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Abstract

Understanding the principles governing the dynamic coordination of functional brain networks remains an important
unmet goal within neuroscience. How do distributed ensembles of neurons transiently coordinate their activity across a
variety of spatial and temporal scales? While a complete mechanistic account of this process remains elusive, evidence
suggests that neuronal oscillations may play a key role in this process, with different rhythms influencing both local
computation and long-range communication. To investigate this question, we recorded multiple single unit and local field
potential (LFP) activity from microelectrode arrays implanted bilaterally in macaque motor areas. Monkeys performed a
delayed center-out reach task either manually using their natural arm (Manual Control, MC) or under direct neural control
through a brain-machine interface (Brain Control, BC). In accord with prior work, we found that the spiking activity of
individual neurons is coupled to multiple aspects of the ongoing motor beta rhythm (10–45 Hz) during both MC and BC,
with neurons exhibiting a diversity of coupling preferences. However, here we show that for identified single neurons, this
beta-to-rate mapping can change in a reversible and task-dependent way. For example, as beta power increases, a given
neuron may increase spiking during MC but decrease spiking during BC, or exhibit a reversible shift in the preferred phase
of firing. The within-task stability of coupling, combined with the reversible cross-task changes in coupling, suggest that
task-dependent changes in the beta-to-rate mapping play a role in the transient functional reorganization of neural
ensembles. We characterize the range of task-dependent changes in the mapping from beta amplitude, phase, and inter-
hemispheric phase differences to the spike rates of an ensemble of simultaneously-recorded neurons, and discuss the
potential implications that dynamic remapping from oscillatory activity to spike rate and timing may hold for models of
computation and communication in distributed functional brain networks.
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Introduction

Our understanding of the biophysical mechanisms governing

the dynamics of single neurons has increased dramatically over the

past decades. In contrast, a principled understanding of the

mechanisms governing ensembles of interacting neurons – from

local cortical microcircuits to discrete functional areas to large-

scale brain networks – remains elusive. Recent imaging advances

have generated detailed structural maps that span from the micro-

scale of local synaptic connectivity [1–3] to the macro-scale of

hierarchical, long-range cortical networks [4–6]. However, a

comprehensive description of the brain connectome [5] – the

structural connectivity of the nervous system – is a necessary but

not sufficient condition for understanding the dynamic coordina-

tion of brain networks. To survive in a complex world, agents must

switch quickly from one task to another – for example, switching

from thinking about an article to dodging a speeding car when

crossing an intersection. Different tasks require the differential

activation of separate functional networks, including (but not

limited to) changes in the mean activity of multiple brain areas

(nodes) as well as transient modulation of the effective strength of

connectivity between areas (directed links). Importantly, the

modulation of distinct networks required for task switching occurs

fast enough that structural connectivity can be considered

relatively fixed. How is this dynamic coordination of networks

accomplished?

Several groups have proposed that neuronal oscillations play a

critical role in the dynamic coordination of multi-scale brain

networks [7–22]. In this view, oscillations or brain rhythms may

influence both local cortical computation [7,8] as well as long-

range communication [21]. Furthermore, Lakatos et al. [17]

proposed that a hierarchy of interacting oscillations, where low

frequency phase modulates high frequency power, may serve to

coordinate information flow across multiple spatial and temporal

scales [18]. Most hypotheses about how oscillations may influence

neural coding and network coordination predict that the spiking of
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single neurons is statistically dependent upon one or more distinct

frequency bands of the local field potential (LFP). We refer to this

statistical dependence between the micro-scale of single neurons

and the meso- and macro-scale of oscillatory network activity as

cross-level coupling (CLC). Importantly, if neuronal oscillations

play a role in coordinating distributed networks, then we would

expect to observe CLC between the neurons embedded in those

networks and the different brain rhythms associated with their

functional activation. That is, failure to observe CLC would be

evidence against oscillations playing a role in dynamic coordina-

tion. Conversely, if CLC is present, then a quantitative descriptive

model of the CLC observed within neuronal ensembles across

different tasks may help distinguish between different mechanistic

accounts of how brain rhythms modulate activity in distributed

functional networks. That is, characterizing the distribution and

stability of CLC parameters across neurons and tasks is an

essential step that may prove useful for selecting between different

possible mechanisms of oscillatory network control.

CLC between spikes and internally-generated brain rhythms

remains less well understood than the coupling between spikes and

externally-associated factors such as visual orientation [23,24] or

movement direction [25,26]. Nonetheless, empirical evidence for

CLC between single neurons and a variety of different brain

rhythms has been observed in several brain areas across a number

of behavioral tasks [22,27–41]. This evidence includes spike-field

coherence between single neurons and the gamma (30–80 Hz)

rhythm in the hippocampus [33,37], basal ganglia [42], and a

variety of different cortical areas [22,29,43]. CLC in the theta (4–

8 Hz) band has been observed in the hippocampus [34] and

between the hippocampus and prefrontal cortex [38], with theta-

phase precession of hippocampal place cells [44] serving as a

prototype of dynamic CLC. Event-related changes in the power

and synchronization of the gamma and theta bands suggests that

these rhythms are related to functional activation [45]. For

example, gamma synchronization in visual cortex is modulated by

attention [39] and predicts the speed of change detection [46],

while increased hippocampal theta power precedes successful

memory encoding in humans [47]. Furthermore, the role of

oscillatory phase (distinct from oscillatory power) in neuronal

coding and communication has emerged as a topic of growing

interest. It was recently shown that spikes from prefrontal neurons

occurring at particular phases of 32-Hz filtered LFPs were more

informative about object coding during a working memory task

than were spikes occurring at other phases [22]. Similarly,

posterior parietal neurons coherent with 15-Hz beta activity were

predictive of reaction times during a coordinated reach-saccade

task, while other actively spiking neurons were not [32]. In

primary visual cortex, gamma phase modulates orientation

selectivity and noise correlations [43], while entrainment of delta

(1–4 Hz) phase in visual cortex increased response gain and

speeded reaction times [48].

However, compared to other rhythms such as theta and

gamma, the cellular/network origins [49,50] and functional role

[51–56] of sensorimotor beta oscillations are less well understood

and remain subjects of considerable debate [16]. In primary motor

cortex, Murthy and Fetz [27] were among the first to show that

spike timing is dependent on the phase of the motor beta (10–

40 Hz) rhythm, with stronger phase-locking occurring when beta

power is high. Reimer and Hatsopoulos [57] showed that precise

spike timing depends on the combined influence of both external

events as well as internally-generated ongoing beta activity – that

is, motor cells are tuned to internal as well as external events.

Intriguingly, beta activity is a mesoscopic phenomenon arising

from microscale network interactions and results in propagating

spatiotemporal waves that can encode information about upcom-

ing movements [58,59] and action goals [60]. The strong coupling

between single cells and the beta rhythm, on the one hand, and

between beta and experimental task demands [52,61,62], on the

other, suggests that beta-band CLC in the motor system may

prove useful in understanding the connection of single cells to the

dynamic activation of functionally-defined neuronal ensembles.

Therefore, a primary purpose of this study was to provide a

quantitative characterization of CLC between the motor beta

rhythm (10–45 Hz) and a large ensemble of simultaneously-

recorded neurons in primary motor cortex (M1) across two distinct

but related behavioral tasks (Figure 1). Such a characterization of

CLC is required both for understanding the functional role of the

beta rhythm in the motor system, on the one hand, as well as for

evaluating the hypothesized role oscillations may play in

coordinating large-scale networks more generally. Importantly,

several aspects of CLC remain unclear. First, the degree of

heterogeneity of CLC parameters across a population remains

uncertain. Many prior studies employed acute recordings of single

cells or small ensembles of simultaneously-recorded cells, pooling

cells recorded serially over different days in order to make

inferences about the distribution of CLC parameters over the

neuronal population. This ergodic assumption makes it difficult to

distinguish the case where a wide range of CLC parameters holds

in a stable fashion for an ensemble over time, on the one hand,

from the case where each cell is described by similar CLC

parameters, but those parameters evolve dynamically over time.

An advantage of the chronically-implanted microelectrode arrays

used here is that a large ensemble of neurons can be recorded

simultaneously, with identified single units followed over several

days, permitting an unbiased assessment of the population

diversity of CLC that holds during a given task. Second, it

remains unclear how stable within-neuron CLC parameters are

across different tasks. Few studies have investigated CLC in a

given neuron over different tasks – that is, it remains unclear how

variable CLC is within a given neuron as the subject switches from

one task to another. This study examines CLC within the same

Author Summary

How is the functional role of a particular neuron
established within an ensemble? The concept of a neural
tuning curve – the mapping from input variables such as
movement direction to output firing rate – has proven
useful in investigating neural function. However, prior
work shows that tuning curves are not fixed but may be
remapped as a function of task demands – presumably via
high-level mechanisms of cognitive control. How is this
accomplished? Brain rhythms may play a causal role in this
process, but the coupling of single cells to network activity
remains poorly understood. We investigated the coupling
between rhythmic beta activity and spiking as macaques
performed two different tasks. This coupling can be
described in terms of a function that maps oscillatory
amplitude and phase to instantaneous spike rate. Similarly
to direction tuning, this ‘‘internal’’ tuning curve also
exhibits task-dependent changes. We characterize these
changes across a large ensemble of simultaneously-
recorded cells, and consider some of the neuro-computa-
tional implications presented by cross-level coupling
between single cells and large-scale networks. In particu-
lar, relative to the slow time-scale of behavior, the
observed beta-to-rate mappings may prove useful for
modulating winner-take-all dynamics on intermediate
time-scales and relative spike timing on fast time-scales.

Task-Dependent Changes in Cross-Level Coupling
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neuron for two different tasks that have similar high-level goals,

but are associated with distinct activation patterns – namely, a

delayed center-out movement task performed via motion of the

hand (Manual Control, MC) or via modulation of neuron firing

rates (Brain Control, BC; see Materials and Methods). Third, the

relative importance of different aspects of oscillatory activity

remain unclear. CLC has most often been assessed using spike- or

cycle-triggered averages, or via spike-field coherence, but both of

these methods combine oscillatory amplitude and oscillatory phase

into one measure. Furthermore, these measures do not assess the

dependence of spiking upon other factors such as synchronization

between different regions. By computing these dependencies for

the same set of neurons across conditions, the relative importance

of different oscillatory factors to a given neuron can be made clear.

Thus, characterizing the CLC of a large population of simulta-

neously-recorded neurons over two different tasks enables us to

describe both the within-task, cross-neuron diversity of coupling to

different aspects of oscillatory activity, as well as the cross-task,

within-neuron stability (or dynamic remapping) of coupling that

may occur between spiking and beta activity in the motor cortex.

Here we present several findings. First, we provide a descriptive

(phenomenological) model of the coupling between the instanta-

neous spike rate of a given cell and frequency-specific oscillatory

activity. Importantly, this model accounts separately for the

influence on rate of oscillatory amplitude, phase, and the

interaction between amplitude and phase. Second, we show that

this model describes the coupling for a large ensemble of cells, but

that a wide range of model parameters holds across the population

during a given task. In particular, some cells were more sensitive to

amplitude than phase or vice versa, or had differential sensitivity to

the interaction between amplitude and phase. Third, for a given

cell the coupling of beta activity to spiking was stable across

multiple sessions of a given task, but was often remapped when

subjects switched to a different task. The parameter changes

induced across the ensemble by this reversible remapping were

reliable across multiple datasets. Fourth, it appears that this

rhythm-to-rate mapping and task-dependent remapping have

properties that would prove useful for the causal control of

functional networks interactions. We conclude with a discussion of

how these empirical results point to potential mechanisms for the

control of neuro-computational processes. In sum, cross-level

coupling between micro-scale spiking and meso- and macro-scale

network activity appears to be a robust, flexible bridge linking

together the different levels of brain organization required for

effective perception, cognition, and action.

