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ABSTRACT OF THE THESIS

Neural Mesh Flow: 3D Manifold Mesh Generation via Diffeomorphic Flows

by

Kunal Gupta

Master of Science in Computer Science

University of California San Diego, 2020

Professor Manmohan Chandraker, Chair

Meshes are important representations of physical 3D entities in the virtual world. Appli-

cations like rendering, simulations and 3D printing require meshes to be manifold so that they

can interact with the world like the real objects they represent. Prior methods generate meshes

with great geometric accuracy but poor manifoldness. In this work we propose Neural Mesh

Flow (NMF) to generate two-manifold meshes for genus-0 shapes. Specifically, NMF is a shape

auto-encoder consisting of several Neural Ordinary Differential Equation (NODE)[5] blocks that

learn accurate mesh geometry by progressively deforming a spherical mesh. Training NMF is

simpler compared to state-of-the-art methods since it does not require any explicit mesh-based

regularization. Our experiments demonstrate that NMF facilitates several applications such

xi



as single-view mesh reconstruction, global shape parameterization, texture mapping, shape

deformation and correspondence. Importantly, we demonstrate that manifold meshes generated

using NMF are better-suited for physically-based rendering and simulation.

xii



Chapter 1

Introduction

Mesh representations allow an efficient virtual representation of 3D objects, enabling

applications in graphics rendering, simulations, modeling and manufacturing. Consequently,

mesh generation or reconstruction from point clouds or images has received significant recent

attention. While geometric accuracy has been a focus of prior works, we posit that physically-

based applications require meshes to also satisfy manifold properties. Intuitively, a mesh is

manifold if it can be physically realized, for example, by 3D printing. Typically, reconstructed

meshes are post-processed with human inputs for manifoldness, in order to enable ray tracing,

slicing or Boolean operations. In contrast, we propose a novel deep network that directly

generates manifold meshes (Fig. 1.1).

A manifold is a topological space that locally resembles Euclidean space in the neigh-

bourhood of each point. A manifold mesh is a discretization of the manifold using a disjoint

set of simple 2D polygons, such as triangles, which allows designing simulations, rendering

and other manifold calculations. While a mesh data structure can simply be defined as a set

(V ,E ,F ) of vertices V and corresponding edges E or face F , not every mesh (V ,E ,F ) is

manifold. Mathematically, we list various constraints on a singly connected mesh with the set

(V ,E ,F ) that enables manifoldness.

• Each edge e ∈ E is common to exactly 2 faces in F (Fig. 1.2a)

• Each vertex v ∈ V is shared by exactly one group of connected faces (Fig. 1.2b)

1



2D 
Image

3D Point 
Cloud

2D 
Image

3D Point 
Cloud

(a) Inputs

Approach Vertex Edge Face Non-Int.

MeshRCNN[4] explicit 7 7 7 7

AtlasNet[6] explicit 3 7 7 7

AtlasNet-O[6] explicit 3 3 7 7

Pixel2Mesh[3] explicit 3 3 7 7

GEOMetrics[7] explicit 3 3 7 7

3D-R2N2[8] implicit 7 7 3 3

PSG[9] implicit 7 7 3 3

OccNet[10] implicit 7 7 3 3

NMF (Ours) explicit 3 3 3 3

(b) Manifoldness of prior work

Simulation3D Printing

NeuralMeshFlow AtlasNet

Physically based rendering

Simulation3D Printing

NeuralMeshFlow AtlasNet

Physically based rendering

(c) Applications enabled by NMF Manifold Meshes

Figure 1.1. Given an input as either a 2D image or a 3D point cloud (a) Existing methods generate corresponding
3D mesh that fail one or more manifoldness conditions (b) yielding unsatisfactory results for various applications
including physically based rendering (c). NeuralMeshFlow generates manifold meshes which can directly be used
for high resolution rendering, physics simulations (see supplementary video) and be 3D printed without the need for
any prepossessing or repair effort.
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(a) Non-Manifold Edges (b) Non-Manifold Vertices

(c) Non-Manifold Faces (d) Self-Intersection

Figure 1.2. Non-manifold geometries for a part of singly connected mesh: (a) An edge that is shared by either
exactly one (red) or more than two (red dashed) faces. (b) A vertex (red) shared by more than one group of connected
faces. (c) Adjacent faces that have normals (red-arrow) oriented in opposite directions. (d) Faces intersecting other
triangles of the same mesh.

• Adjacent faces Fi,Fj have normals oriented in same direction (Fig. 1.2c)

The above mentioned constraints on a mesh (V ,E ,F ) guarantee it to be a manifold in the limit

of infinitesimally small discretization. That is not the case when dealing with practical meshes

with large and non-uniformly distributed triangles. To ensure physical realizability, we tighten

the definition with a fourth practical constraint that no two triangles may intersect (Fig. 1.2d).

While some simple defects like duplicate elements, isolated vertices, degenerate faces

and inner surfaces can also cause a mesh to be non-manifold. Such deficiencies are quite simple

to fix [11]. In the scope of this work, meshes do not exhibit such issues, we therefore do not

include them in our definition of manifoldness.

3



In this work, we pose the task of 3D shape generation as learning a diffeomorphic flow

from a template genus-0 manifold mesh to a target mesh. Our key insight is that manifoldness is

conserved under a diffeomorphic flow due to their uniqueness [12, 13] and orientation preserving

property [14, 15]. In contrast to methods that learn “deformations” of a template manifold using

an MLP or graph-based network [3, 7, 6], our approach ensures manifoldness of the generated

mesh. We use Neural ODEs [5] to model the diffeomorphic flow, however, must overcome their

limited capability to represent a wide variety of shapes [12, 13, 16], which has restricted prior

works to single-category representations [17, 18]. We propose novel architectural features such

as an instance normalization layer that enables generating 3D shapes across multiple categories

and a series of diffeomorphic flows to gradually refine the generated mesh. We show quantitative

comparisons to prior works and more importantly, compare resulting meshes on physically

meaningful tasks such as rendering, simulation and 3D printing to highlight the importance of

manifoldness.

Toy example: regularizer’s dilemma

Consider the task of deforming a template unit spherical mesh S (Fig. 1.3a) into a target

star mesh T (Fig. 1.3b). We approximate the deformation with a multi-layer perceptron (MLP) fθ

with a unit hidden layer of 256 neurons with relu and output layer with tanh activation. We train

fθ by minimizing various losses over the points sampled from S,T . A conventional approach

involves minimizing the Chamfer Distance Lc between S,T , leading to accurate point predictions

but several edge-intersections (Fig. 1.3c). By introducing edge length regularization Le, we get

fewer edge-intersections (Fig. 1.3d). but the solution is also geometrically sub-optimal. We

can further reduce edge-intersections with Laplacian regularization (Fig. 1.3e), but this takes

a bigger toll on geometric accuracy. Thus, attempting to reduce self-intersections by explicit

regularization not only makes the optimization hard, but can also lead to predictions with lower

geometric accuracy. In contrast, our proposed used of NODE (with dynamics fθ ) is designed by

construction [13, 12] to prevent self-intersections without explicit regularization (Fig. 1.3f).

4



(a) Template (b) Target

(c) Only 𝐿! (d)  𝐿! + 𝐿"

(e)  𝐿! + 𝐿" + 𝐿# (f) NODE

Figure 1.3. 2D Toy Example: For the task of deforming a manifold template mesh (a) to a target mesh (b) using
explicit mesh regularization (c-e) trades edge-intersections for geometric accuracy. In contrast, a NODE[5] (f) is
implicitly regularized preventing edge-intersections without loosing geometric accuracy.
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In summary, we make the following contributions:

• A novel approach to 3D mesh generation, Neural Mesh Flow (NMF), with a series of

NODEs that learn to deform a template mesh (ellipsoid) into a target mesh with greater

manifoldness.

