic languages, can be represented as feature-DAGS,
and allow compositional structures and variable unification.
Figure 3 shows two (complete) patterns that demonstrate
how feature-DAG representations can be used (the details
are unimportant here). An example of a feature-DAG repre-
senting plan decomposition is shown in (a). For our parsing
and interpretation application, a sample feature-DAG for the
nominal compound weekend guest is shown in (b). Details
on how we map unification-grammar structures into feature-
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Figure 3: Feature DAGs (see text).
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Figure 4: Semi-lattice for a feature-DAG pattern space. The leaf
nodes (shaded) are the simple events. Here each feature-DAG
is restricted to depth 2 and branch factor 2; there are only two
concepts a and b, and a is superordinate to b; and there are two
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primitive roles z and y that combine to form a third composite
role z.

DAGs (for a simpler probability model) are given in an earlier
paper (Wu 1990).

Given these sorts of feature-DAG patterns, Figure 4 shows
the semi-lattice determined by the abstractive relations we
use for our parsing and semantic interpretation model, mak-
ing some simplifying restrictions. The abstractive relations
determine how to generate all the ancestors of any pattern.
The four relations used here are: superordinate concept sub-
stitution (an ancestor can be generated by replacing any con-
cept with a superordinate concept), sub-DAG partition (an
ancestor can be generated by extracting any partition that
is itself a DAG), concept unification option (an ancestor can
be generated by adding an option to unify any two compat-
ible concepts), and role de-unification option (an ancestor
can be generated by adding an option not to unify the prim-
itive roles comprising a composite role). These abstractive
relations make it possible to represent such things as the
conditional probability of two roles or fillers being unified,
something feature-vector models have difficulty with.
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Inductive Methods for Probabilistic Models

The problem of inducing probability distributions from a
finite sample, or training set, has a long history. In the
past, much debate about the validity of various proposals
has arisen from different interpretations of probability the-
ory (see Weatherford 1982; Hacking 1975; Mortimmer 1988;
Cheeseman 1985). Probability theory, as a mathemaltical
framework, can legitimately be appropriated for different
purposes, so long as the interpretation is made clear. Three
of the main schools are subjective probabilities, which denote
degrees of belief; relative frequency probabilities, which de-
note real-world physical properties; and logical probabilities,
which are purely logical relations. The acquisition of priors
is a problem that plagues all probabilistic inference mecha-
nisms, including the widely used Bayesian networks (Pearl
1988; natural language interpretation is done by Goldman &
Charniak 1990), but little if any work has attempted to in-
terpret the priors as a model of the a priori cognitive biases
that give rise to generalization tendencies.

Assume we have a probabilistic pattern completion engine.
What should its priors be, i.e., what is a legitimate source
of initial probabilities? Any set of priors incorporates biases;
there is no such thing as absolutely uninformative priors.
(Equiprobability among all events is deceptive: splitting any
one event into two causes all other probabilities to be revised
for no logically justifiable reason.)

However, the fact that priors incorporate a bias is a plus
rather than a negative, given that our purpose is to model hu-
man inductive generalization. The important thing is just to
match the model’s bias as closely to a human’s as possible.?
This puts our use of probability in the subjectivist school,
related to logical probabilities but outside the relative fre-
quentist school. We now examine why two of the most com-
monly used methods for establishing priors are not suitable
for our purpose.

There are two main problems with setting the prior dis-
tribution equal to the relative frequency distribution in the
training set. The first problem holds for both subjective and
logical probability models: any event not in the training set is
assigned zero probability. For example, in our nominal com-
pound interpretation domain, many nominal compounds like
weekend guesi are novel constructions one would not neces-
sarily expect in a training set. Nonetheless, a nonzero prob-
ability should be assigned to the best interpretation. The
major contribution of Carnap’s (1952, 1962) classic work on
logical probability is a solution to the zero-probability prob-
lem, called the A-continuum of inductive methods. This is
a family of methods for inducing a prior distribution from a
sample (training set), parameterized by A. If A = 0 the priors
are exactly the relative frequencies, but if A > 0 there are no
nonzero prior probabilities. At A = oo equiprobable priors
are assigned to all simple events, and there is no sensitivity
to the sample.

The second problem holds for subjective probability mod-
els: using the relative frequency distribution from the train-

21t is beyond our present scope to offer methodological guidelines
for matching biases.

ing set permits no generalization. Yet human learners gen-
eralize. Neural network research has demonstrated, for a
number of different neural models, plausible ways in which
generalization biases can be inherent, e.g., restricting hid-
den layer sizes. This is actually a stronger version of the
first problem; the reason we do not want zero probabilities
assigned to novel events is that some generalization ought
to oceur and thus give nonzero probabilities to novel events.
None of Carnap’s methods perform generalization: an event
in the training set never raises the probability for other sim-
ilar events. The probability for the best interpretation of
weekend guest should not only be nonzero, but in fact should
be greater than that of any other interpretation, because of
its similarity to other events that are in the training set such
as, say, holiday visitor.

