UC Davis

UC Davis Previously Published Works

Title

The light response of mesophyll conductance is controlled by structure across leaf profiles

Permalink

https://escholarship.org/uc/item/6cf1488m

Journal

Plant Cell \& Environment, 40(5)

ISSN

0140-7791

Authors

Théroux-Rancourt, Guillaume Gilbert, Matthew E

Publication Date

2017-05-01
DOI
10.1111/pce. 12890

Peer reviewed

The light response of mesophyll conductance is controlled by structure across leaf profiles

Guillaume Théroux-Rancourt and Matthew E. Gilbert

Department of Plant Sciences, University of California, Davis, 95616, USA
Correspondence: G. Théroux-Rancourt. E-mail: gtrancourt@ucdavis.edu

SUMMARY STATEMENT
Using theoretical and observed evidence of the response of mesophyll conductance (g_{m}) to light, it is shown that this response is apparent, where the bulk leaf g_{m} appears to respond to light while layer-specific g_{m} values do not. This was successfully represented using a multi-layer leaf model coupled with anatomical observations. This apparent response has implications for how limitation analyses are conducted and illustrates the importance of measuring g_{m} under saturating light. Mesophyll conductance is an emergent property of the 3D leaf structure and not solely a leaf area based phenomenon.

Abstract

Mesophyll conductance to $\mathrm{CO}_{2}\left(g_{\mathrm{m}}\right)$ may respond to light either through regulated dynamic mechanisms or due to anatomical and structural factors. At low light, some layers of cells in the leaf cross-section approach photocompensation and contribute minimally to bulk leaf photosynthesis and little to whole leaf $g_{\mathrm{m}}\left(g_{\mathrm{m}, \text { leaf }}\right)$. Thus, the bulk $g_{\mathrm{m}, \text { leaf }}$ will appear to respond to light despite being based upon cells having an anatomically fixed mesophyll conductance. Such behavior was observed in species with contrasting leaf structure using the variable J or stable isotope method of measuring $g_{\mathrm{m}, \text { leaf. }}$. A species with bifacial structure, Arbutus \times 'Marina', and an isobilateral species, Triticum durum L., had contrasting responses of $g_{\text {m,leaf }}$ upon varying adaxial or abaxial illumination. Anatomical observations, when coupled with the proposed model of $g_{\mathrm{m}, \text { leaf }}$ to PPFD response, successfully represented the observed gas exchange data. The theoretical and observed evidence that $g_{\mathrm{m}, \text { leaf }}$ apparently responds to light has large implications for how $g_{\mathrm{m}, \text { leaf }}$ values are interpreted, particularly limitation analyses, and indicates the importance of measuring g_{m} under full light saturation. Responses of $g_{\mathrm{m}, \text { leaf }}$ to the environment should be treated as an emergent property of a distributed 3D structure, and not solely a leaf area based phenomenon.

Key-words: photosynthesis; Arbutus; Triticum; internal conductance; leaf anatomy

INTRODUCTION

Mesophyll conductance to $\mathrm{CO}_{2}\left(g_{\mathrm{m}}\right)$ is understood to be the result of multiple processes within the leaf. In combination, these factors limit photosynthesis by up to 50%. Major limitations to CO_{2} diffusion within the leaf include: diffusion in the air from the stomata to the cells, diffusion in solution in the tortuous cell wall, movement through the plasma membrane or aquaporins, diffusion through the cytosol influenced by carbonic anhydrase, and movement through the chloroplast envelopes. Most of these limitations are constant and anatomically determined (Evans et al. 2009, Nobel 1999, Terashima et al. 2011) and potentially genetically determined (Barbour et al. 2016, Jahan et al. 2014). However, the hypothesized role of aquaporins (Flexas et al. 2006, Perez-Martin et al. 2014) and carbonic anhydrase (Ho et al. 2016, Tholen \& Zhu 2011) may allow the leaf to dynamically control g_{m} in response to the environment.

A third effect that has not been routinely incorporated into the concepts of g_{m} response to the environment is the three-dimensional nature of CO_{2} diffusion in the leaf (Parkhurst 1986, 1994). In particular, the leaf vertical profile has varying photosynthetic capacity and cellular structure (Evans 2009, Evans and Vogelmann 2003, Ho et al. 2016, Verboven et al. 2015). Heterogeneities in the intra-leaf light absorption profiles and cell structure have previously allowed researchers to explain the difference between the light responses of leaves illuminated on the adaxial or abaxial side (Oya and Laisk 1976, Terashima 1986, Terashima et al. 1986). Similarly, irradiance of different quality, e.g. wavelength, diffuse or direct illumination, penetrates to alternative depths in the leaf (Brodersen and Vogelmann 2010, Evans and Vogelmann 2003, Terashima et al. 2009). Also, the ability of chloroplasts to move would lead to changes in the diffusion pathway (Gorton et al. 2003) as the surface of chloroplast exposed to the intercellular airspace would change (Ho et al. 2016, Tholen et al. 2008). Although little change
in leaf g_{m} has been observed in response to chloroplast movement (Gorton et al. 2003, Loreto et al. 2009), it is conceivable that changing between diffuse and direct light, or high versus low intensities would lead to dynamic variation in the physical basis for CO_{2} diffusion at a local or chloroplast level. Other factors may allow a leaf to display dynamics in g_{m}, analogous to gating of water transport in aquaporins with light (Prado et al. 2013) and changing proportions of photorespiration and respiration in response to C_{i} as light decreases (Tholen \& Zhu 2011). Alternatively, Evans (2009) suggests that varying photosynthetic contributions of cells with different characteristics could lead to apparent changes in g_{m}.

The response of g_{m} to light has not been extensively reported to date. With a few studies reporting that g_{m} remains constant over a range of photosynthetic photon flux density (PPFD) and others showing a slight response. A response was observed from CO_{2} response curves measured at three PPFD, where g_{m} was higher at 1000 than at $250 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ PPFD (Flexas et al. 2007). No response of g_{m} to PPFD was found using stable isotope methods under $2 \%\left[\mathrm{O}_{2}\right]$ (Tazoe et al. 2009). Neither study reports g_{m} for low PPFD’s ($<200 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$). Yin et al. (2009), measuring below $200 \mu \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$, observed a g_{m} response to PPFD in wheat and account for it by fitting a phenomenological model similar to Leuning's stomatal model (Leuning 1995) where g_{m} is variable. Thus, it appears that there is a need to investigate the nature of g_{m} response to light.

The following hypothesis is suggested: leaf g_{m} responds to PPFD due to changing patterns of light penetration within the leaf leading to different contributions of each layer to bulk leaf g_{m} ($g_{\mathrm{m}, \text { leaf }}$). The hypothesis is further developed in the Theory section and tested using the modified variable J method, while stable isotope based $g_{\mathrm{m}, \text { leaf }}$ values were used as confirmation of $g_{\mathrm{m}, \text { leaf }}$ response to PPFD. Two species were chosen with bifacial or isobilateral
leaf anatomy to provide contrasting profiles of photosynthesis in leaves. As a confirmation of the proposed model, anatomical observations were used to constrain the model, and determine if the observed gas exchange patterns could be replicated by the model. The alternative hypotheses are that either there is no response of $g_{\mathrm{m}, \text { leaf }}$ to PPFD, or that if a anatomically determined multi-layer leaf photosynthesis model is unable to represent the observed responses, then a dynamic, regulated mechanism of $g_{\mathrm{m}, \text { leaf }}$ response to light is required.

THEORY

A leaf can be seen as a stack of layers representing the palisade and spongy mesophyll, or a profile (e.g. Parkhurst 1986). Layers can have very different photosynthetic properties and each layer is influenced by the processes occurring in the adjacent layers, for example light absorption, which will influence the CO_{2} drawdown resulting from photosynthesis.

The goal of the modeling here was to reconstruct the measured net photosynthesis of a leaf $\left(A_{n, \text { leaf }}\right)$, PPFD absorbed by PSII $\left(I_{2, j}\right)$ at each layer (j) and the mesophyll conductance ($g_{\mathrm{m}, \text { leaf }}$) to PPFD relationship from modelled leaf layer values ($A_{\mathrm{n}, \mathrm{j}}$ and $g_{\mathrm{m}, \mathrm{j}}$; Fig. 1 ; see Table 1 for definition of model variables). Applied to the extreme - a leaf with uniform cell characteristics across layers and a constant layer based $g_{\mathrm{m}, \mathrm{j}}$ - the model would form a null hypothesis (termed null model here) to which leaves with varying layer characteristics could be compared (i.e. the model leaf presented in Fig. 1). The general model would demonstrate if $g_{\mathrm{m}, \text { leaf }}$ changes with PPFD, based upon variation in the photosynthesis of different layers in the leaf, independent of regulated changes in the diffusion CO_{2} pathway. Specifically, if layer- $g_{\mathrm{m}, \mathrm{j}}$ is constant based upon anatomy, but each layer varies in contribution to total leaf $A_{\mathrm{n}, \text { leaf }}$, then how does bulk leaf $g_{\mathrm{m}, \text { leaf }}$ respond to PPFD?

The PPFD reaching each layer $\left(\mathrm{PPFD}_{\mathrm{j}}\right)$ is:

$$
\begin{equation*}
\mathrm{PPFD}_{\mathrm{j}}=\mathrm{PPFD}_{\mathrm{j}-1}-\mathrm{PPFD}_{\mathrm{abs}, \mathrm{j}-1} \tag{eqn.1}
\end{equation*}
$$

where PPFD $_{\text {abs }, j-1}$ is the PPFD absorbed by the layer before, and calculated as:

$$
\begin{equation*}
\operatorname{PPFD}_{\mathrm{abs}, j-1}=\operatorname{PPFD}_{j-1} \alpha_{j-1} \tag{eqn.2}
\end{equation*}
$$

where α_{j-1} is the absorptance of the previous layer. The effective PPFD for calculating electron transport rates $\left(I_{2, \mathrm{j}}\right)$ is:

$$
\begin{equation*}
I_{2, \mathrm{j}}=\operatorname{PPFD}_{\mathrm{j}} \alpha_{\mathrm{j}}\left(1-f_{\mathrm{j}}\right) \beta_{\mathrm{j}} \tag{eqn.3}
\end{equation*}
$$

where f_{j} is ~ 0.15, a spectral quality correction for the relative inefficiency of white light relative to red photons (Evans 1987) and the β_{j} is typically 0.5, the partitioning between PSII and I (von Caemmerer 2000). The electron transport rate for a layer of the leaf $\left(J_{\mathrm{j}}\right)$ is then modelled using the light-response curve equation from Ögren and Evans (1993):

$$
\begin{equation*}
J_{\mathrm{j}}=\frac{I_{2, \mathrm{j}}+J_{\text {max }, \mathrm{j}}-\sqrt{\left(I_{2, \mathrm{j}}+J_{\text {max }, \mathrm{j}}\right)^{2}-4 \theta_{\mathrm{j}} I_{2, \mathrm{j}} J_{\text {max }, \mathrm{j}}}}{2 \theta_{\mathrm{j}}} \tag{eqn.4}
\end{equation*}
$$

where $J_{\mathrm{max}, \mathrm{j}}$ is the maximal electron transport rate of the j 'th layer and θ_{j} is the curvature factor.

A constant intercellular airspace CO_{2} concentration $\left(C_{\mathrm{i}}\right)$ is assumed across the leaf as the intercellular airspace contribution to $g_{\mathrm{m}, \text { leaf }}$ is low for many species and leaf anatomies (Aalto \& Juurola 2002, Piel et al. 2002). Although this has been debated (Parkhurst 1994), this assumption has been widely used in profile based modelling and helps to simplify the model without requiring multiple nested simulations to model the layer photosynthetic rates, and recent finite element 3D modelling has shown a mostly constant $\left[\mathrm{CO}_{2}\right]$ within the leaf intercellular airspace
(Ho et al. 2016). However, the chloroplastic CO_{2} concentration ($C_{\mathrm{c}, \mathrm{j}}$) for each layer of the leaf has to be found using an numerical solution to obtain the gradient for CO_{2} diffusion necessary to compute $A_{\mathrm{n}, \mathrm{j}}$. This is done by minimizing the difference between eqn. 5 and 6 for each layer of the leaf:

$$
\begin{equation*}
A_{\mathrm{n}, \mathrm{j}}=g_{\mathrm{m}, \mathrm{j}}\left(C_{\mathrm{i}}-C_{\mathrm{c}, \mathrm{j}}\right) \tag{eqn.5}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{\mathrm{n}, \mathrm{j}}=\left(1-\Gamma_{\mathrm{j}}^{*} / C_{\mathrm{c}, \mathrm{j}}\right) \times \min \left(V_{\mathrm{c}, \text { Rubisco, }, \mathrm{j}}, V_{\mathrm{c}, \mathrm{RuBP}, \mathrm{j}}\right)-R_{\mathrm{d}, \mathrm{j}} \tag{eqn.6}
\end{equation*}
$$

where:

$$
\begin{align*}
& V_{\mathrm{c}, \text { Rubisco }, \mathrm{j}}=C_{\mathrm{c}, \mathrm{j}} V_{\mathrm{c}, \text { max, } \mathrm{j}} /\left(C_{\mathrm{c}, \mathrm{j}}+K_{\mathrm{c}, \mathrm{j}}\left(1+0 / K_{\mathrm{o}, \mathrm{j}}\right)\right) \tag{eqn.7}\\
& V_{\mathrm{c}, \text { RuBP, } \mathrm{j}}=J_{\mathrm{j}} /\left(4+8 \Gamma^{*} / C_{\mathrm{c}, \mathrm{j}}\right) \tag{eqn.8}
\end{align*}
$$

and $R_{\mathrm{d}, \mathrm{j}}$ is the mitochondrial respiration in the light $\left(\sum_{j=1}^{l} R_{\mathrm{d}, \mathrm{j}}=R_{\mathrm{d}, \text { leaf }}\right), \Gamma_{\mathrm{j}}$ is the photosynthetic compensation point in the absence of respiration (same for each layer), $V_{\mathrm{c}, \text { Rubisco,j }}$ the carboxylation rate under Rubisco-limited conditions, and $V_{\mathrm{c}, \mathrm{RuBP}, \mathrm{j}}$ the carboxylation rate under RuBP-limited conditions. The numerical solution is found for each layer j. In eqn. 5 , $g_{\mathrm{m}, \mathrm{j}}$ is a fixed value specific for each layer j.