• Extensive comparisons to state-of-the-art mesh generation methods for physically based

rendering and simulation (see supplementary video), highlighting the advantage of NMF’s

manifoldness.

• New metrics to evaluate manifoldness of 3D meshes and demonstration of applications to

single-view reconstruction, 3D deformation, global parameterization and correspondence.

6



Chapter 2

Related Work

Existing learning based mesh generation methods, while yielding impressive geometric

accuracy, do not satisfy one or more manifoldness conditions (Fig. 1.1b). While indirect

approaches [8, 9, 19, 20, 21, 22] suffer from the non-manifoldness of the marching cube algorithm

[2], direct methods [23, 3, 6, 7] are faced with the regularizer’s dilemma on the trade-off between

geometric accuracy and higher manifoldness, illustrated in Fig. 1.3 and discussed in Sec. 1.

2.1 Indirect Mesh Prediction

Indirect approaches predict the 3D geometry as either a distribution of voxels [24, 25,

26, 27, 28, 29, 30, 31], point clouds [9, 32] or an implicit function representing signed distance

from the surface [20, 19, 22]. Both voxel and point set prediction methods struggle to generate

high resolution outputs which later makes the iso-surface extraction tools ineffective or noisy

[6]. While recent works [33, 34, 35] have been successful in using resolution up to 1283, this

is done by trading higher resolution for shallower networks and smaller batch sizes. Some

works exploit the inherent sparsity of 3D data [31, 30] to obtain a higher resolution, but they

are often too complicated to implement, require time consuming pre/post processing to get final

3D model. While point clouds provide a much sparser 3D representation, they are found to

be memory intensive and harder to train when using resolution higher than 2500 points [6, 9].

Implicit representation based methods have recently been gaining popularity. They usually

7



involve feeding a neural network with a latent code and a query point, encoding the spatial

coordinates [20, 19, 22] or local features [36], to predict the TSDF value [20] or the binary

occupancy of the point [19, 22]. However, these approaches are computationally expensive since

in order to get a surface from the implicit function representation, several thousands of points

must be sampled. Moreover, for shapes such as chairs that have thin structures, implicit methods

often fail to produce a single connected component.

All the above methods depend on the marching cube algorithm [2] for iso-surface

extraction. While marching cubes can be applied directly to voxel grids, point clouds first

regress the iso-surface using surface normals. Implicit function representations must regress

TSDF values per voxel and then perform extensive query to generate iso-surface based on a

threshold τ . This is used to classify grid vertices vi ∈ V as ‘inside’ (T SDF(vi)≤ τ) and ‘outside’

(T SDF(vi)≥ τ). For each voxel, based on the arrangement of its grid vertices, marching cubes

[2, 1, 37, 38] follows a lookup-table to find a triangle arrangement. Since this rasterization

of iso-surface is a purely local operation, it often leads to ambiguities [38, 1, 37], resulting in

meshes being non-manifold. An example of non-manifoldness is shown in figure 2.1 where for a

particular set of scaler values, the marching cubes result in a non-manifold vertex.

Figure 2.1. An example (taken from [1]) of a grid configuration which will result in a non-manifold triangulation.
The blue, red and yellow grid vertices respectively represent the vertices with the scaler value smaller, greater and
equal scaler to the isovalue. By running marching cubes [2] we end up with a non-manifold vertex.
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2.2 Direct Mesh Prediction
A mesh based representation stores the surface information cheaply as list of vertices

and faces that respectively define the geometric and topological information. Early methods of

mesh generation relied on predicting the parameters of category based mesh models[39, 40, 41].

The templates are often based on SP models [42] which allows for learning low-dimensional

parameters that can encode features of a mesh with much higher complexity. While these

methods output manifold meshes, they work only when parameterized manifold meshes are

available for the object category. This therefore limits their application to only selected object

categories. Recently, meshes have been successfully generated for a wide class of categories

using topological priors [6, 3]. Deep networks are used to update the vertices of initial mesh

to match that of the final mesh. AtlasNet [6] uses point (or a ResNet-18 [43] for image input)

encoder and uses a decoder consisting of a series of MLPs. Given points sampled from a atlas

and the shape encoding, the decoder predicts the shape vertices. For obtaining the final mesh,

topology of atlas mesh is used to connect the predicted vertices. The approach is simple to

apply and uses Chamfer distance, applied on the vertices to train the network. Pixel2Mesh

Figure 2.2. Pixel2Mesh[3] proposes a cascaded mesh deformation network. The full model contains three mesh
deformation blocks in a row. Each block increases mesh resolution and estimates vertex locations, which are then
used to extract perceptual image features from 2D CNN for the next block. Inspite of several mesh regularizers, the
predicted mesh contains several non-manifold issues.

[3] (Fig 2.2) uses a similar approach where the template mesh is chosen as an icosphere and

a coarse-to-fine deformation approach is proposed which is trained using vertex Chamfer loss.

However, using a point set training scheme alone for meshes leads to severe topological issues

and produced meshes are not manifold. Therefore, some recent works have proposed to use
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mesh regularizers like Laplacian [3, 7, 4, 44], edge lengths [4, 7] and normal consistency [4]

to constrain the flexibility of vertex predictions, but they suffer from the regularizer’s dilemma

discussed in Fig. 1.3, as better geometric accuracy comes at a cost of manifoldness. One of the

limitations of using a template mesh is that the topology of predicted mesh is fixed. Therefore,

approaches like Pixel2Mesh [3] cannot represent shapes with non-genus zero. MeshRCNN [4]

Figure 2.3. MeshRCNN[4] augments Mask R-CNN with 3D shape inference. The voxel branch predicts a coarse
shape for each detected object which is further deformed with a sequence of refinement stages in the mesh refinement
branch. While this avoids the limitation to genus-0 topology, the cubify operation results in non-manifold vertices
and edges in the predicted mesh.

(Fig 2.3) solves this issue by first predicting a coarse voxel representation, and implementing

a cubify step that converts this voxel representation to a mesh. This is done by replacing each

occupied voxel with a cuboid triangle mesh with 8 vertices, 18 edges and 12 faces. This results

in a watertight mesh whose topology depends on the voxel predictions. Later, mesh refinement

is done using a deep graph-based CNN (GCNN) to obtain the final mesh. While this solves the

limitation imposed by topology, it causes the mesh to have non-manifold vertices and edges. In

contrast to the above approaches, the proposed NMF achieves high resolution meshes with a high

degree of manifoldness across a wide variety of shape categories. Similar to previous approaches

[6, 3, 7], an initial ellipsoid is deformed by updating its vertices. However, instead of using

explicit mesh regularizers, NMF uses NODE blocks to learn the diffeomorphic flow to implicitly

discourage self-intersections, maintain the topology and thereby achieve better manifoldness of

generated shape. The method is end-to-end trainable without requiring any post-processing.
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Chapter 3

Neural Mesh Flow

We now introduce NeuralMeshFlow (Fig 3.1), which learns to auto-encode 3D shapes.

NMF broadly consists of four components. First, the target shape MT is encoded by uniformly

sampling N points from its surface and feeding them to a PointNet[45] encoder to get the global

shape embedding z of size k. Second, NODE blocks diffeomorphically flow the vertices of

template sphere towards target shape conditioned on shape embedding z. Third, the instance

normalization layer performs non-uniform scaling of NODE output to ease cross-category

training. Finally, refinement flows provide gradual improvement in quality. We start with a

discussion of NODE and its regularizing property followed by details on each component.

