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Abstract

Bayesian models of cognition posit that people compute prob-
ability distributions over hypotheses, possibly by construct-
ing a sample-based approximation. Since people encounter
many closely related distributions, a computationally efficient
strategy is to selectively reuse computations – either the sam-
ples themselves or some summary statistic. We refer to these
reuse strategies as amortized inference. In two experiments,
we present evidence consistent with amortization. When se-
quentially answering two related queries about natural scenes,
we show that answers to the second query vary systematically
depending on the structure of the first query. Using a cog-
nitive load manipulation, we find evidence that people cache
summary statistics rather than raw sample sets. These results
enrich our notions of how the brain approximates probabilistic
inference.

Keywords: Amortization; hypothesis generation; Bayesian in-
ference; Monte Carlo methods

Introduction
Many theories of probabilistic reasoning assume that people
are equipped with a general-purpose inference engine that
can be used to answer arbitrary queries for a wide variety
of probabilistic models (Griffiths et al., 2012). The flexibil-
ity and power of a general-purpose inference engine trades off
against its computational efficiency: by avoiding any assump-
tions about the query distribution, the inference engine relin-
quishes the opportunity to reuse computations across queries.
Conversely, an inference engine may gain efficiency by incur-
ring some amount of bias due to reuse—a strategy we refer to
as amortized inference (Stuhlmüller et al., 2013; Gershman
& Goodman, 2014). We propose that people employ some
form of this strategy, flexibly reusing past inferences in order
to efficiently answer new but related queries.

The experiments reported in this paper explore amortiza-
tion in sets of related queries that involve probabilistic in-
ference over a very large space of possibilities. These pos-
sibilities are not all explicitly provided and have to be gen-
erated by the participant in order to carry out the inference.
We frame amortization as the reuse of hypotheses that have
already been generated in response to previous queries. We
model the process of hypothesis generation with a stochas-
tic sampling mechanism (Lieder et al., 2012; Dasgupta et al.,
2016). One way to implement amortization in this framework
is to directly reuse samples across different queries. Alterna-
tively, amortization could be implemented by reusing some
summary statistic compiled from previous samples. One goal
of our experiments is to tease apart these different mechanis-
tic assumptions. The basic logic of our experiments is to hold

one query fixed while manipulating an earlier query, allowing
us to interrogate reuse of computations across queries.

Stochastic hypothesis generation
For complex hypothesis spaces, exact probabilistic inference
is typically intractable. Several lines of evidence point to
the idea that humans approximate inference by constructing a
Monte Carlo approximation of the posterior distribution (see
Griffiths et al., 2012; Sanborn & Chater, 2016, for a review).
This “sampling hypothesis” can be realized algorithmically
in a number of ways. Recent studies have shown how a num-
ber of apparent probabilistic fallacies can be understood as a
consequence of resource-bounded sampling using a Markov
chain Monte Carlo (MCMC) algorithm (Lieder et al., 2012;
Dasgupta et al., 2016). Because we build on those studies in
this paper, we briefly describe the theoretical framework.

A Monte Carlo approximation uses a set of N samples
{h1, . . . ,hN}, drawn from a hypothesis space H , to approx-
imate a target distribution. In our case, the target is the pos-
terior distribution over hypotheses given data d, P(h|d) ∝

P(d|h)P(h). The Monte Carlo approximation is defined by:

P(h|d)≈ 1
N ∑

N
n=1 I[hn = h], (1)

where I[·] = 1 if its argument is true (0 otherwise). MCMC
algorithms generate samples by simulating a Markov chain
whose stationary distribution is the posterior (MacKay,
2003). This approach is asymptotically exact (the approxi-
mation converges to the posterior as the number of samples
approaches infinity) but under time or resource constraints
only a small number of samples may be generated. Although
this gives rise to systematic deviations from exact inference,
it may in fact be the computationally rational sampling policy
(Lieder et al., 2012; Vul et al., 2014; Gershman et al., 2015).

