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Abstract

The British Petroleum Deepwater Horizon Oil Spill in the Gulf of Mexico was the biggest oil spill in US history. To assess the
impact of the oil spill on the saltmarsh plant community, we examined Advanced Visible Infrared Imaging Spectrometer
(AVIRIS) data flown over Barataria Bay, Louisiana in September 2010 and August 2011. Oil contamination was mapped using
oil absorption features in pixel spectra and used to examine impact of oil along the oiled shorelines. Results showed that
vegetation stress was restricted to the tidal zone extending 14 m inland from the shoreline in September 2010. Four indexes
of plant stress and three indexes of canopy water content all consistently showed that stress was highest in pixels next to
the shoreline and decreased with increasing distance from the shoreline. Index values along the oiled shoreline were
significantly lower than those along the oil-free shoreline. Regression of index values with respect to distance from oil
showed that in 2011, index values were no longer correlated with proximity to oil suggesting that the marsh was on its way
to recovery. Change detection between the two dates showed that areas denuded of vegetation after the oil impact
experienced varying degrees of re-vegetation in the following year. This recovery was poorest in the first three pixels
adjacent to the shoreline. This study illustrates the usefulness of high spatial resolution airborne imaging spectroscopy to
map actual locations where oil from the spill reached the shore and then to assess its impacts on the plant community. We
demonstrate that post-oiling trends in terms of plant health and mortality could be detected and monitored, including
recovery of these saltmarsh meadows one year after the oil spill.
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Introduction

Ecosystems located in regions where oil and gas development

occurs are highly susceptible to direct and indirect impacts of

petroleum extraction and refining [1]. Coastal ecosystems have

been disproportionately affected, because a majority of extraction

sites are in coastal areas [2], as are the locations for ship transport

and refineries. The Mississippi Delta contains the largest area of

coastal wetlands in the United States but also supports one of the

most extensive petroleum extraction operations in the world,

exposing these wetlands to the impacts of oil contamination since

the early 1900s [1]. The British Petroleum Deepwater Horizon

(BP-DWH) Oil Spill in the Gulf of Mexico is the biggest coastal oil

spill in US history and one of the five largest spills in the world by

volume [3]. The impact of the BP-DWH spill on Gulf ecosystems

is still under active examination [4,5], but a long history of small

and large oil spills in these regions has resulted in numerous studies

on both impacts and recovery [6,7,8,9,10].

The salt marshes of Louisiana lost about 6500 hectares of

wetland area per year between 1985 to 1989 due to subsidence,

erosion, scouring, and other reasons [7]. Oil contamination can

increase erosion and salt marsh loss due to the oil-induced plant

mortality. The longer the residence time of the oil in the wetland,

the greater is the impact of oil and slower is the recovery [2,11,12].

All weights of crude oil are highly toxic to plants through direct

impacts on plant metabolism and indirectly through disruption of

plant-water relationships, and reduced oxygen exchange between

atmosphere and soil [1,7,8,13]. Oil coating the leaves can obstruct

or prevent gas exchange [1,8,14]. When leaves are oiled, mortality

is much higher, especially in Spartina species, which are otherwise

relatively resistant to oil impacts [1,7]. Oil also affects the

microbial community and nutrient cycling in the soil, which can

have a negative impact on plant health [8].

Remote sensing has proven to be a valuable tool for detection

and mapping of marine oil spills [15,16,17,18,19,20,21,22]. In

terrestrial environments, reliable detection typically requires highly
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detailed spectral information provided by imaging spectrometers

[18,19]. While the presence of oil reduces soil reflectance in the

visible part of the electromagnetic spectrum [23], other factors can

lead to the same effect, for example, high organic matter content

in soil [24]. The oil signal is characterized by absorption features

in the near-infrared (NIR) and shortwave-infrared (SWIR) regions,

due to overtones and combinations of C-H and C-O vibrational

absorptions [20,23,25,26,27,28] (Figure 1). In particular, the NIR

1730 nm and SWIR 2300 nm bands are best suited for detecting

oil on bare soil as they do not overlap with absorption features of

soil background materials [5,23,27,29]. The 2300 nm absorption

feature can be confused with carbonate absorption in soil [30,31],

but high salinity soils found in saltmarshes are acidic with very low

carbonate content [32]. Both absorption features of oil overlap

with cellulose-lignin absorption features found in the spectra of

dead or senescent plants, often termed non-photosynthetic

vegetation (NPV). However, the 2300 nm absorption has a unique

spectral shape compared to NPV spectral features [5,33]. As plants

senesce and lose their leaves, the soil fraction in the pixel spectrum

increases, and oil under the canopy can be detected.

The physiological changes due to plant stress can be measured

by specific changes in the reflectance spectrum. As plants become

increasingly stressed, they lose pigments, water, and ultimately

leaves, all of which can be measured through changes to their

spectral properties [34,35,36,37,38]. Plant stress can be detected

by several different broadband and narrowband vegetation

indexes that track plant pigment concentration [34,37], water

content [8,39,40,41] and plant cover [38,42,43]. The spectrum of

healthy photosynthetic vegetation has a characteristic ‘‘red edge’’

where the reflectance rises sharply between 680 nm (red) and

780 nm (near infrared) wavelengths. The red edge is the long

wavelength edge of the chlorophyll absorption. The properties of

the red edge change rapidly as the plant becomes more stressed

[44,45,46,47,48,49,50].