3.1 NODE Overview.

Neural Ordinary Differential Equations (NODE) [5] are recently proposed class of neural

networks where instead of learning directly learning a mapping from input to output domain,

the transformation φT : X →X is learned as solutions for initial value problem (IVP) of a

parameterized ODE (eq 3.1) . Here x0,xT ∈X ⊂ Rn represent the input and output from the

network respectively, while T ∈ R is a hyper parameter which represents the duration of the

flow from x0 to xT . NODEs can be treated as the extension of residual neural networks [43]

since a residual block is simply a discretization (eq 3.2) of a continuous time system of ordinary

11
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Figure 3.1. Neural Mesh Flow consists of three deformation blocks that perform point-wise flow on spherical
mesh vertices based on the shape embedding z from target shape MT . The bottom row shows an actual chair being
generated at various stages of NMF. Time instances 0 < T1 < T2 < T show the deformation of spherical mesh into a
coarse chair representation Mp0 by the first deformation block. Further deformation blocks perform refinements to
yield refined meshes Mp1,Mp2.

differential equation (eq 3.3).

xT = φT (x0) = x0 +
∫ T

0
fΘ(xt)dt (3.1)

xt+1− xt = fΘ(xt , t) (3.2)

dxt

dt
= lim

δt→0

xt+δt − xt

δt
= fΘ(xt , t) (3.3)

Here, the neural networks form the dynamics fΘ of the NODE. These can often be very

deep layers of convolutional or multi-layer perceptrons. The adjoint sensitivity [46] method is

employed to perform the reverse-mode differentiation through the ODE solver and therefore

learn the network parameters Θ using the standard gradient descent approaches.

The Neural ODE formulation has several benefits. For a well behaved dynamics fΘ
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(Lipschitz continuous) any two distinct trajectories of NODE can never intersect due to the

existence and uniqueness of IVP solutions [12, 13]. Moreover, NODE manifest the orientation

preserving property of diffeomorphic flows[15, 14]. These properties lead to strong implicit

regularization against self-intersection and non-manifold faces. Here, we will briefly discuss

these two properties.

3.1.1 Absence of self-intersection

Distinct trajectories of a Neural ODE can never intersect due to the existence and

uniqueness property of IVP solutions [12, 13]. We can prove it by simple contradiction. Refer

to fig 3.2 for visualization of a 1-D case. Given two distinct initial values x0 = {x+,x−|x+ 6=

x−, x+,x− ∈ Rn} and the IVP (eq 3.1). For the range of values of t ∈ [0,T ], the IVP will create

trajectories in space starting from {x+,x−}. Let for some time t = t∗ the two trajectories intersect

i.e. φt∗ = φt∗(x+) = φt∗(x−). Now, solving IVP (eq. 3.1) with initial value φt∗ for the reverse time

−t∗ will yield φ−t∗(φt∗(x+)) = φ−t∗(φt∗(x−) =⇒ x+ = x− which is a contradiction. We therefore

conclude that in a NODE, for the same time duration, distinct points lead to non-intersecting

trajectories and this acts as a regularizer against self intersections. In fact, if forced to learn such

a mapping, a NODE of arbitrary complexity converges to asymptotic solutions (Fig. 3.2). For

our use case, this guarantee that distinct vertices of a mesh {x+,x−|x+ 6= x−, x+,x− ∈ R3} will

never intersect leading to a higher degree of manifoldness.

3.1.2 Preservation of Orientation

We will begin our discussion by first defining the orientation of a manifold. Let the

ordered set (b1,b2, ...,bn) be the basis of Rn. We can view them as a matrix B such that its ith

column is bi. Depending upon the choice of the order of bi, i = 1, ...,n the determinant of B can

either turn out to be positive ( B+) or negative (B−). By an orientation for Rn we mean the

choice of B+ or B− as the preferred source for picking a basis for Rn. The default orientation is

chosen to be B+.
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Figure 3.2. (Left) Continuous trajectories originating from distinct points x− (blue) and x+ (red) that intersect at
time t∗. (Right) Since a NODE cannot have intersection of distinct trajectories, it fails to learn the required mapping
and results in asymptotic curves.

Given a connected orientable manifold M (Fig 3.3(a)), we wish to map it to a desired

manifold N via some mapping φ : M→ N. The mapping φ is assumed to be a neural network

which is trained by minimizing the distance between predicted and target points of manifold

N. While any neural network of sufficient complexity can learn to predict accurate point

locations (Fig 3.3(b)), the orientation of the predicted manifold is not consistent everywhere.

Whether a mapping preserves or reverses the orientation at a point, depends on its jacobian. If

the jacobian is positive definite, then the orientation is preserved, otherwise, we get opposite

orientation. A non-diffeomorphic mapping can have a jacobian of arbitrary definiteness for each

point of the manifold. We show this by observing a triangle on the input manifold M, whose

orientation gets reversed under a non-diffeomorphic mapping (Fig 3.3(b)), whereas the rest

of its neighbourhood retains the original orientation. A non-diffeomorphic mapping therefore,

arbitrarily preserves/reverses the orientation at each point of the manifold.

If we restrict the mapping φ to be a diffeomorphic mapping, then the orientations of the input

and predicted local charts (U,η),(V,ψ) are either same or reversed everywhere over U . We

prove this property in lemma 3.1.1.

Lemma 3.1.1 Let M and N be orientable manifolds and φ : M→ N be a diffeomorphic. Consider

local charts (U, η), (V, ψ) centered at p and φ(p) which are orientation preserving. Then φ is

14



either orientation preserving or orientation reversing on U.

Proof: Given the local charts, let φ̂ = ψ ◦φ ◦η−1. Since φ is diffeomorphic, this implies that

φ̂ : Rn→ Rn is also diffeomorphic. Thus, the jacobian of φ̂ is either everywhere positive or

everywhere negative (over U). Consequently, φ̂ will either be orientation preserving or reversing

everywhere. Since η ,ψ are both orientation preserving, this implies that φ also either preserves

the orientation everywhere or reverses it everywhere over U. This completes the proof.

While this ensures uniformity of orientation over local charts, Lemma 3.1.2 extends

this property to entire manifold given that it is connected. In figure 3.3(c) we observe that the

orientation of the predicted manifold under a diffeomorphic mapping is reversed everywhere.

This is because the jacobian of a diffeomorphic mapping can either be positive or negative

definite everywhere.

Lemma 3.1.2 Let M and N be connected orientable manifolds and φ : M→N be a diffeomorphic.

Then φ either everywhere preserves the orientation or reverses it for all M.

Proof: From the above lemma we conclude that φ is either orientation preserving or reversing

everywhere over the local chart U. This implies that U is open. Similarly, it can be shown that

M−A is open as well. But since M is connected, we either have A = M or A = {}. Thus, all

local charts with non-zero elements, must have the same orientation. We therefore conclude that

φ is either orientation preserving or reversing everywhere over M. This completes the proof.

To ensure that the predicted manifold indeed preserves the orientation, we further restrict

the mapping φ to be a diffeomorphic flow, such as a Neural ODE [5]. Lemma 3.1.3 shows

that the jacobian of a diffeomorphic flow is always positive, thereby proving the fact that the

orientation is preserved under a diffeomorphic flow φ : M→ N. We observe this in fig 3.3(d)

where the orientation of predicted manifold is everywhere same as that of the input manifold M

(Fig 3.3 (a)).

Lemma 3.1.3 Let φ(t,x) be a diffeomorphic flow over some manifold M with the vector field f.