In our prior research (Dasgupta et al., 2016), we applied
this model to a scene inference domain, using a database of
natural object co-occurrence statistics compiled by Greene
(2013). The task facing subjects in our experiments was to
judge the probability of a particular set of latent objects in a
scene conditional on observing another object (the cue). By
manipulating the framing of the query, we showed that sub-
jects gave different answers to formally equivalent queries.
Specifically, by partially unpacking the queried object set
(where fully unpacking an object set means to present it ex-
plicitly as a union of each of its member objects) into a small
set of exemplars and a ‘catch-all’ hypothesis (e.g., “what is
the probability that there is a book, a box, or any other object
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beginning with B?”), we found that subjects judged the prob-
ability to be higher when the unpacked exemplars were typ-
ical (a “subadditivity” effect; cf. Tversky & Koehler, 1994)
and lower when the unpacked exemplars were atypical (a “su-
peradditivity” effect; cf. Sloman et al., 2004) compared to
when the query is presented without any unpacking. To give
a concrete example, in the presence of say a ‘table’, the typ-
ically unpacked query “what is the probability that there is
also a chair, a curtain, or any other object beginning with C?”
generates higher probability estimates, and the atypically un-
packed query “what is the probability that there is also a cow,
a canoe, or any other object beginning with C?” generates
lower probability estimates, when compared to the packed
query “what is the probability that there is also another ob-
ject beginning with C?”.

These effects could be accounted for by the MCMC model
under the assumption that the unpacked exemplar(s) initialize
the Markov chain(s) that form the sample set. Because the
initialization of the Markov chain transiently determines its
future trajectory, initializing with typical examples causes the
chain to tarry in the high probability region of the queried ob-
ject set, thereby increasing its judged probability (subadditiv-
ity). However, initializing with atypical examples causes the
chain to get easily derailed into regions outside the queried
object set and thus generate more hypotheses that are not in
the queried object set. This decreases the judged probabil-
ity of the queried object set (superadditivity). The strength
of these effects diminishes with the number of samples, as
the chain approaches its stationary distribution (which is the
same for all conditions). Accordingly, response time and cog-
nitive resource availability modulate the effect size (Dasgupta
et al., 2016).

Amortized inference in hypothesis generation
We will consider two simple amortization schemes within the
MCMC framework described above.1 In sample reuse, peo-
ple may simply add samples generated in response to one
query (Q 1) to the sample set for another query (Q 2). So
if N1 samples were generated in response to Q 1, and N2
new samples are generated in response to Q 2, the response
to Q 2 is given by a calculation carried out over all N1 +N2
equally weighted samples. Under this scheme, all the com-
putations carried out for Q 1 are available for flexible reuse
in the computation for Q 2. In summary reuse, people may
reuse a summary statistic computed from Q 1. This strategy
is only applicable to problems where the answer to Q 2 can
be expressed as the composition of the answer to Q 1, and an
additional simpler computation. To make this viable in our
experiments, Q 2 queries a hypothesis space that is the union
between the hypothesis space queried in Q 1 and a disjoint
hypothesis space. For example if Q 1 is “What is the proba-
bility that there is an object starting with a C in the scene?”,

1Although more sophisticated amortization schemes have been
developed in the machine learning literature (e.g., Stuhlmüller et al.,
2013; Rezende et al., 2014; Paige & Wood, 2016), they are difficult
to test experimentally in humans.