Figure 1. The Manual Control (MC) and Brain Control (BC) tasks. A) Schematic of the MC task, where monkeys use their right arm to perform
a delayed center-out reaching task to move an on-screen cursor from a center cue to one of 8 peripheral targets. B) Schematic of the BC task, where
monkeys use changes in the firing rates of a subset of recorded cells in order to move a cursor from the center to one of 8 targets (irrespective of
physical movement). C) Timing of different trial sub-stages in the MC and BC tasks. Trials start with the appearance of central cue. A hold period (MC:
500 ms; BC: 100 ms) begins once the cursor enters the central cue. Upcoming target appears onscreen once cursor enters center. Go cue (central cue
color change) indicates that monkeys can move the cursor to the designated target (via hand movement in MC or firing rate changes in BC), with a
range of movement times. Holding the cursor within the target (MC: 400 ms; BC: 50 ms) triggers juice reward (500 ms), followed by the start of the
next trial.
doi:10.1371/journal.pcbi.1002809.g001

Task-Dependent Changes in Cross-Level Coupling
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Materials and Methods

Surgery and electrophysiology
Two adult male rhesus monkeys (Macaca mulatta) were chron-

ically implanted with multiple microelectrode arrays. Each array

consisted of 64 Teflon-coated tungsten microelectrodes (35 mm in

diameter, 500-mm interelectrode spacing) arranged in an 8 6 8

array designed to target cortical layer V (Innovative Neurophys-

iology, Durham, NC). Monkey P was implanted bilaterally in the

arm area of primary motor cortex (M1), and in the arm area of left

hemisphere dorsal premotor cortex (PMd), for a total of 192

electrodes across 3 implants. 95 identified single units from this

monkey were examined. Monkey R had bilateral implants in the

arm area of M1 and PMd, for a total of 256 electrodes across four

implants. 86 identified single units from this monkey were

examined. Localization was performed using stereotactic coordi-

nates [63]. Implants targeted layer-5 pyramidal tract neurons and

were positioned at a depth of 3 mm (M1) or 2.5 mm (PMd).

Intraoperative monitoring of spike activity guided electrode depth.

See [64] for full experimental details. A 128 channel multi-

acquisition processor (MAP) system (Plexon Inc., Dallas, TX) was

used to record unit activity. Only single units that had a clearly

identified waveform with a signal-to-noise ratio of at least 4:1 were

used. An on-line spike-sorting application (Sort-Client; Plexon

Inc., Dallas, TX) was used to sort activity prior to recording

sessions. Large populations of well-isolated units and up to 128

LFP channels (1 kHz sampling) were recorded during daily

sessions for both monkeys. Conducted procedures were in

compliance with the National Institutes of Health Guide for the

Care and Use of Laboratory Animals and approved by the

University of California at Berkeley Institutional Animal Care and

Use Committee.

Behavior
Monkeys were trained to perform a delayed center-out reaching

task using either their natural arm inside a Kinarm exoskeleton

(BKIN Technologies, Kingston, Ontario) (Manual Control, MC),

or under direct neural control through a brain-machine interface

(BMI) and irrespective of overt physical movement (Brain Control,

BC) [64]. Monkeys self-initiated trials by bringing the cursor to the

center for a hold period (MC, 500 ms; BC, 100 ms), followed by

the presentation of a GO cue (color change of center cue). A trial

error occurred if the cursor failed to reach the target within 10 s

after a GO cue. The goal was to perform a center-out task, moving

the cursor from the center to one of eight peripheral targets

distributed over a 14-cm diameter circle. Required hold times at

target were 400 ms for MC and 50 ms for BC. Target radius was

typically 0.75 cm. A liquid reward was provided after a successful

reach to each target. During training and recording animals sat in

a primate chair with their heads restrained. During BC sessions

the Kinarm was removed and the arms restrained to the primate

chair.

LFP filtering and event-related analysis
Analyses were done using MATLAB (Mathworks). Filtering to

extract beta amplitudes and phases was performed by convolving

signals with Gabor time-frequency basis functions (Gaussian

envelope). A Gabor time-frequency atom is fully defined by three

parameters; namely, the center time t0, the center frequency v0,

and the duration parameter s0. In the time domain, the Gabor

atom g is given as g(t | t0, v0, s0) = 21/4 exp[( 2 1/4) s0 2 p(t 2 t0)2

exp[ 2 s0] + 2p v0 (t 2 t0)]. Since there was no significant

difference in the frequency corresponding to the power spectral

peak (power of 246 10*log10(mV2/Hz) at a frequency of 28 Hz), a

fixed center frequency v0 of 28 Hz centered on the observed PSD

peak and a duration parameter s0 of 25.075 (frequency domain

standard deviation of 3.57 Hz) were used to extract the ‘‘beta

signal’’ this study. For the amplitude-to-rate, phase-to-rate, phase-

difference-to-rate, and amplitude-to-weight mappings, a spatial

average of all LFPs recorded from the 64 electrodes in one

microelectrode array was generated and used as the raw input

signal. Each 8 6 8 microelectrode array covers an area of 3.5 6
3.5 mm2, and therefore this spatial average is similar in scale to a

single ECoG macroelectrode. Two average signals sL and sR, were

generated for left and right M1, respectively, prior to additional

analyses. After concatenating separate recording blocks, the BC

dataset had a duration of 410 minutes for monkey P (97 minutes

for monkey R), while the MC dataset had a duration of

172 minutes for monkey P (58 minutes for monkey R). To

compute event-related potentials (ERPs) and event-related time-

frequency amplitude maps, the signal indices of go cue onsets were

identified for BC and MC. For ERPs, trial epochs 21000 ms

before to 10000 ms after go cue indices were extracted from

signals sL and sR were averaged. For time-frequency analyses, first

the signals sL and sR were filtered around a given center frequency

as described above. 40 center frequencies spaced semi-logarith-

mically from 1 to 300 Hz were employed. Second, the amplitude

of each filtered signal was normalized such that the mean

amplitude across all data was 1. Third, trial epochs 21000 ms

before to 10000 ms after go cue indices were extracted from the

amplitude time series and averaged. RT-sorted single-trial analyses

(e.g., Figure 2C,F) were performed similarly, but rather than

averaging all trial epochs together, a sliding window of 250 trials

was used after sorting all trials by movement duration. Event-

related PSTHs were computed similarly to ERPs, using a binary

time series representing spike times.

Beta amplitude-to-rate, phase-to-rate, and phase-
difference-to-rate mappings

To generate the beta amplitude-to-rate mapping, first the time

series of instantaneous amplitudes was extracted from one of the

average signals (sL or sR) described above. Call this N61 vector of

amplitudes xA. Amplitudes were normalized such that the mean

amplitude across all data was 1. Second, the spike times from one

neuron were used to generate a N 6 1 binary vector xS, where

xS[t] equals 1 for spike times t and equals 0 otherwise. Third, a N

62 matrix M1 = [xA xS] was formed. Fourth, this matrix M1 was

truncated to allow reshaping of the array in a future step – given

the number of amplitude bins to be used later (nb), this matrix M1

was truncated to form the Nt 6 2 matrix M2, where Nt is the

largest integer less than or equal to N for which nb * P = Nt for

some integer P. Fifth, the rows of the matrix M2 were sorted

according to the amplitude values in the first column of M2;

M2 = sortrows(M2,1). Sixth, a 3-dimensional array of size P6nb6
2 was created by reshaping the sorted matrix M2: M3 = resha-

pe(M2,[P nb 2]). Seventh, the mean amplitude for each bin was

computed: A = mean(M3(:,:,1),1), where A is a 1 6 nb vector of

amplitudes. Eighth, the average spike rate for each bin was

computed: R = (SR/P)*sum(M3(:,:,2) = = 1), where SR is the

sampling rate and R is a 1 6 nb vector of spike rates. The rate

values R over the amplitude support A describe the empirically-

observed amplitude-to-rate mapping. Ninth, this histogram-based

mapping was fit with 4-parameter sigmoidal function FS using the

MATLAB function lsqcurvefit.m, where FS(a) = p1 + p2 tanh ((a 2

p3)/(2 p4)), where a,0 is beta amplitude and tanh is the hyperbolic

tangent function. In order to assess task-related changes,

amplitude-to-rate mappings were computed separately for the full

BC and MC datasets. In order to assess within-task stability of the

Task-Dependent Changes in Cross-Level Coupling
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mappings, the BC dataset was split into two disjoint datasets, BC1

and BC2 consisting of odd and even trials, respectively, and the

above procedure performed separately on each. Similarly, split-

half reliability during MC was assessed using two disjoint datasets

MC1 and MC2. The empirical-observed estimates of the beta

phase-to-rate and phase-difference-to-rate mappings were pro-

duced in an identical way, where the xA time series of step 1 was

replaced with a N 6 1 vector of instantaneous phases from one

hemisphere (phase-to-rate) or a N 61 vector of inter-hemispheric

phase differences (phase-difference-to-rate). For the phase-to-rate

mapping, a cosine-type function was used in fitting: FC(q) = p1 + p2

cos (h 2 p3), where h is beta phase, p2.0, and q, p3 are in the

interval [ 2 p, p). For the phase-difference-to-rate mapping, a von

Mises-type function was used in fitting: FD(j) = p1 + p2 exp[p3 cos

(Q 2 p4)], where Q is the phase difference, p3.0, and Q, p4 is in the

interval [ 2 p, p). For target-specific and trial-stage-specific

analyses, the data was presorted to extract only relevant time

intervals.

Amplitude-to-weight mapping
To determine the amplitude-to-weight mapping that describes

the multiplicative gain effect beta amplitude has on the phase-to-

rate mapping, a procedure similar to that describe above was

performed, but sorting datapoints jointly by amplitude and phase.

That is, first the amplitude time series xA, the phase time series xP,

and the spike time series xS were combined into a matrix W = [xA

xP xS], such that each row represents the amplitude, phase, and

spike status of one sample point. Second, the rows of W were

Figure 2. Event-related changes in local field potential (LFP) activity. A) Go-cue related ERP activity in right primary motor cortex (M1)
during Brain Control (BC). The neurons driving the brain-machine interface are in right M1. B) Time-frequency plot showing frequency-specific
changes in mean amplitude relative to the onset of the go cue (0 ms) in right M1 during BC, including amplitude changes in the theta (6 Hz), high
beta (28 Hz), low gamma (36 Hz), and high gamma (.70 Hz) bands. Across all frequencies, color scale indicates increase (red) or decrease (blue) in
amplitude relative to the mean of 1. Notice the strong drop in beta amplitude locked to the onset of the go cue. C) Smoothed single-trial traces of
beta amplitude, sorted by movement duration (from go cue to cursor entering target). Vertical black line at 2100 ms indicates when cursor entered
the center cue, 0 ms is go cue onset. First curved black line indicates when cursor enters target, second indicates reward onset, and third indicates
reward offset and beginning of the next trial. The sharp drop in beta amplitude during movement is followed by a beta amplitude increase during
the reward delivery. D–F) As in A–C, during Manual Control (MC).
doi:10.1371/journal.pcbi.1002809.g002

Task-Dependent Changes in Cross-Level Coupling
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sorted according to the values in the amplitude column and

partitioned into nab (amplitude) bins, where each bin has the same

number of sample points. Third, the data in each (amplitude) bin

was further sorted into npb (phase) bins. Fourth, the spike rate for

each (amplitude, phase) bin was computed, generating a nab 6npb

matrix of spike rates. Fifth, this matrix was used to constrain the

fitting of the 7-parameter function describing the full beta-to-rate

mapping: FB(a,h) = RBETA(a,h) = p1 + p2 tanh ((a 2 p3)/(2 p4)) + (p5

a + p6 a2) cos (h 2 p7). Given the amplitude-to-rate mapping

RAMP(a) and the phase-to-rate mapping RPHASE(h) described

above, the quadratic weight factor or amplitude-to-rate mapping

wAMP(a) = b1 a + b2 a2 can be extracted from the relation

RBETA(a,h) = RAMP(a) + wAMP(a) RPHASE(h).

Multivariate model fitting and predicted rates
The modeling approach described above is inherently univar-

iate and does not extend easily to multivariate approaches. For the

multivariate analysis we used a procedure similar to that described

in [41], but adapted to account for both amplitudes and phases.

