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Abstract

Learning in Mean-Field Games and Continuous-Time Stochastic Control Problems

by

Anran Hu

Doctor of Philosophy in Engineering – Industrial Engineering and Operations Research

University of California, Berkeley

Professor Xin Guo, Chair

In recent years, there has been an ever-increasing demand for building reliable and versatile
agents in applications arising from numerous fields including autonomous driving, supply
chain, manufacturing, e-commerce and finance. To meet these challenging demands, re-
searches in decision making systems have drawn upon a wide range of tools from applied
probability, reinforcement learning (RL), stochastic control and game theory. This disserta-
tion focuses on developing new methodologies and efficient algorithms with provable perfor-
mance guarantees to deal with complex environments such as large population competitions
and continuous-time systems.

The first part of this dissertation focuses on designing and analyzing RL algorithms for large
population games. Large population games have appeared in many real-world problems.
Examples include massive multiplayer online role-playing games, high frequency trading,
and the sharing economy. However, in general, it becomes increasingly difficult to solve such
problems as the number of players in the game grows. Mean field game (MFG) provides
an ingenious and tractable aggregation approach to approximate the otherwise challenging
N-player stochastic games. In Chapter 1, we present a general mean-field game (GMFG)
framework for simultaneous learning and decision-making in stochastic games with a large
population. It first establishes the existence of a unique Nash Equilibrium to this GMFG, and
demonstrates that naively combining reinforcement learning with the fixed-point approach in
classical MFGs yields unstable algorithms. It then proposes value-based and policy-based re-
inforcement learning algorithms (GMF-V and GMF-P, respectively) with smoothed policies,
with analysis of their convergence properties and computational complexities. Experiments
on an equilibrium product pricing problem demonstrate that GMF-V-Q and GMF-P-TRPO,
two specific instantiations of GMF-V and GMF-P, respectively, with Q-learning and TRPO,
are both efficient and robust in the GMFG setting. Moreover, their performance is superior
in convergence speed, accuracy, and stability when compared with existing algorithms for
multi-agent reinforcement learning in the N -player setting.
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The second part of this dissertation focuses on designing and analyzing RL algorithms for
continuous-time stochastic dynamical systems. As most physical systems in science and
engineering evolve continuously in time, many real-world control tasks, such as those in
aerospace, automotive industry and robotics, are naturally formulated in terms of continuous-
time dynamical systems. Nevertheless, the mainstream RL algorithms have been designed for
discrete-time systems, despite that they are widely applied to physical tasks in continuous-
time systems. Continuous-time RL algorithms have also been developed in the past decades.
But the theoretical guarantees of these works are limited to the asymptotic convergence
and the non-asymptotic guarantees remain unknown. In Chapter 2, we take the first step
towards designing algorithms with non-asymptotic guarantees for solving finite-time-horizon
continuous-time linear quadratic (LQ) RL problems in an episodic setting, where both the
state and control coefficients are unknown to the controller. We first propose a least-squares
algorithm based on continuous-time observations and controls, and establish a logarith-
mic regret bound of magnitude O((lnM)(ln lnM)), with M being the number of learning
episodes. The analysis consists of two components: perturbation analysis, which exploits
the regularity and robustness of the associated Riccati differential equation; and parameter
estimation error, which relies on sub-exponential properties of continuous-time least-squares
estimators. We further propose a practically implementable least-squares algorithm based
on discrete-time observations and piecewise constant controls, which achieves similar loga-
rithmic regret with an additional term depending explicitly on the time stepsizes used in
the algorithm. In Chapter 3, we extend the results beyond linear-quadratic problems, where
the unknown linear jump-diffusion process is controlled subject to non-smooth convex costs.
We show that the associated linear-convex (LC) control problems admit Lipchitz continuous
optimal feedback controls and further prove the Lipschitz stability of the feedback controls.
The analysis relies on a stability analysis of the associated forward-backward stochastic dif-
ferential equation. We then propose a least-squares algorithm which achieves a regret of the
order O(

√
N lnN) on linear-convex learning problems with jumps, where N is the number

of learning episodes; the analysis leverages the Lipschitz stability of feedback controls and
concentration properties of sub-Weibull random variables. Numerical experiment confirms
the convergence and the robustness of the proposed algorithm.
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Chapter 1

A General Framework for Learning
Mean-Field Games

1.1 Introduction

Motivating example. This paper is motivated by the following Ad auction problem for
an advertiser. An Ad auction is a stochastic game on an Ad exchange platform among
a large number of players, the advertisers. In between the time a web user requests a
page and the time the page is displayed, usually within a millisecond, a Vickrey-type of
second-best-price auction is run to incentivize interested advertisers to bid for an Ad slot to
display advertisement. Each advertiser has limited information before each bid: first, her
own valuation for a slot depends on some random conversion of clicks for the item; secondly,
she, should she win the bid, only knows the reward after the users activities on the website
are finished. In addition, she has a budget constraint in this repeated auction.

The question is, how should she bid in this online sequential repeated game when there
is a large population of bidders competing on the Ad platform, with random conversions of
clicks and rewards?

Besides Ad auctions, there are many other real-world problems involving a large number
of players and uncertain systems. Examples include massive multi-player online role-playing
games [91], high frequency tradings [106], and the sharing economy [79].

Our work. Motivated by these problems, we consider a general framework of simultaneous
learning and decision-making in stochastic games with a large population. We formulate a
general mean-field-game (GMFG) with incorporation of action distributions and (random-
ized) relaxed policies. This general framework can also be viewed as a generalized version of
MFGs of extended McKean-Vlasov type [3], which is a different paradigm from the classical
MFG. It is also beyond the scope of the existing reinforcement learning (RL) framework
for Markov decision processes (MDP), as MDP is technically equivalent to a single player
stochastic game.
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On the theory front, this general framework differs from the existing MFGs. We es-
tablish under appropriate technical conditions the existence and uniqueness of the Nash
equilibrium (NE) to this GMFG. On the computational front, we show that naively combin-
ing reinforcement learning with the three-step fixed-point approach in classical MFGs yields
unstable algorithms. We then propose both value based and policy based reinforcement
learning algorithms with smoothed policies (GMF-V and GMF-P, respectively), establish
the convergence property and analyze the computational complexity (see Section 1.7 for
all proof details). Finally, we apply GMF-V-Q and GMF-P-TRPO, which are two specific
instantiations of GMF-V and GMF-P, respectively, with Q-learning and TRPO, to an equi-
librium product pricing problem1. Both algorithms have demonstrated to be efficient and
robust in the GMFG setting. Their performance is superior in terms of convergence speed,
accuracy and stability, when compared with existing algorithms for multi-agent reinforce-
ment learning in the N -player setting. Note that an earlier and preliminary version [76] has
been published in NeurIPS. Nevertheless, the conference version focuses only on GMF-V-
Q, whereas this paper provides a new meta framework for learning mean-field-game which
combines (1) the three-step fixed point approach, (2) the smoothing techniques, and (3) the
single-agent algorithms with sample complexity guarantees in the sub-routine. This gen-
eral framework incorporates both value-based algorithms and policy-based algorithms. In
addition, the policy-based RL algorithm (GMF-P-TRPO) in this paper is the first globally
convergent policy-based algorithm for solving mean-field-games. Numerical results show that
it achieves similar performance as the Q-learning based algorithm (GMF-V-Q) in [76].

Related works. On learning large population games with mean-field approximations, [166]
focuses on inverse reinforcement learning for MFGs without decision making, with its exten-
sion in [36] for agent-level inference; [167] studies an MARL problem with a first-order mean-
field approximation term modeling the interaction between one player and all the other finite
players, which has been generalized to the setting with partially observable states in [146];
and [95] and [168] consider model-based adaptive learning for MFGs in specific models (e.g.,
linear-quadratic and oscillator games). More recently, [115] studies the local convergence of
actor-critic algorithms on finite time horizon MFGs, and [144] proposes a policy-gradient
based algorithm and analyzes the so-called local NE for reinforcement learning in infinite
time horizon MFGs. For learning large population games without mean-field approxima-
tion, see [82, 93] and the references therein. In the specific topic of learning auctions with a
large number of advertisers, [28] and [92] explore reinforcement learning techniques to search
for social optimal solutions with real-word data, and [90] uses MFGs to model the auction
system with unknown conversion of clicks within a Bayesian framework.

However, none of these works consider the problem of simultaneous learning and decision-
making in a general MFG framework. Neither do they establish the existence and uniqueness
of the (global) NE, nor do they present model-free learning algorithms with complexity

1The numerical experiments on the application of GMF-V-Q to the motivating Ad auction problem can
be found in the conference version of our paper [76].
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analysis and convergence to the NE. Note that in principle, global results are harder to
obtain compared to local results.

Following the conference version [76] of the current paper, various efforts have been
made to extend our reinforcement learning work in [76] to more general MFG settings.
These include linear-quadratic MFGs in both discrete-time setting [60, 153, 154] and in
continuous-time setting [77, 163, 47], MFGs with general continuous state and/or action
spaces [7], entropy regularized MFGs in discrete time [7, 164, 165, 41] and in continuous time
[77], and non-stationary MFGs [117]. In particular, [41] interprets the softmax smoothing
technique proposed in [76] from a smoothed equilibrium perspective. In addition, different
frameworks based on monotonicity assumptions (instead of the contractivity assumption in
[76]) have also been proposed, and fictitious play algorithms with policy and mean-field
averaging [52, 131] and online mirror descent algorithms [129] have been proposed to solve
MFGs under such assumptions. There are also some recent extensions to reinforcement
learning of MFGs with strategic complementarity [105] and multiple agent types [66, 145].
These algorithms for reinforcement learning of MFGs have also been applied in economics
[10], in finance [44], in animal behavior simulation [130], and in concave utility reinforcement
learning [64]. In the meantime, the idea of simultaneous learning and decision making with
mean-field interaction has been used for analyzing collaborative games with social optimal
solution [31, 32, 73, 110, 162, 127, 61, 42, 9].

Notations. Let (X , dX ) be a metric space and X is equipped with the Borel σ-field B(X ),
meaning the σ-field generated by the open sets of X . Denote P(X ) for the set of (Borel)
probability measures on X . Wp denotes the Wasserstein distance of order p such that

Wp(µ, µ
′) = inf

{(∫
X×X

dpX (x, x′)ν(dx, dx′)

)
: ν ∈ P(X × X ) with marginals µ, µ′ ∈ P(X )

}
.

P(X ) is always equipped with W1(µ, µ′). The Borel σ-field of P(X ) is the σ-field induced
by the evaluation P(X ) 3 µ 7→ µ(C) for any Borel set C ⊂ X . Note that the Borel σ-field
of P(X ) is generated by W1. (See e.g. [157] and [100]).

Given two measurable spaces (Y ,B(Y)) and (X ,B(X )) , we say a measure-valued function
f : Y → P(X ) is measurable if ΛC ◦ f : Y → [0, 1] is measurable for any C ∈ B(X ), where
ΛC : P(X ) 3 µ 7→ µ(C) ∈ [0, 1].

1.2 Framework of General MFG (GMFG)

1.2.1 Background: classical N-player Markovian game and MFG

Let us first recall the classical N -player game. There are N players in a game. At
each step t, the state of player i (= 1, 2, · · · , N) is sit ∈ S ⊆ Rd and she takes an action
ait ∈ A ⊆ Rp. Here d, p are positive integers. The state space (S, dS) and the action space
(A, dA) are two compact metric spaces, including the case of S and A being finite. Given
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the current state profile of N -players st = (s1
t , . . . , s

N
t ) ∈ SN and the action ait, player i will

receive a reward ri(st, a
i
t) sampled from a distribution Ri(st, a

i
t) and her state will change to

sit+1 according to a transition probability function P i(st, a
i
t). In particular, the probability

transition P i : SN ×A → P(S) and the distribution of the reward function Ri : SN ×A →
P([0,Rmax]) are both measurable functions with some constant Rmax > 0.

A Markovian game further restricts the admissible policy/control for player i to be of
the form ait ∼ πit(st) with πit measurable. That is, πit : SN → P(A) maps each state profile
s ∈ SN to a randomized action.The accumulated reward (a.k.a. the value function) for
player i, given the initial state profile s and the policy profile sequence πππ := {πππt}∞t=0 with
πππt = (π1

t , . . . , π
N
t ), is then defined as

V i(s,πππ) := E

[
∞∑
t=0

γtri(st, a
i
t)
∣∣∣s0 = s

]
, (1.2.1)

where γ ∈ (0, 1) is the discount factor, ait ∼ πit(s
t), and sit+1 ∼ P i(st, a

i
t). The goal of each

player is to maximize her value function over all admissible policy sequences such that (1.2.1)
is finite.

In general, this type of stochastic N -player game is notoriously hard to analyze, espe-
cially when N is large [126]. Mean field game (MFG), pioneered by [87] and [104] in the
continuous settings and later developed in [20, 68, 86, 109, 138] for discrete settings, provides
an ingenious and tractable aggregation approach to approximate the otherwise challenging
N -player stochastic games. The basic idea for an MFG goes as follows. Assume all players
are identical, indistinguishable and interchangeable, when N → ∞, one can view the limit
of other players’ states s−it = (s1

t , . . . , s
i−1
t , si+1

t , . . . , sNt ) as a population state distribution µt

with µt(s) := limN→∞

∑N
j=1,j 6=i Isjt=s

N
.2 Due to the homogeneity of the players, one can then

focus on a single (representative) player. At time t, after the representative player chooses
her action at according to some policy πt, she will receive reward r(st, at, µt) and her state
will evolve under a controlled stochastic dynamics of a mean-field type P (·|st, at, µt). Here
the policy πt depends on both the current state st and the current population state distri-
bution µt such that πt : S × P(S) → P(A). Then, in mean-field limit, one may consider
instead the following optimization problem,

maximizeπππ V (s,πππ,µµµ) := E
[
∞∑
t=0

γtr(st, at, µt)|s0 = s

]
subject to st+1 ∼ P (st, at, µt), at ∼ πt(st, µt),

where πππ := {πt}∞t=0 denotes the policy sequence and µµµ := {µt}∞t=0 the distribution flow.

1.2.2 General MFG (GMFG)

In the classical MFG setting, the reward and the dynamic for each player are known.
They depend only on the state of the player st, the action of this particular player at, and

2Here the indicator function Isjt=s
= 1 if sjt = s and 0 otherwise.
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the population state distribution µt. In contrast, in the motivating auction example, the
reward and the dynamic are unknown; they rely on the actions of all players, as well as on
st and µt.

We therefore define the following general MFG (GMFG) framework. At time t, af-
ter the representative player chooses her action at according to some measurable policy
π : S × P(S) → P(A), she will receive a (possibly random) reward r(st, at,Lt) sam-
pled from distribution R(st, at,Lt) and her state will evolve according to P (·|st, at,Lt),
with Lt = Pst,at ∈ P(S × A) the joint distribution of the state and the action, i.e., the
population state-action pair. This joint distribution Lt has marginal distributions αt for the
population action and µt for the population state. Note the inclusion of αt allows the reward
and the dynamic to depend on all players’ actions. Here P : S × A × P(S × A) → P(S)
and R : S × A × P(S × A) → P([0,Rmax]) are measurable functions with some constant
Rmax > 0. The objective of the player is to solve the following control problem:

maximizeπππ V (s,πππ,LLL) := E
[
∞∑
t=0

γtr(st, at,Lt)|s0 = s

]
subject to st+1 ∼ P (st, at,Lt), at ∼ πt(st, µt).

(GMFG)

Here the expectation in the objective function is always taken for all randomness in the
system. In addition, LLL := {Lt}∞t=0 which may be time dependent. That is, an infinite-time
horizon MFG may have time-dependent NE solutions due to the mean information process
in the MFG. This is fundamentally different from the theory of MDP where the optimal
control, if exists uniquely, would be time independent in an infinite time horizon setting.

In this paper, we will analyze the existence of NE to GMFG. For ease of exposition,
we will first focus on stationry NEs. Accordingly, for notational brevity, we abbreviate
πππ = {π}∞t=0 and LLL = {L}∞t=0 as π and L, respectively. We will show in the end how this
stationary constraint can be relaxed (cf. Section 1.9).

Definition 1.2.1 (Stationary NE for GMFGs). In (GMFG), a player-population profile (π?,
L?) is called a stationary NE if

1. (Single player side) For any policy π and any initial state s ∈ S,

V (s, π?,L?) ≥ V (s, π,L?) . (1.2.2)

2. (Population side) Pst,at = L? for all t ≥ 0, where {st, at}∞t=0 is the dynamics under the
policy π? starting from s0 ∼ µ?, with at ∼ π?(st, µ

?), st+1 ∼ P (·|st, at,L?), and µ?

being the population state marginal of L?.

The single player side condition captures the optimality of π?, when the population side is
fixed. The population side condition ensures the “consistency” of the solution: it guarantees
that the state and action distribution flow of the single player does match the population
state and action sequence LLL? := {L?}∞t=0.
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1.2.3 Examples of GMFG

Here we provide three examples under the framework of GMFG.

A toy example. Take a two-state dynamic system with two choices of controls. The
state space S = {0, 1}, the action space A = {L,R}. Here the action L means to move
left and R means to move right. The dynamic of the representative agent in the mean-field
system {st}t≥1 goes as follows: if the agent is in state st and she takes action at = L at
time t, then st+1 = 0; if she takes action at = R, then st+1 = 1. At the end of each round,
the agent will receive a reward −W2(µt, B) −W2(βt(st, ·), B), which depends on all agents,
where W2 is the `2-Wasserstein distance. Here µt(·) denotes the state distribution of the
mean-field population at time t, βt(s, ·) := Lt(s, ·)/µt(s) denotes the action distribution of
the population in state s (s = 0, 1) at time t (set βt(s, ·) := (0.5, 0.5) when µt(s) = 0), and
B is a given Bernoulli distribution with parameter p (0 < p < 1).

As a demonstrating example, here we provide the calculation for one stationary NE
solution. Note that −W2(µ,B) ≤ 0 for any distribution µ over S. Similarly, −W2(α,B) ≤
0 for any distribution α over A. Hence for each policy πππ, given population distribution flow
LLL = {Lt}∞t=1,

V (0,πππ,LLL) = −
∞∑
t=1

γtE[W2(µt, B) +W2(βt(st, ·), B)|s0 = 0] ≤ 0, (1.2.3)

and

V (1,πππ,LLL) = −
∞∑
t=1

γtE[W2(µt, B) +W2(βt(st, ·), B)|s0 = 1] ≤ 0. (1.2.4)

It is easy to check that µ? = (p, 1− p) and π?(s, µ?) = (p, 1− p) (s = 0, 1). is a pair of
stationary mean-field solution. And L? is defined with L?(s, a) = µ?(s)π?(a|s, µ?) for any
s ∈ S, a ∈ A, accordingly, where π(a|s, µ) is defined as the probability of taking action
a following the action distribution π(s, µ). In this case, the corresponding optimal value
function is defined as

V (0, π?,L?) = V (1, π?,L?) = 0,

which reaches the upper bound in (1.2.3) and (1.2.4).

Repeated auction. Take a representative advertiser in the auction aforementioned in the
motivating example in Section 1.1. Denote st ∈ {0, 1, 2, · · · , smax} as the budget of this
player at time t, where smax ∈ N+ is the maximum budget allowed on the Ad exchange
with a unit bidding price. Denote at ∈ {0, 1, 2, · · · , amax} as the bid price submitted by this
player, where amax is the maximum bid set by the bidder, and αt as the bidding/(action)
distribution of the population. At time t, all advertisers are randomly divided into different
groups and each group of advertisers competes for one slot to display their ads. Assuming
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that there are M advertisers in each group, then the representative advertiser competes with
M −1 other representative players whose bidding prices are independently sampled from αt.
Let wMt denote whether the representative player wins the bid. Then if she takes action at,
the probability she will win the bid is P(wMt = 1) = Fαt(at)

M−1, where Fαt is the cumulative
distribution function of a random variable X ∼ αt.

If this advertiser does not win the bid, her reward rt = 0. If she wins, there are several
components in her reward: aMt , the second best bid in a Vickrey auction, paid by the winning
advertiser; vt, the conversion of clicks of the slot; and ρ, the rate of penalty for overshooting
if the payment aMt exceeds her budget st. Therefore, at each time t, her reward with bid at
and budget st is

rt = I{wMt =1}

[
(vt − aMt )− (1 + ρ)I{st<aMt }(a

M
t − st)

]
, (1.2.5)

where the first term is the profit of wining the auction and the second term is the penalty
of overshooting. And the budget dynamics st follows,

st+1 =


st, wMt 6= 1,
st − aMt , wMt = 1 and aMt ≤ st,
0, wMt = 1 and aMt > st.

(1.2.6)

That is, if this player does not win the bid, the budget remains the same; if she wins and
has sufficient money to pay, her budget will decrease from st to st−aMt ; however, if she wins
but does not have enough money to pay, her budget will be 0 after the payment and there
will be a penalty in the reward function.

Notice that both distributions of wMt and aMt depend on the population distribution
Lt (or more specifically αt). In fact, the reward function r(st, at) = rt and the transition
probability st+1 ∼ P (·|st, at,Lt) specified by (1.2.5) and (1.2.6) are fully characterized by
the probabilities P(wMt = 1, aMt ≤ ·|st, at,Lt) and P(wMt = 0) (since rt = 0 and st+1 = st
whenever wMt = 0), with

P(wMt = 1, aMt ≤ x|st, at,Lt) = Fαt(min{x, at})M−1, P(wMt = 0) = 1− Fαt(at)M−1.

Clearly the above model fits into the framework of (GMFG), with the following transition
probability.

P(s′|s, a,L) =


Fα(a)M−1 − Fα(min{s, a})M−1, s′ = 0,
1− Fα(a)M−1, s′ = s,
Fα(min{s− s′, a})M−1 − Fα(min{s− s′ − 1, a})M−1, 0 < s′ < s,

(1.2.7)

where α is the action marginal of L. The reward model can be explicitly written similarly.
In practice, one may modify the dynamics of st+1 with a non-negative random budget

fulfillment ∆(st+1) after the auction clearing such that ŝt+1 = st+1 + ∆(st+1) [8, 75].
Experiments of this repeated auction problem can be found in the conference version [76]

of this paper, and will not be repeated here.
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Equilibrium price. Another example, adapted from [74, Section 3] is to consider a large
number (continuum) of homogeneous firms producing the same product under perfect com-
petition, and the price of the product is determined endogenously by the supply-demand
equilibrium [22]. Each firm, meanwhile, maintains a certain inventory level of the raw ma-
terials for production.

Given the homogeneity of the firms, it is sufficient to focus on a representative firm paired
with the population distribution. In each period t, the representative firm decides a quantity
qt to consume the raw materials for production and a quantity ht to replenish the inventory
of raw materials. For simplicity, we assume each unit of the raw material is used to produce
one unit of the product. Both the new products and ordered raw materials will be available
at the end of this given period t. The representative agent makes decision based on her
current inventory level of the raw material, denoted as st, which evolves according to

st+1 = st −min{qt, st}+ ht. (1.2.8)

Note that if the firm overproduces and exceeds her current inventory capacity (i.e., qt > st),
then the firm will pay a cost for an emergency order of the raw material. Finally, the reward
during this period t is given by

rt = (pt − c0) qt − c1 q
2
t − c2 ht − (c2 + c3) max{qt − st, 0} − c4 st. (1.2.9)

Here pt is the selling price of the product of all firms; c0 > 0 is the manufacturing cost and
labor cost for making one unit of the product; c1 > 0 is the quadratic cost which can be
viewed as the transient price impact associated with the production level qt; c2 > 0 is the
cost of regular orders of the raw materials; c3 > 0 is the additional cost for the emergency
order of the raw materials; and finally, c4 > 0 is the inventory cost.

The price pt is determined according to the supply-demand equilibrium on the market
at each moment. On one hand, the normalized demand (per producer) on the market D(pt)
follows ([74])

D(pt) := dp−σt , (1.2.10)

where d denotes some benchmark demand level and σ is the elasticity of demand that can be
interpreted as the elasticity of substitution between the given product and any other good.
On the other hand, the (average) supply in this market is given by the average production of
all firms which follows Eqt∼πt [qt] under some policy πt. If all firms are restricted to stationary
policies (denoted as π), then this leads to a stationary equilibrium price q which satisfies the
supply-demand equilibrium:

Eq∼π[q] = d p−σ. (1.2.11)

To fit into the theoretical framework proposed in Section 1.2, we set S = {0, 1, · · · , S}
and A = {(q, h) | q ∈ {0, 1, · · · , Q} and h ∈ {0, 1, · · · , H}} for some positive integers S,Q
and H.
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1.3 Solution for GMFGs

We now establish the existence and uniqueness of the stationary NE to (GMFG), by
generalizing the classical fixed-point approach for MFGs to this GMFG setting. (See [87]
and [104] for the classical case.) It consists of three steps.

Step A. Fix L, (GMFG) becomes the classical single-player optimization problem. In-
deed, with L fixed, the population state distribution µ is also fixed, and hence the space of
admissible policies is reduced to the single-player case. Solving (GMFG) is now reduced to
finding a policy π?L ∈ Π := {π | π : S → P(A)} to maximize

V (s, πL,L) := E
[
∞∑
t=0

γtr(st, at,L)|s0 = s

]
,

subject to st+1 ∼ P (st, at,L), at ∼ πL(st).

Notice that with L fixed, one can safely suppress the dependency on µ in the admissible
policies.

Now given this fixed L and the solution π?L to the above optimization problem, one can
define a mapping from the fixed population distribution L to a chosen optimal randomized
policy sequence. That is,

Γ1 : P(S ×A)→ Π,

such that π?L = Γ1(L). Note that the optimal policy of an MDP in general may not be
unique. To ensure that Γ1 is a single-valued instead of set-valued mapping, here Γ1 includes
a policy selection component to select a single optimal policy from the set of optimal policies
for a given L, which is guaranteed to exist by Zermelo’s Axiom of Choice. For example, when
the action space is finite, one can utilize the argmax-e operator and set the “maximizing”
actions with equal probabilities (see Section 1.4.1 for the detailed definition). In addition, for
non-degenerate linear-quadratic MFGs [60] and general MFGs where the Bellman mappings
are strongly concave in actions [7] and the action space is convex in the Euclidean space, the
optimal policy π?L for a given L is unique under appropriate assumptions. Hence no policy
selection is needed in such cases.

Note that this π?L satisfies the single player side condition in Definition 1.2.1 for the
population state-action pair L,

V (s, π?L,L) ≥ V (s, π,L) , (1.3.1)

for any policy π and any initial state s ∈ S.
As in the MFG literature [87], a feedback regularity condition is needed for analyzing

Step A.

Assumption 1. There exists a constant d1 ≥ 0, such that for any L,L′ ∈ P(S ×A),

D(Γ1(L),Γ1(L′)) ≤ d1W1(L,L′), (1.3.2)
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where

D(π, π′) := sup
s∈S

W1(π(s), π′(s)), (1.3.3)

and W1 is the `1-Wasserstein distance (a.k.a. earth mover distance) between probability
measures [67, 132, 157].

Step B. Given π?L obtained from Step A, update the initial L to L′ following the controlled
dynamics P (·|st, at,L).

Accordingly, for any admissible policy π ∈ Π and a joint population state-action pair
L ∈ P(S ×A), define a mapping Γ2 : Π× P(S ×A)→ P(S ×A) as follows:

Γ2(π,L) := L̂ = Ps1,a1 , (1.3.4)

where a1 ∼ π(s1), s1 ∼ µP (·|·, a0,L), a0 ∼ π(s0), s0 ∼ µ, and µ is the population state
marginal of L.

One needs a standard assumption in this step.

Assumption 2. There exist constants d2, d3 ≥ 0, such that for any admissible policies
π, π1, π2 and joint distributions L,L1,L2,

W1(Γ2(π1,L),Γ2(π2,L)) ≤ d2D(π1, π2), (1.3.5)

W1(Γ2(π,L1),Γ2(π,L2)) ≤ d3W1(L1,L2). (1.3.6)

Step C. Repeat Step A and Step B until L′ matches L.
This step is to ensure the population side condition. To ensure the convergence of the

combined step one and step two, it suffices if Γ : P(S × A) → P(S × A) with Γ(L) :=
Γ2(Γ1(L),L) is a contractive mapping under the W1 distance. Then by the Banach fixed
point theorem and the completeness of the related metric spaces (cf. Section 1.10.1), there
exists a unique stationary NE of the GMFG. That is,

Theorem 1.3.1 (Existence and Uniqueness of stationary GMFG solution). Given Assu-
mptions 1 and 2, and assume d1d2 + d3 < 1. Then there exists a unique stationary NE to
(GMFG).

Proof. [Proof of Theorem 1.3.1] First by Definition 1.2.1 and the definitions of Γi (i = 1, 2),
(π,L) is a stationary NE iff L = Γ(L) = Γ2(Γ1(L),L) and π = Γ1(L), where Γ(L) =
Γ2(Γ1(L),L). This indicates that for any L1,L2 ∈ P(S ×A),

W1(Γ(L1),Γ(L2)) = W1(Γ2(Γ1(L1),L1),Γ2(Γ1(L2),L2))

≤ W1(Γ2(Γ1(L1),L1),Γ2(Γ1(L2),L1)) +W1(Γ2(Γ1(L2),L1),Γ2(Γ1(L2),L2))

≤ (d1d2 + d3)W1(L1,L2).

(1.3.7)

And since d1d2+d3 ∈ [0, 1), by the Banach fixed-point theorem, we conclude that there exists
a unique fixed-point of Γ, or equivalently, a unique stationary MFG solution to (GMFG).
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Remark 1.3.1 (Existence and Uniqueness of the GMFG solution). (1) In general, there
may multiple optimal policies in Step A under a fixed mean-field information L. In this
case, the candidate fixed point(s) are the fixed point(s) of a set-valued map as described in
[100]. To simplify the analysis, we specify a rule in Step A to select one optimal policy to
ensure that Γ is an injection.

(2) In the MFG literature, the uniqueness of the MFG solution can be verified under
the small parameter condition [29] or the monotonicity condition [104]. Our condition of
d1d2 + d3 < 1 extends the small parameter condition in [29] for strict controls to relaxed
controls.

(3) Finally, Theorem 1.3.1 can be extended to a non-stationary setting, as will be shown
in Section 1.9.

Remark 1.3.2. Assumptions 1 and 2 can be more explicit in specific problem settings.
For instance, when the action space is the Euclidean space or its convex subset, explicit

conditions on P and r have been described for the linear-quadratic MFG (LQ-MFG) [60] and
later generalized in [7].

When the action space is finite, the following lemma explicitly characterizes Assumption
2.

Lemma 1.3.2. Suppose that maxs,a,L,s′ P (s′|s, a,L) ≤ c1, and that P (s′|s, a, ·) is c2-Lipschitz
in W1, i.e.,

|P (s′|s, a,L1)− P (s′|s, a,L2)| ≤ c2W1(L1,L2). (1.3.8)

Then in Assumption 2, d2 and d3 can be chosen as

d2 =
2diam(S)diam(A)|S|c1

dmin(A)
(1.3.9)

and d3 = diam(S)diam(A)c2
2

, respectively. Here dmin(A) = mina6=a′∈A ‖a− a′‖2, which is guaran-
teed to be positive when A is finite.

When entropy regularization is introduced into the system (see e.g., [7, 164]), Assumption
1 can be reduced to boundedness and Lipschitz continuity conditions on P and r as in Lemma
1.3.2. Moreover, Theorem 1.3.1 and all subsequent theoretical results hold whenever the
composed mapping Γ is contractive (in W1), independent of Assumptions 1 or 2. In Section
1.8.2, we numerically verify that the Γ mapping is contractive for various choices of the
model parameters in our tested problems.

1.4 Naive algorithm and stabilization techniques

In this section, we design algorithms for the GMFG. Since the reward and transition
distributions are unknown, this is simultaneously learning the system and finding the NE of
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the game. We will focus on the case with finite state and action spaces, i.e., |S|, |A| < ∞.
We will look for stationary (time independent) NEs. This stationarity property enables de-
veloping appropriate stationary reinforcement learning algorithms, suitable for an infinite
time horizon game. Instead of knowing the transition probability P and the reward r explic-
itly, the algorithms we propose only assume access to a simulator oracle, which is described
below. This is not restrictive in practice. For instance, in the ad auction example, one
may adopt the bid recommendation perspective of the publisher, say Google, Facebook or
Amazon, who acts as the auctioneer and owns the Ad slot inventory on its own Ad exchange
platform. In this case, a high quality auction simulator is typically built and maintained by
a team of the publisher. See also [144] for more examples.

Simulator oracle. For any policy π ∈ Π, given the current state s ∈ S, for any population
distribution L, one can obtain a sample of the next state s′ ∼ P (·|s, π(s),L), a reward
r = r(s, π(s),L), and the next population distribution L′ = Ps′,π(s′). For brevity, we denote
the simulator as (s′, r,L′) = G(s, π,L). This simulator oracle can be weakened to fit the
N -player setting, see Section 1.6.

In the following, we begin with a naive algorithm that simply combines the three-step
fixed point approach with general RL algorithms, and demonstrate that this algorithm can
be unstable (Section 1.4.1). We then propose some smoothing and projection techniques
to resolve the issue (Section 1.4.2). In Section 1.5.1 and Section 1.5.2, we design general
value-based and policy-based RL algorithms, and establish the corresponding convergence
and complexity results. These two algorithms include most of the RL algorithms in the
literature. We then illustrate by two concrete examples based on Q-learning and trust-region
policy optimization algorithms.

1.4.1 Naive algorithm and its issue

We follow the three-step fixed-point approach described in Section 1.3. Notice the
fact that with L fixed, Step A in Section 1.3 becomes a standard learning problem for
an infinite horizon discounted MDP. More specifically, the MDP to be solved is ML =
(S,A, PL, rL, γ), where PL(s′|s, a) = P (s′|s, a,L) and rL(s, a) = r(s, a,L). In general, for
an MDP M = (S,A, P, r, γ), for any policy π one can define its value functions V π

M(s) =
E [
∑∞

t=0 γ
tr(st, at)|s0 = s] and its Q-functions Qπ

M(s, a) = E [
∑∞

t=0 γ
tr(st, at)|s0 = s, a0 = a],

where st, at is the trajectory under policy π. One can also define the optimal Q-function as
the unique solution of the Bellman equation:

Q?
M(s, a) = E[r(s, a)] + γmax

a′

∑
s′∈S

P (s′|s, a)Q?
M(s′, a′)

for all s, a and its optimal value function V ?
M(s) = maxaQ

?
M(s, a) for all s. We also use the

shorthand V ?
L = V ?

ML and Q?
L = Q?

ML for notational brevity. Whenever the context is clear,
we may omit M, L and ML for notational convenience.
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Given the optimal Q-function Q?
L, one can obtain an optimal policy π?L with π?L(s) =

argmax-e(Q?
L(s, ·)). Here the argmax-e operator is defined so that actions with equal

maximum Q-values would have equal probabilities to be selected. Hereafter, we specify
Γ1 as a mapping to the aforementioned choice of the optimal policy, i.e., the s-component
Γ1(L)s = argmax-e(Q?

L(s, ·)) for any s ∈ S.
The population update in Step B can then be directly obtained from the simulator

G following policy π?L. Combining these two steps leads to the following naive algorithm
(Algorithm 1).

Algorithm 1 Naive Reinforcement Learning for GMFGs

1: Input: Initial population state-action pair L0

2: for k = 0, 1, · · · do
3: Obtain the optimal Q-function Qk(s, a) = Q?

Lk(s, a) of an MDP with dynamics
PLk(s

′|s, a) and reward distributions RLk(s, a).
4: Compute πk ∈ Π with πk(s) = argmax-e (Qk(s, ·)).
5: Sample s ∼ µk, where µk is the population state marginal of Lk, and obtain Lk+1 from

G(s, πk,Lk).
6: end for

Unfortunately, in practice, one cannot obtain the exact optimal Q-function Qk. In fact,
invoking any commonly used RL algorithm with the simulator G leads to an approximation
Q̂k of the actual Qk. This approximation error is then magnified by the discontinuous and
sensitive argmax-e, which eventually leads to an unstable algorithm (see Figure 1.4 for an
example of divergence). To see why argmax-e is not continuous, consider the following
simple example. Let x = (1, 1), then argmax-e(x) = (1/2, 1/2). For any ε > 0, let
yε = (1, 1− ε), then argmax-e(yε) = (1, 0). Hence limε→0 yε = x but

lim
ε→0

argmax-e(yε) 6= argmax-e(x).

This instability issue will be addressed by introducing smoothing and projection techniques.

1.4.2 Restoring stability

Smoothing techniques. To address the instability caused, we replace argmax-e with a
smooth function that is a good approximation to argmax-e while being Lipschitz continuous.
One such candidate is the softmax operator softmaxc : Rn → Rn, with

softmaxc(x)i =
exp(cxi)∑n
j=1 exp(cxj)

, i = 1, . . . , n,

for some positive constant c. The resulting policies are sometimes called Boltzmann policies,
and are widely used in the literature of reinforcement learning [11, 78].
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The softmax operator can be generalized to a wide class of operators. In fact, for positive
constants c, c′ > 0, one can consider a parametrized family Fc,c′ ⊆ {fc,c′ : Rn → Rn} of all
“smoothed” argmax-e’s, i.e., all fc,c′ : Rn → Rn that satisfies the following two conditions:

• Condition 1: fc,c′ is c-Lipschitz, i.e., ‖fc,c′(x)− fc,c′(y)‖2 ≤ c‖x− y‖2.

• Condition 2: fc,c′ is a good approximation of argmax-e, i.e.,

‖fc,c′(x)− argmax-e(x)‖2 ≤ 2n exp(−c′δ),

where δ = xmax − maxxj<xmax xj, xmax = maxi=1,...,n xi, and δ := ∞ when all xj are
equal.

Notice that Fc,c′ is closed under convex combinations, i.e., if fc,c′ , gc,c′ ∈ Fc,c′ , then for any
λ ∈ [0, 1], λfc,c′ + (1− λ)gc,c also satisfies the two conditions. Hence Fc,c′ is convex.

To have a better idea of what Fc,c′ looks like, we describe a subset Bc,c′ of Fc,c′ consisting
of the generalized softmax operator softmaxh : Rn → Rn, defined as

softmaxh(x)i =
exp(h(xi))∑n
j=1 exp(h(xj))

, i = 1, . . . , n, (1.4.1)

where h : R → R satisfies c′(x − y) ≤ h(x) − h(y) ≤ c(x − y) for any x ≥ y. When h
is continuously differentiable, a sufficient condition is that c′ ≤ h′(x) ≤ c. In particular, if
h(x) ≡ cx for some constant c > 0, the operator reduces to the classical softmax operator,
in which case we overload the notation to write softmaxh as softmaxc.

This operator is Lipschitz continuous and close to the argmax-e (see Lemmas 1.7.2
and 1.7.3 in Section 3.6), and in particular one can show that Bc,c′ ⊆ Fc,c′ . As a result,
even though smoothed (e.g., Boltzmann) policies are not optimal, the difference between
the smoothed and the optimal one can always be controlled by choosing a function h with
appropriate parameters c, c′. Note that other smoothing operators (e.g., Mellowmax [11],
which is a softmax operator with time-varying and problem dependent temperatures) may
also be considered.

Error control in updating L. Given the sub-optimality of the smoothed policy, one
needs to characterize the difference between the optimal policy and the non-optimal ones.
In particular, one can define the action gap between the best and the second best actions in
terms of the Q-value as

δs(L) := max
a′∈A

Q?
L(s, a′)− max

a/∈argmaxa∈AQ
?
L(s,a)

Q?
L(s, a) > 0.

Action gap is important for approximation algorithms [19], and is closely related to the
problem-dependent bounds for regret analysis in reinforcement learning and multi-armed
bandits, and advantage learning algorithms including A3C [116].
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The problem is: in order for the learning algorithm to converge in terms of L (Theorems
1.5.1 and 1.5.5), one needs to ensure a definite differentiation between the optimal policy and
the sub-optimal ones. This is problematic as the infimum of δs(L) over an infinite number
of L can be 0. To address this, the population distribution at step k, say Lk, needs to be
projected to a finite grid, called ε-net. The relation between the ε-net and action gaps is as
follows:

For any ε > 0, there exist a positive function φ(ε) and an ε-net Sε := {L(1), . . . ,L(Nε)}
⊆ P(S × A), with the properties that mini=1,...,Nε dTV (L,L(i)) ≤ ε for any L ∈ P(S × A),
and that maxa′∈AQ

?
L(i)(s, a

′) − Q?
L(i)(s, a) ≥ φ(ε) for any i = 1, . . . , Nε, s ∈ S, and any

a /∈ argmaxa∈AQ
?
L(i)(s, a).

Here the existence of ε-nets is trivial due to the compactness of the probability simplex
P(S ×A), and the existence of φ(ε) comes from the finiteness of the action set A.

In practice, φ(ε) often takes the form of Dεα with D > 0 and the exponent α > 0
characterizing the decay rate of the action gaps. In general, experiments are robust with
respect to the choice of ε-net.

In the next section, we propose value based and policy based algorithms for learning
GMFG.

1.5 RL Algorithms for (stationary) GMFGs

1.5.1 Value-based algorithms

We start by introducing the following definition.

Definition 1.5.1 (Value-based Guarantee). For an arbitrary MDP M, we say that an

algorithm has a value-based guarantee with parameters {C(i)
M, α

(i)
1 , α

(i)
2 , α

(i)
3 , α

(i)
4 }mi=1, if for

any ε, δ > 0, after obtaining

TM(ε, δ) =
m∑
i=1

C
(i)
M

(
1

ε

)α(i)
1
(

log
1

ε

)α(i)
2
(

1

δ

)α(i)
3
(

log
1

δ

)α(i)
4

(1.5.1)

samples from the simulator oracle G, with probability at least 1− 2δ, it outputs an approx-
imate Q-function Q̂TM(ε,δ) which satisfies ‖Q̂TM(ε,δ) − Q?‖∞ ≤ ε. Here the norm ‖ · ‖∞ is
understood element-wisely.

1.5.1.1 GMF-V

We now state the first main algorithm (Algorithm 2). It applies to any algorithm Alg
with a value-based guarantee.

Here ProjSε(L) = argminL(1),...,L(Nε)dTV (L(i),L). For computational tractability, it is

sufficient to choose Sε as a truncation grid so that projection of L̃k onto the ε-net reduces to
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Algorithm 2 GMF-V(Alg, fc,c′)

1: Input: Initial L0, ε-net Sε, temperatures c, c′ > 0, tolerances εk, δk > 0, k = 0, 1, . . . .
2: for k = 0, 1, · · · do
3: Apply Alg to find the approximate Q-function Q̂?

k = Q̂Tk of the MDP MLk , where
Tk = TMLk (εk, δk).

4: Compute πk(s) = fc,c′(Q̂
?
k(s, ·)).

5: Sample s ∼ µk (µk is the population state marginal of Lk), obtain L̃k+1 from
G(s, πk,Lk).

6: Find Lk+1 = ProjSε(L̃k+1)
7: end for

truncating L̃k to a certain number of digits. For instance, in experiments in Section 1.8, the
number of digits is chosen to be 4. Appropriate choices of the hyper-parameters c, c′, ε and
tolerances εk, δk (k ≥ 0) are given in Theorems 1.5.1. Our experiment shows the algorithm
is robust with respect to these hyper-parameters.

We next establish the convergence of the above GMF-V algorithm to an approximate
Nash equilibrium of (GMFG), with complexity analysis.

Theorem 1.5.1 (Convergence and complexity of GMF-V). Assume the same assumptions
as Theorem 1.3.1, and fc,c′ ⊆ Fc,c′. Suppose that Alg has a value-based guarantee with
parameters

{C(i)
M, α

(i)
1 , α

(i)
2 , α

(i)
3 , α

(i)
4 }mi=1.

For any ε, δ > 0, set δk = δ/Kε,η, εk = (k+1)−(1+η) for some η ∈ (0, 1] (k = 0, . . . , Kε,η−1),

and c ≥ c′ ≥ log(1/ε)
φ(ε)

. Then with probability at least 1− 2δ,

W1(LKε,η ,L?) ≤ C0ε.

Here Kε,η :=
⌈
2 max

{
(ηε/c)−1/η, logd(ε/max{diam(S)diam(A), c}) + 1

}⌉
is the number of

outer iterations, and the constant C0 is independent of δ, ε and η.
Moreover, the total number of samples T =

∑Kε,η−1
k=0 TMLk (δk, εk) is bounded by

T ≤
m∑
i=1

2α
(i)
2

2α
(i)
1 + 1

C
(i)
MK

2α
(i)
1 +1

ε,η (Kε,η/δ)
α
(i)
3 (log(Kε,η/δ))

α
(i)
2 +α

(i)
4 . (1.5.2)

The proof of Theorem 1.5.1 (in Section 1.7.4) depends on the Lipschitz continuity of
the smoothing operator fc,c′ , the closeness between fc,c′ and the argmax-e (Lemma 1.7.3 in
Section 1.7.3), and the complexity of Alg provided by the value-based guarantee.