Q 2 could be “What is the probability that there is an object
starting with a C or an R in the scene?”. In this case, the
N1 samples generated in response to Q 1 are summarized into
one probability (“the probability of an object starting with
C”), N2 new samples are generated in response to a simpler
query (“the probability of an object starting with R”), and
these two numbers are then composed (in this case simply
added) to give the final estimate for Q 2 (“the probability of
an object starting with C or R”). Under this scheme, only the
final product of the computation carried out for Q 1 is reused
in the calculations for Q 2. These two models are the two
extremes between very flexible and very rigid reuse; interme-
diates are of course possible.
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Figure 1: Simulation of subadditivity and superadditivity effects un-
der sample-based (top) and summary-based (bottom) amortization
schemes. In all panels, the y-axis represents the effect size for Q 2.
Left panels show the effects of changing the sample size for Q 1;
right panels show the effects of changing the sample size for Q 2.
When, sample size for Q 2 is changed, sample size for Q 1 is held
fixed at 230, and vice versa.

Sample-based and summary-based amortization schemes
make different predictions about how subadditivity and su-
peradditivity change as a function of the sample size (Figure
1). Increasing the sample size for Q 1 amplifies the effects for
Q 2 under a sample-based scheme, because this leads to more
Q 1 samples being reused for Q 2. This effect can be coun-
teracted by increasing the sample size for Q 2, which pushes
the effects down (the effects go to 0 as the sample size for
Q 2 tends to infinity, since the Markov chain will converge
to the same posterior for all conditions). Under a summary-
based scheme, increasing the sample size for Q 1 will actu-
ally diminish the effects for Q 2, because the bias from Q 1
is strongest when the chain is close to its starting point. In
other words, the subadditivity and superadditivity effects for
Q 2 derive from the same effects in Q 1, which themselves
are primarily driven by the initialization (see Dasgupta et al.,
2016). In Experiment 2, we test these different predictions
by placing people under cognitive load during either Q 1 or
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Table 1: Experimental stimuli and queries.

Cue Q 1 Q 1-Typical Q 1-Atypical Q 2

Table C
chair, cannon,

C or Rcomputer cow,
curtain canoe

Tele-
D

display case, drinking fountain,
D or Lphone dresser, dryer,

desk dome

Rug B
book, bird,

B or Sbouquet, buffalo,
bed bicycle

Chair P
painting, porch,

P or Aplant, pie,
printer platform

Sink T
table, trumpet,

T or Etowel, toll gate,
toilet trunk

Lamp W
window, wheelbarrow,

W or Fwardrobe, water fountain,
wine rack windmill

Q 2, a manipulation that is thought to reduce the number of
samples (Dasgupta et al., 2016; Thaker et al., 2017).

Experiment 1
Our first experiment pursued a basic carryover effect from
one query (Q 1) to the next (Q 2). We assessed two putative
signatures of sampling—subadditivity and superadditivity—
for a fixed Q 2 while changing the structure of Q 1. Specifi-
cally, we compared three conditions that differed only in how
Q 1 was framed: packed, unpacked-typical, and unpacked-
atypical. In order to encourage amortization, we specified
Q 2 as a union of the hypothesis space queried by Q 1 and an-
other hypothesis space—i.e., a disjunctive query. The design
is summarized in Table 1.

Participants
84 participants (53 males, mean age=32.61, SD=8.79) were
recruited via Amazon’s Mechanical Turk and received $0.5
for their participation plus an additional bonus of $0.1 for
every on-time response.

Procedure
Participants were asked to imagine playing a game in which
their friend sees a photo and then mentions one particular ob-
ject present in the photo (the cued object). The participant is
then queried about the probability that another class of objects
(e.g., “objects beginning with the letter B”) is also present in
the photo.

Each participant completed 6 trials, where the stimuli on
every trial corresponded to the rows in Table 1. On each trial,
participants first answered Q 1 given the cued object, using a
slider bar to report the conditional probability (Figure 2). The
Q 1 framing (typical-unpacked, atypical-unpacked or packed)
was chosen randomly. Participants then completed the same

Figure 2: Experimental setup. Participants were asked to estimate
the conditional probability using a slider bar within a 20-second time
limit.

procedure for Q 2, conditional on the same cued object. The
framing for Q 2 was always packed.