Multiple studies since the BP-DWH spill have mapped the oil

spill on the ocean surface [51,52,53,54,55] but very few studies

have looked at the impact of this spill on wetland vegetation [4].

Mishra et al. [4] assessed the impact of the BP-DWH spill in East

Bird’s Foot, Louisiana using field spectra and Landsat imagery.

However, the broad spatial and spectral resolution of multi-

spectral data prevented the assessment of changes in the narrow

absorption features necessary for direct oil detection. Hence the

study did not examine the spatial proximity of vegetation stress to

oil contamination. Large areas of vegetation ‘‘change’’ mapped

with 30 m pixels could be due to other factors, e.g., phenological

differences between years. The spectral resolution of spectroscopy

data acquired at high spatial resolution is necessary to confirm the

presence of oil and to attribute whether observed stress is due to oil

or other stress factors [5,44]. The Airborne Visible Infrared

Imaging Spectrometer (AVIRIS) measures the full spectrum

between 380 to 2500 nm in 224 sequential bands, each

approximately 10 nm wide. It has been successfully used to map

both oil contamination and vegetation stress [5,44,56].

The objective of this study is to determine the impact of the BP-

DWH Oil Spill on the tidal salt marshes in Barataria Bay, LA, one

of the areas heavily impacted by oil reaching the shoreline. We

were interested in assessing: 1) the magnitude of any oil-induced

stress on inland vegetation and 2) evidence for recovery or

continued decline of contaminated vegetation communities the

following year. We analyzed AVIRIS imagery flown over

saltmarshes to determine the extent and the level of plant stress

in proximity to oil contamination. Band indexes were used to

determine the effect of oil on plant stress, as measured by changes

in plant water and chlorophyll content. Finally, we used change

detection between images collected approximately a month after

the oil spill made landfall (September 2010) and one year later

(August 2011) to examine whether marsh vegetation continued to

decline or recovered from the immediate impact of the oil spill.

Materials and Methods

Field Data Collection
Field work was conducted by the United States Geological

Survey (USGS) in Barataria Bay on July 10, 2010 and again on

August 12–13, 2010 [5]. At each 262 m survey point, vegetation

species composition, canopy condition, presence of oil, and

penetration of oil into the marsh were noted. Locations of survey

points were selected based on access to the marsh through gaps in

protective booms. During the August survey, oil detected in a

previous image acquired on July 31, 2010 was used to select areas

of extensive oiling [5,57]. Forty of the survey points were located

in the Bay Jimmy region, which was analyzed for this study.

Data Preprocessing
AVIRIS image data were collected over the oil impacted

regions of the Gulf of Mexico coastal wetlands from May to

October of 2010 and from May to December of 2011. Flightlines

that had all navigation and georectification information available

and were at least 70% cloud free were selected for further

processing. We focused on Barataria Bay (area 86 km2; Figure 2)

because it was severely impacted by the oil spill. Data collected on

two dates at different altitudes were chosen to study the

progression of wetland impact and recovery: 1) September 14,

2010 (pixel resolution: 3.5 m), and 2) August 15, 2011 (pixel

resolution: 7.7 m). We selected the September 2010 imagery

because most of the oil had already come ashore and we

hypothesized that the time delay between the arrival of oil and the

response of the plant community would have passed. The August

2011 imagery was selected because it was closest in seasonality to

the 2010 imagery. We analyzed four flightlines in September 2010

and two flightlines in August 2011 that covered the most heavily

impacted region of Barataria Bay (Figure 2). The flightlines were

atmospherically corrected using ACORN 6, mode 1.5 (ImSpec

LLC, Seattle) to apparent surface reflectance. The September

2010 images were georectified to 1 m National Agricultural

Figure 1. AVIRIS spectra from oiled and oil-free pixels. AVIRIS
spectra for oiled and oil-free soil, oiled and oil-free non-photosynthetic
vegetation (NPV), and healthy photosynthetic vegetation. Oil absorp-
tions (centered at 1720 nm and 2300 nm) are visible in spectral
signatures of oiled pixels. Bad band values are not displayed.
doi:10.1371/journal.pone.0078989.g001

Oil Spill Impact and Recovery in Wetlands
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Imagery Program (NAIP) color infrared images collected in 2010.

Even though we were planning to compare the September 2010

with the August 2011 imagery, we did not radiometrically

calibrate the two images together, because our comparisons were

based on index values. Indexes are relatively insensitive to

differences in absolute reflectance since they compare relative

differences between band values and are frequently normalized.

The AVIRIS image data used in this study are publicly

available from the Jet Propulsion Laboratory (JPL) archive. Field

data collected by USGS will be made available upon request.

