Lawrence Berkeley National Laboratory

Recent Work

Title

SPACE CHARGE EXPANSION OF ION BUNCHES DRIFTING DOWN A CONDUCTING PIPE

Permalink https://escholarship.org/uc/item/6cf170qx

Author Garren, A.

Publication Date 1951-07-13

5P

τ

1397

с;р

DECLASSIFIED --

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

RADIATION LABORATORY

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA **Radiation** Laboratory DECLASSIFIED INDEX NO. _______ **Cover Sheet** KESI Do not remove This document contains ______ pages This is copy 10 of 18 series A This document. ains restricted day as defined in the Stags. Energy Act of 1946. Its transmittal of classosure of its contents in any manner to an unauthorized person is prohibited. Issued to Information Divis Classification

Each person who receives this document must sign the cover sheet in the space below.

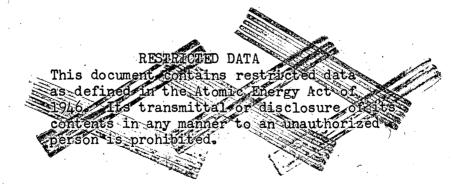
Route to	Noted by	Date	Route to	Noted by	Date
O Colyate		Jan 1 8, 195	E ·		
C Minan		Jan 29, 52			
La Coliste		Gril 2'52			
Llongel S-th	Libith SP	11-18-54			· · · · · · · · · · · · · · · · · · ·
					4
 · .					
	······				
	· · · · · · · · · · · · · · · · · · ·				
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
,	· · · · · · · · · · · · · · · · · · ·				· ·
	•				
	······································				

DECLASSIFIED

UCRL-1394 Technology-Materials Testing Accelerator

UNIVERSITY OF CALIFORNIA

Radiation Laboratory


Contract No. W-7405-eng-48

CLASSIFICATION CANCELLED BY AUTHORITY OF THE DECLASSIFICATION 3. Forker 2-20-56 R١ SIGNATURE OF THE PERSON MAKING THE DATE CHANGE

SPACE CHARGE EXPANSION OF ION BUNCHES DRIFTING DOWN A CONDUCTING PIPE

A. Garren

July 13, 1951

Berkeley, California

-2-

UCRL-1394 Technology-Materials Testing Accelerator

Standard Distribution: Series A

Copy Numbers

Atomic Energy Commission, Washington	1 - 4
Carbide and Carbon Chemicals Company (Y-12 Area)	5
Chicago Operations Office	. 6
Oak Ridge National Laboratory (X-10)	7
Patent Branch, Washington	8
University of California Radiation Laboratory	9 - 13
Technical Information Service, Oak Ridge	14 - 18
Total	18

Total

Information Division Radiation Laboratory University of California Berkeley, California

-3-

DECLASSIFIED

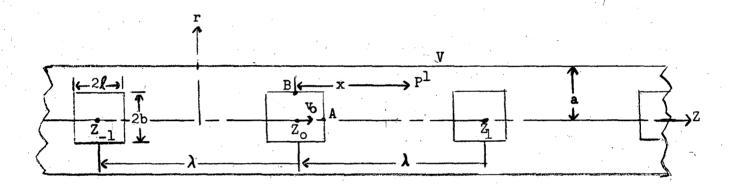
UCRL-1394 Technology-Materials Testing Accelerator

SPACE CHARGE EXPANSION OF ION BUNCHES DRIFTING DOWN A CONDUCTING PIPE

A. Garren

Radiation Laboratory, Department of Physics University of California, Berkeley, California

July 13, 1951


Introduction

In a previous report "Longitudinal Diffusion due to Space Charge of Ion Bunches during Acceleration", the writer made a rather crude calculation for this effect in a particular case when bunches were to be accelerated down a pipe. The following calculation pertains to the expansion of originally cylindrical bunches under the influence of space charge forces as they drift down a pipe at constant velocity. Subject only to the non-critical assumption that the bunches retain a cylindrical shape and uniform density, and that the velocity of motion down the pipe is non-relativistic, exact equations of motion are derived. Tables have been prepared to facilitate the numerical evaluation of functions entering these equations for a considerable range in the arguments. For one particular case of interest this numerical evaluation is carried out completely and the equations of motion integrated by the Differential Analyzer.