The leaf mesophyll conductance can then be calculated based upon a constant $g_{\mathrm{m}, \mathrm{j}}$ at each layer and the weighted contribution of each layer to leaf A_{n}. This principle can be illustrated by the situation where, as a layer of the leaf tends towards zero net photosynthesis, then the layer contributes a decreasing signal to the measured g_{m} of the whole leaf. An assimilation-weighted
$g_{\mathrm{m}, \text { leaf }}$ for l layers of the leaf can be computed as per Lloyd et al. (1992); see the Appendix of this paper for an alternative derivation of this equation:

$$
\begin{equation*}
g_{\mathrm{m}, \text { leaf }}=\frac{A_{\mathrm{n}, \text { leaf }}}{C_{\mathrm{i}}-\frac{\sum_{j=1}^{l} A_{\mathrm{n}, \mathrm{j}} c_{\mathrm{c}, \mathrm{j}}}{A_{\mathrm{n}, \text { leaf }}}} \tag{eqn.9}
\end{equation*}
$$

A useful aspect of the model is that it can be used to simulate the g_{m} light response of a leaf regardless of the direction of illumination. This modelling approach is used for a leaf with three layers (Fig. 1), for instance two palisade and one spongy mesophyll layers (increasing the number of layers produces a similar response; data not shown). The theoretical leaf presented in Figure 1 was parameterized assuming all layers had the same photosynthetic parameters, termed the null model, i.e. $g_{\mathrm{m}, \mathrm{j}}$ was equal for each layer and structurally fixed (parameters for the null model are given in the Figure 1 legend). That is, layer based values of $g_{\mathrm{m}, \mathrm{j}}$ did not vary in the null model, but the contribution of each layer to the whole leaf $g_{\mathrm{m}, \text { leaf }}$ signal did vary based upon layer specific photosynthetic rates. At high PPFD all layers contributed a similar photosynthesis rate, and thus $g_{\mathrm{m}, \text { leaf }}$ was roughly the additive values of $g_{\mathrm{m}, \mathrm{j}}$ (Fig. 1; eqn. 9). Under the lowest PPFD the adaxial layer contributed a higher photosynthesis signal, resulting in that layer contributing the most to $g_{\mathrm{m}, \text { leaf }}$ while the abaxial layer respired resulting in a negative contribution to $g_{\mathrm{m}, \text { leaf }}$ and a low total $g_{\mathrm{m}, \text { leaf }}$ value. When the leaf respires, i.e. $A_{\mathrm{n}, \text { leaf }}$ is negative, then the $g_{\mathrm{m}, \text { leaf }}$ must increase back to the maximum value as the flux and gradient would be inverted (these respiratory responses are at the very left most side of the $g_{\mathrm{m}, \text { leaf }}$ PPFD response in Fig. 1).

However, a caveat of eqn. 9 is that when $A_{n, \text { leaf }}$ equals zero then the denominator, the gradient ($C_{\mathrm{i}}-C_{\mathrm{c}}$), is zero, which makes the estimation of $g_{\mathrm{m}, \text { leaf }}$ undefined. This is an unavoidable and inherent issue in the common conception of g_{m} in the form of:

$$
\begin{equation*}
g_{\mathrm{m}}=A_{\mathrm{n}} /\left(C_{\mathrm{i}}-C_{\mathrm{c}}\right) \tag{eqn.10}
\end{equation*}
$$

when C_{c} equals C_{i} (see also eqn. 11). Considering this, estimating $g_{\mathrm{m}, \text { leaf }}$ under low light conditions leading $A_{\text {n,leaf }}$ to equal zero is unreliable. This is reached under very low light intensities, below $50 \mu \mathrm{~mol} \mathrm{~m}{ }^{-2} \mathrm{~s}^{-1}$ PPFD in our null model of a leaf (Fig. 1). Nonetheless, in a real leaf, this mathematical issue is simply not present and C_{i} must equal C_{c} at least twice a day. In that case, g_{m} as a physical resistance still exists, but would be unmeasurable.

TABLE 1 AND FIGURE 1 COULD BE PLACED HERE.

Thus, it is clear from a theoretical standpoint that $g_{\mathrm{m}, \text { leaf }}$ must appear to respond to light in a structural manner, consistent with pools of cells contributing to photosynthesis differentially under varying light. Evans (2009) predicted $g_{\mathrm{m}, \text { leaf }}$ to respond to PPFD in this manner, while Parkhurst (1994) and Lloyd et al. (1992) suggested that differing photosynthetic contributions of cells would lead to apparent changes in $g_{\mathrm{m}, \text { leaf. }}$. The rest of this paper is directed to answering:

1) Is such behavior observed in leaves?
2) Are the observed light responses of $g_{\mathrm{m}, \text { leaf }}$ consistent with constant anatomical characteristics and varying structural (layer) contributions to photosynthesis, or are dynamic, regulated processes necessary to explain the observed light responses?
3) What broader implications does this model of the $g_{\mathrm{m}, \text { leaf }}$ response to PPFD have for contrasting leaf anatomies, and for the measurement of g_{m} ?

MATERIALS AND METHODS

Species used and plant growth conditions

Arbutus \times 'Marina’ (Arbutus unedo L. \times A. andrachne L.) year-old saplings were used to represent a leaf with bifacial anatomy and high leaf mass area (LMA: $97.36 \mathrm{~g} \mathrm{~m}^{-2}$). Triticum durum L. cv. Kronos two-month-old seedlings were used to represent a leaf with high photosynthetic capacity and approximately isobilateral anatomy (LMA: $12.34 \mathrm{~g} \mathrm{~m}^{-2}$).

Arbutus plants were grown outdoors during the fall at the UC Davis Arboretum Nursery in 4 L pots and were transferred to an environmentally-controlled greenhouse for approximately two weeks to acclimate. Temperature was $25 / 18^{\circ} \mathrm{C}$ (day/night) and maximal PPFD from sunlight was $\sim 800 \mu \mathrm{~mol} \mathrm{~m}{ }^{-2} \mathrm{~s}^{-1}$. Triticum seeds were sown in 4 L pots filled with a coarse substrate $(1 / 3$ sand, $1 / 3$ peat, $1 / 3$ redwood compost) in the same greenhouse. Both species were fertigated daily when irrigated.

The flag leaves of Triticum were measured; these leaves are positioned at a high angle with illumination occurring from either side, or may even 'flip' presenting the abaxial surface upwards. For Arbutus, a fully expanded leaf, with a plastochron index of five to seven, were measured.

Gas exchange: variable J method

Plants were transferred to the lab into a custom-made cabinet ($\sim 1.2 \mathrm{~m}^{3}$), allowing for the control of temperature (maintained at $25 \pm 1^{\circ} \mathrm{C}$), vapor pressure deficit (VPD; $1.5 \pm 0.2 \mathrm{kPa}$), and PPFD (set at $800 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ at the top of the plant), and air mixing. A custom gas exchange chamber was used to maximize resolution under low photosynthesis. Leaf gas exchange was measured inside the growth cabinet using a LI-6400XT with a $2 x 3 \mathrm{~cm}$ clear top PAM-2000 adaptor chamber (LI-COR Biosciences, Lincoln, NE, USA) and equipped with a PAM-2000 chlorophyll fluorometer (Heinz Walz GmbH, Effeltrich, Germany). PPFD was provided to the leaf by a
white light (LI-COR6400-18A) providing equal quantities of red, blue and green PPFD, and was placed $\sim 2 \mathrm{~cm}$ above the leaf surface, with the angle adjusted to avoid the PAM-2000 probe shading the leaf, whilst still illuminating the leaf homogeneously, similar to Bellasio and Griffiths (2014). The chamber was covered with black cloth to shade the leaf from external light. The leaf was allowed to stabilize with the adaxial side being illuminated at leaf chamber CO_{2} mole fraction $\left(C_{\mathrm{a}}\right)$ of $380 \mu \mathrm{~mol} \mathrm{~mol}^{-1}$, PPFD of $1000 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$, VPD of $1.5 \pm 0.1 \mathrm{kPa}$, flow of $500 \mu \mathrm{~mol} \mathrm{~s}^{-1}$, and leaf temperature of $25 \pm 0.2^{\circ} \mathrm{C}$. Gas exchange was recorded simultaneously with steady state chlorophyll fluorescence under light (F_{s}) and maximum fluorescence under saturating light (F_{m} '; $\sim 15000 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$), used to compute the photochemical efficiency of $\operatorname{PSII}\left(\Phi_{\text {PSII }}=\left(F_{\mathrm{m}}{ }^{\prime}-F_{\mathrm{s}}\right) / F_{\mathrm{m}}{ }^{\prime}\right)$.

Following the measurement under ambient $C_{a},\left[\mathrm{CO}_{2}\right]$ was increased to lower the photorespiratory bias on g_{m} estimates when evaluated at low C_{i} (Tholen \& Zhu 2011). A normalized C_{i} of $280 \mu \mathrm{~mol} \mathrm{~mol}^{-1}$ was used, which is the minimal C_{i} at which g_{m} plateaus; see Théroux-Rancourt et al. (2014). A light response curve using adaxial illumination was measured at normalized C_{i} at PPFD of $950,500,350,230,140,85$, and $45 \mu \mathrm{~mol} \mathrm{~m}{ }^{-2} \mathrm{~s}^{-1}$. After the last point, the leaf was inverted and equilibrated at $800 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ PPFD for at least one hour. The leaf was then equilibrated to $950 \mu \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ PPFD before measuring the same light response as above. The lights were then turned off and the plant was shaded with a black cloth, and dark respiration $\left(R_{\mathrm{n}}\right)$ was measured after $\sim 20 \mathrm{~min}$. The order in which the sides of the leaves were measured did not affect the light responses (data not shown), and so the adaxial side was chosen as the first side measured.

Mesophyll conductance to CO_{2} was estimated using the variable J method (Harley et al. 1992):

$$
\begin{equation*}
g_{\mathrm{m}, \text { leaf }}=\frac{A_{\mathrm{n}, \text { leaf }}}{C_{\mathrm{i}}-\frac{\Gamma *\left(J_{\mathrm{f}}+8\left(A_{\mathrm{n}, \text { leaf }}+R_{\mathrm{d}, \text { leaf })}\right.\right.}{J_{\mathrm{f}}-4\left(A_{\mathrm{n}, \text { leaf }}+R_{\mathrm{d}, \text { eaf }}\right)}} \tag{eqn.11}
\end{equation*}
$$

where J_{f} is the photochemical electron transport rate estimated from chlorophyll fluorescence, and Γ^{*} is assumed to be $37.4 \mu \mathrm{~mol} \mathrm{~mol}^{-1}$ (Bernacchi et al. 2002). The use of a normalized and constant C_{i} for the estimation of g_{m} limits the potential bias caused by an inaccurate Γ^{*}, which means that the observed response is less sensitive to this issue, as seen in the initial variable J method paper (Harley et al. 1992) and in one of our previous reports (Théroux-Rancourt et al. 2014). Dark respiration was used as a rapid proxy for $R_{\mathrm{d}, \text { leaf, considered to be half of } R_{\mathrm{n}}}$ (Niinemets et al. 2009, Théroux-Rancourt et al. 2014). The electron transport rate estimated from chlorophyll fluorescence was calibrated according to the following linear relationship (Hassiotou et al. 2009):

$$
\begin{equation*}
J_{\mathrm{f}}=\left[\left(\Phi_{\mathrm{PSII}} s\right)+c\right] \text { PPFD } \tag{eqn.12}
\end{equation*}
$$

where s represents the ratio of $\Phi_{\mathrm{CO} 2}$ (the gas exchange-based photochemical quantum yield) to $\Phi_{\text {PSII }}$ and c represents the intercept of the relationship between $\Phi_{\text {PSII }}$ and $\Phi_{\text {CO2 }}$. Calibration was performed under ambient, $21 \% \mathrm{O}_{2}$ conditions following the method described in ThérouxRancourt et al. (2014). Using detailed $A_{n}-C_{i}$ curve analysis combined with chlorophyll fluorescence, s was fit using the RuBP-limited version of eqn. 3 of Éthier et al. (2006). This method hence solves s (and so J_{f}) and $g_{\mathrm{m}, \text { leaf }}$ simultaneously using the measured $A_{\mathrm{n}}-C_{\mathrm{i}}, \Phi_{\text {PSII, }}$, and R_{d}. The s values estimated were between 0.319 and 0.42 for Arbutus and between 0.39 and 0.43 for Triticum, and c values were between 1×10^{-4} and 0 for Arbutus and between 0.01 and 0 for Triticum.