Image co-registration. NASA Jet Propulsion Laboratory

(JPL) provides AVIRIS images with georeferencing information

derived from inertial navigation data and GPS. Nonetheless,

images georeferenced based on this information often suffer from

Figure 2. Color-infrared view of study site showing oiled shoreline. Location of Barataria Bay in the Mississippi Delta in the Gulf of Mexico,
AVIRIS images of Barataria Bay depicted in color infrared bands with oiled shoreline shown in yellow.
doi:10.1371/journal.pone.0078989.g002

Oil Spill Impact and Recovery in Wetlands
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residual misalignment by a few pixels or more. With 3.5 and 7.7 m

pixels of AVIRIS imagery used in our study, this misalignment

translated into displacements of the order of dozens of meters,

whereas surface (including vegetation) conditions near the shore

were known to exhibit sharp gradients on the scale of just a few

meters. Therefore, we co-registered the AVIRIS images using an

automated image registration technique [58] that combines robust

band-wise compensation for radiometric differences in images [59]

with an iterative gradient-based video-sequence alignment method

by Irani [60], under the affine image motion model. The method

does not change the band values of either image. We resampled

images from both dates to 1.1m and subset the two 2011 flightlines

to the four 2010 flightlines (half the swath width because pixel size

is smaller). Then all four sets of images were coregistered. As a

result of the image co-registration, the residual pixel misregistra-

tion was markedly reduced, allowing more accurate analysis of the

changes in vegetation conditions. The base images were selected to

be the September 2010 images and the August 2011 images were

co-registered to the base images. Areas of large or systematic

change in the scene (e.g., cloud masses, shorelines at different tidal

stages, or eroded shorelines) were excluded from the image motion

estimation. The tidal stage of the August 2011 image was higher

than that of the September 2011 image hence excluding the main

shoreline from the coregistration area allowed only within marsh

features to be used for coregistration. Thus, the difference in

shoreline edge did not impact the accuracy of coregistration.

Landcover classification and oil mapping
Kokaly et al. [5] successfully mapped oil contamination along

the shoreline after the BP-DWH using AVIRIS images acquired

on July 31, September 14 and October 2 of 2010 over Barataria

Bay. They used hydrocarbon absorption features centered at

1720 nm and 2300 nm as inputs to the USGS’s Material

Identification and Characterization Algorithm (MICA) to map

oil presence [5].

To compare inter-annual change for potential recovery or

further damage, we needed to do all our analyses on the co-

registered images, hence we mapped oil contamination using the

continuum removal technique [41] over the two oil absorption

features (Figure 1) in four AVIRIS flightlines over Barataria Bay

acquired in September 2010, and did not use the oil maps

produced by Kokaly et al. [5]. However, we used Kokaly et al. [5]

field measured oil penetration data to validate our oil maps. We

then compared the oiled coastline between the two maps to

quantify the agreement between them.

The images were classified into six classes: water, soil, dry plant

material or non-photosynthetic vegetation (NPV), photosynthetic

vegetation, oiled soil and oiled NPV (Figure 3). We used a binary

decision tree based on vegetation indexes, angle indexes (Table 1),

and the depth of the oil absorption continuum removals to

produce a classification map for the six classes following the

methods in Khanna et al. [61]. In this case, the classification map

was used to restrict vegetation stress analyses to the land class (i.e.,

every class except water). Clouds and cloud shadows were

excluded from the analyses.

While we had sufficient field data to independently assess the

accuracy of our oiled pixels, we did not have enough field data to

train and validate our landcover map. To enrich our data set, and

since we were mapping classes that are easily discernible by an

observer, we collected training and validation data by visually

interpreting photosynthetic vegetation, soil, water and NPV from

the color infrared images. We randomly divided the September

2010 dataset into training and validation datasets and used the

training dataset to train our classifier. Then we applied the same

classifier to images from both dates. We assessed the accuracy of

the oiled vs. oil-free pixels with data collected in the field using

kappa statistics, overall classification accuracy and omission and

commission errors [62,63]. Accuracy for all classes was assessed

using the visually interpreted validation data by calculating the

same metrics.

Comparing oiled vs. oil-free shoreline in September 2010
The boundary of the land class from the September 2010 image

classification was used to produce a vector layer of the shoreline.

This is because the September 2010 images were acquired at low-

tide hence the shoreline generated by using this dataset represents

the mean low tide water line. This shoreline was further simplified

by deleting small polygons less than 500 m2 (small depressions

within the islands filled with water) resulting in a smoother

shoreline. We then calculated a ‘‘distance to shore’’ for every land

pixel by computing the Euclidian distance and direction to shore

in ArcGIS 10 (ESRI, Redlands, CA). We chose this approach

instead of using a pre-existing shoreline vector layer because we

wanted to compare the exact distances from the shoreline within

our dataset, irrespective of how well the image was geo-registered.

Selection of pixels in oiled and oil-free shoreline

zones. We selected pixels that were within 60 m of the oiled

shoreline because, based on the USGS field data, we did not

expect the oil to impact vegetation further inland. Further, to

ensure that the pixels included were located in the section of the

shoreline facing the ocean, we selected pixels with a direction

perpendicular to the nearest shoreline between 0u–80u or 280u–
360u (where 0u is North). This was done because tidal forces act

differently on the ocean-facing southern shore compared to the

east-west or northern shore. Oiled areas were predominantly

located on the southern shoreline since the oil came in with the

tide. Finally, only oil-free shorelines within 140 m of an oiled

shoreline were used for comparison in order to maximize the

similarity of environmental conditions between oiled and oil-free

zones, except for the variable of interest, ‘‘oil’’. Any bias would

likely be in the direction of including oiled pixels in the oil-free

area analysis which would result in minimizing differences

between oiled and oil-free areas. Oil-free shoreline inland pixels

were included following the same criteria as for oiled shorelines.