Results
Consistent with our prior studies (Dasgupta et al., 2016), we
find both subadditivity and superadditivity effects for Q 1, de-
pending on the unpacking (Figure 3): probability judgments
were higher for unpacked-typical queries than for packed
queries (a subadditivity effect; t(77) = 4.029, p < 0.001) and
lower for unpacked-atypical than for packed queries (a super-
additivity effect; t(77) =−6.4419, p < 0.001)
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Figure 3: Experiment 1 results. Mean probability estimates by
condition. Error bars represent the standard error of the mean.

Crucially, we also saw effects of Q 1 unpacking on re-
sponse to Q 2, even though these queries were all presented
as packed hypotheses. In particular, estimates for Q 2 were
lower when Q 1 was unpacked to atypical exemplars (t(77) =
−5.0789, p < 0.001), demonstrating a superadditivity effect
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that carried over from one query to another. We did not
find an analogous carry-over effect for subadditivity (t(77) =
0.72, p > 0.4), possibly due to the subadditivity effect “wash-
ing out” more quickly (i.e. with fewer samples) than super-
additivity, at least within this domain (see Dasgupta et al.,
2016).

Next, we explored whether responses to Q 1 predicted trial-
by-trial variation in responses to Q 2. As shown in Figure 4,
we found significant positive correlations between the two
queries in all conditions when aggregating across participants
(p < 0.01). The same conclusion can be drawn from an-
alyzing correlations within participants and then testing the
average correlation against 0 (average correlation: r = 0.55,
p < 0.01). Moreover, the within-participant effect size (the
response difference between the unpacked conditions and the
packed conditions) for Q 1 was correlated with responses
to Q 2 for both atypical (r = 0.35, p < 0.01) and typical
(r = 0.21, p < 0.05) unpacking conditions. This means that
even though the subadditive condition did not significantly
differ from the unpacked condition for Q 2 overall, partici-
pants who showed greater subadditivity or superadditivity for
Q 1 also showed correspondingly greater effects for Q 2.
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Figure 4: Experiment 1 trial-by-trial analyses: Relationship be-
tween aggregated Q 1 and Q 2 responses. Lines show the least-
squares fit with standard error bands.

Experiment 2
Experiment 1 showed strong evidence for reuse of inferen-
tial computations across queries when the evidence is fixed.
Two questions naturally arise from this finding. First, how
adaptive is amortization? Are samples reused promiscuously
across queries (potentially leading to rampant memory-based
biases), or is reuse sensitive to conditions where it is likely
to be accurate? This is a delicate point, since it is impossible
to know with certainty whether amortization is useful with-
out knowing some properties of the problem (e.g., decompos-
ability of the conditional distribution). Nonetheless, humans

may be able to utilize heuristics for constructing amortization
strategies whose errors can be corrected by additional experi-
ence or computation (Stuhlmüller et al., 2013). We address
this question by manipulating the “amortizability” of Q 1,
in order to test the hypothesis that carry-over effects across
queries will only occur under high amortizability conditions.
We operationalize amortizability in terms of whether or not
the hypothesis space queried by Q 1 is a subset of the hypoth-
esis space queried by Q 2.

The second question concerns resource allocation. Theo-
ries of computational rationality argue that computations are
selected to balance accuracy and cost (Lieder et al., 2012;
Gershman et al., 2015). In the context of sampling, this
means that fewer samples will be generated when cognitive
resources are scarce. This hypothesis is consistent with the
observation that subadditivity (Sprenger et al., 2011) and or-
der effects (Thaker et al., 2017) are amplified under cognitive
load. We pursue this question by manipulating cognitive load
at both Q 1 and Q 2. As discussed in the Introduction, the
different amortization schemes make different predictions for
these manipulations (see Figure 1).

Participants
80 participants (53 males, mean age=32.96, SD=11.56) were
recruited from Amazon Mechanical Turk and received $0.5
as a basic participation fee and an additional bonus of $0.1
for every on time response as well as $0.1 for every correctly
classified digit during cognitive load trials.