1.5.1.2 GMF-V-Q: GMF-V with Q-learning

As an example of the GMF-V algorithm, we describe algorithm GMF-V-Q, a Q-learning
based GMF-V algorithm. For an MDP M = (S,A, P, r, γ), the synchronous Q-learning
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algorithm approximates the value iteration by stochastic approximation. At each step l,
with state s and action a, the system reaches state s′ according to the controlled dynamics,
and the Q-function approximation Ql is updated by

Q̂l+1(s, a) = (1− βl)Q̂l(s, a) + βl

[
r(s, a) + γmax

ā
Q̂l(s′, ā)

]
, ∀s ∈ S, a ∈ A, (1.5.3)

where Q̂0(s, a) = C for some constant C ∈ R for any s ∈ S and a ∈ A, and the step size βl
can be chosen as ([53])

βl = |l + 1|−h, (1.5.4)

with h ∈ (1/2, 1).
The corresponding synchronous Q-learning based algorithm with the standard softmax

operator is GMF-V-Q (Algorithm 3), and will be used in the experiment (Section 1.8).

Algorithm 3 Q-learning for GMFGs (GMF-V-Q)

1: Input: Initial L0, ε-net Sε, tolerances εk, δk > 0, k = 0, 1, . . . .
2: for k = 0, 1, · · · do
3: Perform synchronous Q-learning with stepsizes (1.5.4) for Tk = TMLk (εk, δk) itera-

tions to find the approximate Q-function Q̂?
k = Q̂Tk of the MDP MLk .

4: Compute πk ∈ Π with πk(s) = softmaxc(Q̂
?
k(s, ·)).

5: Sample s ∼ µk (µk is the population state marginal of Lk), obtain L̃k+1 from
G(s, πk,Lk).

6: Find Lk+1 = ProjSε(L̃k+1)
7: end for

Let us first recall the following sample complexity result for synchronous Q-learning
method.

Lemma 1.5.2 ([53]: sample complexity of synchronous Q-learning). For an MDP, say
M = (S,A, P, r, γ), suppose that the Q-learning algorithm takes step-sizes (1.5.4). Then
‖Q̂TM(δ,ε) − Q?

M‖∞ ≤ ε with probability at least 1 − 2δ. Here Q̂T is the T -th update in the
Q-learning updates (1.5.3), Q?

M is the (optimal) Q-function, and

TM(ε, δ) = Ω


V 2

max log
(
|S||A|Vmax

δβε

)
β2ε2


1
h

+

(
1

β
log

Vmax

ε

) 1
1−h

 ,

where β = (1−γ)/2, Vmax = Rmax/(1−γ), and Rmax is such that a.s. 0 ≤ r(s, a) ≤ Rmax.

This lemma implies immediately the value-based guarantee (as in Definition 1.5.1) and
the convergence for GMF-V-Q. Similar results can be established for asynchronous Q-learning
method, as shown in Section 1.10.2.
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Corollary 1.5.3. The synchronous Q-learning algorithm with appropriate choices of step-
sizes (cf. (1.5.4)) satisfies the value-based guarantee with parameters {C̃(i)

M, α
(i)
1 , α

(i)
2 , α

(i)
3 , α

(i)
4 }3

i=1,

where C
(i)
M(i = 1, 2, 3) are constants depending on |S|, |A|, Vmax, β and h, and

α
(1)
1 = 2/h, α

(1)
2 = 1/h, α

(1)
3 = α

(1)
4 = 0;

α
(2)
1 = 2/h, α

(2)
2 = α

(2)
3 = 0 and α

(2)
4 = 1/h;

α
(3)
1 = 0, α

(3)
2 = 1/(1− h), α

(3)
3 = 0 and α

(3)
4 = 0.

In addition, assume the same assumptions as Theorem 1.3.1, then for Algorithm 3 with syn-
chronous Q-learning method, with probability at least 1−2δ, W1(LKε,η ,L?) ≤ C0ε, where Kε,η

is defined as in Theorem 1.5.1. And the total number of samples T =
∑Kε,η−1

k=0 TMLk (εk, δk)
is bounded by

T ≤ O

(
K

4
h

+1
ε,η

(
log

Kε,η

δ

) 1
h

+

(
log

Kε,η

δ

) 1
1−h
)
.

1.5.2 Policy-based algorithms

In addition to algorithms with value-based guarantees (cf. Definition 1.5.1), there are
also numerous algorithms with policy-based guarantees.

Definition 1.5.2 (Policy-based Guarantee). For an arbitrary MDP M, we say that an

algorithm has a policy-based guarantee with parameters {C(i)
M, α

(i)
1 , α

(i)
2 , α

(i)
3 , α

(i)
4 }mi=1, if for

any ε, δ > 0, after obtaining

TM(ε, δ) =
m∑
i=1

C
(i)
M

(
1

ε

)α(i)
1
(

log
1

ε

)α(i)
2
(

1

δ

)α(i)
3
(

log
1

δ

)α(i)
4

(1.5.5)

samples from the simulator oracle G, with probability at least 1− 2δ, it outputs an approx-
imate policy πTM(ε,δ), which satisfies V ?

M(s)− V πTM(ε,δ)

M (s) ≤ ε, ∀ s ∈ S.

1.5.2.1 GMF-P

Before we present policy-based RL algorithms, let us first establish a connection between
policy-based and value-based guarantees.

To start, take any policy π ∈ Π, consider the following synchronous temporal difference
(TD) iterations:

Q̃l+1
π (s, a) = (1− βl)Q̃l

π(s, a) + βl

[
r(s, a) + γQ̃l

π(s′, a′)
]
, ∀s ∈ S, a ∈ A, (1.5.6)

where a′ ∼ π(s′), Q̃0
π(s, a) = C for some constant C ∈ R and any s ∈ S and a ∈ A, and the

step size βl = (l + 1)−h for some h ∈ (1/2, 1).
Then we have



CHAPTER 1. LEARNING MEAN-FIELD GAMES 19

Lemma 1.5.4. Suppose that the algorithm Alg satisfies a policy-based guarantee with pa-
rameters {C(i)

M, α
(i)
1 , α

(i)
2 , α

(i)
3 , α

(i)
4 }mi=1. Let Q̃l

π be defined by (1.5.6). Then for any δ ∈ (0, 1)

and ε > 0, with probability at least 1− 2δ,
∥∥∥Q̃l

πTM(ε,δ/2)
−Q?

M

∥∥∥
∞
≤ ε if

l = Ω


Vmax log

(
|S||A|Vmax

δβ2ε

)
β4ε2

1/h

+

(
1

β
log

Vmax

βε

)1/(1−h)

 , (1.5.7)

where Vmax = Rmax/(1− γ) and β = (1− γ)/2.
Consequently, the algorithm Alg (combined with TD updates (1.5.6)) also has a value-

based guarantee with parameters {C̃(i)
M, α

(i)
1 , α

(i)
2 , α

(i)
3 , α

(i)
4 }m+3

i=1 , where C̃
(i)
M is some constant

multiple of C
(i)
M (i = 1, . . . ,m), C̃

(m+i)
M (i = 1, 2, 3) are constants depending on Vmax, |S|,

|A|, β and h, and we have

α
(m+1)
1 = 2/h, α

(m+1)
2 = 1/h, α

(m+1)
3 = α

(m+1)
4 = 0;

α
(m+2)
1 = 2/h, α

(m+2)
2 = α

(m+2)
3 = 0 and α

(m+2)
4 = 1/h;

α
(m+3)
1 = 0, α

(m+3)
2 = 1/(1− h), α

(m+3)
3 = 0 and α

(m+3)
4 = 0.

(1.5.8)

The above lemma indicates that any algorithm with a policy-based guarantee also satisfies
a value-based guarantee with similar parameters (when combined with the TD updates).
The policy-based algorithm GMF-P (Algorithm 4) makes use of Lemma 1.5.4 to select the
hyper-parameter l so that the resulting Q̃l

πTM(ε,δ/2)
forms a good value-based certificate.

Algorithm 4 GMF-P(Alg, fc,c′)

1: Input: Initial L0, ε-net Sε, temperatures c, c′ > 0, tolerances εk, δk > 0, k = 0, 1, . . . .
2: for k = 0, 1, · · · do
3: Apply Alg to find the approximate policy π̂k = πTk of the MDPMk :=MLk , where

Tk = TMk
(εk, δk/2).

4: Compute Q̃lk
π̂k

using TD updates (1.5.6) for MDP Mk, with lk satisfying (1.5.7)
(with ε and δ replaced by εk and δk/2, respectively).

5: Compute πk(s) = fc,c′(Q̃
lk
π̂k

(s, ·)).
6: Sample s ∼ µk (µk is the population state marginal of Lk), obtain L̃k+1 from

G(s, πk,Lk).
7: Find Lk+1 = ProjSε(L̃k+1)
8: end for

We next present the convergence property for the GMF-P algorithm by combining the
proofs of Lemma 1.5.4 and Theorem 1.5.1.
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Theorem 1.5.5 (Convergence and complexity of GMF-P). Assume the same assumptions
as in Theorem 1.3.1, and in addition that fc,c′ ⊆ Fc,c′. Suppose that Alg has a policy-based
guarantee with parameters

{C(i)
M, α

(i)
1 , α

(i)
2 , α

(i)
3 , α

(i)
4 }mi=1.

Then for any ε, δ > 0, set δk = δ/Kε,η, εk = (k + 1)−(1+η) for some η ∈ (0, 1] (k =

0, . . . , Kε,η − 1), and c ≥ c′ ≥ log(1/ε)
φ(ε)

, with probability at least 1− 2δ,

W1(LKε,η ,L?) ≤ C0ε.

Here Kε,η :=
⌈
2 max

{
(ηε/c)−1/η, logd(ε/max{diam(S)diam(A), c}) + 1

}⌉
is the number of

outer iterations, and the constant C0 is independent of δ, ε and η.
Moreover, the total number of samples T =

∑Kε,η−1
k=0 TMLk (δk, εk) is bounded by

T ≤
m+3∑
i=1

2α
(i)
2

2α
(i)
1 + 1

C̃
(i)
MK

2α
(i)
1 +1

ε,η (Kε,η/δ)
α
(i)
3 (log(Kε,η/δ))

α
(i)
2 +α

(i)
4 , (1.5.9)

where the parameters {C̃(i)
M, α

(i)
1 , α

(i)
2 , α

(i)
3 , α

(i)
4 }m+3

i=1 are defined in Lemma 1.5.4.

1.5.2.2 GMF-P-TRPO: GMF-P with TRPO

A special form of the GMF-P algorithm utilizes the trust region policy optimization
(TRPO) algorithm [140, 141]. We call it GMF-P-TRPO.

Sample-based TRPO [141] assumes access to a ν-restart model. That is, it can only
access sampled trajectories and restarts according to the distribution ν. Here we pick ν

such that Cπ? :=

∥∥∥∥dπ?UnifS
ν

∥∥∥∥
∞

= maxs∈S

∣∣∣∣dπ?UnifS
(s)

ν(s)

∣∣∣∣ < ∞, where dπρ = (1 − γ)ρ(I − γP π)−1 and

UnifS is the uniform distribution on set S. Sample-based TRPO samples M0 trajectories
per episode. The initial state s0 at the beginning of each episode is sampled from ν. In
every trajectory m (m = 1, 2, · · · ,M0) of the l-th episode, it first samples sm ∼ dπlν and
takes an action am ∼ UnifA where UnifA is the uniform distribution on the set A. Then,
by following the current πl, it estimates Qπl(sm, am) using a rollout. Denote this estimate
as Q̂πl(sm, am,m) and observe that it is (nearly) an unbiased estimator of Qπl(sm, am). We
assume that each rollout runs sufficiently long so that the bias is sufficiently small. Sample-
Based TRPO updates the policy at the end of the l-th episode, by the following proximal
problem

πl+1 ∈ arg max
π∈∆

|S|
A

{
1

M0

M0∑
m=1

1

tl(1− γ)
Bw(sm; π, πl) + 〈∇̂V πl [m], π(sm)− πl(sm)〉

}
,

where the estimation of the gradient is

∇̂V πl [m] :=
1

1− γ |A|Q̂
πl(sm, ·,m) ◦ I{·=am}.
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Given two policies π1 and π2, we denote their Bregman distance associated with a strongly
convex function w as Bw(s; π1, π2) = Bw(π1(s), π2(s)), where Bw(x, y) := w(x) − w(y) −
〈∇w(y), x− y〉 and πi(s) ∈ P (A) (i = 1, 2). Denote Bw(π1, π2) ∈ R|S| as the corresponding
state-wise vector. Here we consider two common cases for w: when w(x) = 1

2
‖x‖2

2 is the
Euclidean distance, Bw(x, y) = 1

2
‖x − y‖2

2; when w(x) = H(x) is the negative entropy,
Bw(x, y) = dKL(x||y). We refer to [141, Section 6.2] for more detailed discussion on Sample-
based TRPO.

The above guarantee follows from the sample complexity result below by specifying µ :=
UnifS . Notice that here for any µ ∈ P(S), we define V ?(µ) :=

∑
s∈S µ(s)V ?(s), and similarly

V πk(µ) :=
∑

s∈S µ(s)V πk(s).
The sample complexity of TRPO algorithm can be characterized as below.

Lemma 1.5.6 (Theorem 5 in [141]: sample complexity of TRPO). Let {πl}l≥0 be the se-
quence generated by Sample-Based TRPO, using

M0 ≥ Ω(
|A|2C2(|S| log |A|+ log 1/δ)

(1− γ)2ε2
)

samples in each episode, with tl = (1−γ)

Cω,1C
√
l+1

. Let {V N
best}N≥0 be the sequence of best achieved

values, V N
best(µ) := maxl=0,1,··· ,N V

πl(µ), where µ ∈ P(S). Then with probability greater than
1− δ for every ε > 0, the following holds for all N ≥ 1:

V ?(µ)− V N
best(µ) ≤ O

(
Cω,1C

(1− γ)2
√
N

+
Cπ?ε

(1− γ)2

)
.

Here C > 0 is the upper bound on the reward function r, Cw,1 =
√
|A| in the euclidean

case and Cw,1 = 1 in the non-euclidean case, Cw,2 = 1 for the euclidean case and Cw,2 = |A|2
for the non-euclidean case. Note that unlike the case of Q-learning, here we are only
guaranteed to have certain iterate among iterations 0, . . . , N that satisfy the desired sub-
optimality bound. Note that this is a common pattern of the theoretical results for policy
optimization algorithms in the RL literature [4, 161], unless the (oracle) access to exact
policy gradients is assumed [114]. For simplicity, hereafter we assume an oracle access to
such an iterate after running TRPO. In practice, with additional (polynomial number of)
samples, one can explicitly identify a single policy satisfying the desired bound with high
probability; see e.g., the two-phase technique in [65].

Note that [141, Theorem 5] has both regularized version and unregularized version of
TRPO. Here we only adopt the unregularized version which fits the framework of Algorithm
4. For more materials on regularized MDPs and reinforcement learning, we refer the readers
to [122, 63, 48].

Based on the sample complexity in Lemma 1.5.6, the following policy-based guarantee
for TRPO algorithm and the convergence result for GMF-P-TRPO can be obtained.
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Corollary 1.5.7. Let tl = (1−γ)

Cω,1C
√
l+1

, then TRPO algorithm satisfies the policy-based guaran-

tee with parameters {C̃(i)
M, α

(i)
1 , α

(i)
2 , α

(i)
3 , α

(i)
4 }2

i=1, where C
(i)
M(i = 1, 2) are constants depending

on |S|, |A|, Vmax, β and h, and we have:

α
(1)
1 = 5/2, α

(1)
j = 0 for j = 2, 3, 4,

α
(2)
1 = 5/2, α

(2)
4 = 1, α

(2)
2 = α

(2)
3 = 0.

In addition, under same assumptions as Theorem 1.3.1, then for Algorithm 4 using TRPO
method, with probability at least 1 − 2δ, W1(LKε,η ,L?) ≤ C0ε, where Kε,η is defined as in

Theorem 1.5.1. And the total number of samples T =
∑Kε,η−1

k=0 TMLk (δk, εk) is bounded by

T ≤ O

(
K6
ε,η

(
log

Kε,η

δ

)
+K

4
h

+1
ε,η

(
log

Kε,η

δ

) 1
h

+

(
log

Kε,η

δ

) 1
1−h
)
.

1.6 Applications to N-player Games

In this section, we discuss a potential application of our modeling and approach to N -
player settings. To this end, we consider extensions of Algorithms 2 and 4 with weaker
assumptions on the simulator access. In particular, we weaken the simulator oracle assump-
tion in Section 1.4 as follows.

Weak simulator oracle. For each player i, given any policy π ∈ Π, the current state
si ∈ S, for any empirical population state-action distribution LN , one can obtain a sample
of the next state s′i ∼ PLN (·|si, π(si)) = P (·|si, π(si),LN) and a reward r = rLN (si, π(si)) =
r(si, π(si),LN). For brevity, we denote the simulator as (s′i, r) = GW (si, π,LN).

We say that LN is an empirical population state-action distribution of N -players if for
each s ∈ S, a ∈ A, LN(s, a) = 1

N

∑N
i=1 Isi=s,ai=a for some state-action profile of {si, ai}Ni=1.

Equivalently, this holds if NLN(s, a) is a non-negative integer for each s ∈ S, a ∈ A, and∑
s,a LN(s, a) = 1. We denote the set of empirical population state-action distributions as

EmpN .

RL algorithms with access only to GW . Compared to the original simulator oracle G,
the weak simulator GW only accepts empirical population state-action distributions as inputs,
and does not directly output the next (empirical) population state-action distribution.

To make use of the simulator GW , we modify Algorithm 2 and Algorithm 4 to algorithms
(Algorithms 5 and 6). In particular, see Step 6 in Algorithm 5 and Step 7 in Algorithm 6
for generating empirical distributions from simulator GW .

One can observe that EmpN already serves as an 1/N -net. So one can directly use it
without additional projections. The definition of Lk also makes sure that Lk ∈ EmpN as
required for the input of the weaker simulator.
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Algorithm 5 GMF-VW(Alg, fc,c′): weak simulator

1: Input: Initial L0, temperatures c, c′ > 0, tolerances εk, δk > 0, k = 0, 1, . . . .
2: for k = 0, 1, · · · do
3: Apply Alg to find the approximate Q-function Q̂?

k = Q̂Tk of the MDP MLk , where
Tk = TMLk (εk, δk).

4: Compute πk(s) = fc,c′(Q̂
?
k(s, ·)).

for i = 1, 2, · · · , N do

6: Sample si
i.i.d.∼ µk, then obtain s′i i.i.d. from GW (si, πk,Lk) and a′i

i.i.d.∼ πk(s
′
i).

end for
Compute Lk+1 with Lk+1(s, a) = 1

N

∑N
i=1 Is′i=s,a′i=a.

9: end for

Algorithm 6 GMF-PW(Alg, fc,c′): weak simulator

1: Input: Initial L0, temperatures c, c′ > 0, tolerances εk, δk > 0, k = 0, 1, . . . .
2: for k = 0, 1, · · · do
3: Apply Alg to find the approximate policy π̂k = πTk of the MDPMk :=MLk , where

Tk = TMLk (εk, δk/2).

4: Compute Q̃lk
π̂k

using TD updates (1.5.6) for MDP Mk, with lk satisfying (1.5.7)
(with ε and δ replaced by εk and δk/2, respectively).

5: Compute πk(s) = fc,c′(Q̂
π̂k
Mk,Mk,lk

(s, ·)).
for i = 1, 2, · · · , N do

7: Sample si
i.i.d.∼ µk, then obtain s′i i.i.d. from GW (si, πk,Lk) and a′i

i.i.d.∼ πk(s
′
i).

end for
Compute Lk+1 with Lk+1(s, a) = 1

N

∑N
i=1 Is′i=s,a′i=a.

10: end for

Convergence results similar to Theorems 1.5.1 and 1.5.5 can be obtained for Algorithms 5
and 6, respectively. (See Section 1.10.3.) Here the major difference is an additional O(1/

√
N)

term in the finite step error bound. It is worth mentioning that O(1/
√
N) is consistent with

the literature on MFG approximation errors of finite N -player games [87].

1.7 Proof of the main results

1.7.1 Proof of Lemma 1.3.2

In this section, we provide the proof of Lemma 1.3.2.
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Proof. [Proof of Lemma 1.3.2] We begin by noticing that L′ = Γ2(π,L) can be expanded
and computed as follows:

µ′(s′) =
∑

s∈S,a∈A
µ(s)P (s′|s, a,L)π(a|s), L′(s′, a′) = µ′(s′)π(a′|s′), (1.7.1)

where µ is the state marginal distribution of L.
Now by the inequalities (1.10.3), we have

W1(Γ2(π1,L),Γ2(π2,L)) ≤ diam(S ×A)dTV (Γ2(π1,L),Γ2(π2,L))

=
diam(S ×A)

2

∑
s′∈S,a′∈A

∣∣∣∣∣ ∑
s∈S,a∈A

µ(s)P (s′|s, a,L) (π1(a|s)π1(a′|s′)− π2(a|s)π2(a′|s′))
∣∣∣∣∣

≤diam(S ×A)

2
max
s,a,L,s′

P (s′|s, a,L)
∑

s,a,s′,a′

µ(s)(π1(a|s) + π2(a|s))|π1(a′|s′)− π2(a′|s′)|

≤diam(S ×A)

2
max
s,a,L,s′

P (s′|s, a,L)
∑
s′,a′

|π1(a′|s′)− π2(a′|s′)| · (1 + 1)

=2diam(S ×A) max
s,a,L,s′

P (s′|s, a,L)
∑
s′

dTV (π1(s′), π2(s′))

≤2diam(S ×A) maxs,a,L,s′ P (s′|s, a,L)|S|
dmin(A)

D(π1, π2) =
2diam(S)diam(A)|S|c1

dmin(A)
D(π1, π2).

(1.7.2)

Similarly, we have

W1(Γ2(π,L1),Γ2(π,L2)) ≤ diam(S ×A)dTV (Γ2(π,L1),Γ2(π,L2))

=
diam(S ×A)

2

∑
s′∈S,a′∈A

∣∣∣∣∣ ∑
s∈S,a∈A

µ(s)π(a|s)π(a′|s′) (P (s′|s, a,L1)− P (s′|s, a,L2))

∣∣∣∣∣
≤diam(S ×A)

2

∑
s,a,s′,a′

µ(s)π(a|s)π(a′|s′) |P (s′|s, a,L1)− P (s′|s, a,L2)|

≤diam(S)diam(A)c2

2
.

(1.7.3)

This completes the proof.

1.7.2 Proof of Lemma 1.5.4

For notation simplicity, in the following analysis we fix the MDP and omit the notation
M.

We begin by establishing the convergence rate of the synchronous TD updates (1.5.6).
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Lemma 1.7.1. Take Q̃l
π from (1.5.6). Then for any δ ∈ (0, 1) and ε > 0, with probability

at least 1− δ, ‖Q̃l
πT (ε,δ)

−QπT (ε,δ)‖∞ ≤ ε if

l = Ω


Vmax log

(
|S||A|Vmax

δβε

)
β2ε2

1/h

+

(
1

β
log

Vmax

ε

)1/(1−h)

 , (1.7.4)

where Vmax = Rmax/(1− γ) and β = (1− γ)/2.

The proof is adapted from that of [53, Theorem 2], with the max term in the Bellman
operator modified to actions sampled from the current policy π. The details are omitted.

Proof. [Proof of Lemma 1.5.4] First, if V ?(s′)− V πT (ε,δ/2)(s′) ≤ ε, then

|QπT (ε,δ/2)(s, a)−Q?(s, a)| = γ

∣∣∣∣∣∑
s′∈S

P (s′|s, a)V πT (ε,δ/2)(s′)−
∑
s′∈S

P (s′|s, a)V ?(s′)

∣∣∣∣∣
≤ γ

∑
s′∈S

P (s′|s, a) |V πT (ε,δ/2)(s′)− V ?(s′)| ≤ γε < ε.

(1.7.5)

for any s ∈ S, a ∈ A. Since Alg is assumed to satisfying the policy-based guarantee, (1.7.5)
holds with probability at least 1− δ.

In addition, by Lemma 1.7.1, whenever l satisfies (1.5.7), with probability at least 1 −
δ/2 ≥ 1− δ,

‖Q̃l
πT (ε,δ/2)

−QπT (ε,δ/2)‖∞ ≤ (1− γ)ε. (1.7.6)

Combining (1.7.5) and (1.7.6), then for any l satisfying (1.5.7), with probability at least
1− 2δ, we have

‖Q̃l
πT (ε,δ/2)

−Q?‖∞ ≤ γε+ (1− γ)ε = ε.

The above result shows that for any δ ∈ (0, 1) and ε > 0, after obtaining T (ε, δ/2)+|S||A|l
samples (with l satisfying the lower bound (1.5.7)) from the simulator, with probability at
least 1 − 2δ, it outputs an approximate Q-function Q̃l

πT (ε,δ/2)
which satisfies ‖Q̃l

πT (ε,δ/2)
−

Q?‖∞ ≤ ε. Thus Alg also has a value-based guarantee with parameters

{C̃(i)
M, α

(i)
1 , α

(i)
2 , α

(i)
3 , α

(i)
4 }m+3

i=1 , (1.7.7)

specified in (1.5.8). Here the first m groups of parameters come from T (ε, δ/2) while the last
three groups of parameters come from |S||A|l (with the lower bound (1.5.7) of l plugged in
here).
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1.7.3 Proof of Bc,c′ ⊆ Fc,c′
Lemma 1.7.2. Suppose that h : R→ R satisfies h(a)− h(b) ≤ c(a− b) for any a ≥ b ∈ R.
Then the softmax function softmaxh is c-Lipschitz, i.e., ‖softmaxh(x)− softmaxh(y)‖2 ≤
c‖x− y‖2 for any x, y ∈ Rn.

Proof. [Proof of Lemma 1.7.2] Notice that softmaxh(x) = softmax(h̃(x)), where

softmax(x)i =
exp(xi)∑n
j=1 exp(xj)

(i = 1, . . . , n)

is the standard softmax function and h̃(x)i = h(xi) for i = 1, . . . , n. Now since softmax is
1-Lipschitz continuous (cf. [62, Proposition 4]), and h̃ is c-Lipschitz continuous, we conclude
that the composition softmax ◦ h̃ is c-Lipschitz continuous.

Notice that for a finite set X ⊆ Rk and any two (discrete) distributions ν, ν ′ over X , we
have

W1(ν, ν ′) ≤ diam(X )dTV (ν, ν ′) =
diam(X )

2
‖ν − ν ′‖1 ≤

diam(X )
√
|X |

2
‖ν − ν ′‖2, (1.7.8)

where in computing the `1-norm, ν, ν ′ are viewed as vectors of length |X |.
Lemma 1.7.2 implies that for any x, y ∈ R|X |, when softmaxc(x) and softmaxc(y) are

viewed as probability distributions over X , we have

W1(softmaxc(x), softmaxc(y)) ≤ diam(X )
√
|X |c

2
‖x− y‖2 ≤

diam(X )|X |c
2

‖x− y‖∞.

Lemma 1.7.3. Suppose that h : R→ R satisfies c′(a− b) ≤ h(a)− h(b) for any a ≤ b ∈ R.
Then for any x ∈ Rn, the distance between the softmaxh and the argmax-e mapping is
bounded by

‖softmaxh(x)− argmax-e(x)‖2 ≤ 2n exp(−c′δ),
where δ = xmax −maxxj<xmax xj, xmax = maxi=1,...,n xi, and δ :=∞ when all xj are equal.

Similar to Lemma 1.7.2, Lemma 1.7.3 implies that for any x ∈ R|X |, viewing softmaxh(x)
as probability distributions over X leads to

W1(softmaxh(x), argmax-e(x)) ≤ diam(X )|X | exp(−cδ).
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Proof. [Proof of Lemma 1.7.3] Without loss of generality, assume that x1 = x2 = · · · = xm =
maxi=1,...,n xi = x? > xj for all m < j ≤ n. Then

argmax-e(x)i =

{
1
m
, i ≤ m,

0, otherwise.

softmaxh(x)i =


eh(x

?)

meh(x
?)+

∑n
j=m+1 e

h(xj)
, i ≤ m,

eh(xi)

meh(x
?)+

∑n
j=m+1 e

h(xj)
, otherwise.

Therefore

‖softmaxh(x)− argmax-e(x)‖2 ≤ ‖softmaxh(x)− argmax-e(x)‖1

=m

(
1

m
− eh(x?)

meh(x?) +
∑n

j=m+1 e
h(xj)

)
+

∑n
i=m+1 e

h(xi)

meh(x?) +
∑n

j=m+1 e
h(xj)

=
2
∑n

i=m+1 e
h(xi)

meh(x?) +
∑n

i=m+1 e
h(xi)

=
2
∑n

i=m+1 e
−c′δi

m+
∑n

i=m+1 e
−cδi

≤ 2

m

n∑
i=m+1

e−c
′δi ≤ 2(n−m)

m
e−c

′δ ≤ 2ne−c
′δ,

with δi = x? − xi.

We are now ready to present the proofs of Theorems 1.5.1 and 1.5.5.

1.7.4 Proof of Theorems 1.5.1 and 1.5.5

Proof. [Proof of Theorem 1.5.1] Here we prove the case when we are using GMF-V and Alg

has a value-based guarantee. Define Γ̂k1(Lk) := fc,c′
(
Q̂?
k

)
. In the following, π = fc,c′(QL) is

understood as the policy π with π(s) = fc,c′(QL(s, ·)). Let L? be the population state-action

pair in a stationary NE of (GMFG). Then πk = Γ̂k1(Lk). Denoting d := d1d2 + d3, we see

W1(L̃k+1,L?) = W1(Γ2(πk,Lk),Γ2(Γ1(L?),L?))
≤W1(Γ2(Γ1(Lk),Lk),Γ2(Γ1(L?),L?)) +W1(Γ2(Γ1(Lk),Lk),Γ2(Γ̂k1(Lk),Lk))
≤W1(Γ(Lk),Γ(L?)) + d2D(Γ1(Lk), Γ̂k1(Lk))
≤(d1d2 + d3)W1(Lk,L?) + d2D(argmax-e(Q?

Lk), fc,c′(Q̂
?
k))

≤dW1(Lk,L?) + d2D(fc,c′(Q̂
?
k), fc,c′(Q

?
Lk))

+ d2D(argmax-e(Q?
Lk), fc,c′(Q

?
Lk))

≤dW1(Lk,L?) +
cd2diam(A)|A|

2
‖Q̂?

k −Q?
Lk‖∞ + d2D(argmax-e(Q?

Lk), fc,c′(Q
?
Lk)).
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Since Lk ∈ Sε by the projection step, by Lemma 1.7.3 and the algorithm Alg has a policy-
based guarantee, with the choice of Tk = TMLk (δk, εk)), we have, with probability at least
1− 2δk,

W1(L̃k+1,L?) ≤ dW1(Lk,L?) +
cd2diam(A)|A|

2
εk + d2diam(A)|A|e−c′φ(ε). (1.7.9)

Finally, with probability at least 1− 2δk,

W1(Lk+1,L?) ≤ W1(L̃k+1,L?) +W1(L̃k+1,ProjSε(L̃k+1))

≤ dW1(Lk,L?) +
cd2diam(A)|A|

2
εk + d2diam(A)|A|e−c′φ(ε) + ε.

This implies that with probability at least 1− 2
∑K−1

k=0 δk,

W1(LK ,L?) ≤dKW1(L0,L?) +
cd2diam(A)|A|

2

K−1∑
k=0

dK−kεk

+
(d2diam(A)|A|e−c′φ(ε) + ε)(1− dK)

1− d .

(1.7.10)

Since εk is summable, we have supk≥0 εk <∞,

K−1∑
k=0

dK−kεk ≤
supk≥0 εk

1− d db(K−1)/2c +
∞∑

k=d(K−1)/2e

εk.

Now plugging in K = Kε,η, with the choice of δk and c = log(1/ε)
φ(ε)

, and noticing that d ∈ [0, 1),
we have with probability at least 1− 2δ,

W1(LKε,η ,L?) ≤dKε,ηW1(L0,L?)

+
cd2diam(A)|A|

2

supk≥0 εk

1− d db(Kε,η−1)/2c +
∞∑

k=d(Kε,η−1)/2e

εk


+

(d2diam(A)|A|+ 1)ε

1− d .

(1.7.11)

Setting εk = (k + 1)−(1+η), then when Kε,η ≥ 2(logd(ε/c) + 1),

supk≥0 εk

1− d db(Kε,η−1)/2c ≤ ε/c

1− d.

Similarly, when Kε,η ≥ 2(ηε/c)−1/η,

∞∑
k=

⌈
Kε,η−1

2

⌉ εk ≤ ε/c.
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Finally, when Kε,η ≥ logd(ε/(diam(S)diam(A))), dKε,ηW1(L0,L?) ≤ ε, since W1(L0,L?) ≤
diam(S ×A)= diam(S)diam(A).

In summary, if Kε,η = d2 max{(ηε/c)−1/η, logd(ε/max{diam(S)diam(A), c}) + 1}e, then
with probability at least 1− 2δ,

W1(LKε,η ,L?) ≤
(

1 +
d2diam(A)|A|(2− d)

2(1− d)
+

(d2diam(A)|A|+ 1)

1− d

)
ε = O(ε). (1.7.12)

Finally, if we are using GMF-V and have assumed that Alg satisfies a value-based guar-
antee with parameters {C(i)

M, α
(i)
1 , α

(i)
2 , α

(i)
3 , α

(i)
4 }mi=1, plugging in εk and δk into TML(δk, εk),

and noticing that k≤Kε,η and
∑Kε,η−1

k=0 (k + 1)α ≤ Kα+1
ε,η

α+1
, we have

T =

Kε,η∑
k=0

m∑
i=1

C
(i)
M

(
1

εk

)α(i)
1
(

log
1

εk

)α(i)
2
(

1

δk

)α(i)
3
(

log
1

δk

)α(i)
4

=

Kε,η∑
k=0

m∑
i=1

(1 + η)α
(i)
2 C

(i)
M(k + 1)α

(i)
1 (1+η)(log(k + 1))α

(i)
2 (Kε,η/δ)

α
(i)
3 (log(Kε,η/δ))

α
(i)
4

≤
m∑
i=1

(1 + η)α
(i)
2

α
(i)
1 (1 + η) + 1

C
(i)
MK

α
(i)
1 (1+η)+1

ε,η (log(Kε,η + 1))α
(i)
2 (Kε,η/δ)

α
(i)
3 (log(Kε,η/δ))

α
(i)
4

≤
m∑
i=1

2α
(i)
2

2α
(i)
1 + 1

C
(i)
MK

2α
(i)
1 +1

ε,η (Kε,η/δ)
α
(i)
3 (log(Kε,η/δ))

α
(i)
2 +α

(i)
4 ,

(1.7.13)

which completes the proof of the value-based case.

Proof. [Proof of Theorem 1.5.5] If we use GMF-P and assume that Alg has the policy-based
guarantee, then by Lemma 1.5.4,

P
(∥∥∥Q̃lk

π̂k
−Q?

Lk

∥∥∥
∞
> ε
)
≤ 2δ. (1.7.14)

Hence one can simply replace Q̂?
k by Q̃lk

π̂k
in the proof of Theorem 1.5.1, and obtain the same

bound on W1(LKε,η ,L?) (cf. (1.7.12)). The only difference is that in each iteration, the

required number of samples TML now has parameters {C̃(i)
M, α

(i)
1 , α

(i)
2 , α

(i)
3 , α

(i)
4 }m+3

i=1 as defined
in Lemma 1.5.4. Hence repeating the proof of (1.7.13) leads to (1.5.9).

1.8 Experiments

In this section, we report the performance of the proposed GMF-V-Q Algorithm and
GMF-P-TRPO Algorithm with an equilibrium pricing model (see Section 1.2.3). The objec-
tives of the experiments include 1) testing the convergence and stability of both GMF-V-Q
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and GMF-P-TRPO in the GMFG setting, 2) empirically verifying the contractive property
of mapping Γ, and 3) comparing GMF-V-Q and GMF-P-TRPO with existing multi-agent re-
inforcement learning algorithms, including the Independent Learner (IL) algorithm [150, 85]
and the MF-Q3 algorithm [167]. Another set of experiments for the repeated auction model
(see Section 1.2.3) is demonstrated in the short version [76].

1.8.1 Set-up and parameter configuration

We introduce two testing environments in our numerical experiments, one is the GMFG
environment with a continuum of agents (i.e., infinite number of agents) descried in Section
1.2.3 and the other one is an N-player environment with a weak simulator.

Equilibrium price as an N-player game. We also consider an N -player game version of
the equilibrium price model, which is the GMFG version described above with an N -player
weak simulator oracle as described in Section 1.6. In particular, Take N companies. At each
time t, company i decides a quantity qit for production and a quantity hit to replenish the
inventory. Let sit denote the current inventory level of company i at time t. Then similar to
Section 1.2.3, the inventory level evolves according to

sit+1 = sit −min{qit, sit}+ ht

and the reward of company i at time t is given by

rit = (pt − c0)qit − c1(qit)
2 − c2h

i
t − (c2 + c3) max{qit − sit, 0} − c4s

i
t.

Here pt, the price of the product at time t, is determined according to the supply-demand
equilibrium on the market. The total supply is

∑N
i=1 q

i
t, while the total demand is assumed to

be dNp
−σ
t , where dN = dN is supposed to be linearly growing as N grows, i.e., the number of

customers grows proportionally to the number of producers in the market. Then by equating
supply and demand, we obtain that

1

N

N∑
i=1

qit = dp−σt ,

and by taking the limit N →∞, we obtain the mean-field counterpart (1.2.11).
In this setting, accordingly, we test the performance of GMF-VW-Q, which is GMF-

VW (Algorithm 5) with synchronous Q-learning and the standard softmax operator (cf.
Algorithm 7) and GMF-PW-TRPO, which is GMF-PW (Algorithm 6) with TRPO and the
standard softmax operator.4

3Note that MF-Q is designed for global states and coupled local actions, while in our equilibrium price
example we have coupled local (private) states and decoupled local actions. To suit this setting, we adapt
MF-Q by replacing the mean-field action term with the mean-field state term.

4For the sake of brevity, we omit the algorithm frame for GMF-PW-TRPO.
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Algorithm 7 Q-learning for GMFGs (GMF-VW-Q): weak simulator

1: Input: Initial L0, ε-net Sε, tolerances εk, δk > 0, k = 0, 1, . . . .
2: for k = 0, 1, · · · do
3: Perform Q-learning with hyper-parameters in Lemma 1.5.2 for Tk = TMLk (εk, δk)

iterations to find the approximate Q-function Q̂?
k = Q̂Tk of the MDP MLk .

4: Compute πk ∈ Π with πk(s) = softmaxc(Q̂
?
k(s, ·)).

for i = 1, 2, · · · , N do

6: Sample si
i.i.d.∼ µk, then obtain s′i i.i.d. from GW (si, πk,Lk) and a′i

i.i.d.∼ πk(s
′
i).

end for
Compute Lk+1 with Lk+1(s, a) = 1

N

∑N
i=1 Is′i=s,a′i=a.

9: end for

Parameters. The model parameters are (unless otherwise specified): γ = 0.2, d = 50 and
σ = 2. S = Q = H = 10 and hence |S| = 10 and |A| = 100. c0 = 0.5, c1 = 0.1, c2 = 0.5,
c3 = 0.2 and c4 = 0.2.

The algorithm parameters are (unless otherwise specified): the temperature parameter
is set as c = 4.0 and the learning rate is set as η = 0.01 5. For simplicity, we set the inner
iteration Tk to be 100×|S|×|A|. The 90%-confidence intervals are calculated with 20 sample
paths.

1.8.2 Performance evaluation in the GMFG setting.

Our experiments show that GMF-V-Q and GMF-P-TRPO Algorithms are efficient and
robust.

Performance metric. We adopt the following metric to measure the difference between a
given policy π and an NE (here ε0 > 0 is a safeguard, and is taken as 0.1 in the experiments):

CMF (π) =
maxπ′ Es∼µ[V (s, π′,L)]− V (s, π,L)

|maxπ′ Es∼µ[V (s, π′,L)]|+ ε0
.

Here µ is the invariant distribution of the transition matrix P π, where

P π(s, s′) =
∑
a∈A

P (s′|s, a)π(a|s)

for s, s′ ∈ S, and L(s, a) = µ(s)π(a|s) for s, a ∈ S × A. Note that in the equilibrium
product pricing model we are considering here, the transition model P is independent of the

5Lemma 1.5.2 indicates that the learning rate should be inversely proportional to the current visitation
number of a given state-action pair, we observe that constant learning rate works well in practice which is
easier to implement.
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mean-field term L, and hence we write P (s′|s, a) = P (s′|s, a,L). In general, an additional
mean-field matching error term needs to be added into the definition of CMF (π). Clearly
CMF (π) ≥ 0, and CMF (π?) = 0 if and only if (π?,L?) is an NE where L? is the invariant
distribution of P π? . A similar metric without normalization has been adopted in [41].

Contractiveness of mapping Γ. As explained in Remark 1.3.1 from Section 1.3, the
contractiveness property of Γ is the key for establishing the uniqueness of MFG solution and
hence the convergence of the GMFG algorithm. To empirically verify whether this property
holds for the equilibrium price example, we plot the value of ‖Γ(L1)−Γ(L2)‖1

‖L1−L2‖1 for randomly
generated state-action distributions L1 and L2. Technically speaking, Γ is contractive and
there exists a unique MFG solution if the value of ‖Γ(L1)−Γ(L2)‖1

‖L1−L2‖1 is smaller than one for all
choices of L1 and L2.

W observe from Figure 1.1 that, with various of choices of different model parameters,
the quantity ‖Γ(L1)−Γ(L2)‖1

‖L1−L2‖1 is always smaller than 0.3 indicating that Γ is contractive.
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(a) Default setting (see Sec-
tion 1.8.1).
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(c) |S| = 5 and |A| = 25.
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(f) σ = 1.0.

Figure 1.1: Histogram of ‖Γ(L1)−Γ(L2)‖1
‖L1−L2‖1 under various settings (L1 and L2 are

randomly sampled according to the uniform distribution).

Convergence and stability. Both GMF-V-Q and GMF-P-TRPO are efficient and ro-
bust. First, both GMF-V-Q and GMF-P-TRPO converge within about 5 outer iterations;
secondly, as the number of inner iterations increases, the error decreases (Figure 1.2); and
finally, the convergence is robust with respect to both the change of number of states and



CHAPTER 1. LEARNING MEAN-FIELD GAMES 33

actions (Figure 1.3). The performance of GMF-V-Q is (slightly) more stable than GMF-
P-TRPO with a smaller variance across 20 repeated experiments (see Figure 1.2a versus
Figure 1.2b or Figure 1.3a versus Figure 1.3b). This is due to the fact that GMF-P-TRPO
uses asynchronous updates, which leads to slightly less stable performance compared to
GMF-V-Q, which uses synchronous updates.

In contrast, the Naive algorithms, i.e., GMF-V-Q without smoothing (denoted as GMF-
V-Q-nonsmoothing) and GMF-P-TRPO without smoothing (denoted as GMF-P-TRPO-
nonsmoothing), do not converge even with 50 outer iterations and 200 × |S| × |A| inner
iterations within each outer iteration. In particular, GMF-V-Q-nonsmoothing and GMF-P-
TRPO-nonsmoothing present different unstable behaviors (see Figure 1.4). The joint distri-
bution Lt from GMF-V-Q-nonsmoothing keeps fluctuating (Figure 1.4a) whereas the joint
distribution Lt from GMF-P-TRPO (without smoothing) is trapped around the initialization
which is far away from the true equilibrium distribution (Figure 1.4b).
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Figure 1.2: Convergence with different number of inner iterations (|A| = 100 and
|S| = 10).
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Figure 1.3: Convergence with different size of state space and action space.
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Figure 1.4: Fluctuations of algorithms without smoothing (Dotted black line: the-
oretical value of the equilibrium price).

Model verification and interpretation of equilibrium scenario. In Figures 1.5 and
1.6, we run both algorithms for 20 outer iterations with the same number of inner iterations
(100,000 = 100 × |A| × |S|) within each outer iteration. The final equilibrium inventory
distribution and production distribution from both algorithms are close to each other.
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Figure 1.5: GMF-V-Q versus GMF-P-TRPO (σ = 1.3 and one trajectory).
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Figure 1.6: GMF-V-Q versus GMF-P-TRPO (σ = 2.0 and one trajectory).
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Note that the demand elasticity σ captures how sensitive demand for a product is com-
pared to the changes in other economic factors, such as price or income. When σ is increased
from 1.3 to 2.0 indicating that the demand is more sensitive to price rise, the equilibrium
price decreases from 10.9 to 7.3 (see Figures 1.5c and 1.6c) and the distribution of the equi-
librium production level is centered towards smaller values (see Figures 1.5b and 1.6b). The
equilibrium inventory level has a huge mass at 0 when σ = 1.3. This implies that producers
do not keep large inventories and pay the inventory cost in the equilibrium. On the other
hand, the equilibrium inventory is more uniformly distributed when σ = 2.

1.8.3 Performance evaluation in the N-player setting

Performance metric. Similar to the performance metric introduced in Section 1.8.2 for
the GMFG setting, we adopt the following metric to measure the difference between a given
policy π and an NE under THE N-player setting (here ε0 > 0 is a safeguard, and is taken as
0.1 in the experiments):

C(πππ) =
1

N |S|N
∑N

i=1

∑
s∈SN

maxπi V
i(s, (πππ−i, πi))− V i(s,πππ)

|maxπi V i(s, (πππ−i, πi))|+ ε0
.

Clearly C(πππ) ≥ 0, and C(πππ?) = 0 if and only if πππ? is an NE. Policy arg maxπi Vi(s, (πππ
−i, πi))

is called the best response to πππ−i. A similar metric without normalization has been adopted
in [128].