Vegetation index trajectories in oiled vs. oil-free

shoreline zones. Plant physiological responses to stress often

manifest as changes in chlorophyll and water content [64]. We

selected seven indexes that track changes in chlorophyll content

and/or leaf area of the plant (Normalized Difference Vegetation

Index: NDVI, modified NDVI: mNDVI), change in plant

condition (green, senescent, dead – Angle at NIR: ANIR, Angle

at Red: ARed), and change in plant water content (Normalized

Difference Infrared Index: NDII, Water Absorption at 980 nm:

ADW1, Water Absorption at 1240 nm: ADW2) (Table 1). No

single index is optimal for all conditions, so consistent responses

across these diverse indexes would add robustness to our results.

To determine the extent of oil-induced stress on interior marsh

vegetation, we compared index values along oiled shorelines with

those along oil-free shorelines for the September 2010 imagery.

We used an analysis of variance to test whether there were

significant differences between the indexes in oiled and oil-free

shorelines, and then subdivided the data set by distance zones from

the shoreline (Figure 3). Zones corresponded to the pixel size of the

September 2010 images so that zone 1 was the first 3.5 m pixel

next to the shore, zone 2 was the second pixel from the shore, etc.

We tested for pair-wise differences in oiled versus oil-free shores in

each zone (e.g., oil versus oil-free pixels at zone 1, oil versus oil-free

pixels at zone 2, etc.) using a Tukey-HSD test [65]. This test

Oil Spill Impact and Recovery in Wetlands
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showed the significance of all the possible pair-wise combinations

of oiled versus oil-free zone comparisons that went into the overall

ANOVA. Pixels were always compared within the same zone. We

chose to compare corresponding zones because salt marsh species

distributions follow the characteristics of flooding and elevation

along shorelines. We observed a similar differentiating pattern in

the remote sensing data, from lower index values in the intertidal

region to a band of higher index values (robust dense vegetation)

just beyond the intertidal and then slightly lower values again in

the inner marsh. By grouping data by distance from the shorelines,

we attempted to minimize changes in species types and density

and their distribution patterns.

We tested the dependent variables, the index images, for

autocorrelation between pixels using the Moran’s I statistic. We

found that the pixels were significantly autocorrelated until a

distance of 21 m (Moran’s I = 0.48, p-value ,,0.001). Despite

Figure 3. NDVI image, classified image and zones used to analyze oil impact. (a) Gray scale NDVI image of a subset of Barataria Bay, with a
close up of an oiled section of the shoreline showing (b) the classified image, (c) the zones as we move away from the shoreline, and (d) the NDVI
image showing the low-NDVI band of pixels right next to the oiled shoreline. For comparison, (e) shows the NDVI profile for an oil-free section of the
shoreline.
doi:10.1371/journal.pone.0078989.g003

Table 1. Vegetation indexes used for stress detection due to oil contamination.

Inputs Formula Relevance References

Normalized Difference Vegetation Index (NDVI) R861{R649

R861zR649

Index of green plant cover and LAI [42]

Modified NDVI (mNDVI) R754{R705

R754zR705

Sensitive to plant health [47,48]

Normalized Difference Infrared Index (NDII) R861{R1663

R861zR1663

Sensitive to plant water content [39,40]

Angle at NIR (ANIR) l: 675, 1092, 1662 nm Angle index sensitive to phase change in plants [43]

Angle at Red (ARed) l: 550, 675, 1092 nm Angle index sensitive to plant pigments Adapted from [43]

Water Absorption at 980 nm (ADW1) K* (R783 + R1054) – R977 Quantification of water absorption features Adapted from [67]

Water Absorption at 1200 nm (ADW2) K* (R1054+ R1254) – R1187 Quantification of water absorption features Adapted from [67]

doi:10.1371/journal.pone.0078989.t001

Oil Spill Impact and Recovery in Wetlands
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this high correlation we decided not to subsample our data to

include only independent pixels because of several reasons. We

expected the first few pixels along the shoreline to be sensitive to

oil and by choosing pixels far enough to be spatially independent,

we could have missed detecting the impact of oil altogether.

Moreover, the tests we used to determine if there was an impact

are known to be robust to violations of the assumption of

independence between samples [66]. Finally, a conservative

approach can be undertaken to reduce the significance level from

0.05 to 0.01 and if significant differences are still found then

despite the violation of the independence assumption, we are

reassured that the differences are significant.

Post-classification comparison. Using the classification

maps, wherein each pixel was assigned to a single class, we

determined the number of photosynthetic vegetation pixels, and

soil and NPV pixels within each zone along oiled and oil-free

shorelines. If the impact of oil was discernible within a zone, we

expected to see a smaller number of the pixels classified as

photosynthetic vegetation along the oiled shoreline compared to

pixels along the oil-free shoreline.

For both the analyses using index-trajectories and classification

maps, we expected the vegetation along oiled and oil-free

shorelines to be at the same phenological state barring the impact

of oil because we were looking at a single date.

Detecting recovery of stressed vegetation
Index values relative to distance from nearest oiled

pixel. We used this analysis to determine potential continued

decline or recovery from oil contamination a year later. Using our

oil contamination map derived from the classification of the

September 2010 imagery, we calculated the ‘‘distance to nearest

oiled pixel’’ to determine the effect of proximity to oil contam-

ination on plant stress. To test for significant differences in

vegetation indexes we used an ANOVA with all the data (all zones

combined) and a post-hoc Tukey-HSD test to determine how far

from the oiled pixel we could see significant differences.