Procedure
The procedure in Experiment 2 was largely the same as in
Experiment 1, with the main difference being that participants
had to remember a sequence of digits. On half of the trials the
cognitive load manipulation occurred at Q 1 and on half at
Q 2. The digit sequence was presented prior to the query, and
then following their response to the query they were asked
to make a same/different judgment about a probe sequence.
Half of the probes were old and half were new.

To probe adaptive amortization, we added several Q 2
queries to the list shown in Table 1. These queries were
deemed less amortizable because they lack any of the letters
queried in Q 1 (for example, ’T or R’ instead of ’C or R’ in the
trial shown in the first row in Table1). In other words, these
queries could not be decomposed and hence could not benefit
from reuse. Half of the Q 2 trials were randomly chosen to
provide hypotheses with low amortizability.

Results
As shown in Figure 5, we replicated and extended the re-
sults from Experiment 1, showing both subadditivity and su-
peradditivity effects for Q 1 that carried over to Q 2. Ana-
lyzing only amortizable queries (averaging across load con-
ditions), we found that probability judgments for Q 1 were
higher for unpacked-typical compared to packed (subaddi-
tivity; t(79) = 4.38, p < 0.001) and lower for unpacked-
atypical compared to packed (superadditivity t(79) =−4.94,
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p < 0.001). These same effects occurred for Q 2 (unpacked-
typical vs. packed: t(79) = 2.44, p < 0.01; unpacked-
atypical vs. packed: t(79) =−1.93, p < 0.05).
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Figure 5: Experiment 2 results. Mean probability estimates for Q 2
by condition. Error bars represent the standard error of the mean.

As in Experiment 1, there was strong correlation between
responses to Q 1 and Q 2 overall conditions (r = 0.44, p <
0.001), for the packed (r = 0.44, p < 0.001), the typically
unpacked (r = 0.45, p < 0.001), as well as the atypically un-
packed condition (r = 0.35, p < 0.01); see Figure 6. More-
over, Q 1 and Q 2 were also highly correlated within partici-
pants (mean r = 0.31, p< 0.01) and participants who showed
higher subadditivity or superadditivty effects for Q 1 also
showed higher effects for Q 2 overall (r = 0.31, p < 0.001),
for the superadditive (r = 0.3, p < 0.001), and for the sub-
additive condition (r = 0.29, p < 0.001). This replicates the
effects of amortization found in Experiment 1.
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Figure 6: Experiment 2 trial-by-trial analyses: Relationship be-
tween aggregated Q 1 and Q 2 responses. Lines show the least-
squares fit with standard error bands.

Finally, we assessed how the carryover effects were mod-
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Figure 7: Experiment 2: differences between responses for each
condition and an average packed baseline. Bars represent a mean
within-participant absolute effect. Error bars represent the standard
error of the mean.

ulated by cognitive load and amortizability. To highlight the
effects more clearly, we calculated each participant’s mean
response to all packed hypotheses for Q 2 over all trials as a
baseline measure. We then calculated the difference between
each condition’s mean response and this mean packed re-
sponse. This provides us with a measure of an average effect
size within Q 2-responses (how much each participant under-
or overestimates different hypotheses as compared to an av-
erage packed hypothesis). Results are shown in Figure 7.