Then the jacobian of φ(t,x) is always positive.
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Proof: Given the diffeomorphic flow φ with vector field f we have the following relationship.

∂φ(t,x)
∂ t

= f (φ(t,x)) (3.4)

Let us denote the jacobian of φ(t,x) with z(t) such that

z(t) :=
∂φ(t,x)

∂x
(3.5)

By taking the partial derivative of eq 3.4 with respect to the flow φ(t,x) and applying chain rule

we get
∂

∂x

(
∂φ(x, t)

∂ t

)
· ∂x

∂φ(x, t)
=

d f (φ(x, t))
d(φ(x, t)

= D f (φ(x, t)) (3.6)

Substituting eq. 3.5 we get a familiar looking ordinary differential equation

dz(t)
dt

= D f (φ(x, t))z(t) (3.7)

We solve this using Wronskian formula to get the desired determinant of the jacobian (eq. 3.5)

det
(

∂

∂x
(φ(x, t))

)
= exp

(∫ t

0
tr(D f (φ(ζ ,x)))dζ

)
> 0 (3.8)

We thus prove that the jacobian of a diffeomorphic flow over a manifold is always positive.

Based on above lemmas we therefore prove that a diffeomorphic flow such as a Neu-

ralODE [5] over a connected manifold is orientation preserving. There are several other ad-

vantages to NODE compared to traditional MLPs such as improved robustness [47], parameter

efficiency [5] and the ability to learn normalizing flows [48, 17, 18] and homeomorphism [13].

We refer readers to [12, 13, 16] for more details.
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(a) Connected Manifold (b) Image under non-diffeomorphic mapping

(c) Image under diffeomorphic mapping (d) Image under diffeomorphic flow

Figure 3.3. Given a connected manifold (a) we compare the orientation of a triangle to its neighbourhood under the
pushforward of various kind of mappings. We observe that the orientation is non-uniformly preserved/reversed
under a non-diffeomorphic mapping (b) since the jacobian can be positive/negative definite anywhere. With a
diffeomorphic mapping (c) the orientation is reversed everywhere if the jacobian is negative definite. However,
when the mapping is a diffeomorphic flow (d) the jacobian is always positive definite (lemma 3.1.3) which results in
the orientation being preserved everywhere.
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3.2 Diffeomorphic Conditional Flow.

The standard NODE formulation cannot be used directly for the task of 3D mesh genera-

tion since they lack any means to feed in shape embedding and are therefore restricted to learning

a few shape. A naive way would be to concatenate features to point coordinates like is done

with traditional MLPs [3, 7] but this destroys the shape regularization properties due to several

augmented dimensions[13, 12]. Our key insight is that instead of a fixed NODE dynamics fΘ

we can use a family of dynamics fΘ|z parameterized by z while still retaining the uniqueness

property as long as z is held constant for the purpose of solving IVP with initial conditions

{x0,xT}.

The objective of conditional flow (NODE Block) therefore is to learn a mapping FΘ|z

(eq.3.9) given the shape embedding z and initial values {(pi
I, pi

O)|pi
I ∈MI, pi

O ∈MO} where

MI,MO are respectively the input and output point clouds.

pi
O = FΘ|z(pi

I,z) = pi
I +
∫ T

0
fΘ|z(pi

I,z)dt (3.9)

3.3 Instance Normalization.

Normalizing input and hidden features to zero mean and unit variance is important to

reduce co-variate shift in deep networks [49, 50, 51, 52, 53, 54]. While trying to deform a

template sphere to targets with different variances (like a firearm and chair) different parts of

the template need to be flown by very different amounts to different locations (Fig. 3.4a). This

is observed to causes significant strain on the NODE which ends up learning more complex

dynamics resulting in meshes with poor geometric accuracy and manifoldness (Fig 3.4d and

Table 3.1). Instance normalization separates the task of learning target variances from that of

learning target attributes. As shown in Fig 3.5, when using instance normalization, NMF focuses
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(a)NODE Flow without IN

after

(b) NODE Flow with IN (d) Abalation: Without IN (e) Abalation: With IN(c) IN learns to scales back 
to correct covariances

Figure 3.4. The impact of instance normalization (IN) and refinement flows in NMF. (a) Learning deformation
of a template (black) to target shapes of different variances (red and green) require longer non-uniform NODE
trajectories making learning difficult. (b) IN allows NODE to learn deformations to an arbitrary variance. (c) This
leads to simpler dynamics and can later be scaled back to correct shape variance. (d) A model trained without IN
leads to self-intersections and non-manifold faces due to very complex dynamics being learnt. (e) A model with IN
is smoother and regularized.

on learning the geometry and other features (Fig 3.5(a)) whereas the instance normalization learns

to scale it to match the target variance (Fig 3.5(b)). As we can see this greatly simplifies the task

of learning 3D shapes across several categories. It gives NODE flexibility to deform the template

to a target with arbitrary variance which yields better geometric accuracy(Fig. 3.4b). This is later

scaled back to the correct variance by Instance normalization layer (Fig. 3.4c) Given an input

point cloud M ∈RN×3 and its shape embedding z, the instance normalization calculates the point

average µ ← 1
|M |∑i pi, pi ∈M and then applies non-uniform scaling M ← (M −µ)�∆(z) to

arrive at correct target variances. Here ∆ : Rk→ R3 is an MLP that regress the three variance

coefficients based on shape embedding z. � refers to the element wise multiplication.

3.4 Overall Architecture.

A single NODE block is often not sufficient to get desired quality of results. We therefore

stack up two NODE blocks in a sequence followed by an instance normalization layer and call

the collection a deformation block. While a single deformation block is capable of achieving

reasonable results (as shown by Mp0 in Fig. 3.1, 3.6 ) we get further refinement in quality by

having two additional deformation blocks. Notice how the Mp1 has a better geometric accuracy

than Mp0 and Mp2 is sharper compared to Mp1 with additional refinement. We report the
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(a) NMF prediction before IN (b) NMF prediction after IN

Figure 3.5. Instance Normalization separates the task of learning shape attributes (a) and shape variances (b)
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Table 3.1. The impact of instance normalization (IN) and refinement flows in NMF. (a) Learning deformation
of a template (black) to target shapes of different variances (red and green) require longer non-uniform NODE
trajectories making learning difficult. (b) IN allows NODE to learn deformations to an arbitrary variance. (c) This
leads to simpler dynamics and can later be scaled back to correct shape variance. (d) A model trained without IN
leads to self-intersections and non-manifold faces due to very complex dynamics being learnt. (e) A model with IN
is smoother and regularized.

Chamfer-L2 (↓) Normal Consistency (↑) NM-Faces (↓) Self-Intersection (↓) Time (↓)

No Instance Norm 6.48 0.820 2.94 3.28 183

0 refinement 5.00 0.818 0.39 0.03 68
1 refinement 4.93 0.819 0.38 0.03 124
2 refinement 4.65 0.818 0.73 0.09 189

geometric accuracy, manifoldness and inference time for different amounts of refinement in Table

3.1. The reported quantities are averaged over the 11 Shapnet categories (this excludes watercraft

and lamp where NMF struggles with thin structures). It is important to note that we observe

manifoldness metrics decrease by a small amount with more refinement modules. We believe

this decrease in manifoldness is because in order to approximate sharp features, more complex

dynamics need to be learned, which in turn demand a tighter tolerance value. In this work we did

not choose an extremely tight tolerance so as to get a higher inference speed. For applications

that require extremely high manifoldness, a tighter tolerance can be used. To summarize, the

entire NMF pipeline can be seen as three successive diffeomorphic flows {F0
Θ|z,F

1
Θ|z,F

2
Θ|z} of the

initial spherical mesh to gradually approach the final shape.