Schematic Representation of Problem

-4-

As said previously it is assumed that the bunches remain cylindrical in shape, and of uniform density. Thus it suffices to consider only the variation in length and radius of the bunches, or equivalently the motion of the representative points A and B in the sketch below.

We assume that the bunches are identical and extend infinitely in both directions. The separation of their centers is λ , the radius is b and the length 2. The common velocity is v_0 the charge density ρ . If

- V = accelerating potential
- m = mass of ions
- ν = r.f. frequency of bunch formation
- I = average current

then

$$v_{o} = C \sqrt{\frac{2eV}{nc^{2}}}$$

$$\lambda = \frac{C}{V} \sqrt{\frac{2eV}{mc^{2}}}$$

$$\rho = \frac{I}{2\pi \nu \ell} b^{2} \text{ inside bunches}$$

$$= 0 \quad \text{outside}$$

(4)

Calculation of the Field

Apart from terms of order $(v/c)^2$ where v is the velocity of the charges, the electric field due to an arb trary charge distribution is given by the negative gradient of a scalar potential Ψ :

$$\Psi(\vec{r}',t) = \iiint \rho(\vec{r}, t - r/c) G(\vec{r}, \vec{r}') d\vec{r} + \Psi_0(\vec{r}',t)$$
(1)
here Ψ_0 is the potential in the absence of any charge or current distribution

and $G(\vec{r}, \vec{r}')$ is Green's function. Since we are considering the non-relativistic case we can use $\rho(\bar{r},t)$ instead of $\rho(\bar{r},t-r/c)$ without appreciable error.

The Green's function for a cylinder is given by Smythe. When azimuthal symmetry obtains it is

$$G(\vec{r},\vec{r}') = \frac{1}{2\pi a \epsilon} \sum_{j} \frac{J_{0}(j \cdot \vec{r}) J_{0}(j \cdot \vec{r})}{j J_{1}^{2}(j)} e^{-j \cdot |\vec{z} - \vec{z}_{1}|}$$
(2)

where the summation is over all the zeroes j of $J_{0}(x)$. If (2) is inserted in (1) and the charge distribution ho described in the previous section is used then one obtains

$$\Psi, \mathbf{\hat{r}}', t) - \Psi_{0} = \frac{Ia}{\pi e \nu \ell b} \sum_{j} \frac{J_{1}(j\frac{b}{a}) J_{0}(j\frac{r'}{a})}{j^{3} J_{1}^{2}(j)} x} \begin{pmatrix} \sinh j\frac{\ell}{a} \frac{e^{-j\frac{\lambda}{a}} + e^{-j\frac{\lambda}{a}} Ixl}{1 - e^{-j\frac{\lambda}{a}}} \\ -e^{-j\frac{\lambda}{a}} \end{pmatrix} \\
r |x| \leq \ell \quad \text{and} \quad x = z' - z_{0}.$$
(3)

for $|x| \leq k$ and $x = z' - z_0$.

Equations of Motion

For the non-relativistic velocities here considered

$$\frac{\mathrm{md}^{2}\mathbf{\hat{r}}'}{\mathrm{dt}^{2}} = -e\,\vec{\nabla}\,\Psi$$

(5)

We take the origin of time so that $z_0 = v_0 t$, $\frac{d}{dt} = v_0 \frac{d}{dz_0}$. Since $\frac{d^2 z'}{dz_0^2} = \frac{d^2 x}{dz_0^2}$, from (3) and (4) we can write down the equations of motion from points A and B. If from now on all lengths are expressed in units of a the result is

-6-

$$\frac{d^2 l}{dS^2} = P(l, b)$$
$$\frac{d^2 b}{dS^2} = Q(l, b)$$

where

$$S = \sqrt{k} z_{0}$$

$$k = \frac{I}{4\pi e^{j} \sqrt{a}}$$

$$P(l,b) = \frac{1}{lb} \xi_{j} \frac{J_{1}(jb)}{[j J_{1}(j)]^{2}} \frac{1 - e^{-2jl} - e^{-j(\lambda - 2l)} + -j^{\lambda}}{1 - e^{-j^{\lambda}}}$$
(6)

$$Q(l,b) = \frac{1}{lb} \stackrel{\leq}{=} \frac{J_1^2(jb)}{[j J_1(j)]^2} \frac{1 - e^{-jl} + e^{-j(\lambda - l)} - e^{-j\lambda}}{1 - e^{-j\lambda}}$$
(7)