We used a linear regression for index values for the first four

pixels away from the oiled pixels. At distances closer to an oiled

pixel (up to 3 pixels away), we found a linear relationship between

index values and distance from an oiled pixel. An asymptote was

reached at distances farther away. Then we tested whether the

slope of the linear regression was significantly different in August

2011 compared to September 2010 using a t-test and identified the

direction of the change in slope. We expected a lower slope and

weakened correlation by August 2011, which would indicate

vegetation recovery, that is, the index values are no longer

influenced by distance from oil. We should clarify that there was

negligible oil in the August 2011 imagery. For both dates,

‘‘distance to nearest oiled pixel’’ relates to the original contam-

ination in 2010. The only assumption we made was that there was

no significant change in the location of oil contamination (like oil

being carried further inland) after September 2010.

Post-classification change detection. We assessed whether

there was continued vegetation decline or recovery a year later by

looking at the percentage of pixels depleted of photosynthetic

vegetation in September 2010 that were re-vegetated by August

2011. We also examined whether there was an effect of the

position of the pixel relative to the shoreline in the extent of

recovery, in other words, did recovery vary with distance from

shore?

We were confident enough in our sub-pixel coregistration to do

a pixel-to-pixel comparison of the classifications from both years.

We quantified the number of pixels in each zone along oiled

shorelines that were classified as soil or NPV in September 2010

but classified as photosynthetic vegetation in August 2011.

Although the 2010 imagery was collected in September and the

2011 imagery in August, thus during the same seasonal period, we

did expect to see some differences in the phenological state of the

wetland because of natural variation from year to year due to

precipitation and temperature differences. However, because we

were looking at a classified image rather than an index image, the

data is categorized, not continuous. This minimizes small

differences in plant vigor. As long as the plant is not in a

completely different phenological state (e.g. green in 2010 to

completely dry in 2011), the class of the pixel should not change.

On the other hand, any recovery (new photosynthetic vegetation)

in areas of denuded or dying vegetation will result in a class

change. Thus recovery using this method does not indicate a return

to ‘‘before oil’’ state but just that recovery has begun and there is

fresh growth. This method is also not sensitive to declines in

vegetation cover or health in areas adjacent to heavily oiled

shorelines, that is, secondary oiling impacts.

Results

Classification Accuracy
Both 2010 and 2011 images were classified into six classes: soil,

NPV, oiled soil, oiled NPV, photosynthetic vegetation and water

(see Figure S1 for the full decision tree). The overall classification

accuracy for the six classes in September 2010 was 98% and the

Kappa coefficient was 0.97 (n = 427). For August 2011, the overall

accuracy was 87.3% and Kappa was 0.8 (n = 3108). Table 2 shows

confusion matrices for both dates using validation data distinct

from training data used to build the classifier.

Kokaly et al. [5] found that contamination due to the BP-DWH

oil spill covered narrow zones along the shoreline. Our oil maps

showed that average penetration into the marsh was 7.5 m while

maximum penetration was up to 40 m. The accuracy of the

classification of oiled pixels was assessed independently using data

collected in the field by Kokaly et al. [5,57]. When the

classification map was collapsed down to two classes, ‘‘oil present’’

(oiled soil and oiled NPV) and ‘‘oil absent’’ (water, soil, NPV, and

photosynthetic vegetation), the overall accuracy was 95% and the

Kappa coefficient was 0.88 (n = 40, Table 3). Two of the field

survey points had oil contamination but were classified as oil-free.

Kokaly et al. [5] noted these areas to be lightly oiled with minimal

penetration into the marsh. Comparison with the oil contamina-

tion map produced by Kokaly et al. [5] showed that 90.6% of the

oiled shoreline mapped by Kokaly et al. [5] was classified as oiled

in our map while 5.1% of the shoreline mapped as oiled in this

study was classified as oil-free by Kokaly et al. [5]. Kokaly et al. [5]

used multiple-date images (July, September and October, 2010) to

map oiled pixels in all cover classes while our study concentrated

on mapping oil in only the September, 2010 images.

Comparing oiled vs. oil-free shoreline for September
2010

Vegetation index trajectories. In September 2010, index

values were significantly different between oiled and oil-free

shorelines, and index trajectories in the first four oiled shoreline

zones (0 to 14 m) were significantly lower than in the correspond-

ing oil-free shoreline zones (Figure 4, see also Tables S1 and S2).

The ANIR index shows the opposite pattern to the other indexes,

because lower values for this index indicate photosynthetic

vegetation (the angle at NIR gets narrower in healthy vegetation).

Post-classification comparison. The impact extended four

pixels inland (0–14 m from shore). The percentage of pixels

Oil Spill Impact and Recovery in Wetlands

PLOS ONE | www.plosone.org 6 November 2013 | Volume 8 | Issue 11 | e78989



classified as photosynthetic vegetation was lower in the first four

zones (,60%) in oiled shorelines relative to the corresponding

zones in oil-free shorelines (.90%), consistent with observations

on the index value trajectories (Figure 5). By the fifth pixel from

the shore, the difference in percent of photosynthetic vegetation

along oiled vs. oil-free shoreline was much narrower (83.8% vs.