First, the Nchannel LFP signals from a training dataset were filtered

to generate a Nchannel6Nsamples complex-valued matrix, where for

each entry the absolute value gives the beta amplitude and the

argument gives the beta phase. Second, this matrix was used to fit

the parameters describing the complex multivariate Gaussian

distribution [65]: p(x) = b exp[ 2 1/2 (xB 2 mB)H RB
21 (xB 2 mB)],

where x is a Nchannel61 vector of complex values, xB = [x; conj(x)]

is the 2Nchannel 61 (augmented) vector of complex values, mB is a

2Nchannel 6 1 vector of complex values representing the mean of

xB, RB is the 2Nchannel 62Nchannel (augmented) covariance matrix

of xB, b = 1/(pN sqrt(det(RB))) is a normalization term, conj(x)

returns the complex conjugate of x, and the superscript H

represents the conjugate transpose operation. Call this distribu-

tion, fit using all data, the baseline distribution pBASE(x). Third,

perform another distribution fitting using LFP data from spike

times only; call this the spike-triggered distribution pST(x). Fourth,

from a new training dataset of filtered LFP signals, extract the

Nchannel 6 1 vector representing each sample point and compute

the log-likelihood ratio L(x) = log[pST(x)/pBASE(x)], generating a 1

6Nsamples time series of log-likelihood ratio values. Call this time

series L. Fifth, compute the L-to-rate mapping for this training

dataset, as was described above for the amplitude-to-rate mapping.

Sixth, find the best 4-parameter sigmoid fit FS(L | p) for the L-to-

rate mapping, where p is a 4 6 1 parameter vector (see sigmoid

function definition above). Seventh, given a novel test dataset of

filtered LFP signals, extract the Nchannel 6 1 vector representing

each sample point and compute the predicted instantaneous spike

rate estimate REST(x) = FS [log[pST(x)/pBASE(x)]]. Eighth, evaluate

the prediction by computing the estimated-rate-to-measured-rate

mapping, computed as was done to estimate the amplitude-to-rate

mapping.

Results

We first consider the mapping from beta amplitude alone to

spike rate (amplitude-to-rate mapping), then from beta phase alone

to spike rate (phase-to-rate mapping), before examining the joint

influence of beta amplitude and phase on neuronal spiking. Both

the amplitude-to-rate and phase-to-rate mappings exhibit task-

dependent changes, as does the full beta-to-rate mapping, and we

characterize the distribution of mapping parameters across the

population. Next, we consider the dependence between spiking

and the beta phase difference between left and right primary

motor cortices; whereas amplitude and phase provide information

about a single area, the phase difference provides macroscopic

information about the relationship between areas. Finally, we

consider the issue of spike dependence on meso-scale spatial

patterns, and the effect that task-dependent changes have on the

predictability of spiking.

Beta amplitude-to-rate mapping
Given the strong event-related changes in beta amplitude

during both MC and BC (Figure 2B,E), we first investigated the

dependence of spike rates on beta amplitude alone (neglecting beta

phase or beta phase differences between sites). We term this

functional dependence between beta amplitude and spike rate the

amplitude-to-rate mapping, consistent with the idea that a given

neuron responds to both internal and external factors (Figure 3).

This analysis revealed two key findings. First, within a given task

such as BC, the population of simultaneously-recorded neurons

exhibited a wide range of responses to changes in beta amplitude,

with some neurons increasing firing, some exhibiting no change,

and other decreasing their spike rate (Figures 4A,H–I; S2A–F;

S10). Second, a single neuron may exhibit a task-dependent

remapping of the amplitude-to-rate function – for example, a

given neuron may increase firing as beta amplitude goes up during

BC, but decrease firing when beta amplitude increases during MC

(Figures 4B–G,J–K; S1A–F; S2G–H). In more detail below, we

consider i) the diversity of within-task amplitude-to-rate mappings

observed across the full neuronal ensemble, and ii) the diversity of

amplitude-to-rate remappings that can occur within a single

neuron when switching from one task to another.

Across both the MC and BC tasks, a statistical dependence

between spike rate and beta amplitude was observed for 86.7% of

the cortical motor neurons examined (p,0.01 uncorrected

randomized permutation test; c.f. Table S1). That is, for a given

neuron the spike density conditioned on low beta amplitude is

different than the spike density conditioned on high beta

amplitude. We found that the empirically-observed amplitude-

to-rate mapping was well-described by a 4-parameter sigmoidal

function (see Materials and Methods). Across the neuronal

population, this mapping was described by a wide range of model

parameters. For example, Table S1 shows that as beta amplitude

increased during BC, 58.6% of all neurons exhibited a decrease in

spike rate while 28.2% showed an increase in spike rate. As beta

amplitude increased during MC, 35.4% (40.3%) of neurons

decreased (increased) their firing rate. Importantly, while the

neuronal population exhibited a wide range of parameter values

during a given task, the parameters for single neurons showed high

stability across different sessions of the same task (Figures 4H,I;

S2C,F).

Figure 4A shows the range of amplitude-to-rate mappings

during BC for twelve example neurons from monkey P. Dots show

the empirically-observed spike rates conditioned on beta ampli-

tude, computed separately for 25 non-overlapping amplitude bins.

Note that adaptive binning was employed such that each bin

includes the same number of sample points, resulting in non-

uniform bin spacing. Lines indicate the best-fit sigmoidal functions

describing the observed amplitude-to-rate mapping (see Materials

and Methods). Some neurons show a decrease in spike density

with increasing beta amplitude while others show an increase in

spike density. Furthermore, as shown for a different set of neurons

in Figure S10, removing the offsets due to baseline spike rates

reveals that the rate of change of the mapping (neglecting sign) is

large for some neurons (purple, gold), moderate for others (green,

cyan), and small for yet others (black, red). Critically, for a given

neuron the sign and slope of the amplitude-to-rate mapping is not

correlated with the cell’s baseline firing rate, and are different for

distinct cells. Thus, a change in beta amplitude does not imply a

Task-Dependent Changes in Cross-Level Coupling
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stereotyped change in spike density that applies to all neurons

uniformly; different neurons exhibit differential responses to

changes in beta amplitude. That is, while averaging across all

recorded cells reveals a negative correlation between ensemble

spike rate and beta amplitude, investigating each cell separately

reveals that some neurons exhibit a strong negative correlation

with beta amplitude, others a strong positive correlation, while yet

others show only a weak or negligible dependence on amplitude

(c.f. Figure 4H, I).

Interestingly, while there is variation in the exact crossover point

for the population of amplitude-to-rate mappings – that is, the

amplitude value where the sigmoid function intersects the baseline

rate – the amplitude-to-rate mappings for many neurons intersect

near the mean beta amplitude (Figure S10). In all analyses

Figure 3. External and internal tuning curves. Tuning curves characterize neural properties by conditioning spike rates on external factors such
as movement direction or internal factors such as beta amplitude or phase. A–E show the external tuning properties for one neuron (sig045a), while
F–J characterize the internal tuning properties for the same cell. A) Trial-related rate changes relative to baseline, collapsed across all targets. Go-cue
onset is 0 ms. Four disjoint datasets are shown (BC1 & BC2, red; MC1 & MC2, blue). B) Target-specific rate changes (relative to baseline and trial-
related activity) for the 8 BC targets. Solid lines show responses for BC1, dotted lines BC2. C) As in B, for MC. D) External tuning: joint display of trial-
and target-related rate changes in BC1; color indicates spike rate. E) External tuning components (rbaseline, rtrial, and rtarget) are learned from training
data (BC1) and applied to novel test data (BC2) to predict instantaneous spike rate. F) Rate changes associated with different beta amplitudes. Beta
amplitude normalized to a mean of 1. For this neuron, large beta amplitudes are associated with reduced firing and low amplitudes with increased
spiking, but rate of change is task-dependent. G) As in F, conditioning spike rate on beta phase rather amplitude. H) Weight term governing the
interaction between amplitude and phase (see Materials and Methods). I) Internal tuning: joint display of amplitude- and phase-related rate changes
in BC1; color indicates spike rate. J) Internal tuning components (rbaseline, ramp, rphase, and wamp) are learned from training data (BC1) and applied to
novel test data (BC2) to predict instantaneous rate.
doi:10.1371/journal.pcbi.1002809.g003
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presented here the mean beta amplitude has been normalized to 1.

However, while most baseline-free amplitude-to-rate mappings

intersect near the same beta amplitude (the mean value), adding

different baseline rates can shift the crossover point for pairs of

amplitude-to-rate mappings. For example, Figure 4A shows the

intersection of the amplitude-to-rate mappings for neuron sig060a

(cyan, bottom) with the amplitude-to-rate mappings of three other

cells: sig099a (blue), sig104a (orange), and sig031a (purple).

Vertical lines mark the amplitude values where these curves

intersect. For low beta amplitudes, sig060a (cyan) has a higher

spike rate than the other 3 neurons, while for high beta amplitudes

this neuron has a lower rate. For intermediate amplitude values

sig060a has a higher rate than some neurons but not others. Large

differences in baseline rates result in no overlap of amplitude-to-

rate functions and thus no change in the relative rank ordering of

neurons in terms of spike rate.

Figure 4. Beta amplitude-to-rate mapping. A) A diversity of amplitude-to-rate mappings hold across neurons during a given task; shown are 12
example neurons during BC. Dots indicate measured spike rates, lines show best-fit sigmoids. Increased beta amplitude associated with decreased rate
in some neurons while others exhibit increased firing; vertical lines indicate cross-over points associated with change in firing-rate rank order within
ensemble. B–G) Amplitude-to-rate mapping can change as function of task; six example neurons shown. H) Within-task CLC parameter stability assessed
by computing amplitude-to-rate mapping for disjoint BC datasets; positive (negative) rate changes indicate that spike probability and amplitude are
positively (negatively) correlated. I) As in H, for MC. J–K) Direct comparison of BC/MC datasets provides evidence for cross-task remapping; the
amplitude-to-rate mapping for one task may not hold for different task. Similarity of J and K indicates reliable task-dependent remapping.
doi:10.1371/journal.pcbi.1002809.g004
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Thus, for an ensemble of neurons with similar baseline rates, the

common intersection point of the amplitude-to-rate mappings

near the mean beta amplitude results in two distinct spike density

regimes for the ensemble. That is, when the instantaneous beta

amplitude is above its mean value, then there is an associated rank

ordering of the spike rates across the population of neurons

(relative to the tonic baseline rate for each neuron). For example,

given the seven example neurons shown in Figure S10, a beta

amplitude above the mean is associated with the rank order gold,

cyan, red, blue, black, green, and purple (ranked highest-to-lowest

in terms of change in spike rate relative to the baseline rate for

each neuron). In contrast, when the instantaneous beta amplitude

is below the mean, then this rank ordering is reversed. However,

for neurons with different tonic baseline spike rates (Figure 4A),

the amplitude-to-rate mappings of each pair of neurons may cross

at beta amplitude values far from the mean value. That is, each

pair of neurons in an ensemble may switch their spike rate rank

order at any of a wide range of amplitudes, greatly expanding the

set of rank-order states possible for the ensemble. Furthermore,

each rank-order ensemble state – where an ensemble state is

defined as an ordered list of neurons sorted in terms of spike rate –

is indexed by a finite range of beta amplitudes. The vertical lines in

Figure 4A show three transition points between such states; across

both BC and MC conditions, the amplitude-to-rate mappings for

the 12 neurons shown in Figure 4A and Figure S2 establish a set of

41 such states, each of which is associated with a finite interval of

beta amplitudes.