Gas exchange: stable isotope method

On a separate set of plants from those above, light response curves were performed as above, but the air exiting the LI6400XT cuvette was collected and analyzed for stable isotope composition. A three-way valve was added to the chamber exhaust tube, the third port connected to a $\sim 6 \mathrm{~m}$ sampling tube ($>50 \mathrm{~cm}^{3}$). After measuring $g_{\mathrm{m}, \text { leaf }}$ as above, but under a flow of $200 \mu \mathrm{~mol} \mathrm{~s}^{-1}$ to maximize CO_{2} drawdown within the cuvette and at PPFD of $950,700,450,350,230,120,80$, or $45 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$, the valve was opened toward the sampling tube and air was allowed to flow for ~5 min, allowing > 20 times air change within the tube. To sample air, the valve was returned to its original direction along the cuvette exhaust route, and $20 \mathrm{~cm}^{3}$ air was slowly sucked from the tube into a gas-tight glass syringe through a brass luer-lock fitting. The syringe’s valve was closed, a needle connected, and the needle was flushed with some of sampled air before injecting 12 ml of air into a vial (10 ml Exetainer, Labco, UK). Air was sampled at different PPFD for Triticum (950, 450, 230, and $80 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$) and Arbutus (950, 700, 350, and $120 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-}$ ${ }^{1}$) as the latter closed stomata rapidly at low PPFD and could not be left for over 10 min below $100 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ PPFD. Air was then sampled from an empty cuvette to measure the isotopic signature of the incoming air at the same chamber $\left[\mathrm{CO}_{2}\right]\left(C_{\mathrm{s}}\right)$ as the samples measured above ($\left[\mathrm{CO}_{2}\right]$ varied due to normalizing C_{i}) in order to get the reference carbon isotopic composition of the tank $\mathrm{CO}_{2}(\sim-36 \%)$.

Carbon isotopic composition $\left(\delta^{13} \mathrm{C}\right)$ of the air samples was measured within one week of sampling at the UC Davis Stable Isotope Facility using a ThermoScientific PreCon-GasBench system interfaced to a ThermoScientific Delta V Plus isotope ratio mass spectrometer (ThermoScientific, Bremen, Germany). CO_{2} was sampled by a six-port rotary valve (Valco, Houston, TX) with an $100 \mu \mathrm{~L}$ loop programmed to switch at the maximum CO_{2} concentration in
the helium carrier gas. The CO_{2} was then separated from $\mathrm{N}_{2} \mathrm{O}$ and other residual gases by a Poroplot Q GC column ($25 \mathrm{~m} \times 0.32 \mathrm{~mm}$ ID, $45^{\circ} \mathrm{C}, 2.5 \mathrm{~mL} / \mathrm{min}$). A pure reference gas $\left(\mathrm{CO}_{2}\right)$ was used to calculate provisional $\delta^{13} \mathrm{C}$ values. Final $\delta^{13} \mathrm{C}$ values were obtained by correction to $\delta^{13} \mathrm{C}$ values for laboratory standards (calibrated directly against NIST 8545).

Mesophyll conductance was estimated from photosynthetic parameters and the carbon isotopic discrimination against ${ }^{13} \mathrm{CO}_{2}\left(\Delta^{13} \mathrm{C}\right)$, accounting for the ternary effect (Farquhar \& Cernusak 2012) using the equations of Evans and von Caemmerer (2013). $\Delta^{13} \mathrm{C}$ was computed as (Evans et al. 1986):

$$
\begin{equation*}
\Delta=\frac{1000 \xi\left(\delta^{13} C_{\text {sam }}-\delta^{13} C_{r e f}\right)}{1000+\delta^{13} C_{\text {sam }}-\xi\left(\delta^{13} C_{\text {sam }}-\delta^{13} C_{r e f}\right)} \tag{eqn.13}
\end{equation*}
$$

where $\delta^{13} \mathrm{C}_{\text {sam }}$ and $\delta^{13} \mathrm{C}_{\text {ref }}$ are the isotopic compositions of the LI6400XT cuvette air with and without a leaf, and $\xi=C_{\mathrm{a}} /\left(C_{\mathrm{a}}-C_{\mathrm{s}}\right)$. The value of ξ ranged on average from 8 under $950 \mu \mathrm{~mol}$ $\mathrm{m}^{-2} \mathrm{~s}^{-1}$ PPFD to 50 under $100 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ PPFD.

Microscopy

Leaves were prepared for microscopy using methods from Bozzola and Russell (1992), and Russin and Trivett (2001). Leaves were fixed in Karnovsky's fixative. Tissues were rinsed with $0.1 \mathrm{M} \mathrm{PO}_{4}$ buffer and post-fixed for 2 h in 1% buffered osmium tetroxide. Leaves were dehydrated with ascending concentrations of ethyl alcohol with three changes at 100%, transitioned 1:1 with propylene oxide, and dehydrated using two changes of pure propylene oxide. Infiltration began using Epon/Spurr's resin in three ascending concentrations with propylene oxide. Finally, three changes of resin with microwave assistance were done before
overnight polymerization in capsules. For light microscopy, semi-thin sections were cut using a Leica Ultracut UCT ultramicrotome and were stained with 2\% Methylene Blue/Azure II before being observed at $40 \times$ magnification with a Axio Imager A2 microscope (Zeiss, Oberkochen, Germany). For transmission electron microscopy, ultrathin sections were cut using a Diatome diamond knife and picked up on 150 mesh copper grids. The sections were stained with uranyl acetate and lead citrate before viewing with a Phillips CM120 Biotwin (FEI, Hillsboro, OR) and equipped with a Gatan MegaScan 794/20 camera.

For each species, two different leaves were analyzed, with two to three cross sections per leaf, a total of five cross sections per species. Structural traits were analysed using the ImageJ software (Schneider et al. 2012). Leaf mesophyll thickness (t) was the average distance between the ad- and abaxial epidermis, and divided to create three artificial layers of equal thickness parallel to the epidermises. For the whole leaf and within each layer, the total area of mesophyll and intercellular airspace (IAS) were measured to estimate the leaf mesophyll porosity: fiAs $=$ area IAS $\left(\mu \mathrm{m}^{2}\right) /$ mesophyll area $\left(\mu \mathrm{m}^{2}\right)$. The length of mesophyll cell wall exposed to the IAS $\left(L_{\mathrm{m}} ; \mu \mathrm{m}\right)$ was measured in order to compute the surface area of mesophyll exposed to the IAS per leaf area $\left(S_{\mathrm{m}}\right)$ as:

$$
\begin{equation*}
S_{m}=\frac{L_{m}}{W} \times F \tag{eqn.14}
\end{equation*}
$$

where W is the width of the section and F is the curvature correction factor to convert measured length into surfaces. This correction factor was computed following Thain (1983) by measuring, for each layer, the major and minor axes of at least ten cells for two different leaves (F values are shown in Table 2). The whole leaf S_{m} was computed from the whole leaf average F.

For electron micrographs, the thickness of the cell wall (T_{cw}) and cytosol (T_{cyt}) was measured (> five different cells). The cell wall length exposed to the IAS of individual cells was measured $\left(L_{\mathrm{m}}\right)$, the length of chloroplast exposed to the IAS $\left(L_{c} ; \mu \mathrm{m}\right)$, and the surface area of chloroplasts exposed to the IAS per leaf area $\left(S_{\mathrm{c}}\right)$ equaled:

$$
\begin{equation*}
S_{c}=S_{m} \times \frac{L_{c}}{L_{m}} . \tag{eqn.15}
\end{equation*}
$$

S_{c} was computed for each layer, and the whole leaf S_{c} was computed from the whole leaf S_{m} multiplied by the whole leaf average chloroplast coverage of mesophyll cells.

The liquid phase resistance (r ' ${ }_{\text {liq }}$) to CO_{2} was estimated as the sum of all the liquid phase components in the diffusion path from the cell wall to the stroma using the equations of Evans et al. (2009) adjusting anatomy specific lengths. Liquid phase resistance on a chloroplast surface area basis was converted to a leaf area basis to provide an anatomical estimate of g_{m} using:

$$
\begin{equation*}
g_{m}=\left(1 / r_{l i q}^{\prime}\right) S_{c} \tag{eqn.16}
\end{equation*}
$$

Simulations

The model described in the Theory section was used to simulate the sensitivity of $g_{\mathrm{m}, \text { leaf }}$ to PPFD responses for a two-layer leaf, to vary parameters singly, or used to fit a three-layer model to the mean observed data for the two species. To constrain fitting, the minimum sum of squares was found using the L-BFGS-R constrained optimization algorithm with the optim function of R (version 3.3.1). Boundary conditions were set to limit the different parameters within a relevant range. This consisted of limiting the layer-maximum value to the whole leaf maximum or anatomical data ($J_{\max , j}$: the whole leaf value fitted from gas exchange and chlorophyll
fluorescence; $g_{\mathrm{m}, \mathrm{j}}$: maximum layer-specific anatomical value; α_{j} : the maximum predicted layerspecific $\alpha+10 \%$, generated according to the relative S_{c} profile constrained to yield a total leaf absorption of 0.85 (layer-specific α values represent the fraction of light absorbed within that layer - generated using equations 1 and 2 - and not the fraction of the total incoming light)). For $R_{\mathrm{d}, \mathrm{j}}$, a high upper boundary was set to ($5 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$), and θ_{j} was constrained between 0.0001 and 0.9999.

The relative anatomically based relationship between each layer was also included in the fitting procedure so that the resulting parameters would follow a profile similar to the observed anatomy. Specifically, fitting SSE was penalized if $J_{\mathrm{max}, \mathrm{i}}$ and $R_{\mathrm{d}, \mathrm{i}}$ did not follow the relative profile in S_{c}, while $g_{\mathrm{m}, \mathrm{i}}$ followed the profile in g_{m} estimated from anatomy (Table 2). This allowed for different absorption profiles depending on the illuminated surface, while providing a unique value for each layer. This value corresponded to the absorbed fraction of incoming light at layer j, thus taking into account the absorbed fraction at layer $j-1$. Total leaf absorption was constrained to 0.85 , a value commonly used in the literature (e.g. Evans 2009).

The sum of squares to be minimized was the sum of nine constraints, i.e. the squared differences between: i) $A_{n, \text { leaf }}$ observed and predicted by the model for ad- and abaxial illumination, ii) $g_{\mathrm{m}, \text { leaf }}$ observed and predicted for ad- and abaxial illumination, iii) the $C_{\mathrm{c}, \mathrm{j}}$ values input and those predicted by using the result of eqn. 6 and calculating $C_{\mathrm{c}, \mathrm{j}}$ from rearranging eqn. 5 , iv) predicted whole leaf absorptance and a default value of $0.85, \mathrm{v}$) the observed and predicted initial slope of the $A_{\mathrm{n}, \text { leaf }}$ to PPFD response for ad- and abaxial illumination, and vi)-ix) the sum of the squared difference between the reference relative profile and the fitted relative profile for $J_{\mathrm{max}, \mathrm{j}}, g_{\mathrm{m}, \mathrm{j}}, R_{\mathrm{d}, \mathrm{j}}$, and α_{j}. Each constraint was weighted so that the resultant sum of squares for each was within one order of magnitude of the others.

The optimization was ran on over 500 sets of starting values that followed the relative profiles in $S_{\mathrm{c}}\left(J_{\mathrm{max}, \mathrm{j}}, g_{\mathrm{m}, \mathrm{j}}, R_{\mathrm{d}, \mathrm{j}}\right)$ or values from the literature $\left(\alpha_{\mathrm{j}}\right)$, and starting values for θ_{j} were selected randomly between 0.001 and 0.999 . Solutions within 10% of the SSE of the best fit were selected. For α_{j}, we validated the fit gradient based upon measurements of S_{c} profiles by contrasting it to the published absorption profiles of a bifacial leaf (spinach; Evans and Vogelmann 2003) and an isobilateral leaf (eucalyptus; Evans and Vogelmann 2006) to represent Arbutus and Triticum, respectively.

RESULTS

Response of net photosynthesis and mesophyll conductance to PPFD

The bulk net photosynthesis of Triticum and Arbutus were typical of reported responses to irradiance from adaxial illumination (Fig. 2). However, leaf mesophyll conductance varied approximately proportionally with net photosynthesis at lower PPFD (Fig. 2). A switch from adaxial to abaxial illumination had similar effects on the $A_{\mathrm{n}, \text { leaf }}$ and $g_{\mathrm{m}, \text { leaf }}$ of Arbutus with a $\sim 40 \%$ decrease. In contrast, the isobilateral leafed species, Triticum, had similar photosynthesis regardless of the side of illumination, but a large decrease in $g_{\mathrm{m}, \text { leaf }}$ upon abaxial illumination. The C_{i} was kept constant at $280 \mu \mathrm{~mol} \mathrm{~mol}^{-1}$ during the PPFD responses. Thus, the observed responses are not due to an apparent response of g_{m} to CO_{2} concentration.