93.2% or 9.4% difference). Beyond the first five pixels, the

percentage of photosynthetic vegetation pixels along oiled and oil-

free shorelines was similar and above 90%. Pixels in the second

and third zone away from the shoreline were the most affected by

oil (had the lowest percentage of photosynthetic vegetation pixels)

followed by pixels adjacent to the shoreline.

Detecting recovery of stressed vegetation
Distance to nearest oiled pixel. In September 2010, index

values were lowest in pixels closest to oiled pixels and increased as

distance to the nearest oiled pixel increased (Figure 6, see also

Tables S3 and S4). The impact of oil was observed up to 7 m from

the nearest oiled pixel (up to two pixels away). All index values

significantly increased as distance to the nearest oiled pixel

increased in the first three pixels away from an oiled pixel

(Table 4), with the exception of ANIR (which showed the opposite

trend in values, thereby indicating the same pattern in plant stress).

However, the amount of variance explained by this variable was

not very high (R2 between 0.11 to 0.42, Table 4).

By August 2011, less than 1% of the variance was explained by

the linear relationship between proximity to oil and index values

(R2,0.05 for all indexes, Table 4). The slopes were also

significantly lower in August 2011 than those in September 2010

for all indexes (p-value ,0.001, Table 4). Figure 6 illustrates the

steep slope in the first three zones in September 2010 relative to

August 2011.

Post-classification change detection. When comparing

September 2010 and August 2011 classifications, we found that

recovery or re-vegetation of pixels classified as dead or dying

vegetation in 2010 was poorest closer to the shoreline, with a lower

percentage of re-vegetated pixels, improving with increased

distance from the shore. By the fourth pixel, almost all pixels

that were oiled and denuded of photosynthetic vegetation in

September 2010 had recovered and were classified as photosyn-

thetic vegetation in August 2011 (Figure 7).

Discussion

Impact of oil contamination
The indexes we used in this study are indicators of important

biophysiological properties of plants such as chlorophyll concen-

tration, leaf area, plant water, and plant phenology

[34,35,36,37,38]. Loss of pigment, water, and leaves are all

symptoms of plant stress. We found that vegetation was more

stressed along oiled shoreline in September 2010 compared to oil-

free shoreline. This was true within every zone for at least the first

four zones adjacent to the shoreline. Thus, the oil-impacted zone

along the shoreline was 14 m. Kokaly et al. [5] noted that mean oil

penetration in the region was 11 m. Our results show that the

Table 2. Confusion matrices for September 2010 and August 2011 classifications.

Ground Reference Data

September 2010 Confusion Matrix

Classified as Oiled NPV Green Veg. Water Oiled Soil Total User’s Accuracy

Oiled NPV 107 1 0 1 109 98.2

Green Veg. 3 139 0 2 144 96.5

Water 0 0 94 0 94 100.0

Oiled Soil 1 0 0 79 80 98.8

Total 111 140 94 82 427

Producer’s Accuracy 96.4 99.3 100.0 96.3 98.1

August 2011 Confusion Matrix

Water Green Veg. NPV

Water 1185 1 0 1186 99.9

Green Veg. 0 1158 395 1553 74.6

NPV 0 0 369 369 100.0

Total 1185 1159 764 3108

Producer’s Accuracy 100.0 99.9 48.3 87.3

Confusion matrices for classification of September 2010 and August 2011 imagery using user-interpreted data. In September 2010, there were no oil-free non-
photosynthetic vegetation (NPV) and oil-free soil pixels and in August 2011, there were no oiled pixels in validation data.
doi:10.1371/journal.pone.0078989.t002

Table 3. Confusion matrix for oiled vs. oil-free pixels in
September 2010.

Ground Reference Data

Classified as Oil-free Oiled Total User’s Accuracy

Oil-free 10 2 12 83.3

Oiled 0 28 28 100.0

Total 10 30 40

Producer’s
Accuracy

100.0 93.3 95.0

Confusion matrices for classification of oiled pixels in September 2010 using
field data collected by Kokaly et al. [5].
doi:10.1371/journal.pone.0078989.t003
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Figure 4. Index trajectories from shore to inland along oiled and oil-free shoreline. Box plots of index values for pixels vs. zone from shore
(‘‘1’’ being the first pixel from the shore and ‘‘12’’ being the twelfth) for oiled (red) and oil-free (blue) shoreline for the September 2010 dataset for (a)
mNDVI, (b) NDII, (c) Angle at NIR, and (d) Absorption depth of water centered near 980nm. Distributions with non-overlapping notches are
significantly different from each other. The notch represents the 95% confidence interval, the box extends from the first to the third quartile and the
dashed lines extend to the data point which is 1.5 times the interquartile range.
doi:10.1371/journal.pone.0078989.g004

Figure 5. Photosynthetic vegetation cover from shore to inland along oiled and oil-free shoreline. Percentage of photosynthetic
vegetation pixels in oiled vs. oil-free shoreline zones in September 2010 (‘‘1’’ being the first pixel from the shore and ‘‘12’’ being the twelfth). Total
number of pixels for each zone for oiled and oil-free shoreline is shown above the bars.
doi:10.1371/journal.pone.0078989.g005
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actual impact of oil on vegetation extends beyond the region

where oil penetration is visible in the image.