The within-task diversity of amplitude-to-rate mappings ob-

served across the ensemble of recorded neurons is complemented

by a different type of diversity – within-neuron, cross-task diversity

– that is associated with task switching. Interestingly, while the

amplitude-to-rate mappings for a given neuron are relatively stable

across multiple datasets as long as all recordings are acquired

under the same task conditions (Figures 4H,I), switching from one

task to another is associated with a reliable remapping of the

amplitude-to-rate relation within a single neuron (Figures 4B–

G,J,K; S1A–F, S2). That is, a given neuron may exhibit one stable

amplitude-to-rate mapping during a session performed under MC,

then switch to a distinct (and stable) amplitude-to-rate mapping

during a second session conducted under BC, and finally return to

the original amplitude-to-rate mapping when performing a third

session under MC. Figures 4B–G show six example neurons that

give an indication of the range of task-dependent remapping that

can occur. For example, the single unit sig119b (Figure 4F) shows

a strong decrease in spike density associated with increasing beta

amplitude during MC (blue), but little to no change in spike

density during BC (red). Unit sig045a (Figure 4C) shows a different

response, with a moderate decrease in spike rate during MC but a

large decrease in rate under BC. Unit sig038a (Figure 4E) exhibits

a positive correlation between spike rate and beta amplitude, with

a larger total change of rate under MC. Other cells exhibit the

direction reversal shown by units sig104a (Figure 4B) and sig112b

(Figure 4D), with rate increasing under one task and decreasing in

another.

As shown by Table S2, of the 64.1% (116/181) of neurons

across both monkeys that exhibited significant amplitude-to-rate

mappings during both MC and BC, 27.6% showed a direction

reversal when comparing the MC and BC amplitude-to-rate

mappings (similar to neuron sig104a in Figure 4B). Of the cells

positively correlated with beta amplitude under both BC and MC,

61.8% of cells exhibited a larger modulation depth for MC

compared to BC (similar to neuron sig038a in Figure 4E), while

the remaining 38.2% showed a smaller modulation depth for MC

compared to BC. For the 43.1% of cells exhibiting a negative

correlation between rate and amplitude for both MC and BC,

56.0% of cells exhibited a larger modulation depth for MC

compared to BC, while the remaining 44.0% showed a larger

modulation depth for BC compared to MC (similar to neuron

sig045a in Figure 4C).

In addition to task-dependent remapping, the amplitude-to-rate

mapping also exhibits changes as a function of trial-stage, as shown

for three example neurons in Figure S9 (c.f., Figure S5).

Importantly, task-related differences are observed during similar

trial sub-stages. For example, considering data from segments of

the trial where the goal was to move the cursor to the center cue,

or toward one of the peripheral targets, still resulted in differences

in the amplitude-to-rate mapping between MC and BC (Figure

S9A–B, D–E, G–H). Periods where goal-directed activity was

presumably minimized, such as the period around reward

delivery, also resulted in task-related differences (Figure S9C, F,

I). This suggests that task-related changes are distinct from trial-

substage related changes, although further experiments will be

required to fully disentangle the influence of top-down task

demands from bottom-up trial-stage-related changes on the

amplitude-to-rate mapping.

Importantly, both the within-task amplitude-to-rate mappings

and the cross-task amplitude-to-rate remappings are stable across

multiple data sets (Figure 4H–K). For example, Figures 4H–I

shows the stability of these mappings when the data is divided into

two disjoint datasets for each task, and the amplitude-to-rate

mappings are computed separately for each dataset. That is, the

correlation between parameters defining the amplitude-to-rate

mappings computed from two blocks of data from the same task

(BC1/BC2, Figure 4H, red; MC1/MC2, Figure 4I, blue) is higher

than the parameter correlation between amplitude-to-rate map-

pings estimated from different tasks (BC1/MC2, Figure 4J;

BC2:MC1, Figure 4K). Therefore, the distribution of amplitude-

to-rate mappings observed across the neuronal ensemble is stable

from one dataset to another as long as the same task is being

performed (within-task stability of mappings), but exhibits a

reliable and reversible shift when switching from one task to

another (cross-task reliability and reversibility of remappings). This

association of the beta amplitude-to-rate mapping with an ordered

sequence of discrete ensemble states – and the ability to create a

new sequence via task-dependent remapping of the amplitude-to-

rate relations that hold within an ensemble – has intriguing

implications for neuronal computation, which we explore further

in the discussion.

Beta phase-to-rate mapping
As with beta amplitude, cortical motor neurons exhibited a

spike density dependence on beta phase. During BC (MC), the

spike density of 87.3% (91.2%) of neurons exhibited cosine

modulation when conditioned on beta phase (p,0.01, uncorrected

randomized permutation test). That is, when considering beta

phase alone (neglecting beta amplitude for now, but see beta-to-

rate mapping below), the change in spike rate as a function of beta

phase (phase-to-rate mapping) was well-fit by a 3-parameter

cosine-type function (see Materials and Methods). Figures 5A–H

show eight example neurons recorded from right primary motor

cortex (M1) that exhibit this phase-to-rate mapping for BC (red)

and MC (blue), superimposed on the fits for all 95 simultaneously-

observed neurons from monkey P (grey). For all neurons that

exhibited sensitivity to beta phase, this mapping was unimodal,

with no neurons exhibiting multimodal dependence on beta phase.

As with the amplitude-to-rate mappings, most neurons exhibited

stable within-task phase-to-rate mappings (evaluated using differ-

ent datasets recorded under the same task conditions) as well as
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reliable and reversible cross-task phase-to-rate remappings (eval-

uated using datasets recorded under BC or MC; c.f. Figures S4).

For a given neuron, both the modulation depth (maximum rate

minus baseline rate) and preferred beta phase (beta phase

exhibiting the maximum spike rate) could change from one task

to another. For example, some neurons show few cross-task

changes (e.g., Figure 5A), while others primarily exhibit a change

in preferred phase alone (Figure 5D), or a change in modulation

depth alone (Figure 5E), or a change in both modulation depth

and preferred phase (Figure 5F). Interestingly, for all 53 neurons

from right M1 of monkey P, the preferred beta phase during BC

was earlier than the preferred phase under MC, as shown in

Figure 5I. This systematic shift in preferred beta phase was

uncorrelated to the tonic baseline firing rates of neurons in either

task (Figure S3D), and was also uncorrelated with the change in

baseline rates from one task to another. In other words, this

systematic shift in preferred phase is not due to a simple rate-to-

phase conversion of the type shown in in vitro studies [66].

Furthermore, this preferred beta phase was unrelated to the

strength of motor direction tuning or preferred movement

direction (Figure S3H, L).

Given the peak in the LFP power spectrum at a center

frequency of 28 Hz, the average beta cycle occurs over ,36 ms.

Therefore, we can convert a set of preferred phases into a set of

most-probable spike times relative to a fixed point in the cycle of

the ongoing beta rhythm. That is, if a neuron is going to spike only

once in a given beta cycle, it is most likely to do so at its preferred

beta phase, which corresponds to a fixed temporal lag relative to

the peak of the beta waveform. The ordered set of these lags across

the population imposes a probabilistic rank-ordering of spike times

across the ensemble that spans ,10 ms (sorted red dots in

Figure 5J and 5L). This is not a strong deterministic ordering of

spike times but is rather a probabilistic or stochastic effect.

Nonetheless, the knowledge of the preferred beta phase for a pair

of cells can be informative about their relative spike timing. As a

concrete example, consider neurons sig038a (Figure 5C) and

sig045a (Figure 5F). The phase-to-rate mapping for cell sig038a

peaks earlier within the beta cycle than does the phase-to-rate

Figure 5. Beta phase-to-rate mapping. A–H) Eight example neurons that exhibit task-dependent remapping of beta phase-to-rate relationship;
fits for all neurons shown in grey. Vertical lines indicate phase of maximal spiking for BC (red) and MC (blue). Preferred phase varies across neurons
within a task, but all BC phases occur earlier than preferred MC phases. I) Preferred phase for BC vs. MC for all 53 neurons in right M1, exhibiting task-
dependent shift to later phase for MC. J) Preferred beta phases map to times of peak spike probability relative to the ongoing beta rhythm; shown are
peak times for all neurons in right M1, sorted relative to beta trough during BC (red). MC (blue) does not preserve the BC ensemble timing order. K) As
in I, for neurons in left M1. L) As in J, for left M1.
doi:10.1371/journal.pcbi.1002809.g005
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mapping for sig045a (3.42 radians vs. 4.22 radians, respectively).

Therefore, given a particular cycle where each cell spikes exactly

once during the cycle, we would expect sig038a to spike earlier

than sig045a. In fact, considering only the cycles where each cell

fires exactly once, sig038a fires before sig045a 61.0% (40684/

66678) of the time. Interestingly, however, due to the ensemble-

wide, task-dependent shifts in the preferred beta phases, several

pairs of neurons exchange their most probable firing order when

switching from one task to another. For example, the unit sig064b

(Figure 5H) is most likely to fire before unit sig043c (Figure 5E)

during BC (red), but the order switches during MC (blue).

Finally, the phase-to-rate mapping is strongly affected by the

magnitude of beta amplitude (Figure 6). For example, Figures 5A–

D show the phase-to-rate mappings for 9 example cells, computed

separately for data falling into 4 beta amplitude bins (correspond-

ing to 0–25, 25–50, 50–75, and 75–100th amplitude percentiles).

The relative sizes of the phase-to-rate mappings shown in

Figures 5A–D are largely similar across the four amplitude bins,

with all cells exhibiting an increase in phase-to-rate modulation

depth (note vertical scale in Figure 6A–D). This increase phase-to-

rate modulation depth as a function of beta amplitude is shown

explicitly in Figure 6E. However, all cells do not change their

modulation depth at the same rate – as beta amplitude increases,

some cells increase their phase-to-rate modulation depth at a faster

rate than others. Thus, while sig045a (black) starts out with the

largest firing rate at low beta amplitudes, at high beta amplitudes it

has fallen to rank 3 among the 9 neurons shown. Similarly, sig029a

(blue) falls from rank 2 to rank 5, while sig043c (purple) moves up

from rank 4 to rank 2. In addition to these differential changes in

total phase-to-rate modulation depth as function of beta ampli-

tude, there can also be shifts in the phase value associated with the

crossover point of the phase-to-rate mappings for a pair of

neurons. This can be the case even if each neuron maintains the

same preferred beta angle. For example, the phase-to-rate

mappings for sig043c (purple) and sig029a (blue) cross near 23

radians at low beta amplitudes (vertical line), but shifts to

approximately 21.3 radians for high beta amplitudes, even

though the preferred beta phase for each cell remains the same.

The cosine-shaped phase-to-rate mapping is a nonlinear function

of phase, and combined with differential changes in vertical scale

as a function of amplitude, these exchanges of spike-rate rank

order as a function of beta phase can occur even when each cell

has no change in its preferred beta phase angle.

While the (within-task) phase-to-rate preferred beta angle is

largely stable for most neurons across the full range of beta

amplitudes (Figure S4), the change in phase-to-rate modulation

depth can be described by a quadratic function of beta amplitude

(Figure 6F). We call this term describing the gain control of the

phase-to-rate modulation depth the weight factor or the ampli-

tude-to-weight mapping. This weight factor is sublinear function of

amplitude for some neurons (sig029a, blue), near linear for others

(sig038a, yellow), and supralinear for yet others (sig027a, black).

Despite this variability, across all neurons larger beta amplitudes

are associated with larger modulation depths. That is, beta

amplitude appears to act as a gain control for beta phase, such that

beta phase is more predictive of spike timing when beta power is

high than when beta power is low. However, just as the

heterogeneity of tonic baseline rates and sigmoidal amplitude-to-

rate functions interact to establish an ordered set of ensemble rank-

order states that are indexed by beta amplitude, ensemble

heterogeneity in phase-to-rate modulation depth and the quadratic

weight factor can interact to establish an ordered set of rank-order

states indexed by beta phase. That is, for a given beta amplitude, a

set of overlapping phase-to-rate mappings have crossover points

that occur at particular beta phases (vertical line in Figure 6A). As

beta amplitude changes, however, these crossover points can shift

to new phases (vertical line in Figure 6D). Furthermore, different

tonic baseline rates can force some crossover points to disappear or

introduce new crossings. Thus, both the amplitude-to-rate and

phase-to-rate mappings, considered across an ensemble of

neurons, can be associated with ordered sets of neurons, where

cells are sorted according to instantaneous spike rate.

Nonetheless, one consequence of this interaction between

amplitude and the phase-to-rate modulation depth is that the

spike timing preference relative to beta phase becomes stronger for

higher beta power. For example, we saw above that neuron

sig038a fires before neuron sig045a 61.0% percent of the time

when looking at all beta cycles where each cell fires once. Sorting

these individual cycles according to beta amplitude, however,

reveals that sig038a spikes before sig045a only 56.2% of the time

for cycles in the lowest decile beta amplitudes, compared to 72.0%

of the time for the cycles in the highest decile of beta amplitudes.

