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Antimicrobial compounds first arose in prokaryotes by necessity for competitive

self-defense. In this light, prokaryotes invented the first host defense peptides.

Among the most well-characterized of these peptides are class II bacteriocins,

ribosomally-synthesized polypeptides produced chiefly by Gram-positive bacteria. In the

current study, a tensor search protocol—the BACIIα algorithm—was created to identify

and classify bacteriocin sequences with high fidelity. The BACIIα algorithm integrates a

consensus signature sequence, physicochemical and genomic pattern elements within a

high-dimensional query tool to select for bacteriocin-like peptides. It accurately retrieved

and distinguished virtually all families of known class II bacteriocins, with an 86%

specificity. Further, the algorithm retrieved a large set of unforeseen, putative bacteriocin

peptide sequences. A recently-developed machine-learning classifier predicted the

vast majority of retrieved sequences to induce negative Gaussian curvature in target

membranes, a hallmark of antimicrobial activity. Prototypic bacteriocin candidate

sequences were synthesized and demonstrated potent antimicrobial efficacy in vitro

against a broad spectrum of human pathogens. Therefore, the BACIIα algorithm

expands the scope of prokaryotic host defense bacteriocins and enables an innovative

bioinformatics discovery strategy. Understanding how prokaryotes have protected

themselves against microbial threats over eons of time holds promise to discover novel

anti-infective strategies to meet the challenge of modern antibiotic resistance.
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INTRODUCTION

One of the most urgent threats facing medicine and society
today is the emergence of multi-drug resistant (MDR) pathogens.
Estimates from the World Health Organization and like agencies
suggest deaths due to MDR infections will outpace nearly
all other causes by the year 2050 (1, 2). Compounding this
issue is reduced pharmaceutical investment in anti-infective
drug discovery, yielding a dearth of mechanistically novel anti-
infectives in the drug development pipeline.

Virtually all modern anti-infectives identified to date were
originally derived from microbial sources. Among these,
bacteriocins are the earliest host defense peptides (HDPs),
derived from bacteria to protect against microbial competitors.
Although they originated in prokaryotes, HDPs have been
retained throughout evolution and have been identified in
virtually all organisms from which they have been sought.
Such HDPs are typically small, cationic and amphipathic,
and structurally categorized as predominantly α-helical, β-
sheet or more complex secondary structure architecture,
such as the cysteine-stabilized-αβ peptides. Mechanistically,
a body of experimental data indicated that cationicity and
amphipathicity as distributed in 3-dimensional space are
essential for antimicrobial functions of HDPs. For example,
cationicity is likely important for their propensity to target
electronegative microbial membranes, while amphipathicity is
likely essential for subsequent membrane perturbing events.

Bacteriocins are represented by a number of highly diverse
families created through ribosomal or non-ribosomal synthesis
(3–6). Of those generated by ribosomal synthesis, perhaps
the best characterized are the Class II bacteriocins produced
mainly by Gram-positive bacteria (7, 8). Class II bacteriocins
are typically small (<60 amino acids) and heat-stable, and
often synthesized as pre-bacteriocins containing an N-terminal
signal sequence that is cleaved during secretion (4, 7, 8). This
family of bioactive peptides can be further subclassified: Class
IIa (pediocin-like); Class IIb (dimeric); Class IIc (cyclic) (4, 8).
Hallmark of the Class IIa bacteriocins is an N-terminal consensus
sequence (KYYGNG[L/V]XCXKXXCXVDW) comprised of an
anti-parallel β-sheet stabilized by a disulfide bridge that is integral
to antimicrobial activity (4, 7)

Previous investigations seeking to find novel bacteriocin
sequences largely used computational screens for a conserved
signal peptide motif (9, 10). However, in many of these
investigations, this signal term has been class-specific, such that
genomic screens that do not account for degeneracy, codon-
use biases or open-reading-frame limitations are negatively
restricted. Hence, while highly specific, such scans have missed
large groups of bacteriocin sequences (10). In the present
investigation, a novel and high-dimensional bioinformatics
strategy—the BACIIα algorithm—was developed to overcome
the above limitations. It incorporates a relaxed signal peptide
motif that is inclusive of consensus bacteriocin leader sequences,
along with key physicochemical and genomic pattern recognition
to selectively identify putative bacteriocins from published
sequence databases. Furthermore, this algorithm targets the
α-helical core element of bacteriocins as a means to power

specificity and sensitivity. Application of the novel BACIIα
protocol retrieved all families of known Class IIa and IIb
bacteriocin peptides, validating its inclusive scope. Moreover, it
discovered >700 putative new bacteriocin sequences, many from
prokaryotes for which no bacteriocin had been characterized
to date. The retrieved sequences were predicted by a validated
machine-learning classifier (11–14) with high probability to
induce negative Gaussian curvature (NGC) in target membrane
structures, which is a hallmark of antimicrobial activity. As proof-
of-principle, prototype bacteriocin candidates were synthesized
and found to have potent microbicidal activity against a panel
of medically-relevant and drug resistant pathogens. Together,
these data suggest the BACIIα algorithm is a rapid and efficient
tool to identify novel bacteriocins which have retained efficacy
against MDR pathogens over an evolutionary timespan. In
this light, a greater understanding of host defense peptides
that prokaryotes use to protect themselves against microbial
competitors holds promise for discovery and development of
innovative anti-infectives to meet the burgeoning threat of multi-
drug resistant infections.