The stable isotope method of estimating $g_{\mathrm{m}, \text { leaf }}$ was used to establish whether the variable J chlorophyll fluorescence based method could have biases that led to the response of $g_{\mathrm{m}, \text { leaf }}$ to PPFD. Response curves measured simultaneously using the chlorophyll fluorescence and stable isotope methods showed similar responses of $g_{\mathrm{m}, \text { leat }}$ to PPFD (Fig. 3). The estimated values of
$g_{\mathrm{m}, \text { leaf }}$ using both methods were directly proportional to each other, indicating that the curved $g_{\mathrm{m}, \text { leaf }}$ response to PPFD was not due to a bias by the chlorophyll fluorescence method. However, as is typical in the literature (e.g. Vrábl et al. 2009), the two methods had quantitatively different absolute values.

FIGURES 2 AND 3 COULD BE PLACED HERE

Anatomical description of leaves and layer specific structural parameters

Dividing the leaves into three equal-depth layers led to distinct profiles of anatomy in both bifacial Arbutus and isobilateral Triticum (Fig. 4; Table 2). For Arbutus, this clearly separated a dense palisade layer of one cell of $\sim 80 \mu \mathrm{~m}$ length adjacent to the adaxial epidermis, followed by a loose palisade of two blunt cylindrical cell layers, and four-layers of loosely-packed spheroid to cylindrical cells in the spongy mesophyll adjacent to the abaxial epidermis, where all stomata were located (i.e. a hypostomatous leaf) (see Table 2). Triticum showed a more symmetrical profile from adaxial to abaxial epidermis, with a layer of one cylindrical palisade cell of $\sim 50 \mu \mathrm{~m}$ length touching both epidermises, and a spongy-like middle layer composed of spheroid and invaginated cells typical of grasses (e.g. Giuliani et al. 2013). The abaxial epidermis was more porous because of the presence of more stomata per section width, hence more substomatal cavities which increase the fraction of intercellular airspace.

TABLE 2 AND FIGURE 4 COULD BE PLACED HERE.

Arbutus leaves were thicker and had higher mesophyll cell wall area $\left(S_{m}\right)$ and chloroplast area $\left(S_{c}\right)$ per unit leaf area than Triticum (Table 2), although Triticum showed a higher exposed surface on a mesophyll volume basis (0.14 (Triticum) vs. 0.10 (Arbutus) $\mu \mathrm{m}^{-1}$; see Nelson et al.

2005 about the use of this metric). Arbutus had similar values of S_{m} and S_{c} in the adaxial and middle layers, and these values decreased in the abaxial layer. Triticum had high values on both the ad- and abaxial surfaces and lower values in the center (Table 2). A similar pattern was found in cell wall thickness (T_{cw}), Arbutus had an increasing gradient and Triticum a low-high-low pattern. Cytoplasm thickness ($T_{\text {cyt }}$) varied less between cell layers, and Triticum had a \sim three times smaller $T_{\text {cyt }}$ than Arbutus.

Layer-based modelling of leaf photosynthesis and mesophyll conductance

A three-layer model (Theory) was able to represent the observed gas exchange data for either species, including the response of $g_{\mathrm{m}, \text { leaf }}$ to ad- or abaxial illumination (Fig. 2). In the model, the $g_{\mathrm{m}, \mathrm{j}}$ values for each layer remained constant, while the weighted values vary resulting in changing $g_{\mathrm{m}, \text { leaf }}$ (estimated from eqn. 9). The resulting whole leaf values fit the measured $A_{\mathrm{n}, \text { leaf }}$ values for both species relatively well (Fig. 2). The measured and predicted values for Arbutus were similar for the three-layer model, and the range of the best solutions was narrow. The range of the solutions was wider for Triticum and there was disagreement between the fitted and measured $g_{\mathrm{m}, \text { leaf }}$ data in the range of about 125 to $500 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ PPFD,.

The cause of the varying contribution of each layer to $g_{\mathrm{m}, \text { leaf }}$ was due to changing layerspecific A_{n} values (Fig. 5). Only the directly illuminated layers approached saturation, while all other layers had considerably lower photosynthesis, decreasing the $g_{\mathrm{m}, \mathrm{j}}$ signal from those layers. For this reason, the $g_{\mathrm{m}, \text { leaf }}$ response was considerable when PPFD was lower than $500 \mu \mathrm{~mol} \mathrm{~m}^{-2}$ s^{-1}. The low photosynthesis in the adaxial and middle layers in Arbutus with abaxial illumination led to the lower $g_{\mathrm{m}, \text { leaf }}$ than expected from adaxial illumination response (Fig. 2 and 5).

To parameterize the model, the parameters were fit to the gas exchange data, but constrained by the observed relative anatomical profiles for a number of characteristics. Thus, Triticum presented an even g_{m} profile throughout the leaf from the adaxial to the abaxial epidermis (average values of $0.07 \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ for each layer; Fig. 6), which followed the relative S_{c} profile and anatomically based g_{m} profile (Table 2). Arbutus also followed the relative profile in S_{c} and anatomically based g_{m} with average $g_{\mathrm{m}, \mathrm{j}}$ values of $0.06,0.06$, and $0.03 \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ from ad- to abaxial epidermis. The fitting of a relative profile was necessary, as the anatomical correlate of $J_{\text {max }}$ and $R_{\mathrm{d}}, S_{\mathrm{c}}$, is not scaled, and the anatomical estimate of g_{m} is likely to be an overestimate, accounting for only idealized conditions.
$J_{\mathrm{max}, \mathrm{j}}$ and $R_{\mathrm{d}, \mathrm{j}}$ were similarly constrained by the S_{c} relative profile (Fig. 6, Table 2). Layerspecific g_{m} values presented a very narrow range, as were $R_{\mathrm{d}, \mathrm{j}}$ values, whereas $J_{\mathrm{max}, \mathrm{j}}$ had greater variation, but still resulted in a similar whole leaf value (Fig. 2) to layer-specific light response curves (Fig. 5). The leaf based parameter values were additive values for $J_{\text {max }, \mathrm{j}}$ and $g_{\mathrm{m}, \mathrm{j}}$ representing a value close to the whole leaf measured $\left(g_{\mathrm{m}}\right)$ or estimated value ($J_{\max }$). For the sum of $R_{\mathrm{d}, \mathrm{j}}$, this was a somewhat high value compared to what was measured (between 0.5 and 1.2 $\mu \mathrm{mol} \mathrm{m}{ }^{-2} \mathrm{~s}^{-1}$.

The light response curvature $\left(\theta_{\mathrm{j}}\right)$ exhibited the most variation within each layer as it was not constrained to a specific profile, but the median of each layer was above 0.70 for each species (Fig. 6). Layer specific absorptance (α_{j}) was relatively constrained within each species, displaying little variation between fits (Fig. 6). In order to compare the fitted data with Evans and Vogelmann's (2003, 2006) data, absorption profiles were produced for ad- and abaxial illumination (Fig. 7). The value for each layer was computed using equations 1 and 2, and the resulting layer-specific PPFD value was divided by sum of the PPFD absorbed. For Evans and

Vogelmann's data, the absorption profile was split into three equal thickness layers for both blue and green light. From these profiles, the median fits for Triticum were consistent with the observed data for the isobilateral Eucalyptus, regardless of direction of illumination. In contrast, for Arbutus, the light absorption profiles predicted from the fit, were only similar to bifacial spinach for abaxial illumination (Fig. 7).

FIGURES 5, 6 AND 7 COULD BE PLACED HERE.

To investigate the impact of each parameter on the $g_{\mathrm{m}, \text { leaf }}$ to PPFD response, the results of the layer-based model were tested for sensitivity of the $g_{\mathrm{m}, \text { leaf }}$ to PPFD relationship to parameter values for each layer using a minimal two layer model. At a low PPFD, a 50% decrease in the parameter value of the lower layer, i.e. the layer the furthest away from the light source, resulted in most sensitivity for α_{2} (α_{j} of the lower, second layer), then $R_{\mathrm{d}, 2}$ and little sensitivity for the θ_{2}, $J_{\mathrm{max}, 2}$ or $g_{\mathrm{m}, 2}$ (Fig. 8). But at high PPFD all parameters had effects on the $g_{\mathrm{m}, \text { leaf }}$ to PPFD response, in the following order, from the greatest to the smallest effect: $g_{\mathrm{m}, 2}, \alpha_{2}, J_{\mathrm{max}, 2}, \theta_{2}, R_{\mathrm{d}, 2}$. As the estimation of $g_{\mathrm{m}, \text { leaf }}$ is undefined at $A_{\mathrm{n}, \text { leaf }}$ values close to zero (between -0.1 and $0.1 \mu \mathrm{~mol}$ $\mathrm{m}^{-2} \mathrm{~s}^{-1}$), these values were removed from Fig. 8. Yet, a high and 'jumpy' sensitivity to parameter values at very low PPFD remains and was due to $g_{\mathrm{m}, \text { leaf }}$ being affected by CO_{2} loss out of the leaf and calculation from low fluxes in eqn. 9 (a low denominator; see the Theory section).

FIGURE 8 COULD BE PLACED HERE.

DISCUSSION

Structural variation in photosynthesis across the leaf explains the $\boldsymbol{g}_{\mathrm{m}, \mathrm{l} \text { eaf }}$ response to PPFD

Two species of plants with contrasting leaf anatomy both displayed large decreases in the total mesophyll conductance to CO_{2} using the modified variable J method (Fig. 2) or stable isotopes (Fig. 3). The modelling of layer-based photosynthesis within the leaf could account for the observed responses of $g_{\mathrm{m}, \text { leaf }}$ to PPFD despite layer-based $g_{\mathrm{m}, \mathrm{j}}$ being held constant (Fig. 5 and 6).

From the results and theory above, it appears that even if g_{m} per leaf layer is constant and structurally based then this can result in apparently dynamic responses of $g_{\mathrm{m}, \text { leaf }}$ to light. Mesophyll conductance response to PPFD has not been investigated in detail in the literature before, to our knowledge, although Evans (2009) suggested the principle upon which the modelling is based. The current observed response of $g_{\mathrm{m}, \text { leaf }}$ to PPFD is difficult to compare to past reports. Firstly, the most dramatic decrease in $g_{\mathrm{m}, \text { leaf }}$ occurs at the lowest PPFD's, while past responses were measured at PPFD's of greater than $200 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ (Flexas et al. 2007, Tazoe et al. 2009, Yamori et al. 2010). Indeed, the null model (Fig. 1) had only a $\sim 30 \%$ decrease in $g_{\mathrm{m}, \text { leaf }}$ at a PPFD of $150 \mu \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-2}$, but rapidly dropped near zero at lower PPFD. Yin et al. (2009) did measure below $200 \mu \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$, but did not keep C_{i} constant. Indeed, if C_{i} is variable during the measurement of the PPFD response there may be a compensatory effect. That is, at higher C_{i} 's, which occur at low light, $g_{\mathrm{m}, \text { leaf }}$ may increase due to the positive CO_{2} effect at low C_{i} 's (Tholen \& Zhu 2011). The results here were partially de-trended of this effect as C_{i} was kept constant. Previous experiments did not maintain C_{i} constant when measuring light responses (Flexas et al. 2007, Tazoe et al. 2009, Yamori et al. 2010).

Anatomical profiles predict the observed gas exchange responses

The model proposed here was able to accurately represent the observed gas exchange data, when parameterized by the relative profiles of the species anatomical features (S_{c} and g_{m}). The observed g_{m} to PPFD responses are consistent with the observed anatomy. Thus, the modelling results can be used to investigate within-leaf profiles in photosynthetic parameters ($J_{\max }, g_{\mathrm{m}}$, and R_{d}). Interestingly, the various solutions for Arbutus and Triticum were in very narrow range of parameters for parameters like $g_{\mathrm{m}, \mathrm{j}}, R_{\mathrm{d}, \mathrm{j}}$, and α_{j}, while more variation in absolute values were fit for $J_{m a x, j}$ and θ_{j} (Fig. 6). However, Triticum exhibited more variation than Arbutus, where $g_{\mathrm{m}, \mathrm{j}}, \theta_{\mathrm{j}}$, and $J_{\mathrm{max}, \mathrm{j}}$ showed a few outlier groups.