Similar effects are seen across the population, and thus variations

in beta amplitude influence the probability of observing arbitrarily

spike timing sequences within an ensemble.

As with the amplitude-to-rate mapping, the phase-to-rate

mapping exhibits both task- and trial-stage-related changes

(Figures S6, S7). As shown by Figure 3, neurons respond to both

internal and external factors, including time-in-trial and target

direction. One possibility is that changes in the amplitude- and

phase-to-rate mappings may arise from the interaction of multiple

external and internal factors each of which influences the overall

spike rate. For example, Figures 3B–C show that the target-specific

spike rate for neurons can span a wide range of values from the

most preferred to least preferred targets. Similarly, Figure 7 shows

the target-specific phase-to-rate mappings for 6 example neurons

during BC. Each neuron exhibits changes in the baseline rate that

is a function of target direction or target ID. For example,

Figure 7A shows that sig045b has the highest baseline rate for

Target 8 (black) and the lowest baseline rate for Target 4 (green).

However, removing this target-specific baseline offset, as done for

the same cell in Figure 7E, shows that the phase-to-rate

modulation depth exhibits target-specific changes as well – in

fact, the target-specific baseline rates of sig045b are positively

correlated with the target-specific changes in the phase-to-rate

modulation depth (Figure 7M, dots). Similarly, sig038a exhibits

target-specific variation in both the baseline rates (Figure 7B) and

the phase-to-rate modulation depth (Figure 7F), also with a

positive correlated between them (Figures 7M, circles). However,

sig043b and sig020a exhibit little target-specific variation in the

phase-to-rate modulation depth (Figures 7G, H) despite strong

target-specific variation of their baseline firing (Figures 7C,D). In

fact, the slope of the regression line between target-specific

baseline rates and modulation depths is close to zero (Figure 7M,

diamonds and crosses). On the other hand, cells such as sig073b

and sig043c exhibit a negative correlation (Figure 7M, asterisks

and squares). Thus, while the amplitude-to-rate mapping may

exhibit target-specific changes, the functional nature of this

relationship remains unclear.

Because the spike density of a given neuron depends on the

interaction between beta amplitude and phase, the most complete

picture of the dependence between spike rates and the beta

rhythm is given by the full beta-to-rate mapping (where the term

‘beta’ here implies both beta amplitude and beta phase). That is,

the estimated spike rate RBETA(a,h) is a sum of two terms: an

amplitude-only rate RAMP(a) given by the amplitude-to-rate

mapping, and another term that is the product of the phase-only

rate RPHASE(h) and a weight factor that is a function of amplitude
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alone, wAMP(a). Specifically,

RBETA a, hð Þ~RAMP að ÞzwAMP að Þ RPHASE hð Þ,

where RAMP(a) is a sigmoidal function of amplitude, wAMP(a) is a

quadratic function of amplitude, and RPHASE(h) is a weighted

cosine function of phase (see Materials and Methods). Alterna-

tively,

RBETA a, hð Þ~p1zp2 tanh a{p3ð Þ= 2 p4ð Þð Þ

z p5 azp6 a2
� �

cos h{p7ð Þ:

appears to provide a good fit to data across the ensemble, given

sufficient data. The primary result of this study is the finding that

parameters describing this beta-to-rate mapping can change

reversibly from one set of stable values to a different set of stable

values when switching from one task to another.

However, while the beta rhythm exhibits strong event-related

changes in power (c.f., Figure 2), it is possible that different

frequency bands may prove even more predictive of cell spiking.

An example of this is provided for neuron sig045a in Figure 8A,

where the amplitude-to-rate mappings for a wide range of

frequencies from 1–300 Hz are shown. Figure 8B shows the

amplitude-to-rate mappings for four different center frequencies.

For this cell, a center frequency of 6 Hz is as informative as is

27 Hz. However, as shown by Figures 8C–D, for this cell the

informative phase-to-rate mappings are restricted to a narrow

range of frequencies centered around 34 Hz. Figure 8E shows the

range of spike rate variation for this cell as a function of center

frequency for both the amplitude- and phase-to rate mappings.

Interestingly, the amplitude- and phase-to-rate mappings appear

to peak at different but possibly overlapping bands. The center

frequency used for this study, 28 Hz, intersects both profiles near

their peak, and thus provides information from both types of

mapping. Figures 8F–O provide amplitude- and phase-to-rate

mappings for 5 example cells over a range of center frequencies

from 20 to 40 Hz, showing that the best phase-to-rate center

frequency is often higher than the best amplitude-to-rate center

frequency – a result that holds across the ensemble. The

Figure 6. Modulation of phase-to-rate mapping by beta amplitude. Beta phase has a stronger impact on spike rate when beta amplitude is
large, but gain modulation is not uniform across neurons. A–D show the phase-to-rate mappings for 9 example neurons, where instantaneous phases
and spike times were pre-sorted into one of four bins based on beta amplitude (see Materials and Methods). Phase-to-rate modulation depth
(difference between maximum and baseline rates) is largest for bin with largest amplitudes (c.f. scale of y-axis of A–D), but some modulation depth
increases faster for some neurons than others; sig045a (black) has highest rate in smallest amplitude bin but ranks third in the largest amplitude bin,
while sig043c (cyan) moves from rank 4 to 2. Differential changes can shift the beta phase where two neurons exchange spike rate rank order, even if
the preferred phases do not change (note shift in phase of crossover of sig043c (cyan) with sig029a (blue), indicated by vertical lines. E) Phase-to-rate
modulation depth as a function of mean beta amplitude. F) Amplitude modulation of phase-to-rate mapping can be expressed as a product of two
terms, one of which is a quadratic weight factor (see Materials and Methods).
doi:10.1371/journal.pcbi.1002809.g006
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importance of optimal phase-to-rate center frequencies ,30–

38 Hz, however, is difficult to reconcile with the lack of strong

event-related power changes (Figure 2B, E) or event-related phase-

resetting (not shown) in this band. Whether or not the amplitude-

and phase-to-rate mappings arise from distinct bands will require

further experimental inquiry targeting this question.

Beta phase-difference-to-rate mapping
So far we have only considered the relation between (micro-

scale) spiking of single neurons to (meso-scale) beta LFP activity

averaged locally over several millimeters. That is, for a neuron in

left M1, we examine the relation of its spike rate to the average

beta activity recorded in left M1, while for neurons recorded in

Figure 7. Target-specific modulation of phase-to-rate modulation depth. Sorting trials based on the intended BC target prior to computing
the phase-to-rate mapping reveals differences in baseline firing (due to direction tuning) as well as changes in the phase-to-rate modulation depth.
A–L show 6 example neurons where the phase-to-rate modulation depth is positively correlated with the target-specific shift in baseline spike rate.
Colors indicate phase-to-rate mappings computed from trials moving toward different targets. Shown are phase-to-rate mappings with target-
specific baseline shifts included (A–D, I, J) or removed (E–H, K, L). For example, sig045b (A, E) fires the most for Target 8 (black) and the least for Target
4 (green), and also exhibits the largest phase-to-rate modulation depth for Target 8 and the least for Target 4 – that is, target-specific spike rates and
phase-to-rate modulation depth are positively correlated (c.f. sig038a in B, F). In contrast, the phase-to-rate modulation depth is largely independent
of target direction for sig043b and sig020a, despite the large target-specific shift in baseline spike rates. Finally, sig073b and sig043c provide
examples of negative correlation between target-specific shifts in baseline spike rates and target-specific changes in phase-to-rate modulation depth.
Correlations for these 6 examples are shown in M.
doi:10.1371/journal.pcbi.1002809.g007
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right M1 we examine the average field potential activity from right

M1. The 8 68 electrode arrays used here cover 3.5 63.75 mm2,

such that the LFP signals recorded on opposite sides of the array

are generated by distinct cell populations, and the spatial average

of all 64 LFP signals from one array is a meso-scale signal similar

in scale to the activity recorded from one electrocorticography

(ECoG) electrode as employed for human neurosurgery. The

results above show a clear dependence between micro- and meso-

scale phenomena. However, the relation between micro-scale

spiking activity and fully macro-scale phenomena – such as phase

coupling between the left and right motor cortices – remains

unclear. Are some neurons sensitive to the phase difference

between left and right M1, above and beyond the influence that

can be attributed to locally-generated field potential activity?

To address this question, we examined the relationship between

(micro-scale) single-unit spiking and the (macro-scale) relative

phase difference between the beta activity occurring in the left and

right primary motor cortices. While this quantity neglects the beta

amplitude in each area, it has the advantage of being statistically

independent of the (absolute) beta phase local to the neuron. That

is, knowing the instantaneous beta phase local to the neuron alone

tells us nothing about the instantaneous beta phase in the other

hemisphere; however, if we know the local (absolute) beta phase as

well as the relative phase difference between the hemispheres, then

we can calculate the distal (absolute) beta phase in the other

hemisphere (Figure 9A–B). Thus, if the mapping from the phase

difference between left and right M1 to the spike rate of a neuron –

the phase-difference-to-rate mapping – is non-uniform, then we

can infer that distal phase information is informative about the

spike rate of a neuron above and beyond the information gained

by knowledge of the locally-generated beta phase (that is, beta

activity generated near the soma).

Figure 8. Frequency dependence of amplitude- and phase-to-rate mappings. A) Amplitude-to-rate mapping for one neuron (sig045a),
computed for a range of center frequencies (1–100 Hz). Vertical axis gives filter center frequency, horizontal axis gives amplitude at that center
frequency (normalized to a mean of 1 for all frequencies); color gives spike rate change relative to baseline. This neuron exhibits different responses
for different frequencies; positive correlation of rate with theta and high gamma bands, but negative correlation with beta and low gamma. B) Same
data as A, showing only four frequency bands at 6, 27, 34, and 90 Hz. Dots indicate measured rates, lines are best fit sigmoids. C) As in A, for the
phase-to-rate mapping. Strongest response for this neuron is seen at 34 Hz for this neuron. D) As in B, for the phase-to-rate mapping. E) Range of rate
change for sig045a as function of center frequency. Peaks of the amplitude- and phase-to-rate ranges are offset, with the amplitude-to-rate mapping
strongest ,27 Hz while the phase-to-rate mapping is strongest ,34 Hz. F) As in A, for a finer frequency resolution from 20–40 Hz. G–J) As in F, for
neurons sig062a, sig081b, sig031a, and sig029a. K) As in C, from 20 to 40 Hz for neuron sig045a. L–O) As in K, for neurons sig062a, sig081b, sig031a,
and sig029a.
doi:10.1371/journal.pcbi.1002809.g008
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Figure 9 shows an example of one such neuron (sig128a in left

M1) that exhibits a non-uniform phase-difference-to-rate mapping,

as well as task-dependent changes in this mapping. Figure 9D

shows the distribution of relative phase differences between the left

and right hemispheres during BC, while Figure 9F shows the

distribution of beta phase differences under MC. Unlike the

distribution of (single-channel) absolute phases, which are almost

always uniform, the distribution of relative phase differences is

often peaked, indicating that the two signals are coupled, either

directly or via connections to other, additional areas. While there

is a slight shift in the peak of the distribution when moving from

one task to the other, both distributions are centered around 0

radians, indicating a tendency to zero-lag phase coupling in both

MC and BC sessions.

In contrast to the relative stability of the phase-difference

distribution across different tasks, the phase-difference-to-rate

mappings in Figure 9C–D show that: 1) sig128a is sensitive to the

relative beta phase difference between the hemispheres, above and

beyond the effects of the local beta phase, and 2) the phase-

difference-to-rate mapping reverses during MC. That is, during

BC the cell spikes the least when the instantaneous phase

difference is near its most probable value (the distribution peak

in Figure 9D), and increases its spike rate when the phase

difference moves away from the peak of the distribution. In

contrast, during MC the same cell spikes most near the peak of the

phase-difference distribution and decreases firing when the phase

difference moves to less probable values.