3.5 Loss Function.

In order to learn the parameters Θ it is important to use a loss which meaningfully

represents the difference between the predicted MP and the target MT meshes. To this end we

use the bidirectional Chamfer Distance (eq.3.10) on the points sampled differentiably [55] from

predicted M̃P and target M̃T meshes.

L (Θ) = ∑
p∈M̃P

min
q∈M̃T

||p−q||2 + ∑
q∈M̃T

min
p∈M̃P

||p−q||2 (3.10)
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No-Norm Deform Block-1 Deform Block-2 Deform Block-3

Figure 3.6. Effect of IN and refinement modules. With out any instance normalization (No-Norm) training NMF
cross-category becomes difficult leading to severe non-manifoldness. With refinement modules (Deform Block
-1,2,3) we successively get meshes that are sharper and more geometrically accurate.

We compute chamfer distances Lp1,Lp2 for meshes after deformation blocks F1
Θ|z and

F2
Θ|z. For meshes generated from F0

Θ|z we found that computing chamfer distance Lv on the

vertices gave better results since it encourages predicted vertices to be more uniformly distributed

(like points sampled from target mesh). We thus arrive at the overall loss function to train NMF.

L = w0Lv +w1Lp1 +w2Lp2 (3.11)

Here we take w0 = 0.1,w1 = 0.2,w3 = 0.7 so as to enhance mesh prediction after each defor-

mation block. The adjoint sensitivity [46] method is employed to perform the reverse-mode

differentiation through the ODE solver and therefore learn the network parameters Θ using the

standard gradient descent approaches.

3.6 Dynamics Equation.

The Neural ODE Fθ |z is built around the dynamics equation fθ |z which is learned by a

deep network. Given a point x ∈ R3 we first get 512 length point features by applying a linear

22



Table 3.2. Effect of tolerance on geometric accuracy and manifoldness. A tighter choice of tolerance results in
better performance.

Error Tolerance Chamfer-L2 (↓) Normal Consistency (↑) NM-Faces (↓) Self-Intersection (↓) Time (↓)

1e-3 8.09 0.832 0.859 0.43 187
1e-4 6.09 0.828 0.75 0.24 184
1e-5 5.54 0.826 0.71 0.10 189

layer. To condition the NODE on shape embedding, we extract a 512 length shape feature from

the shape embedding z and multiply it element wise with the obtained point features to get the

point-shape features. Thus, point-shape features contains both the point features as well as the

global instance information. Lastly, we feed the point-shape features into two residual MLP

blocks each of width 512 and subsequent MLP of width 512 which outputs the predicted point

location y ∈ R3. Based on the findings of [56, 16] we make use of the tanh activation after

adding the residual predictions at each step. This ensures maximum flexibility in the dynamics

learned by the deep network.

It is important to discuss tolerance value that is used to solve the dynamics. This

determines the step size of the ODE solver. In Table 3.2 we show the trend in geometric accuracy

as well as manifoldness at various tolerance values. Clearly, by taking a lower value of tolerance,

we get higher geometric accuracy as well as manifoldness, but this comes at a slight cost of

inference time. In practice, we did not find much improvement in results by taking tolerance

lesser than 1e−5.

3.7 Implementation Details

For auto-encoding, we uniformly sample N = 2520 from the target mesh and using

PointNet[45] encoder, get a shape embedding z of size k = 1000. During training, the Neural

ODEs are solved with a tolerance of 1e−5 and interval of integration set to t = 0.2 for deforming

an icosphere with 622 vertices. At test time, we use an icosphere of 2520 vertices and tolerance

of 1e−5. We train NMF for 125 epochs using Adam [57] optimizer with a learning rate of 10−5

and a batch size of 250, on 5 NVIDIA 2080Ti GPUs for 2 days. For single view reconstruction,
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we train an image to point cloud predictor network with pretrained ResNet encoder of latent

code 1000 and a fully-connected decoder with size 1000,1000,3072 with relu non-linearities.

The point predictor is trained for 125 epochs on the same split as NMF auto-encoder.
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Chapter 4

Results

In this section we show qualitative and quantitative results on the task of auto-encoding

and single view reconstruction of 3D shapes with comparison against several state of the art

baselines. In addition to these tasks, we also demonstrate several additional features and

applications of our approach including physics simulation, 3D printing, latent space interpolation

texture mapping, consistent correspondence and shape deformations.

4.1 Data

We evaluate our approach on the ShapeNet Core dataset [58], which consists of 3D

models across 13 object categories. We use the training, validation and testing splits provided by

[8] to be comparable to other baselines. We use rendered views from [8] and sample 3D points

using [59].

4.2 Evaluation criteria

We evaluate the predicted shape MP for geometric accuracy to the ground truth MT as

well as for manifoldness. For geometric accuracy, we follow [4] and compute the bidirectional

Chamfer distance according to (3.10) and normal consistency using (4.1) on 10000 points

sampled from each mesh. Since Chamfer distance is sensitive to the size of meshes, we scale the

meshes to lie within a unit radius sphere. Chamfer distances are report by multiplying with 103.
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With M̃P,M̃T the point sets sampled from Mp,MT and ΛP,Q = {(p,argminq||p−q||) : p ∈ P},

we define

Ln = |M̃P|−1
∑

(p,q)∈ΛM̃P,M̃T

|up ·uq| + |M̃T |−1
∑

(p,q)∈ΛM̃T ,M̃P

|uq ·up| − 1 (4.1)

We detect non-manifold vertices (Fig. 1.2(b)) and edges (Fig. 1.2(a)) using [60] and

report the metrics ‘NM-vertices’, ‘NM-edges’ respectively as the ratio(×105) of number of

non-manifold vertices and edges to total number of vertices and edges in a mesh. To calculate

non-manifold faces (Fig. 1.2(c)), we count number of times adjacent face normals have a negative

inner product, then the metric ‘NM-Faces’ is reported as its ratio(%) to the number of edges in

the mesh. To calculate the number of instances of self-intersection (Fig. 1.2(d)), we use [61] and

report the ratio(%) of number of intersecting triangles to total number of triangles in a mesh.

4.3 Baselines

We compare with official implementations for Pixel2Mesh [3, 4], MeshRCNN [4] and

AtlasNet [6]. We use pretrained models for all these baselines motioned in this paper since

they share the same dataset split by [8]. We use the implementation of Pixel2Mesh provided

by MeshRCNN, as it uses a deeper network that outperforms the original implementation. We

also consider AtlasNet-O which is a baseline proposed in [6] that uses patches sampled from

a spherical mesh, making it closer to our own choice of initial template mesh. To account for

possible variation in manifoldness due to simple post processing techniques, we also report

outputs of all mesh generation methods with 3 iterations of Laplacian smoothing. Further

iterations of smoothing lead to loss of geometric accuracy without any substantial gain in

manifoldness. We also compare with occupancy networks [19], a state-of-the-art indirect mesh

generation method based on implicit surface representation. we compare with several variants of

OccNet based on the resolution of Multi Iso-Surface Extraction algorithm [19]. To this end, we

create OccNet baselines OccNet-1, OccNet-2 and OccNet-3 with MISE upsampling of 1, 2 and

3 times respectively. For fair comparison to other baselines, we use OccNet’s refinement module
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to output its meshes with 5200 faces.