The only parameter that somewhat diverges from the expected profile is α_{j}, the layer specific absorptance. For Triticum, the light absorption profile was close to what was expected from the isobilateral Eucalyptus pauciflora using ${ }^{14} \mathrm{C}$ assimilation profiles (Fig. 7; Evans and Vogelmann 2006). As leaves of Triticum can easily move with wind, the absorptance profile may reflect the ability to take full advantage of the light independent of the illuminated surface. For Arbutus, the abaxial layer absorbs a higher amount of light which could be explained by the increased scattering due to the more random distribution of the cells in the spongy mesophyll, as shown by Evans and Vogelmann (2003). However, the adaxial and middle layers have lower values than what would be expected from the bifacial spinach of Evans and Vogelmann (2003). Although the α_{j} values for those two layers could be underestimated compared to Evans and Vogelmann (2003) and to S_{c}, a proxy for chloroplast volume, the values do follow an anatomical trend as those two layers consist mainly of palisade mesophyll known to channel light to the deeper layers of the leaf (Vogelmann 1993). Nonetheless, the important differences in the fitted light absorption profile for adaxial illumination and the profile for Evans and Vogelmann (2003) data are a result of the simulation procedure, for which the abaxial illumination seemed to weigh
more on the final parameter values than the photosynthesis data measured with adaxial illumination. Hence, the predicted photosynthetic parameter values for each layer, based upon the model, are not necessarily robust even if they are mostly in a range expected based upon anatomy, but do give an indication of the layer based parameters required to result in the observed responses.

Limitations to this analysis

The modelling conducted here does not account for variation in CO_{2} diffusion pathways through the mitochondrion due to photorespiration and respiration (Tholen \& Zhu 2011). Thus at very low light ($<\sim 25 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$) or [CO_{2}], conditions where respiratory CO_{2} evolution is high, the current model will over predict values for $g_{\mathrm{m}, \text { leaf. }}$. These light conditions were not investigated in the current work, and thus should not affect the current results, but these effects may be usefully incorporated in future investigations.

The variable J method has known sensitivity to calibration conditions (Gilbert et al. 2012) and is based upon chlorophyll fluorescence accurately estimating the quantum yield of the leaf profile (Evans 2009). The former issue was dealt with by calibrating the variable J method using the modified calibration approach of Théroux-Rancourt et al. (2014), moderate to low PPFD's and by reducing noise through the use of a three times larger leaf area than is standard for fluorescence with the LI-6400XT. The potential for a gradient in chlorophyll fluorescence signal from within the leaf does pose a problem for the variable J method. The discrepancies between the measured and fitted responses in the 125 to $500 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ PPFD region can arise from a potential artifact from the chlorophyll fluorescence measurement. As pointed out by

Oguchi et al. (2011), chlorophyll fluorescence using a PAM fluorometer (a Walz PAM 101 in their case) leads to the measurement of a weighted signal corresponding to ~ 200 to $250 \mu \mathrm{~m}$ below the epidermis. Hence, when under PPFD that saturates one layer but not the deeper layers, the resulting signal might potentially be biased towards higher $\Phi_{\text {PSII }}$ values than the entire leaf, causing measurement errors in the variable J method. However, the stable isotope method is robust to this issue, as it does not rely on chlorophyll fluorescence. Stable isotopes confirmed the observed drop in $g_{\mathrm{m}, \text { leaf }}$ at low PPFD. Given the mathematical proof that $g_{\mathrm{m}, \text { leaf }}$ should respond to PPFD, it can be expected that regardless of any methodological limitations, that bulk g_{m} apparently varies with light.

Another limitation of this study could come from chloroplast movement. Mesophyll conductance increases as a consequence of the increase in S_{c} when chloroplasts move from the profile to the face position, as would happen in a shift from strong white light to blue-filtered light (Tholen et al. 2008). As blue light is mainly absorbed close to the illuminated surface, chloroplasts deeper in the leaf would migrate to the cell faces, implying that S_{c} would dynamically increase in the middle and furthest layer from the light source. Potentially this effect would allow $g_{\mathrm{m}, \mathrm{j}}$ to increase and slightly increase the apparent $g_{\mathrm{m}, \text { leaf }}$ signal. It would be interesting to target chloroplast movement as a regulated light response of g_{m}.

General $\boldsymbol{g}_{\mathrm{m}, \text { leaf }}$ responses to PPFD for diverse leaves

General predictions can be made on how the $g_{\mathrm{m}, \text { leaf }}$ of diverse anatomies will respond to light. Leaves that do not saturate photosynthesis are likely to have $g_{\mathrm{m}, \text { leaf }}$ that responds to PPFD (null model; Fig. 9), because the gradient of $A_{\mathrm{n}, \mathrm{j}}$ changes with depth and thus affects the $g_{\mathrm{m}, \text { leaf }}$ measured. However, if the gradient in $g_{\mathrm{m}, \mathrm{j}}$ matches the gradient in $A_{\mathrm{n}, \mathrm{j}}$ (null model with $g_{\mathrm{m}, \mathrm{j}}$
gradient; Fig. 9) or α_{j} compensates so that $A_{\mathrm{n}, \mathrm{j}}$ is constant across the leaf (null model with α_{j} gradient; Fig. 9) then $g_{\mathrm{m}, \text { leaf }}$ will respond less to PPFD. Leaves that saturate photosynthesis under low light, i.e. with low photosynthetic capacities (low $J_{\text {max,j }}$ model; Fig. 9) will have a more even distribution of $A_{\mathrm{n}, \mathrm{j}}$ through the leaf and thus less $g_{\mathrm{m}, \text { leaf }}$ response to PPFD. In leaves where multiple photosynthetic parameters vary across the leaf, more diverse responses of $g_{\mathrm{m}, \text { leaf }}$ to PPFD occur, including steeper positive responses, or even a slight negative responses where $g_{\mathrm{m}, \text { leaf }}$ decreases at high PPFD. Furthermore, environments with illumination from both sides of the leaf, or with significant diffuse light should lead to a very flat response of $g_{\mathrm{m}, \text { leaf }}$ to PPFD. Finally, significant gradients in C_{i} across the leaf intercellular airspace would amplify the observed $g_{\mathrm{m}, \text { leaf }}$ response to PPFD as both C_{i} and C_{c} used in the calculation of $g_{\mathrm{m}, \text { leaf }}$ would be poorly represented by an average value, a point already raised by Parkhurst (1994).

Hence, maximum $g_{\mathrm{m}, \text { leaf }}$ can be measured only when all layers are saturated with PPFD, implying that illumination from both sides of the leaf is important for leaves with thick crosssections or lots of chlorophyll, or for leaves that lack saturation of $A_{\mathrm{n}, \text { leaf }}$ under full sunlight. But for many leaves, $g_{\mathrm{m}, \text { leaf }}$ measured at full sunlight will be adequate to approximately match maximum $g_{\mathrm{m}, \text { leaf. }}$

FIGURE 9 COULD BE PLACED HERE.

Implications for photosynthetic limitation analysis, spectral quality responses, and canopy photosynthesis

In the model presented here, the layer based value of mesophyll conductance, $g_{\mathrm{m}, \mathrm{j}}$, does not vary, but the leaf value apparently does. Specifically, if $g_{\mathrm{m}, \mathrm{j}}$ is constant with PPFD, then on a layer basis photosynthesis $\left(A_{\mathrm{n}, \mathrm{j}}\right)$ is not limited dynamically by $g_{\mathrm{m}, \mathrm{j}}$ at different PPFD's. If this effect is
generally true, variation in $g_{\mathrm{m}, \text { leaf }}$ with changing PPFD does not represent a dynamic limitation to photosynthesis. Thus, photosynthetic limitation analyses, e.g. Grassi \& Magnani (2005), should avoid making conclusions based upon data sets in which $g_{\mathrm{m}, \text { leaf }}$ was measured at varying PPFD. Measurements of daily time courses under natural light conditions should be avoided, as the PPFD effect on $g_{\mathrm{m}, \text { leaf }}$ might add another confounding effect on the g_{m} response to the environment. Measuring leaves under natural conditions but above a certain PPFD (e.g. Grassi et al. 2009) may provide a suitable alternative as it is under high PPFD that variations in $g_{\mathrm{m}, \mathrm{j}}$ and $J_{\text {max, }}$ would lead to least error in the estimates of $g_{\mathrm{m}, \text { leaf }}$ (Fig. 9), particularly for thin leaves. Limitation analysis seems only appropriate for constant light settings, and most appropriate under high light conditions, especially when comparing leaves of different anatomy (e.g. sun versus shade leaves, developmental stages). Similarly, modelling a variable $g_{\mathrm{m}, \text { leaf }}$ response to the environment phenomenologically (Yin et al. 2009) would result in apparent limitations to photosynthesis under low light conditions, that are actually RuBP-regeneration limitations and not diffusional limitations.

The theoretical basis for the $g_{\mathrm{m}, \text { leaf }}$ to PPFD response suggested here could provide an alternative explanation as to why g_{m} was previously found to respond to blue light (Loreto et al. 2009). The reported response of $g_{\mathrm{m}, \text { leaf }}$ to blue light was rapid and unrelated to chloroplast movement (Loreto et al. 2009). A possible explanation for the effect may be that the red and blue light applied differed in depth of penetration at the low PPFD used in former experiment (300 $\mu \mathrm{mol} \mathrm{m} \mathrm{m}^{-2} \mathrm{~s}^{-1}$. If red and blue light penetrated to different depths, as shown previously (e.g. Brodersen \& Vogelmann 2010, Evans and Vogelmann 2006 (see also Fig. 7), Oguchi et al. 2011, Vogelmann \& Han 2000), then varying $g_{\mathrm{m}, \mathrm{j}}$ and photosynthetic capacity with depth in the species
used could account for the apparent changes in leaf $g_{\mathrm{m}, \text { leaf }}$ reported by Loreto et al. (2009) for blue light.

An analogous model of layer based photosynthesis, to the one suggested here, could be created for layers of leaves in canopies. If so, the emergent response of canopy g_{m} to light or other environmental factors would also be apparently responsive if the relative photosynthetic contribution of each layer of leaves varied with the environmental factor. This effect would provide alternative explanations to previously observed data. Possible examples are that bulk canopy g_{m} varied with ABA application (Schäeufele et al. 2011), and could be explained if the photosynthesis varied between leaves (i.e. though an ABA effect), but the $g_{\mathrm{m}, \text { leaf }}$ remained constant for leaves of varying age. The large apparent variation in canopy g_{m} estimated from eddy-covariance (Keenan et al. 2010) seems likely to be highly dependent upon this effect; where differing contributions of leaf layers to eddy-covariance with changing light and drought are highly likely. In that case, the observed limitation on canopy photosynthesis is likely due to RuBP-regeneration (light), and only apparently due to the calculated decreasing canopy g_{m}.

Concluding remarks

Fluxes such as net photosynthetic rate are comprised of the additive contributions of all cells in the leaf. As a result, the true net photosynthesis for a leaf can be unambiguously measured. Mesophyll conductance to CO_{2} is a conductance, not a flux, having a photosynthetic rate (flux), a potentially variable source (C_{i} or $C_{\mathrm{i}, \mathrm{j}}$) and a sink ($C_{\mathrm{c}, \mathrm{j}}$) that varies cell by cell (e.g. eqn. 9). For instance, leaf C_{c} does not exist as a discrete value in any leaf, as each layer must have different values for $C_{\mathrm{c}, \mathrm{j}}$ as pointed out by Parkhurst (1994), but the impact of this on photosynthetic
modelling remains to be fully investigated. In general, this means that $g_{\mathrm{m}, \text { leaf }}$ is an emergent property of many leaf anatomical traits adding up to structure in its true three-dimensional nature. Thus, $g_{\mathrm{m}, \text { leaf }}$ can appear to respond to environmental variables such as light, despite no structural changes in the basis of CO_{2} diffusion in the leaf. To our knowledge, the data presented here are the first non-anatomical evidence that indicate that there are gradients in cellular mesophyll conductance across the leaf profile. While the observed responses of $g_{\mathrm{m}, \text { leaf }}$ to light are fully consistent with an anatomical, structural or 3D nature of leaf, the results do not preclude a dynamic, regulated response of $g_{\mathrm{m}, \mathrm{leaf}}$ to PPFD. If the latter responses exist, then the relative weight of the structural and dynamic responses would vary, the former being fixed in time during leaf growth, while the latter, if present, would allow for a shorter timescale control of CO_{2} diffusion.

CONFLICTS OF INTEREST

The authors have no conflicts of interest to declare.

ACKNOWLEDGMENTS

We thank Tom Sharkey and two anonymous reviewers for their comments, Pat Kysar for technical assistance with the TEM, Rick Doucett of the UC Davis Stable Isotope Facility, and Taylor Louie of the UC Davis Arboretum Nursery. G.T.-R. was supported by an Esau Postdoctoral Fellowship and a postdoctoral scholarship from the Fonds de recherche du Québec - Nature et technologie, and M.E.G was supported by USDA NIFA, Hatch project \#1001480.

REFERENCES

Aalto T. \& Juurola E. (2002) A three-dimensional model of CO_{2} transport in airspaces and mesophyll cells of a silver birch leaf. Plant, Cell \& Environment, 25, 1399-1409.

Barbour M.M., Bachmann S., Bansal U., Bariana H. \& Sharp P. (2016) Genetic control of mesophyll conductance in common wheat. New Phytologist, 209, 461-465.

Bellasio C. \& Griffiths H. (2014) Acclimation to low light by C4 maize: implications for bundle sheath leakiness. Plant, Cell \& Environment, 37, 1046-1058.

Bernacchi C.J., Portis A.R., Nakano H., von Caemmerer S. \& Long S.P. (2002) Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiology, 130, 1992-1998.