Over the population of recorded neurons, 68.4% exhibited

significant variation in their spike rates as a function of the macro-

scale, inter-hemispheric beta phase differences during BC. In

order to facilitate comparisons among all recorded neurons, we

computed the phase difference between left and right M1 using the

average signal from all LFPs in each 8 6 8 electrode array (one

array per area) – that is, we generated one time series of

instantaneous phase differences against which we can examine the

activity of all neurons. Interestingly, the phase-difference-to-rate

mapping is often stronger when the LFP signal from an electrode

proximal to the neuron is used (data not shown). However, using

different pairs of LFPs for each neuron makes systematic

comparisons across neurons more difficult. An alternative

approach to multi-scale coupling – from macro- to meso- to

micro-scale – is suggested by Figure S8, which shows a

Figure 9. Phase-difference-to-rate mapping. A) Joint probability density function of instantaneous phases of left and right primary motor cortex
(M1). B) Same data as A, after change of variables to isolate the phase difference between left and right M1. Inter-hemispheric phase differences are
statistically independent from local M1 phase. C) Example neuron sensitive to beta phase difference between left and right M1. During BC, lowest rate
occurs near the most probable phase difference (peak of distribution in D), but the neuron increases spiking when the inter-hemispheric phase
difference shifts to less probable values. Dots indicate measured rate, red line is best-fit von Mises type function (see Materials and Methods). D)
Distribution of inter-hemispheric phase differences (left M1 phase minus right M1 phase) during BC; empirical histogram estimate (black) and best-fit
von Mises distribution (red). E) Same neuron as C, during MC. Despite only a small shift in the phase-difference distribution, the phase-difference-to-
rate mapping has flipped for this cell. F) As in D, for MC.
doi:10.1371/journal.pcbi.1002809.g009
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dependence between the inter-hemispheric beta phase difference

between left and right M1, on the one hand, and the mean beta

amplitude in each area, on the other (Figure S8B). Furthermore,

Figure S8D shows that the correlation between beta amplitudes

recorded in left and right M1 is dependent on the phase difference

between them; that is, for one value of the inter-hemispheric phase

difference, the amplitude correlation is greater than 0.5, but for

other values it is near 0.1 (Figure S8D). Thus, it is possible that

inter-hemispheric phase differences may influence individual cells

using local beta amplitude as an intermediate variable. Nonethe-

less, these results suggest that single cells may receive information

about activity in distal locations – either directly through

monosynaptic connections, indirectly through a chain of interme-

diate variables, or both. Furthermore, spatially averaging field

potential activity over several millimeters – as is done here in order

to generate a signal comparable to that recorded with the

macroelectrodes employed in human electrocorticography – may

result in a loss of useful information. That is, neurons may be

sensitive to meso-scale spatial patterns in addition to the average

activity in a cortical area, a possibility we explore below.

Beta spatial-pattern-to-rate mapping and task-
dependent changes in neuronal predictions

The analyses above employ a strictly univariate approach – the

univariate (meso-scale) signal representing the mean activity in M1

is generated by spatially averaging the individual LFPs from an 8

68 microelectrode array (3.5 mm 63.5 mm; c.f. Figure 10A), or

the univariate (macro-scale) signal of interhemispheric phase

differences is extracted. However, this approach ignores any

spatial patterns that may occur on the 8 6 8 microelectrode

arrays, as well as any neuron-specific preference for different

spatial patterns. Furthermore, issues related to direct coupling

versus indirect coupling through intermediate variables are

difficult to resolve with univariate methods. Thus, investigating

spatial patterns requires the use of a multivariate approach. Here

we employ a method similar to that used in [41], but using

complex multivariate Gaussian distributions in order to include

both the amplitude and phase of multiple LFP signals. This

approach uses fewer parameters per channel to characterize the

relation between one LFP and the spike rate, but critically it

captures the full pattern of covariances between channels and thus

provides insight into the influence of meso-scale spatial patterns on

the spiking of single cells.

For example, Figure 10A shows a schematic of the 8 6 8

electrode array implanted in right M1. Spikes from a single neuron

are recorded on the bottom-leftmost electrode (coordinates [1,1]).

Groups of electrodes more and more distal to the electrode used to

record neuronal spiking are indicated in color – that is, we

consider progressively larger groups of electrodes from 4 electrodes

(blue), to 16 (blue and green), to 36 (blue, green, black), to 64

electrodes (all colors). Phase coupling between electrodes is a

function of inter-electrode distance; with distance d in mm, the

von Mises concentration parameter k between two 28-Hz filtered

signals is given by k= 2.67 - 0.4435*d. Figure 10B shows the

measured and predicted spike rates using these different-sized

groups, from 4 electrodes (blue), to 16 (green), to 36 (black), to 64

(red). Importantly, the range of the measured spike rate increases

as more and more channels are included. That is, as more distal

Figure 10. Impact of task-dependent changes predictability of spiking. A) Schematic of 868 microelectrode array implanted in left primary
motor cortex (M1). Interelectrode separation is 500 microns on average. Color indicates groups with different numbers of electrodes, including 4
(blue), 16 (blue and green), 36 (blue, green, black), and 64 (blue, green, black, and red). B) Including more channels in a multivariate model improves
prediction performance – the spike rate range increases as one considers groups of 4 (blue), 16 (green), 36 (black), or 64 (red) channels. Improvement
of prediction performance suggests that distal electrodes contribute information independent of information from proximal electrodes. The
predicted rate (x-axis) is shown in normalized units in order to emphasize the increase in range of the measured rate. C–H) Examples of 6 neurons
where within-task predictability (red; train on BC data, test on novel BC data) is higher than cross-task predictability (blue; train on BC data, test on
novel MC data). Dots indicate measured rates, lines give best linear fit. Within-task predictions are accurate for neurons across both BC and MC,
implying that low cross-task predictive performance is due to task-dependent remapping rather than a lack of cross-level coupling in one of the tasks.
doi:10.1371/journal.pcbi.1002809.g010
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electrodes are included in the predictive model and it is applied to

novel data, a better prediction is generated, both in terms of the

range of the measured rate as well as the coefficient of variation

(r2). This is despite the fact that fewer parameters are used per

electrode to model the cross-level coupling than for the amplitude-

and phase-to-rate mappings considered above. The fact that

including spatial information (in the form of more distal electrodes)

improves the spike-rate predictions for individual neurons suggests

that cells may be sensitive to distinct spatiotemporal patterns of

population or local network activity.

Because of the stability of the within-task mapping from beta

activity to single unit spiking, when given training and (novel) test

data collected under the same task conditions, the spike density of

individual cells can be predicted well for a large subset of neurons

(c.f. [41]). Most relevant for the current study, however, is the

finding that cross-task training and testing is much less effective

than within-task training and testing (on novel data recorded

under the same task conditions). Figures 10C–H show data from

six example neurons where within-task predictions are good (red)

but the cross-task predictions are poor (blue). Importantly, this loss

of predictability is not due to a lack of cross-level coupling (CLC)

between neurons and distributed LFP signals in one task, since

CLC holds in both MC and BC tasks. Rather, while CLC occurs

in both tasks, there has been a shift in the mapping to the spike

rate of an individual cell from the meso-scale, spatially-averaged

beta phase and amplitude, the preferred meso-scale spatial

patterns, and macro-scale inter-hemispheric phase differences.

That is, there is still coupling across spatial and temporal scales,

but the target patterns that a particular cell is sensitive to shift

when moving from one task to another. Thus, for a given neuron

the cross-level coupling model obtained via training under one

type of task (e.g., MC) may in fact hold little or no predictive value

for the coupling observed in a different task (such as BC).

Discussion

Above we showed that the spiking activity of neurons is coupled

to multiple aspects of the motor beta rhythm during two different

tasks (MC and BC), and that the form of this beta-to-rate mapping

changes in a reversible, task-dependent way. For example, as beta

power increases, a given neuron may increase spiking during MC

but decrease spiking during BC, exhibit a reversible shift in the

preferred phase of firing, or remap its sensitivity to relative phase

differences between areas. This dependence on beta amplitude was

well-fit by a sigmodial function (Figure 4), while the dependence of

spiking on beta phase followed a cosine function (Figure 5), weighted

by beta amplitude (Figure 6). These results expand on prior findings

showing cross-level coupling (CLC) between spiking and LFP phase

in multivariate signals [41], here showing an additional, indepen-

dent coupling to beta amplitude. Critically, this work shows that

cells can exhibit task-dependent changes in this coupling. Impor-

tantly, the parameters describing this beta-to-rate mapping are

stable across multiple datasets of the same task (within-task stability)

but exhibit reliable changes when moving from one task to another

(cross-task diversity). Furthermore, we showed that the ensemble

diversity of amplitude-to-rate and phase-to-rate mappings describes

a set of discrete ensemble states, where each state is defined by the

rank order of instantaneous spike rates. What are the implications of

these empirical findings for different hypotheses about the

oscillatory control of distributed networks, especially regarding

local computation in a given area and long-range communication

between areas?

First, there is the question of how the observed beta-to-rate

mappings arise – presumably the spike activity of a subset of

presynaptic cells is the origin of the amplitude- and phase-to-rate

mappings for a given neuron. Rather than speculate on these

origins, here we take it as given that the beta-to-rate mapping

exists and instead ask what computations are now possible that are

not possible or difficult if CLC is absent. We focus on two potential

mechanisms that operate over different timescales: first, we

consider the impact of CLC on rate-based winner-take-all

(WTA) competition mediated by recurrent synaptic inhibition.

Operating over a timescale of hundreds of milliseconds, modula-

tion of WTA dynamics via the amplitude-to-rate mapping

provides one link from cross-level coupling to functional neural

computation. Second, operating over a timescale of tens of

milliseconds, the phase-to-rate mapping biases ensemble spike

timing such that some spike timing patterns are more likely than

others. Through this route, cross level coupling may modulate

robust temporal coding mechanisms such as synfire chain

propagation.

When evaluating different neurocomputational mechanisms, it

is important to keep the anatomical facts clearly in mind in order

to rule out mathematically elegant but biophysically implausible

options. In this regard, the recurrent excitatory/inhibitory loops of

local cortical circuits appear to provide an ideal platform for

winner-take-all (WTA) dynamics [67]. Figure 11A presents a

simplified schematic of a WTA module, where multiple input

paths are converted into the activation of one output path via

competitive di-synaptic inhibition. In this module, two excitatory

cells, E1 and E2 (red triangles), are reciprocally connected to an

inhibitory cell (blue circle) that receives input from both E-cells.

Both E-cells also receive independent excitatory input from outside

the module. None of the cells inside the WTA module need have

amplitude-to-rate mappings or any beta sensitivity whatsoever.

Next, assume two cells outside the WTA module provide the

external excitatory input, and that both of these cells have

amplitude-to-rate mappings that intersect. For example, consider

the purple and gold cells in Figures 11B–C, which have amplitude-

to-rate mappings as shown in Figure S10. For simplicity, assume

these external cells providing WTA input are driven solely by their

amplitude-to-rate mappings. Then for low beta amplitudes, the

WTA cell E1 becomes active (Figure 11B), whereas high beta

amplitudes cause E2 to become active (Figure 11C). In fact, the

switch between E1 and E2 occurs at the beta amplitude value

corresponding to the intersection of the amplitude-to-rate map-

pings for the purple and gold input cells. That is, the relative spike

rate rank order of the cells providing input to the WTA module is

transformed into tonic spiking along one of two possible output

paths. Since the evidence presented here shows that within-task

amplitude-to-rate mappings are stable, this binary output switch is

tuned to a particular value of beta amplitude that is fixed for the

duration of the task. Whenever beta amplitude sweeps through this

value, this WTA switch changes state. By adding additional cells

with amplitude-to-rate mappings that cross at other amplitude

values, we can establish a linear, task-dependent sequence of

binary WTA switches, each of which is tuned to or indexed by a

different value of beta amplitude. Thus, each value of beta

amplitude is associated with a binary vector that encodes the

ensemble state.