The boundary conditions are S = 0, $\lambda = \lambda_0$, $b = b_0$, $\frac{d\lambda}{dS} = \frac{db}{dS} = 0$. The equations can probably only be solved numerically. To do this tables of P and Q for different λ , b must be calculated. This has been done for $\lambda = 1.5$. Tables of $\frac{J_1(jb)}{[j J_1(j)]^2}$, $\frac{J_1^2(jb)}{[j J_1(j)]^2}$, and C^{-jx} follow, and can be used to calculate tables for P and Q for different values of λ . For $\lambda = 1.5$ the calculated tables of P and Q were used to integrate (5) on the differential analyzer for one set of initial conditions.

. C.J

Application to MTA

To estimate whether space charge debunching would render bunching of the beam impractical a specific calculation was carried out for the following case: (all lengths are in units of the pipe radius a)

$$V = 80 \text{ kv}$$

$$2 l_0 = \lambda/4$$

$$V = 12 \times 10^6 \text{ cycles/sec}$$

$$b_0 = 1/2 = 0.5$$

particle: deuteron

I = 100 ma

whence

$$\lambda = 1.515$$
 k = 0.0061516
 $l_0 = 0.1894$ /k = 0.07843

for simplicity we took instead

 $\lambda = 1.5$

$$l_{0} = 0.2$$

For the special case of λ = 1.5 tables of P and Q were computed and equations (5) were integrated on the differential analyzer for $\lambda_0 = 0.2$, $b_0 = 0.5^*$. We see that the bunches double in length i.e., $\lambda = 0.4$ when S = 0.434 or

$$z_0 = \frac{S}{\sqrt{k}} = \frac{.434}{.7843} = 5.534$$
 in units of a, = 33.2"

At $z_0 = 20$ " 0 l = 0.277 which corresponds to 125° .

Thus by the time a bunch has gone 33" or about four times as far as the space between the bunches, its length will have doubled and its diameter increased by about 20 percent. It will be recalled that we assumed the bunches to be identical and to extend infinitely in both directions. Actually they are formed at one point and then drift to the right, expanding as they go. In other words at a given time the bunches increase in size to the right. However we

* See curves at end of paper

see that in the particular case treated above they expand slowly enough so that the assumption of identical size should not be critical. In fact in this case the influence of neighboring bunches is not very strong anyway. We have of course neglected the perturbing field of the bunching mechanism and other complications, so that the results here obtained have only an order of magnitude significance.

-8-

UCRL-1394

$$\frac{J_1(j_n b)}{[j_n J_1(j)]^2}$$

$$C \leq j_n b \leq 20$$

.

\sum_{n}	o l	•2	<u>3</u>	<u></u>					9	1.0
1	•07656	.14349	.21671	.27429	• 32017	•35251	• 37009	• 37247	• 35989	•33313
2	•07528	.13381	.16292	.15724	.11980	•06114	00366	05882	09178	- ∙07423
3	.07128	10499	.08551	.02781	03269	06213	04802	00506	•03607	•04920
4	•06554	•07033	.01617	03757	03934	•00235	•03491	•02328	01380	03091
5	₀05858	.03620	02371	02967	•01331	•02630	00711	02386	.00261	.02172
6	•05054	•00778	02996	•00542	• 02094	01304	01216	.01651	•00353	01631
7	.04188	01132	01417	.02019	00758	- •00929	.01532	00685	00677	
8	.03150	02001	o0569،	•00690	01345	•01293	00678	00155	1. 1.	
9	•02432	- ₀01950	•01496	01007	•00504	00198	00376			
10	.01613	01279	.01121	01023	•00954	00900	· .			
11	•00953	00366	•000 ¹ 47	.00187	00365					
12	•00244	.00448	00800	•00878	00724		•			
13	00345	•00926	00871	•00338					· .	
14	00649	•00989	00287	00506	÷.					
15	00897	•00698	•00396	00554						
16	01022	•00220	.00658	.00100			•			• .
17	01029	00252	•00378			÷				
18	00948	00559	00141		•					
19	00789	00619	00473	-		. [.] .				
20	 00586	00454	00394				·			