Of the methods for inducing priors that allow generaliza-
tion, maximum entropy has been the most popular method
(Cheeseman 1987; Jaynes 1979). Given some set of proba-
bilities for compound events (joint probabilities), the proba-
bilities for simple events are computed by choosing the dis-
tribution that maximizes an entropy measure

c
H=-)" PilogP;

i=1
while still satisfying the given joint probability constraints.
In other words, what maximum entropy does is fill in prob-
abilities to complete the joint distribution, given constraints
on the values for some of the probabilities. There are
information-theoretic arguments that this method minimizes
the amount of information assumed. Maximum entropy
methods do not specify whether joint probabilities are rel-
ative frequencies, but this is usually assumed.

The problem with using maximum entropy methods for
generalization is that they do not specify how to choose which
compound events to assign probabilities to. Training sets
contain simple events, not compound events. The relative
frequency distribution for the simple events fully determines
the joint distribution for compound events—there is no room
for making generalizations. In order to get generalizations,
some of the simple events’ probabilities must be discarded
(as well as some of the compound events’ probabilities, for
even more generalization) and then recomputed by maxi-
mum entropy. (This is generalization because, for example,
if for some compound event, maximum entropy replaces all
its simple events’ probabilities with equal probabilities, and
the simple events originally had different training set frequen-
cies, effectively a single generalization about all the simple
events comprising the compound event is made.) Maximum
entropy does not specify which probabilities to discard, and
depending on this, different generalizations will be made. In
the extreme, if all relative frequencies are discarded, max-
imum entropy makes all simple events equiprobable; this
1s extreme over-generalization because it generalizes every
training event to all other simple events.

What we propose is a continuum of methods that vary
according to a parameter v that controls how much general-
ization occurs. The extreme ends of the continuum turn out
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Figure 5: Effect of a training instance 010 for (a) ¥ = 0.5, (b) ¥y =1, and (c) y = 2.

to be the same as Carnap’s A-continuum. However, where A
dictates the degree of sensitivity to the training set, v dic-
tates the degree of generalization from the training set. At
¥ = 0 no generalization is done and the priors are the rela-
tive frequencies, and at y = oo we get the maximum entropy
over-generalization extreme.

The y-continuum of Methods

Denote the set of concepts or simple events by Q
{¢1,92,...,9¢c}, and let X be a random variable with values
ranging over Q. Given a training vector T = (t;,%5,...,tnN)
where t; € Q,

N
PEPr(X=g)¥ %Z norm|[2-4s:2)/1]

n=1
where norm means normalization to 1 as follows:
9—d(gita)/y

[Zf:l 2-dax,tn)/7)

and d(qa,qs) is the logical distance between two simple
events. The logical distance derives from the bias given by
the abstractive relations. It is defined in terms of the logical
class cardinality

defiz

n=1

def
lee(qa, q5) = |leaves(lub(qa, gs))].

The logical distance is then

d(ga, 08) = log,(lec(ga, as)) = log,|leaves(lub(ga, gs)).

For example, consider the simple binary-tree space from
Figure 2(a). The least upper bound lub(000,001) is 00x,
which has only the two leaves 000 and 001. Thus the logical
class cardinality lec(000,001) = 2, and the logical distance
d(000,001) = 1. Similarly, the logical distance d(000,100) =
log,8 = 3. (The logical distance between a node and itself
is always log,1 = 0.) In the general case, logical distances
for semi-lattices are usually non-integers; in Figure 4 the
logical distance between the two leaves marked with asterisks
is log,6.

Intuitively, logical distances encode an a prior: semantic
distance metric from the built-in inductive bias set up by the
abstractive relations. In relative frequency methods, each
time a simple event occurs in the training set, its frequency
1s incremented by 1. We can view this as adding one “unit
of count” to the simple event. The v-continuum methods
instead distribute the “unit” among all simple events, in a

proportion that depends on logical distance. For each train-
ing instance t, that is a simple event g;, if the proportion
of the “unit” given to the simple event is u;, then the pro-
portion u; given to any other simple event g¢; satisfies the
constraint

U _ 9-d(gigi)]v,

L]

Let us first examine the extreme-case behavior. At v = 0,
ui/u; = 0 and so u; = 0 for all i # j and u; = 1, thus
degenerating into the relative frequency method. At v = oo,
ui/u; = 1 and so u; = u; for all i, thus incrementing every
simple event equally, regardless of what the training instance
is.

Now consider again the simple binary-tree space, and ex-
amine the effect of a single training instance 010 assum-
ing ¥ = 1 as in Figure 5(b). The greatest proportion is
ugip = 0.4, followed by a lesser proportion for the closest
simple event ug;; = 0.2, a still lesser proportion for uggg =
ugor = 0.1, and finally u190 = %101 = U110 = u111 = 0.05.
Figures 5(a) and (c) show how the value of 4 controls the de-
gree to which the “unit” is “smeared” toward progressively
dissimilar families of events; the more “smear”, the more
generalization.