4.4 Auto-encoding 3D shapes

We now evaluate NMF’s ability to generate a shape given an input 3D point cloud and

compare against AtlasNet and AtlasNet-O. We evaluate the geometric accuracy and manifoldness

of generated meshes. Additionally, we show physically based renderings of generated meshes

with dielectric and conductor materials to highlight artifacts due to non-manifoldness.

We report mean errors as well as per category results for shape generation from point

clouds in Table 4.1.

Notice that AtlasNet-O with smoothing has 20 times the self-intersection compared to

NMF without any smoothing. With Laplacian smoothing, NMF becomes practically intersection

free. NMF also outperforms the baselines with and without smoothing in terms of non-manifold

faces. Since AtlasNet uses 25 mesh non-manifold open templates to construct the final mesh

it yields a constant value of 7.40 for its non-manifold edges while AtlasNet-O and NMF have

manifold-edges. All the three methods have manifold vertices. Finally, NMF generates meshes

with a higher normal consistency, leading to more realistic results in simulations and physically-

based rendering. Visualizations in Fig. 4.1 show severe self-intersections and flipped normals for

AtlasNet baselines which are absent for NMF. This leads to NMF giving more realistic physically

based rendering results. Note the reflection of red box and green ball through NMF mesh, which

are either distorted or absent for AtlasNet. The blue ball’s reflection on conductor’s surface is

closer to ground truth for NMF due to higer manifoldness.

4.5 Single-view reconstruction

We evaluate NMF for single-view reconstruction and compare against state-of-the-art

methods. Per category and Mean errors over ShapeNet categories are reported in Table 4.2 - 4.7.

We note significantly lower self-intersections for NMF compared to the best baseline even after
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Table 4.1. Per category performance for auto-encoding task. NMF clearly out-performs baselines in terms of
manifoldness and normal consistency.

Chamfer-L2 (↓) Normal Consistency (↑) NM-Faces ↓) Self-Intersection (↓)
AtNet AtNet-O NMF AtNet AtNet-O NMF AtNet AtNet-O NMF AtNet AtNet-O NMF

table 8.65 4.38 7.08 0.837 0.842 0.853 2.10 1.96 1.18 28.22 9.42 0.20
couch 2.84 1.98 3.24 0.679 0.668 0.691 1.02 0.44 0.14 26.96 0.79 0.01
speak. 5.46 5.50 7.30 0.680 0.679 0.710 0.40 0.14 0.04 22.74 0.28 0.00
firea. 1.20 1.88 2.19 0.975 0.975 0.977 2.17 1.51 0.01 24.86 6.46 0.00
plane 1.11 1.20 2.76 0.938 0.939 0.957 2.96 2.51 0.91 22.75 10.06 0.04
chair 3.80 5.19 5.87 0.682 0.697 0.704 2.01 1.89 1.63 22.94 7.85 0.20
monit. 1.76 1.57 2.27 0.734 0.737 0.699 0.76 0.80 0.02 25.94 2.83 0.00
phone 1.74 1.40 2.36 0.910 0.765 0.765 0.23 0.05 0.02 23.98 0.16 0.00
boat 1.60 2.36 4.66 0.835 0.838 0.849 0.86 0.47 0.02 20.90 2.73 0.00
lamp 6.21 7.00 19.23 0.917 0.924 0.923 1.11 2.18 0.82 16.81 9.01 0.20
bench 2.13 1.81 3.02 0.917 0.917 0.926 2.41 1.65 0.60 24.17 6.95 0.06
car 3.00 2.74 3.51 0.770 0.781 0.805 1.37 0.49 0.08 30.67 1.43 0.01
cabin 3.69 3.53 4.10 0.900 0.897 0.896 0.67 0.23 0.15 26.64 0.62 0.01
mean 4.15 3.50 5.54 0.815 0.816 0.826 1.72 1.43 0.71 24.80 6.03 0.10
mean (with Laplace) 4.59 3.81 5.25 0.807 0.811 0.826 0.47 0.56 0.38 13.26 2.02 0.00

Table 4.2. Single View Reconstruction: Chamfer Distances (↓). NMF is comparable to baseline methods in terms
of chamfer distance.

Category table couch speak. firea. plane chair monit. phone boat lamp bench car cabin. mean mean(w/Lap.)

MeshRCNN[4] 5.34 3.73 8.27 2.07 2.27 5.56 4.17 3.00 3.55 13.67 3.21 3.33 5.11 4.73 5.96
Pixel2Mesh[3] 6.64 4.48 9.76 2.42 2.71 6.66 5.03 3.57 3.78 16.55 3.80 3.41 5.86 5.48 10.79
AtlasNet-25[6] 8.67 4.97 10.38 2.08 2.12 5.77 5.08 3.50 3.62 15.73 3.32 4.06 5.14 5.48 7.76
AtlasNet-sph[6] 8.59 6.57 12.27 3.06 2.48 8.167 8.29 4.47 4.97 17.63 4.50 4.29 4.65 6.67 7.35

NMF (Ours) 10.95 6.20 12.95 4.67 3.70 8.94 7.94 4.88 7.15 26.49 4.85 4.566 5.139 7.82 8.64

Table 4.3. Single View Reconstruction: Normal Consistency (↑). NMF is comparable to best baselines and
outperforms it after laplacian smoothing.

Category table couch speak. firea. plane chair monit. phone boat lamp bench car cabin. mean mean(w/Lap.)

MeshRCNN[4] 0.743 0.723 0.717 0.623 0.693 0.708 0.782 0.848 0.648 0.655 0.655 0.649 0.730 0.698 0.758
Pixel2Mesh[3] 0.723 0.743 0.761 0.612 0.685 0.703 0.805 0.843 0.680 0.643 0.654 0.683 0.745 0.706 0.720
AtlasNet-25[6] 0.813 0.787 0.786 0.969 0.958 0.725 0.680 0.755 0.871 0.918 0.898 0.835 0.778 0.826 0.824
AtlasNet-sph[6] 0.808 0.798 0.790 0.971 0.962 0.740 0.695 0.759 0.881 0.923 0.901 0.838 0.777 0.838 0.836

NMF (Ours) 0.844 0.783 0.792 0.971 0.963 0.739 0.696 0.755 0.881 0.925 0.932 0.829 0.778 0.829 0.837

Table 4.4. Single View Reconstruction: Manifold Vertices (↓). NMF outperforms baselines by a large margin.

Category table couch speak. firea. plane chair monit. phone boat lamp bench car cabin. mean mean(w/Lap.)

MeshRCNN[4] 15.869 3.052 3.055 2.332 2.630 16.292 6.733 0.468 3.503 23.496 21.710 1.586 10.281 9.319 9.319
Pixel2Mesh[3] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AtlasNet-25[6] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AtlasNet-sph[6] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

NMF (Ours) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 4.5. Single View Reconstruction: Manifold Edges (↓). Both AtlasNet and MeshRCNN have severe non-
manifold edges

Category table couch speak. firea. plane chair monit. phone boat lamp bench car cabin. mean mean(w/Lap.)

MeshRCNN[4] 34.317 7.644 7.202 9.294 24.357 25.037 10.161 2.599 8.652 34.398 31.411 4.030 12.924 17.783 17.88
Pixel2Mesh[3] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AtlasNet-25[6] 7.40e3 7.40e3 7.40e3 7.40e3 7.40e3 7.40e3 7.40e3 7.40e3 7.40e3 7.40e3 7.40e3 7.40e3 7.40e3 7.40e3 7.40e3
AtlasNet-sph[6] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

NMF (Ours) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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AtlasNet

AtlasNet-O

NMF (Ours)

Ground Truth

Figure 4.1. Auto-encoder: The first row shows mesh geometry along with self-intersections (red) and flipped
normals (black). The bottom row shows results from physically based rendering with dielectric and conducting
materials. The appearances of the red box, green ball and blue ball are more realistic for NMF than AtlasNet, since
the latter suffers from severe self-intersections and flipped normals.
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Table 4.6. Single View Reconstruction: Manifold Faces (↓). NMF is several times better than best baseline

Category table couch speak. firea. plane chair monit. phone boat lamp bench car cabin. mean mean(w/Lap.)