Existing algorithms for N-player games. To test the effectiveness of GMF-VW-Q for
approximating N -player games, we next compare GMF-VW-Q with the IL algorithm and the
MF-Q algorithm. The IL algorithm [150] considers N independent players and each player
solves a decentralized reinforcement learning problem ignoring other players in the system.
The MF-Q algorithm [167] extends the NASH-Q Learning algorithm for the N -player game

introduced in [84], adds the aggregate actions (āaa−i =
∑
j 6=i aj

N−1
) from the opponents, and works

for the class of games where the interactions are only through the average actions of N
players.

Results and analysis. Our experiment (Figure 1.7) shows that GMF-VW-Q and GMF-
PW-TRPO achieve similar performance, and both of them are superior in terms of conver-
gence rate, accuracy, and stability for approximating an N -player game. In general, both
algorithms converge faster than IL and MF-Q and achieve the smallest errors.

For instance, when N = 20, IL Algorithm converges with the largest error 0.220. The
error from MF-Q is 0.101, smaller than IL but still bigger than the error from GMF-VW-Q.
The GMF-VW-Q and GMF-PW-TRPO converge with the lowest error 0.065. Moreover,
as N increases, the error of GMF-VW-Q and GMF-PW-TRPO decease while the errors of
both MF-Q and IL increase significantly. As |S| and |A| increase, GMF-VW-Q and GMF-
PW-TRPO are robust with respect to this increase of dimensionality, while both MF-Q and
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IL clearly suffer from the increase of the dimensionality with decreased convergence rate
and accuracy. Therefore, GMF-VW-Q and GMF-PW-TRPO are more scalable than IL and
MF-Q, when the system is complex and the number of players N is large.
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Figure 1.7: Learning accuracy based on C(πππ).

1.9 Extension: Existence and uniqueness for

non-stationary NE of GMFGs

In this section, we describe the setting of non-stationary NE for GMFGs and establish
the corresponding results of existence and uniqueness.

Definition 1.9.1 (NE for GMFGs). In (GMFG), a player-population profile (πππ?,LLL?) :=
({π?t }∞t=0, {L?t}∞t=0) is called an NE if

1. (Single player side) Fix LLL?, for any policy sequence πππ := {πt}∞t=0 and initial state s ∈ S,

V (s,πππ?,LLL?) ≥ V (s,πππ,LLL?) . (1.9.1)

2. (Population side) Pst,at = L?t for all t ≥ 0, where {st, at}∞t=0 is the dynamics under the
policy sequence πππ? starting from s0 ∼ µ?0, with at ∼ π?t (st, µ

?
t ), st+1 ∼ P (·|st, at,L?t ),

and µ?t being the population state marginal of L?t .

Step A. Fix LLL := {Lt}∞t=0, (GMFG) becomes the classical optimization problem. Indeed,
with LLL fixed, the population state distribution sequence µµµ := {µt}∞t=0 is also fixed, hence
the space of admissible policies is reduced to the single-player case. Solving (GMFG) is now
reduced to finding a policy sequence π?t,LLL ∈ Π := {π |π : S → P(A)} over all admissible
πππLLL = {πt,LLL}∞t=0, to maximize

V (s,πππLLL,LLL) := E
[
∞∑
t=0

γtr(st, at,Lt)|s0 = s

]
,

subject to st+1 ∼ P (st, at,Lt), at ∼ πt,LLL(st).
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Notice that with LLL fixed, one can safely suppress the dependency on µt in the admissible
policies. Moreover, given this fixed LLL sequence and the solution πππ?LLL := {π?t,LLL}∞t=0, one can
define a mapping from the fixed population distribution sequenceLLL to an optimal randomized
policy sequence. That is,

Γ1 : {P(S ×A)}∞t=0 → {Π}∞t=0,

such that πππ?LLL = Γ1(LLL). Note that this πππ?LLL sequence satisfies the single player side condition
in Definition 1.9.1 for the population state-action pair sequence LLL. That is, V (s,πππ?LLL,LLL) ≥
V (s,πππ,LLL) , for any policy sequence πππ = {πt}∞t=0 and any initial state s ∈ S.

Accordingly, a similar feedback regularity condition is needed in this step.

Assumption 3. There exists a constant d1 ≥ 0, such that for any LLL,LLL′ ∈ {P(S ×A)}∞t=0,

D(Γ1(LLL),Γ1(LLL′)) ≤ d1W1(LLL,LLL′), (1.9.2)

where

D(πππ,πππ′) := sup
s∈S
W1(πππ(s),πππ′(s)) = sup

s∈S
sup
t∈N

W1(πt(s), π
′
t(s)),

W1(LLL,LLL′) := sup
t∈N

W1(Lt,L′t),
(1.9.3)

and W1 is the `1-Wasserstein distance between probability measures.

Step B. Based on the analysis in Step A and πππ?LLL = {π?t,LLL}∞t=0, update the initial sequence
LLL to LLL′ following the controlled dynamics P (·|st, at,Lt).

Accordingly, for any admissible policy sequence πππ ∈ {Π}∞t=0 and a joint population state-
action pair sequence LLL ∈ {P(S ×A)}∞t=0, define a mapping Γ2 : {Π}∞t=0 × {P(S ×A)}∞t=0 →
{P(S ×A)}∞t=0 as follows:

Γ2(πππ,LLL) := L̂̂L̂L = {Pst,at}∞t=0, (1.9.4)

where st+1 ∼ µtP (·|·, at,Lt), at ∼ πt(st), s0 ∼ µ0, and µt is the population state marginal of
Lt.

One also needs a similar assumption in this step.

Assumption 4. There exist constants d2, d3 ≥ 0, such that for any admissible policy
sequences πππ,πππ1,πππ2 and joint distribution sequences LLL,LLL1,LLL2,

W1(Γ2(πππ1,LLL),Γ2(πππ2,LLL)) ≤ d2D(πππ1,πππ2), (1.9.5)

W1(Γ2(πππ,LLL1),Γ2(πππ,LLL2)) ≤ d3W1(LLL1,LLL2). (1.9.6)

Similarly, Assumption 4 can be reduced to Lipschitz continuity and boundedness of the
transition dynamics P under certain conditions.
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Step C. Repeat Step A and Step B until LLL′ matches LLL.
This step is to take care of the population side condition. To ensure the convergence

of the combined step A and step B, it suffices if Γ : {P(S × A)}∞t=0 → {P(S × A)}∞t=0 is
a contractive mapping under the W1 distance, with Γ(LLL) := Γ2(Γ1(LLL),LLL). Then by the
Banach fixed point theorem and the completeness of the related metric spaces, there exists
a unique NE to the GMFG.

In summary, we have

Theorem 1.9.1 (Existence and Uniqueness of GMFG solution). Given Assumptions 3 and
4, and assuming that d1d2 + d3 < 1, there exists a unique NE to (GMFG).

The proof of Theorem 1.9.1 can be established by modifying appropriately the fixed-point
approach for the stationary GMFG in Theorem 1.3.1.

1.10 Appendix

1.10.1 Distance metrics and completeness

This section reviews some basic properties of the Wasserstein distance. It then proves
that the metrics defined in the main text are indeed distance functions and define complete
metric spaces.

`1-Wasserstein distance and dual representation. The `1 Wasserstein distance over
P(X ) for X ⊆ Rk is defined as

W1(ν, ν ′) := inf
M∈M(ν,ν′)

∫
X×X
‖x− y‖2dM(x, y). (1.10.1)

where M(ν, ν ′) is the set of all measures (couplings) on X ×X , with marginals ν and ν ′ on
the two components, respectively.

The Kantorovich duality theorem enables the following equivalent dual representation of
W1:

W1(ν, ν ′) = sup
‖f‖L≤1

∣∣∣∣∫
X
fdν −

∫
X
fdν ′

∣∣∣∣ , (1.10.2)

where the supremum is taken over all 1-Lipschitz functions f , i.e., f satisfying |f(x)−f(y)| ≤
‖x− y‖2 for all x, y ∈ X .

The Wasserstein distance W1 can also be related to the total variation distance via the
following inequalities [67]:

dmin(X )dTV (ν, ν ′) ≤ W1(ν, ν ′) ≤ diam(X )dTV (ν, ν ′), (1.10.3)

where dmin(X ) = minx 6=y∈X ‖x− y‖2, which is guaranteed to be positive when X is finite.
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When S and A are compact, for any compact subset X ⊆ Rk, and for any ν, ν ′ ∈ P(X ),
W1(ν, ν ′) ≤ diam(X )dTV (ν, ν ′) ≤ diam(X ) < ∞, where diam(X ) = supx,y∈X ‖x − y‖2 and
dTV is the total variation distance. Moreover, one can verify

Lemma 1.10.1. Both D and W1 are distance functions, and they are finite for any input
distribution pairs. In addition, both ({Π}∞t=0, D) and ({P(S × A)}∞t=0,W1) are complete
metric spaces.

These facts enable the usage of Banach fixed-point mapping theorem for the proof of
existence and uniqueness (Theorems 1.9.1 and 1.3.1).

Proof. [Proof of Lemma 1.10.1] It is known that for any compact set X ⊆ Rk, (P(X ),W1)
defines a complete metric space [25]. Since W1(ν, ν ′) ≤ diam(X ) is uniformly bounded for
any ν, ν ′ ∈ P(X ), we know that W1(LLL,LLL′) ≤ diam(X ) and D(πππ,π′π′π′) ≤ diam(X ) as well,
so they are both finite for any input distribution pairs. It is clear that they are distance
functions based on the fact that W1 is a distance function.

Finally, we show the completeness of the two metric spaces ({Π}∞t=0, D) and ({P(S ×
A)}∞t=0,W1). Take ({Π}∞t=0, D) for example. Suppose that πππk is a Cauchy sequence in
({Π}∞t=0, D). Then for any ε > 0, there exists a positive integer N , such that for any
m, n ≥ N ,

D(πππn,πππm) ≤ ε =⇒ W1(πnt (s), πmt (s)) ≤ ε for any s ∈ S, t ∈ N, (1.10.4)

which implies that πkt (s) forms a Cauchy sequence in (P(A),W1), and hence by the complete-
ness of (P(A),W1), πkt (s) converges to some πt(s) ∈ P(A). As a result, πππn → πππ ∈ {Π}∞t=0

under metric D, which shows that ({Π}∞t=0, D) is complete.
The completeness of ({P(S ×A)}∞t=0,W1) can be proved similarly.

The same argument for Lemma 1.10.1 shows that both D and W1 are distance functions
and are finite for any input distribution pairs, with both (Π, D) and (P(S × A),W1) again
complete metric spaces.

1.10.2 Bounds for GMF-V-Q using asynchronous Q-learning

In the main text, we have shown the results by using synchronous Q-learning algorithm.
Here for the completeness, we also show the corresponding results for asynchronous Q-
learning algorithm.

For asynchronous Q-learning algorithm, at each step l with the state s and an action
a, the system reaches state s′ according to the controlled dynamics and the Q-function
approximation Ql is updated according to

Q̂l+1(s, a) = (1− βl(s, a))Q̂l(s, a) + βl(s, a)
[
r(s, a) + γmax

ā
Q̂l(s′, ā)

]
, (1.10.5)
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where Q̂0(s, a) = C for some constant C ∈ R for any s ∈ S and a ∈ A, and the step size
βl(s, a) can be chosen as ([53])

βl(s, a) =

{
|#(s, a, l) + 1|−h, (s, a) = (sl, al),

0, otherwise.
(1.10.6)

with h ∈ (1/2, 1). Here #(s, a, l) is the number of times up to time l that one visits the
state-action pair (s, a). The algorithm then proceeds to choose action a′ based on Q̂l+1 with
appropriate exploration strategies, including the ε-greedy strategy.

Lemma 1.10.2 ([53]: sample complexity of asynchronous Q-learning). For an MDP, say
M = (S,A, P, r, γ), suppose that the Q-learning algorithm takes step-sizes (1.5.4). Also
suppose that the covering time of the state-action pairs is bounded by L with probability
at least 1 − p for some p ∈ (0, 1). Then ‖Q̂TM(δ,ε) − Q?

M‖∞ ≤ ε with probability at least
1 − 2δ. Here Q̂T is the T -th update in the Q-learning updates (1.5.3), Q?

M is the (optimal)
Q-function, and

TM(δ,ε) = Ω

(L logp(δ)

β
log

Vmax

ε

) 1
1−h

+

(L logp(δ)
)1+3h

V 2
max log

(
|S||A|Vmax

δβε

)
β2ε2


1
h

 ,

where β = (1−γ)/2, Vmax = Rmax/(1−γ), and Rmax is such that a.s. 0 ≤ r(s, a) ≤ Rmax.

Here the covering time L of a state-action pair sequence is defined to be the number of
steps needed to visit all state-action pairs starting from any arbitrary state-action pair. Also
notice that the l∞ norm above is defined in an element-wise sense, i.e., for M ∈ R|S|×|A|, we
have ‖M‖∞ = maxs∈S,a∈A |M(s, a)|.

Corollary 1.10.3 (Value-based guarantee of asynchronous Q-learning algorithm). The asyn-
chronous Q-learning algorithm with appropriate choices of step-sizes (cf. (1.5.4)) satis-

fies the following value-based guarantee, where C
(i)
M(i = 1, 2, 3) are constants depending on

|S|, |A|, Vmax, β and h, and we have:

α
(1)
2 = α

(1)
4 =

1

1− h, α
(1)
1 = α

(2)
3 = 0,

α
(2)
1 =

2

h
, α

(2)
4 =

2 + 3h

h
, α

(2)
j = 0 for j = 2, 3,

α
(3)
1 =

2

h
, α

(3)
2 =

1

h
, α

(3)
4 =

1 + 3h

h
, α

(3)
3 = 0.

In addition, assume the same assumptions as Theorem 1.3.1, then for Algorithm 3 with asyn-
chronous Q-learning method, with probability at least 1−2δ, W1(LKε,η ,L?) ≤ C0ε, where Kε,η
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is defined as in Theorem 1.5.1. And the total number of samples T =
∑Kε,η−1

k=0 TMLk (δk, εk)
is bounded by

T ≤ O

(
K

4
h

+1
ε,η

(
log

Kε,η

δ

)3+ 2
h

+

(
log

Kε,η

δ

) 2
1−h
)
.

1.10.3 Weak simulator

In this section, we state the counterpart of Theorems 1.5.1 and 1.5.5 for Algorithms 5
and 6, respectively. Notice that here the major difference is the additional O(1/

√
N) term.

We first (re)state the relation between EmpN (which serves as a 1/N -net) and action
gaps:

For any positive integer N , there exist a positive constant φN > 0, with the prop-
erty that maxa′∈AQ

?
L(s, a′) − Q?

L(s, a) ≥ φN for any L ∈ EmpN , s ∈ S, and any a /∈
argmaxa∈AQ

?
L(s, a).

Now we are ready to state the convergence results.

Theorem 1.10.4 (Convergence and complexity of GMF-VW). Assume the same assump-
tions as Theorem 1.3.1. Suppose that Alg has a value-based guarantee with parameters

{C(i)
M, α

(i)
1 , α

(i)
2 , α

(i)
3 , α

(i)
4 }mi=1.

For any ε, δ > 0, set δk = δ/Kε,η, εk = (k+1)−(1+η) for some η ∈ (0, 1] (k = 0, . . . , Kε,η−
1), and c′ = c = log(1/ε)

φN
.6 Then with probability at least 1− 4δ,

W1(LKε,η ,L?) ≤ Cε+
diam(S)diam(A)|S||A|

2(1− d)

√
1

2N
log(|S||A|Kε,η/δ).

Here Kε,η :=
⌈
2 max

{
(ηε/c)−1/η, logd(ε/max{diam(S)diam(A), c}) + 1

}⌉
is the number of

outer iterations, and the constant C is independent of δ, ε and η.
Moreover, the total number of samples T =

∑Kε,η−1
k=0 TMLk (δk, εk) is bounded by

T ≤
m∑
i=1

2α
(i)
2

2α
(i)
1 + 1

C
(i)
MK

2α
(i)
1 +1

ε,η (Kε,η/δ)
α
(i)
3 (log(Kε,η/δ))

α
(i)
2 +α

(i)
4 . (1.10.7)

Theorem 1.10.5 (Convergence and complexity of GMF-PW). Assume the same assump-
tions as in Theorem 1.3.1. Suppose that Alg has a policy-based guarantee with parameters

{C(i)
M, α

(i)
1 , α

(i)
2 , α

(i)
3 , α

(i)
4 }mi=1.

6Here we actually only need c′ = Ω( log(1/ε)
φN

) and c = O( log(1/ε)
φN

), and the corresponding result will differ
only in some absolute constants.
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Then for any ε, δ > 0, set δk = δ/Kε,η, εk = (k + 1)−(1+η) for some η ∈ (0, 1] (k =

0, . . . , Kε,η − 1), and c′ = c = log(1/ε)
φN

,7 with probability at least 1− 4δ,

W1(LKε,η ,L?) ≤ Cε+
diam(S)diam(A)|S||A|

2(1− d)

√
1

2N
log(|S||A|Kε,η/δ).

Here Kε,η :=
⌈
2 max

{
(ηε/c)−1/η, logd(ε/max{diam(S)diam(A), c}) + 1

}⌉
is the number of

outer iterations, and the constant C is independent of δ, ε and η.
Moreover, the total number of samples T =

∑Kε,η−1
k=0 TMLk (δk, εk) is bounded by

T ≤
m+1∑
i=1

2α
(i)
2

2α
(i)
1 + 1

C̃
(i)
MK

2α
(i)
1 +1

ε,η (Kε,η/δ)
α
(i)
3 (log(Kε,η/δ))

α
(i)
2 +α

(i)
4 , (1.10.8)

where the parameters {C̃(i)
M, α

(i)
1 , α

(i)
2 , α

(i)
3 , α

(i)
4 }m+1

i=1 are defined in Lemma 1.5.4.

The key to the proof of Theorems 1.10.4 and 1.10.5 is the following lemma, which follows
from the Hoeffding inequality.

Lemma 1.10.6. The expectation

E [Lk+1(s′, a′)] = πk(s
′, a′)

∑
s∈S

∑
a∈A

µk(s)P (s′|s, a,Lk)πk(s, a) = Γ2(πk,Lk).

In addition, we have that for any t > 0, s′ ∈ S and a′ ∈ A,

P (|Lk+1(s′, a′)− E [Lk+1(s′, a′)]| ≥ t) ≤ 2 exp
(
−2Nt2

)
. (1.10.9)

The above lemma essentially states that the iterates Lk+1 of Algorithms 5 and 6 are very
close to the “L̃k+1” obtained from the (strong) simulator G(s, πk,Lk) with s ∼ µk following
line 5 in Algorithm 2 and line 6 in Algorithm 4. This bridges the gap between the weak and
the strong simulators. In particular, by noticing that

W1(Lk+1,L?) ≤ W1(Lk+1,Γ2(πk,Lk)) +W1(Γ2(πk,Lk),Γ2(Γ1(L?),L?))
= W1(Lk+1,E [Lk+1]) +W1(Γ2(πk,Lk),Γ2(Γ1(L?),L?))

≤ diam(S)diam(A)|S||A|
2

‖Lk+1 − E [Lk+1]‖∞ +W1(Γ2(πk,Lk),Γ2(Γ1(L?),L?)),

one can bound the first term with high probability via (1.10.9). The second term is then
bounded in exactly the same way as the proofs for Theorems 1.5.1 and 1.5.5, and hence we
omit the details.

7Here again we actually only need c′ = Ω( log(1/ε)
φN

) and c = O( log(1/ε)
φN

), and the corresponding result will
differ only in some absolute constants.
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1.10.4 Adaption of MF-Q

Note that MF-Q is designed for global states and coupled local actions, while in our
equilibrium price example we have coupled local (private) states and decoupled local actions.
To suit this setting, we adapt MF-Q by replacing the mean-field action term with the mean-
field state term. In addition, our comparison is within the tabular setting, which is the setting
theoretically analyzed in [167]. In this case, the Q functions in MF-Q are also functions of
only states and actions but not the mean-field terms, which are iteratively changing together
with the Q-functions and claimed to be converging to a unique point. This is not the case
for the function approximation setting (where Q-functions in MF-Q are indeed dependent
on the mean-field terms and function approximation enables learning and generalizing such
dependencies via experience replay). We leave it a future work to extend and compare our
algorithms with MF-Q in the deep approximation setting.
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Chapter 2

Logarithmic Regret for Episodic
Continuous-Time Linear-Quadratic
Reinforcement Learning over a
Finite-Time Horizon

2.1 Introduction

Reinforcement learning (RL) for linear quadratic (LQ) control problems has been one of
the most active areas for both the control and the reinforcement learning communities. Over
the last few decades, significant progresses have been made in the discrete-time setting.

2.1.1 Discrete-time RL

In the area of adaptive control with unknown dynamics parameters, the goal is to find
optimal stationary policy that stabilizes the unknown dynamics and minimizes the long term
average cost ([88, 103]). For an infinite-time horizon LQ system, it has been shown that
persistent excitation conditions [72] are critical to the parameter identification. Meanwhile,
algorithms with asymptotic convergence in both the parameter estimation and the optimal
control have been developed in [69], [99] and [30]: the first one assumes that costs only
depend on state variables and the other two consider both state and control costs and use a
cost-biased least-squared estimation method. See [55, 57] and references therein for recent
developments of (randomised) adaptive control algorithms for LQ systems.

Following the seminal works of [14, 13] and [124], non-asymptotic regret bound analysis
for RL algorithms has been one of the main topics, and has been developed for tabular
Markov decision problems.

The non-asymptotic analysis of adaptive LQ problem by [1] utilizes the Optimism in the
Face of Uncertainty principle to construct a sequence of improving confidence regions for
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the unknown model parameters, and solves a non-convex constrained optimization problem
for each confidence region; their algorithm achieves an O(

√
T ) regret bound, with T be-

ing the number of time steps. To reduce the computational complexity and to avoid the
non-convexity issue, [2] and [125] propose Thompson-sampling-based algorithms and derive
O(
√
T ) regret bounds in the Bayesian setting; [45] proposes a robust adaptive control algo-

rithm to solve a convex sub-problem in each step and achieves an O(T 2/3) regret bound. The
gap between these regret bounds is removed by [112] and [40] via two different approaches
for the same O(

√
T ) frequentist regret bound. Later, [142] establishes a lower bound on

the regret of order O(
√
d2
udxT ), where du and dx are the dimensions of the actions and the

states, and shows that a simple variant of certainty equivalent control matches the lower
bound in both T and the dimensions. Similar regret bounds have also been established
under different settings and assumptions, such as [35] in the adversarial setting and [101]
without a stabilizing controller at the early stages of agent-environment interaction.

All the analyses are in discrete-time with an infinite time horizon. In all these prob-
lems, adaptive control algorithms are shown to achieve logarithmic regret bounds when
additional information regarding the parameters of the system (often referred to as identi-
fiability conditions) is available. Indeed, [56, 58] prove that certainty equivalent adaptive
regulator achieves logarithmic regret bounds if the system parameter satisfies certain spar-
sity or low-rankness conditions. [34] establishes logarithmic regret bounds when either the
state transition matrix is unknown, or when the state-action transition matrix is unknown
and the optimal policy is non-degenerate. In partially observable linear dynamical systems,
which takes linear-quadratic Gaussian problem as a special case, [102] proposes an algorithm
with a logarithmic regret bound, under the assumption that one has access to a set in which
all controllers persistently excite the system to approximate the optimal control. Logarith-
mic regret bounds in the adversarial setting with known dynamics parameters have been
established in [5, 59].

2.1.2 Continuous-time RL.

Most real-world control systems, such as those in aerospace, automotive industry and
robotics, are naturally continuous-time dynamical systems.

So are their related physical tasks, such as inverted pendulum problems, cart-pole balanc-
ing problems, and legged robot problems. Continuous-time finite-time horizon LQ control
problems can be found in portfolio optimization [160], algorithmic trading [33], production
management of exhaustible resources [71], and biological movement systems [16].

Analysis for continuous-time LQ-RL and general RL problems, however, is fairly limited.
The primary approach is to develop learning algorithms after discretizing both the time and
the space spaces, and establish the convergence as discretization parameters tend to zero. For
instance, [120] proposes a policy gradient algorithm and shows the convergence of the policy
gradient estimate to the true gradient. [121, 119] design learning algorithms by discretizing
Bellman equations of the underlying control problems and prove the asymptotic convergence
of their algorithms. For the LQ system, attentions have been mostly on algorithms designs,
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including the integral reinforcement learning algorithm in [118], and the policy iteration
algorithm in [136]. Yet, very little is known regarding the convergence rate or the regret
bound of all these algorithms. Indeed, despite the natural analytical connection between
LQ control and RL, the best known theoretical work for continuous-time LQ-RL is still due
to [50], where an asymptotically sublinear regret for an ergodic model has been derived via
a weighted least-squares-based estimation approach. Nevertheless, the exact order of the
regret bound has not been studied.

Issues and challenges from non-asymptotic analysis. It is insufficient and improper
to rely solely on the analysis and algorithms for the discrete-time RL to solve the continuous-
time problems. There is a mismatch between the algorithms timescale for the former and
the underlying systems timescale for the latter. When designing algorithms that make
observations and take actions at discrete time points, it is important to take the model
mismatch into consideration. For instance, the empirical studies in [149] suggest that vanilla
Q-learning methods exhibit degraded performance as the time stepsize decreases, while a
proper scaling of learning rates with stepsize leads to more robust performance.

The questions are therefore: A) How to quantify the precise impacts of the observation
stepsize and action stepsize on algorithm performance? B) How to derive non-asymptotic
regret analysis for learning algorithms in continuous-time LQ-RL (or general RL) system,
analogous to the discrete-time LQ-RL counterpart?

There are technical reasons behind the limited theoretical progress in the continuous-time
domain for RL, including LQ-RL. In addition to the known difficulty for analyzing stochastic
control problems, the learning component compounds the problem complexity and poses new
challenges.

For instance, the counterpart in the continuous-time problem to the algebraic equations in
[112] for the discrete-time version is the regularity and stability of the continuous-time Riccati
equation and the regularity of feedback controls. While Riccati equation and its robustness
and existence and uniqueness of optimal controls have been well studied in the control
literature, regularity of feedback controls with respect to underlying models is completely
new for control theory and crucial for algorithm design and its robustness analysis. Moreover,
deriving the exact order of the regret bound requires developing new and different techniques
than those used for the asymptotic regret analysis in [50].

Our work and contributions. This paper studies finite-time horizon continuous-time
LQ-RL problems in an episodic setting.

• It first proposes a greedy least-squares algorithm based on continuous-time observations
and controls. At each iteration, the algorithm estimates the unknown parameters by
a regularized least-squares estimator based on observed trajectories, then designs linear
feedback controls via the Riccati differential equation for the estimated model. It identifies
conditions under which the unknown state transition matrix and state-action transition
matrix are uniquely identifiable under the optimal policies. (Remark 2.2.1 and Proposition
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2.2.1). By exploiting the identifiability of coefficients, this continuous-time least-squares
algorithm is shown to have a logarithmic regret of the magnitude O((lnM)(ln lnM)),
with M being the number of learning episodes (Theorem 2.2.2). To the best of our
knowledge, this is the first non-asymptotic logarithmic regret bound for continuous-time
LQ-RL problems with unknown state and control coefficients.

• It then proposes a practically implementable least-squares algorithm based on discrete-
time observations and controls. At each iteration, the algorithm estimates the unknown
parameters by observing continuous-time trajectories at discrete time points, then de-
signs a piecewise constant linear feedback control via Riccati difference equations for an
associated discrete-time LQ-RL problem. It shows that the regret of the discrete-time
least-squares algorithm is of the magnitude O

(
(lnM)(ln lnM) +

∑lnM
`=0 2`τ 2

`

)
, where τ` is

the time stepsize used in the (`+ 1)-th update of model parameters (Theorem 2.2.3).

Our analysis shows that scaling the regularization parameter of the discrete-time least-
squares estimator with respect to time stepsize is critical for a robust performance of the
algorithm in different timescales (Remark 2.2.3). To the best of our knowledge, this is
the first discrete-time algorithm with rigorous regret bound for continuous-time LQ-RL
problems.

Different from the least-squares algorithms for the ergodic LQ problems (see e.g., [50,
112]), our continuous-time least-squares algorithm constructs feedback controls via Riccati
differential equations instead of the algebraic equations in [112]. Here, the regularity and sta-
bility of the continuous-time Riccati equation is analyzed in order to establish the robustness
of feedback controls.

Moreover, our analysis for the estimation error exploits extensively the sub-exponential
tail behavior of the least-squares estimators. This probabilistic approach differs from the
asymptotic sublinear regret analysis in [50]; it establishes the exact order of the logarithmic
regret bound by the concentration inequality for the error bound.

In addition, our analysis also exploits an important self-exploration property of finite-time
horizon continuous-time LQ-RL problems, for which the time-dependent optimal feedback
matrices ensure that the optimal state and control processes span the entire parameter space.
This property allows us to design exploration-free learning algorithms with logarithmic re-
gret bounds. Furthermore, we provide explicit conditions on models that guarantees the
successful identification of the unknown parameters with optimal feedback policies. This
is in contrast to the identification conditions for logarithmic regret bounds in discrete-time
infinite-time-horizon LQ problems. Our conditions apply to arbitrary finite time-horizon
problems, without imposing sparsity or low-rankness conditions on system parameters as in
[56, 58] or requiring these parameters to be partially known to the controller as in [34, 59].

Finally, our analysis provides the precise parameter estimation error in terms of the sam-
ple size and time stepsize, and quantifies the performance gap between applying a piecewise-
constant policy from an incorrect model and applying the optimal policy. The misspecifi-
cation error scales linearly with respect to the stepsize, and the performance gap depends
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quadratically with respect to the time stepsize and the magnitude of parameter perturba-
tions. Our analysis is based on the first-order convergence of Riccati difference equations
and a uniform sub-exponential tail bound of discrete-time least-squares estimators.

Notation. For each n ∈ N, we denote by I = In the n × n identity matrix, and by Sn0
(resp. Sn+) the space of symmetric positive semidefinite (resp. definite) matrices. We denote
by | · | the Euclidean norm of a given Euclidean space, by ‖ · ‖2 the matrix norm induced by
Euclidean norms, and by A> and tr(A) the transpose and trace of a matrix A, respectively.
For each T > 0, filtered probability space (Ω,F ,F = {Ft}t∈[0,T ],P) satisfying the usual
condition and Euclidean space (E, | · |), we introduce the following spaces:
• C([0, T ];E) is the space of continuous functions φ : [0, T ] → E satisfying ‖φ‖C([0,T ];E) =

supt∈[0,T ] |φt| <∞;
• C1([0, T ];E) is the space of continuously differentiable functions φ : [0, T ]→ E satisfying
‖φ‖C1([0,T ];E) = supt∈[0,T ](|φt|+ |φ′t|) <∞;
• S2(E) is the space of E-valued F-progressively measurable càdlàg processes X : Ω ×

[0, T ]→ E satisfying ‖X‖S2(E) = E[supt∈[0,T ] |Xt|2]1/2 <∞;
• H2(E) is the space of E-valued F-progressively measurable processes X : Ω× [0, T ]→ E

satisfying ‖X‖H2(E) = E[
∫ T

0
|Xt|2 dt]1/2 <∞.

For notation simplicity, we denote by C ∈ [0,∞) a generic constant, which depends only on
the constants appearing in the assumptions and may take a different value at each occurrence.

2.2 Problem formulation and main results

2.2.1 Linear-quadratic reinforcement learning problem

In this section, we consider the linear-quadratic reinforcement learning (LQ-RL) problem,
where the drift coefficient of the state dynamics is unknown to the controller.

More precisely, let T ∈ (0,∞) be a given terminal time, W be an n-dimensional standard
Brownian motion defined on a complete probability space (Ω,F ,P), and F = (Ft)t∈[0,T ] be
the filtration generated by W augmented by the P-null sets. Let x0 ∈ Rn be a given initial
state and (A?, B?) ∈ Rn×n × Rn×d be fixed but unknown matrices, consider the following
problem:

inf
U∈H2(Rd)

Jθ
?

(U), with Jθ
?

(U) = E
[∫ T

0

(
(Xθ?,U

t )>QXθ?,U
t + (Ut)

>RUt
)

dt

]
, (2.2.1)

where for each U ∈ H2(Rd), the process Xθ?,U ∈ S2(Rn) satisfies the following controlled
dynamics associated with the parameter θ? = (A?, B?)>:

dXt = (A?Xt +B?Ut) dt+ dWt, t ∈ [0, T ]; X0 = x0, (2.2.2)

with given matrices Q ∈ Sn0 and R ∈ Sd+. Note that we assume the loss functional (2.2.1)
only involves a time homogeneous running cost to allow a direct comparison with infinite-
time horizon RL problems (see e.g., [51]), but similar analysis can be performed if the cost
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functions are time inhomogeneous, a terminal cost is included, or the Brownian motion W
in (2.2.2) is scaled by an known nonsingular diffusion matrix.

If the parameter θ? = (A?, B?)> are known to the controller, then (2.2.1)-(2.2.2) reduces
to the classical LQ control problems. In this case, it is well known that (see e.g., [169] and
the references therein), the optimal control U θ? of (2.2.1)-(2.2.2) is given in a feedback form
by

U θ?

t = ψθ
?

(t,Xθ?

t ), with ψθ
?

(t, x) = Kθ?

t x, ∀(t, x) ∈ [0, T ]× Rn, (2.2.3)

where Kθ?

t = −R−1(B?)>P θ?

t for all t ∈ [0, T ], (P θ?

t )t∈[0,T ] solves the Riccati equation

d
dt
Pt + (A?)>Pt + PtA

? − Pt(B?R−1(B?)>)Pt +Q = 0, t ∈ [0, T ]; PT = 0, (2.2.4)

and Xθ? is the state process governed by the following dynamics:

dXt = (A?Xt +B?Kθ?

t Xt) dt+ dWt, t ∈ [0, T ]; X0 = x0. (2.2.5)

To solve the LQ-RL problem (2.2.1)-(2.2.2) with unknown θ?, the controller searches for
the optimal control while simultaneously learning the system, i.e., the matrices A?, B?. In
an episodic (also known as reset or restart) learning framework, the controller improves her
knowledge of the underlying dynamics Xt through successive learning episodes, in order to
find a control that is close to the optimal one.

Mathematically, it goes as follows. Let M ∈ N be the total number of learning episodes.
In the i-th learning episode, i = 1, . . . ,M , a feedback control ψi is exercised, and the state
process Xψi evolves according to the dynamics (2.2.2) controlled by the policy ψi:

dXt = (A?Xt +B?ψi(t,Xt))dt+ dW i
t , t ∈ [0, T ]; X0 = x0. (2.2.6)

Here W i, i = 1, 2, . . . ,M are independent n-dimensional Brownian motions defined on the
same probability space (Ω,F ,P). The (expected) cost of learning in the i-th episode is then
given by

Jθ
?

(Uψi) = E
[∫ T

0

(
(Xψi

t )>QXψi

t + (Uψi

t )>RUψi

t

)
dt

]
, with Uψi

t := ψi(t,Xψi

t ), t ∈ [0, T ],

(2.2.7)
and the (expected) regret of learning up to M ∈ N episodes (with the sequence of controls
(Uψi)Mi=1) is defined as follows:

R(M) =
M∑
i=1

(
Jθ

?

(Uψi)− Jθ?(U θ?)
)
, (2.2.8)

where Jθ
?
(U θ?) is the optimal cost of (2.2.1)-(2.2.2) when A?, B? are known. Intuitively, the

regret characterizes the cumulative loss from taking sub-optimal policies in all episodes.
In the following, we shall propose several least-squares-based learning algorithms to solve

(2.2.1)-(2.2.2), and prove that they achieve logarithmic regrets if θ? is identifiable (see Re-
mark 2.2.1 for details).
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2.2.2 Continuous-time least-squares algorithm and its regret
bound

In this section, we consider a continuous-time least-squares algorithm, which chooses the
optimal feedback control based on the current estimation of the parameter, and updates the
parameter estimation based on the whole trajectories of the state dynamics.

More precisely, let θ = (A,B)> ∈ R(n+d)×n be the current estimate of the unknown
parameter θ?, then the controller would exercise the optimal feedback control ψθ for (2.2.1)-
(2.2.2) with θ? replaced by θ, i.e.,

ψθ(t, x) = Kθ
t x, Kθ

t := −R−1B>P θ
t , ∀(t, x) ∈ [0, T ]× Rn, (2.2.9)

where P θ satisfies the Riccati equation (3.5.1) with θ? replaced by θ:

d
dt
Pt + A>Pt + PtA− Pt(BR−1B>)Pt +Q = 0, t ∈ [0, T ]; PT = 0. (2.2.10)

This leads to the state process Xψθ satisfying (cf. (2.2.6)):

dXt = (A?Xt +B?ψθ(t,Xt)) dt+ dWt, t ∈ [0, T ]; X0 = x0. (2.2.11)

We proceed to derive an `2-regularized least-squares estimation for θ? based on sampled
trajectories of Xψθ . Observing from (2.2.11) that

Zψθ

t (dXψθ

t )> = Zψθ

t (Zψθ

t )>θ?dt+ Zψθ

t (dWt)
>, with Zψθ

t =

(
Xψθ

ψθ(t,Xψθ

t )

)
for all t ∈ [0, T ].

Hence the martingale property of the Itô integral implies that

θ? =

(
E
[∫ T

0

Zψθ

t (Zψθ

t )> dt

])−1

E
[∫ T

0

Zψθ

t (dXψθ

t )>
]
, (2.2.12)

provided that E
[ ∫ T

0
Zψθ

t (Zψθ

t )> dt
]

is invertible. This suggests a practical rule to improve
one’s estimate θ for the true parameter θ?, by replacing the expectations in (2.2.12) with
empirical averages over independent realizations. More precisely, let m ∈ N and

(Xψθ,i
t , ψθ(t,Xψθ,i

t ))t∈[0,T ], i = 1, . . . ,m,

be trajectories of m independent realizations of the state and control processes, we shall
update the estimate θ by the following rule, inspired by (2.2.12):

θ ←−
(

1

m

m∑
i=1

∫ T

0

Zψθ,i
t (Zψθ,i

t )T dt+
1

m
I

)−1(
1

m

m∑
i=1

∫ T

0

Zψθ,i
t (dXψθ,i

t )T
)
, (2.2.13)

where Zψθ,i
t :=

(
Xψθ,i
t

ψθ(t,Xψθ,i
t )

)
for all t ∈ [0, T ] and i = 1, . . . ,m, and I is the (n+ d)× (n+ d)

identity matrix.
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The regularization term 1
m
I in (2.2.13) guarantees the required matrix inverse and van-

ishes as m→∞. The estimator (2.2.13) can be equivalently expressed as an `2-regularized
least-squares estimator, as pointed out in [51] for the ergodic LQ-RL problem.

We summarize the continuous-time least-squares algorithm as follows.

Algorithm 8 Continuous-time least-squares algorithm

1: Input: Choose an initial estimation θ0 of θ? and numbers of learning episodes
{m`}`∈N∪{0}.

2: for ` = 0, 1, · · · do
3: Obtain the feedback control ψθ` as (2.2.9) with θ = θ`.
4: Execute the feedback control ψθ` for m` independent episodes, and collect the trajec-

tory data (Xψθ` ,i
t , ψθ`(t,Xψθ` ,i

t ))t∈[0,T ], i = 1, . . . ,m`.
5: Obtain an updated estimation θ`+1 by using (2.2.13) and the m` trajectories collected

above.
6: end for

Note that Algorithm 8 operates in cycles, with m` the number of episodes in the `-th
cycle. Hence, the regret of learning up to M episodes (cf. (2.2.8)) can be upper bounded by
the accumulated regret at the end of the L-th cycle, where L is the smallest integer such
that

∑L
`=0m` ≥M .

In this section, we analyze the regret of Algorithm 8 based on the following assumptions
of the learning problem (2.2.1)-(2.2.2).

H.1. (1) T ∈ (0,∞), n, d ∈ N, x0 ∈ Rn, A? ∈ Rn×n, B? ∈ Rn×d, Q ∈ Sn0 and R ∈ Sd+.

(2) {v ∈ Rd | (Kθ?

t )>v = 0, ∀t ∈ [0, T ]} = {0}, with Kθ? defined in (2.2.3).

Before discussing the regret of Algorithm 8, we make the following remark of (H.1).

Remark 2.2.1 (Self-exploration of finite-time horizon RL problems). (H.1(1)) is
the standard assumption for finite-time horizon LQ-RL problems (see e.g., [80]), except that
H.1(1) allows Q to be positive semidefinite, which is important for costs depending on partial
states. (H.15) corresponds to the identifiability of the true parameter θ? by executing the
optimal policy Kθ?. In fact, as shown in Proposition 2.3.10, under (H.1(1)), (H.15) is
equivalent to the following statement:

(2’) if u ∈ Rn and v ∈ Rd satisfy u>Xθ? + v>U θ? = 0 for dP ⊗ dt-almost everywhere in
Ω× [0, T ], then u = 0 and v = 0, where Xθ? and U θ? are the optimal state and control
processes of (2.2.1)-(2.2.2) defined by (2.2.5) and (2.2.3), respectively,

Item (2’) indicates an important self-exploration property of finite-time horizon continuous-
time RL problems. In particular, the time-dependent optimal feedback matrix Kθ? and the
non-degenerate noises guarantee the non-degeneracy of the space spanned by Xθ? and U θ?,
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enabling learning the parameters sufficiently well. This self-exploration property is critical
for our design of exploration-free learning algorithms for (2.2.1)-(2.2.2) with a logarithmic
regret (see Theorems 2.2.2 and 2.2.3).

One can easily show that (H.15) holds if the optimal policy (Kθ?)t∈[0,T ] is nondegenerate,
i.e., supt∈[0,T ] λmin

(
(Kθ?

t )(Kθ?

t )>
)
> 0. Similar nondegeneracy condition has been imposed in

[34] for discrete-time ergodic LQ-RL problems. In particular, by assuming that the optimal
stationary policy satisfies λmin(K?(K?)>) > 0 (along with other controllablity conditions),
they propose learning algorithms with a logarithmic regret, under the assumption that only
the control coefficient B? is unknown. In contrast, we allow both the state coefficient A? and
the control coefficient B? to be unknown.

Moreover, the following proposition provides sufficient conditions of (H.15), which are
special cases of Proposition 2.3.11.

Proposition 2.2.1. Let n, d ∈ N, Q ∈ Sn0 and R ∈ Sd+.

(1) If (B?)>QB? ∈ Sd+, then (H.15) holds for all T > 0.

(2) Assume that the algebraic Riccati equation (A?)>P +PA?−P (B?R−1(B?)>)P +Q = 0
admits a unique maximal solution P ?

∞ ∈ Sn+. Let K?
∞ = −R−1(B?)>P ?

∞, and for each

T > 0, let P ?,(T ) ∈ C([0, T ];Sn0 ) be defined in (3.5.1). Assume that limT→∞ P
?,(T )
0 = P ?

∞
and K?

∞(K?
∞)> ∈ Sd+. Then there exists T0 > 0, such that (H.15) holds for all T ≥ T0.

Proposition 2.2.1 provides two sets of conditions for (H.15) under two different scenarios:
Item (1) applies to an arbitrary finite T > 0, and Item (2) only applies to sufficiently large
T . Item (2) assumes the asymptotic behavior of solutions to Riccati differential equations,
which can be ensured by the stabilizability of the pair (A?, B?) and detectability of the pair
(A?, Q1/2) (see [24, Theorems 10.9 and 10.10]). Note that our subsequent analysis is based
on (H.1), and does not require stabilizability assumptions.

Remark 2.2.2 (Stabilizability of (A?, B?) and dependence on T ). Since the LQ-RL
problem (2.2.1)-(2.2.2) is over the time horizon [0, T ] with a fixed T < ∞, in general one
does not need additional conditions on (A?, B?) for the well-definedness of (2.2.1)-(2.2.2).
If T = ∞, then some stabilizability/controllability conditions of (A?, B?) may be required
for (2.2.1)-(2.2.2) to ensure a well-defined solution (see e.g., [46]). Under these conditions,
different algorithms have been shown to achieve sub-linear regret with respect to the number
of decision steps (see e.g., [112, 40]), and even logarithmic regrets provided that further
identifiability assumptions are satisfied (see e.g., [56, 58, 34, 102]); see Section 2.1.1 for
more details. For T < ∞, the regrets of learning algorithms for (2.2.1)-(2.2.2) in general
depend exponentially on the time horizon T (e.g., the constants C0, C

′ in Theorem 2.2.2), as
the moments of the optimal state process Xθ? and control process U θ? may grow exponentially
with respect to T . It would be interesting to quantify the precise dependence of the regret
bounds on T . This would entail deriving precise a priori bounds of solutions to (2.2.10) and
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estimating the norm ‖(E[
∫ T

0
Zθ?

t (Zθ?

t )> dt])−1‖2 in terms of (A?, B?, Q, T ), and is left for
future research.

We are now ready to state the main result of this section, which shows that the regret of
Algorithm 8 grows logarithmically with respect to the number of episodes.

Theorem 2.2.2. Suppose (H.1) holds and let θ0 = (A0, B0)> ∈ R(n+d)×d such that (H.15)
holds with θ0. Then there exists a constant C0 > 0 such that for all C ≥ C0, and δ ∈ (0, 3

π2 ),

if one sets m0 = C(− ln δ) and m` = 2`m0 for all ` ∈ N, then with probability at least 1− π2δ
3

,
the regret of Algorithm 8 given by (2.2.8) satisfies

R(M) ≤ C ′
(
(lnM)(ln lnM) + (− ln δ)(lnM)

)
, ∀M ∈ N,

where C ′ is a constant independent of M and δ.