-9-

for

ŝ 1. A. A. B. elle satelle se telletter i tellegter i dette en engesterne en telle er atten port som 1 a di kana kali kalendar da da kalendar Na serie kalendar da kalenda

UCRL-1394

			$\frac{J_1^2}{\left[\frac{1}{2}\right]}$	$\left[\frac{j_n b}{j_n(j_n)}\right]^2$	f	or	$J_{o}(j_{n})$ 0 < j_{n} b			`	
	n ^b	.1	.2	•3	•4	• 5	•6_	•7	•8	•9	1.0
	1	.00913	₀03502	.07318	•11723	.15973	•19363	.21343	.21618	.20183	.17292
	2	.02000	.06318	.09365	•08724	•05065	.01319	.00005	.01221	.02971	•03230
	3	.02804	.06083	•04035	•00427	•00590	.02130	.01272	.00014	.00718	.01336
	4	•03230	.03719	.00197	•01061	.01164.	•00004	.00916	•0040 7 .	.00143	.00718
	5	•03263	.01246	.00534	•00837	.00168	•00066	•00048	.00541	•00007	.00448
	6	•02939	•00070	.01033	•00034	•00505	.00196	.00170	.00314	.00014	•00306
•	7	.02371	•00173	.00271	.00551	.00078	.00117	.00317	.00063	.00062	· .
	8	.01537	.00621	₀00050	•00073	.00280	.00259	.00071	.00004		
	9	.01036	•00666	.00392	.00178	.00044	.00007	.00025		`	
	.10	•00508	•00320	•00245	• 00205	.00178	.00158				
	11	•00195	.00029	.00000	•00007	.00029					
	12	•00014	•00047	.00150	.00181	.00123					•
	13	•00030	.00101	•00194	•00029		•				. 1
	14	.00116	•00269	.00023	•00070	· · · · · ·				· · ·	
	15	.00237	.00144	.00046	•00091						
	16	.00328	.00015	.00136	•00003			· .			·
	17	•00355	.00021	•00048		· · ·					• •
	18	.00319	.00111	•00007				-1 -			
	19	. 00234	.00144	.00084	• * * •						an tig
	20	•00136	.00081	.00061							
				. *							

-10-

UCRL-1394

-	-
10.1	- i - i - i
- T -	

-		. (e -j _n x	wh	iere	J _o (j _n) ≠	= 0			
$\frac{n}{n}$	د ا	•2	•3	•4		•6	•7	.8	•9	1.0
l	. 7862	.6182	.4861	• 3822	• 3005	. 2362	. 1857	. 1460	.1148	•0903
2	• 5758	• 3294	.1909	•1099	•0633	•0364	.0210	.0118	•0070	•0040
3	•4209	.1772	•0746	•0314	.0132	.0056	.0023	.0010	•0004	•0002
4	• 3075	. 0946	.0291	•0089	. 0028	•0008	.0003	.0001	•0000	•0000
5	.2247	•0505	.0013	•0025	•0006	.0001	.0000	•0000		` <i>,</i>
. 6	.1641	•2069	.0044	•0007	.0001	.0000			i i e	
7	.1199	•0144	.0017	•0002	•0000					
8	•0792	•0077	.0007	.0001	•0000	ан 1911 - Ал				
9	•0640	.0041	•0003	•0000						
10	•0467	•0022	• •0001	•0000			•			
11	₀0355	.0012	.0000				•			
12	.0249	•0006						3		
13	.0173	.0003					, .			•
14	.0133	•0002				N .				
15	•0097	.0001	1							
. 16	.0071	.0001			· · ·			•		
17	₀0052	•0000	•					- - -		• •
18	•0038	-								
19	•0028									,
20	<u>0020</u>				and the second					
$\sum_{n}^{\mathbf{x}}$	1.1	1.2	1.3	1.4	1.5		· · ·			
1	•0710	•0558	•0439	•0345	.0271	6 9				
2	.0023	.0013	.0008	•0004	•0002		,		· _	
3	•0001	.0000	.0000	•0000	•0000				·	
4	.0000			,	/	•		-		•.