MeshRCNN[4] 5.29 3.69 3.27 7.47 7.74 5.38 3.21 1.19 5.77 7.15 5.74 2.80 3.10 5.18 0.86
Pixel2Mesh[3] 2.74 2.37 2.50 5.80 5.36 3.53 3.04 2.61 4.21 5.39 3.18 2.49 2.75 3.33 0.88
AtlasNet-25[6] 1.77 0.92 0.40 4.14 3.52 1.84 0.756 0.31 1.40 1.72 1.91 1.17 0.50 1.76 0.48
AtlasNet-sph[6] 2.45 1.17 0.88 4.23 3.01 2.54 1.80 0.73 2.73 3.50 2.27 0.67 0.51 2.19 1.08

NMF (Ours) 1.22 0.08 0.06 0.00 1.02 1.81 0.02 0.02 0.03 1.00 0.43 0.06 0.16 0.83 0.45

Table 4.7. Single View Reconstruction: Self-Intersection (↓). NMF is several times better than best baseline

Category table couch speak. firea. plane chair monit. phone boat lamp bench car cabin. mean mean(w/Lap.)

Pixel2Mesh[3] 10.18 10.41 9.81 17.27 18.26 12.07 12.24 10.87 15.16 16.57 11.21 11.34 10.06 12.29 6.52
AtlasNet-25[6] 29.94 28.11 25.46 32.10 29.82 24.69 26.69 27.23 26.30 19.48 27.83 30.14 27.60 26.94 17.57
AtlasNet-sph[6] 12.68 5.25 4.89 20.92 15.56 13.67 12.33 3.29 14.37 12.75 14.95 2.67 2.20 11.07 5.94

NMF (Ours) 0.24 0.00 0.00 0.00 0.07 0.26 0.00 0.00 0.00 0.26 0.05 0.00 0.01 0.12 0.00

smoothing. Our method again results in fewer than 50% non-manifold faces compared to the

best baseline. NMF also gets the highest normal consistency performance post smoothing. Due

to the cubify step as part of the MeshRCNN pipeline which converts a voxel grid into a mesh, the

method has several non-manifold vertices and edges compared to deformation based methods

Pixel2Mesh, AtlasNet-O and NMF. AtlasNet suffers from the most number of non manifold

edges, almost 100 times that of MeshRCNN. We note that MeshRCNN[4] better performance

in Chamfer Distance come at a cost of other metrics. We qualitatively show the effects of

non-manifoldness in Figure 4.2. We observe that for dielectric material (second row), NMF is

able to transmit background colors closest to the ground truth, whereas other baselines only

reflect the white sky due to the presence of flipped normals. We also show the improvement in

renderings due to smoothing on baselines in Fig. 4.3. Clearly, the rendering results are better

after smoothing due to reduction in non-manifoldness, however, it is still not comparable to the

quality from NMF. We some more rendering results from NMF in Figure 4.4.
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Pixel2Mesh

AtlasNet

AtlasNet-O

MeshRCNN

Image

NMF

Ground Truth

Figure 4.2. Single View Reconstruction: We compare NMF to other mesh generating baselines for SVR. Top row
shows mesh geometry along with self-intersections (red) and flipped normals (black). Physically based renders for
dielectric and conductor material are shown in rows 2 and 3 respectively. Notice the reflection of checkerboard floor,
occluded part of red box and balls are all visible through NMF render but not with other baselines. This is due to
the presence of severe self-intersection and flipped normals. The reflection of blue ball on metallic table is more
realistic for NMF than other methods.
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NMFPixel2Mesh AtlasNet AtlasNet-O MeshRCNN

Image

Ground Truth

w/ Lap.

w/ Lap.

w/ Lap.

Figure 4.3. Effect of laplacian smoothing (referred by ‘w/ Lap.’) on rendering quality of baseline methods. Note
that NMF without smoothing still gives superior results compared to the bset baseline after smoothing.
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2D Image NMF Ground Truth

Figure 4.4. Additional Physically based renderings from NMF
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(a) Image

(b) Ground Truth

(c) NMF

(d) OccNet

(e) MRCNN

(f) Non-Manifold Edges

Figure 4.5. Implicit Methods: OccNet fails to give meshes that are singly connected and MeshRCNN has poor
normal consistency along with severe self-intersections. Both OccNet and MeshRCNN have non-manifold edges
(shown as zoomed out insets). NMF generates meshes that are visually appealing with higher manifoldness.
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Table 4.8. Comparison with Implicit Representation method

Point Completion Chamfer-L2 (↓) Normal Consistency (↑) NM-Vertices (↓) NM-Edges (↓) NM-Faces (↓) Self-Intersection (↓) Time (↓)

OccNet-1[10] 8.77 0.804 1.13 0.85 0.36 0.00 795
OccNet-2[10] 2.82 0.804 5.00 3.75 0.28 0.02 1622
OccNet-3[10] 2.69 0.805 6.74 3.74 0.23 0.08 7973

NMF 5.53 0.826 0.00 0.00 0.71 0.10 189
NMF w/ Laplace 5.25 0.825 0.00 0.00 0.38 0.00 294

Single View Recon. Chamfer-L2 (↓) Normal Consistency (↑) NM-Vertices (↓) NM-Edges (↓) NM-Faces (↓) Self-Intersection (↓) Time (↓)

OccNet-1[10] 8.77 0.814 1.13 0.85 0.36 0.00 871
OccNet-2[10] 8.66 0.814 2.67 1.79 0.21 0.03 1637
OccNet-3[10] 8.33 0.814 2.79 1.90 0.15 0.09 6652

NMF 7.82 0.829 0.00 0.00 0.83 0.12 187
NMF w/ Laplace 8.64 0.837 0.00 0.00 0.45 0.00 292

4.6 Comparison with Implicit Representation

We evaluate NMF against state-of-the-art indirect mesh generation method OccNet for

the task of single view reconstruction. Since Mean errors over ShapeNet categories are reported

in Table 4.8 and qualitative results are shown in Fig 4.5. We observe that NMF outperforms the

best baseline OccNet-3 in terms of geometric accuracy. This is primarily because NMF predicts

a singly connected mesh object as opposed to OccNet which leads to several disconnected

meshes. Moreover, due to the limitations imposed by the marching cubes algorithm discussed in

section 2, OccNet-1,2,3 have several non-manifold vertices and edges where as by construction,

NMF doesn’t suffer from such limitation. An example of non-manifold edge is shown in figure

4.5. For sake of completeness, we also show the mesh generated by Mesh R-CNN that also

suffers from non-manifold vertices and edges. NMF is also competitive with OccNet in terms of

self-intersections since with Laplacian smoothing both methods practically become intersection

free. While OccNet, outperforms NMF in terms of non-manifold faces, we argue that this comes

at a cost of higher inference time. For reference, the fastest version of OccNet has comparable

non-manifold faces and self-intersections but fares behind in terms of other metrics.