Bozzola J. \& Russell L. (1992) Quantitative electron microscopy. Jones \& Bartlett Learning. Brodersen C.R. \& Vogelmann T.C. (2010) Do changes in light direction affect absorption profiles in leaves? Functional Plant Biology, 37, 403-412.
von Caemmerer S. (2000) Biochemical models of leaf photosynthesis. CSIRO Publishing.
Éthier G., Livingston N., Harrison D., Black T. \& Moran J. (2006) Low stomatal and internal conductance to CO_{2} versus Rubisco deactivation as determinants of the photosynthetic decline of ageing evergreen leaves. Plant, Cell \& Environment, 29, 2168-2184.

Evans J.R. (1987) The dependence of quantum yield on wavelength and growth irradiance. Functional Plant Biology, 14, 69-79.

Evans J.R. (2009) Potential errors in electron transport rates calculated from chlorophyll fluorescence as revealed by a multilayer leaf model. Plant and Cell Physiology, 50, 698706.

Evans J.R., Sharkey T., Berry J. \& Farquhar G. (1986) Carbon isotope discrimination measured concurrently with gas exchange to investigate CO_{2} diffusion in leaves of higher plants. Functional Plant Biology, 13, 281-292.

Evans J.R., Caemmerer S., Setchell B.A. \& Hudson G.S. (1994) The relationship between CO_{2} transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. Functional Plant Biology, 21, 475-495.

Evans J.R. \& Vogelmann T.C. (2003) Profiles of ${ }^{14} \mathrm{C}$ fixation through spinach leaves in relation to light absorption and photosynthetic capacity. Plant, Cell \& Environment, 26, 547-560.

Evans J.R. \& Vogelmann T.C. (2006) Photosynthesis within isobilateral Eucalyptus pauciflora leaves. New Phytologist, 171, 771-782.

Evans J.R., Kaldenhoff R., Genty B. \& Terashima I. (2009) Resistances along the CO_{2} diffusion pathway inside leaves. Journal of Experimental Botany, 60, 2235-2248.

Evans J.R. \& Von Caemmerer S. (2013) Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco. Plant, Cell \& Environment, 36, 745-756.

Farquhar G.D. \& Cernusak L.A. (2012) Ternary effects on the gas exchange of isotopologues of carbon dioxide. Plant, Cell \& Environment, 35, 1221-1231.

Flexas J., Diaz-Espejo A., Galmes J., Kaldenhoff R., Medrano H. \& Ribas-Carbo M. (2007) Rapid variations of mesophyll conductance in response to changes in CO_{2} concentration around leaves. Plant, Cell \& Environment, 30, 1284-1298.

Flexas J., Ribas-Carbo M., Hanson D.T., Bota J., Otto B., Cifre J., McDowell N., Medrano H. \& Kaldenhoff R. (2006) Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO_{2} in vivo. Plant Journal, 48, 427-439.

Gilbert M., Pou A., Zwieniecki M. \& Holbrook M. (2012) On the measurement of mesophyll conductance to carbon dioxide with the variable J method. Journal of Experimental Botany, 63, 412-425.

Giuliani R., Koteyeva N., Voznesenskaya E., Evans M.A., Cousins A.B. \& Edwards G.E. (2013) Coordination of leaf photosynthesis, transpiration, and structural traits in rice and wild relatives (genus Oryza). Plant Physiology, 162, 1632-1651.

Grassi G. \& Magnani F. (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant, Cell \& Environment, 28, 834-849.

Grassi G., Ripullone F., Borghetti M., Raddi S. \& Magnani F. (2009) Contribution of diffusional and non-diffusional limitations to midday depression of photosynthesis in Arbutus unedo L. Trees, 23, 1149-1161.

Gorton H.L., Herbert S.K. \& Vogelmann T.C. (2003) Photoacoustic analysis indicates that chloroplast movement does not alter liquid-phase CO_{2} diffusion in leaves of Alocasia brisbanensis. Plant Physiology, 132, 1529-1539.

Harley P.C., Loreto F., Di Marco G. \& Sharkey T.D. (1992) Theoretical considerations when estimating the mesophyll conductance to CO_{2} flux by analysis of the response of photosynthesis to CO_{2}. Plant Physiology, 98, 1429-1436.

Hassiotou F., Ludwig M., Renton M., Veneklaas E.J. \& Evans J.R. (2009) Influence of leaf dry mass per area, CO_{2}, and irradiance on mesophyll conductance in sclerophylls. Journal of Experimental Botany, 60, 2303-2314.

Ho Q.T., Berghuijs H.N., Watté R., Verboven P., Herremans E., Yin X., Retta M.A., Aernouts B., Saeys W. \& Helfen L. (2016) Three-dimensional microscale modelling of CO_{2}
transport and light propagation in tomato leaves enlightens photosynthesis. Plant, Cell \& Environment, 39, 50-61.

Jahan E., Amthor J.S., Farquhar G.D., Trethowan R. \& Barbour M.M. (2014) Variation in mesophyll conductance among Australian wheat genotypes. Functional Plant Biology, 41, 568-580.

Keenan T., Sabate S. \& Gracia C. (2010) The importance of mesophyll conductance in regulating forest ecosystem productivity during drought periods. Global Change Biology, 16, 1019-1034.

Leuning R. (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant, Cell \& Environment, 18, 339-355.

Lloyd J., Syvertsen J., Kriedemann P. \& Farquhar G. (1992) Low conductances for CO_{2} diffusion from stomata to the sites of carboxylation in leaves of woody species. Plant, Cell \& Environment, 15, 873-899.

Loreto F., Tsonev T. \& Centritto M. (2009) The impact of blue light on leaf mesophyll conductance. Journal of Experimental Botany, 60, 2283-2290.

Morris P. \& Thain J. (1983) Improved methods for the measurement of total cell surface area in leaf mesophyll tissue. Journal of Experimental Botany, 34, 95-98.

Nelson, E.A., Sage, T.L. \& Sage, R.F. (2005) Functional leaf anatomy of plants with crassulacean acid metabolism. Functional Plant Biology, 32, 409-419.

Niinemets U., Wright I.J. \& Evans J.R. (2009) Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. Journal of Experimental Botany, 60, 2433-2449.

Nobel P.S. (1999) Physicochemical and environmental plant physiology. Academic Press.

Ögren E. \& Evans J. (1993) Photosynthetic light-response curves. Planta, 189, 182-190.
Oguchi R., Douwstra P., Fujita T., Chow W.S. \& Terashima I. (2011) Intra-leaf gradients of photoinhibition induced by different color lights: implications for the dual mechanisms of photoinhibition and for the application of conventional chlorophyll fluorometers. New Phytologist, 191, 146-159.

Oya V.M. \& Laisk A.K. (1976) Adaptation of the photosynthesis apparatus to the light profile in the leaf. Soviet Plant Physiology, 23, 381-386.

Parkhurst D.F. (1986) Internal leaf structure: a three-dimensional perspective. In: On the economy of plant form and function (ed T. Givnish), pp. 215-249. Cambridge University Press.

Parkhurst D.F. (1994) Diffusion of CO_{2} and other gases inside leaves. New Phytologist, 126, 449-479.

Perez-Martin A., Michelazzo C., Torres-Ruiz J.M., Flexas J., Fernández J.E., Sebastiani L. \& Diaz-Espejo A. (2014) Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins. Journal of Experimental Botany, 65, 3143-3156.

Piel C., Frak E., Le Roux X. \& Genty B. (2002) Effect of local irradiance on CO_{2} transfer conductance of mesophyll in walnut. Journal of Experimental Botany, 53, 2423-2430.

Prado K., Boursiac Y., Tournaire-Roux C., Monneuse J-M., Postaire O., Da Ines O., Schäffner A.R., Hem S., Santoni V. \& Maurel C. (2013) Regulation of Arabidopsis leaf hydraulics involves light-dependent phosphorylation of aquaporins in veins. The Plant Cell, 25, 1029-1039.

Russin W.A. \& Trivett C.L. (2001) Vacuum-microwave combination for processing plant tissues for electron microscopy. Microwave Techniques and Protocols, 25-35.

Schneider, C.A., Rasband, W.S. \& Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671-675.

Schäeufele R., Santrucek J. \& Schnyder H. (2011) Dynamic changes of canopy-scale mesophyll conductance to CO_{2} diffusion of sunflower as affected by CO_{2} concentration and abscisic acid. Plant, Cell \& Environment, 34, 127-136.

Tazoe Y., von Caemmerer S., Badger M.R. \& Evans J.R. (2009) Light and CO_{2} do not affect the mesophyll conductance to CO_{2} diffusion in wheat leaves. Journal of Experimental Botany, 60, 2291-2301.

Terashima, I. (1986) Dorsiventrality in photosynthetic light response curves of a leaf. Journal of Experimental Botany, 37, 399-405.

Terashima, I., Fujita, T. Inoue, T., Soon Chow, W. \& Oguchi, R. (2009) Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant and Cell Physiology, 50, 684-697.

Terashima I., Hanba Y.T., Tholen D. \& Niinemets Ü. (2011) Leaf functional anatomy in relation to photosynthesis. Plant Physiology, 155, 108-116.

Terashima I. \& Inoue Y. (1985) Vertical gradient in photosynthetic properties of spinach chloroplast dependent on intra-leaf light environment. Plant and Cell Physiology, 26, 781-785.

Terashima I., Sakaguchi S. \& Hara N. (1986) Intra-leaf and intracellular gradients in chloroplast ultrastructure of dorsiventral leaves illuminated from the adaxial or abaxial side during their development. Plant and Cell Physiology, 27, 1023-1031.

Thain J. (1983) Curvature correction factors in the measurement of cell surface areas in plant tissues. Journal of Experimental Botany, 34, 87-94.

Théroux-Rancourt G., Éthier G. \& Pepin S. (2014) Threshold response of mesophyll CO_{2} conductance to leaf hydraulics in highly transpiring hybrid poplar clones exposed to soil drying. Journal of Experimental Botany, 65, 741-753.

Tholen D., Boom C., Noguchi K.O., Ueda S., Katase T. \& Terashima I. (2008) The chloroplast avoidance response decreases internal conductance to CO2 diffusion in Arabidopsis thaliana leaves. Plant, Cell \& Environment, 31, 1688-1700.

Tholen D. \& Zhu X.-G. (2011) The mechanistic basis of internal conductance: a theoretical analysis of mesophyll cell photosynthesis and CO_{2} diffusion. Plant Physiology, 156, 90105.

Verboven P., Herremans E., Helfen L., Ho Q.T., Abera M., Baumbach T., Wevers M. \& Nicolaï B.M. (2015) Synchrotron X-ray computed laminography of the three-dimensional anatomy of tomato leaves. The Plant Journal, 81, 169-182.

Vogelmann, T.C. (1993) Plant tissue optics. Annual Review of Plant Physiology and Plant Molecular Biology, 44, 231-251.

Vogelmann T. \& Han T. (2000) Measurement of gradients of absorbed light in spinach leaves from chlorophyll fluorescence profiles. Plant, Cell \& Environment, 23, 1303-1311.

Vrábl D., Vašková M., Hronková M., Flexas J. \& Šantrůček J. (2009) Mesophyll conductance to CO_{2} transport estimated by two independent methods: effect of variable CO_{2} concentration and abscisic acid. Journal of Experimental Botany, 60, 2315-2323.

Yamori W., Evans J.R. \& Von Caemmerer S. (2010) Effects of growth and measurement light intensities on temperature dependence of CO_{2} assimilation rate in tobacco leaves. Plant, Cell \& Environment, 33, 332-343.

Yin X., Struik P.C., Romero P., Harbinson J., Evers J.B., Van Der Putten P.E. \& Vos J. (2009) Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. Plant, Cell \& Environment, 32, 448-464.