To simplify the presentation, we analyze the performance of Algorithm 8 by assuming
the number of learning episodes {m`}` is doubled between two successive updates of the
estimation of θ?. Similar regret results can be established for Algorithm 8 with different
choices of {m`}`. Under this specific choice of {m`}`, for any M ∈ N, Algorithm 8 splits M
episodes into L = dlog2( M

m0
+1)e−1 cycles, where the `-th cycle, ` = 0, 1, . . . , L−1, contains

m` episodes, and the remaining M −∑L−1
`=0 m` episodes are in the last cycle.

Sketched proof of Theorem 2.2.2. We outline the key steps of the proof of Theorem
2.2.2, and present the detailed arguments to Section 2.3.3. By exploiting the regularity and
robustness of solutions to (2.2.10), we prove that the performance gap Jθ

?
(Uψθ)− Jθ?(U θ?)

is of the magnitude O(|θ − θ?|2), for all a-priori bounded θ (Proposition 2.3.8). We then
establish a uniform sub-exponential property for the (deterministic and stochastic) integrals
in (2.2.12), which along with (H.15) and Bernstein’s inequality leads to the following estimate
of the parameter estimation error: for all δ ∈ (0, 1/2), all sufficiently large m ∈ N, and all θ
sufficiently close to θ?,

|θ̂ − θ?| ≤ O
(√− ln δ

m
+
− ln δ

m
+

(− ln δ)2

m2

)
, with probability 1− 2δ, (2.2.14)

where θ̂ is generated by (2.2.13) with ψθ (Proposition 3.3.12). Then for each δ > 0, applying
(2.2.14) with δ` = δ/(`+ 1)2 for all ` ∈ N∪ {0} shows that with probability 1− 2

∑∞
`=0 δ` =

1− π2δ
3

,

|θ̂`+1 − θ?|2 .
− ln δ`
m`

+
(− ln δ`)

2

m2
`

+
(− ln δ`)

4

m4
`

, ∀` ∈ N, (2.2.15)

where . means the inequality holds with a multiplicative constant independent of δ and
`. By the quadratic performance gap and the choice of {m`}`, the regret of Algorithm
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8 up to the M -th episode can be bounded by the regret at the end of L-th cycle with
L = dlog2( M

m0
+ 1)e − 1:

R(M) .
L∑
`=0

m`|θ` − θ?|2 .
L∑
`=0

(− ln δ`)

(
1 +
− ln δ`
m`

+
(− ln δ`)

3

m3
`

)
. (2.2.16)

Observe that the choices of {δ`}` and {m`}` ensure that supδ∈(0, 3
π2

),`∈N
− ln δ`
m`

< ∞. Hence,

the right-hand side of (2.2.16) is of the magnitude O
(∑L

`=0(− ln δ`)
)

, which along with the

choices of δ` and L leads to the desired regret bound; see the end of Section 2.3.3 for more
details.

2.2.3 Discrete-time least-squares algorithm and its regret bound

Note that Algorithm 8 in Section 2.2.2 requires executing feedback controls and observing
corresponding state trajectories continuously. A common practice to solve continuous-time
RL problems is by assuming that at each learning episode the dynamics only evolves in
discrete time, and then estimate parameters according to discrete-time RL algorithms (see
e.g., [121, 119, 120, 149]). As the true dynamics evolves continuously, it is necessary to
quantify the impact of reaction stepsize on the algorithm performance.

In this section, we analyze the performance of the above procedure for solving (2.2.1)-
(2.2.2). We adapt regularized least-squares algorithms for discrete-time LQ problems to the
present setting, and establish their regret bounds in terms of the discretization stepsize. Our
analysis shows that a proper scaling of the regularization term in the least-squares estimation
in terms of stepsize is critical for a robust performance with respect to different timescales.

More precisely, for a given cycle (i.e., the index ` in Algorithm 8), let θ = (A,B)> ∈
R(n+d)×n be the current estimate of θ? in (2.2.2), and let {ti}Ni=0, N ∈ N, be a uniform
partition of [0, T ] with stepsize τ = T/N . We then assume that (2.2.1)-(2.2.2) is piecewise
constant between any two grid points {ti}Ni=0, choose actions and make observations every τ ,
and update the estimated parameter based on these observations. To this end, we consider
the following discrete-time LQ control problem with parameter θ:

inf
U∈H2

N (Rd)
JN(U), with JN(U) = E

[
N−1∑
i=0

(
(XU,τ

ti )>QXU,τ
ti + U>tiRUti

)
τ

]
, (2.2.17)

where H2
N(Rd) = {U ∈ H2(Rd) | Ut = Uti , t ∈ [ti, ti+1), i = 0, . . . , N − 1}, and (XU,τ

ti )N−1
i=0 are

defined by

XU,τ
ti+1
−XU,τ

ti = (AXU,τ
ti +BUti)τ +Wti+1

−Wti , i = 0, . . . N − 1; XU,τ
0 = x0. (2.2.18)

Note that for simplicity, our strategy is constructed by assuming a discrete-time dynamics
arising from an Euler discretization of (2.2.2) (with the estimated parameter θ); similar
analysis can be performed with a high-order approximation of (2.2.1)-(2.2.2).
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It is well-known that (see e.g., [24]), the optimal control of (2.2.17)-(2.2.18) is given by
the following feedback form:

Ut = ψθ,τ (t,XU,τ
t ), with ψθ,τ (t, x) = Kθ,τ

t x, ∀(t, x) ∈ [0, T )× Rn, (2.2.19)

where Kθ,τ : [0, T ) → Rd×n is the piecewise constant function (with stepsize τ = T/N)
defined by

P θ,τ
ti−1

= τQ+ (I + τA)>P θ,τ
ti (I + τA)− (I + τA)>P θ,τ

ti τB(R + τB>P θ,τ
ti B)−1B>P θ,τ

ti (I + τA),

∀i = 0, . . . , N − 1; P θ,τ
T = 0,

Kθ,τ
t = −(R + τB>P θ,τ

ti+1
B)−1B>P θ,τ

ti+1
(I + τA), t ∈ [ti, ti+1), i = 0, . . . , N − 1. (2.2.20)

We then implement the piecewise constant strategy ψθ,τ defined in (2.2.19) on the original
system (2.2.2) for m episodes, and update the estimated parameter θ by observing (2.2.2)
with stepsize τ = T/N . More precisely, let Xψθ,τ ∈ S2(Rn) be the state process associated
with ψθ,τ :

dXt = (A?Xt +B?Kθ,τ
ti Xt) dt+ dWt, t ∈ [ti, ti+1], i = 0, . . . , N − 1; X0 = x0, (2.2.21)

and (Xψθ,τ ,j
t )t∈[0,T ], j = 1, . . . ,m, m ∈ N, be m independent trajectories of Xψθ,τ ∈ S2(Rn),

we update the parameter θ according to the following discrete-time least-squares estimator:

θ ← arg min
θ∈R(n+d)×n

m∑
j=1

N−1∑
i=0

‖Xψθ,τ ,j
ti+1

−Xψθ,τ ,j
ti − τθ>Zψθ,τ ,j

ti ‖2
2 + τtr(θ>θ), (2.2.22)

with Zψθ,τ ,j
ti

:=

(
Xψθ,τ ,j
ti

Kθ,τ
ti

Xψθ,τ ,j
ti

)
for all i, j. The update (2.2.22) is consistent with the agent’s

assumption that the state evolves according to (2.2.18) between two grid points. Setting the
derivative (with respect to θ) of the right-hand side of (2.2.22) to zero leads to

−
m∑
j=1

N−1∑
i=0

τZψθ,τ ,j
ti

((
Xψθ,τ ,j
ti+1

−Xψθ,τ ,j
ti

)>
− τ(Zψθ,τ ,j

ti )>θ

)
+ τθ = 0.

Dividing both sides by τ/m and rearranging the terms give the following equivalent expres-
sion of the discrete-time least squares estimator (2.2.22):

θ ←−
(

1

m

m∑
j=1

N−1∑
i=0

Zψθ,τ ,j
ti (Zψθ,τ ,j

ti )>τ +
1

m
I

)−1(
1

m

m∑
j=1

N−1∑
i=0

Zψθ,τ ,j
ti

(
Xψθ,τ ,j
ti+1

−Xψθ,τ ,j
ti

)>)
.

(2.2.23)
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Remark 2.2.3 (Scaling hyper-parameters with timescales). In principle, when apply-
ing discrete-time RL algorithms in a continuous environment, it is critical to adopt a proper
scaling of the hyper-parameters for a robust performance with respect to different timescales.
Indeed, scaling the regularization term tr(θ>θ) in (2.2.22) with respect to the stepsize τ is
essential for the robustness of (2.2.23) for all small stepsizes τ . If one updates θ by min-
imizing the following `2-regularized loss function with a given hyper-parameter α < 1 such
that

arg min
θ∈R(n+d)×n

m∑
j=1

N−1∑
i=0

‖Xψθ,τ ,j
ti+1

−Xψθ,τ ,j
ti − τθ>Zψθ,τ ,j

ti ‖2
2 + ταtr(θ>θ), (2.2.24)

then the corresponding discrete-time estimator is given by

θτ :=

(
1

m

m∑
j=1

N−1∑
i=0

Zψθ,τ ,j
ti (Zψθ,τ ,j

ti )>τ +
1

τ 1−αm
I

)−1(
1

m

m∑
j=1

N−1∑
i=0

Zψθ,τ ,j
ti

(
Xψθ,τ ,j
ti+1

−Xψθ,τ ,j
ti

)>)
.

Observe that for any given m ∈ N, the estimator θτ degenerates to zero as the stepsize τ
tends to zero. Hence, to ensure the viability of θτ across different timescales, the number
of episodes m has to increase appropriately when τ tends to zero. In contrast, by choosing
α = 1 in (2.2.24), (2.2.23) admits a continuous-time limit (2.2.13) as τ → 0, and leads
to a learning algorithm in which the episode numbers and the time stepsize can be chosen
independently (see Theorem 2.2.3).

We now summarize the discrete-time least-squares algorithm as follows.

Algorithm 9 Discrete-time least-squares algorithm

1: Input: Choose an initial estimation θ0 of θ?, numbers of learning episodes {m`}`∈N∪{0}
and numbers of intervention points {N`}`∈N∪{0}.

2: for ` = 0, 1, · · · do
3: Obtain the piecewise constant control ψθ`,τ` as (2.2.19) with τ = T/N` and θ = θ`.

4: Execute the control ψθ`,τ` for m` independent episodes, and collect the data Xψθ`,τ` ,j
ti ,

i = 0, . . . , N`, j = 1, . . . ,m`.
5: Obtain an updated estimation θ`+1 by using (2.2.23) and the data

(Xψθ`,τ` ,j
ti )i=0,...,N`,j=1,...,m` .

6: end for

Again, as the `-th cycle of Algorithm 9 contains m` episodes, for each M ∈ N, the regret
of learning up to M episodes (cf. (2.2.8)) can be upper bounded by the accumulated regret
at the end of the L-th cycle, where L is the smallest integer such that

∑L
`=0m` ≥M . The

following theorem is an analogue of Theorem 2.2.2 for Algorithm 9.

Theorem 2.2.3. Suppose (H.1) holds and let θ0 = (A0, B0)> ∈ R(n+d)×d such that (H.15)
holds with θ0. Then there exists C0 > 0 and n0 ∈ N such that for all C ≥ C0, and δ ∈ (0, 3

π2 ),
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if one sets m0 = C(− ln δ), m` = 2`m0 and N` ≥ n0 for all ` ∈ N∪{0}, then with probability
at least 1− π2δ

3
, the regret of Algorithm 9 given by (2.2.8) satisfies

R(M) ≤ C ′

(
(lnM)(ln lnM) + (− ln δ)(lnM) + (− ln δ)

lnM∑
`=0

2`N−2
`

)
, ∀M ∈ N, (2.2.25)

where C ′ is a constant independent of M , δ and (N`)`∈N∪{0}.

Remark 2.2.4. Theorem 2.2.3 provides a general regret bound of Algorithm 9 with any
time discretization steps {N`}`≥0, where N` is the number of intervention points in the `-
th cycle. Compared with Algorithm 8, the regret of Algorithm 9 has an additional term
(− ln δ)

∑lnM
`=0 2`N−2

` : for each learning episode, one achieves a sub-optimal loss by adjusting
her policy in the discrete time and also suffers from model misspecification error in parameter
estimation from discrete-time observations. Specifically,

• if the time discretization step is fixed for all cycles, i.e., N` = T/τ for all `, then the
last term of (2.2.25) is of the magnitude:

O
(

(− ln δ)
lnM∑
`=0

2`N−2
`

)
= O

(
(− ln δ)τ 2

lnM∑
`=0

2`

)
= O((− ln δ)τ 2M),

and consequently Algorithm 9 achieves a sub-optimal linear regret;

• if the time discretization step of the `-th cycle increases exponentially in terms of `, e.g.,

N` =
√

2
`
N0 for ` = 1, . . . , lnM , then the last term of (2.2.25) is of the magnitude:

O
(

(− ln δ)
lnM∑
`=0

2`N−2
`

)
= O

(
(− ln δ)

lnM∑
`=0

N−2
0

)
= O((− ln δ) lnM),

which guarantees that the regret of Algorithm 9 is still logarithmic in M .

Sketched proof of Theorem 2.2.3. We point out the main differences between the
proofs of Theorems 2.2.2-2.2.3, and give the detailed proof of Theorem 2.2.3 in Section 2.3.4.
Compared with Theorem 2.2.2, the essential challenges in proving Theorem 2.2.3 are to
quantify the precise dependence of the performance gap and the parameter estimation error
on the stepsize. To this end, we first prove a first-order convergence of (2.2.20) to (2.2.9) as
the stepsize tends to zero. Then by exploiting the affine structure of (2.2.21), we establish
the following quadratic performance gap for a piecewise constant policy ψθ,τ (Proposition
2.3.12):

Jθ
?

(Uψθ,τ )− Jθ?(U θ?) ≤ C(|θ − θ?|2 + τ 2). (2.2.26)



CHAPTER 2. LOG REGRET FOR EPISODIC CONTINUOUS-TIME LQ-RL 58

The analysis of the parameter estimation error is somewhat involved, as the state tra-
jectories are merely α-Hölder continuous in time with α < 1/2. By leveraging the analytic
expression of Xψθ,τ , we first show the first-order convergence of θ̂τ to θ? with

θ̂τ :=

(
E
[N−1∑
i=0

Zψθ,τ

ti (Zψθ,τ

ti )>τ

])−1(
E
[N−1∑
i=0

Zψθ,τ

ti

(
Xψθ,τ

ti+1
−Xψθ,τ

ti

)> ])
. (2.2.27)

We then prove that (2.2.23) enjoys a uniform sub-exponential tail bound for all θ close to
θ? and small τ . Comparing (2.2.23) with (2.2.27) and applying the above results allow
for bounding the estimation error of (2.2.23) by (2.2.14) with an additional O(τ) term
(Proposition 2.3.14).

2.3 Proofs of Theorems 2.2.2 and 2.2.3

To simplify the notation, for any given N,m ∈ N and control ψ : [0, T ]× Rn → Rd that
is affine in the spatial variable, we introduce the following random variables associated with
continuous-time observations:

V ψ =

∫ T

0

Zψ
t (Zψ

t )> dt, Y ψ =

∫ T

0

Zψ
t (dXψ

t )>,

V ψ,m =
1

m

m∑
j=1

∫ T

0

Zψ,j
t (Zψ,j

t )> dt, Y ψ,m =
1

m

m∑
j=1

∫ T

0

Zψ,j
t (dXψ,j

t )>,

(2.3.1)

and the random variables associated with discrete-time observations with stepsize τ = T/N :

V ψ,τ =
N−1∑
i=0

Zψ
ti (Z

ψ
ti )
>τ, Y ψ,τ =

N−1∑
i=0

Zψ
ti (X

ψ
ti+1
−Xψ

ti )
>,

V ψ,τ,m =
1

m

m∑
j=1

N−1∑
i=0

Zψ,j
ti (Zψ,j

ti )>τ, Y ψ,τ,m =
1

m

m∑
j=1

N−1∑
i=0

Zψ,j
ti (Xψ,j

ti+1
−Xψ,j

ti )>,

(2.3.2)

where Xψ is the state process associated with the parameter θ? and the control ψ (cf. (2.2.6)),

Zψ
t =

(
Xψ

ψ(t,Xψ
t )

)
for all t ∈ [0, T ], and (Xψ,j, Zψ,j)mj=1 are independent copies of (Xψ, Zψ).

2.3.1 Convergence and stability of Riccati equations and
feedback controls

Lemma 2.3.1. Suppose (H.1(1)) holds. Then for all θ = (A,B)> ∈ R(n+d)×n, the Riccati
equation

d
dt
Pt + A>Pt + PtA− PtBR−1B>Pt +Q = 0, t ∈ [0, T ]; PT = 0. (2.3.3)

admits a unique solution P θ ∈ C([0, T ];Rn×n). Moreover, the map R(n+d)×n 3 θ 7→ P θ ∈
C1([0, T ];Rn×n) is continuously differentiable.
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Proof. It has been shown in [169, Corollary 2.10 on p. 297] that under (H.1(1)), for all
θ = (A,B)> ∈ R(n+d)×n, (2.3.3) admits a unique solution P θ ∈ C([0, T ];Rn×n) such that
P θ
t ∈ Sn0 for all t ∈ [0, T ]. It remains to to prove the continuous differentiability of θ 7→ P θ.

To this end, consider the Banach spaces X = R(n+d)×n × C1([0, T ];Rn×n) and Y =
C([0, T ];Rn×n)× Rn×n, and the operator Φ : X→ Y defined by

X 3 (θ, P ) 7→ Φ(θ, P ) := (F (θ, P ), PT ) ∈ Y,

where F (θ, P )t = d
dt
Pt + A>Pt + PtA − PtBR−1B>Pt + Q for all t ∈ [0, T ]. Observe that

for all θ ∈ R(n+d)×n, Φ(P θ, θ) = 0. Moreover, one can easily show that for any (P, θ) ∈ X,
Φ is continuously Fréchet differentiable at (P, θ), and the partial derivative ∂

∂P
Φ(θ, P ) :

C1([0, T ];Rn×n)→ Y is a bounded linear operator such that for all P̃ ∈ C1([0, T ];Rn×n),

∂

∂P
Φ(θ, P )(P̃ ) =

((
d
dt
P̃t + A>P̃t + P̃tA− P̃tBR−1B>Pt − PtBR−1B>P̃t

)
t∈[0,T ]

P̃T

)
∈ Y.

Classical well-posedness results of linear differential equations and the boundedness of P
imply that ∂

∂P
Φ(P, θ) : C1([0, T ];Rn×n)→ Y has a bounded inverse (and hence a bijection).

Thus, applying the implicit function theorem (see [38, Theorem 7.13-1]) to Φ proves that
R(n+d)×n 3 θ 7→ P θ ∈ C1([0, T ];Rn×n) is continuously differentiable.

The following lemma establishes the stability of the Riccati difference operator, which is
crucial for the subsequent convergence analysis.

Lemma 2.3.2. Suppose (H.1(1)) holds. For each θ = (A,B)> ∈ R(n+d)×n and N ∈ N, let
τ = T/N and the function Γθτ : Sn0 → Sn0 such that for all P ∈ Sn0 ,

Γθτ (P ) := τQ+ (I+ τA)>P (I+ τA)− (I+ τA)>PτB(R+ τB>PB)−1B>P (I+ τA). (2.3.4)

Then for all P, P ′ ∈ Sn0 ,

(1) ‖Γθτ (P )‖2 ≤ τ‖Q‖2 + (1 + τ‖A‖2)2‖P‖2,

(2) ‖Γθτ (P )− Γθτ (P
′)‖2 ≤

(
1 + τ‖R−1‖2‖B‖2

2 max{‖P‖2, ‖P ′‖2}
)2

(1 + τ‖A‖2)2‖P − P ′‖2.

Proof. Item (1) follows directly from the definition of Γθτ and the identity that ‖Γθτ (P )‖2 =
sup{x>Γθτ (P )x | x ∈ Rn, |x| = 1}. We now prove Item (2). Let δP = P − P ′ and δΓ(P ) =
Γθτ (P )− Γθτ (P

′), by [24, Lemma 10.1],

δΓ(P ) = F>δPF − F>δPτB(τB>PτB + τR)−1τB>δPF,

with F = (I − τB(τB>P ′τB + τR)−1τB>P ′)(I + τA). Thus for all x ∈ Rn, x>δΓ(P )x ≤
‖δP‖2‖F‖2

2|x|2, which along with ‖(τB>P ′B +R)−1‖2 ≤ ‖R−1‖2 implies

x>δΓ(P )x ≤ ‖δP‖2(1 + τ‖R−1‖2‖B‖2
2‖P ′‖2)2(1 + τ‖A‖2)2|x|2, x ∈ Rn.

Hence, interchanging the roles of P and P ′ in the above inequality and taking the supremum
over x ∈ Rn lead to the desired estimate.



CHAPTER 2. LOG REGRET FOR EPISODIC CONTINUOUS-TIME LQ-RL 60

The following proposition establishes the first-order convergence of the Riccati difference
equation and the associated feedback controls, as the stepsize tends to zero.

Proposition 2.3.3. Suppose (H.1(1)) holds and let Θ be a bounded subset of R(n+d)×n. For
each θ = (A,B)> ∈ Θ and N ∈ N, let (P θ,τ

i )Ni=0 such that P θ,τ
N = 0 and P θ,τ

i = Γθτ (P
θ,τ
i+1) for

all i = 0, . . . , N − 1, with Γθτ defined in (2.3.4) with τ = T/N . Then there exists a constant
C ≥ 0 such that for all θ ∈ Θ, N ∈ N,

sup
i=0,...,N−1

sup
t∈[iτ,(i+1)τ)

(
‖P θ

t − P θ,τ
i ‖2 + ‖Kθ

t −Kθ,τ
i ‖2

)
≤ Cτ,

where P θ ∈ C1([0, T ];Rn×n) satisfies (2.3.3), Kθ
t = −R−1B>P θ

t for all t ∈ [0, T ] and Kθ,τ
i =

−(R + τB>P θ,τ
i+1B)−1B>P θ,τ

i+1(I + τA) for all i = 0, . . . , N − 1.

Proof. Throughout this proof, we shall fix θ ∈ Θ, N ∈ N, let ti = iτ for all i = 0, . . . , N ,
and denote by C a generic constant independent of N and θ. By the continuity of the map
θ 7→ P θ (Lemma 2.3.1) and the boundedness of Θ, there exists a constant C such that
‖P θ‖C1([0,T ];Rn×n) ≤ C for all θ ∈ Θ, which implies ‖P θ

t − P θ
s ‖2 ≤ C|t− s| for all t, s ∈ [0, T ].

Consequently, it suffices to prove ‖P θ
ti
−P θ,τ

i ‖2 +‖Kθ
ti+1
−Kθ,τ

i ‖2 ≤ Cτ for all i = 0, . . . , N−1.

We start by making two important observations. By Lemma 2.3.2 Item (1), ‖P θ,τ
i ‖2 ≤

τC + (1 +Cτ)‖P θ,τ
i+1‖2 for all i = 0, . . . , N − 1, which along with Gronwall’s inequality gives

‖P θ,τ
i ‖2 ≤ C for all i = 0, . . . , N . Moreover, by (2.3.4), for all P ∈ Sn0 ,

Γθτ (P ) = τQ+ P + τ(A>P + PA) + τ 2A>PA

− τ
(
PB(R + τB>PB)−1B>P + τ(A>H +HA>) + τ 2A>HA

)
,

with H := PB(R + τB>PB)−1B>P . Hence for any given i = 0, . . . , N − 1, we see from
(2.3.3) that

P θ
ti
− Γθτ (P

θ
ti+1

)

=

∫ ti+1

ti

(
A>(P θ

t − P θ
ti+1

) + (P θ
t − P θ

ti+1
)A
)

dt−
∫ ti+1

ti

(P θ
t BR

−1B>P θ
t − P θ

ti+1
BR−1B>P θ

ti+1
) dt

−
∫ ti+1

ti

(P θ
ti+1

BR−1B>P θ
ti+1
− P θ

ti+1
B(R + τB>P θ

ti+1
B)−1B>P θ

ti+1
) dt

+ τ 2(−A>P θ
ti+1

A+ A>Hθ
i+1 +Hθ

i+1A
> + τA>Hθ

i+1A),

with Hθ
i+1 = P θ

ti+1
B(R + τB>P θ

ti+1
B)−1B>P θ

ti+1
. Since ‖P θ‖C1([0,T ];Rn×n) ≤ C and R ∈ Sd+,

we have ‖P θ
ti
− Γθτ (P

θ
ti+1

)‖2 ≤ Cτ 2 for all i = 0, . . . , N − 1.

We are ready to show maxi=0,...,N−1(‖P θ
ti
−P θ,τ

i ‖2 +‖Kθ
ti+1
−Kθ,τ

i ‖2) ≤ Cτ . For any given

i = 0, . . . , N − 1, by Lemma 2.3.2 Item (2) and the uniform boundedness of (P θ
ti

)Ni=0 and
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(P θ,τ
i )Ni=0,

‖P θ
ti
− P θ,τ

i ‖2 ≤ ‖P θ
ti
− Γθτ (P

θ
ti+1

)‖2 + ‖Γθτ (P θ
ti+1

)− Γθτ (P
θ,τ
i+1)‖2

≤ Cτ 2 +
(
1 + τC max{‖P θ

ti+1
‖2, ‖P θ,τ

i+1‖2}
)2

(1 + τ)‖P θ
ti+1
− P θ,τ

i+1‖2

≤ Cτ 2 +
(
1 + τC)‖P θ

ti+1
− P θ,τ

i+1‖2,

which along with Gronwall’s inequality and P θ
T = P θ,τ

N = 0 shows the desired convergence
rate of (P θ,τ

i )Ni=1. Furthermore, for all i = 0, . . . , N − 1,

‖Kθ
ti+1
−Kθ,τ

i ‖2 ≤ ‖(R−1 − (R + τB>P θ,τ
i+1B)−1)B>P θ

ti+1
‖2

+ ‖(R + τB>P θ,τ
i+1B)−1B>(P θ

ti+1
− P θ,τ

i+1(I + τA))‖2 ≤ Cτ,

from the facts that ‖P θ
ti
‖2 ≤ C, ‖P θ,τ

i ‖2 ≤ C and ‖P θ
ti
− P θ,τ

i ‖2 ≤ Cτ for all i.

2.3.2 Concentration inequalities for least-squares estimators

In this section, we analyze the concentration behavior of the least-squares estimators
(2.2.13) and (2.2.23). We first recall the definition of sub-exponential random variables (see
e.g., [158]).

Definition 2.3.1. A random variable X with mean µ = E[X] is (ν, b)-sub-exponential for
ν, b ∈ [0,∞) if E[eλ(X−µ)] ≤ eν

2λ2/2 for all |λ| < 1/b.

Note that a (ν, 0)-sub-exponential random variable is usually called a sub-Gaussian ran-
dom variable. It is well-known that products of sub-Gaussian random variables are sub-
exponential, and the class of sub-exponential random variables forms a vector space. More-
over, sub-exponential random variables enjoy the following concentration inequality (also
known as Bernstein’s inequality; see e.g., [158, Equation 2.18 p. 29]).

Lemma 2.3.4. Let m ∈ N, ν, b ∈ [0,∞) and (Xi)
m
i=1 be independent (ν, b)-sub-exponential

random variables with µ = E[Xi] for all i = 1, . . . ,m. Then for all ε ≥ 0,

P

(∣∣∣∣∣ 1

m

m∑
i=1

Xi − µ
∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−min

{
mε2

2ν2
,
mε

2b

})
.

The following lemma shows double iterated Itô integrals are sub-exponential random
variables.

Lemma 2.3.5. Let L ≥ 0 and g, h : [0, T ]× [0, T ]→ Rn×n be measurable functions such that
|g(t, s)| ≤ L and |h(t, s)| ≤ L for all t, s ∈ [0, T ]. Then there exist ν, b ∈ [0,∞), depending
polynomially on L, n, T , such that

(1)
∫ T

0

( ∫ t
0
g(t, s) dWs

)>
dWt,
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(2)
∫ T

0

( ∫ t
0
g(t, s) dWs

)>( ∫ t
0
h(t, s) dWs

)
dt

are (ν, b)-sub-exponential,

Proof. We first prove Item (1) by assuming without loss of generality that ‖g(t, s)‖2 ≤ L for

all t, s ∈ [0, T ], and by defining V q :=
∫ T

0

(∫ t
0
q(t, s) dWs

)>
dWt for any bounded measurable

function q : [0, T ]× [0, T ]→ Rn×n. By similar arguments as [37, Lemma 3.2], we have for all
t ∈ [0, T ] and 0 ≤ λ < 1

2T
,

E[exp(2λV
g
L )] ≤ E[exp(2λV In)] =

(
1√

1− 2λT
exp(−λT )

)n
.

As e−λ√
1−2λ

≤ e2λ2 for all |λ| ≤ 1/4, we see E[exp(2λV g/L)] ≤ exp(2nλ2T 2) for all 0 ≤ λ < 1
4T

.

Consequently, for all 0 ≤ λ < 1
2LT

,

E[exp(λV g)] = E
[
exp

(
2
λL

2
V

g
L

)]
≤ exp

(
nL2T 2λ2

2

)
.

Replacing g by −g shows the above estimate holds for |λ| < 1
2LT

, which implies the desired
sub-exponential property of V g.

For Item (2), observe that for each t ∈ [0, T ], the Itô formula allows one to express

the product
( ∫ t

0
g(t, s) dWs

)>( ∫ t
0
h(t, s) dWs

)
as a linear combination of double iterated Itô

integrals and deterministic integrals. Then the desired sub-exponential property follows from
the stochastic Fubini theorem (see e.g., [155]) and Item (1).

The following theorem establishes the concentration properties of the random variables
involved in the least-squares estimators.

Theorem 2.3.6. Suppose (H.1(1)) holds and let Θ be a bounded subset of R(n+d)×n. For
each θ ∈ Θ and N ∈ N, let ψθ be defined in (2.2.9), and ψθ,τ be defined in (2.2.20) with
stepsize τ = T/N . Then there exist constants C, ν, b > 0 such that for all θ ∈ Θ, N,m ∈ N
and ε > 0,

max
{
P(|V ψθ,m − E[V ψθ ]| ≥ ε),P(|Y ψθ,m − E[Y ψθ ]| ≥ ε),

P(|V ψθ,τ ,τ,m − E[V ψθ,τ ,τ ]| ≥ ε),P(|Y ψθ,τ ,τ,m − E[Y ψθ,τ ,τ ]| ≥ ε)
}
≤ C exp

(
− 1

C
min

{
mε2

ν2
,
mε

b

})
,

where V ψθ , Y ψθ , V ψθ,m, Y ψθ,m are defined in (2.3.1), and V ψθ,τ ,τ , Y ψθ,τ ,τ , V ψθ,τ ,τ,m, Y ψθ,τ ,τ,m

are defined in (2.3.2).

Proof. We first show there exist ν, b > 0 such that all entries of V ψθ , Y ψθ Y ψθ,τ ,τ , V ψθ,τ ,τ are
(ν, b)-sub-exponential for all θ ∈ Θ and N ∈ N. By (2.3.1), we have

V ψθ =

∫ T

0

(
Xψθ

t

Kθ
tX

ψθ

t

)(
(Xψθ

t )> (Kθ
tX

ψθ

t )>
)

dt, Y ψθ = V ψθθ? +

∫ T

0

(
Xψθ

t

Kθ
tX

ψθ

t

)
(dWt)

>.
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Moreover, applying the variation-of-constants formula (see e.g., [113, Theorem 3.1 p. 96]) to

(2.2.11) shows thatXψθ

t = Φθ
t

(
x0+

∫ t
0
(Φθ

s)
−1 dWs

)
for all t ∈ [0, T ], where Φθ ∈ C([0, T ];Rn×n)

is the fundamental solution of dΦθ
t = (A? + B?Kθ

t )Φθ
t dt. The continuity of R(n+d)×n 3

θ 7→ Kθ ∈ C([0, T ];Rd×n) (cf. Proposition 2.3.1) and the boundedness of Θ implies that
Kθ,Φθ, (Φθ)−1 are uniformly bounded for all θ ∈ Θ. Consequently, from Lemma 2.3.5, there
exist ν, b > 0 such that all entries of V ψθ and Y ψθ are (ν, b)-sub-exponential.

Similarly, by (2.2.21) and (2.3.2),

V ψθ,τ ,τ =

∫ T

0

N−1∑
i=0

1[ti,ti+1)(t)

(
Xψθ,τ

ti

Kθ,τ
ti X

ψθ,τ

ti

)(
(Xψθ,τ

ti )> (Kθ,τ
ti X

ψθ,τ

ti )>
)

dt,

Y ψθ,τ ,τ =

∫ T

0

N−1∑
i=0

1[ti,ti+1)(t)

(
Xψθ,τ

ti

Kθ,τ
ti X

ψθ,τ

ti

)(
(Xψθ,τ

t )> (Kθ,τ
t Xψθ,τ

t )>
)

(θ?)> dt

+

∫ T

0

N−1∑
i=0

1[ti,ti+1)(t)

(
Xψθ,τ

ti

Kθ,τ
ti X

ψθ,τ

ti

)
(dWt)

>,

where Xψθ,τ

t = Φθ,τ
t

(
x0 +

∫ t
0
(Φθ,τ

s )−1 dWs

)
for all t ∈ [0, T ], and Φθ,τ ∈ C([0, T ];Rn×n) is the

fundamental solution of dΦθ,τ
t = (A?+B?Kθ,τ

t )Φθ,τ
t dt. By Proposition 2.3.3, Kθ,τ ,Φθ,τ , (Φθ,τ )−1

are uniformly bounded for all θ ∈ Θ and N ∈ N, which along with Lemma 2.3.5 leads to the
desired sub-exponential properties of Y ψθ,τ ,τ and V ψθ,τ ,τ .

Finally, since P(|∑`
i=1 Xi| ≥ ε) ≤∑`

i=1 P(|Xi| ≥ ε/`) for all ` ∈ N and random variables

(Xi)
`
i=1, we can apply Lemma 2.3.4 to each component of V ψθ , Y ψθ Y ψθ,τ ,τ and V ψθ,τ ,τ , and

conclude the desired concentration inequality with a constant C depending polynomially on
n, d.

2.3.3 Regret analysis of continuous-time least-squares algorithm

This section is devoted to the proof of Theorem 2.2.2, which consists of three steps: (1) We
first quantify the performance gap between applying feedback controls for an incorrect model
and that for the true model; our proof exploits the stability of Riccati equations established
in Lemma 2.3.1; (2) We then estimate the parameter estimation error in terms of the number
of learning episodes based on the sub-exponential tail behavior of the least-squares estimator
(2.2.13); (3) Finally, we estimate the regret for the feedback controls (ψθ`)`∈N in Algorithm
8, thus establishing Theorem 2.2.2.

Step 1: Analysis of the performance gap. We start by establishing a quadratic ex-
pansion of the cost function at any open-loop control.

Proposition 2.3.7. Suppose (H.1(1)) holds. Let ψθ
?

be defined in (2.2.3), Xθ? be the state
process associated with ψθ

?
(cf. (2.2.5)), and U θ? ∈ H2(Rd) be such that for all t ∈ [0, T ],
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U θ?

t = ψθ
?
(t,Xθ?

t ). Then for all U ∈ H2(Rd),

Jθ
?

(U)− Jθ?(U θ?) ≤ ‖Q‖2‖Xθ?,U −Xθ?‖2
H2(Rn) + ‖R‖2‖U − U θ?‖2

H2(Rd), (2.3.5)

where Xθ?,U is the state process controlled by U (cf. (2.2.2)), and Jθ
?

: H2(Rd) → R is
defined in (2.2.1).

Proof. For notational simplicity, for all U ∈ H2(Rd) and ε > 0, we write U ε = U θ? +
ε(U − U θ?), denote by Xε = Xθ?,Uε the associated state process defined by (2.2.2), and by
XU = X0 = Xθ?,U . The affineness of (2.2.2) implies that Xε = (1 − ε)Xθ? + εXU for all
ε > 0. Hence, for all U ∈ H2(Rd),

lim
ε↘0

1

ε

(
Jθ

?

(U ε)− Jθ?(U θ?)
)

= lim
ε↘0

1

ε
E
[ ∫ T

0

((
(1− ε)Xθ?

t + εXU
t

)>
Q
(

(1− ε)Xθ?

t + εXU
t

)
− (Xθ?

t )>QXθ?

t

+
(
(1− ε)U θ?

t + εUt
)>
R
(
(1− ε)U θ?

t + εUt
)
− (U θ?

t )>RU θ?

t

)
dt

]
= lim

ε↘0
εE
[∫ T

0

(
(XU

t −Xθ?

t )>Q(XU
t −Xθ?

t ) + (Ut − U θ?

t )>R(Ut − U θ?

t )
)

dt

]
+ 2E

[∫ T

0

(
(XU

t −Xθ?

t )>QXθ?

t + (Ut − U θ?

t )>RU θ?

t

)
dt

]
= 2E

[∫ T

0

(
(XU

t −Xθ?

t )>QXθ?

t + (Ut − U θ?

t )>RU θ?

t

)
dt

]
,

which is based on the fact that XU − Xθ? ∈ H2(Rn) and U − U? ∈ H2(Rd). As U θ is the
optimal control of Jθ

?
, Jθ

?
(U) ≥ Jθ

?
(U θ?) for all U ∈ H2(Rd). Hence for all U ∈ H2(Rd),

E
[∫ T

0

(
(XU

t −Xθ?

t )>QXθ?

t + (Ut − U θ?

t )>RU θ?

t

)
dt

]
= lim

ε↘0

1

2ε
(Jθ

?

(U ε)− Jθ?(U θ?)) ≥ 0.

(2.3.6)
We now prove that the above quantity is in fact zero for all U ∈ H2(Rd). To this end, let
U ∈ H2(Rd) be a given (open-loop) control, and consider Ũ = U θ? − (U − U θ?). Then by

the affineness of (2.2.2), X Ũ −Xθ? satisfies the following controlled dynamics:

dXt = (A?Xt −B?(U − U θ?)t) dt, t ∈ [0, T ]; X0 = 0. (2.3.7)

Moreover, one can verify by the affineness of (2.2.2) that −(XU − Xθ?) also satisfies the

dynamics (2.3.7), which along with the uniqueness of solutions to (2.3.7) shows that X Ũ −
Xθ? = −(XU −Xθ?). Therefore, applying (2.3.6) with U = Ũ implies that

0 ≤ E
[∫ T

0

(
(X Ũ

t −Xθ?

t )>QXθ?

t + (Ũt − U θ?

t )>RU θ?

t

)
dt

]
= −E

[∫ T

0

(
(XU

t −Xθ?

t )>QXθ?

t + (Ut − U θ?

t )>RU θ?

t

)
dt

]
≤ 0.
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Hence for all U ∈ H2(Rd),

E
[∫ T

0

(
(XU

t −Xθ?

t )>QXθ?

t + (Ut − U θ?

t )>RU θ?

t

)
dt

]
= 0,

which leads to the desired result (2.3.5) due to the following identify:

Jθ
?

(U)− Jθ?(U θ?) = E
[∫ T

0

((XU
t )>QXU

t − (Xθ?

t )>QXθ?

t + U>t RUt − (U θ?

t )>RU θ?

t ) dt

]
= E

[∫ T

0

(
(XU

t )>QXU
t − (Xθ?

t )>QXθ?

t + U>t RUt − (U θ?

t )>RU θ?

t

)
dt

]
− 2E

[∫ T

0

(
(XU

t −Xθ?

t )>QXθ?

t + (Ut − U θ?

t )>RU θ?

t

)
dt

]
= E

[∫ T

0

(
(XU

t −Xθ?

t )>Q(XU
t −Xθ?

t ) + (Ut − U θ?

t )>R(Ut − U θ?

t ) dt
)]
.

Armed with Proposition 2.3.7, the following proposition quantifies the quadratic perfor-
mance gap of a greedy policy ψθ.

Proposition 2.3.8. Suppose (H.1(1)) holds and let Θ be a bounded subset of R(n+d)×n. For
each θ ∈ Θ, let ψθ be defined in (2.2.9), let Xψθ be the state process associated with ψθ

(cf. (2.2.11)), let ψθ
?

be defined in (2.2.3), and let Xθ? be the state process associated with
ψθ

?
(cf. (2.2.5)). Then there exists a constant C such that

|Jθ?(Uψθ)− Jθ?(U θ?)| ≤ C|θ − θ?|2, ∀θ ∈ Θ,

where Uψθ

t = ψθ(t,Xψθ

t ) and U θ?

t = ψθ
?
(t,Xθ?

t ) for all t ∈ [0, T ], and Jθ
?

is defined in (2.2.1).

Proof. For all θ ∈ Θ, applying Proposition 2.3.7 with U = Uψθ gives

Jθ
?

(Uψθ)− Jθ?(U θ?)

≤ ‖Q‖2‖Xθ?,Uψ
θ

−Xθ?‖2
H2(Rn) + ‖R‖2‖Uψθ − U θ?‖2

H2(Rd),

≤ ‖Q‖2‖Xψθ −Xψθ
?

‖2
H2(Rn) + ‖R‖2‖ψθ(·, Xψθ

· )− ψθ?(·, Xψθ
?

· )‖2
H2(Rd),

(2.3.8)

where the last inequality used the fact that Xθ?,Uψ
θ

= Xψθ (see (2.2.11)), and the definitions
of Uψθ and U θ? . It remains to prove

‖Xψθ −Xψθ
?

‖H2(Rn) + ‖ψθ(·, Xψθ

· )− ψθ?(·, Xψθ
?

· )‖H2(Rd) ≤ C|θ − θ?|,

for a constant C independent of θ.
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Observe that by (2.2.9), for all (t, x) ∈ [0, T ]×Rn, ψθ(t, x) = Kθ
t x with Kθ

t = −R−1B>P θ
t .

Now by Lemma 2.3.1 and the boundedness of Θ, there exists a constant C ≥ 0 such that
‖P θ‖C([0,T ;Rn×n) ≤ C and ‖P θ − P θ?‖C([0,T ;Rn×n) ≤ C|θ − θ?| for all θ ∈ Θ ∪ {θ?}, which
along with Kθ

t = −R−1B>P θ
t implies that ‖Kθ‖C([0,T ;Rd×n) ≤ C and ‖Kθ−Kθ?‖C([0,T ;Rd×n) ≤

C|θ− θ?|. Moreover, observe from (2.2.5) and (2.2.11) that Xθ?

0 = Xψθ

0 and for all t ∈ [0, T ],

d(Xψθ
?

−Xψθ)t =
(

(A? +B?Kθ?

t )(Xψθ
?

−Xψθ)t +B?(Kθ?

t −Kθ
t )Xψθ

t

)
dt,

which combined with the boundedness of Kθ? and Gronwall’s inequality leads to

‖Xψθ
?

−Xψθ‖H2(Rn) ≤ C‖Xψθ
?

−Xψθ‖S2(Rn)

≤ C‖(Kθ? −Kθ)Xψθ‖H2(Rd) ≤ C‖Kθ? −Kθ‖C([0,T ;Rd×n)‖Xψθ‖H2(Rn)

≤ C|θ − θ?|, ∀θ ∈ Θ,

where the last inequality follows from ‖Xψθ‖H2(Rn) ≤ C, as Kθ is uniformly bounded. The
above inequality further implies

‖ψθ(·, Xψθ

· )− ψθ?(·, Xψθ
?

· )‖H2(Rd) = ‖Kθ
· X

ψθ

· −Kθ?

· X
ψθ
?

· ‖H2(Rd)

≤ ‖(Kθ
· −Kθ?

· )Xψθ

· ‖H2(Rd) + ‖Kθ?

· (Xψθ

· −Xψθ
?

· )‖H2(Rd)

≤ ‖Kθ? −Kθ‖C([0,T ;Rd×n)‖Xψθ‖H2(Rn) + ‖Kθ?‖C([0,T ;Rd×n)‖Xψθ −Xψθ
?

‖H2(Rn)

≤ C|θ − θ?|, ∀θ ∈ Θ,

which along with (2.3.8) finishes the desired estimate.

Step 2: Error bound for parameter estimation.

Proposition 2.3.9. Suppose (H.1(1)) holds and let Θ ⊂ R(n+d)×n such that there exists
C1 > 0 satisfying ‖(E[V ψθ ])−1‖2 ≤ C1 and |θ| ≤ C1 for all θ ∈ Θ, with V ψθ defined in
(2.3.1). Then there exist constants C̄1, C̄2 ≥ 0, such that for all θ ∈ Θ and δ ∈ (0, 1/2), if
m ≥ C̄1(− ln δ), then with probability at least 1− 2δ,

|θ̂ − θ?| ≤ C̄2

(√− ln δ

m
+
− ln δ

m
+

(− ln δ)2

m2

)
, (2.3.9)

where θ̂ denotes the right-hand side of (2.2.13) with the control ψθ.