Why would this be useful? First, recall the 12 cells shown in

Figure 4A. On the one hand, there are 12! = 479001600 possible

rank-ordered states for this set of neurons, corresponding to the

number of permutations. The ability to generate sequences from

such a large set of states would clearly prove computationally

useful. However, it is unclear what biological mechanisms are

available to quickly identify and activate an arbitrary state selected

from the set of all possible ensemble states. On the other hand, if
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the 12 neurons have fixed baseline rates and flat amplitude-to-rate

mappings, then state activation is not a problem since only one

state is active at all times. Again, this case is not very

computationally useful. In contrast to these extreme cases, an

ensemble of neurons with a diversity of amplitude-to-rate

mappings (as shown in Figure 4A) has both a variety of possible

states (defined by the amplitude-to-rate crossings), as well as a

method for indexing each state (every beta amplitude value

corresponds to one particular ensemble state). More importantly,

task-dependent remapping of the amplitude-to-rate functions

provide the means to select a different set of ensemble states –

where again each state is indexed by beta amplitude. That is,

during one task such as BC, the continuous variation in beta

amplitude maps to a discrete sequence of ensemble states (16 states

for the 12 neurons shown in Figures 4A and S2A), while switching

to another task such as MC maps the amplitude to a different

Figure 11. Neuro-computational consequences of amplitude- and phase-to-rate mappings. For a given neuron, the amplitude- and
phase-to-rate mappings are produced by the combined synaptic input to that cell. But since information about the population rhythm is broadly
accessible, neurons may use this information to dynamically organize relative activity within a functional ensemble. This activity includes winner-take-
all interactions arising from recurrent local connectivity and relative spike timing among ordered sets of cells. A) Two excitatory cells (E1 and E2, red)
that connect to a common inhibitory cell (I, blue) – and which in turn provides inhibitory synaptic connections to E1 and E2 to form re-entrant or
recurrent excitatory-inhibitory loops – can act as a simple winner-take-all (WTA) module. That is, given different levels of input to E1 and E2, then
either E1 or E2 (but not both) will produce tonic spike output. B–C) If two cells with different amplitude-to-rate mappings provide input to such a WTA
module, then the WTA module will provide different output at low and high beta amplitudes. For example, given the purple (sig045a) and gold
(sig062a) amplitude to rate mappings shown in Figure S10, then WTA cell E1 generates spike output only at low amplitudes while E2 spikes at high
amplitudes; E1 and E2 switch roles at the beta amplitude where the amplitude-to-rate sigmoids intersect. Critically, task-dependent remapping
implies that this intersection point can shift to different values for each pair of input neurons. D) One second example trace of filtered LFP activity
during BC showing beta amplitude (black) and phase (grey) variation over time. E) Amplitude-to-rate mappings for seven example neurons: sig015a
(blue), sig029a (green), sig029b (red), sig031a (cyan), sig045a (purple), sig062a (gold), and sig081b (black). Baseline rate has been removed to
emphasize rate changes associated with amplitude variation. F) Changes in spike rates (relative to baseline) over one second induced by the
amplitude-to-rate mappings (color as in E). Colors are as in Figure 4A. Note the two alternating periods of rank-ordered regimes. G) Close up of
180 ms of beta activity, showing amplitude (grey) and phase (black) variation. H) Rate changes induced by the amplitude-weighted phase-to-rate
mapping for sig081a (black) and sig062a (gold). I) Periods of high beta amplitude are associated with a bias towards a relative spike timing order,
while periods of low beta amplitude are not. Task-dependent remapping of preferred phases can switch this order. Task-dependent changes in the
relative spike timing order of an ensemble – via the independent phase-to-rate remapping of each cell – provides a potential mechanism linking the
global or top-down input changes associated with task switching to local features such as cell assembly activation or synfire chain propagation (thus
influencing local cortical computation) as well as spike-timing dependent plasticity (thus influencing learning).
doi:10.1371/journal.pcbi.1002809.g011
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sequence of ensemble states (24 states for the same set of neurons).

In this view, across all tasks the continuous amplitude signal serves

as an index function that establishes activation and transition

probabilities for ensemble states. However, one task may require a

different set of ensemble states than another – thus explaining the

task-dependent remapping, as cross-level coupling parameters are

tuned to evoke a desired set of ensemble states. In the example

above, none of the 16 BC states or 24 MC states are shared across

tasks (Figure S2I). Task-dependent remapping thus balances the

need for a diversity of ensemble states with the requirement of a

simple mechanism for sequential state activation. Therefore,

combining WTA dynamics with beta-to-rate mapping and

remapping seems to provide a physiologically plausible mechanism

for the dynamic linking of distinct sequences of ensemble states to

a common, readily-accessible signal representing the overall level

of population activity – namely, the beta rhythm.

These ideas are consistent with the hypothesis that the

functional role of the beta rhythm is to maintain the current

computational state in a local network, protecting the local

population against irrelevant or contradictory input [16]. That is,

beta power remains high if no change in the local network state is

needed, or if unwanted changes to local network state must be

actively extinguished. Similarly, beta power drops when the local

network state must change. The arrival of important but

unexpected input may increase or decrease beta power, depending

on context and task demands. In this view, beta is an active

coordinating rhythm that helps to maintain or release selected

patterns of ensemble activity. It is intriguing to speculate that task

switching requires remapping coupling parameters in order to

evoke a pre-learned sequence of WTA states, while learning

involves optimization over the space of WTA sequences in a

search for those sequences that prove most task effective. One

prediction of this hypothesis is that ensemble amplitude-to-rate

mappings will exhibit much more variability during learning than

either before or after. The combination of WTA dynamics

together with heterogeneous amplitude-to-rate mappings across an

ensemble provides a specific and testable mechanism through

which the beta rhythm could accomplish this goal of dynamic

coordination.

Independent of possible functional roles played by the

amplitude-to-rate mapping, phase-to-rate mappings may shift

the relative probabilities of precisely-timed spike sequences.

Simulation studies show that polychronous groups – sets of cells

where activity propagates due to precise spike timing relations –

can serve as the building blocks for cognitive operations such as

working memory [68], and exhibit activity-dependent growth and

decay useful for learning and pattern recognition [69]. Empirical-

ly, Havenith et al. [7] showed that relative spike timing in visual

cortex reflects properties such as stimulus orientation. Importantly,

given inter-connected pools of neurons, synchronous propagation

of activity is more stable than asynchronous propagation. In fact,

propagating synfire chains yield stable and robust spiking precision

in the millisecond range that supports the self-stabilization of

synfire chain activity [70]. That is, given the right starting

conditions, initially weak synfire chains (with few active members

or poor synchronization) can recruit additional members and

reduce spike-timing variance across the group. However, slightly

different initial conditions may force a synfire chain to cross a

dynamical systems separatrix between attractors, forcing the

synfire chain to quickly decay [71]. Since phase-to-rate mappings

can influence spike timing, strong phase-to-rate mappings can

increase the likelihood of some synfire chains while rendering

others less likely. Since beta amplitude appears to act as a gain

control mechanism for the strength of the phase-to-rate mapping,

the influence of beta on the probability of different spike sequences

can be adjusted by changing beta power. However, Figure 6 shows

that a fixed change in beta amplitude will have a differential

response on different cells, with some strongly increasing their

phase preference while others show only moderate changes. Thus,

the mapping from beta amplitude to spike sequence probabilities is

not a simple one, but depends on the diversity of CLC parameters

that hold across the population. Finally, task-dependent remap-

ping of the preferred phase (c.f. Figures 5I,J) provides a mechanism

for the selective and task-dependent control of synfire chain

activation and propagation. That is, during a given task the

relative probabilities of a set of (function-specific) multi-neuron

spike sequences can be controlled via adjustments in beta

amplitude, while switching to another task involves a remapping

of CLC parameters in order to call a different set of spike

sequences into action. Since motor cortical function involves both

rate modulation as well as spike synchronization [72,73], a

mechanism to selective control synchronization while leaving rate

modulation unchanged may prove useful to a system controlling

distributed networks.

While the amplitude- and phase-to-rate mappings appear most

relevant to local computation within a given cortical area, the

phase-difference-to-rate mapping may play a role in the regulation

of long-range communication between areas. According to the

communication through coherence (CTC) hypothesis, the effective

gain between interacting areas is a function of the phase difference

between them [21,51,74]. It is difficult to see how the brain could

implement CTC control systems without the use of neurons that

detect phase differences between areas, on the one hand, as well as

neurons than can evoke shifts in the relative phase between distal

areas, on the other. Neurons that could serve as phase difference

detectors and effectors appear to be fundamental elements

required by any distributed system of oscillatory network control.

Furthermore, hierarchical predictive coding models suggest that

the gamma rhythm is indicative of bottom-up feed-forward

processing, while the alpha and beta rhythms serve as signatures

of top-down feedback influence [75–78]. Distinct phase-difference-

to-rate mappings that operate at these frequencies appear to be

one way to control the relative balance of feedforward and

feedback processing. The phase-difference to amplitude-envelope-

correlation relationship shown in Figure S8D appears to support

the communication through coherence hypothesis, but further

studies targeting the role of spiking neurons in long-range

interactions are required to clarify their role in the oscillatory

control of distributed networks.

Prior work studying neural dynamics in motor cortex has

tended to focus on the correlation between spiking activity and

‘‘external’’ factors (e.g. movement velocity, environmental state,

behavior-dependent sensory feedback, etc). In contrast, this study

focused on ‘‘internal’’ factors that arise from spontaneous, ongoing

brain activity – including beta amplitude and phase within an

area, or the difference in beta phase between areas. Specifically,

we showed that most neurons exhibited a sigmoid dependence on

beta amplitude (considered alone; Figure 4), a cosine dependence

on beta phase (considered alone; Figure 5), and that beta

amplitude provided a quadratic gain control for the beta phase

preference (Figure 6). What is the relationship between these

‘‘external’’ and ‘‘internal’’ factors? Figure 3 provides an example

of external and internal tuning for one example neuron, showing

how input variables can be mapped to a predicted rate, which can

then be compared to a measured rate. For example, Figure 3D

shows how time-in-trial and target ID can be mapped to a

predicted rate (color), while Figure 3E shows how this predicted

rate compares to the rate that actually occurs. Similarly, Figure 3I–

Task-Dependent Changes in Cross-Level Coupling
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J show this for beta amplitude and phase; these figures show that

the range of the predicted rate generated from the beta-to-rate

mapping (rinternal) is about half that of the range of the predicted

rate generated from trial information (rexternal). The sum of these

terms (r = rexternal + rinternal) often has a larger range than either

rexternal or rinternal alone. However, this sum assumes that rexternal

and rinternal are independent – an assumption that is not

appropriate for many neurons. For example, while Figure 7G–H

shows neurons where target direction appears independent of the

phase-to-rate modulation depth, Figure 7E–F show examples

where there is a clear interaction between internal and external

factors. The focus of this study was to investigate the dependence

of spiking on internal factors, and to determine if this dependence

changes from one task to another. Determining the relation

between internal and external factors will require further

investigation.

Nonetheless, the majority of neurons show a dependence on

‘‘internal’’ beta-related factors that is not mediated by external

factors such as direction tuning (Figure S3). A related concern is

that the observed changes in CLC are more directly linked to

bottom-up demands related to the trial substages (e.g. hold vs.

movement period) than to top-down modulation associated with

the task context. Figure S5 addresses this concern by directly

comparing endogenous and exogenous factors; the fact that cross-

task, within-stage differences are larger than within-task, cross-

stage differences indicates that task context is a factor in

determining neuronal responses related to CLC. That is, it

appears that cells are influenced both by bottom-up, exogenous

input related to the processing demands of the different trial

substages as well as by top-down, endogenous input related to the

maintenance of task context and rule selection.

An interesting aspect of this analysis has been the observation of

the strong heterogeneity of neuronal sensitivities to different types

of input, considering external vs. internal factors or top-down vs.

bottom-up aspects of the experimental demands, compared to the

stability of the average population responses. For example, Figure

S3A shows the baseline firing rates for each neuron during BC and

MC, and makes it clear that many neurons exhibit large task-

dependent shifts in the baseline spike rate. The average spike rate

over the population, however, is relatively unchanged (red and

blue lines, Figure S3A). That is, with a shift in task the neuronal

ensemble seems to reassign firing rates around a constant

population mean rate. Similarly, the amplitude-to-rate and

phase-to-rate mappings computed using spikes from all neurons

(average population mappings) do not show the strong task-

dependent shifts seen in the mappings of individual neurons.