As a slightly more complex example, consider again the
pattern space of Figure 4. A training set containing 100 in-
stances was used. Figure 6 compares generalization behav-
ior for three different values of 4. In (a), ¥ = 0 and so the
distribution is exactly the relative frequency of the training
instances. The non-uniform smoothing of the distribution in
(b) and (c) shows the effect of the abstractive bias.

The joint probability for any compound event is just the
sum of all its simple events’ probability. If a compound event
is comprised of a set of simple events {s,,s2,...,s,} where
s; € @, then

—d(si,tn)/y

Pr(X € {s1,52,...,5:})= Z Z [Ek 2—d(u.h)/‘r}

Vi 2-6('1-.*-);'1]
N nzl iy t-)h]

Conclusion

The lack of theoretical tools has hampered the study of how
a priori biases—especially abstractive biases—in a pattern
completor’s conceptual representation system affect the ten-
dency to generalize. Generalization is necessary when the
size of the training sample 1s small compared to the size of the
domain, a condition that almost always obtains in the real
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Figure 6: Generalization behavior for (a) ¥y =0, (b) ¥ = 0.8, and
()vy=1

world, in particular for human language acquisition and in-
terpretation. Although neural networks do perform general-
ization because of their representational biases, the network
compression loses so much information that it is difficult to
tell what distribution is being learned; and moreover such
networks do not (yet) handle compositional structures effec-
tively. The family of methods we have proposed provides a
declarative means to model different abstractive biases, and
makes all induced distributions explicit.

The investigator must still determine empirically what
concept space and abstractive relations are best for model-
ing cognitive biases in given domains. Moreover, for partic-
ular domains and abstractive relations, only empirical tests
will tell what values of ¥ are useful. We are currently test-

Weighting schemes can be added to the logical structure to
provide more a flexible modeling tool. Also, there are other
possible logical distance metrics that possess the same essen-
tial characteristics.

Because of the size of the event space for practical do-
mains, heuristic approximation methods are needed to eval-
uate these distributions. Whether heuristics can be used de-
pends on the types of abstractive relations. In the case of the
abstractive relations we use for parsing and interpretation,
we are investigating various greedy algorithms including par-
allel intersection search techniques like marker passing (Wu
1989). Also, we are studying whether existing neural net-
works or other statistically-based models of generalization
can function as heuristic approximation methods for certain
types of abstractive relations.

References

Carnap, R. (1952). The Continuum of Inductive Methods. Uni-
versity of Chicago Press, Chicago.

Carnap, R. (1962). The Logical Foundations of Probability. Uni-
versity of Chicago Press, Chicago.

Cheeseman, P. (1985). In defense of probability. In Proceedings
of the Ninth International Joint Conference on Artificial Intel-
ligence, pp. 1002-1009.

Cheeseman, P. (1987). A method of computing maximum en-
tropy probability values for expert systems. In R. C. Smith &
G. 1. Erickson, editors, Mazimum-Entropy and Bayesian Spec-
tral Analysis and Estimation Problems, pp. 229-240. D. Reidel,
Dordrecht, Holland. Revised proceedings of the Third Maxi-
mum Entropy Workshop, Laramie, WY, 1983.

Goldman, R. P. & E. Charniak (1990). A probabilistic approach to
text understanding. Technical Report CS-90-13, Brown Univ.,
Providence, RI.

Hacking, I. (1975). The Emergence of Probability. Cambridge
University Press, London.

Jaynes, E. T. (1979). Where do we stand on maximum entropy.
In R. D. Levine & M. Tribus, editors, The Marimum Entropy
Formalism. MIT Press, Cambridge, MA.

Mortimer, H. (1988). The Logic of Induction. Ellis Horwood,
Chichester, England.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann, San Mateo,
CA.

Pollack, J. B. (1989). Implications of recursive auto associative
memories. In D. Touretzky, editor, Advances in Neural Informa-
tion Processing Systermns, pp. 527-536. Morgan Kaufmann, San
Mateo.

Pollack, J. B. (1990). Recursive distributed representations. Ar-
tificial Intelligence, 46:77-105.

Weatherford, R. (1982). Philosophical Foundations of Probability
Theory. Routledge & Kegan Paul, London.

Wu, D. (1989). A probabilistic approach to marker propagation.
In Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence, pp. 574-580, Detroit, MI. Morgan Kauf-
mann.

ing these methods for parsing and interpreting a corpus of Wu, D. (1990). Probabilistic unification-based integration of syn-

nominal compounds, using an abstractive bias deriving from
semantic network taxonomies.
Another future direction is the logical distance metric.

tactic and semantic preferences for nominal compounds. In Pro-
ceedings of the Thirteenth International Conference on Compu-
tational Linguistics, Helsinki.

953



	cogsci_1991_949-953