		• • •		,	-		
b	•1	•2	•3	.) •4	•5	.6	•7
.1	39.0	22.0	15.5	11.6	9.19	7.19	4.42
۰2	14.6	9.34	6.69	5.02	3.91	2.86	1.36
•3	7.72	5.43	4.02	3.02	2.32	1.61	0.68
•4	4.73	3.53	2.69	2.01	1.54	1.02	0.392
۰5	3.181	2.468	1.917	1.430	1.088	0.700	0.257
.6	2.243	1.796	1.418	1.053	0.800	0.503	0.177
°7	1.709	1.384	1.102	0.815	0.619	0.386	0.135
•8	1.330	1.087	0.868	0.642	0.488	0.301	0.105
•9	1.039	0.860	0.705	0.518	0.394	0.237	0.081
1.0	1.003	0.805	0.639	0.471	0.359	0.225	0.080

P(l,b) for $\lambda = 1.5$

-12-

 $\int b P(f,b)$ for $\lambda = 1.5$

l			•				
b	•1	•2	•3	•4	•5_	•6	•7
•1	• 390	•450	•465	•466	•459	•431	• 310
•2	.291	•374	•401	•402	• 391	• 344	.191
•3	•232	• 326	•362	• 362	• 348	.289	.142
•4	•189	.282	• 322	• 322	• 307	.245	.110
•5	•159	•247	•287	•286	.272	.210	•090
•6	.135	.216	•255	•253	•240	.181	.074
•7	.120	•194	.231	.228	.217	.162	•066
•8	.106	•174	•208	•205	.195	•145	•059
•9	•094	.155	.190	•186	.177	.128	•05i
1.0	.100	.161	.191	.188	.180	.135	•056

-13-

Q(**)**,b) for

λ = 1.5

6.812 3.418	11.15 4.607 2.705	7.80 3.459 2.128	5•98 2•756	4•84 2•286	4.07 2.129	3.50 1.705
3.418			2.756	2.286	2.129	1.705
	2.705	2,128				
		~ O TYO	1.745	1.482	1.290	1.144
2.378	1.796	1.540	1.230	1.066	0•944	0.851
1.693	1.316	1.084	0.934	0.824	0.740	0.676
1.151	0.947	0.832	0.731	0.656	0.597	0.551
1.052	0.845	0.723	0.638	0.575	0.526	0.487
0.882	0.721	0.623	0.554	0.501	0.459	0.426
0.748	0.631	0.550	0.489	0.408	0.403	0.373
0.779	0.618	0.519	0.451	0.400	0.362	0.327
	1.151 1.052 0.882 0.748	1.6931.3161.1510.9471.0520.8450.8820.7210.7480.631	1.6931.3161.0841.1510.9470.8321.0520.8450.7230.8820.7210.6230.7480.6310.550	1.6931.3161.0840.9341.1510.9470.8320.7311.0520.8450.7230.6380.8820.7210.6230.5540.7480.6310.5500.489	1.693 1.316 1.084 0.934 0.824 1.151 0.947 0.832 0.731 0.656 1.052 0.845 0.723 0.638 0.575 0.882 0.721 0.623 0.554 0.501 0.748 0.631 0.550 0.489 0.408	1.6931.3161.0840.9340.8240.7401.1510.9470.8320.7310.6560.5971.0520.8450.7230.6380.5750.5260.8820.7210.6230.5540.5010.4590.7480.6310.5500.4890.4080.403

lb Q(l,b) for $\lambda = 1.5$

N 0			1	· .			•
b	•1	•2	•3	•4	۰5	.6	•7
•1	.188 .	.223	•234	•239	•242	•244	.245
•2	•136	.184	•208	.221	.229	•234	.239
•3	.103	.162	•192	<mark>،</mark> 209	.222	.232	•240
•4	.095	•144	.185	•197	.213	.227	•238
•5	.085	.132	•163	.187	. 206	.222	•237
•6	.069	.114	.150	•176	•197	.215	.231
•7	•074	.118	.152	•179	.201	.221	•239
•8	.071	.115	.150	177	.200	. 220	•239
•9	•067	.114	.148	•176	.198	.218	•235
1.0	•078	.124	.156	.180	•200	.217	•229

t .