Proof. Let us fix δ ∈ (0, 1/2) and θ ∈ Θ. By (2.2.12) and (2.2.13), we obtain

‖θ̂ − θ?‖2 = ‖(V ψθ,m + 1
m
I)−1Y ψθ,m − (E[V ψθ ])−1E[Y ψθ ]‖2

≤ ‖(V ψθ,m + 1
m
I)−1 − (E[V ψθ ])−1‖2‖Y ψθ,m‖2 + ‖(E[V ψθ ])−1‖2‖Y ψθ,m − E[Y ψθ ]‖2.
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As E−1 − F−1 = F−1(F − E)E−1 for all nonsingular matrices E and F , we have

‖θ̂ − θ?‖2

≤ ‖(V ψθ,m + 1
m
I)−1‖2‖(E[V ψθ ])−1‖2‖Y ψθ,m‖2‖V ψθ,m − E[V ψθ ] + 1

m
I‖2

+ ‖(E[V ψθ ])−1‖2‖Y ψθ,m − E[Y ψθ ]‖2

≤ C1

(
‖(V ψθ,m + 1

m
I)−1‖2‖Y ψθ,m‖2‖V ψθ,m − E[V ψθ ] + 1

m
I‖2 + ‖Y ψθ,m − E[Y ψθ ]‖2

)
,

(2.3.10)

where the last inequality follows from the assumption ‖(E[V ψθ ])−1‖2 ≤ C1.
We now estimate each term in the right-hand side of (2.3.10), and denote by C a generic

constant independent of θ ∈ Θ, δ ∈ (0, 1/2),m ∈ N. By Theorem 2.3.6, with probability at
least 1 − 2δ, ‖V ψθ,m − E[V ψθ ]‖2 ≤ δm and ‖Y ψθ,m − E[Y ψθ ]‖2 ≤ δm, with the constant δm
given by

δm := C max

{(− ln δ

m

) 1
2

,
− ln δ

m

}
. (2.3.11)

Let m be a sufficiently large constant satisfying δm + 1/m ≤ 1/(2C1), where C1 is the
constant such that ‖(E[V ψθ ])−1‖2 ≤ C1 for all θ ∈ Θ. Then with probability at least 1− 2δ,
‖V ψθ,m − E[V ψθ ] + 1

m
I‖2 ≤ δm + 1

m
≤ 1

2C1
, which in turn yields

λmin(V ψθ,m + 1
m

) ≥ λmin(E[V ψθ ])− ‖V ψθ,m − E[V ψθ ] + 1
m
I‖2 ≥ 1

2C1
,

or equivalently ‖(V ψθ,m + 1
m

)−1‖2 ≤ 2C1. Moreover, the continuity of R(n+d)×n 3 θ 7→
E[Y ψθ ] ∈ R implies ‖Y ψθ,m‖2 ≤ ‖E[Y ψθ ]‖2 + ‖Y ψθ,m − E[Y ψθ ]‖2 ≤ C + ‖Y ψθ,m − E[Y ψθ ]‖2.
Hence, by (2.3.10),

|θ̂ − θ?|
≤ C

(
(1 + ‖Y ψθ,m − E[Y ψθ ]‖2)‖V ψθ,m − E[V ψθ ] + 1

m
I‖2 + ‖Y ψθ,m − E[Y ψθ ]‖2

)
≤ C

(
(δm + 1

m
)(1 + δm) + δm

)
≤ C

(
δm + δ2

m + 1
m

)
.

Substituting (3.3.15) into the above estimate yields the desired estimate (3.3.13). As δ ∈
(0, 1/2), it is clear that δm + 1/m ≤ 1/(2C1) is satisfied for all m ≥ C̄1(− ln δ), with a
sufficiently large C1.

Step 3: Proof of Theorem 2.2.2. The following proposition shows that for any given
θ = (A,B)> ∈ R(n+d)×n, the full row rank of Kθ is equivalent to the well-definedness of
(2.2.12) for all θ′ sufficiently close to θ.

Proposition 2.3.10. Suppose (H.1(1)) holds. For each θ ∈ R(n+d)×n, let V ψθ be defined in
(2.3.1). Then for any θ = (A,B)> ∈ R(n+d)×n, the following properties are equivalent:
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(1) {v ∈ Rd | (Kθ
t )>v = 0, ∀t ∈ [0, T ]} = {0}, with Kθ defined in (2.2.9);

(2) E[V ψθ ] ∈ Sn+d
+ ;

(3) there exist λ0, ε > 0 such that λmin(E[V ψθ
′
]) ≥ λ0 for all θ′ ∈ Φε := {θ′ ∈ R(n+d)×n |

|θ′ − θ| ≤ ε}, where λmin(Z) is the minimum eigenvalue of Z ∈ Sn+d
0 .

Proof. For (1) =⇒ (2): By (2.3.1), E[V ψθ ] ∈ Sn+d
+ if and only if there exists no nonzero

v ∈ Rn+d such that

E
[∫ T

0

v>Zψθ

t (Zψθ

t )>v dt

]
=

∫ T

0

v>
(
I
Kθ
t

)
E
[
Xψθ

t (Xψθ

t )>
] (
I (Kθ

t )>
)
v dt = 0, (2.3.12)

where we applied Fubini’s theorem for the first identity. By (2.2.5), Xψθ

t = Φθ
t

(
x0 +∫ t

0
(Φθ

s)
−1 dWs

)
for all t ∈ [0, T ], where Φθ ∈ C([0, T ];Rn×n) is the fundamental solution

of dΦθ
t = (A? + B?Kθ

t )Φθ
t dt, Kθ

t = −R−1B>P θ
t for all t ∈ [0, T ], and P θ satisfies (2.2.10).

Hence,

E
[
Xψθ

t (Xψθ

t )>
]

= Φθ
t

(
x0x

>
0 +

∫ t

0

(Φθ
s)
−1((Φθ

s)
−1)> ds

)
(Φθ

t )
> ∈ Sn0 , ∀t ∈ [0, T ].

Then by (2.3.12) and the continuity of t 7→ E
[
Xψθ

t (Xψθ

t )>
]

and t 7→ Kθ
t , E[V ψθ ] ∈ Sn+d

+ if

and only if there exists no nonzero v ∈ Rn+d such that

v>
(
I
Kθ
t

)
Φθ
t

(
x0x

>
0 +

∫ t

0

(Φθ
s)
−1((Φθ

s)
−1)> ds

)
(Φθ

t )
> (I (Kθ

t )>
)
v = 0, ∀t ∈ [0, T ],

where I is the n×n identity matrix. One can easily deduce by the invertibility of (Φθ
t )
−1 for

all t ∈ [0, T ] that
∫ t

0
(Φθ

s)
−1((Φθ

s)
−1)> ds ∈ Sn+ for all t > 0, which subsequently shows that

E[V ψθ ] ∈ Sn+d
+ if and only if there exists no nonzero ṽ ∈ Rn+d such that

(
I (Kθ

t )>
)
ṽ = 0 for

all t ∈ [0, T ]. Now let us denote without loss of generality that ṽ = ( uv ) for some u ∈ Rn and
v ∈ Rd. Then the above derivation shows that E[V ψθ ] ∈ Sn+d

+ is equivalent to the following
statement:

if u ∈ Rn and v ∈ Rd satisfy u+ (Kθ
t )>v = 0 for all t ∈ [0, T ], then u = 0 and v = 0.

(2.3.13)
By (2.2.9), (Kθ

t )> = −P θ
t BR

−1 for all t ∈ [0, T ] and P θ
T = 0, implying that Kθ

T = 0. Then
(2.3.13) can be rewritten as:

if v ∈ Rd satisfies (Kθ
t )>v = 0 for all t ∈ [0, T ], then v = 0.
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For (2) ⇐⇒ (3): Item (3) clearly implies Item (2). On the other hand, for any given
θ, θ′ ∈ R(n+d)×n,

d(Xψθ −Xψθ
′

)t =
(

(A? +B?Kθ
t )(Xψθ −Xψθ

′

)t +B?(Kθ
t −Kθ′

t )Xψθ
′

t

)
dt.

Then, we can easily deduce from the continuity of t 7→ Kθ (see Lemma 2.3.1) that R(n+d)×n 3
θ 7→ Zψθ ∈ H2(R(n+d)×n) is continuous, which implies the continuity of R(n+d)×n 3 θ 7→
V ψθ = E

[ ∫ T
0
Zψθ

t (Zψθ

t )> dt
]
∈ Sn+d

0 . Hence, by the continuity of the minimum eigenvalue
function, we can conclude Item (2) from Item (3).

The following proposition provides sufficient conditions for the nondegeneracy of Kθ.

Proposition 2.3.11. Let n, d ∈ N, θ = (A,B)> ∈ R(n+d)×n, Q ∈ Sn0 and R ∈ Sd+.

(1) For all T > 0, if B>QB ∈ Sd+, then {v ∈ Rd | (Kθ
t )>v = 0, ∀t ∈ [0, T ]} = {0}.

(2) Assume that the algebraic Riccati equation A>P +PA−P (BR−1B>)P +Q = 0 admits
a unique maximal solution P∞ ∈ Sn+. Let K∞ = −R−1B>P∞, and for each T > 0,

let P (T ) ∈ C([0, T ];Sn0 ) be defined in (2.2.10). Assume that limT→∞ P
(T )
0 = P∞ and

K∞(K∞)> ∈ Sd+. Then there exists T0 > 0, such that for all T ≥ T0, {v ∈ Rd |
(Kθ

t )>v = 0, ∀t ∈ [0, T ]} = {0}.

Proof. To prove Item (1), suppose that B>QB ∈ Sn+ and v ∈ Rd such that (Kθ
t )>v =

−P θ
t BR

−1v = 0 for all t ∈ [0, T ], with P θ defined in (2.2.10). Setting u = R−1v, right
multiplying (2.2.10) by Bu, and left multiplying (2.2.10) by u>B> shows

u>B>( d
dt
P θ
t )Bu+ A>P θ

t Bu+ u>B>P θ
t ABu− u>B>P θ

t BR
−1B>P θ

t Bu+ u>B>QBu = 0.

As P θ
t Bu = 0 for all t ∈ (0, T ), u>B>( d

dt
P θ
t )Bu = u>B>P θ

t = 0 for all t ∈ (0, T ), and hence
u>B>QBu = 0. The assumption of B>QB ∈ Sn+ then gives u = R−1v = 0, which along with
the invertibility of R−1 shows that v = 0.

To prove Item (2), observe that limT→∞(−R−1B>P
(T )
0 ) = K∞. As λmin(K∞(K∞)>) > 0,

there exists T0 > 0 such that for all T ≥ T0, λmin

(
(−R−1B>P

(T )
0 )(−R−1B>P

(T )
0 )>

)
> 0. Fix

T ≥ T0 and consider v ∈ Rd such that (Kθ
t )>v = 0 for all t ∈ [0, T ]. Then the definitions of

Kθ and P (T ) imply the invertibility of Kθ
0(Kθ

0)>, which yields v = (Kθ
0(Kθ

0)>)−1Kθ
0(Kθ

0)>v =
0.

Now we are ready for the proof of Theorem 2.2.2.

Proof of Theorem 2.2.2. As (H.15) holds with θ? and θ0, we can obtain from Proposition
2.3.10 that, there exist C1, ε > 0 such that for all θ ∈ Φε := {θ | R(n+d)×n | |θ−θ?| ≤ ε}∪{θ0},
we have ‖(E[V ψθ ])−1‖2 ≤ C1. Then by Proposition 3.3.12, there exist constants C̄1, C̄2 ≥ 1,
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such that for all θ ∈ Θε and δ′ ∈ (0, 1/2), if m ≥ C̄1(− ln δ′), then with probability at least
1− 2δ′,

|θ̂ − θ?| ≤ C̄2

(√
− ln δ′

m
+
− ln δ′

m
+

(− ln δ′)2

m2

)
, (2.3.14)

where θ̂ denotes the right-hand side of (2.2.13) with the control ψθ. In the following, we fix
δ ∈ (0, 3/π2) and C ≥ C0, with the constant C0 ∈ (0,∞) satisfying

C0 ≥ C̄1

(
sup

`∈N∪{0},δ∈(0,3/π2)

− ln(δ/(`+ 1)2)

2`(− ln δ)

)/
min

{(
ε

3C̄2

)2

, 1

}
,

let m0 = C(− ln δ), and for each ` ∈ N ∪ {0}, let δ` = δ/(` + 1)2, m` = 2`m0, and let θ`+1

be generated by (2.2.13) with m = m` and θ = θ`. Note that the choices of C0,m`, δ` ensure
that m` ≥ C̄1(− ln δ`), and

C̄2

(√
− ln δ`
m`

+
(− ln δ`)

m`

+
(− ln δ`)

2

m2
`

)
≤ 3C̄2

√
− ln δ`
m`

≤ ε, ∀` ∈ N ∪ {0}. (2.3.15)

We now prove with probability at least 1− 2
∑∞

`=0 δ` = 1− π2

3
δ,

|θ`+1 − θ?| ≤ C̄2

(√− ln δ`
m`

+
(− ln δ`)

m`

+
(− ln δ`)

2

m2
`

)
, ∀` ∈ N ∪ {0}. (2.3.16)

Let us consider the induction statement for each k ∈ N ∪ {0}: with probability at least
1 − 2

∑k
`=0 δ`, (2.3.16) holds for all ` = 0, . . . , k. The fact that θ0 ∈ Θε and (2.3.14) yields

the induction statement for k = 0. Now suppose that the induction statement holds for
some k ∈ N ∪ {0}. Then the induction hypothesis and (3.3.16) ensure that |θ` − θ?| ≤ ε
for all ` = 1, . . . , k + 1 (and hence θk+1 ∈ Θε) with probability at least 1 − 2

∑k
`=0 δ`.

Conditioning on this event, we can apply (2.3.14) with θ = θk+1, δ′ = δk+1 < 1/2 and
m = mk+1 ≥ C̄1(− ln δk+1), and deduce with probability at least 1 − 2δk+1 that (2.3.16)
holds for the index ` = k + 1. Combining this with the induction hypothesis yields (2.3.16)
holds for the indices ` = 0, . . . , k + 1, with probability at least 1− 2

∑k+1
`=0 δ`.

Observe that for all i ∈ N, Algorithm 8 generates the i-th trajectory with control ψθ`

if i ∈ (
∑`−1

j=0mj,
∑`

j=0mj] = (m0(2` − 1),m0(2`+1 − 1)] with some ` ∈ N ∪ {0}. Then
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conditioning on the event (2.3.16), we can obtain from Proposition 2.3.8 that, for all M ∈ N,

R(M) ≤
dlog2( M

m0
+1)e−1∑

`=0

m`

(
Jθ

?

(Uψθ` )− Jθ?(U θ?)
)
≤ C ′

dlog2( M
m0

+1)e−1∑
`=0

m`|θ` − θ?|2

≤ C ′m0 + C ′
dlog2( M

m0
+1)e−1∑

`=0

(− ln δ`)
(

1 +
− ln δ`
m`

+
(− ln δ`)

3

m3
`

)
≤ C ′(− ln δ) + C ′

dlog2Me∑
`=1

(
2 ln `− ln δ

)
≤ C ′ ((lnM)(ln lnM) + (lnM)(− ln δ)) ,

(2.3.17)

with a constant C ′ independent of M and δ, where we have used
∑n

`=1 ln ` = ln(n!) ≤ C ′n lnn
due to Stirling’s formula.

2.3.4 Regret analysis of discrete-time least-squares algorithm

This section is devoted to the proof of Theorem 2.2.3. The main step is similar to the
proof of Theorem 2.2.2 in Section 2.3.3. However, one needs to quantity the precise impact
of the piecewise constant policies and the discrete-time observations on the performance gap
and the parameter estimation error.

Step 1: Analysis of the performance gap. The following proposition shows the per-
formance gap between applying a piecewise constant feedback control for an incorrect model
and a continuous-time feedback control for the true model scales quadratically with respect
to the stepsize and the parameter errors.

Proposition 2.3.12. Suppose (H.1(1)) holds and let Θ be a bounded subset of R(n+d)×n.
For each θ ∈ Θ and N ∈ N, let ψθ,τ be defined in (2.2.19) with stepsize τ = T/N , let Xψθ,τ

be the state process associated with ψθ,τ (cf. (2.2.21)), let ψθ
?

be defined in (2.2.3), and let
Xθ? be the state process associated with ψθ

?
(cf. (2.2.5)). Then there exists C > 0 such that

|Jθ?(Uψθ,τ )− Jθ?(U θ?)| ≤ C(N−2 + |θ − θ?|2), ∀θ ∈ Θ, N ∈ N, (2.3.18)

where Uψθ,τ

t = ψθ,τ (t,Xψθ,τ

t ) and U θ?

t = ψθ
?
(t,Xθ?

t ) for all t ∈ [0, T ], and Jθ
?

is defined in
(2.2.1).

Proof. Let us fix θ ∈ Θ and N ∈ N. By applying Proposition 2.3.7 with U = Uψθ,τ ,

Jθ
?

(Uψθ,τ )− Jθ?(U θ?)

≤ ‖Q‖2‖Xθ?,Uψ
θ,τ

−Xθ?‖2
H2(Rn) + ‖R‖2‖Uψθ,τ − U θ?‖2

H2(Rd),

≤ ‖Q‖2‖Xψθ,τ −Xψθ
?

‖2
H2(Rn) + ‖R‖2‖ψθ,τ (·, Xψθ,τ

· )− ψθ?(·, Xψθ
?

· )‖2
H2(Rd),

(2.3.19)
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where the last inequality used the fact that Xθ?,Uψ
θ,τ

= Xψθ,τ (see (2.2.11)), and the defini-
tions of Uψθ,τ and U θ? .

We then prove that there exists a constant C, independent of θ,N , such that

‖Xψθ,τ −Xψθ
?

‖H2(Rn) + ‖ψθ,τ (·, Xψθ,τ

· )− ψθ?(·, Xψθ
?

· )‖H2(Rd) ≤ C(N−1 + |θ − θ?|).

By setting δX = Xθ? −Xψθ,τ , we obtain from (2.2.5) and (2.2.21) that

dδXt = (A?δXt +B?Kθ?

t δXt + (Kθ?

t −Kθ,τ
t )Xψθ,τ

t ) dt, t ∈ [0, T ]; δX0 = 0. (2.3.20)

Since ‖P θ?‖C([0,T ];Rn×n) ≤ C and Kθ?

t = −R−1B>P θ?

t for all t ∈ [0, T ], ‖Kθ?‖C([0,T ];Rd×n) ≤ C.

Moreover, by ‖P θ,τ
ti ‖2 ≤ C for all i = 0, . . . , N (see Proposition 2.3.3) and (2.2.20), we

have ‖Kθ,τ
t ‖2 ≤ C for all t ∈ [0, T ], which along with a moment estimate of (2.2.21) yields

‖Xψθ,τ‖S2(Rn) ≤ C. Thus, by applying Gronwall’s inequality to (2.3.20), Lemma 2.3.1 and
Proposition 2.3.3, for all θ ∈ Θ and N ∈ N,

‖Xθ? −Xψθ,τ‖H2(Rn) ≤ C‖Xθ? −Xψθ,τ‖S2(Rn)

≤ C‖(Kθ?

t −Kθ,τ
t )Xψθ,τ‖H2(Rd) ≤ C max

t∈[0,T ]
‖Kθ?

t −Kθ,τ
t ‖2

≤ C max
t∈[0,T ]

(‖Kθ
t −Kθ,τ

t ‖2 + ‖Kθ?

t −Kθ
t ‖2) ≤ C(N−1 + |θ − θ?|).

(2.3.21)

The above inequality further implies

‖ψθ,τ (·, Xψθ,τ

· )− ψθ?(·, Xψθ
?

· )‖H2(Rd) = ‖Kθ,τ
· Xψθ,τ

· −Kθ?

· X
ψθ
?

· ‖H2(Rd)

≤ ‖(Kθ,τ
· −Kθ?

· )Xψθ,τ

· ‖H2(Rd) + ‖Kθ?

· (Xψθ,τ

· −Xψθ
?

· )‖H2(Rd)

≤ ‖Kθ? −Kθ,τ‖C([0,T ;Rd×n)‖Xψθ,τ‖H2(Rn) + ‖Kθ?‖C([0,T ;Rd×n)‖Xψθ,τ −Xψθ
?

‖H2(Rn)

≤ C(N−1 + |θ − θ?|), ∀θ ∈ Θ, N ∈ N,

which along with (2.3.19) finishes the desired estimate.

Step 2: Error bound for parameter estimation. The following lemma shows that the
difference between the expectations of (V ψθ,τ ,τ , Y ψθ,τ ,τ ) and of (V ψθ,τ , Y ψθ,τ ) scales linearly
with respect to the stepsize.

Lemma 2.3.13. Suppose (H.1(1)) holds and let Θ be a bounded subset of R(n+d)×n. For each
θ ∈ Θ and N ∈ N, let τ = T/N , let ψθ,τ be defined in (2.2.19), let V ψθ,τ , Y ψθ,τ be defined
in (2.3.1), and let V ψθ,τ ,τ , Y ψθ,τ ,τ be defined in (2.3.2). Then there exists a constant C such
that

|E[V ψθ,τ ,τ − V ψθ,τ ]|+ |E[Y ψθ,τ ,τ − Y ψθ,τ ]| ≤ CN−1, ∀θ ∈ Θ, N ∈ N.



CHAPTER 2. LOG REGRET FOR EPISODIC CONTINUOUS-TIME LQ-RL 73

Proof. By (2.2.21), we have for all i = 0, . . . , N − 1, Xψθ,τ

ti+1
− Xψθ,τ

ti =
∫ ti+1

ti
(θ?)>Zψθ,τ

t dt +
Wti+1

−Wti , which implies

E[V ψθ,τ − V ψθ,τ ,τ ] =
N−1∑
i=0

∫ ti+1

ti

E[Zψθ,τ

t (Zψθ,τ

t )> − Zψθ,τ

ti (Zψθ,τ

ti )>] dt,

E[Y ψθ,τ − Y ψθ,τ ,τ ] =
N−1∑
i=0

∫ ti+1

ti

E[(Zψθ,τ

t − Zψθ,τ

ti )(Zψθ,τ

t )>θ?] dt.

Hence it suffices to prove that |E[Zψθ,τ

t (Zψθ,τ

t )> − Zψθ,τ

ti (Zψθ,τ

ti )>]| ≤ CN−1 and |E[(Zψθ,τ

t −
Zψθ,τ

ti )(Zψθ,τ

t )>]| ≤ CN−1 for all t ∈ [ti, ti+1] and i = 0, . . . , N − 1.
Let us fix i = 0, . . . , N−1 and t ∈ [ti, ti+1]. In the following, we shall omit the superscripts

of Xψθ,τ and Zψθ,τ if no confusion occurs. As t ∈ [ti, ti+1], by (2.2.21), we have Xt =
eLtXti +

∫ t
ti
eL(t−s) dWs with L := A? +B?Kθ,τ

ti . Thus,

XtX
>
t −XtiX

>
ti

= (Xt −Xti +Xti)(Xt −Xti +Xti)
> −XtiX

>
ti

= (Xt −Xti)(Xt −Xti)
> +Xti(Xt −Xti)

> + (Xt −Xti)X
>
ti

=

(
(eLt − I)Xti +

∫ t

ti

eL(t−s) dWs

)(
(eLt − I)Xti +

∫ t

ti

eL(t−s) dWs

)>
+Xti

(
(eLt − I)Xti +

∫ t

ti

eL(t−s) dWs

)>
+

(
(eLt − I)Xti +

∫ t

ti

eL(t−s) dWs

)
X>ti .

By taking expectations of both sides of the above identity, the martingale property of the
Itô integral, and the Itô isometry,

E[XtX
>
t −XtiX

>
ti

] = (eLt − I)E[XtiX
>
ti

](eL
>t − I) +

∫ t

ti

eL(t−s)eL
>(t−s) ds

+ E[XtiX
>
ti

](eL
>t − I) + (eLt − I)E[XtiX

>
ti

] ≤ C(t− ti),

where the last inequality follows from ‖Xψθ,τ‖S2(Rn) ≤ C. Since ψθ,τ (t,Xψθ,τ

t ) = Kθ,τ
ti X

ψθ,τ

t

and ‖Kθ,τ
ti ‖2 ≤ C, one can easily show that |E[Zψθ,τ

t (Zψθ,τ

t )> − Zψθ,τ

ti (Zψθ,τ

ti )>]| ≤ CN−1.

Furthermore, by Xψθ,τ

t = eLtXψθ,τ

ti +
∫ t
ti
eL(t−s) dWs and the identity

Zψθ,τ

t (Zψθ,τ

t )> − Zψθ,τ

ti (Zψθ,τ

ti )> = (Zψθ,τ

t − Zψθ,τ

ti )(Zψθ,τ

t )> + Zψθ,τ

ti (Zψθ,τ

t − Zψθ,τ

ti )>,

we can show that

|E[(Zψθ,τ

t − Zψθ,τ

ti )(Zψθ,τ

t )>]|
≤ |E[Zψθ,τ

t (Zψθ,τ

t )> − Zψθ,τ

ti (Zψθ,τ

ti )>]|+ |E[Zψθ,τ

ti (Zψθ,τ

t − Zψθ,τ

ti )>]|
≤ C

(
N−1 +

∣∣∣E [Zψθ,τ

ti (Xψθ,τ

ti )>(eL
>t − I)

(
I (Kθ,τ

ti )>
)]∣∣∣) ≤ CN−1,
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by the uniform boundedness of ‖Xψθ,τ‖S2(Rn) and Kθ,τ .

Proposition 2.3.14. Suppose (H.1(1)) holds, and let Θ ⊂ R(n+d)×n such that there exists
C1 > 0 satisfying ‖(E[V ψθ ])−1‖2 ≤ C1 and |θ| ≤ C1 for all θ ∈ Θ, with V ψθ defined in (2.3.1).
Then there exist constants C̄1, C̄2 ≥ 0 and n0 ∈ N, such that for all θ ∈ Θ, N ∈ N ∩ [n0,∞)
and δ ∈ (0, 1/2), if m ≥ C̄1(− ln δ), then with probability at least 1− 2δ,

|θ̂ − θ?| ≤ C̄2

(√− ln δ

m
+
− ln δ

m
+

(− ln δ)2

m2
+

1

N

)
, (2.3.22)

where θ̂ denotes the right-hand side of (2.2.23) with the control ψθ,τ and stepsize τ = T/N .

Proof. We first prove that there exists n0 ∈ N such that for all N ∈ N ∩ [n0,∞) and θ ∈ Θ,
‖(E[V ψθ,τ ])−1‖2 ≤ C for a constant C > 0 independent of θ and N . By (2.2.11) and (2.2.21),

we have for all θ ∈ Θ and N ∈ N, Xψθ

0 = Xψθ,τ
0 and

d(Xψθ −Xψθ,τ )t =
(

(A? +B?Kθ
t )(Xψθ −Xψθ,τ )t +B?(Kθ

t −Kθ,τ
t )Xψθ,τ

t

)
dt, t ∈ [0, T ].

Proposition 2.3.3 shows ‖Kθ
t −Kθ,τ

t ‖2 ≤ CN−1 for all t ∈ [0, T ], which along with Gronwall’s
inequality yields ‖Xψθ − Xψθ,τ‖S2(Rn) ≤ CN−1 for all θ ∈ Θ and N ∈ N. One can further

prove that ‖Uψθ−Uψθ,τ‖S2(Rd) ≤ CN−1 with Uψθ

t = ψθ(t,Xψθ

t ) and Uψθ,τ

t = ψθ,τ (t,Xψθ,τ

t ) for

all t ∈ [0, T ]. Thus, we have |E[V ψθ ]−E[V ψθ,τ ]| ≤ CN−1, which along with ‖(E[V ψθ ])−1‖2 ≤
C1 implies a uniform bound of ‖(E[V ψθ,τ ])−1‖2 for all sufficiently large N .

Let us fix N ∈ N ∩ [n0,∞) and θ ∈ Θ for the subsequent analysis. The invertibility
of E[V ψθ,τ ] implies that θ? = (E[V ψθ,τ ])−1E[Y ψθ,τ ])(cf. (2.2.12)). Then by (2.2.23), we can
derive the following analogues of (2.3.10):

‖θ̂ − θ?‖2

= ‖(V ψθ,τ ,τ,m + 1
m
I)−1Y ψθ,τ ,τ,m − (E[V ψθ,τ ])−1E[Y ψθ,τ ]‖2

≤ ‖(V ψθ,τ ,τ,m + 1
m
I)−1 − (E[V ψθ,τ ])−1‖2‖Y ψθ,τ ,m,τ‖2 + ‖(E[V ψθ,τ ])−1‖2‖Y ψθ,τ,τ ,m − E[Y ψθ,τ ]‖2

≤ ‖(V ψθ,τ ,τ,m + 1
m
I)−1‖‖(E[V ψθ,τ ])−1‖2‖Y ψθ,τ ,m,τ‖2‖V ψθ,τ ,τ,m − E[V ψθ,τ ] + 1

m
I‖2

+ ‖(E[V ψθ,τ ])−1‖2‖Y ψθ,τ,τ ,m − E[Y ψθ,τ ]‖2,

where V ψθ,τ ,τ,m and Y ψθ,τ ,τ,m are defined in (2.3.2). Note that

‖V ψθ,τ ,τ,m − E[V ψθ,τ ] + 1
m
I‖2 ≤ ‖V ψθ,τ ,τ,m − E[V ψθ,τ ,τ ]‖2 + ‖E[V ψθ,τ ,τ ]− E[V ψθ,τ ]‖2 + 1

m
,

‖Y ψθ,τ,τ ,m − E[Y ψθ,τ ]‖2 ≤ ‖Y ψθ,τ,τ ,m − E[Y ψθ,τ,τ ]‖2 + ‖E[Y ψθ,τ,τ ]− E[Y ψθ,τ ]‖2,

where for both inequalities, the first term on the right-hand side can be estimated by Theorem
2.3.6 (uniformly in N), and the second term is of the magnitude O(N−1) due to Lemma
2.3.13. Hence, proceeding along the lines of the proof of Proposition 3.3.12 leads to the
desired result.
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Step 3: Proof of Theorem 2.2.3. The proof follows from similar arguments as that of
Theorem 2.2.2, and we only present the main steps here. As (H.15) holds with θ0 and θ?, we
can obtain from Propositions 2.3.10 and 2.3.14 that, there exists a bounded set Φε ⊂ R(n+d)×n

and constants C̄1, C̄2 ≥ 1, n0 ∈ N that for all θ ∈ Φε, N ∈ N ∩ [n0,∞) and δ′ ∈ (0, 1/2), if
m ≥ C̄1(− ln δ), then with probability at least 1− 2δ′,

|θ̂ − θ?| ≤ C̄2

(√− ln δ′

m
+
− ln δ′

m
+

(− ln δ′)2

m2
+

1

N

)
, (2.3.23)

where θ̂ denotes the right-hand side of (2.2.23) with the control ψθ,τ and stepsize τ = T/N .
Then by proceeding along the lines of the proof of Theorem 2.2.2, there exists C0 > 0 and
n0 ∈ N, such that for any given δ ∈ (0, 3

π2 ), if m0 = C(− ln δ) with C ≥ C0 and N` ≥ n0 for

all ` ∈ N ∪ {0}, then with probability at least 1− π2

3
δ,

|θ`+1 − θ?| ≤ C̄2

(√− ln δ`
m`

+
(− ln δ`)

m`

+
(− ln δ`)

2

m2
`

+
1

N`

)
, ∀` ∈ N ∪ {0}, (2.3.24)

where δ` = δ/(` + 1)2 and m` = 2`m0 for all `. Consequently, we can conclude the desired
regret bound from Proposition 2.3.12 (cf. (2.3.17)), with an additional term

∑lnM
`=0 m`N

−2
`

due to the time discretization errors in (2.3.18) and (2.3.24).
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Chapter 3

Reinforcement learning for
linear-convex models with jumps via
stability analysis of feedback controls

3.1 Introduction

Reinforcement learning (RL) seeks optimal strategies to control an unknown dynamical
system by interacting with the random environment through exploration and exploitation
[147]. This paper studies a reinforcement learning problem for controlled linear-convex mod-
els with unknown drift parameters. The controlled dynamics are with possible jumps, the
objectives are extended real-valued nonsmooth convex functions, and the learning is in an
episodic setting for a finite-time horizon.

Regret analysis of RL algorithm and stability of controls. RL algorithms are in
general characterized by iterations of exploitation and exploration (see e.g. [1, 112, 17]). In
the model-based approach, for instance, the agent interacts with the environment via policies
based on the present estimation of the unknown model parameters, and then incorporates
the responses of these interactions to improve their knowledge of the system. One of the
main performance criteria for RL algorithm, called regret, is to measure its deviation from
the optimality over the learning process.

One key component in regret analysis is the Lipschitz stability of feedback controls which
quantifies the mismatch between the assumed and actual models, or the stability of controls
with respect to model perturbations. It is to analyze the precise derivation of a pre-computed
feedback control from the optimal one, and is also known as the robustness of control policies
in the learning community [112, 17, 94]).

Despite the long history of stability of controls in the control literature, its main focus in
classical control theory has been restricted to the continuity of value functions and optimal
open-loop controls (see e.g. [6, 169, 15, 18, 94]). Studies of high-order stability of controls
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such as the Lipschitz stability, has only attracted attention very recently, largely due to its
crucial importance in characterizing the precise regret order of learning algorithms (see [112,
17, 135]). Analyzing Lipschitz stability of feedback control is technically more challenging.
It requires analyzing the derivatives of the value function in a suitable function space, as
optimal feedback controls are usually characterized via the derivatives of the value function.

Due to this technical difficulty, most existing works on regret analysis of RL algorithms
concentrate on the linear-quadratic (LQ) control framework. In this special setting, the
optimal feedback control is an affine function of state variables, whose coefficients satisfy
an associated algebraic or ordinary Riccati equation. Consequently, the Lipschitz stability
of feedback controls is simplified by analyzing the robustness of the Riccati equation (see
e.g. [1, 112, 17]). Unfortunately, these techniques developed specifically for Riccati equations
in LQ-RL problems are clearly not applicable for general RL problems (see e.g. [21, 39, 54,
107]). In particular, optimal policies are typically nonlinear in the state variable, especially
with the inclusion of entropy regularization for the exploration strategy in the optimization
objective (see e.g. [159, 77, 143, 135]).

Our work. This paper consists of three parts.

• It first establishes the Lipschitz stability for finite-time horizon linear-convex control prob-
lems, whose dynamics are linear jump-diffusion processes with controlled drifts and possi-
bly degenerate additive noises, and objectives are extended real-valued lower semicontin-
uous convex functions. Such control problems include as special cases LQ problems with
convex control constraints, sparse and switching control of linear systems, and entropy-
regularized relaxed control problems (see Examples 3.2.1 and 3.2.2). It shows that these
control problems admit Lipchitz continuous optimal feedback controls with linear growth
in the spatial variables (Theorem 3.2.5). It further proves that the performance gap be-
tween applying feedback controls for an incorrect model and for the true model depends
Lipschitz-continuously on the magnitude of perturbations in the model coefficients, even
with lower semicontinuous cost functions (Theorem 3.2.7). The Lipschitz stability of feed-
back controls is extended to entropy-regularized control problems with controlled diffusion
in Proposition 3.4.1.

• It then proposes a greedy least-squares (GLS) algorithm for a class of continuous-time
linear-convex RL problems in an episodic setting. At each iteration, the GLS algorithm
estimates the unknown drift parameters by a regularized least-squares estimator based
on observed trajectories, and then designs a feedback control for the estimated model.
It establishes that the regret of this GLS algorithm is sublinear, i.e., of the magnitude
O(
√
N lnN) with N being the number of learning episodes, provided that the least-squares

estimator satisfies a general concentration inequality (Theorem 3.3.2). It further charac-
terizes the explicit concentration behaviour of the least-squares estimator (and hence the
precise regret bound of the GLS algorithm), depending on tail behaviours of the random
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jumps in the state dynamics (Theorem 3.3.3). In the pure diffusion case, a sharper regret
bound has been obtained (Theorem 3.3.4).

• It finally verifies the theoretical properties of the proposed GLS algorithm through nu-
merical experiment on a three-dimensional LQ RL problem. It shows the convergence of
the least-squares estimations to the true parameters as the number of episodes increases,
as well as a sublinear regret as indicated in theoretical results. It also demonstrates the
GLS algorithm is robust with respect to initializations.

Our approaches and related works. Optimal control of stochastic systems with
parametric uncertainty has been studied in the classical adaptive control literature (see
[50, 139, 89, 12]), where stationary policy is constructed to minimize the long term aver-
age cost and where the asymptotic stability and convergence of an adaptive control law is
analyzed when the time horizon goes to infinity. However, research on rate of convergence
is virtually non-existent. The problem studied here is different. The main objective is to
construct optimal (and time-dependent) policies for finite-horizon problems, with the finite-
sample regret analysis for the learning algorithm. Compared with the classical adaptive
control literature, the regret analysis in this work, also known as the non-asymptotic per-
formance analysis, requires novel techniques, consisting of a precise performance estimate
of a greedy policy (namely the Lipschitz stability of feedback controls) and a finite-sample
analysis of the parameter estimation scheme.

Analyzing the Lipschitz stability of feedback controls in a continuous-time setting requires
quantifying the impact of parameter uncertainty on the derivatives of the value functions.
[135] studies the so-called exit time problem and the Lipschitz stability of regularized relaxed
controls of diffusion processes via a partial differential equation (PDE) approach, which as-
sumes that the diffusion coefficients are non-degenerate and the state process takes values
in a compact set. In contrast, we consider (see Section 3.2) unconstrained jump-diffusion
process with unbounded drift and (uncontrolled) degenerate noise, and the cost functions
are nonsmooth and unbounded. Consequently, the PDE approach requires to deal with
a degenerate nonlocal PDE with non-Lipschitz nonlinearity, whose solution (i.e., the value
function) is unbounded and may be nonsmooth due to the lack of regularization from the
Laplacian operator. Here the Lipschitz stability of feedback controls is established by analyz-
ing the stability of the associated coupled forward-backward stochastic differential equations
(FBSDEs). This is possible by a) first exploiting the linear-convex structure of the control
problem, which enables constructing a Lipschitz continuous feedback control via solutions
of coupled FBSDEs, and then b) by extending the stochastic maximum principle in [151] to
feedback controls with nonsmooth costs. To the best of our knowledge, this is the first time
FBSDE has been used to study stability of feedback controls.

Analyzing the (finite-sample) accuracy of the least-squares estimator for jump-diffusion
models involves integrations of the state and control processes with respect to Brownian
motions and Poisson random measures. Now, the nonlinearity of feedback controls renders
it impossible to analyze the tail behaviour of these stochastic integrals as [77] does for
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LQ problems with analytical solutions; Additionally, the presence of random jumps implies
that the state process is no longer sub-Gaussian, and hence the stochastic integrals in the
least-squares estimator no longer sub-exponential. To overcome these difficulties, a convex
concentration inequality is employed for SDEs with jumps [111], along with Burkholder’s
inequality and the Girsanov theorem to characterize precisely the sub-Weibull behaviour of
the required stochastic integrals in terms of their Orlicz norms (Lemmas 3.3.6 and 3.3.7).
Leveraging recent developments in the theory of sub-Weibull random variables, the precise
parameter estimation error of the least-squares estimator is quantified in terms of the sample
size.

It is worth pointing out that the stability analysis of feedback controls can be extended
(see Section 3.4) to entropy-regularized control problems with controlled diffusion and with-
out the linear-convex structure. Instead of the maximum principle for the linear-convex
setting, regularity analysis of the associated fully-nonlinear parabolic PDEs may be needed
for nondegenerate noise with regular (such as bounded and high-order differentiable) coeffi-
cients. (See the discussion after Proposition 3.4.1 for more details).

Notation. For each T > 0, filtered probability space (Ω,F ,F = {Ft}t∈[0,T ],P) satisfying
the usual condition and Euclidean space (E, | · |), we introduce the following spaces:
• Lp(0, T ;E), p ∈ [2,∞], is the space of (Borel) measurable functions φ : [0, T ] → E

satisfying ‖φ‖Lp = (
∫ T

0
|φt|p dt)1/p < ∞ if p ∈ [2,∞) and ‖φ‖L∞ = ess supt∈[0,T ] |φt| < ∞

if p =∞;
• L2(Ω;E) is the space of E-valued F -measurable random variables X satisfying ‖X‖L2 =
E[|X|2]1/2 <∞;
• S2(t, T ;E), t ∈ [0, T ], is the space of E-valued F-progressively measurable càdlàg processes
Y : Ω× [t, T ]→ E satisfying ‖Y ‖S2 = E[sups∈[t,T ] |Ys|2]1/2 <∞;
• H2(t, T ;E), t ∈ [0, T ], is the space of E-valued F-progressively measurable processes Z :

Ω× [t, T ]→ E satisfying ‖Z‖H2 = E[
∫ T
t
|Zs|2 ds]1/2 <∞;

• H2
ν(t, T ;E), t ∈ [0, T ], is the space of E-valued F-progressively measurable processes

M : Ω × [t, T ] × Rp
0 → E satisfying ‖M‖H2

ν
= E[

∫ T
t

∫
Rp0
|Ms(u)|2ν(du) ds]1/2 < ∞, where

Rp
0 := Rp \ {0} and ν is a σ-finite measure on Rp

0.
For notational simplicity, we denote S2(E) = S2(0, T ;E),H2(E) = H2(0, T ;E) andH2

ν(E) =
H2
ν(0, T ;E). We shall also denote by 〈·, ·〉 the usual inner product in a given Euclidean space,

by | · | the norm induced by 〈·, ·〉, by AT the transpose of a matrix A, and by C ∈ [0,∞)
a generic constant, which depends only on the constants appearing in the assumptions and
may take a different value at each occurrence.



CHAPTER 3. CONTINUOUS-TIME RL FOR LC MODELS WITH JUMPS 80

3.2 Lipschitz stability of linear-convex control

problems

3.2.1 Problem formulation with nonsmooth costs

In this section, we introduce the linear-convex control problems with nonsmooth costs.
Let T > 0 be a given terminal time and (Ω,F ,P) be a complete probability space, in which

two mutually independent processes, a d-dimensional Brownian motion W and a Poisson
random measure N(dt, du) with compensator ν(du)dt, are defined. We assume that ν is a σ-
finite measure on Rp

0 equipped with its Borel field B(Rp
0) and satisfies

∫
Rp0

min(1, |u|2) ν(du) <

∞. We denote by Ñ(dt, du) = N(dt, du) − ν(du)dt the compensated process of N and by
F = (Ft)t∈[0,T ] the filtration generated by W and N and augmented by the P-null sets.

For any given initial state x0 ∈ Rn, we consider the following minimization problem

V (x0) = inf
α∈H2(Rk)

J(α;x0), with J(α;x0) = E
[∫ T

0

f(t,Xx0,α
t , αt) dt+ g(Xx0,α

T )

]
,

(3.2.1)
where for each α ∈ H2(Rk), the process Xx0,α satisfies the following controlled dynamics:

dXt = b(t,Xt, αt) dt+ σ(t) dWt +

∫
Rp0
γ(t, u) Ñ(dt, du), t ∈ [0, T ], X0 = x0, (3.2.2)

where b, σ, γ, f and g are given functions satisfying the following conditions:

H.2. b : [0, T ]×Rn×Rk → Rn, σ : [0, T ]→ Rn×d, γ : [0, T ]×Rp
0 → Rn, f : [0, T ]×Rn×Rk →

R ∪ {∞}, g : Rn → R are measurable functions such that for some L ≥ 0 and λ > 0,

(1) there exist measurable functions (b0, b1, b2) : [0, T ] → Rn × Rn×n × Rn×k such that
b(t, x, a) = b0(t) + b1(t)x + b2(t)a for all (t, x, a) ∈ [0, T ] × Rn × Rk, with ‖b0‖L2 +

‖b1‖L∞ + ‖b2‖L∞ + ‖σ‖L2 +
( ∫ T

0

∫
Rp0
|γ(t, u)|2 ν(du)dt

)1/2 ≤ L.

(2) g is convex and differentiable with an L-Lipschitz derivative such that |∇g(0)| ≤ L.

(3) there exist functions f0 : [0, T ]× Rn × Rk → R and R : Rk → R ∪ {∞} such that

f(t, x, a) = f0(t, x, a) +R(a), ∀(t, x, a) ∈ [0, T ]× Rn × Rk.

For all (t, x) ∈ [0, T ]×Rn, f0(t, x, ·) is convex in Rk, f0(t, ·, ·) is differentiable in Rn×Rk

with an L-Lipschitz derivative, and |f0(t, 0, 0)|+ |∂(x,a)f0(t, 0, 0)| ≤ L. Moreover, R is
proper, lower semicontinuous, and convex. 1

1 We say a function R : Rk → R ∪ {∞} is proper if it has a nonempty effective domain domR := {a ∈
Rk | R(a) <∞}.



CHAPTER 3. CONTINUOUS-TIME RL FOR LC MODELS WITH JUMPS 81

(4) for all t ∈ [0, T ], (x, a), (x′, a′) ∈ Rn × Rk, and η ∈ [0, 1],

ηf(t, x, a) + (1− η)f(t, x′, a′) ≥ f(t, ηx+ (1− η)x′, ηa+ (1− η)a′) + η(1− η)λ
2
|a− a′|2.