We also observed in the field that when oil is carried inland

through tidal action, it can contaminate the soil under the canopy

while the plant canopy surface has no oil. Plant mortality is much

higher when leaves are coated by oil than when the oil is present

below the canopy only in the soil layer [1,7,12]. Therefore, we

expected the impact of oil to decrease as we moved inland from

the shoreline. This was confirmed by the general trajectory of

index values with respect to the shoreline. Index values were

lowest (indicating high plant stress) in the zone next to the

shoreline but increased as we moved away from the shoreline,

stabilizing at about 14 m from the shore. While significant

differences were found only in the first four zones (five for water

absorption bands), this does not mean that there was no impact

beyond this zone. Some places where oil had penetrated much

further inland likely showed impact far beyond 14 m but since the

analysis pooled data from the entire study area, localized areas

that may have been affected further inland did not result in a

significant difference.

When we examined index behavior with respect to distance to

the nearest oiled pixel, the response can be divided into two

segments: the first 2–3 pixels from the nearest oiled pixel have an

approximately linear response (index values increase with increas-

ing distance) while pixels farther than that seem independent of

distance from shore (see Figure 6). This is observed in September

2010 along the oiled shorelines by the significantly positive slopes

of mNDVI, NDII, and ADW1 (negative slope for ANIR) as

distance from oil increases. Plant stress extended, on average, 7 m

inland from the closest oiled pixels. This gradient in impact was

also likely due to the same reasons described above. The sub-

canopy oil did not seem to have a measurable impact on the

photosynthetic ability of the plants beyond this distance.

Comparison of classified pixels along oiled and oil-free

shorelines showed that the lowest percentage of pixels containing

photosynthetic vegetation occurred in the first three pixels away

from the shoreline. This pattern is likely due to the fact that plants

near the shoreline had their leaves and stems completely flooded

by oil, hence plant mortality was very high [57]. Zonal bands, 1–2

pixels away from the shoreline (3.5 to 10.5 m) had a lower

percentage of photosynthetic vegetation pixels compared to the

pixels adjacent to the shore. We suspect this was because many of

the oil absorbing floating booms that were used to prevent oil from

reaching the shore may have washed onto the marshes and settled

Figure 6. Index trajectories w.r.t. distance to the nearest oiled pixel in September 2010 and August 2011. Box plots of index values for
pixels vs. distance from nearest oiled pixel (‘‘1’’ being an oiled pixel and ‘‘12’’ being 12 pixels away from the nearest oiled pixel) in September 2010
(red) and August 2011 (blue) for (a) mNDVI, (b) NDII, (c) Angle at NIR, and (d) Absorption depth of water centered near 980 nm. Distributions with
non-overlapping notches are significantly different from each other. The notch represents the 95% confidence interval, the box extends from the first
to the third quartile and the dashed lines extend to the data point which is 1.5 times the interquartile range.
doi:10.1371/journal.pone.0078989.g006
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at the high tide line, within the 1–2 pixels from the shoreline,

corresponding to the zone where plant mortality was highest

(personal observation in October, 2010). The booms that were

transported into the marsh were generally saturated with oil and

thereby increased the intensity and residence time of oil

contamination near the high tide line which can lead to higher

impact on the plant community [2,11,12]. Moreover, frequency of

tidal action decreases as we move away from the shore. This also

leads to longer residence time for the oil. Another possible reason

for greater impact in the pixels 3.5 to 10.5 m from shore is that

water levels were higher when the oil came ashore and as the

water receded, it deposited more oil inland than in the zone

adjacent to the shore.

Detecting recovery of stressed vegetation
Our results indicate that tidal marsh communities were

beginning to recover in August 2011 because their spectral index

values were no longer influenced by proximity to oil contamina-

tion. S. alterniflora, the dominant salt marsh species along the

shoreline in Barataria Bay, is relatively robust to oil contamination

in terms of above-ground biomass, stem density and nutrient

uptake [1,7,12]. S. patens is relatively more sensitive to oil but is

found further inland in the brackish marsh. Recovery in above-

ground biomass in both species is quick. DeLaune and Wright [12]

note that S. alterniflora recovers within a year even when the leaves

have been oiled and the canopy has died.

A comparison of the classifications of oiled and oil-free

shorelines in September 2010 imagery indicated that the first

10.5 m along oiled shorelines had a high percentage of oiled bare

soil and oiled NPV pixels (as high as 50%) potentially indicating

areas that were denuded of vegetation as a result of oil-induced

plant stress. By 24 m inland from shore, the number of oiled bare

soil and NPV pixels was negligible (,1%). In August 2011,

recovery was the poorest in pixels adjacent to the shore (65% of

oiled soil and NPV pixels contained photosynthetic vegetation in

the following year), followed by the next two zones, less than 7 m

from shore (more than 80% of the oiled soil and NPV pixels in the

second zone from the shore contained photosynthetic vegetation in

the following year) and by the fourth zone (14 m from shore), re-

vegetation was almost 100% supporting the conclusion that much

of the inland marsh had regenerated. Hester and Mendelssohn [7]

observed in a five year study of a Louisiana brackish marsh

recovering from oil contamination that failure to re-vegetate was

more often due to lack of elevation (resulting in waterlogging

stress) than directly due to the oil. Elevation is lowest in pixels

adjacent to the shoreline, and additionally, it is subject to erosion

as a result of denuded vegetation. This probably led to poor

recovery in pixels next to the shoreline.