If cognitive load occurred during Q 2 and amortizability
was low, none of the conditions produced an effect signifi-
cantly different from 0 (all p > 0.5). If cognitive load oc-
curred during Q 2 and amortizability was high, only typi-
cally unpacked hypotheses produced an effect significantly
higher than 0 (t(38) = 2.14, p < 0.05). If cognitive load
occurred during Q 1 and amortizability was low, again none
of the conditions significantly differed from 0 (all p > 0.05).
Crucially, if cognitive load occurred during Q 1 and amortiz-
ability was high, both conditions showed the expected subad-
ditive (t(38) = 4.18, p < 0.05) and superadditive (t(46) =
−1.89, p < 0.05) effects. Moreover, calculating the av-
erage effect size for the different quadrants of Figure 7,
the high amortizability-cognitive load at Q 1-condition pro-
duced the highest overall effect (d = 0.8), followed by the
high amortizability-cognitive load at Q 2-condition (d = 0.56)
and the low amortizability-cognitive load at Q 1-condition
(d = 0.42). The low amortizability-cognitive load at Q 2-
condition did not produce an effect higher than 0. Moreover,
highly amortizable trials were more strongly correlated with
responses during Q 1 than trials with low amortizability (0.15
vs 0.41, t(157) =−2.28, p < 0.05).
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Intriguingly, on trials with cognitive load at Q 2, partici-
pants were on average more likely to answer the probe cor-
rectly for high amortizability trials compared to low amortiz-
ability trials (t(36) = 3.16, p < 0.05). This is another signa-
ture of amortization: participants are expected to have more
resources to spare for the memory task at Q 2 if the compu-
tations they did for Q 1 are re-usable in answering Q 2. This
also indicates that these results cannot be explained by simply
initializing the chain for Q 2 where the chain for Q 1 ended,
which would not have affected computation time. Our results
suggest that the transfer actually makes the second computa-
tion easier by re-using previous computations.

In summary, Experiment 2 replicates the effects found in
Experiment 1 and the increased effect for the high amorti-
zability condition provides further evidence that this effect
is actually driven by amortization. These experiments also
give us some insight into how amortization is implemented.
Based on our simulations (Figure 1), we argue that the ef-
fect of cognitive load at Q 1 on Q 2 responses is more con-
sistent with summary amortization than with sample amor-
tization. These results suggest an active process of Q 2 be-
ing expressed in terms of the results to Q 1, when possible.
This approach is more structured and less flexible than sam-
ple amortization but trades in this inference limitation for an
increase in memory-efficiency and is thus consistent with be-
liefs about cost-efficient resource-rational inference strategies
in humans.

Discussion

In two experiments, we provided empirical support for amor-
tized hypothesis generation. Participants not only exhibited
subadditive and superadditive probability judgments in the
same paradigm (replicating Dasgupta et al., 2016), but also
carried over these effects to subsequent queries. Importantly,
Experiment 2 demonstrated that such carry-over effects only
occur when amortization can exploit shared structure across
queries. Experiment 2 also demonstrated that cognitive load
exerts its strongest effect when applied to the first query, sug-
gesting (based on our simulations) that the carry-over ef-
fects are driven by some kind of summary-based amorti-
zation, whereby a summary statistic is computed from the
samples and then reused to answer subsequent queries that
can be expressed in terms of already completed calculations.
This implies a structured amortization strategy, over one that
reuses all old samples, and thus gives up some flexibility
for memory-efficiency. Building on earlier results (Gersh-
man & Goodman, 2014), our results support the existence
of a sophisticated inference engine that adaptively exploits
past computations. While reuse can introduce error, this er-
ror may be a natural consequence of a resource-bounded sys-
tem that optimally balances accuracy and efficiency (Lieder
et al., 2012; Vul et al., 2014; Griffiths et al., 2015; Gershman
et al., 2015). The incorporation of reuse into a Monte Carlo
sampling framework allows the inference engine to preserve
asymptotic exactness while improving efficiency in the finite-

sample regime.
Future studies could use similar methods to study amorti-

zation in other domains, such as in concept learning (Good-
man et al., 2008) or reinforcement learning tasks (Daw et al.,
2011). There is also a much larger space of more sophis-
ticated amortization schemes (e.g., Stuhlmüller et al., 2013;
Rezende et al., 2014; Paige & Wood, 2016) that we have not
yet tried to test. Pinning down the computational details of
amortization will be an important task for future work.
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