(3.2.3)

Remark 3.2.1. Throughout this paper, let domR = {a ∈ Rk | R(a) < ∞} be the effective
domain of R (or equivalently the effective domain of f). Under (H.2), we can show that both
the function f and its conjugate function

[0, T ]×Rn×Rk 3 (t, x, z) 7→ f ∗(t, x, z) := sup{〈a, z〉−f(t, x, a) | a ∈ Rk} ∈ R∪{∞} (3.2.4)

are normal convex integrands in the sense of [137, Section 14] and hence measurable, which
are crucial for the well-definedness of the control problem (3.2.1) and the characterization of
optimal controls. Furthermore, the strong convexity condition (H.2(4)) enables us to establish
the Lipschitz stability of feedback controls to (3.2.1), which is essential for the analysis of
learning algorithms.

Our analysis and results can be extended to control problems with time-space dependent
nonsmooth cost function R : [0, T ]×Rn×Rk → R∪{∞} by assuming R is a normal convex
integrand and satisfies suitable subdifferentability conditions. For notational simplicity and
clarity, we choose to refrain from further generalization.

Note that (H.2) allows the diffusion coefficient σ to be degenerate, hence the stability
results in Section 3.2.3 apply to deterministic control problems. Moreover, (H.2) requires
neither the effective domain domR to be closed nor the function R to be bounded or
continuous on domR, which is important for problems in engineering and machine learning,
as shown in the following examples.

Example 3.2.1 (Sparse and switching controls). Let A ⊂ Rk be a nonempty closed convex
set, δA be the indicator of A satisfying δA(x) = 0 for x ∈ A and δA(x) =∞ for x ∈ Rk \A,
and ` : Rk → R be a lower semicontinuous and convex function. Then R := `+ δA satisfies
(H.2(3)). In particular, by setting ` ≡ 0, we can consider the linear-convex control problems
with smooth running costs and control constraints (see e.g. [21] and [169, Theorem 5.2 on
p. 137]), which include the most commonly used linear-quadratic models as special cases.

More importantly, it is well-known in optimal control literature (see e.g. [39, 54, 107]
and references therein) that, one can employ a nonsmooth function ` involving L1-norm
of controls to enhance the sparsity and switching property of optimal controls, which are
practically important for mimimum fuel problems and optimal device placement problems.
Here by sparsity we refer to the situation where the whole vector αt is zero, while by switching
control we refer to the phenomena where at most one coordinate of αt is non-zero at each t.

Example 3.2.2 (Regularized relaxed controls). Consider a regularized control problem aris-
ing from reinforcement learning (see e.g. [159, 77, 143, 135]), whose cost function f is of
the following form:

f(t, x, a) = f0(t, x) + 〈f1(t, x), a〉+ ρDf(a||µ) ∀(t, x, a) ∈ [0, T ]× Rn × Rk, (3.2.5)
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where f0 : [0, T ]×Rn → R, f1 : [0, T ]×Rn → Rk are given functions, ρ > 0 is a regularization
parameter, and Df(·||µ) : Rk → R ∪ {∞} is an f-divergence defined as follows. Let ∆k :=

{a ∈ [0, 1]k |∑k
i=1 ai = 1}, µ = (µi)

k
i=1 ∈ ∆k ∩ (0, 1)k, and f : [0,∞)→ R ∪ {∞} be a lower

semicontinuous function which satisfies f(0) = limx→0 f(x), f(1) = 0 and f is κµ-strongly
convex on [0, 1

mini µi
] with a constant κµ > 0. Then, the f-divergence Df(·||µ) : Rk → R∪{∞}

satisfies Df(a||µ) =∞ for a 6∈ ∆k and

Df(a||µ) :=
k∑
i=1

µif
(
ai
µi

)
∈ R ∪ {∞} ∀a ∈ ∆k.

One can easily see from f(1) = 0 and the lower semicontinuity of f that Df(·||µ) is a proper,
lower semicontinuous function with effective domain domDf(·||µ) ⊂ ∆k. Moreover, by the
κµ-strong convexity of f, we have for all a, ã ∈ ∆k, η ∈ [0, 1] that

ηDf(a||µ) + (1− η)Df(ã||µ)

=
k∑
i=1

µi

(
ηf
(
ai
µi

)
+ (1− η)f

(
ãi
µi

))
≥

k∑
i=1

µi

(
f
(ηai+(1−η)ãi

µi

)
+ η(1− η)

κµ
2
|ai−ãi

µi
|2
)

≥ Df(ηa+ (1− η)ã||µ) + η(1− η)
κµ

2 maxi µi
|a− ã|2,

which implies the κµ
maxi µi

-strong convexity of Df(·||µ) in Rk. It is clear that for suitable choices

of f0, f1, the function f in (3.2.5) satisfies (H.2(3)).
It is important to notice that an f-divergence Df(·||µ) is in general non-differentiable

and unbounded on its effective domain. For example, one may consider the relative entropy
(with f(s) = s log s) and the squared Hellinger divergence (with f(s) = 2(1 − √s)), which
are not subdifferentiable at the boundary of ∆k. Moreover, the reverse relative entropy (with
f(s) = − log s) and the Neyman’s χ2 divergence (with f(s) = 1

s
− 1) are unbounded near the

boundary of ∆k.

3.2.2 Construction of optimal feedback controls

In this section, we apply the maximum principle to (3.2.1) and explicitly construct opti-
mal feedback controls of (3.2.1) based on the associated coupled FBSDE.

The following proposition shows that under (H.2), the control problem (3.2.1) admits a
unique optimal open-loop control.

Proposition 3.2.1. Suppose (H.2) holds and let x0 ∈ Rn. Then the cost functional J(α;x0) :
H2(Rk)→ R ∪ {∞} is proper, lower semicontinuous, and λ-strongly convex. Consequently,
J(·;x0) admits a unique minimizer αx0 in H2(Rk).

Proof. The desired properties of J follow directly from the corresponding properties of f , g
in (H.2) and the fact that (3.2.2) has affine coefficients. The well-posedness of minimizers
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then follows from the standard theory of strongly convex minimization problems on Hilbert
spaces (see e.g. [26, Lemma 2.33 (ii)]).

We then proceed to study optimal feedback controls of (3.2.1). The classical control
theory shows that under suitable coercivity and convexity conditions, the optimal open-
loop control of (3.2.1) can be expressed in a feedback form, i.e., there exists a measurable
function ψ : [0, T ]×Rn → Rk such that αx0 = ψ(t,Xx0,αx0

t ) for dP⊗dt a.e. (see [123] for the
case with controlled jump-diffusions and smooth costs and [81] for the case with controlled
diffusions and nonsmooth costs). However, since these non-constructive proofs are based on
a measurable selection theorem, the resulting feedback policy ψ may not be unique, and may
be unstable with respect to perturbations of the state dynamics.

In the subsequent analysis, we give a constructive proof of the existence of Lipschitz
continuous feedback controls by exploiting the linear-convex structure of the control problem
(3.2.1)-(3.2.2). Such a feedback control can be explicitly represented as solutions of a suitable
FBSDE, and hence is Lipschitz stable with respect to perturbations of underlying models
(see Theorem 3.2.6).

We first present the precise definitions of feedback controls and the associated state
processes.

Definition 3.2.1. Let V be the following space of feedback controls:

V :=

ψ : [0, T ]× Rn → Rk

∣∣∣∣∣∣∣
ψ is measurable and there exists C ≥ 0 such that

for all (t, x, y) ∈ [0, T ]× Rn × Rn, |ψ(t, 0)| ≤ C

and |ψ(t, x)− ψ(t, y)| ≤ C|x− y|.

 (3.2.6)

For any given x0 ∈ Rn and ψ ∈ V, we say Xx0,ψ ∈ S2(Rn) is the state process associated
with ψ if it satisfies the following dynamics:

dXt = b(t,Xt, ψ(t,Xt)) dt+ σ(t) dWt +

∫
Rp0
γ(t, u) Ñ(dt, du), , t ∈ [0, T ], X0 = x0.

(3.2.7)
We say ψ ∈ V is an optimal feedback control of (3.2.1) if it holds for dP ⊗ dt a.e. that
αx0t = ψ(t,Xx0,ψ

t ), where αx0 ∈ H2(Rn) is the optimal control of (3.2.1).

We then proceed to establish a maximum principle for feedback controls of the control
problem (3.2.1) with non-smooth costs. Let H : [0, T ] × Rn × Rk × Rn → R ∪ {∞} and
φ : [0, T ]× Rn × Rn → Rk such that for all (t, x, a, y) ∈ [0, T ]× Rn × Rk × Rn,

H(t, x, a, y) := 〈b(t, x, a), y〉+ f(t, x, a), φ(t, x, y) := arg min
a∈Rk

H(t, x, a, y) ∈ domR.

(3.2.8)

The following lemma shows that the function φ is well-defined and measurable.
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Lemma 3.2.2. Suppose (H.2) holds. Then the function φ : [0, T ] × Rn × Rn → Rk defined
in (3.2.8) is measurable and satisfies for all t ∈ [0, T ], x, y ∈ Rn that

φ(t, x, y) = ∂zf
∗(t, x,−b2(t)Ty), (3.2.9)

where the function f ∗ is defined in (3.2.4).

Proof. Let f ∗ : [0, T ] × Rn × Rk → R ∪ {∞} be the function defined in (3.2.4). Recall
that for each (t, x) ∈ [0, T ] × Rn, f(t, x, ·) is λ-strongly convex and lower semicontinuous.
Hence by [137, Theorems 11.3 and 11.8], f ∗(t, x, ·) is finite and differentiable on Rk, and
∂zf

∗(t, x, z) = arg maxa∈domR
(
〈a, z〉 − f(t, x, a)

)
for all z ∈ Rk. Moreover, by [83, Theorem

E4.2.1], Rk 3 z 7→ ∂zf
∗(t, x, z) ∈ Rk is 1/λ-Lipschitz continuous. Hence, from the definition

of φ and (H.2(1)), for all t ∈ [0, T ], x, y ∈ Rn,

φ(t, x, y) = arg min
a∈Rk

(
〈b(t, x, a), y〉+ f(t, x, a)

)
= arg max

a∈Rk

(
〈a,−b2(t)Ty〉 − f(t, x, a)

)
= ∂zf

∗(t, x,−b2(t)Ty).

(3.2.10)

Note that the measurability of f ∗ (see Remark 3.2.1) implies that the derivative ∂zf
∗ is

measurable, which along with the continuity of z 7→ ∂zf
∗(t, x, z) leads to the measurability

of φ.

With the measurable function φ in hand, for each (t, x) ∈ [0, T ]×Rn, let us consider the
following coupled FBSDE on [t, T ]: for all s ∈ [t, T ],

dXs = b(s,Xs, φ(s,Xs, Ys)) ds+ σ(s) dWs +

∫
Rp0
γ(s, u) Ñ(ds, du), Xt = x, (3.2.11a)

dYs = −∂xH(s,Xs, φ(s,Xs, Ys), Ys) ds+ Zs dWs +

∫
Rp0
Ms Ñ(ds, du), YT = ∇g(XT ).

(3.2.11b)

We say a tuple of processes (X t,x, Y t,x, Zt,x,M t,x) ∈ S(t, T ) := S2(t, T ;Rn) × S2(t, T ;Rn) ×
H2(t, T ;Rn×d)×H2

ν(t, T ;Rn) is a solution to (3.2.11) (on [t, T ] with initial condition X t,x
t = x)

if it satisfies (3.2.11) P-almost surely.
The next lemma presents several important properties of the Hamiltonian H and the

function φ defined in (3.2.8), which are essential for the well-posedness and stability of
(3.2.11).

Lemma 3.2.3. Suppose (H.2) holds. Let φ : [0, T ]× Rn × Rn → Rk be the function defined
in (3.2.8). Then there exists a constant C such that for all t ∈ [0, T ] and (x, y), (x′, y′) ∈
Rn × Rn, |φ(t, 0, 0)| ≤ C, |φ(t, x, y)− φ(t, x′, y′)| ≤ C(|x− x′|+ |y − y′|) and

〈b(t, x, φ(t, x, y))− b(t, x′, φ(t, x′, y′)), y − y′〉
+ 〈−∂xH(t, x, φ(t, x, y), y) + ∂xH(t, x′, φ(t, x′, y′), y′), x− x′〉
≤ −λ|φ(t, x, y)− φ(t, x′, y′)|2,

(3.2.12)
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with the constant λ in (H.2).

Proof. We start by showing the boundedness of φ(·, 0, 0) by considering a(t) := (∂zf
∗)(t, 0, 0)

for each t ∈ [0, T ], where f ∗ : [0, T ] × Rn × Rk → R is defined as in (3.2.4). The fact that

f(t, 0, ·) is proper, lower semicontinuous and convex implies that 0 ∈ ∂̂af(t, 0, a(t)) for all

t ∈ [0, T ], where ∂̂af(t, 0, a(t)) is the subdifferential of f(t, 0, ·) at a(t). Note that f0(t, 0, ·)
and R are proper, lower semicontinuous, and convex, and domR ⊂ dom f0(t, 0, ·) = Rk.

Hence by [137, Corollary 10.9], ∂̂af(t, 0, a) = ∂af0(t, 0, a) + ∂̂R(a) for all (t, a) ∈ [0, T ]×Rk,

where ∂̂R(a) is the subdifferential of R at a. Now fix an arbitrary t0 ∈ [0, T ] and set

a0 = a(t0). The fact that 0 ∈ ∂̂af(t0, 0, a0) implies that −∂af0(t0, 0, a0) ∈ ∂̂R(a0) and

hence ∂af0(t, 0, a0) − ∂af0(t0, 0, a0) ∈ ∂̂af(t, 0, a0) for all t ∈ [0, T ]. By the strong convexity

condition (3.2.3), for all t ∈ [0, T ], ξ1 ∈ ∂̂af(t, 0, a0) and ξ2 ∈ ∂̂af(t, 0, a(t)),

λ|a0 − a(t)|2 ≤ 〈ξ1 − ξ2, a0 − a(t)〉 ≤ |ξ1 − ξ2||a0 − a(t)|.

Taking ξ1 = ∂af0(t, 0, a0)− ∂af0(t0, 0, a0) and ξ2 = 0 in the above inequality yields

|a0 − a(t)| ≤ |∂af0(t, 0, a0)− ∂af0(t0, 0, a0)|/λ ≤ C,

by the linear growth of ∂af0(t, 0, ·). This implies that |(∂zf ∗)(t, 0, 0)| ≤ C for all t ∈ [0, T ],
which along with (3.2.10) leads to the desired uniform boundedness of φ(·, 0, 0).

We proceed to establish the Lipschitz continuity of φ with respect to (x, y). The 1/λ-
Lipschitz continuity of ∂zf

∗(t, x, ·) and the boundedness of b2 imply that φ is Lipschitz
continuous in y, uniformly with respect to (t, x). It remains to show the Lipschitz continuity
of ∂zf

∗ with respect to x, which along with (3.2.10) leads to the desired Lipchitz continuity
of φ. For any given (t, z) ∈ [0, T ] × Rk and x, x′ ∈ Rn, let a = ∂zf

∗(t, x, z) and a′ =

∂zf
∗(t, x′, z). Then we have z ∈ ∂̂af(t, x, a) and z ∈ ∂̂af(t, x′, a′). Moreover, by the convexity

of f(t, x, ·) for all (t, x) ∈ [0, T ] × Rn and similar arguments as above, we can show that

z − ∂af0(t, x′, a′) + ∂af0(t, x, a′) ∈ ∂̂af(t, x, a′), which together with the convexity condition

(3.2.3) and z ∈ ∂̂af(t, x, a) leads to

λ|a′ − a| ≤ |z − ∂af0(t, x′, a′) + ∂af0(t, x, a′)− z| ≤ L|x− x′|,

where we have used the L-Lipchitz continuity of ∂af0(t, ·, ·). This finishes the proof of the
Lipschitz continuity of ∂zf

∗(t, ·, ·) and φ(t, ·, ·).
Finally, we establish the monotonicity condition (3.2.12). By (H.2(4)), for all t ∈ [0, T ],

x, x′ ∈ Rn, a, a′ ∈ Rk, y ∈ Rn, the function Rn × Rk 3 (x, a) 7→ H(t, x, a, y) ∈ Rn ∪ {∞}
satisfies the same convexity condition (3.2.3) as the function f , and hence

H(t, x′, a′, y)−H(t, x, a, y) ≥ 〈ξ, x′ − x, a′ − a〉+ λ
2
|a′ − a|2 ∀ξ ∈ ∂̂(x,a)H(t, x, a, y),

(3.2.13)

where ∂̂(x,a)H(t, x, a, y) denotes the subdifferential of the function H(t, ·, y) at (x, a). More-
over, for any given t ∈ [0, T ] and x, y ∈ Rn, the definition of φ in (3.2.8) implies that
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0 ∈ ∂̂aH(t, x, φ(t, x, y), y), where ∂̂aH(t, x, φ(t, x, y), y) denotes the subdifferential of the
function H(t, x, ·, y) at φ(t, x, y). Now recall that for any Euclidean space E, convex function

F : E → R ∪ {∞} and x ∈ domF , v ∈ ∂̂F (x) if and only if lim infτ→0,w̃→w
F (x+τw̃)−F (x)

τ
≥

〈v, w〉 for all w ∈ E (see e.g., Exercise 8.4 and Proposition 8.12 in [137]). Thus, for any

t ∈ [0, T ] and x, y ∈ Rn, 0 ∈ ∂̂aH(t, x, φ(t, x, y), y) yields for all z ∈ Rk,

lim inf
τ→0,z̃→z

H(t, x, φ(t, x, y) + τ z̃, y)−H(t, x, φ(t, x, y), y)

τ
≥ 〈0, z〉 = 0. (3.2.14)

Moreover, by the convexity of H and the continuity of ∂xH in (x, a), for any t ∈ [0, T ] and
x, y, w ∈ Rn and z ∈ Rk,

lim inf
τ→0,(w̃,z̃)→(w,z)

H(t, x+ τw̃, φ(t, x, y) + τ z̃, y)−H(t, x, φ(t, x, y) + τ z̃, y)

τ

≥ lim inf
τ→0,(w̃,z̃)→(w,z)

〈∂xH(t, x, φ(t, x, y) + τ z̃, y), τ w̃〉
τ

≥ 〈∂xH(t, x, φ(t, x, y), y), w〉,
(3.2.15)

provided that φ(t, x, y) + τ z̃ ∈ domR (cf. (3.2.8)). Then for any t ∈ [0, T ] and x, y ∈ Rn,
adding up (3.2.14) and (3.2.15) and using the fact that φ(t, x, y) ∈ domR give for all
(w, z) ∈ Rn × Rk,

lim inf
τ→0,(w̃,z̃)→(w,z)

H(t, x+ τw̃, φ(t, x, y) + τ z̃, y)−H(t, x, φ(t, x, y), y)

τ

≥ 〈∂xH(t, x, φ(t, x, y), y), w〉+ 〈0, z〉,

which implies
(∂xH(t, x, φ(t, x, y), y), 0) ⊂ ∂̂(x,a)H(t, x, φ(t, x, y), y). (3.2.16)

Hence for all t ∈ [0, T ], (x1, y1), (x2, y2) ∈ Rn × Rn, we can define a1 = φ(t, x1, y1), a2 =
φ(t, x2, y2) and deduce that

〈b(t, x1, a1)− b(t, x2, a2), y1 − y2〉+ 〈−∂xH(t, x1, a1, y1) + ∂xH(t, x2, a2, y2), x1 − x2〉
= H(t, x1, a1, y1)−H(t, x2, a2, y1)− 〈∂xH(t, x1, a1, y1), x1 − x2〉
−
(
H(t, x1, a1, y2)−H(t, x2, a2, y2)− 〈∂xH(t, x2, a2, y2), x1 − x2〉

)
≤ −λ|a1 − a2|2,

which finishes the proof of the desired monotonicity condition.

The following proposition shows that (3.2.11) admits a unique solution, which is Lipschitz
continuous with respect to the initial state. The proof is based on the stability of (3.2.11)
under the generalized monotonicity condition (3.2.12) (see Lemma 3.6.1), and follows [134,
Corollary 2.4] for the case without jumps.
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Proposition 3.2.4. Suppose (H.2) holds. Then for any given (t, x) ∈ [0, T ] × Rn, the
FBSDE (3.2.11) admits a unique solution (X t,x, Y t,x, Zt,x,M t,x) ∈ S(t, T ). Moreover, there
exists a constant C such that for all t ∈ [0, T ] and x, x′ ∈ Rn, ‖(X t,x, Y t,x, Zt,x,M t,x)‖S(t,T ) ≤
C(1 + |x|) and ‖(X t,x −X t,x′ , Y t,x − Y t,x′ , Zt,x − Zt,x′ ,M t,x −M t,x′)‖S(t,T ) ≤ C|x− x′|.

Now we are ready to present the main result of this section, which constructs an optimal
feedback control of (3.2.1) based on the Hamiltonian (3.2.8) and the solutions to the FBSDE
(3.2.11).

Theorem 3.2.5. Suppose (H.2) holds. Let ψ : [0, T ]× Rn → Rk be the function defined as

ψ(t, x) := φ(t, x, Y t,x
t ), (t, x) ∈ [0, T ]× Rn, (3.2.17)

where the function φ is defined in (3.2.8). Then there exists a constant C such that |ψ(t, 0)| ≤
C and |ψ(t, x)−ψ(t, x′)| ≤ C|x−x′| for all t ∈ [0, T ], x, x′ ∈ Rn. Moreover, for all x0 ∈ Rn,
ψ is an optimal feedback control of (3.2.1).

Proof. We first analyze the mapping [0, T ] × Rn 3 (t, x) 7→ v(t, x) := Y t,x
t ∈ Rn. Note by

Proposition 3.2.4, for any given (t, x) ∈ [0, T ]×Rn, the solution to (3.2.11) (with initial time
t and initial state x) is pathwise unique and Lipschitz continuous with respect to the initial
state x ∈ Rn. Hence, it is well-known that (see e.g., Theorem 3.1 and Remarks 3.2-3.3 in
[108]) that the map v can be identified with a deterministic function in the space V and it
holds for all (t, x) ∈ [0, T ] × Rn that P(∀s ∈ [t, T ], Y t,x

s = v(s,X t,x
s )) = 1. Thus, from the

regularity of φ and v, |ψ(t, 0)| ≤ C and |ψ(t, x)− ψ(t, x′)| ≤ C|x− x′| for all x, x′ ∈ Rn, i.e.,
ψ is in the space V .

Now let x0 ∈ Rn be a given initial state and α̃ ∈ A satisfy for dP ⊗ dt a.e. that α̃t =
φ(t,X0,x0

t , Y 0,x0
t ). Then for dP⊗ dt a.e., α̃t = φ(t,X0,x0

t , v(t,X0,x0
t )) = ψ(t,X0,x0

t ), and X0,x0

is the solution to (3.2.2) controlled by α̃, because (X0,x0 , Y 0,x0) satisfy (3.2.11a). Since the
control problem (3.2.1) admits an unique optimal control in H2(Rk), it suffices to show that
α̃ is optimal. By (3.2.16), for dP⊗ dt a.e.,

(∂xH(t,X0,x0
t , φ(t,X0,x0

t , Y 0,x0
t ), Y 0,x0

t ), 0) ⊂ ∂̂(x,a)H(t,X0,x0
t , φ(t,X0,x0

t , Y 0,x0
t ), Y 0,x0

t ).

Then for any given α ∈ H2(Rn) with the state process Xx0,α satisfying the controlled dy-
namics (3.2.2), by the definition of H in (3.2.8), (H.2(2)) and (3.2.13),

J(α;x0)− J(α̃;x0)

= E
[
g(Xx0,α

T )− g(X0,x0
T ) +

∫ T

0

(H(t,Xx0,α
t , αt, Y

0,x0
t )−H(t,X0,x0

t , α̃t, Y
0,x0
t )) dt

]
−
∫ T

0

〈b(t,Xx0,α
t , αt)− b(t,X0,x0

t , α̃t), Y
0,x0
t 〉 dt

]
≥ E

[
〈∇g(X0,x0

T ), Xx0,α
T −X0,x0

T 〉+

∫ T

0

〈∂xH(t,X0,x0
t , φ(t,X0,x0

t , Y 0,x0
t ), Y 0,x0

t ), Xx0,α
t −X0,x0

t 〉 dt

−
∫ T

0

〈b(t,Xx0,α
t , αt)− b(t,X0,x0

t , α̃t), Y
0,x0
t 〉 dt

]
= 0,
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where the last equality is by applying Itô’s formula to the process (〈Xx0,α
t −X0,x0

t , Y 0,x0
t 〉)t≥0

and by the FBSDE (3.2.11). That is, ψ ∈ V is an optimal feedback control of (3.2.1).

3.2.3 Lipschitz stability of optimal feedback controls and
associated costs

In this section, we establish the Lipschitz stability of the optimal feedback controls con-
structed in Theorem 3.2.5 and their associated costs: that is, they are are Lipschitz continu-
ous with respect to the perturbation in the coefficients of (3.2.2). Such a Lipschitz stability
property is crucial for the subsequent analysis of learning algorithms.

More precisely, for any given x0 ∈ Rn, we consider a perturbed control problem where
the cost functions f, g are the same as those in (3.2.1), and for each α ∈ H2(Rn), the
corresponding state dynamics satisfies the following perturbed dynamics:

dXt = b̃(t,Xt, αt) dt+ σ̃(t) dWt +

∫
Rp0
γ̃(t, u) Ñ(dt, du), t ∈ [0, T ], X0 = x0, (3.2.18)

whose coefficients satisfy the following assumption:

H.3. b̃ : [0, T ] × Rn × Rk → Rn, σ̃ : [0, T ] → Rn×d and γ̃ : [0, T ] × Rp
0 → Rn satisfy

(H.2(1)) with the same constant L, i.e., there exist measurable functions (b̃0, b̃1, b̃2) : [0, T ]→
Rn×Rn×n×Rn×k such that b̃(t, x, a) = b̃0(t)+ b̃1(t)x+ b̃2(t)a for all (t, x, a) ∈ [0, T ]×Rn×Rk

and ‖b̃0‖L2 + ‖b̃1‖L∞ + ‖b̃2‖L∞ + ‖σ̃‖L2 +
( ∫ T

0

∫
Rp0
|γ̃(t, u)|2 ν(du)dt

)1/2 ≤ L.

Under (H.2) and (H.3), Theorem 3.2.5 ensures that an optimal feedback control of the
perturbed control problem can be obtained by

[0, T ]× Rn 3 (t, x) 7→ ψ̃(t, x) := φ̃(t, x, Ỹ t,x
t ) ∈ Rk, (3.2.19)

where φ̃ : [0, T ]× Rn × Rn → Rk satisfies for all (t, x, a, y) ∈ [0, T ]× Rn × Rk × Rn that

φ̃(t, x, y) := arg min
a∈Rk

H̃(t, x, a, y), H̃(t, x, a, y) := 〈b̃(t, x, a), y〉+ f(t, x, a), (3.2.20)

and for each (t, x) ∈ [0, T ] × Rn, (X̃ t,x, Ỹ t,x, Z̃t,x, M̃ t,x) ∈ S(t, T ) is the solution to the
following perturbed FBSDE: for all s ∈ [t, T ],

dXs = b̃(s,Xs, φ̃(s,Xs, Ys)) ds+ σ̃(s) dWs +

∫
Rp0
γ̃(s, u) Ñ(ds, du), Xt = x,

dYs = −∂xH̃(s,Xs, φ̃(s,Xs, Ys), Ys) ds+ Zs dWs +

∫
Rp0
Ms Ñ(ds, du), YT = ∇g(XT ).

(3.2.21)
The following theorem quantifies the difference of optimal feedback controls in terms of

the magnitude of perturbations in the coefficients.
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Theorem 3.2.6. Suppose (H.2) and (H.3) hold. Let ψ, ψ̃ : [0, T ] × Rn × Rn → Rk be the
functions defined in (3.2.17) and (3.2.19), respectively. Then there exists a constant C such
that |ψ(t, x)− ψ̃(t, x)| ≤ C(1 + |x|)Eper for all (t, x) ∈ [0, T ] × Rn, with the constant Eper
defined by

Eper := ‖b0 − b̃0‖L2 + ‖b1 − b̃1‖L∞ + ‖b2 − b̃2‖L∞ + ‖σ − σ̃‖L2

+

(∫ T

0

∫
Rp0
|γ(t, u)− γ̃(t, u)|2 ν(du)dt

)1/2

.
(3.2.22)

Proof. Throughout this proof, for each (t, x) ∈ [0, T ]×Rn, let (X t,x, Y t,x, Zt,x,M t,x) ∈ S(t, T )
and (X̃ t,x, Ỹ t,x, Z̃t,x, M̃ t,x) ∈ S(t, T ) be the solutions to (3.2.11) and (3.2.21), respectively, and
let C be a generic constant which is independent of (t, x) ∈ [0, T ]×Rn. Then by Proposition
3.2.4, there exists C ≥ 0 such that for all (t, x) ∈ [0, T ]×Rn, ‖(X t,x, Y t,x, Zt,x,M t,x)‖S(t,T ) ≤
C(1 + |x|) and ‖(X̃ t,x, Ỹ t,x, Z̃t,x, M̃ t,x)‖S(t,T ) ≤ C(1 + |x|).

We first estimate the difference between (X t,x, Y t,x, Zt,x,M t,x) and (X̃ t,x, Ỹ t,x, Z̃t,x, M̃ t,x)
for a given (t, x) ∈ [0, T ]× Rn. By Lemmas 3.2.3 and 3.6.1,

‖(X t,x − X̃ t,x, Y t,x − Ỹ t,x, Zt,x − Z̃t,x,M t,x − M̃ t,x)‖S(t,T )

≤ C

{
‖b(·, X̃ t,x, φ(·, X̃ t,x, Ỹ t,x))− b̃(·, X̃ t,x, φ̃(·, X̃ t,x, Ỹ t,x))‖H2

+ ‖∂xH(·, X̃ t,x, φ(·, X̃ t,x, Ỹ t,x), Ỹ t,x)− ∂xH̃(·, X̃ t,x, φ̃(·, X̃ t,x, Ỹ t,x), Ỹ t,x)‖H2

+ ‖σ − σ̃‖L2 +

(∫ T

0

∫
Rp0
|γ(t, u)− γ̃(t, u)|2 ν(du)dt

)1/2}
.

It remains to estimate the first two terms on the right-hand side of the above inequality. By
(H.2(1)),

‖b(·, X̃ t,x, φ(·, X̃ t,x, Ỹ t,x))− b̃(·, X̃ t,x, φ̃(·, X̃ t,x, Ỹ t,x))‖H2

≤ ‖b(·, X̃ t,x, φ(·, X̃ t,x, Ỹ t,x))− b(·, X̃ t,x, φ̃(·, X̃ t,x, Ỹ t,x))‖H2

+ ‖b(·, X̃ t,x, φ̃(·, X̃ t,x, Ỹ t,x))− b̃(·, X̃ t,x, φ̃(·, X̃ t,x, Ỹ t,x))‖H2

≤ ‖b2‖L∞‖φ(·, X̃ t,x, Ỹ t,x)− φ̃(·, X̃ t,x, Ỹ t,x)‖H2 + ‖b0 − b̃0‖L2 + ‖b1 − b̃1‖L∞‖X̃ t,x‖H2

+ ‖b2 − b̃2‖L∞‖φ̃(·, X̃ t,x, Ỹ t,x)‖H2 .

Note that by (3.2.10), for all t ∈ [0, T ] and x, y ∈ Rn, φ(t, x, y) = (∂zf
∗)(t, x,−b2(t)Ty) and

φ̃(t, x, y) = (∂zf
∗)(t, x,−b̃2(t)Ty), where f ∗ is the function defined in (3.2.4). Hence, from

the 1/λ-Lipschitz continuity of ∂zf
∗(t, x, ·) (see the proof of Lemma 3.2.2),

‖φ(·, X̃ t,x, Ỹ t,x)− φ̃(·, X̃ t,x, Ỹ t,x)‖H2 ≤ C‖b2 − b̃2‖L∞‖Ỹ t,x‖H2 ≤ C(1 + |x|)Eper, (3.2.23)

where the last inequality follows from the moment estimate of Ỹ t,x. Moreover, the regularity
of φ̃ (see Lemma 3.2.3) and the moment estimate of (X̃ t,x, Ỹ t,x) imply that ‖φ̃(·, X̃ t,x, Ỹ t,x)‖H2 ≤
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C(1+ |x|), which shows that ‖b(·, X̃ t,x, φ(·, X̃ t,x, Ỹ t,x))−b(·, X̃ t,x, φ̃(·, X̃ t,x, Ỹ t,x))‖H2 ≤ C(1+
|x|)Eper. By the definitions of H and H̃, the Lipschitz continuity of ∂xf0 in (H.2(3)) and
(3.2.23),

‖∂xH(·, X̃ t,x, φ(·, X̃ t,x, Ỹ t,x), Ỹ t,x)− ∂xH̃(·, X̃ t,x, φ̃(·, X̃ t,x, Ỹ t,x), Ỹ t,x)‖H2

≤ ‖(b1 − b̃1)TỸ t,x‖H2 + ‖∂xf0(·, X̃ t,x, φ(·, X̃ t,x, Ỹ t,x))− ∂xf0(·, X̃ t,x, φ̃(·, X̃ t,x, Ỹ t,x))‖H2

≤ C(1 + |x|)Eper.

Thus, we have proved the stability estimate that ‖(X t,x− X̃ t,x, Y t,x− Ỹ t,x, Zt,x− Z̃t,x,M t,x−
M̃ t,x)‖S(t,T ) ≤ C(1 + |x|)Eper.

We now establish the stability of feedback controls. By (3.2.10) and the 1/λ-Lipschitz
continuity of ∂zf

∗(t, x, ·), for all (t, x) ∈ [0, T ]× Rn,

|ψ(t, x)− ψ̃(t, x)| = |(∂zf ∗)(t, x,−b2(t)TY t,x
t )− (∂zf

∗)(t, x,−b̃2(t)TỸ t,x
t ))|

≤ |b2(t)TY t,x
t − b̃2(t)TỸ t,x

t |/λ ≤ C(‖b2 − b̃2‖L∞|Y t,x
t |+ |Y t,x

t − Ỹ t,x
t |)

≤ C(‖b2 − b̃2‖L∞‖Y t,x‖S2 + ‖Y t,x
t − Ỹ t,x

t ‖S2) ≤ C(1 + |x|)Eper.

An important application of the Lipschitz stability of feedback controls (Theorem 3.2.6)
is the analysis of model misspecification error of a given learning algorithm. One essential
component is to examine the performance of the feedback control ψ̃, computed based on the
control problem (3.2.1) with the perturbed coefficients (b̃, σ̃, γ̃, f, g), on the true model with
coefficients (b, σ, γ, f, g). For any given x0 ∈ Rn, implementing the feedback control ψ̃ on the
original system (3.2.2) will lead to the sub-optimal cost:

J(ψ̃;x0) := E
[∫ T

0

f(t,Xx0,ψ̃
t , ψ̃(t,Xx0,ψ̃

t )) dt+ g(Xx0,ψ̃
T )

]
, (3.2.24)

where Xx0,ψ̃ ∈ S2(Rn) is the state process (with coefficients b, σ and γ) associated with
ψ̃ (see Definition 3.2.1). The following theorem shows that the difference between this
suboptimal cost J(ψ̃;x0) and the optimal cost V in (3.2.1) depends Lipschitz-continuously
on the magnitude of perturbations in the coefficients.

Theorem 3.2.7. Suppose (H.2) and (H.3) hold. Let ψ ∈ V (resp. ψ̃ ∈ V) be defined in

(3.2.17) (resp. (3.2.19)), and for each x0 ∈ Rn, let Xx0,ψ ∈ S2(Rn) (resp. Xx0,ψ̃ ∈ S2(Rn))
be the state process (3.2.2) associated with ψ (resp. ψ̃), and let V (x0) (resp. J(ψ̃;x0)) be
defined in (3.2.1) (resp. (3.2.24)). Then there exists a constant C such that for all x0 ∈ Rn,

‖Xx0,ψ − Xx0,ψ̃‖S2 ≤ C(1 + |x0|)Eper and |V (x0) − J(ψ̃;x0)| ≤ C(1 + |x0|2)Eper, with the
constant Eper defined in (3.2.22).

To prove Theorem 3.2.7, we first establish that the composition of f and the optimal
feedback control is Lipschitz continuous, even though the cost function f is merely lower
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semicontinuous in the control variable (cf. (H.2(3))). The proof is based on the Fenchel-
Young identity:

f(t, x, ∂zf
∗(t, x, z)) = 〈z, ∂zf ∗(t, x, z)〉 − f ∗(t, x, z) ∈ R, ∀(t, x, z) ∈ [0, T ]× Rn × Rk,

the regularity of f ∗ and Theorem 3.2.6, and has been given in Section 3.6.2.

Lemma 3.2.8. Suppose (H.2) and (H.3) hold. Let ψ, ψ̃ : [0, T ]×Rn → Rk be the functions
defined in (3.2.17) and (3.2.19), respectively. Then there exists a constant C such that for

all t ∈ [0, T ], x, x′ ∈ Rn, |f(t, x, ψ(t, x))− f(t, x′, ψ̃(t, x′))| ≤ C
(

(1 + |x|+ |x′|)|x− x′|+ (1 +

|x|2 + |x′|2)Eper
)

, where the constant Eper is defined in (3.2.22).

Proof of Theorem 3.2.7. According to Theorems 3.2.5 and 3.2.6, there exists a constant C
such that for all t ∈ [0, T ], x, x′ ∈ Rn, |ψ(t, 0)|+ |ψ̃(t, 0)| ≤ C, |ψ(t, x)−ψ(t, x′)|+ |ψ̃(t, x)−
ψ̃(t, x′)| ≤ C|x − x′|, and |ψ(t, x)− ψ̃(t, x)| ≤ C(1 + |x|)Eper. Then, for any given x0 ∈ Rn,

standard moment and stability estimates of (3.2.7) yield ‖Xx0,ψ‖S2 +‖Xx0,ψ̃‖S2 ≤ C(1+|x0|)
and

‖Xx0,ψ −Xx0,ψ̃‖S2 ≤ C‖b(·, Xx0,ψ̃, ψ(·, Xx0,ψ̃))− b(·, Xx0,ψ̃, ψ̃(·, Xx0,ψ̃))‖H2

≤ C‖ψ(·, Xx0,ψ̃)− ψ̃(·, Xx0,ψ̃)‖H2 ≤ C(1 + ‖Xx0,ψ̃‖H2)Eper ≤ C(1 + |x0|)Eper.

We now proceed to estimate |V (x0)− Ṽ (x0)| for any given x0 ∈ Rn. By the mean value
theorem, (H.2(2)) and the Cauchy-Schwarz inequality,

E[|g(Xx0,ψ
T )− g(Xx0,ψ̃

T )|] ≤ CE[|(1 + |Xx0,ψ
T |+ |Xx0,ψ̃

T |)|Xx0,ψ
T −Xx0,ψ̃

T |]
≤ C(1 + ‖Xx0,ψ

T ‖L2 + ‖Xx0,ψ̃
T ‖L2)‖Xx0,ψ

T −Xx0,ψ̃
T ‖L2

≤ C(1 + |x0|2)Eper.

Moreover, from Lemma 3.2.8 and the Cauchy-Schwarz inequality,

E
[∫ T

0

|f(t,Xx0,ψ
t , ψ(t,Xx0,ψ

t ))− f(t,Xx0,ψ̃
t , ψ̃(t,Xx0,ψ̃

t ))| dt
]

≤ CE
[∫ T

0

(
(1 + |Xx0,ψ

t |+ |Xx0,ψ̃
t |)|Xx0,ψ

t −Xx0,ψ̃
t |+ (1 + |Xx0,ψ

t |2 + |Xx0,ψ̃
t |2)Eper

)
dt

]
≤ C

(
(1 + ‖Xx0,ψ‖H2 + ‖Xx0,ψ̃‖H2)‖Xx0,ψ −Xx0,ψ̃‖H2 + (1 + ‖Xx0,ψ‖2

H2 + ‖Xx0,ψ̃‖2
H2)Eper

)
≤ C(1 + |x0|2)Eper.

Since ψ is an optimal feedback control of (3.2.1) with the initial state x0 ∈ Rn, the desired
estimate |V (x0)− J(ψ̃;x0)| ≤ C(1 + |x0|2)Eper follows.
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3.3 Regret analysis for linear-convex reinforcement

learning

The focus of this section is the linear-convex reinforcement learning (RL) problem, where
the drift coefficient of the state dynamics (3.2.2) is unknown to the controller, and the
objective is to control the system optimally while simultaneously learning the dynamics.
We shall propose a greedy least-squares algorithm to solve such problems, and show that
the algorithm provides a sublinear regret with high probability guarantees. The analysis
of the regret bounds for the algorithm relies on the Lipschitz stability of feedback controls
established in Section 3.2.1.

3.3.1 Reinforcement learning problem and least-squares
algorithm

The RL problem goes as follows. Let x0 ∈ Rn be a given initial state and θ? = (A?, B?) ∈
Rn×(n+k) be fixed but unknown constants, consider the following problem:

V (x0; θ?) = inf
α∈H2(Rk)

Jθ
?

(α;x0), with Jθ
?

(α;x0) = E
[∫ T

0

f(t,Xx0,θ?,α
t , αt) dt+ g(Xx0,θ?,α

T )

]
,

(3.3.1)
where for each α ∈ H2(Rk), the process Xx0,θ?,α satisfies the following controlled dynamics
associated with the parameter θ?:

dXt = (A?Xt +B?αt) dt+ σ dWt +

∫
Rp0
γ(u) Ñ(dt, du), t ∈ [0, T ], X0 = x0, (3.3.2)

with a given constant σ ∈ Rn×d and given functions γ : Rp
0 → Rn, f : [0, T ] × Rn × Rk →

R ∪ {∞} and g : Rn → R. If θ? = (A?, B?) were known, then (3.3.1) is a control problem.
It is clear that (3.3.1)-(3.3.2) is a special case of (3.2.1)-(3.2.2) with b(t, x, a) = A?x+B?a,

σ(t) = σ and γ(t, u) = γ(u) for all (t, x, a, u) ∈ [0, T ] × Rn × Rk × Rp
0. Hence, if f and g

satisfy (H.2) with for some L ≥ 0 and λ > 0, then (3.3.1)-(3.3.2) admits an optimal feedback
control ψθ

? ∈ V as shown in Theorem 3.2.5. Note that to simplify the presentation, we
assume that (3.3.2) has time homogenous coefficients as in [1, 112, 17], but similar analysis
can be performed if the drift is a linear combination of given time-and-space-dependent basis
functions with unknown weights or the diffusion/jump coefficients are also unknown.

To solve (3.3.1)-(3.3.2) with unknown θ?, in an episodic reinforcement learning framework,
the controller improves their knowledge of the parameter θ? through successive learning
episodes. In particular, for each episode i ∈ N, based on her observations in the past
episodes, the controller executes a suitable control policy in ψi ∈ V , whose associated state
dynamics (3.3.2) leads to an expected cost Jθ

?
(ψi;x0). To measure the performance of an

learning algorithm in this setting, one widely adopted criteria is the (expected) regret of the
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algorithm defined as follows (see e.g. [43, 17]):

R(N) =
N∑
i=1

(
Jθ

?

(ψi;x0)− V (x0; θ?)
)
, ∀N ∈ N, (3.3.3)

where N denotes the total number of learning episodes. Intuitively, this regret characterizes
the cumulative loss from taking sub-optimal policies in all episodes.

To start, let us consider a greedy algorithm, which chooses the optimal feedback control
based on the current estimation of the parameter, and provides a sublinear regret with
respect to the number of episodes N . More precisely, let θ = (A,B) ∈ Rn×(n+k) be the
current estimate of θ?, then the controller would exercise the optimal feedback control ψθ ∈ V
defined in Theorem 3.2.5 for the control problem (3.3.1)-(3.3.2) with θ? replaced by θ, which
leads to the state process Xx0,θ ∈ S2(Rn) satisfying:

dXt = (A?Xt+B
?ψθ(t,Xt)) dt+σ dWt+

∫
Rp0
γ(u) Ñ(dt, du), t ∈ [0, T ], X0 = x0. (3.3.4)

By the martingale properties of stochastic integrals, we can then estimate θ? based on the

process Zx0,θ
t :=

(
Xx0,θ
t

ψθ(t,Xx0,θ
t )

)
, t ∈ [0, T ], as follows:

(θ?)T =

(
E
[ ∫ T

0

Zx0,θ
t (Zx0,θ

t )T dt

])−1

E
[ ∫ T

0

Zx0,θ
t (dXx0,θ

t )T
]
, (3.3.5)

provided that E
[ ∫ T

0
Zx0,θ
t (Zx0,θ

t )T dt
]
∈ R(n+k)×(n+k) is invertible. This motivates us to in-

troduce an iterative procedure to estimate θ?, where the expectations in (3.3.5) are re-
placed by empirical averages over independent realizations. More precisely, let m ∈ N and
(Xx0,θ,i

t , ψθ(t,Xx0,θ,i
t ))t∈[0,T ], i = 1, . . . ,m, be trajectories of m independent realizations of

the state and control processes, we shall update the estimate θ, denoted by θ̂, according to
(3.3.5):

θ̂T :=

(
1

m

m∑
i=1

∫ T

0

Zx0,θ,i
t (Zx0,θ,i

t )T dt+
1

m
In+k

)−1(
1

m

m∑
i=1

∫ T

0

Zx0,θ,i
t (dXx0,θ,i

t )T
)
, (3.3.6)

where Zx0,θ,i
t :=

(
Xx0,θ,i
t

ψθ(t,Xx0,θ,i
t )

)
for all t ∈ [0, T ] and i = 1, . . . ,m, and I is the (n+k)×(n+k)

identity matrix used to ensure the existence of the required matrix inverse. This leads to
the following greedy least-squares (GLS) algorithm:
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Algorithm 10 Greedy least-squares (GLS) algorithm

1: Input: Choose an initial estimation θ0 of θ? and numbers of learning episodes
{m`}`∈N∪{0}.