APPENDIX

Summary of Lloyd et al.'s (1992) derivation of $\boldsymbol{g}_{\mathrm{m}}$ accounting for structural variations in photosynthetic characteristics across a leaf

Lloyd et al. (1992) presented a mathematically sophisticated approach to calculate $g_{\mathrm{m}, \text { leaf }}$ to account for variations in photosynthetic characteristics across a leaf, building on what Terashima and Inoue (1985) presented before. Briefly, they considered volume-based variables so that (eqn. A1.1 in the original paper):

$$
\begin{equation*}
A_{n, l e a f}=\int_{0}^{t} A_{v} d x \tag{eqn.17}
\end{equation*}
$$

where t is the thickness of the leaf and x is the distance above the abaxial surface. Keeping this volume-based approach and using carbon isotopic discrimination equations (eqn. A1.2-1.4 in the original paper), they derived an estimated leaf conductance to CO_{2} as (their eqn. A1.5):

$$
\begin{equation*}
g_{m, l e a f}=\frac{\left(\int_{0}^{t} A_{v} d x\right)^{2}}{\int_{0}^{t}\left(\frac{A_{v}^{2}}{g_{v}}\right) d x} \tag{eqn.18}
\end{equation*}
$$

which can be converted to a leaf area based expression, as the sum of each layer j for a leaf consisting of l layers:

$$
\begin{equation*}
g_{m, l e a f}=\frac{\left(\sum_{j=1}^{l} A_{n, j}\right)^{2}}{\sum_{j=1}^{l} A_{n, j}{ }^{2} / g_{m, j}} \tag{eqn.19}
\end{equation*}
$$

This equation of Lloyd et al. (1992) can be simplified to result in eqn. 9. Rearranging eqn. 19 and substituting eqn. 5 for $g_{\mathrm{m}, \mathrm{j}}$:

$$
\begin{equation*}
g_{m, l e a f}=\frac{\left(\sum_{j=1}^{l} A_{n, j}\right)^{2}}{\sum_{j=1}^{l} A_{n, j}\left(C_{i, j}-C_{c, j}\right)} \tag{eqn.20}
\end{equation*}
$$

If $C_{\mathrm{i}, \mathrm{j}}$ is assumed to be the same for all layers (i.e. C_{i}), then the equation can be rearranged:

$$
\begin{equation*}
g_{m, l e a f}=\frac{\left(\sum_{j=1}^{l} A_{n, j}\right)^{2}}{C_{i} \sum_{j=1}^{l} A_{n, j}-\sum_{j=1}^{l} A_{n, j} C_{c, j}} \tag{eqn.21}
\end{equation*}
$$

and dividing the numerator and denominator by $\sum_{j=1}^{l} A_{n, j}$, then:

$$
\begin{equation*}
g_{m, l e a f}=\frac{\sum_{j=1}^{l} A_{n, j}}{\frac{c_{i} \Sigma_{j=1}^{l} A_{n, j}}{\sum_{j=1}^{l} A_{n, j}}-\frac{\Sigma_{j=1}^{l} A_{n, j} c_{c, j}}{\sum_{j=1}^{l} A_{n, j}}} \tag{eqn.22}
\end{equation*}
$$

By simplification, and replacing the numerator with $A_{\mathrm{n}, \text { leaf }}\left(=\sum_{j=1}^{l} A_{n, j}\right)$ we get eqn. 9 .

Alternative derivation for leaf $\boldsymbol{g}_{\mathrm{m}}$ based upon different photosynthetic layers

A simpler derivation of eqn. 9 starts with defining leaf apparent g_{m} as:

$$
\begin{equation*}
g_{m, \text { leaf }}=\frac{A_{n, \text { leaf }}}{C_{i}-C_{c, w t}} \tag{eqn.23}
\end{equation*}
$$

assuming that C_{i} is the same for all leaf layers. $C_{\mathrm{c}, \mathrm{wt}}$ is then the apparent value, the weighted average for the many cell layers. If weighted by layer photosynthesis, similar to eqn. A1.20 (Lloyd et al. 1992):

851 Then substituting eqn. 25 into eqn. 23 we get eqn. 9:

$$
\begin{equation*}
g_{m, \text { leaf }}=\frac{A_{n, \text { leaf }}}{C_{i}-\frac{\sum_{j=1}^{l} A_{n, j} C_{c, j}}{A_{n, \text { leaf }}}} \tag{eqn.9}
\end{equation*}
$$

853 This equation has the expected property that when a particular $A_{n, j}$ tends towards zero, then that

$$
\begin{equation*}
C_{c, w t}=\frac{\sum_{j=1}^{l} A_{n, j} C_{c, j}}{\sum_{j=1}^{l} A_{n, j}} \tag{eqn.24}
\end{equation*}
$$

As $A_{\mathrm{n}, \text { leaf }}$ is a sum of layer $A_{\mathrm{n}, \mathrm{j}}$:

$$
\begin{equation*}
A_{n, l e a f}=\sum_{j=1}^{l} A_{n, j} \tag{eqn.25}
\end{equation*}
$$ layer's $C_{\mathrm{c}, \mathrm{j}}$ is a decreasing component of the calculation of leaf weighted C_{c}.

Table 1. Mathematical terms used in the model

Name	Symbol	Value and units
Absorptance of layer j	α_{j}	[-]
Partitioning factor of α_{j} to PSII	β_{j}	0.5 [-]
Compensation point of layer j	$\Gamma^{*}{ }_{j}$	$37.4^{\text {a }} \mu \mathrm{mol} \mathrm{mol}{ }^{-1}$
Light response curvature factor for layer j	θ_{j}	[-]
Net photosynthesis of leaf and layer j	$A_{\mathrm{n}, \mathrm{leaf},} A_{\mathrm{n}, \mathrm{j}}$	$\mu \mathrm{mol} \mathrm{m}{ }^{-2} \mathrm{~s}^{-1}$
Net photosynthesis on volume basis	A_{v}	$\mu \mathrm{mol} \mu \mathrm{m} \mathrm{m}^{-3} \mathrm{~s}^{-1}$
Chloroplastic [CO_{2}] of leaf and layer j	$C_{\mathrm{c}}, C_{\mathrm{c}, \mathrm{j}}$	$\mu \mathrm{mol} \mathrm{mol}^{-1}$
C_{c} value for leaf weighted by layer	$C_{\text {c,wt }}$	$\mu \mathrm{mol} \mathrm{mol}^{-1}$
Intercellular CO_{2} concentration of leaf	$C_{\text {i }}$	$\mu \mathrm{mol} \mathrm{mol}^{-1}$
A correction for spectral quality of light	f_{j}	0.15 [-]
Mesophyll conductance of leaf or cell layer j	$g_{\mathrm{m}, \text { leaf, }} g_{\mathrm{m}, \mathrm{j}}$	$\mathrm{mol} \mathrm{m}{ }^{-2} \mathrm{~s}^{-1}$
Irradiance used by PSII of layer j	$I_{2, \mathrm{j}}$	$\mu \mathrm{mol} \mathrm{m}{ }^{-2} \mathrm{~s}^{-1}$
Index representing layers of cells	j	
Electron transport rate of layer j	$J_{\text {j }}$	$\mu \mathrm{mol} \mathrm{m}{ }^{-2} \mathrm{~s}^{-1}$
Maximum electron transport rate of layer j	$J_{\text {max, }}$	$\mu \mathrm{mol} \mathrm{m}{ }^{-2} \mathrm{~s}^{-1}$
Michaelis constant for Rubisco carboxylation	$K_{\text {c, }}$	$272.4{ }^{\text {a }} \mu \mathrm{mol} \mathrm{mol}^{-1}$
Michaelis constant for Rubisco oxygenation	$K_{\text {o, }}$	$165.8^{\mathrm{a}} \mathrm{mol} \mathrm{mol}^{-1}$
Total layers of cells modelled in leaf	l	2 to 3
Oxygen concentration	O	$200 \mathrm{mmol} \mathrm{mol}^{-1}$
Photosynthetic photon flux density	PPFD	$\mu \mathrm{mol} \mathrm{m}{ }^{-2} \mathrm{~s}^{-1}$

PPFD incident on layer j	PPFD $_{\mathrm{j}}$	$\mu \mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}$
Day respiration of layer j	$R_{\mathrm{d}, \mathrm{j}}$	$\mu \mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}$
Rate of Rubisco carboxylation of layer j	$V_{\mathrm{c}, \text { Rubisco,j }}$	$\mu \mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}$
Rate of RuBP-regeneration of layer j	$V_{\mathrm{c}, \text { RuBP, } \mathrm{j}}$	$\mu \mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}$

[^0]858
859

Table 2. Anatomical measurements of three evenly spaced layers in leaf profiles of Arbutus and Triticum.

Species	Arbutus				Triticum			
Layer	Whole	Adaxial	Middle	Abaxial	Whole	Adaxial	Middle	Abaxial
Mesophyll								
thickness ($\mu \mathrm{m}$)	236 (8) ${ }^{\text {a }}$				148 (18)			
Porosity (\%)	25 (2)	11 (1)	26 (2)	37 (6)	24 (1)	20 (3)	20 (3)	31 (4)
$S_{\mathrm{m}}\left(\mu \mathrm{m}^{2} \mu \mathrm{~m}^{-2}\right)$	25.9 (2.4)	9.2 (1.0)	8.9 (0.8)	7.0 (0.6)	20.2 (1.6)	6.3 (0.5)	5.7 (1.0)	7.0 (0.7)
$S_{\mathrm{c}}\left(\mu \mathrm{m}^{2} \mu \mathrm{~m}^{-2}\right)$	21.8 (1.7)	8.2 (0.9)	8.3 (0.7)	5.2 (0.4)	17.6 (1.0)	6.0 (0.5)	4.9 (0.9)	6.7 (0.7)
$S_{\mathrm{c}} /$ whole leaf S_{c}		0.38	0.38	0.24		0.34	0.27	0.39
$F^{\text {b }}$		1.50	1.42	1.23		1.45	1.40	1.45
Nb. of cell layers	7	1	2	4	4	1	2	1
$T_{\text {cw }}(\mu \mathrm{m})$		0.35 (0.04)	0.38 (0.12)	0.37 (0.05)		0.13 (0.04)	0.18 (0.03)	0.13 (0.04)
$T_{\text {cyt }}(\mu \mathrm{m})$		0.39 (0.03)	0.25 (0.11)	0.36 (0.05)		0.10 (0.01)	0.11 (0.02)	0.10 (0.01)
$g^{\prime}{ }^{\prime}{ }^{\prime}\left(\mathrm{mmol} \mathrm{m}^{-2}\right.$								
chloroplast s $\left.{ }^{-1}\right)^{\text {c }}$	52 (20		15	81(4)		(1)	(2)
$g_{\mathrm{m}}\left(g^{\prime}{ }_{\text {liq }} \times S_{\mathrm{c}} ; \mathrm{mol}\right.$								
$\left.\mathrm{m}^{-2} \mathrm{~s}^{-1}\right)^{\mathrm{c}}$	0.39 (0.04)	0.16 (0.01)	0.15 (0.02)	0.08 (0.01)	0.48 (0.03)	0.17 (0.01)	0.13 (0.01)	0.19 (0.01)

$860{ }^{\text {a }}$ Standard deviation in parenthesis. Five cross-sections measured for each species (two different

FIGURE LEGENDS

Figure 1. Simulated bulk leaf mesophyll conductance ($g_{\mathrm{m}, \mathrm{leaf}}$) response to PPFD based upon modelling photosynthesis of multiple layers (j) of cells with differential penetration of PPFD with depth (top right). The estimation of $g_{\mathrm{m}, \text { leaf }}$ is undefined when $A_{\mathrm{n}, \text { leaf }}$ is close to zero (see eqn. 9), and such values were removed from the top right curve. Detailed simulation values across a three-layer leaf cross section for 65,100 , and $1500 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ PPFD are shown on the bottom row, with the gradient in light within the leaf represented by the shade gradient from adaxial to abaxial epidermis (general mesophyll cell model of photosynthesis for the path from C_{i} to $A_{\mathrm{n}, \mathrm{j}}$ shown on top left). The simulation was run for the null model of a three layer leaf, each with identical photosynthetic parameters, including: $\alpha_{\mathrm{j}}=0.6, g_{\mathrm{m}, \mathrm{j}}=0.1 \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}, J_{\mathrm{max}, \mathrm{j}}=200 \mu \mathrm{~mol}$ $\mathrm{m}^{-2} \mathrm{~s}^{-1}, \theta_{\mathrm{j}}=0.6$, and $R_{\mathrm{d}, \mathrm{j}}=1 \mu \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-2}$ per layer. The un-italicized value for $g_{\mathrm{m}, \mathrm{j}}$ was the constant for each layer as set in the model, the italicized value was the weighted value used to calculate total leaf $g_{\mathrm{m}, \text { leaf }}$ using eqn. 9. Units in the figure: C_{c} and $C_{\mathrm{i}}, \mu \mathrm{mol} \mathrm{mol}^{-1} ; g_{\mathrm{m}}, \mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}$; $A_{\mathrm{n}}, \mu \mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}$.

Figure 2. Measured responses of leaf total net photosynthesis ($A_{n, l e a f}$) and leaf total mesophyll conductance ($g_{\mathrm{m}, \text { leaf }}$) to PPFD for the two species, with adaxial (black points) or abaxial illumination (gray points). Shaded regions represent the range of fitted values, with the median shown as a solid line, from all the solutions within 10% of the SSE of the best solution, using a three layer model of leaf photosynthesis (fitted values of $\alpha_{\mathrm{j}}, g_{\mathrm{m}, \mathrm{j}}, J_{\mathrm{max}, \mathrm{j}}, \theta_{\mathrm{j}}$ and $R_{\mathrm{d}, \mathrm{j}}$ are shown in Fig. 6). Error bars represent standard errors of the mean for five plants.

Figure 3. Independent validation of the variable J method of measuring bulk leaf mesophyll conductance (g_{m} variable J) by comparison to simultaneous measurement of g_{m} using the stable isotope method ($g_{\mathrm{m}} \mathrm{SI}$). Light response curves of g_{m} for adaxial (black) and abaxial (gray) illumination of leaves are shown for one representative leaf of Arbutus (circles) and Triticum (squares).

Figure 4. Micrographs of leaf anatomy of Arbutus and Triticum. Cross sections (top row) are shown at the same scale (width of each image: $341 \mu \mathrm{~m}$). Dotted lines show where the layers were cut for the parameters measured and presented in Table 2. TEM micrographs (bottom row) present cells from the adaxial (Ad), middle (Mid), and abaxial (Ab) layers for each species (left to right), showing differences in cell wall thickness. Vacuoles in Arbutus that are dark grey contain polyphenols as these stain with methylene blue.