4.7 Soft Body Simulation

Physically based tasks like rendering, simulation and 3D printing require meshes to

be manifold. Neural Mesh Flow learns to generate manifold meshes by construction since it
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models a diffeomorphic flow and thereby maintains the uniqueness and orientation preserving

properties[15, 14]. However the other mesh generation methods AtlasNet[6], Pixel2Mesh[3, 4],

MeshRCNN[4] and OccNet[19] fail to generate meshes that satisfy these manifoldness properties.

In our supplementary video, we perform qualitative comparisons amongst the mesh generation

methods for these physically based tasks.

One of the advantages of a manifold mesh is that it allows us to do physically based

simulations. In this experiment, we specifically take the challenging task of simulating the

dropping of a mesh on a floor. Amongst other things, this is a challenging task because all

the mesh components must support the stress and strain on the mesh as a whole and should

result in the solutions to dynamic equations that best represent the reality. The simulations were

performed using [62] with settings pull = 0.9, push = 0.9,bending = 10 to represent a rubber

like material.

We show the 3D meshes (i) and their final form after hitting the ground (ii) in figure 4.6.

It is interesting to note that AtlasNet[6] (Fig 4.6 (a)) consisting of 25 mesh patches, while giving

good geometric accuracy, disintegrates into independent parts since the collision dynamics are

solved for each individual meshlet and therefore the results are far from the ground truth (Fig

4.6(f)). On the contrary AtlasNet-O[6] is able to retain the mesh structure but due to severe

self-intersections, the collision simulation is unrealistic and the amount of self-intersections

increase after hitting the ground, which shows that merely having the correct mesh geometry is

not enough for physically realizable meshes, instead it should also have manifoldness. While

Pixel2Mesh[3, 23](Fig 4.6 (c)) also suffers simulation artifacts from self-intersections, we note

that its mesh contains very few and sparse set of vertices to represent important shape features

(like legs). Because of this non-manifoldness we encounter strange simulation behaviours such

as the legs going through the floor (Fig 4.6 (c)) which is unrealistic. MeshRCNN[23] is found

to suffer from over-bounciness of its meshes during simulation. We believe this is because of

its poor normal consistency which causes issues when solving contact force equations. Neural

Mesh flow, (Fig 4.6(e)) due to its high manifoldness gives realistic simulations that are close to
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the ground truth (Fig 4.6(f)) which demonstrates its effectiveness and reinforces our hypothesis

that manifoldness is key to physically realizable meshes. We also tested simulation for OccNet

[19] but found that it crashed the simulator due to the presence of several non-manifold vertices

and faces.

(i) (ii)

(i) (ii)(i) (ii)

(i) (ii)

(i) (ii)(i) (ii)

(a) AtlasNet (b) AtlasNet-O

(c) Pixel2Mesh (d) MeshRCNN

(e) NMF (f) Ground Truth

Figure 4.6. Qualitative results for soft body simulation. While AtlasNet (a) breaks down into 25 meshlets, AtlasNet-
O (b) suffers from severe self-intersections leading to unrealistic simulations. Pixel2Mesh (c) owing to higher
degree of non-manifold faces, leads to artifacts such has the chair going through the floor. MeshRCNN (d) has a
high degree of non-manifoldness resulting into unrealistic simulation. NMF(e) due to being a manifold mesh, is
close to the ground truth (f)
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4.8 3D Printing

We show a few renders of a 3D printed shape. The shape was generated from NMF

(using image from Fig. 3.1) without performing any post processing to the prediction. It is

important to note that printing other methods require significant human inputs owing to high

degrees of non-manifold issues. Fig 4.7 shows a 3D printed bench that was generated by NMF.

Not only does it aids rapid 3D printing technology, the results thus obtained are very satisfactory.

Figure 4.7. Example of a 3D printed shape generate by NMF. The printed models are geometrically accurate to the
source image and were printed directly from NMF’s mesh prediction without any post-processing/repair

4.9 More Qualitative Results

In this section we show additional applications that are enabled by NMF without any

changes to its architecture. These mainly include texture mapping, global shape parameterization,

shape deformation and correspondence.
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(a) Texture (b) Chair (c) Car (d) Airplane

Figure 4.8. Texture Mapping using NMF. We observe minimal distortion while applying textures.

4.9.1 Texture Mapping and Parameterization

One of the important problems in graphics research is that of global shape parameteriza-

tion which is often used to carry out texture mapping. Since NMF learns to diffeomorphically

flow a spherical mesh to a target shape, it retains the local geodesics. This allows us to take a

spherical texture (Fig 4.8(a)) and map it to generated shapes (Fig. 4.8(b-c)) without any human

inputs. As we can qualitatively observe, the texture mapping is satisfactorily without any artifacts

and distortions.

4.9.2 Shape Deformation, Interpolation

For any shape auto-encoder that strives to learn meaningful representations it is important

to enable smooth latent space interpolations and have knowledge sharing across generated shapes.

For the specific case of NMF that learns to diffeomorphically map a sphere to the target shape,

given its shape embedding, the problems of shape deformation and latent space interpolation

are identical. To this end, given two shape M0,M1 we feed them the point encoder to get their

respective shape embeddings z0,z1. By linearly interpolating z = λ z0 +(1−λ )z1,λ ∈ [0,1] we

can get continuous and manifold intermediate shape deformations and interpolations. While
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Figure 4.9. Latent space interpolation of NMF. Notice that the interpolated meshes are also manifold.

we show several such deformations in out supplementary video, we illustrate a few more

interpolations in Fig 4.9 where we observe cross category interpolations that retain manifoldness

property at each intermediate step.

4.9.3 Semantic Correspondence

One of the consequence of having smooth interpolations is that NMF is able to learn part

correspondence across instances in a category (Fig 4.10) as well as through instances belonging

to different categories (Fig 4.11). It is important to mention that this is purely a consequence

of NMF architecture and learning such semantic correspondences does not require any explicit

training. In Fig. 4.10 (a) we note that the front and back part of the cars (including the wheels)

have the same color which implies that they are semantically correlated. Similarly, the wings and

tail of airplane (Fig4.10(c)) are semantically correlated among the two instances. Interestingly,

for shapes where there is significant change in geometry (Fig 4.10(b,d)) such as a table/chair

having four legs and not, we observe that NMF still maps the legs in the initial shape (top) to the

base of the target shapes (bottom) that act as pseudo-legs. We observe NMF’s ability to learn

semantic correspondence even across categories (Fig 4.11). The legs of table (Fig 4.11(a)) are

semantically mapped to the legs of a chair (Fig 4.11(b)) and even to a bench (Fig. 4.11(c)).

Thus, the above observations indicate that NMF learns really meaningful latent space for

3D manifold shapes.
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(a) Car (b) Chair (c) Airplane (d) Table

Figure 4.10. Semantic correspondence learned by NMF without supervision. (a) the back and front of the cars are
consistent. (b) even though the bottom chair does not have typical legs, we see that the coloring is semantically
consistent and meaningful. The same follows for other categories like airplane (c) and table (d)

(a) Table (b) Chair (c) Bench

Figure 4.11. Cross-Category semantic correspondence learned by NMF without supervision. Note that the color of
the 4 legs are consistent across shapes belonging to different categories.
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Broader Impact

The broader positive impact of our work would be to inspire methods in computer

graphics and associated industries such as gaming and animation, to generate meshes that require

significantly less human intervention for rendering and simulation. The proposed NMF method

addresses an important need that has not been adequately studied in a vast literature on 3D mesh

generation. While NMF is a first step in addressing that need, it tends to produce meshes that are

over-smooth (also reflected in other methods sometimes obtaining greater geometric accuracy),

which might have potential negative impact in applications such as manufacturing. Our code,

models and data will be publicly released to encourage further research in the community.
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