2: for ` = 0, 1, · · · do
3: Obtain the optimal feedback control ψθ` for (3.3.1)-(3.3.2) with θ? = θ` as in Theorem

3.2.5.
4: Execute the feedback control ψθ` for m` indepenent episodes, and collect the trajectory

data (Xx0,θ`,i
t , ψθ`(t,Xx0,θ`,i

t ))t∈[0,T ], i = 1, . . . ,m`.
5: Obtain an updated estimation θ`+1 by using (3.3.6) and the m` trajectories collected

above.
6: end for

3.3.2 Structural assumptions for learning problems

In this section, we analyze the regret of Algorithm 10 based on the following assumptions
of the learning problem (3.3.1)-(3.3.2).

H.4. (1) Let x0 ∈ Rn, θ? = (A?, B?) ∈ Rn×(n+k), σ ∈ Rn×d, γ : Rp
0 → Rn, f : [0, T ]×Rn×

Rk → R ∪ {∞} and g : Rn → R satisfy (H.2) with some constants L ≥ 0 and λ > 0.

(2) There exist γmax ≥ 0 and ϑ ∈ [0, 1] such that supq≥2 q
−ϑ( ∫

Rp0
|γ(u)|q ν(du)

)1/q ≤ γmax.

Remark 3.3.1. Condition (H.4(1)) implies that for each θ = (A,B), the control problem of
(3.3.1)-(3.3.2) with θ? replaced by θ is a nonsmooth linear-convex control problem studied in
Section 3.2.

Condition (H.4(2)) describes the large jumps of the pure jump process

Lt :=

∫ t

0

∫
Rp0
γ(u) Ñ(ds, du), t ∈ [0, T ],

which enables estimating the tail behaviour of the state process Xθ, and subsequently quantify-
ing the parameter estimation error of the least-squares estimator (3.3.6) (see Section 3.3.4.2).
If the jump coefficient γ is bounded, then one can easily see from

∫
Rp0
|γ(u)|2 ν(du) <∞ that

(H.4(2)) holds with ϑ = 0. Another important case is when γ(u) = u for all u ∈ Rp
0, under

which the process (Lt)t∈[0,T ] is a Lévy process of pure jumps with Lévy measure ν(du). In

this case, (H.4(2)) holds with ϑ ∈ (0, 1] if and only if
( ∫

Rp0
|u|q ν(du)

)1/q ≤ O(qθ) as q →∞.

H.5. θ? is identifiable, i.e., the optimal control αx0,? ∈ H2(Rk) and the optimal state process
Xx0,θ?,α? ∈ S2(Rn) of (3.3.1)-(3.3.2) (with initial state x0 and parameter θ?) satisfy the
following linear independence condition: if u1 ∈ Rn and u2 ∈ Rk satisfy uT1X

x0,θ?,α?

t +
uT2α

x0,?
t = 0 for dP⊗ dt a.e., then u1 and u2 are zero vectors.
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Condition (H.5) implies that the true parameter θ? can be uniquely identified if we observe
sufficiently many trajectories of the optimal state and control processes of (3.3.1)-(3.3.2).
Such a self-exploration property allows us to design exploration-free learning algorithms for
(3.3.1)-(3.3.2).

The following proposition shows that if the laws of the state processes are supported
on the whole space, then (H.5) is equivalent to a self-exploration property of the optimal
feedback control. The proof essentially follows the argument of [148, Lemma 6.1], and hence
is omitted.

Proposition 3.3.1. Assume (H.4(1)). Let ψ ∈ V. Assume that for all t ∈ (0, T ], and
any open set O ⊂ Rn with positive Lebesgue measure, the state process Xθ?,ψ (defined by
(3.3.4) with ψθ = ψ) satisfies that P({ω ∈ Ω | Xθ?,ψ

t (ω) ∈ O}) > 0. Then the following two
statements are equivalent:

(a) if u1 ∈ Rn and u2 ∈ Rk satisfy uT1X
θ?,ψ
t + uT2ψ(t,Xθ?,ψ

t ) = 0 for dP ⊗ dt a.e., then u1

and u2 are zero vectors;

(b) if u1 ∈ Rn and u2 ∈ Rk satisfy uT1 x+uT2ψ(t, x) = 0 for almost every (t, x) ∈ [0, T ]×Rn,
then u1 and u2 are zero vectors.

Consequently, suppose that (H.4(1)) holds and σσT is positive definite, then (H.5) holds if
and only if the optimal feedback control ψθ

?
of (3.3.1) satisfies Item (b).

Proposition 3.3.1 allows for more explicit expressions of (H.5). For instance, as shown in
[17, Proposition 3.9], for quadratic cost functions g = 0 and f(t, x, a) = xTQx+ aTRa with
positive definite matrices Q and R, (H.5) holds if and only if B? in (3.3.2) is full column
rank. Alternatively, by [148, Proposition 3.3], if (3.3.1)-(3.3.2) has a bounded action set,
i.e., R in (H.2(3)) has a bounded domain domR (cf. Example 3.2.1), then (H.5) holds if and
only if the range of ψθ

?
contains k linearly independent vectors.

We remark that for general linear-convex learning problems without (H.5), an explicit
exploration is necessary for learning [148] . Instead of merely employing greedy polices as in
Algorithm 10, they dedicate certain episodes to actively explore the environment with some
exploration policy ψe satisfying Proposition 3.3.1 Item (b). The numbers of exploration and
exploitation episodes are then balanced based on the performance gap in Theorem 3.2.7
and the finite-sample accuracy of the parameter estimator. Note, however, this explicit
exploration may yield larger regrets for algorithm in [148] than that in Theorem 3.3.2.

3.3.3 Main results on sublinear regret bounds

We now state the main result which shows that the regret of Algorithm 10 grows at most
sublinearly with respect to the number of episodes, provided that the hyper-parameters θ0

and {mj}j∈N∪{0} are chosen properly. In particular, we shall choose an initial guess θ0 of θ?

which satisfies the identifiability condition in (H.5) and we shall also double the number of
learning episodes between two successive updates of the estimation of θ?, which is a commonly
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used strategy (the so-called doubling trick) in the design of online learning algorithms (see
e.g. [17]). The proof of this theorem is given in Section 3.3.4.3.

To simplify the notation, we introduce the following quantifies for each x0 ∈ Rn, θ =
(A,B) ∈ Rn×(n+k) and m ∈ N:

U
x0,θ := E

[ ∫ T

0

Zx0,θ
t (Zx0,θ

t )T dt

]
, V

x0,θ := E
[ ∫ T

0

Zx0,θ
t (dXx0,θ

t )T
]
,

Ux0,θ,m :=
1

m

m∑
i=1

∫ T

0

Zx0,θ,i
t (Zx0,θ,i

t )T dt, V x0,θ,m :=
1

m

m∑
i=1

∫ T

0

Zx0,θ,i
t (dXx0,θ,i

t )T,

(3.3.7)

where Xx0,θ ∈ S2(Rn) is the solution of (3.3.4), (Xx0,θ,i)mi=1 are independent copies of Xx0,θ,
and Zx0,θ and (Zx0,θ,i)mi=1 are defined as in (3.3.5) and (3.3.6), respectively. For any given
symmetric matrix A, we denote by λmin(A) the smallest eigenvalue of A.

Theorem 3.3.2. Suppose (H.4(1)) and (H.5) hold. Assume further that λmin(U
x0,θ0

) > 0,
and for any given bounded set K ⊂ Rn×(n+k), there exist constants C1, C2 > 0 and β ≥ 1,
such that the following concentration inequality holds for all ε ≥ 0, m ∈ N and θ ∈ K,

max
{
P
(∣∣Ux0,θ,m − Ux0,θ∣∣ ≥ ε

)
,P
(∣∣V x0,θ,m − V x0,θ∣∣ ≥ ε

)}
≤ C2 exp

(
− C1 min

{mε2

C2
2

,
(mε
C2

) 1
β
})
.

(3.3.8)

Then there exists a constant C0 > 0, such that for all C ≥ C0 and δ ∈ (0, 1/4), if we set
m0 = C(− ln δ)β and m` = 2`m0 for all ` ∈ N, then the regret of Algorithm 10 (cf. (3.3.3))
satisfies the following properties:

(1) It holds with probability at least 1 − 4δ that R(N) ≤ C ′
(√

N
√

lnN +
√
− ln δ

√
N +

(− ln δ)β lnN
)

for all N ∈ N, where C ′ is a constant independent of N and δ.

(2) It holds with probability 1 that R(N) = O(
√
N lnN) as N →∞.

The following theorem presents a precise sublinear regret bound of Algorithm 10 for the
jump-diffusion model (3.3.2), depending on the jump sizes of the Poisson random measure.
The proof follows from Theorem 3.3.2 and Proposition 3.3.9.

Theorem 3.3.3. Suppose (H.4) and (H.5) hold, and λmin(U
x0,θ0

) > 0. Then there exists a
constant C0 > 0, such that for all C ≥ C0 and δ ∈ (0, 1/4), if we set m0 = C(− ln δ)3+ϑ and
m` = 2`m0 for all ` ∈ N, then the regret of Algorithm 10 (cf. (3.3.3)) satisfies the following
properties:

(1) It holds with probability at least 1 − 4δ that R(N) ≤ C ′
(√

N
√

lnN +
√
− ln δ

√
N +

(− ln δ)3+ϑ lnN
)

for all N ∈ N, where ϑ is the constant in (H.4(2)) and C ′ is a constant
independent of ϑ,N and δ.
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(2) It holds with probability 1 that R(N) = O(
√
N lnN) as N →∞.

In the case where (3.3.2) is only driven by the Brownian motion, we can exploit the
sub-Gaussianity of the state process and obtain a shaper regret bound based on Theorem
3.3.2 and Proposition 3.3.10.

Theorem 3.3.4. Suppose (H.4) and (H.5) hold with γmax = 0, and λmin(U
x0,θ0

) > 0. Then
there exists a constant C0 > 0, such that for all C ≥ C0 and δ ∈ (0, 1/4), if we set m0 =
C(− ln δ) and m` = 2`m0 for all ` ∈ N, then the regret of Algorithm 10 (cf. (3.3.3)) satisfies
the following properties:

(1) It holds with probability at least 1 − 4δ that R(N) ≤ C ′
(√

N
√

lnN +
√
− ln δ

√
N +

(− ln δ) lnN
)

for all N ∈ N, where C ′ is a constant independent of N and δ.

(2) It holds with probability 1 that R(N) = O(
√
N lnN) as N →∞.

Remark 3.3.2. The condition λmin(U
x0,θ0

) > 0 in Theorems 3.3.3 and 3.3.4 ensures that
the greedy policy ψθ0 explores the parameter space and improves the accuracy of parameter
estimation. By Proposition 3.3.1, if (3.3.4) has nondegenerate Brownian noises, then it
suffices to choose θ0 such that the corresponding greedy policy ψθ0 enjoys the exploration
property stated in Item (b).

The choice of m0 = C0(− ln δ)β along with (H.5) ensures that (θ`)`∈N stays close to θ?

so that (3.3.8) is applicable. Here δ is an arbitrarily small constant indicating the agent’s
confidence of the regret bound, and C0 is a constant depending on the exploration strength

of ψθ
?
, namely the constant λmin(U

x0,θ?

) > 0 (see Section 3.3.4.3). Note that to analyze
algorithm regrets, it is common to assume some a-priori information on the true parameter
and the algorithm being initialized with sufficiently many learning episodes (see e.g., [45]).
Obtaining an explicit dependence of C0 on model parameters, however, could be challeng-
ing. A practical strategy for validating (H.5) and for choosing the initial episode m0 is to
ensure that the obtained estimations (θ`)`∈N remain bounded and that the resulting greedy
policies (ψθ`)`∈N satisfy Proposition 3.3.1 Item (b). Our numerical experiments in Section
3.5 demonstrate that the performance of Algorithm 10 is stable with respect to m0, and that
a small m0 in general suffices to guarantee a sublinear regret.

3.3.4 Proofs of sublinear regret bounds

This section is devoted to the proofs of Theorem 3.3.2, 3.3.3 and 3.3.4.
As we have seen in Theorems 3.3.3-3.3.4, an essential step for estimating the regret

of Algorithm 10 is to establish the concentration inequality (3.3.8) for the least-squares
estimator (3.3.6). Compared to the classical learning problems with Brownian-motion-driven
state dynamics (see e.g. [17]), the presence of jumps in the state dynamics creates a crucial



CHAPTER 3. CONTINUOUS-TIME RL FOR LC MODELS WITH JUMPS 98

difficulty in quantifying the precise value of β in (3.3.8), since the state variable Xθ is in
general not sub-Gaussian, and hence (3.3.8) does not hold with β = 1.

In the subsequent analysis, we overcome the above difficulty by introducing a notation
of sub-Weibull random variables as in [98] and establishing that both deterministic and
stochastic integrals preserve sub-Weibull random variables in Section 3.3.4.1. We then show
in Section 3.3.4.2 that (3.3.6) behaves like sub-Weibull random variables and (3.3.8) holds
with some β ≥ 1, provided that the jumps of the state dynamics are sub-exponential. Finally,
we prove the general regret result Theorem 3.3.2 for Algorithm 10 in Section 3.3.4.3.

3.3.4.1 Step 1: Analysis of sub-Weibull random variables

The first step is to analyze integrals of sub-Weibull random variables. We start by
recalling the precise definition of sub-Weibull random variables in terms of their Orlicz
norms (see [98]).

Definition 3.3.1. For every α > 0, let Ψα : [0,∞) → R such that Ψα(x) = ex
α − 1 for all

x ≥ 0, and let ‖ · ‖Ψα be the corresponding Ψα-Orlicz (quasi-)norm such that for any given
random variable X,

‖X‖Ψα := inf
{
t > 0 | E

[
Ψα

(
|X|
t

)]
≤ 1
}
.

Then a random variable X is said to be sub-Weibull of order α > 0, denoted by X ∈
subW(α), if ‖X‖Ψα <∞.

Note that ‖ · ‖Ψα is a norm if and only if α ≥ 1, as otherwise the triangle inequality
does not hold. Examples of sub-Weibull random variables include sub-Gaussian and sub-
exponential random variables, which correspond to subW(2) and subW(1), respectively. We
point out that the class of sub-Weibull random variables is closed under multiplication and
addition, and for all α > 0, there exists a constant Cα, depending only on α, such that

C−1
α sup

q≥1
q−1/α‖X‖Lq ≤ ‖X‖Ψα ≤ Cα sup

q≥1
q−1/α‖X‖Lq (3.3.9)

for all random variables X (see [70, Appendix A] for a proof of these properties).
We now present several important lemmas regarding the behavior of integrals of sub-

Weibull random variables. The first lemma shows that deterministic integral of a product
of sub-Weibull random variables is still sub-Weibull. The proof is based on Definition 3.3.1
and Hölder’s inequality, and is given in Section 3.6.2.

Lemma 3.3.5. For all α > 0 and every stochastic process X, Y : Ω× [0, T ]→ R,∥∥∥∥∫ T

0

XY dt

∥∥∥∥
Ψα/2

≤
∥∥∥∥∥
(∫ T

0

|X|2 dt

) 1
2

∥∥∥∥∥
Ψα

∥∥∥∥∥
(∫ T

0

|Y |2 dt

) 1
2

∥∥∥∥∥
Ψα

.
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The second lemma shows that stochastic integrals preserve the property of being sub-
Weibull random variables. The proof is based on the equivalent characterization (3.3.9) of
sub-Weibull random variables and Burkholder’s inequality, whose details are given in Section
3.6.2.

Lemma 3.3.6. There exists C ≥ 0 such that for all σ ∈ Rd, X ∈ S2(R) and every measurable

function γ : Rp
0 → R satisfying (H.4(2)), ‖

∫ T
0
Xtσ

T dWt‖Ψ1/2
≤ C|σ|‖(

∫ T
0
|X|2 dt)

1
2‖Ψ1 and∥∥∥∥∥

∫ T

0

∫
Rp0
Xtγ(u) Ñ(dt, du)

∥∥∥∥∥
Ψ1/(3+ϑ)

≤ Cγmax

(
sup
p≥2

∥∥∥∥(∫ T

0

|Xt|qdt
) 1

q
∥∥∥∥

Ψ1

)
,

with the constants γmax and ϑ in (H.4(2)).

Lemma 3.3.6 focuses on the case where (
∫ T

0
|X|2 dt)1/2 ∈ subW(1) \ subW(2), which is

important for control problems whose state dynamics is driven by a Poisson random measure.
Hence we establish the sub-Weibull properties of the stochastic integrals by applying the
Burkholder’s inequality to estimate the growth of their Lq-norms, precise order of which
depends on the constants Cq and C̃q in the inequalities (3.6.7) and (3.6.8).

In the case where (
∫ T

0
|X|2 dt)1/2 ∈ subW(2), we can establish the optimal sub-Weibull

order
∫ T

0
Xtσ

T dWt ∈ subW(1). Such a characeterization is essential for obtaining a sharper
regret bound of Algorithm 10 when the state dynamics is only driven by the Brownian
motion. The proof is based on the Girsanov theorem and is given in Section 3.6.2.

Lemma 3.3.7. There exists C ≥ 0 such that for all σ ∈ Rd and X ∈ S2(R),

‖
∫ T

0

Xtσ
T dWt‖Ψ1 ≤ C|σ|‖(

∫ T

0

|X|2 dt)
1
2‖Ψ2 .

3.3.4.2 Step 2: Concentration inequalities for the least-squares estimator

Based on the fact that sub-Weibull properties are preserved under algebraic and integral
operations as shown in Section 3.3.4.1, we now quantify the precise tail behavior of the
least-squares estimator (3.3.6), namely the constant β in (3.3.8), for the jump-diffusion
model (3.3.2).

We start by establishing the sub-exponential properties of Lipschitz functionals of the
state process Xθ driven by both Brownian motions and Poisson random measures as in
(3.3.4). The proof follows as a special case of [111] and is given in Section 3.6.2.

Lemma 3.3.8. Suppose (H.4) holds. Let K ∈ R and θ = (A,B) ∈ Rn×(n+k) satisfy |θ| ≤ K.
Then there exists C ≥ 0, depending only on K, T and the constants in (H.4), such that
for all x0 ∈ Rn and for every Lipschitz continuous function f : (D([0, T ];Rn), d∞) → R, the
solution Xx0,θ of (3.3.4) satisfies ‖f(Xx0,θ)‖Ψ1 ≤ C(‖f‖Lip+|E[f(Xx0,θ)]|), where D([0, T ];Rn)
is the space of Rn-valued càdlàg functions on [0, T ] endowed with the uniform metric d∞,
and ‖f‖Lip is the Lipschitz constant of f. (cf. Lemma 3.6.3).
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We now characterize the parameter β in the concentration inequality (3.3.8) based on
Lemmas 3.3.5, 3.3.6 and 3.3.8.

Proposition 3.3.9. Suppose (H.4) holds and let K ⊂ Rn×(n+k) be a bounded set. Then there
exist constants C1, C2 ≥ 0 such that (3.3.8) holds for all ε ≥ 0, m ∈ N and θ ∈ K with
β = 3 + ϑ, where ϑ is the constant in (H.4(2)).

Proof. Throughout this proof, let θ be a given constant satisfying |θ| ≤ K for some K ≥ 0.
For notational simplicity, we shall omit the dependence on (x0, θ) in the subscripts of all
random variables, and denote by C2 a generic constant, which is independent of m and the
precise value of θ, and depends possibly on K, x0, the constants in (H.4) and the dimensions.

Note that for each i = 1, . . . ,m, the entries of
∫ T

0
Zi
t(Z

i
t)

T dt are one of the three cases:∫ T

0

X i
`,tX

i
j,t dt,

∫ T

0

X i
`,tψ

θ(t,X i
t)j dt,

∫ T

0

ψθ(t,X i
t)`ψ

θ(t,X i
t)j dt (3.3.10)

where X i
`,t and ψθ(t,X i

t)` are the `th-entry of X i
`,t and ψθ(t,X i

t)`, respectively. Similarly, the

entries of
∫ T

0
Zi
t(dX

i
t)

T are one of the two cases:∫ T

0

X i
`,t(A

?X i
t)j dt+

∫ T

0

X i
`,t(B

?ψθ(t,X i
t))j dt+

∫ T

0

X i
`,tσj dW i

t +

∫ T

0

∫
Rp0
X i
`,tγ(u)j Ñ

i(dt, du),∫ T

0

ψθ(t,X i
t)`(A

?X i
t)j dt+

∫ T

0

ψθ(t,X i
t)`(B

?ψθ(t,X i
t))j dt+

∫ T

0

ψθ(t,X i
t)`σj dW i

t (3.3.11)

+

∫ T

0

∫
Rp0
ψθ(t,X i

t)`γ(u)j Ñ
i(dt, du),

where σj is the j-th row of σ ∈ Rn×d, γj is the j-th entry of the function γ : Rp
0 → Rn,

(W i)mi=1 are m-independent d-dimensional Brownian motion, and (Ñ i)mi=1 are m-independent
compensated Poisson random measures. By the definitions of Ux0,θ,m, V x0,θ,m in (3.3.7), and
the inequality that P(|∑`

i=1Xi| ≥ ε) ≤ ∑`
i=1 P(|Xi| ≥ ε/`) for all ` ∈ N and random

variables (Xi)
`
i=1, it suffices to obtain a concentration inequality for each term in (3.3.10)

and (3.3.11).
Since |θ| ≤ K, by Theorem 3.2.5, there exists C2 ≥ 0 such that |ψθ(t, 0)| ≤ C2 and

|ψθ(t, x) − ψθ(t, x′)| ≤ C2|x − x′| for all t ∈ [0, T ], x, x′ ∈ Rn. Then standard moment
estimates of (3.3.4) (with the initial condition x0) shows that ‖X i‖S2(Rn) ≤ C2 for all i =
1, . . . ,m, with a constant C2 depending on x0. Then, for each q ≥ 2, ` = 1, . . . , n and

j = 1, . . . k, we consider the functions f
(q)
` , f

(q)

j : (D([0, T ];Rn), d∞) → R satisfying for all

ρ ∈ D([0, T ];Rn) that f
(q)
` (ρ) =

( ∫ T
0
|ρ`,t|qdt

) 1
q and f

(q)

j (ρ) =
( ∫ T

0
|ψθ(t, ρt)j|qdt

) 1
q , where ρ`,t

is the `th component of ρt and ψθ(t, ρt)j is the jth component of ψθ(t, ρt). One can easily

show that f
(q)
` (0) = 0 and |f(q)j (0)|, ‖f(q)` ‖Lip, ‖f

(q)

j ‖Lip ≤ C, which along with Lemma 3.3.8

implies that ‖
( ∫ T

0
|X i

`,t|q dt
) 1
q ‖Ψ1 ≤ C and ‖

( ∫ T
0
|ψθ(t,X i

t)j|q dt
) 1
q ‖Ψ1 ≤ C, uniformly with
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respect to i, `, j, q, θ. Hence, we can obtain from Lemmas 3.3.5 and 3.3.6 a uniform bound
for the ‖ · ‖Ψ1/(3+ϑ)

-norms of all the terms in (3.3.10) and (3.3.11).
Consequently, we can deduce the desired concentration inequality by applying Lemma

3.6.4 (with α = 1/(3+ϑ), N = m and ε′ = mε) to each component of the zero-mean random

varables
( ∫ T

0
Zi
t(Z

i
t)

T dt− U
)m
i=1

and
( ∫ T

0
Zi
t(dX

i
t)

T − V
)m
i=1

.

The following proposition improves the concentration inequality in Proposition 3.3.9 for
the case without jumps.

Proposition 3.3.10. Suppose (H.4) holds with γmax = 0 and let K ⊂ Rn×(n+k) be a bounded
set. Then there exist constants C1, C2 ≥ 0 such that (3.3.8) holds for all ε ≥ 0, m ∈ N and
θ ∈ K with β = 1.

Proof. We first refine the result of Lemma 3.3.8 and prove Lipschitz functionals of the state
process Xx0,θ is sub-Gaussian. By [49, Theorem 1.1 and Corollary 4.1], there exists C ≥ 0
such that for all x0 ∈ Rn and for every Lipschitz continuous function f : (D([0, T ];Rn), d∞)→
R with ‖f‖Lip ≤ 1, E

[
exp

(
λ(f(Xx0,θ) − E[f(Xx0,θ)])

)]
≤ exp

(
C2λ2

)
for all λ > 0, which

along with [156, Proposition 2.5.2 (v)] implies that ‖f(Xx0,θ)− E[f(Xx0,θ)]‖Ψ2 ≤ C for some
constant C, uniformly with respect to x0 ∈ Rn, θ ∈ K and f : (D([0, T ];Rn), d∞) → R
satisfying ‖f‖Lip ≤ 1. Then, we can deduce from the fact that ‖ · ‖Ψ2 is a norm that
‖f(Xx0,θ)‖Ψ2 ≤ C(‖f‖Lip + |E[f(Xx0,θ)]|) for all x0 ∈ Rn, θ ∈ K and Lipschitz continuous
functions f.

We then proceed along the proof of Proposition 3.3.9. For each i = 1, . . . ,m, all entries of∫ T
0
Zi
t(Z

i
t)

T dt are given in (3.3.10), and all entries of
∫ T

0
Zi
t(dX

i
t)

T are given by (cf. (3.3.11)):∫ T

0

X i
`,t(A

?X i
t)j dt+

∫ T

0

X i
`,t(B

?ψθ(t,X i
t))j dt+

∫ T

0

X i
`,tσj dW i

t ,∫ T

0

ψθ(t,X i
t)`(A

?X i
t)j dt+

∫ T

0

ψθ(t,X i
t)`(B

?ψθ(t,X i
t))j dt+

∫ T

0

ψθ(t,X i
t)`σj dW i

t ,

(3.3.12)

for all ` = 1, . . . , n and j = 1, . . . , k, where we have omitted the dependence on (x0, θ) in the
subscripts for notational simplicity. Hence, by following the same argument as in Proposition
3.3.9, we can show there exists a constant C, such that for all i = 1, . . . ,m, ` = 1, . . . , n,

j = 1, . . . , k and θ ∈ K, we have ‖
( ∫ T

0
|X i

`,t|2 dt
) 1

2‖Ψ2 ≤ C and ‖
( ∫ T

0
|ψθ(t,X i

t)j|2 dt
) 1

2‖Ψ2 ≤
C. Then, we can obtain from Lemmas 3.3.5 and 3.3.7 a uniform bound for the ‖ · ‖Ψ1-

norms of all entires of
∫ T

0
Zi
t(Z

i
t)

T dt and
∫ T

0
Zi
t(dX

i
t)

T. Consequently, we can apply Lemma

3.6.4 (with α = 1, N = m and ε′ = mε) to each entry of
( ∫ T

0
Zi
t(Z

i
t)

T dt − U
)m
i=1

and( ∫ T
0
Zi
t(dX

i
t)

T − V
)m
i=1

, and deduce the desired concentration inequality.
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3.3.4.3 Step 3: Proof of general regret bounds

After demonstrating how to verify (3.3.8) based on the precise jump sizes in the state
dynamics, it remains to establish the general regret result in Theorem 3.3.2 under the as-
sumption that (3.3.8) holds for some β ≥ 1.

We start by showing that under (H.4(1)) and (H.5), the expression (3.3.5) is well-defined
if θ is a sufficiently accurate estimation of the true parameter θ?.

Lemma 3.3.11. Suppose (H.4(1)) and (H.5) hold. Then there exist constants ε0 > 0 and

τ0 > 0, such that for all θ ∈ K0 := {θ ∈ Rn×(n+k) | |θ − θ?| ≤ ε0}, we have λmin(U
x0,θ

) ≥ τ0,

where U
x0,θ

is defined as in (3.3.7) and λmin(A) is the smallest eigenvalue of a symmetric
matrix A.

Proof. Since U
x0,θ?

is positive semidefinite, we shall prove λmin(U
x0,θ?

) > 0 by assuming that

λmin(U
x0,θ?

) = 0. Then we see there exists a non-zero vector u =

(
u1

u2

)
∈ Rn+k with u1 ∈ Rn

and u2 ∈ Rk, such that uTU
x0,θ?

u = 0. By the definition of U
x0,θ?

in (3.3.7), we can deduce

that E[
∫ T

0
|uTZx0,θ?

t |2 dt] = 0, which along with the definition of Zx0,θ?

t in (3.3.5) implies for

dP ⊗ dt a.e. that uT1X
x0,θ?,α?

t + uT2α
x0,?
t = 0. This contradicts to (H.5), which leads to the

desired inequality that λmin(U
x0,θ?

) > 0.

We then show that the map Rn×(n+k) 3 θ 7→ U
x0,θ ∈ R is continuous. Theorem 3.2.7

shows that the map Rn×(n+k) 3 θ 7→ Xx0,θ ∈ H2(Rn) is continuous. Moreover, Theorems
3.2.5 and 3.2.6 imply that there exists a constant C ≥ 0, such that for all θ ∈ Rn×(n+k)

satisfying |θ − θ?| ≤ 1, t ∈ [0, T ] and x, x′ ∈ Rn, we have that |ψθ(t, 0)| ≤ C, |ψθ(t, x) −
ψθ(t, x′)| ≤ C|x−x′| and |ψθ(t, x)− ψθ?(t, x)| ≤ C(1+ |x|)|θ−θ?|, from which we can deduce
that

|ψθ(t, x)− ψθ?(t, x′)| ≤ |ψθ(t, x)− ψθ?(t, x)|+ |ψθ?(t, x)− ψθ?(t, x′)|
≤ C(1 + |x|)|θ − θ?|+ C|x− x′|.

Hence, for all θ ∈ Rn×(n+k) with |θ − θ?| ≤ 1,

‖ψθ(·, Xx0,θ)− ψθ?(·, Xx0,θ?)‖H2 ≤ C(1 + ‖Xx0,θ‖H2)|θ − θ?|+ C‖Xx0,θ −Xx0,θ?‖H2 ,

which along with the continuity of the map Rn×(n+k) 3 θ 7→ Xx0,θ ∈ H2(Rn) implies that the

map Rn×(n+k) 3 θ 7→ ψθ(·, Xx0,θ) ∈ H2(Rk) is continuous. Since the entires of U
x0,θ

involve
only the expectations of products of Xx0,θ and ψθ(·, Xx0,θ), the desired continuity of the map

Rn×(n+k) 3 θ 7→ U
x0,θ ∈ R follows.

Finally, by the continuity of the minimum eigenvalue function, clearly Rn×(n+k) 3 θ 7→
λmin(U

x0,θ
) ∈ R is continuous, which along with the fact that λmin(U

x0,θ?

) > 0 leads to the
desired result.
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We then quantify the estimation error of the least-squares estimator (3.3.6) by assuming
the concentration inequality (3.3.8) holds for the compact set K0 in Lemma 3.3.11.

Proposition 3.3.12. Suppose (H.4(1)) and (H.5) hold. Let K0 be the set in Lemma 3.3.11.
Assume further that there exist constants C1, C2 > 0 and β ≥ 1 such that (3.3.8) holds for
all ε ≥ 0, m ∈ N and θ ∈ K0. Then there exist constants C̄1, C̄2 ≥ 0, such that for all θ ∈ K0

and δ ∈ (0, 1/2), if m ≥ C̄1(− ln δ)β, then we have with probability at least 1− 2δ that

|θ̂ − θ?| ≤ C̄2

(√− ln δ

m
+

(− ln δ)β

m
+

(− ln δ)2β

m2

)
, (3.3.13)

where θ̂ denotes the transpose of the left-hand side of (3.3.6) associated with θ.

Proof. Throughout the proof, let δ ∈ (0, 1/2) and θ ∈ K0 be fixed and let ‖ ·‖2 be the matrix

norm induced by Euclidean norms. The invertibility of U
x0,θ

(see Lemma 3.3.11) implies
that (3.3.5) is well-defined, which along with (3.3.6) leads to

‖θ̂ − θ?‖2 = ‖(Ux0,θ,m + 1
m
I)−1V x0,θ,m − (U

x0,θ
)−1V

x0,θ‖2

≤ ‖(Ux0,θ,m + 1
m
I)−1 − (U

x0,θ
)−1‖2‖V x0,θ,m‖2

+ ‖(Ux0,θ
)−1‖2‖V x0,θ,m − V x0,θ‖2.

(3.3.14)

We now estimate each term in the right-hand side of (3.3.14). By Lemma 3.3.11,

λmin(U
x0,θ

) ≥ τ0 for some τ0 > 0, which implies that ‖(Ux0,θ
)−1‖2 ≤ 1/τ0. Moreover, by

setting the right-hand side of (3.3.8) to be δ, we can deduce with probability at least 1− 2δ

that |Ux0,θ,m − Ux0,θ| ≤ δm and |V x0,θ,m − V x0,θ| ≤ δm with the constant δm given by

δm := max

{(
C2

2

C1m
ln

(
C2

δ

)) 1
2

,
C2

m

(
1

C1

ln

(
C2

δ

))β}
, (3.3.15)

where we have assumed without loss of generality that C2 ≥ 1.
Let m be a sufficiently large constant satisfying δm+1/m ≤ τ0/2. The fact that ‖·‖2 ≤ |·|

indicates with probability at least 1− 2δ that ‖Ux0,θ,m + 1
m
I−Ux0,θ‖2 ≤ 1

m
+ δm ≤ τ0

2
, which

in turn yields

λmin(Ux0,θ,m + 1
m
I) ≥ λmin(U

x0,θ
)− ‖Ux0,θ,m + 1

m
I− Ux0,θ‖2 ≥ τ0

2
,

or equivalently ‖(Ux0,θ,m + 1
m
I)−1‖2 ≤ 2/τ0. Then, since A−1− (A+B)−1 = (A+B)−1BA−1

for all nonsingular matrices A and A+B, we have with probability at least 1− 2δ that,

‖(Ux0,θ,m + 1
m
I)−1 − (U

x0,θ
)−1‖2 = ‖(Ux0,θ

+ Ux0,θ,m + 1
m
I− Ux0,θ

)−1 − (U
x0,θ

)−1‖2

≤ ‖(Ux0,θ,m + 1
m
I)−1‖2‖(Ux0,θ

)−1‖2‖(Ux0,θ,m + 1
m
I)− Ux0,θ‖2

≤ 2
τ20

( 1
m

+ δm),
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which along with the inequality that ‖V x0,θ,m‖2 ≤ ‖V x0,θ‖2 + |V x0,θ,m − V x0,θ| allows us to
derive the following estimate from (3.3.14):

‖θ̂ − θ?‖2 ≤ 2
τ20

( 1
m

+ δm)(‖V x0,θ‖2 + δm) + δm
τ0
.

Note that ‖V x0,θ‖2 is uniformly bounded for all θ ∈ K0 by the compactness of K0 and the

continuity of the map θ 7→ V
x0,θ

(cf. Lemma 3.3.11). Thus, by the condition that β ≥ 1 and
the definition of δm in (3.3.15), we see that there exists a constant C̄2, depending only on
C1, C2, β, τ0, and the constants in (H.4(1)), such that the desired estimate (3.3.13) holds
with probability at least 1 − 2δ, provided that m satisfies δm + 1/m ≤ τ0/2. Since β ≥ 1
and δ ≤ 1/2, we see there exists C̄1 ≥ 0, independent of m, δ and θ, such that the inequality
(3.3.13) holds for all m satisfying m ≥ C̄1(− ln δ)β.

Now we are ready to present the proof of Theorem 3.3.2.

Proof of Theorem 3.3.2. We start by proving Item (1). Then, by the assumptions that

λmin(U
x0,θ0

) > 0 and (3.3.8) holds for K = K0 := K0 ∪ {θ0} with K0 from Lemma 3.3.11,
we can extend Proposition 3.3.12 to show that (3.3.13) holds for all θ ∈ K0, δ ∈ (0, 1/2)
and m ≥ C̄1(− ln δ)β, with some constants C̄1, C̄2 ≥ 1 depending on K0. In the subsequent
analysis, we fix δ ∈ (0, 1/4) and for all ` ∈ N ∪ {0}, we define δ` = 2−`δ, and let θ`+1 be
generated by using (3.3.6) with m = m` and θ = θ`. We shall specify the precise choice of
m0 later.

In the sequel, we assume without loss of generality that ε0/(3C̄2) ≤ 1 and C̄2/ε0 ≥ C̄1,
where ε0 > 0 is the constant in the definition of K0 (see Lemma 3.3.11). We first show that
there exists Ĉ0 > 0, independent of δ, such that if m0 ≥ Ĉ0(− ln δ)β, then for all ` ∈ N∪{0},

C̄2

(√− ln δ`
m`

+
(− ln δ`)

β

m`

+
(− ln δ`)

2β

m2
`

)
≤ ε0. (3.3.16)

By the assumption that ε0/(3C̄2) ≤ 1, it suffices to show that for all ` ∈ N∪{0}, − ln δ`/m` ≤
(ε0/(3C̄2))2 and (− ln δ`)

β/m` ≤ ε0/(3C̄2). Given β ≥ 1 and δ` < 1/4, it suffices to ensure
m` ≥ C(− ln δ`)

β for all ` ∈ N ∪ {0}, where C is a sufficiently large constant independent
of δ and `. By the definitions of (δ`)`∈N and (m`)`∈N and the fact that δ < 1/4, the desired
condition can be achieved by choosing m0 ≥ Ĉ0(− ln δ)β, for a sufficiently large constant Ĉ0

satisfying

sup
`∈N∪{0},δ∈(0, 1

4
)

(− ln(2−`δ))β

2`(− ln δ)β
= sup

`∈N∪{0},δ∈(0, 1
4

)

2−`
( ` ln 2

− ln δ
+ 1
)β
≤ sup

`∈N∪{0}
2−`
( `

2
+ 1
)β
≤ Ĉ0 <∞.

Now we choosem0 ≥ max(Ĉ0, C̄1)(− ln δ)β, and show by induction that for all k ∈ N∪{0},
it holds with probability at least 1− 2

∑k−1
`=0 δ` that θ` ∈ K0 for all ` = 0, . . . , k and

|θk − θ?|2 ≤

|θ0 − θ?|2, k = 0,

C̄2

(√
− ln δk
mk

+ (− ln δk)β

mk
+ (− ln δk)2β

m2
k

)
, k ∈ N.

(3.3.17)
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The statement clearly holds for k = 0. Now suppose that the induction statement holds for
some k ∈ N∪{0}. Conditioning on θk ∈ K0, we can apply (3.3.13) with θ = θk, δ = δk < 1/2
and m = mk ≥ C̄1(− ln δk)

β (see (3.3.16) and C̄2/ε0 ≥ C̄1), and deduce with probability at
least 1 − 2δk that (3.3.17) holds for the index k + 1, which along with (3.3.16) shows that
θk+1 ∈ K0 ⊂ K0. Since the induction hypothesis implies that θk ∈ K0 holds with probability
at least 1− 2

∑k−1
`=0 δ`, one can deduce that the induction statement also holds k + 1.

The above induction argument shows that if m0 = C(− ln δ)β for any constant C ≥ C0 :=
max(Ĉ0, C̄1), then with probability at least 1−2

∑∞
`=0 δ` = 1−4δ, θk ∈ K0 and (3.3.17) holds

for all k ∈ N ∪ {0}. Now let us assume such a setting, and observe that the i-th trajectory
is generated with control ψθ` if i ∈ (

∑`−1
j=0mj,

∑`
j=0mj] = (m0(2` − 1),m0(2`+1 − 1)] for

` ∈ N∪{0} (cf. Algorithm 10). Then we can apply Theorem 3.2.7 and deduce for all N ∈ N
that

R(N) ≤
dlog2( N

m0
+1)e−1∑

`=0

m`

(
Jθ

?

(ψθ` ;x0)− V (x0; θ?)
)
≤ C ′

dlog2( N
m0

+1)e−1∑
`=0

m`|θ` − θ?|

≤ C ′m0 + C ′
dlog2( N

m0
+1)e−1∑

`=1

(√
(− ln δ`)m` + (− ln δ`)

β
(

1 +
(− ln δ`)

β

m`

))

≤ C ′(− ln δ)β + C ′
dlog2( N

m0
+1)e−1∑

`=1

(√
(− ln δ`)m` + (− ln δ`)

β

)
, (3.3.18)

where we have denoted by C ′ a generic constant independent of `,N, δ, and used the fact
that (− ln δ`)

β/m` ≤ C ′ for the last inequality (cf. the choice of Ĉ0). We then derive an upper
bound of (3.3.18). By virtue of the inequality that

√
(− ln δ`)m` =

√
(` ln 2− ln δ)2`m0 ≤

C ′
√

(`− ln δ)m0

√
2
`

for all ` ∈ N, we have

dlog2( N
m0

+1)e−1∑
`=1

√
(− ln δ`)m` ≤ C ′

√
(lnN − ln δ)m0

√
2

log2( N
m0

+1)

≤ C ′
√

(lnN − ln δ)(N + (− ln δ)β).

Moreover, by ln δ` = −` ln 2 + ln δ and Hölder’s inequality,

dlog2( N
m0

+1)e−1∑
`=1

(− ln δ`)
β ≤

C′ lnN∑
`=1

C ′((` ln 2)β + (− ln δ)β) ≤ C ′
(
(lnN)β+1 + lnN(− ln δ)β

)
.

Consequently, from (3.3.18), β ≥ 1 and the inequality
√
x+ y ≤ √x +

√
y for all x, y ≥ 0,

it is clear for all N ∈ N, R(N) ≤ C ′
(√

N
√

lnN +
√
− ln δ

√
N + (− ln δ)β lnN

)
for some

constant C ′ independent of β and N , which finishes the proof of Item (1).
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We are ready to show Item (2). For each N ∈ N ∩ [3,∞), we define δN = 1/N2

and the event AN = {R(N) > C ′(
√
N
√

lnN +
√
− ln δN

√
N + (− ln δN)β lnN)}. Item

(1) shows that
∑∞

N=3 P(AN) ≤ 4
∑∞

N=3 δN < ∞. Hence, from the Borel-Cantelli lemma,
P(lim supN→∞AN) = 0, which along with the definition of δN implies the desired conclu-
sion.

3.4 Extension: RL problems with controlled diffusion

In this section, we extend our framework to analyze the regret order of learning algorithms
for general continuous-time RL problems, whose state dynamics involves controlled diffusion.
To simplify the presentation, we focus on entropy-regularized problems studied in [159, 143,
135, 152] and outline the essential steps of the argument.

For each θ = (A,B) ∈ Rn×(n+k), define V (·; θ) : [0, T ]× Rn → R by

V (t, x; θ) := inf
α∈H2(Rk)

E
[∫ T

t

f(s,X t,x,α
s , αs) ds+ g(X t,x,α

T )

]
, ∀(t, x) ∈ [0, T ]× Rn, (3.4.1)

where for each α ∈ H2(Rk), X t,x,α ∈ S2(Rn) satisfies the controlled dynamics:

dXs = (AXs +Bαs) ds+ σ(s,Xs, αs) dWs, s ∈ [t, T ], Xt = x. (3.4.2)

The functions f : [0, T ] × Rn × Rk → R ∪ {∞} and σ : [0, T ] × Rn × Rk → Rn×d are such
that for all (t, x) ∈ [0, T ]××Rn and a = (ai)

k
i=1 ∈ Rk,

f(t, x, a) =
k∑
i=1

f i(t, x)ai +Ren(a), σ(t, x, a)σ(t, x, a)T =
k∑
i=1

σi(t, x)σi(t, x)Tai, (3.4.3)

where for each i = 1, . . . k, f i : [0, T ] × Rn → R, σi : [0, T ] × Rn → Rn×d are some given
functions and Ren : Rk → R ∪ {∞} is Shannon’s entropy function (cf. Example 3.2.2) such
that

Ren(a) =

{∑k
i=1 ai ln(ai), a ∈ ∆k := {a ∈ [0, 1]k |∑k

i=1 ai = 1},
∞, a ∈ Rk \∆k.

(3.4.4)

To avoid needless technicalities, we assume (f i)
k
i=1, (σi)

k
i=1 and g to be bounded and suffi-

ciently regular as in Proposition 3.4.1.
Note that (3.4.4) restricts control processes to those taking values in ∆k. Hence, if

σ`(t, x) ≡ σ for some σ ∈ Rn×d, then (3.4.1)-(3.4.2) is a special case of the linear-convex
model studied in Sections 3.2-3.3. Consequently, Theorem 3.3.2 can be applied to study the
regret order of GLS algorithms for (3.4.1)-(3.4.2) with given initial time and state (t, x) ∈
[0, T ]× Rn but with unknown parameter θ.

To analyze the regret order of learning algorithms with general σ, a crucial step is to ex-
tend Theorem 3.2.7 and quantify the performance of a greedy policy from an incorrect model.
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The fact that control affects the diffusion coefficients complicates the stability analysis of
optimal feedback controls (i.e., Theorem 3.2.6) for (3.4.1)-(3.4.2). The following proposition
proves a linear performance gap under the condition that the value function V (t, x; θ) in
(3.4.1) is sufficiently regular in t, x and θ. Recall that the first and second-order derivatives
of a sufficiently regular value function can be represented by solutions to the associated FB-
SDE (3.2.11) (see e.g., [169, Theorem 4.1, p. 250]). Hence the linear performance gap can
also be established by assuming sufficient regularity of the solution process (Y t,x, Zt,x) to
(3.2.11), whose details are omitted here.