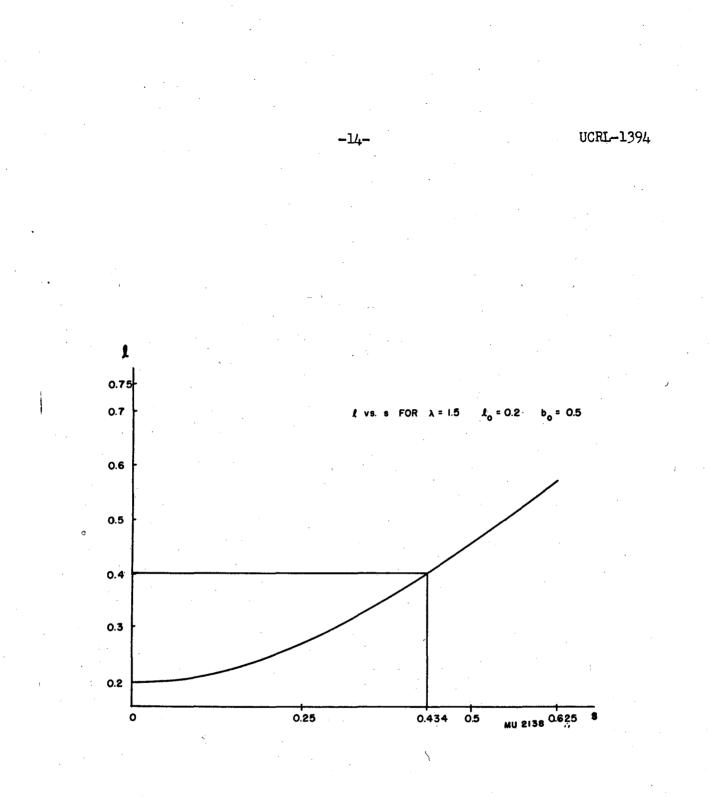
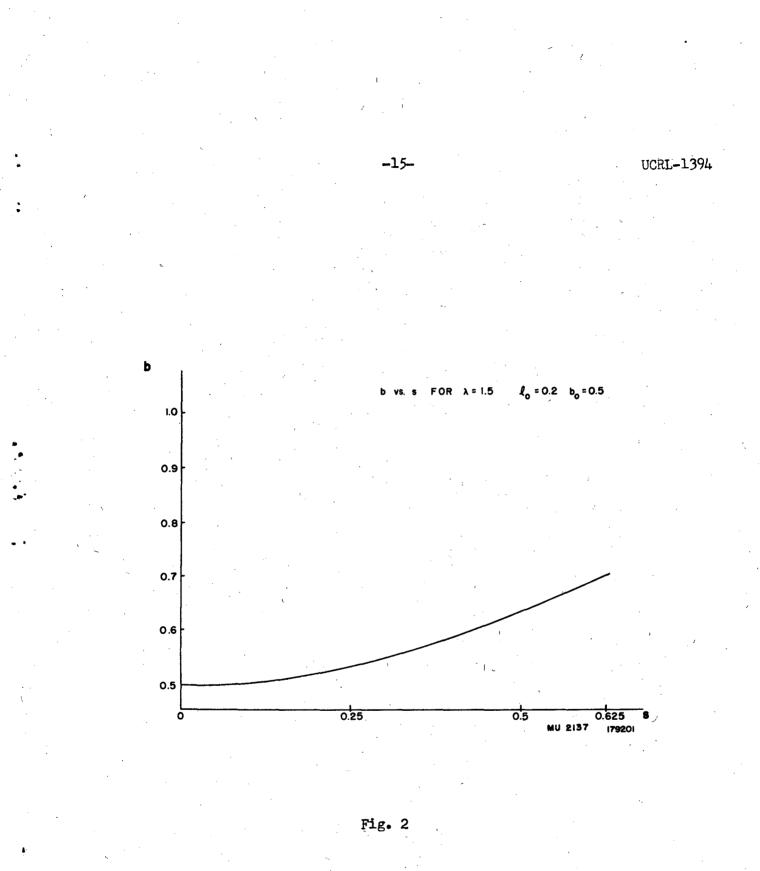



Fig. 1