Therefore, we would predict that electrophysiological measures

that depend on average ensemble activity, such as coupling

between beta and the broadband ECoG signal [79], will be less

likely to exhibit strong task-dependent changes than will individual

neurons.

Finally, the empirical findings reported here are consistent with

the hypothesis that dynamic changes in coupling between multiple

spatial and temporal scales provide a simple mechanism to bias

functional network activity [80]. In particular, coupling between

single neurons and the motor beta rhythm exhibits several

properties that appear positioned to influence local cortical

computation – namely, the phase-regulation of relative spike

timing on a scale of tens of milliseconds and the amplitude-

regulation of winner-take-all dynamics within neuronal ensembles

occurring on a scale of hundreds of milliseconds. Similarly, long-

distance communication appears to be modulated by the relative

phase difference between areas. The presence of neurons that are

sensitive to these properties could provide a mechanistic route for

this information about relative phase differences to be detected

and actively used in the dynamic regulation of large-scale network

activity. While future studies employing casual intervention will be

required to fully test the functional role of different oscillatory

rhythms, here we have shown that the mapping from beta activity

to firing rate changes in a reversible, task-dependent way. Given

that beta oscillations are generated by the coordinated population

activity of hundreds of thousand cells involved in a distributed

network that spans both hemispheres [11], the results presented

here suggests that the relationship of multiscale coupling between

single neurons and larger networks is flexible and can be

dynamically remapped in order to support new functional roles.

Supporting Information

Figure S1 Task-dependent changes in the beta ampli-
tude-to-rate and phase-to-rate mappings for Monkey R.
A–F) As in Figure 4B–G, for monkey R. Shown are six example

neurons indicating the range of within-neuron remapping that

may occur when moving from BC (red) to MC (blue). G–L) As in

Figure 5A–H, for monkey R. Six example neurons from left

primary motor cortex (M1) showing task-dependent remapping of

the beta phase-to-rate relationship.

(TIF)

Figure S2 Amplitude-to-rate mapping: within-task
mapping stability and cross-task remapping reliability.
A–B) Colors and neurons are as in Figure 4A, but the BC data has

been spilt into 2 disjoint dataset prior to computing the amplitude-

to-rate mappings. For each pair of neurons, if the amplitude-to-

rate mappings for the pair cross, then the rank order of that pair

(in terms of spike rate associated with beta amplitude alone) also

switches (c.f. Figure 11). The beta amplitude value corresponding

to such rank-order switches is stable within task but can change

across tasks. More generally, amplitude-to-rate mappings exhibit

within-task stability and cross-task diversity. C) For each cell,

plotting the within-task amplitude-to-rate mappings against each

other reveals few changes; amplitude-to-rate mapping for BC1

versus the amplitude-to-rate mapping for BC2.. D–E) As in A–B,

for the MC task. F) As in C, for the MC task. G) In contrast to

these within-task comparisons, plotting the amplitude-to-rate

mappings for a given cell across tasks reveals large but

reproducible changes; BC1 versus MC1 shows that neurons can

exhibit task-dependent changes. H) As in G, for BC2 vesus MC2.

I) For any given amplitude, the amplitude-to-rate mappings for the

ensemble induce a rank ordering in terms of spike rate (i.e., the

spike rate rank ordering that would hold if cells received no input

other than that associated with the amplitude-to-rate mapping).

For the 12 example neurons shown here, 41 distinguishable rank

orderings occur across BC1, BC2, MC1, and MC2. Each rank

order can be named with an (arbitrary) rank-order state ID, and

each rank order state may have different neurocomputational

consequences due to winner-take-all dynamics within an ensemble

(c.f. Figure 11). Importantly, stable within-task amplitude-to-rate

mappings for an ensemble establishes a sequence of rank order

states; smoothly moving from low to high amplitude will

correspond to a specific sequence of discrete rank-order states.

That is, for each task there is a mapping from the one-dimensional

amplitude axis to an ordered sequence of discrete ensemble states

(while the state ID is arbitrary, the sequence of states is determined

by the task, and each state is index by a fixed interval of beta

amplitude values). Switching tasks leads to a remapping of

amplitude-to-rate mappings across the ensemble, which results in

amplitude being mapped to different sequence of rank-order

states. Shown are the rank-order state IDs associated with each

Task-Dependent Changes in Cross-Level Coupling
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beta amplitude during BC1 (solid red line), BC2 (dashed red),

MC1 (solid blue), and MC2 (dashed blue); the ensemble rate-based

sequence ordering indexed by beta amplitude is preserved within

tasks, but may change between tasks.

(TIF)

Figure S3 The relation of internal and external tuning
properties. Relation of amplitude- and phase-to-rate mapping

parameters to baseline rate, direction tuning modulation depth,

and direction tuning preferred direction. A) Baseline spike rates in

BC and MC conditions. Average ensemble rate is approximately

the same in BC (red line) and MC (blue line). B) Range of rate

change for amplitude-to-rate mapping vs. baseline rate in BC (red)

and MC (blue). Open circles (asterisks) indicate mappings with

negative (positive) correlation between beta amplitude and spike

rate. C) Range of rate change for phase-to-rate mapping vs.

baseline rate in BC (red) and MC (blue). D) Phase-to-rate mapping

preferred angle vs. baseline rate in BC (red) and MC (blue). E)

Target-specific direction tuning modulation depth in BC and MC.

F) As in B, but showing the relation of amplitude-to-rate spike rate

range vs. direction tuning modulation depth rather than baseline

rate. G) Range of rate change for phase-to-rate mapping vs.

direction-tuning modulation depth. H) Phase-to-rate preferred

beta angle vs. direction tuning modulation depth. I) Preferred

movement direction in BC and MC. J) As in B, but showing the

relation of spike rate range vs. preferred movement direction. K)

Phase-to-rate spike rate range vs. preferred direction. L) Phase-to-

rate preferred beta angle vs. preferred movement direction.

(TIF)

Figure S4 Phase-to-rate mapping: within-task mapping
stability and cross-task remapping reliability. The phase-

to-rate mapping was computed separately for 4 datasets: 2 BC

blocks (BC1 and BC2) and 2 MC blocks (MC1 and MC2). Both

the modulation depth (upper right) and preferred beta angle (lower

left) are more similar for within-task comparisons (BC1/BC2, red;

MC1/MC2, blue) than for cross-task comparisons (BC1/MC1,

BC1/MC2, BC2/MC1, BC2/MC2, black). While the parameters

for a given neuron differ from BC to MC, task-dependent changes

are reproducible across disjoint datasets (e.g., compare modulation

depth scatterplots for BC1/MC1 to BC2/MC2).

(TIF)

Figure S5 Task- and trial-substage dependence of
amplitude-to-rate mapping. The amplitude-to-rate mapping

was computed separately for 8 datasets forming a 2 6 2 6 2 set

distinguishing task (MC or BC), trial sub-stage (Move-to-Center or

Move-to-Target), and disjoint group (1 for odd trials or 2 or even

trials). Parameter comparisons across datasets highlight different

contrasts, including: 1) within-task, within-trial-stage (wTwS); 2)

within-task, cross-trial-stage (wTcS); and 3) cross-task, within-trial-

stage (cTwS). Task-dependent changes in the linear slope of the

amplitude-to-rate mapping are isolated by cTwS, while trial-stage-

dependent changes are isolated by the wTcS comparison.

(TIF)

Figure S6 Task- and trial-substage dependence of
phase-to-rate mapping modulation depth. The phase-to-

rate mapping was computed separately for 8 datasets forming a 2

6262 set distinguishing task (MC or BC), trial sub-stage (Move-

to-Center or Move-to-Target), and disjoint group (1 for odd trials

or 2 or even trials). Parameter comparisons across datasets

highlight different contrasts, including: 1) within-task, within-

trial-stage (wTwS); 2) within-task, cross-trial-stage (wTcS); and 3)

cross-task, within-trial-stage (cTwS). Task-dependent changes in

phase-to-rate modulation depth are isolated by cTwS, while trial-

stage-dependent changes are isolated by the wTcS comparison.

(TIF)

Figure S7 Task- and trial-substage dependence of
phase-to-rate mapping preferred angle. The phase-to-rate

mapping was computed separately for 8 datasets forming a 2 6 2

6 2 set distinguishing task (MC or BC), trial sub-stage (Move-to-

Center or Move-to-Target), and disjoint group (1 for odd trials or

2 or even trials). Parameter comparisons across datasets highlight

different contrasts, including: 1) within-task, within-trial-stage

(wTwS); 2) within-task, cross-trial-stage (wTcS); and 3) cross-task,

within-trial-stage (cTwS). Task-dependent changes in phase-to-

rate preferred angle are isolated by cTwS, while trial-stage-

dependent changes are isolated by the wTcS comparison.

(TIF)

Figure S8 Mapping from inter-hemispheric phase dif-
ference to mean beta amplitude and inter-hemispheric
amplitude envelope correlations. A) Mean beta amplitude is

statistically dependent on the beta phase difference between left

M1 (M1l) and right M1 (M1r) during both MC and BC. However,

the optimal lag between the amplitude and phase difference time

series depends on task condition. During BC, the optimal lag for

M1l and M1r is 0 ms and +1 ms, respectively, but during MC the

optimal lag shifts to 26 ms for M1l and +10 ms for M1r. M1l

drives movement of the right arm during MC; one possibility is

that M1l amplitude changes precede changes in the inter-

hemispheric M1l/M1r phase difference (6 ms later), while the

M1l/M1r phase difference best predicts M1r amplitudes 10 ms

later. B) Mean beta amplitude as a function of the inter-

hemispheric beta phase difference, shown for optimal lags (c.f.

Figure S8A). Amplitudes are normalized to a mean of 1 for all

data; differences from unity imply that the beta amplitude

distribution changes when conditioned on the inter-hemispheric

phase difference. C) The range of inter-hemispheric amplitude

correlations conditioned on the inter-hemispheric phase difference

for a set of time lags. In both MC and BC, the phase difference is

most predictive of amplitude correlations occurring 26 ms later.

The origin of the double peak symmetric around lag 0 is unclear.

D) The mapping between inter-hemispheric beta phase differences

to beta amplitude correlations, plotted for the optimal lag

(+26 ms). This mapping implies that knowing the phase difference

between left and right M1 provides knowledge about the

amplitude correlations (between M1l and M1r) that will hold

26 ms later.

(TIF)

Figure S9 Amplitude-to-rate mapping exhibits indepen-
dent task- and trial-stage related changes. A–I) Amplitude-

to-rate mapping for three example neurons (sig086a, top row;

sig099a, middle row; sig104a, bottom row) over three trial sub-

stages (Move-to-Center, left column; Move-to-Target, middle

column; Reward On, right column) showing that trial-stage

differences do not account for task-related differences.

(TIF)

Figure S10 Baseline-corrected amplitude-to-rate map-
pings for seven neurons. The change in firing rate as a

function of beta amplitude for seven example neurons: sig015a

(blue), sig029a (green), sig029b (red), sig031a (cyan), sig045a

(purple), sig062a (gold), and sig081b (black). Baseline rate has been

removed to emphasize rate changes associated with amplitude

variation.

(TIF)
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Table S1 The fraction of neurons showing significant
changes in spike rate as a function of beta amplitude
(the amplitude-to-rate mapping). Percentages were comput-

ed separately for Monkeys P and R during the BC and MC tasks

(columns), and stratified by correlation type – positive, negative, or

no correlation (rows).

(DOCX)

Table S2 The fraction of neurons showing task-depen-
dent changes in the beta amplitude to rate mapping,
stratified by correlation direction (positive or negative)
and relative strength of modulation during the MC and BC
tasks (rows), computed separately for Monkeys P and R.
(DOCX)

Table S3 The fraction of neurons exhibiting changes in
spike rate as a function of beta phase, computed
separately for Monkeys P and R (columns) over the
MC and BC tasks (rows).

(DOCX)
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