Proposition 3.4.1. For each θ ∈ Rn×(n+k), let V (·; θ) : [0, T ] × Rn → R be defined by
(3.4.1). Suppose that (f i)

k
i=1, (σi)

k
i=1 ⊂ C0,1([0, T ] × Rn), g ∈ C1(Rn), and there exists

m : [0,∞) → [0,∞) such that for all (t, x) ∈ [0, T ] × Rn and θ, θ′ ∈ Rn×(n+k), ∂
∂t
V (·; θ) is

continuous, ‖V (·; θ)‖C0,3([0,T ]×Rn) ≤ m(|θ|),

|∇xV (t, x; θ)−∇xV (t, x; θ′)|+ |Hessx V (t, x; θ)− Hessx V (t, x; θ′)|
≤ (m(|θ|) + m(|θ|′))|θ − θ′|(1 + |x|).

Then for all θ ∈ Rn×(n+k), there exists ψθ ∈ V such that

(1) ψθ is an optimal feedback control of (3.4.1)-(3.4.2) satisfying for all x0 ∈ Rn and
θ ∈ Rn×(n+k), V (0, x0; θ) = J(ψθ;x0, θ), where for each ψ ∈ V,

J(ψ;x0, θ) := E
[∫ T

0

f(t,Xx0,θ,ψ
t , ψ(t,Xx0,θ,ψ

t )) dt+ g(Xx0,θ,ψ
T )

]
,

and Xx0,θ,ψ ∈ S2(Rn) satisfies the following dynamics:

dXt = θ
(

Xt
ψ(t,Xt)

)
dt+ σ(t,Xt, ψ(t,Xt))dWt, t ∈ [0, T ], X0 = x0,

(2) for all x0 ∈ Rn and R ≥ 0 there exists a constant C such that for all θ, θ′ ∈ Rn×(n+k)

with |θ|, |θ′| ≤ R,
|J(ψθ

′
;x0, θ)− J(ψθ;x0, θ)| ≤ C|θ′ − θ|.

Proposition 3.4.1 relies on the regularity and Lipschitz stability of the value function
V . For instance, if all coefficients are bounded and sufficiently smooth, and σ satisfies the
uniform parabolicity condition, then C2+α regularity results for fully nonlinear parabolic
PDEs (see e.g., the Evan-Kryolv theorem in [97, Theorems 6.4.3 and 6.4.4, p. 301]) and a
bootstrap argument would ensure that for any given θ, the function V (·, θ) is continuously
differentiable in t and three-time continuously differentiable in x. Due to the unbounded
drift coefficient of (3.4.2), the boundedness in the C0,3([0, T ] × Rn)-norm and the locally
Lipschitz continuity of V in θ follow from an extension of the Schauder estimate (see e.g.,
[96]) to nonlinear parabolic equations with unbounded coefficients in the whole space.
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With Proposition 3.4.1, we can then quantify the regrets of GLS algorithms (see Algo-
rithm 10) for (3.4.1)-(3.4.2) with unknown drift parameter θ and known diffusion coefficient
σ. By the boundedness of σ and the regularity of ψθ, one can prove Proposition 3.3.10 in
the present setting. Hence, Theorem 3.3.2 (with β = 1 in (3.3.8)) shows that Algorithm 10
enjoys a sublinear regret as shown in Theorem 3.3.4.

Proof of Proposition 3.4.1. For any given θ = (A,B) ∈ Rn×(n+k), the regularity of V (·; θ)
and [169, Proposition 3.5, p. 182] imply that V (·; θ) is the unique classical solution to the
associated HJB equation. That is, for all (t, x) ∈ [0, T )× Rd,

∂
∂t
V (t, x)+ inf

a∈∆k

(
1
2
tr(σ(t, x, a)σ(t, x, a)T Hessx V (t, x))+〈Ax+Ba,∇xV (t, x)〉+f(t, x, a)

)
= 0,

and V (T, x) = g(x) for all x ∈ Rd. By (3.4.3), for all (t, x) ∈ [0, T ]× Rn,

ψθ(t, x) := arg min
a∈∆k

(
1
2
tr(σ(t, x, a)σ(t, x, a)T Hessx V (t, x; θ)) + 〈Ba,∇xV (t, x; θ)〉+ f(t, x, a)

)
= ∇R∗en

(
− 1

2
tr(σ(t, x)σ(t, x)T Hessx V (t, x; θ))−BT∇xV (t, x; θ)− f(t, x)

)
,

where for all z ∈ Rk, R∗en(z) = supa∈∆k
(〈a, z〉 − Ren(a)) = ln

∑k
i=1 exp(zi), and

tr(σ(t, x)σ(t, x)T Hessx V (t, x; θ)) =

tr(σ1(t, x)σ1(t, x)T Hessx V (t, x; θ))
...

tr(σk(t, x)σk(t, x)T Hessx V (t, x; θ))

 ,

f(t, x) =

f 1(t, x)
...

fk(t, x)

 .

The Lipschitz continuity of ∇R∗en and the regularity assumptions imply that ψθ ∈ V and the
corresponding state process Xx0,θ,ψθ is well defined. Then a standard verification argument
(see e.g., [169, Theorem 6.6, p. 278]) shows ψθ is an optimal feedback control and finishes
the proof of Item (1).

To prove Item (2), Fix x0 ∈ Rn and R ≥ 0 and let C be a generic constant independent of
θ. Note that the Fenchel-Young identity gives that R∗en(∇R∗en(z)) = 〈z,∇R∗en(z)〉 − R∗en(z)
for all z ∈ Rk, which along with (3.4.3) implies that for all (t, x, θ) ∈ [0, T ]×Rn ×Rn×(n+k),

f(t, x, ψθ(t, x)) = −〈1
2
tr(σ(t, x)σ(t, x)T Hessx V (t, x; θ)) +BT∇xV (t, x; θ), ψθ(t, x)〉

− R∗en(−1
2
tr(σ(t, x)σ(t, x)T Hessx V (t, x; θ))−BT∇xV (t, x; θ)− f(t, x)).

By the regularity assumptions of the coefficients and the function V , for all t ∈ [0, T ],
x, x′ ∈ Rn and θ, θ′ ∈ Rn×(n+k) with |θ|, |θ′| ≤ R, there exists C ≥ 0 such that

|ψθ′(t, x′)− ψθ(t, x)|+ |f(t, x′, ψθ
′
(t, x′))− f(t, x, ψθ(t, x))|

≤ C
(
|x− x′|+ (1 + |x′|+ |x|)|θ − θ′|

)
.
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Proceeding along the lines of the proof of Theorem 3.2.7 leads to the desired estimate in
Item (2).

3.5 Numerical experiments

In this section, we test the theoretical findings and Algorithm 10 through numerical
experiment on a three-dimensional LQ RL problem considered in [45, 46]. Our experiments
show the convergence of the least-squares estimations to the true parameters as the number
of episodes increases, as well as the sublinear cumulative regret as indicated in Theorem
3.3.4. Moreover, it confirms that the state coefficient A? is easier to learn than the control
coefficient B?, consistent with the observations in [46]. Our numerical result shows that a
rough estimation of the control parameter B? is often sufficient to design a nearly optimal
feedback control, and that the Algorithm 10 is robust with respect to the initial batch size
m0.

Problem setup. We consider a three-dimensional LQ RL problems over the time horizon
[0, T ] with T = 1.5, where the linear state dynamics (3.3.2) has the initial state x0 and
unknown coefficients θ? = (A?, B?) ∈ R3×(3+3) chosen as in [45, 46]:

A? =

 1.01 0.01 0
0.01 1.01 0.01

0 0.01 1.01

 , B? = I3, σ = I3, γ ≡ 0, x0 = 0,

with I3 being the 3 × 3 identity matrix, and the cost functional (3.3.1) involves quadratic
functions g ≡ 0 and f(t, x, a) = (xTQx + aTRa)/2, with Q = 0.1I3 and R = I3. As men-
tioned in [45, 46], this state dynamics corresponds to a marginally unstable graph Laplacian
system where adjacent nodes are weakly connected, which arises naturally from consensus
and distributed averaging problems. Since the cost penalizes the control inputs more than
the states, it is essential to learn the unstable components of A? and perform control on these
components in order to achieve an optimal cost. Note that this LQ RL problem satisfies
(H.4); see the last paragraph of Remark 3.3.1.

The numerical experiments are coded using Python. Algorithm 10 is initialized with

m0 = 4 and the initial guess A0 =
[

1.6243 −0.6118 −0.5282
−1.0730 0.8654 −2.3015
1.7448 −0.7612 0.3190

]
and B0 =

[ −0.2494 1.4621 −2.0601
−0.3224 −0.3841 1.1338
−1.0999 −0.1724 −0.8779

]
,

whose entries are sampled independently from the standard normal distribution. For each
` ∈ N ∪ {0}, given the current estimate θ` = (A`, B`) of θ?, classical LQ control theory (see
e.g., [169]) shows that solutions to (3.2.11) can be found analytically via Riccati equations,
and the greedy policy ψθ` is given by ψθ`(t, x) = −R−1BTP θ`

t x, where P θ` is the unique
positive semidefinite solution to

d
dt
Pt + AT

` Pt + PtA` − Pt(B`R
−1BT

` )Pt +Q = 0, t ∈ (0, T ); PT = 0. (3.5.1)
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We solve (3.5.1) numerically via a high-order Runge-Kutta method on a uniform time grid
with stepsize T/100, and then simulate m` = 2`m0 independent trajectories of the state dy-
namics (3.3.4) (controlled by ψθ`) using the Euler-Maruyama method on the same time grid.
To estimate statistical properties of the algorithm regret (3.3.3), we execute Algorithm 10
for 100 independent runs, where among different executions, the observed state trajectories
are simulated based on independent Brownian motion increments.

Performance with m0 = 4. Figure 3.1 exhibits the performance of Algorithm 10 for this
LQ-RL problem, where the solid lines and the shallow areas indicate the sample mean and
the 95% confidence interval over 100 repeated experiments. The numerical results indicate
that algorithm 10 manages to learn the parameters over time while incurring a desirable
sublinear regret, which is consistent with our theoretical result in Theorem 3.3.4. More
precisely,

• Figure 3.1a presents the logarithmic relative error of the estimate (A`, B`) (in the
Frobenius norm) after the `-th update for ` ∈ {0, . . . , 10}. One can observe that the
estimate (A`, B`)` converge to the true parameter (A?, B?) as the number of episodes
increases. Our experiment shows that it is much easier to learn the state coefficient
A? than the control coefficient B?, which is consistent with the observation in [46] for
other adaptive control schemes.

• Figure 3.1b presents the relative error between the expected cost Jθ
?
(ψθ` ;x0) and

the optimal expected cost Jθ
?
(ψθ

?
;x0). One can see that a rough estimate of the

control parameter B? is often sufficient to design a nearly optimal feedback control.
In particular, after the 10-th update (` = 10), although the relative approximation
errors of A` and B` are 2.7% and 24.9%, respectively, the cost of ψθ` approximates the
optimal cost accurately with a relative error 0.6%.

• Figure 3.1c presents the cumulative regret over episodes. One can see that the small
performance gap results in a slowly growing algorithm regret. In fact, performing a
linear regression for logarithms of expected regret and episode shows that the regret
after the N -th episode is of the magnitude O(N0.34), which is slightly better than the
theoretical upper bound in Theorem 3.3.4.
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Figure 3.1: Performance of Algorithm 10 for the LQ-RL problem (m0 = 4).

Robustness with respect to the initial batch size m0. We next demonstrate the
robustness of Algorithm 10 by performing computations with m0 = 1 and fixing other
settings as above. The results are shown in Figure 3.2. Note that the smaller initial batch
size m0 makes the learning more challenging. By comparing the results against those with
m0 = 4, one can see that our algorithm is robust and performs well with the small m0. In
particular, we see that

• Estimating parameters with fewer sample trajectories leads to larger parameter esti-
mation errors with suboptimality gaps, especially for the first few iterations. It also
leads to a wider range of (A`, B`)` among different algorithm executions and hence a
larger variance of the algorithm regret.

• As the number of episodes increases, the estimate (A`, B`)` converge to the true pa-
rameter (A?, B?) and the suboptimality gap quickly converges to 0, see Figures 3.2a
and 3.2b. The algorithm regret grows sublinearly (see Figure 3.2c), and the regret after
the N -th episode is of the magnitude O(N0.51). This confirms the theoretical results
in Theorem 3.3.4 even for a small m0.
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Figure 3.2: Performance of Algorithm 10 for the LQ-RL problem (m0 = 1).
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3.6 Appendix

3.6.1 Preliminaries

Here, we collect some fundamental results which are used for our analysis.
We start with a stability result for coupled FBSDEs under a generalized monotonicity

condition, which is crucial for our stability analysis of feedback controls. For any given
t ∈ [0, T ] and λ ∈ [0, 1], we consider the following FBSDE defined on [t, T ]: for s ∈ [t, T ],

dXs = (λb̄(s,Xs, Ys) + Ibs) ds+ σ̄(s) dWs +

∫
Rp0
γ̄(s, u) Ñ(ds, du), Xt = ξ, (3.6.1a)

dYs = −(λf̄(s,Xs, Ys) + Ifs ) dt+ Zs dWs +

∫
Rp0
Ms Ñ(ds, du), YT = λḡ(XT ) + Ig,

(3.6.1b)

with given ξ ∈ L2(Ft;Rn), (Ib, If ) ∈ H2(Rn × Rn), Ig ∈ L2(FT ;Rm) and measurable
functions σ̄ : [0, T ] → Rn×d, γ̄ : [0, T ] × Rp

0 → Rn, b̄, f̄ : [0, T ] × Rn × Rn → Rn and
ḡ : Rn → Rn.

Lemma 3.6.1. Let K ≥ 0, for each i ∈ {1, 2}, let b̄i, f̄i : [0, T ] × Rn × Rn → Rn, ḡi :

Rn → Rn satisfy
∫ T

0
(|b̄i(t, 0, 0)|2 + |f̄i(t, 0, 0)|2) dt < ∞ and for all t ∈ [0, T ] that f̄i(t, ·), ḡi

are K-Lipschitz continuous, let σ̄i : [0, T ] → Rn×d satisfy
∫ T

0
|σ̄i(t)|2 dt < ∞ and let γ̄i :

[0, T ] × Rp
0 → Rn satisfy

∫ T
0

∫
Rp0
|γ̄i(t, u)|2 ν(du)dt < ∞. Assume further that there exists

τ > 0 and a measurable function η : [0, T ]× Rn × Rn × Rn × Rn → [0,∞) such that for all
t ∈ [0, T ], (x, y), (x′, y′) ∈ Rn × Rn,

〈b̄1(t, x, y)− b̄1(t, x′, y′), y − y′〉+ 〈−f̄1(t, x, y) + f̄1(t, x′, y′), x− x′〉 ≤ −τη(t, x, y, x′, y′),
(3.6.2)

|b̄1(t, x, y)− b̄1(t, x′, y′)| ≤ K(|x− x′|+ η(t, x, y, x′, y′)), (3.6.3)

〈ḡ(x)− ḡ(x′), x− x′〉 ≥ 0. (3.6.4)

Then there exists C > 0, depending only on T,K, λ and the dimensions, such that for all
t ∈ [0, T ], λ0 ∈ [0, 1], i ∈ {1, 2}, for every (Xi, Yi, Zi,Mi) ∈ S2(t, T ;Rn) × S2(t, T ;Rn) ×
H2(t, T ;Rn×d)×H2

ν(t, T ;Rn) satisfying (3.6.1) with λ = λ0, (b̄, σ̄, γ̄, f̄ , ḡ) = (b̄i, σ̄i, γ̄i, f̄i, ḡi),
ξ = ξi ∈ L2(Ft;Rn), Ig = Igi ∈ L2(FT ;Rn) and (Ib, If ) = (Ibi , Ifi ) ∈ H2(Rn × Rn), we have
that

‖X1 −X2‖2
S2 + ‖Y1 − Y2‖2

S2 + ‖Z1 − Z2‖2
H2 + ‖M1 −M2‖2

H2
ν

≤ C
{
‖ξ1 − ξ2‖2

L2 + ‖λ0(ḡ1(X2,T )− ḡ2(X2,T )) + Ig1 − Ig2‖2
L2 + ‖σ̄1 − σ̄2‖2

H2 + ‖γ̄1 − γ̄2‖2
H2
ν

+ ‖λ0(b̄1(·, X2, Y2)− b̄2(·, X2, Y2)) + Ib1 − Ib2‖2
H2

+ ‖λ0(f̄1(·, X2, Y2)− f̄2(·, X2, Y2)) + If1 − If2 ‖2
H2

}
.

(3.6.5)
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Proof. Throughout this proof, let C be a generic constant depending only on T , K, λ and the
dimensions, let t ∈ [0, T ], λ0 ∈ [0, 1], let (δX, δY, δZ, δM) = (X1−X2, Y1−Y2, Z1−Z2,M1−
M2), δξ = ξ1 − ξ2, δσ = σ̄1 − σ̄2, δγ = γ̄1 − γ̄2, δIg = Ig1 − Ig2 , and for each s ∈ [t, T ] let
δIbs = Ib1,s − Ib2,s, δIfs = If1,s − If2,s, b̄1(Θ1,s) = b̄1(t,X1,s, Y1,s), b̄1(Θ2,s) = b̄1(t,X2,s, Y2,s) and
b̄2(Θ2,s) = b̄2(t,X2,s, Y2,s). Similarly, we introduce the notation f̄1(Θ1,s), f̄1(Θ2,s), f̄2(Θ2,s) for
s ∈ [t, T ].

By applying Itô’s formula to (〈Y1,s − Y2,s, X1,s −X2,s〉)s∈[t,T ], we can obtain from (3.6.1)
that

E[〈λ0(ḡ1(X1,T )− ḡ2(X2,T )) + δIg, δXT 〉 − 〈δYt, δξ〉]

= E
[ ∫ T

t

(
〈λ0(b̄1(Θ1,s)− b̄2(Θ2,s)) + δIbs , δYs〉 − 〈λ0(f̄1(Θ1,s)− f̄2(Θ2,s)) + δIfs , δXs〉

+ 〈δσ(s), δZs〉+

∫
Rp0
〈δγ(s, u), δMs〉 ν(du)

)
ds

]
≤ E

[ ∫ T

t

(
− λ0τη(s,X1,s, Y1,s, X2,s, Y2,s) + 〈λ0(b̄1(Θ2,s)− b̄2(Θ2,s)) + δIbs , δYs〉

− 〈λ0(f̄1(Θ2,s)− f̄2(Θ2,s)) + δIfs , δXs〉+ 〈δσ(s), δZs〉+

∫
Rp0
〈δγ(s, u), δMs〉 ν(du)

)
ds

]
,

where for the last inequality, we have added and subtracted the terms λ0b̄1(Θ2,s) and
−λ0f̄1(Θ2,s), and applied (3.6.2). Then, we can further deduce from (3.6.4) that

λ0τE
[ ∫ T

t

η(s,X1,s, Y1,s, X2,s, Y2,s) ds

]
≤ −E[〈λ0(ḡ1(X2,T )− ḡ2(X2,T )) + δIg, δXT 〉 − 〈δYt, δξ〉]

+ E
[ ∫ T

t

(
〈λ0(b̄1(Θ2,s)− b̄2(Θ2,s)) + δIbs , δYs〉 − 〈λ0(f̄1(Θ2,s)− f̄2(Θ2,s)) + δIfs , δXs〉

+ 〈δσ(s), δZs〉+

∫
Rp0
〈δγ(s, u), δMs〉 ν(du)

)
ds

]
,

from which we can apply Young’s inequality and obtain for all ε > 0 that

λ0E
[ ∫ T

t

η(s,X1,s, Y1,s, X2,s, Y2,s) ds

]
≤ ε
(
‖δXT‖2

L2 + ‖δYt‖2
L2 + ‖δX‖2

H2 + ‖δY ‖2
H2 + ‖δZ‖2

H2 + ‖δM‖2
H2
ν

)
+ CRHS/ε,

where RHS denotes the terms at the right-hand side of (3.6.5).
By (3.6.3) and a standard stability estimate of (3.6.1a), we can deduce that

‖δX‖2
S2 ≤ C

(
λ0E

[ ∫ T

t

η(s,X1,s, Y1,s, X2,s, Y2,s) ds

]
+ RHS

)
≤ εC

(
‖δYt‖2

L2 + ‖δY ‖2
H2 + ‖δZ‖2

H2 + ‖δM‖2
H2
ν

)
+ CRHS/ε

(3.6.6)
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for all small enough ε > 0. Moreover, by the Lipschitz continuity of f̄1, ḡ1 and the stability
estimate of (3.6.1b) (see e.g. [133, Proposition A4]), we have that

‖δY ‖2
S2 + ‖δZ‖2

H2 + ‖δM‖2
H2
ν

≤ C
(
‖λ0(ḡ1(X1,T )− ḡ2(X2,T )) + δIg‖2

L2 + ‖λ0(f̄1(·, X1, Y2)− f̄2(·, X2, Y2)) + δIf‖2
H2

)
≤ C

(
‖δX‖2

S2 + ‖λ0(ḡ1(X2,T )− ḡ2(X2,T )) + δIg‖2
L2 + ‖λ0(f̄1(·, X2, Y2)− f̄2(·, X2, Y2)) + δIf‖2

H2

)
≤ CRHS,

where we have applied (3.6.6) with a sufficiently small ε for the last inequality. This completes
the desired stability estimate.

We then present a version of Burkholder’s inequality for the ‖ · ‖Lq -norm of stochastic
integrals, which not only extends [27, Corollary 2.2] to stochastic integrals with respect to
general Poisson random measures on [0, T ]× Rp

0, but also improves the bounding constants
there with a sharper dependence on the index q.

Lemma 3.6.2. For all v ∈ H2(0, T ;Rd), w ∈ H2
ν(0, T ;R) and q ≥ 2, we have

E
[∣∣∣∣ ∫ T

0

vTt dWt

∣∣∣∣q] ≤ CqE
[(∫ T

0

|vt|2 dt

)q/2]
, (3.6.7)

E
[∣∣∣∣ ∫ T

0

∫
Rp0
w(t, u) Ñ(dt, du)

∣∣∣∣q] ≤ C̃q

(
E
[ ∫ T

0

∫
Rp0
|w(t, u)|q ν(du)dt

]
+ E

[(∫ T

0

∫
Rp0
|w(t, u)|2 ν(du)dt

)q/2])
, (3.6.8)

where Cq = (
√
e/2q)q and C̃q = 21eqq2q.

Proof. Recall that Burkholder’s inequality in [23, Theorem 4.2.12] shows for all 1 ≤ q <∞
and for every local martingale (Mt)t∈[0,T ] that E[|M∗

T |q] ≤ CqE[[M,M ]
q/2
T ], where M∗

T =
supt∈[0,T ] |Mt|, [M,M ] is the quadratic variation of M , and Cq = (

√
10q)q for q ∈ [1, 2) and

Cq = (
√
e/2q)q for q ∈ [2,∞). Hence we can obtain (3.6.7) by setting Mt =

∫ t
0
vTs dWs for

all t ∈ [0, T ], whose quadratic variation process is given by [M,M ]T =
∫ T

0
|v|2 dt.

We proceed to establish (3.6.8) by following the arguments of [27, Lemma 2.1]. For all

r ≥ 1 and t ∈ [0, T ], let K
(r)
t =

∫ t
0

∫
Rp0
w(s, u)r Ñ(ds, du). For any given r ≥ 1 and q ≥ 2, we
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can obtain from Burkholder’s inequality and Ñ(dt, du) = N(dt, du)− ν(du)dt that

E[|(K(r))∗T |q] ≤ CqE
[(∫ T

0

∫
Rp0
|w(t, u)|2rN(dt, du)

)q/2]
= CqE

[(∫ T

0

∫
Rp0
|w(t, u)|2r Ñ(dt, du) +

∫ T

0

∫
Rp0
|w(t, u)|2r ν(du)dt

)q/2]
≤ 2

q
2
−1CqE[|(K(2r))∗T |q/2] + 2

q
2
−1CqE

[∣∣∣∣ ∫ T

0

∫
Rp0
|w(t, u)|2r ν(du)dt

∣∣∣∣q/2].
Hence, recursively applying the above estimate yields for all q ≥ 2 and n ∈ N with q/2n−1 ≥ 2
that

E
[∣∣∣∣ ∫ T

0

∫
Rp0
w(t, u) Ñ(dt, du)

∣∣∣∣q] ≤ ( n∏
j=1

2
q

2j
−1C q

2j−1

)
E[|(K(2n))∗T |q/2

n

]

+
n∑
k=1

( k∏
j=1

2
q

2j
−1C q

2j−1

)
E
[∣∣∣∣ ∫ T

0

∫
Rp0
|w(t, u)|2k ν(du)dt

∣∣∣∣q/2k].
(3.6.9)

Now let q ≥ 2 be fixed and set n = blog2 qc such that q ∈ [2n, 2n+1). Since q/2n ∈ [1, 2), the
constant Cq/2n in Burkholder’s inequality satisfies Cq/2n ≤ 20, from which we can show that
(see [27, Lemma 2.1]):

E[|(K(2n))∗T |q/2
n

] ≤ 20E
[ ∫ T

0

∫
Rp0
|w(t, u)|q ν(du)dt

]
.

Moreover, by proceeding along the lines of [27, Corollary 2.2], we obtain for all k = 1, . . . , n
that

E
[∣∣∣∣ ∫ T

0

∫
Rp0
|w(t, u)|2k ν(du)dt

∣∣∣∣q/2k]
≤ E

[ ∫ T

0

∫
Rp0
|w(t, u)|q ν(du)dt

]
+ E

[∣∣∣∣ ∫ T

0

∫
Rp0
|w(t, u)|2 ν(du)dt

∣∣∣∣q/2].
Hence, we can deduce from (3.6.9) that

E
[∣∣∣∣ ∫ T

0

∫
Rp0
w(t, u) Ñ(dt, du)

∣∣∣∣q] ≤ 21

dlog2 qe∑
k=1

( k∏
j=1

2
q

2j
−1C q

2j−1

)(
E
[ ∫ T

0

∫
Rp0
|w(t, u)|q ν(du)dt

]

+ E
[∣∣∣∣ ∫ T

0

∫
Rp0
|w(t, u)|2 ν(du)dt

∣∣∣∣q/2]).
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We now obtain an upper bound of the constant 21
∑blog2 qc

k=1

(∏k
j=1 2

q

2j
−1C q

2j−1

)
as follows:

21

blog2 qc∑
k=1

( k∏
j=1

2
q

2j
−1C q

2j−1

)
= 21

blog2 qc∑
k=1

k∏
j=1

2
q

2j
−1

(√
e

2

q

2j−1

) q

2j−1

≤ 21

( blog2 qc∑
k=1

2−k
)
e
∑blog2 qc
j=1

q

2j

blog2 qc∏
j=1

(
q

2j−1

) q

2j−1

≤ 21eq2
∑blog2 qc
j=1

q

2j−1 log2( q

2j−1 )

≤ 21eq2
∑blog2 qc
j=1

q

2j−1 log2 q ≤ 21eq22q log2 q = 21eqq2q := C̃q,

which leads us to the desired conclusion.

The following lemma estimates the tail behaviors of solutions to SDEs with jumps. The
result has been established in Lemma 2.1 and Theorem 2.8 of [111] for SDEs with time
homogenous coefficients and bounded Lipschitz continuous functions f via Malliavin Calculus,
which can be extended to SDEs with time inhomogeneous coefficients and unbounded f (via
Fatou’s lemma) in a straightforward manner.

Lemma 3.6.3. Let T ≥ 0 and b : [0, T ]×Rn → Rn, σ : [0, T ]→ Rn×d, γ : [0, T ]×Rp
0 → Rn be

measurable functions such that there exist K, σmax ≥ 0 and a measurable function γ̄ : Rp
0 → R

satisfying for all (t, u) ∈ [0, T ] × Rp
0, x, x′ ∈ Rn that |b(t, 0)| ≤ K, |b(t, x) − b(t, x′)| ≤

K|x − x′|, |σ(t)| ≤ σmax and |γ(t, u)| ≤ γ̄(u), ν-a.e.. Let β : [0,∞) → [0,∞] be defined
by β(λ) :=

∫
Rp0

(
eλγ̄(u) − λγ̄(u)− 1

)
ν(du) for any λ ≥ 0. Assume that β(λ) < ∞ for some

λ > 0.
Then there exists a constant C > 0, depending only on K and T , such that for all x ∈ Rn,

the unique solution Xx ∈ S2(Rn) to the following SDE

dXt = b(t,Xt) dt+ σ(t) dWt +

∫
Rp0
γ(t, u) Ñ(dt, du), t ∈ [0, T ], X0 = x

satisfies for every Lipschitz continuous function f : (D([0, T ];Rn), d∞)→ R that

E
[
eλ(f(Xx)−E[f(Xx)])

]
≤ eCη

(
Cλ‖f‖Lip

)
∀λ > 0, (3.6.10)

where D([0, T ];Rn) is the space of Rn-valued càdlàg functions on [0, T ], d∞ is the uniform
metric defined by d∞(ρ1, ρ2) := supt∈[0,T ] |ρ1(t)−ρ2(t)| for any ρ1, ρ2 ∈ D([0, T ];Rn), ‖f‖Lip is

the constant defined by ‖f‖Lip := supρ1 6=ρ2
|f(ρ1)−f(ρ2)|
d∞(ρ1,ρ2)

, and η : [0,∞) → [0,∞] is the function

defined by η(λ) := β(λ) + σ2
maxλ

2/2 for any λ ≥ 0.

The next lemma presents a concentration inequality for the sum of independent sub-
Weibull random variables, which follows directly from Theorem 3.1 and Proposition A3 in
[98].
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Lemma 3.6.4. Let α ∈ (0, 1], N ∈ N and X1, . . . , XN ∈ subW(α) be independent random
variables satisfying E[Xi] = 0 for all i = 1, . . . , N . Then there exists a constant C ≥ 0,
depending only on α, such that

P
(∣∣∣∣ N∑

i=1

Xi

∣∣∣∣ ≥ ε′
)
≤ 2 exp

(
− C min

{
(ε′)2∑N

i=1 ‖Xi‖2
Ψα

,

(
ε′

maxi ‖Xi‖Ψα

)α})
, ∀ε′ ≥ 0.

3.6.2 Proofs of Lemmas 3.2.8, 3.3.5, 3.3.6, 3.3.7, 3.3.8

Proof of Lemma 3.2.8. We start by establishing the regularity of Rn × Rk 3 (x, z) 7→
f(t, x, ∂zf

∗(t, x, z)) ∈ R∪{∞} for a given t ∈ [0, T ]. Observe that for all (t, x) ∈ [0, T ]×Rn,
f(t, x, ·) is proper, convex, and lower semicontinuous, which along with the Fenchel-Young
identity implies

f(t, x, ∂zf
∗(t, x, z)) = 〈z, ∂zf ∗(t, x, z)〉 − f ∗(t, x, z) ∈ R, ∀(t, x, z) ∈ [0, T ]× Rn × Rk.

(3.6.11)
Given t ∈ [0, T ] and (x1, z1), (x2, z2) ∈ Rn × Rk, by (3.6.11),

|f(t, x1, ∂zf
∗(t, x1, z1))− f(t, x2, ∂zf

∗(t, x2, z2))|
≤ |〈z1, ∂zf

∗(t, x1, z1)〉 − 〈z2, ∂zf
∗(t, x2, z2)〉|+ |f ∗(t, x1, z1)− f ∗(t, x2, z1)|

+ |f ∗(t, x2, z1)− f ∗(t, x2, z2)|.
We now estimate all the terms on the right hand side of the above inequality. By the Lipchitz
continuity and local boundedness of ∂zf

∗(t, ·) (see the proof of Lemma 3.2.3), we can obtain
the following upper bound for the first and third terms:

|〈z1, ∂zf
∗(t, x1, z1)〉 − 〈z2, ∂zf

∗(t, x2, z2)〉|+ |f ∗(t, x2, z1)− f ∗(t, x2, z2)|
≤ |〈z1 − z2, ∂zf

∗(t, x1, z1)〉|+ |〈z2, ∂zf
∗(t, x1, z1)− ∂zf ∗(t, x2, z2)〉|

+ |f ∗(t, x2, z1)− f ∗(t, x2, z2)|
≤ C(1 + |x1|+ |x2|+ |z1|+ |z2|)(|x1 − x2|+ |z1 − z2|),

(3.6.12)

where the last inequality is by the mean value theorem. Moreover, by applying (3.6.11) to
f ∗(t, x1, z1) and by the definition of f ∗(t, x2, z1) in (3.2.4), (H.2(3)), the linear growth of
∂zf

∗(t, ·),
f ∗(t, x1, z1)− f ∗(t, x2, z1) ≤ 〈z1, ∂zf

∗(t, x1, z1)〉 − f(t, x1, ∂zf
∗(t, x1, z1))

− (〈z1, ∂zf
∗(t, x1, z1)〉 − f(t, x2, ∂zf

∗(t, x1, z1)))

= −f0(t, x1, ∂zf
∗(t, x1, z1)) + f0(t, x2, ∂zf

∗(t, x1, z1))

≤ C(1 + |x1|+ |x2|+ |z1|)|x1 − x2|.

(3.6.13)

Then, by interchanging the roles of x1, x2 in (3.6.13) and taking account of (3.6.12), we can
obtain the following estimate for all t ∈ [0, T ], (x1, z1), (x2, z2) ∈ Rn × Rk:

|f(t, x1, ∂zf
∗(t, x1, z1))− f(t, x2, ∂zf

∗(t, x2, z2))|
≤ C(1 + |x1|+ |x2|+ |z1|+ |z2|)(|x1 − x2|+ |z1 − z2|).
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Therefore, by (3.2.10), (3.2.17) and (3.2.19), for all t ∈ [0, T ] and x, x′ ∈ Rn,

|f(t, x, ψ(t, x))− f(t, x′, ψ̃(t, x′))| = |f(t, x, φ(t, x, Y t.x
t ))− f(t, x′, φ̃(t, x′, Ỹ t.x′

t ))|
= |f(t, x, ∂zf

∗(t, x,−b2(t)TY t.x
t ))− f(t, x′, ∂zf

∗(t, x′,−b̃2(t)TỸ t.x′

t ))|
≤ C(1 + |x|+ |x′|+ |b2(t)TY t.x

t |+ |b̃2(t)TỸ t.x′

t |)(|x− x′|+ |b2(t)TY t.x
t − b̃2(t)TỸ t.x′

t |)
≤ C(1 + |x|+ |x′|+ ‖Y t.x‖S2 + ‖Ỹ t.x′‖S2)
× (|x− x′|+ ‖b2 − b2‖L∞‖Y t.x‖S2 + ‖Y t.x − Ỹ t.x′‖S2)
≤ C(1 + |x|+ |x′|)(|x− x′|+ Eper(1 + |x|)),

which along with Young’s inequality leads to the desired conclusion.

Proof of Lemma 3.3.5. It suffices to show the statement for processes X, Y such that

‖X‖L2(0,T ), ‖Y ‖L2(0,T ) ∈ subW(α)

with ‖X‖L2(0,T ) := (
∫ T

0
|X|2 dt)

1
2 and ‖Y ‖L2(0,T ) := (

∫ T
0
|Y |2 dt)

1
2 , as otherwise the right-hand

side of the inequality would be infinity. Since ‖ · ‖Ψα is a quasi-norm for any α > 0, we shall
assume without loss of generality that ‖‖X‖L2(0,T )‖Ψα = ‖‖Y ‖L2(0,T )‖Ψα = 1. Then, we can
deduce from Hölder’s inequality and Young’s inequality that

E
[

exp

(∣∣∣∣ ∫ T

0

XY dt

∣∣∣∣α2)] ≤ E
[

exp

(∣∣∣∣‖X‖L2(0,T )‖Y ‖L2(0,T )

∣∣∣∣α2)]
≤ E

[
exp

(
1

2
‖X‖αL2(0,T ) +

1

2
‖Y ‖αL2(0,T )

)]
= E

[
exp

(
1

2
‖X‖αL2(0,T )

)
exp

(
1

2
‖Y ‖αL2(0,T )

)]
≤
(
E
[

exp

(
‖X‖αL2(0,T )

)]) 1
2
(
E
[

exp

(
‖Y ‖αL2(0,T )

)]) 1
2

≤ 2,

which implies that ‖
∫ T

0
XY dt‖Ψα/2 ≤ 1 and finishes the proof.

Proof of Lemma 3.3.6. Note that (3.3.9) and Hölder’s inequality suggest that it suffices to
estimate the growth of ‖ · ‖Lq -norms of the stochastic integrals for q ≥ 2. Hence, by (3.6.7),
there exists a constant C such that for all q ≥ 2,

q−2

∥∥∥∥∫ T

0

Xtσ
T dWt

∥∥∥∥
Lq
≤ q−2Cq

∥∥∥∥(∫ T

0

|Xtσ|2 dt

) 1
2
∥∥∥∥
Lq
≤ C|σ| sup

q≥1

(
q−1

∥∥∥∥(∫ T

0

|Xt|2 dt

) 1
2
∥∥∥∥
Lq

)
≤ C|σ|

∥∥∥∥(∫ T

0

|Xt|2 dt

) 1
2
∥∥∥∥

Ψ1

,

which along with (3.3.9) leads to the desired estimate for ‖
∫ T

0
Xtσ

T dWt‖Ψ1/2
.
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Similarly, by (3.6.8), there exists a constant C satisfying for all q ≥ 2 that∥∥∥∥∫ T

0

∫
Rp0
Xtγ(u) Ñ(dt, du)

∥∥∥∥
Lq

≤ Cq2

{(
E
[ ∫ T

0

∫
Rp0
|Xtγ(u)|q ν(du)dt

]) 1
q

+

(
E
[(∫ T

0

∫
Rp0
|Xtγ(u)|2 ν(du)dt

) q
2
]) 1

q
}

≤ Cq2

{(∫
Rp0
|γ(u)|q ν(du)E

[ ∫ T

0

|Xt|qdt
]) 1

q

+

(∫
Rp0
|γ(u)|2 ν(du)

) 1
2
(
E
[(∫ T

0

|Xt|2 dt

) q
2
]) 1

q
}

≤ Cq2

{(∫
Rp0
|γ(u)|q ν(du)

) 1
q
∥∥∥∥(∫ T

0

|Xt|qdt
) 1

q
∥∥∥∥
Lq

+

(∫
Rp0
|γ(u)|2 ν(du)

) 1
2
∥∥∥∥(∫ T

0

|Xt|2 dt

) 1
2
∥∥∥∥
Lq

}
.

Hence by (H.4(2)) and (3.3.9), for all q ≥ 2,

q−(3+ϑ)

∥∥∥∥∫ T

0

∫
Rp0
Xtγ(u) Ñ(dt, du)

∥∥∥∥
Lq

≤ C

(
sup
q≥2

q−ϑ
(∫

Rp0
|γ(u)|q ν(du)

) 1
q
){

q−1

∥∥∥∥(∫ T

0

|Xt|qdt
) 1

q
∥∥∥∥
Lq

+ q−1

∥∥∥∥(∫ T

0

|Xt|2 dt

) 1
2
∥∥∥∥
Lq

}
≤ Cγmax

(∥∥∥∥(∫ T

0

|Xt|qdt
) 1

q
∥∥∥∥

Ψ1

+

∥∥∥∥(∫ T

0

|Xt|2 dt

) 1
2
∥∥∥∥

Ψ1

)
.

Therefore, taking the supremum over q ≥ 2 in the above inequality leads to the desired
estimate of ‖

∫ T
0

∫
Rp0
Xtγ(u) Ñ(dt, du)‖Ψ1/(3+ϑ)

from (3.3.9).

Proof of Lemma 3.3.7. Let us assume without loss of generality that |σ| > 0 and τ :=

‖(
∫ T

0
|Xt|2 dt)1/2‖Ψ2 < ∞, which implies that ‖(

∫ T
0

2|Xtσ|2 dt)1/2‖Ψ2 ≤
√

2|σ|τ . Then, by
the characterization of sub-Gaussian random variable in [156, Proposition 2.5.2(iii)], there
exists C ≥ 0 such that

E
[
exp

(
2λ2

∫ T

0

|Xtσ|2 dt

)]
≤ exp(2C2λ2|σ|2τ 2) <∞ ∀|λ| ≤ 1√

2C|σ|τ
.

Hence, it holds for all |λ| ≤ 1/(
√

2C|σ|τ) that the process (Mλ,t)t∈[0,T ] defined by:

Mλ,t := exp

(∫ t

0

2λXsσ
TdWs −

1

2

∫ t

0

4λ2|Xsσ|2ds

)
∀t ∈ [0, T ]
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is a martingale, since Novikov’s condition is satisfied, which implies that E[Mλ,T ] = 1. Thus,
for any given |λ| ≤ 1/(

√
2C|σ|τ), by the Cauchy-Schwarz inequality,

E
[

exp

(
λ

∫ T

0

Xtσ
TdWt

)]
= E

[
exp

(∫ T

0

λXtσ
TdWt −

(2λ)2

4

∫ T

0

|Xtσ|2 dt

)
exp

(
(2λ)2

4

∫ T

0

|Xtσ|2 dt

)]
≤ E[Mλ,T ]1/2E

[
exp

(
2λ2

∫ T

0

|Xtσ|2 dt

)]1/2

≤ exp(C2λ2|σ|2τ 2),

which along with the fact that E[
∫ T

0
Xtσ

TdWt] = 0 and the characterization of sub-exponential

random variable [156, Proposition 2.7.1(v)] yields that ‖
∫ T

0
Xtσ

TdWt‖Ψ1 ≤ C|σ|τ .

Proof of Lemma 3.3.8. Throughout this proof, let x0 ∈ Rn and θ ∈ Rn×(n+k) be given con-
stants satisfying |θ| ≤ K, and let C be a generic constant depend on K, T and the constants
in (H.4), but independent of x0 and θ.

By (3.3.4), we see that the process Xx0,θ satisfies the SDE:

dXt = bθ(t,Xt) dt+ σ dWt +

∫
Rp0
γ(u) Ñ(dt, du), t ∈ [0, T ], X0 = x0,

where bθ(t, x) = A?x + B?ψθ(t, x) for all (t, x) ∈ [0, T ]× Rn. The definition of the feedback
control ψθ, (H.4(1)) and Theorem 3.2.5 show that there exists C ≥ 0 such that |ψθ(t, 0)| ≤ C
and |ψθ(t, x) − ψθ(t, x′)| ≤ C|x − x′| for all t ∈ [0, T ], x, x′ ∈ Rn, which implies the same
properties for the function bθ. Then, by Lemma 3.6.3, for every Lipschitz continuous function
f : (D([0, T ];Rn), d∞)→ R, E

[
exp

(
λ(f(Xx0,θ)− E[f(Xx0,θ)])

)]
≤ exp

(
Cη
(
Cλ‖f‖Lip

))
for all

λ > 0, with the function η : [0,∞]→ [0,∞] defined by:

η(λ) :=

∫
Rp0

(
eλγ(u) − λγ(u)− 1

)
ν(du) +

σ2

2
λ2 ∀λ > 0. (3.6.14)

By (H.4(2)) and Stirling’s approximation q! ≥ (q/e)q for all q ≥ 2, we have for each λ ∈
[0, 1/(2γmaxe)),∫

Rp0

(
eλγ(u) − λγ(u)− 1

)
ν(du)

=

∫
Rp0

∞∑
q=2

|λγ(u)|q
q!

ν(du) =
∞∑
q=2

λq

q!

∫
Rp0
|γ(u)|q ν(du) ≤

∞∑
q=2

λq

q!
γqmaxq

ϑq

≤
∞∑
q=2

(λγmaxe)
q

q(1−ϑ)q
≤ (λγmaxe)

2

1− λγmaxe
≤ 2(λγmaxe)

2,
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which implies for all 0 ≤ λ ≤ 1/C and f : (D([0, T ];Rn), d∞) → R satisfying ‖f‖Lip ≤
1 that E

[
exp

(
λ(f(Xx0,θ) − E[f(Xx0,θ)])

)]
≤ exp(C2λ2). Replacing f with −f shows that

the same estimate holds for all for all |λ| ≤ 1/C, which, along with the characteriza-
tion of sub-exponential random variable in [156, Proposition 2.7.1(v)], leads to ‖f(Xx0,θ) −
E[f(Xx0,θ)]‖Ψ1 ≤ C for some constant C, uniformly with respect to x0 ∈ Rn, |θ| ≤ K and
f : (D([0, T ];Rn), d∞)→ R satisfying ‖f‖Lip ≤ 1.

Since ‖ · ‖Ψ1 is a norm and ‖E[f(Xx)]‖Ψ1 ≤ |E[f(Xx)]|/ ln 2, ‖f(Xx0,θ)‖Ψ1 ≤ C(1 +
|E[f(Xx0,θ)]|) for all f with ‖f‖Lip ≤ 1. The estimate for a general Lipschitz continuous
function f follows by considering f/‖f‖Lip and by using the fact that ‖ · ‖Ψ1 is a norm.
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[131] Sarah Perrin, Julien Pérolat, Mathieu Laurière, Matthieu Geist, Romuald Elie, and
Olivier Pietquin. Fictitious play for mean field games: Continuous time analysis and
applications. arXiv preprint arXiv:2007.03458, 2020.
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