The difference in the range of index values beyond the impact

zone between September 2010 and August 2011 was likely due to

2011 being a much drier year than 2010, and not oil impacts.

Precipitation in 2011 (754 mm) was only one-third of 2010 levels

(2233 mm; National Climate Data Center) resulting in lower

overall index values and a drier interior marsh relative to the near-

shore marsh. This interpretation is further supported by the

absence of large storms that would have been powerful enough to

bring tidal water farther into the marsh.

This study clearly showed that the impact of oil characterized

using vegetation indexes extended no further than a couple of

pixels from a contaminated pixel. While Mishra et al. [4] found oil

impacts to be far more widespread (.400 km2), the broad spatial

and spectral resolution of the Landsat imagery they used

prevented the direct detection of oil. Instead, they compared the

2009 growing season to the 2010 growing season to determine
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extent of oil impact. The large areas of vegetation change mapped

with 30 m pixels could be due to other reasons such as

precipitation differences, natural variation in vegetation phenology

from year to year, etc. The impacted areas included salt marshes

(e.g. Barataria Bay), brackish and freshwater marshes (e.g. Bird’s

Foot) and mangroves (e.g. Chandeleur Islands). Some of these

areas are far more fragmented by oil and gas infrastructure than

others. Species composition also changes considerably among

different vegetation types. Thus they may show considerable

variation in oil impact.

There was a loss of 15% to 30% vegetated pixels in 2011 that

changed to water from photosynthetic vegetation, residue and soil

classes. According to local tide tables for these two dates and the

time that the images were flown, the tidal stage in August 2011

was about 0.12 m higher than in September 2010 (tides.rodn-

reel.com). In September 2010, time of data collection coincided

with the low tide (0.18 m), while in August 2011, data were

collected only slightly below high tide levels (0.30 m). Hence, the

increase in water pixels in August 2011 was in part due to tidal

differences between the two dates.

Conclusions

The full impact of the BP-DWH oil spill on the marshland,

mangroves and wildlife of the region is still under study. We used

AVIRIS imagery collected over Barataria Bay in September 2010

and August 2011 to evaluate whether vegetation health in these

marshes continued to decline or experienced recovery in the

following year. We successfully assessed marsh impacts of the oil

spill finding that the marsh showed negative impacts due to oil

exposure but that some recovery occurred within one year. The

impact was contingent on distance to oil contamination. We also

found that sub-canopy oil did not seem to have a discernable effect

on marsh communities beyond a couple of pixels. While this is

encouraging news for marsh health, we don’t know whether

different plant communities respond differently. Further we cannot

address how this immediate impact cascades through the

ecosystem.

This analysis is based on two AVIRIS snapshots in time,

September 2010 and August 2011. Recovery in the marsh is likely

still ongoing. Moreover, the strong storm surge brought in by

hurricane Isaac in 2012 might have remobilized oil and brought it

further inland. More research is needed to determine long-term

impacts of the oil spill. However, this study illustrates that high

spatial resolution imaging spectroscopy serves as a powerful tool to

establish the link between oil contamination and plant stress and to

document plant die-off and recovery in the marsh after the

disaster.

Supporting Information

Figure S1 Decision tree for classification of AVIRIS
imagery. Decision tree showing multiple variables used at each

node to separate one target class from the rest of the classes. Oiled

pixels were classified using continuum removal (CR) over two oil

absorptions at 1720 nm and 2300 nm in only soil and non-

photosynthetic vegetation (NPV) pixels. Rx indicates reflectance in

the ‘‘x’’ region of the electromagnetic spectrum.

(TIFF)

Table S1 Mean index values w.r.t distance to shore in
September 2010. Mean values for seven indexes vs. distance to

shore for oiled and oil-free shorelines for the September 2010

dataset (index acronyms are listed in table 1).

(DOCX)

Table S2 Index analysis for oiled vs. oil-free zones w.r.t
distance to shore in September 2010. Analysis of variance

between oil versus oil-free shorelines in September 2010 and per

zone comparisons (index acronyms are listed in table 1). Degrees

of freedom = 185,887.

(DOCX)

Table S3 Mean index values w.r.t distance to nearest
oiled pixel. Mean values for seven indexes vs. distance to nearest

oiled pixel for oiled shoreline in September 2010 and a year later

in August 2011.

(DOCX)

Figure 7. Recovery of photosynthetic vegetation from September 2010 to August 2011. The number of oiled soil & NPV pixels in
September 2010 that recovered (regrowth of vegetation) a year later in August 2011 in pixels next to the shore (‘‘1’’ being the first pixel from the
shore and ‘‘12’’ being the twelfth). Total number of pixels for each zone is shown above the bars.
doi:10.1371/journal.pone.0078989.g007

Oil Spill Impact and Recovery in Wetlands

PLOS ONE | www.plosone.org 11 November 2013 | Volume 8 | Issue 11 | e78989



Table S4 Index analysis for Sept. 2010 vs. Aug. 2011
oiled zones w.r.t distance from nearest oiled pixel.
Analysis of variance between pixels at different distances from an

oiled pixel in September 2010, and Tukey HSD tests for pair-wise

comparisons (index acronyms are listed in Table 1). Degrees of

freedom = 114,371.

(DOCX)
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