Figure 5. The modelled response of net photosynthesis per leaf layer $\left(A_{n, j}\right)$ for a three layer leaf for adaxial and abaxial illumination for the adaxial (Ad; red), middle (Mid; green), and abaxial (Ab; blue) mesophyll layers. All predicted layer specific light response curves from the solutions within 10% of the SSE of the best solution are presented, and the thick tinted lines represent the median value. Mesophyll conductance values per layer were modelled as constant, but total leaf values varied according to eqn. 9 . The modelled curves in these panels result in the fit to the data shown in Fig. 2. Adaxial and middle layers values for Arbutus under adaxial illumination are mostly similar and the lines are superimposed.

Figure 6. Distribution of the layer-specific parameters from the optimization solutions that were within 10% of the SSE of the best solution from 500 optimizations using different starting sets of values. Black dots represent the median of layer-specific values, and gray lines show the predicted relative profile based on S_{c} (for $J_{\mathrm{max}, \mathrm{j}}$ and $R_{\mathrm{d}, \mathrm{j}}$) and g_{m} estimated from leaf anatomy (Table 2). Number of solutions within 10% of the best solution: Arbutus, $\mathrm{n}=340$; Triticum, $\mathrm{n}=$ 33.

Figure 7. Predicted profiles of the fraction of light absorbed for adaxial and abaxial illumination for Arbutus and Triticum. Predicted data (black points) are compared to values for a bifacial (spinach for Arbutus; Evans and Vogelmann 2003) and isobilateral leaf (eucalyptus for Triticum; Evans and Vogelmann 2006). Both these studies generated profiles from the relative ${ }^{14} \mathrm{C}$ assimilation profiles for blue (solid line) and green light (dashed line). Predicted profiles were computed from the median layer-specific light absorptance value (Fig. 6), and profiles from literature values were computed by dividing the leaf into three layers and summing up the relative absorptance over each layer for both ad- and abaxial profiles.

Figure 8. Proportional sensitivity analysis of simulated $g_{\mathrm{m}, \text { leaf }}$ response to PPFD. The values for five parameters in the lower layer of a two layer leaf were decreased by 50%, and the values shown are the percent change in $g_{\mathrm{m}, \text { leaf }}$ following that decrease. PPFD values are shown on a log scale to highlight changes under low and high light intensities. The default model of $g_{\mathrm{m}, \text { leaf }}$ response to PPFD had both layers of the leaf with the same photosynthetic parameters $\left(g_{\mathrm{m}, \mathrm{j}}=0.1\right.$ $\mu \mathrm{mol} \mathrm{m} \mathrm{m}^{-2}, R_{\mathrm{d}, \mathrm{j}}=1 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}, \alpha_{\mathrm{j}}=0.75, \theta_{\mathrm{j}}=0.8, J_{\mathrm{max}, \mathrm{j}}=50 \mu \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$. The estimation
of $g_{\mathrm{m}, \text { leaf }}$ when $A_{\mathrm{n}, \text { leaf }}$ is close to zero is undefined because of how the assimilated weighted $g_{\mathrm{m}, \text { leaf }}$ is computed (eqn. 9), and such values were removed from the sensitivity analysis.

Figure 9. General responses of net photosynthesis ($A_{n, \text { leaf }}$) and $g_{m, l e a f}$ to PPFD modelled with the null model (same as Fig. 1; all parameters equal for all layers), a leaf with low $J_{\text {max,j }}$ (same as null model, but with $J_{\mathrm{max}, \mathrm{j}}=10 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ and $R_{\mathrm{d}, \mathrm{j}}=0.05 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$), a leaf with a decreasing gradient of $g_{\mathrm{m}, \mathrm{j}}$ with depth (same as null model but with $g_{\mathrm{m}, \mathrm{j}}$ of $0.15,0.10$, and $0.05 \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ for the adaxial, middle, and abaxial layers), or increasing absorptance $\left(\alpha_{\mathrm{j}}\right)$ with depth (same as null model, but with α_{j} of $0.25,0.50$, and 0.75 for the adaxial, middle, and abaxial layers). The estimation of $g_{\mathrm{m}, \text { leaf }}$ when $A_{\mathrm{n}, \text { leaf }}$ is close to zero is undefined because of how the assimilated weighted $g_{\mathrm{m}, \text { leaf }}$ is computed (eqn. 9), and such values were removed from the fitted responses. Other photosynthetic parameters were kept constant $\left(\alpha_{\mathrm{j}}=0.6, g_{\mathrm{m}, \mathrm{j}}=0.1 \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}, J_{\mathrm{max}, \mathrm{j}}=200\right.$ $\mu \mathrm{mol} \mathrm{m}{ }^{-2} \mathrm{~s}^{-1}, \theta_{\mathrm{j}}=0.6$, and $R_{\mathrm{d}, \mathrm{j}}=1 \mu \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ per layer $)$.

Figure 1. Simulated bulk leaf mesophyll conductance ($g_{\mathrm{m}, \mathrm{leaf}}$) response to PPFD based upon modelling photosynthesis of multiple layers (j) of cells with differential penetration of PPFD with depth (top right). The estimation of $g_{\mathrm{m}, \text { leaf }}$ is undefined when $A_{\mathrm{n}, \text { leaf }}$ is close to zero (see eqn. 9), and such values were removed from the top right curve. Detailed simulation values across a three-layer leaf cross section for 65,100 , and $1500 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ PPFD are shown on the bottom row, with the gradient in light within the leaf represented by the shade gradient from adaxial to abaxial epidermis (general mesophyll cell model of photosynthesis for the path from C_{i} to $A_{\mathrm{n}, \mathrm{j}}$ shown on top left). The simulation was run for the null model of a three layer leaf, each with
identical photosynthetic parameters, including: $\alpha_{\mathrm{j}}=0.6, g_{\mathrm{m}, \mathrm{j}}=0.1 \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$, $J_{\mathrm{max}, \mathrm{j}}=200 \mu \mathrm{~mol}$ $\mathrm{m}^{-2} \mathrm{~s}^{-1}, \theta_{\mathrm{j}}=0.6$, and $R_{\mathrm{d}, \mathrm{j}}=1 \mu \mathrm{~mol} \mathrm{~m}{ }^{-2} \mathrm{~s}^{-1}$ per layer. The un-italicized value for $g_{\mathrm{m}, \mathrm{j}}$ was the constant for each layer as set in the model, the italicized value was the weighted value used to calculate total leaf $g_{\mathrm{m}, \text { leaf }}$ using eqn. 9. Units in the figure: C_{c} and $C_{\mathrm{i}}, \mu \mathrm{mol} \mathrm{mol}^{-1} ; g_{\mathrm{m}}, \mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}$; $A_{\mathrm{n}}, \mu \mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}$.

Figure 2. Measured responses of leaf total net photosynthesis ($A_{n, \text { leaf }}$) and leaf total mesophyll conductance ($g_{\mathrm{m}, \text { leaf }}$) to PPFD for the two species, with adaxial (black points) or abaxial illumination (gray points). Shaded regions represent the range of fitted values, with the median shown as a solid line, from all the solutions within 10% of the SSE of the best solution, using a three layer model of leaf photosynthesis (fitted values of $\alpha_{\mathrm{j}}, g_{\mathrm{m}, \mathrm{j}}, J_{\mathrm{max}, \mathrm{j}}, \theta_{\mathrm{j}}$ and $R_{\mathrm{d}, \mathrm{j}}$ are shown in Fig. 6). Error bars represent standard errors of the mean for five plants.

Figure 3. Independent validation of the variable J method of measuring bulk leaf mesophyll conductance (g_{m} variable J) by comparison to simultaneous measurement of g_{m} using the stable isotope method ($g_{\mathrm{m}} \mathrm{SI}$). Light response curves of g_{m} for adaxial (black) and abaxial (gray) illumination of leaves are shown for one representative leaf of Arbutus (circles) and Triticum (squares).

Figure 4. Micrographs of leaf anatomy of Arbutus and Triticum. Cross sections (top row) are shown at the same scale (width of each image: $341 \mu \mathrm{~m}$). Dotted lines show where the layers were cut for the parameters measured and presented in Table 2. TEM micrographs (bottom row) present cells from the adaxial (Ad), middle (Mid), and abaxial (Ab) layers for each species (left to right), showing differences in cell wall thickness. Vacuoles in Arbutus that are dark grey contain polyphenols as these stain with methylene blue.

Figure 5. The modelled response of net photosynthesis per leaf layer $\left(A_{n, j}\right)$ for a three layer leaf for adaxial and abaxial illumination for the adaxial (Ad; red), middle (Mid; green), and abaxial (Ab; blue) mesophyll layers. All predicted layer specific light response curves from the solutions within 10% of the SSE of the best solution are presented, and the thick tinted lines represent the median value. Mesophyll conductance values per layer were modelled as constant, but total leaf values varied according to eqn. 9 . The modelled curves in these panels result in the fit to the data shown in Fig. 2. Adaxial and middle layers values for Arbutus under adaxial illumination are mostly similar and the lines are superimposed.

Figure 6. Distribution of the layer-specific parameters from the optimization solutions that were within 10% of the SSE of the best solution from 500 optimizations using different starting sets of values. Black dots represent the median of layer-specific values, and gray lines show the predicted relative profile based on S_{c} (for $J_{\mathrm{max}, \mathrm{j}}$ and $R_{\mathrm{d}, \mathrm{j}}$) and g_{m} estimated from leaf anatomy (Table 2). Number of solutions within 10% of the best solution: Arbutus, n = 340; Triticum, n = 33.

Figure 7. Predicted profiles of the fraction of light absorbed for adaxial and abaxial illumination for Arbutus and Triticum. Predicted data (black points) are compared to values for a bifacial (spinach for Arbutus; Evans and Vogelmann 2003) and isobilateral leaf (eucalyptus for Triticum; Evans and Vogelmann 2006). Both these studies generated profiles from the relative ${ }^{14} \mathrm{C}$ assimilation profiles for blue (solid line) and green light (dashed line). Predicted profiles were computed from the median layer-specific light absorptance value (Fig. 6), and profiles from literature values were computed by dividing the leaf into three layers and summing up the relative absorptance over each layer for both ad- and abaxial profiles.

Figure 8. Proportional sensitivity analysis of simulated $g_{\mathrm{m}, \text { leaf }}$ response to PPFD. The values for five parameters in the lower layer of a two layer leaf were decreased by 50%, and the values shown are the percent change in $g_{\mathrm{m}, \text { leaf }}$ following that decrease. PPFD values are shown on a log scale to highlight changes under low and high light intensities. The default model of $g_{\mathrm{m}, \text { leaf }}$ response to PPFD had both layers of the leaf with the same photosynthetic parameters ($g_{\mathrm{m}, \mathrm{j}}=0.1$ $\mu \mathrm{mol} \mathrm{m}{ }^{-2} \mathrm{~s}^{-1}, R_{\mathrm{d}, \mathrm{j}}=1 \mu \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-2}, \alpha_{\mathrm{j}}=0.75, \theta_{\mathrm{j}}=0.8, J_{\mathrm{max}, \mathrm{j}}=50 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$). The estimation of $g_{\mathrm{m}, \text { leaf }}$ when $A_{\mathrm{n}, \text { leaf }}$ is close to zero is undefined because of how the assimilated weighted $g_{\mathrm{m}, \text { leaf }}$ is computed (eqn. 9), and such values were removed from the sensitivity analysis.

Figure 9. General responses of net photosynthesis $\left(A_{n, \text { leaf }}\right)$ and $g_{m, l e a f}$ to PPFD modelled with the null model (same as Fig. 1; all parameters equal for all layers), a leaf with low $J_{\text {max, } \mathbf{j}}$ (same as null model, but with $J_{\mathrm{max}, \mathrm{j}}=10 \mu \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-2}$ and $R_{\mathrm{d}, \mathrm{j}}=0.05 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$), a leaf with a decreasing gradient of $g_{\mathrm{m}, \mathrm{j}}$ with depth (same as null model but with $g_{\mathrm{m}, \mathrm{j}}$ of $0.15,0.10$, and $0.05 \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ for the adaxial, middle, and abaxial layers), or increasing absorptance (α_{j}) with depth (same as null model, but with α_{j} of $0.25,0.50$, and 0.75 for the adaxial, middle, and abaxial layers). The estimation of $g_{\mathrm{m}, \text { leaf }}$ when $A_{\mathrm{n}, \text { leaf }}$ is close to zero is undefined because of how the assimilated weighted $g_{\mathrm{m}, \text { leaf }}$ is computed (eqn. 9), and such values were removed from the fitted responses. Other photosynthetic parameters were kept constant $\left(\alpha_{\mathrm{j}}=0.6, g_{\mathrm{m}, \mathrm{j}}=0.1 \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}, J_{\mathrm{max}, \mathrm{j}}=200\right.$ $\mu \mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}, \theta_{\mathrm{j}}=0.6$, and $R_{\mathrm{d}, \mathrm{j}}=1 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ per layer $)$.

[^0]: ${ }^{\text {a }}$ photosynthetic parameters taken from Bernacchi et al. (2002)