METHODS

Generation of the Type II Bacteriocin
Consensus Formula (BACIIα)
To identify a consensus formula inclusive of known class
II bacteriocins, multiple sequence alignments integrating
prototypic representatives of this family were carried out using
CLUSTALW2 (https://www.ebi.ac.uk/Tools/msa/clustalw2/) and
refined using MEGA 6 (15). Sites of potential conservation were
scored for residue or physicochemical identity to generate a
12-residue core consensus formula. In some cases, positions in
the formula are degenerate for inclusivity, based on sequence
or biochemical (polar residues) properties conserved at these
positions. Initial sequence alignments were generated using
CLUSTALW2, followed by manual adjustment to align the
double glycine motif using MEGA 6 (15).

Screen for Amphipathic α-Helices Within
Retrieved Dataset
This consensus formula, termed BACIIα, was then used with
ScanProsite (https://prosite.expasy.org/scan-prosite/) to conduct
computational pattern searches of the UniProtKB Swiss-Prot and
TrEMBL databases (https://www.uniprot.org/). Search results
were further filtered for: (1) protein size (<80 residues); (2)
bacterial source; and (3) localized to the first 25 residues of
the query protein with a “<X(0.25)” logical operator. Results
were submitted as a sequence database against which additional
pattern searches could be carried out using Prosite. This database
was queried using a systematic degenerate amphipathic sequence
formula strategy [(11); https://prosite.expasy.org/scan-prosite/]
to scan for α-helical domains within the retrieved protein dataset.
The formula was advanced sequentially one position at a time
through 18 iterations to encompass an entire 18-residue helical
wheel span. Iteration one of this query sequence is listed below:
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X-[VILMCFWYAG]-[KRHEDNQSTAG]-
[KRHEDNQSTAG]-[VILMCFWYAG]-[VILMCFWYAG]-
[KRHEDNQSTAG]-[KRHEDNQSTAG]-[VILMCFWYAG]-
X-[KRHEDNQSTAG]-[VILMCFWYAG]

As mature bacteriocins are typically located near C-termini
of holoproteins, search parameters included a “X(0.30)>”
logical operator to restrict results to the final 30 residues of
target proteins.

Physicochemical Parameter Determination
Retrieved datasets were subjected to batch analysis to compute
physicochemical parameters. The isoelectric point (pI) of
individual sequences was determined using ExPASy (https://
web.expasy.org/compute_pi/), while the hydrophobic moment,
mean hydrophobicity, net charge (K and R [+1], H [+0.5],
D and E [−1]) and K and R residue frequency (NK /NK+NR)
were determined using Python programs coded for this purpose.
Residue frequency analysis was carried out using the Sequence
Manipulation Suite in Protein Stats (https://www.bioinformatics.
org/sms2/).

Genomic Operon Characterization
To probe for unforeseen or novel bacteriocins, genomic regions
surrounding uncharacterized hits were analyzed. A total of
20,000 base pairs (10,000 each upstream and downstream) from
search hit sequences were scored for the presence of typical
bacteriocin operon genes (e.g., ABC transporters, immunity
proteins, pheromones). Sequences consistent with bacteriocin-
operon genomics signatures were prioritized for further study.

Design of the BACIIα Algorithm
Multiple structural elements may impact antimicrobial activity
of host defense peptides, including biochemical features such
as sequence motifs and electrostatic charge. However, of key
importance to overall antimicrobial function is how these
physicochemical properties are distributed in 3-dimensional
space. To improve specificity and probe for membrane-
active amphipathic α-helical structures which are important
for membrane permeabilization and antibacterial activity,
sequences retrieved from 1◦ searches were subjected to
further computational screens collectively comprising the
BACIIα algorithm:

Amphipathic Helix Motif

The BACIIα sequence formula returns hits based on their
sequence alignment. To assess 3-dimensional patterns, hit
sequences were assessed using a recently-identified tool that
identifies core signatures of α-helical antimicrobial peptides
[termed the α-core; (11)]. This analysis enabled spatial
patterns of residues encompassed in the helical domains of
retrieved proteins.

Physicochemical Profile

Proteins were also scored for intrinsic physicochemical
parameters including: electrostatic charge [Q]; hydrophobic
moment [µH]; mean hydrophobicity [H]; isoelectric point [pI];
and lysine-to-arginine ratio (NK /NK+NR). These analyses were

performed using Python algorithms specifically created for this
study. Hydrophobicity values were derived using the Fauchère
and Pliska octanol-water interface scale (16). PI was calculated
using the ExPASy Compute pI/MW tool https://web.expasy.org/
compute_pi/).

Machine-Learning Validation
To further characterize the datasets retrieved by the BACIIα
formula, a previously developed support vector machine (SVM)-
based classifier (12–14) was used to screen the obtained
sequences for antimicrobial activity. Briefly, the SVM classifier
was trained to optimally partition known α-helical sequences
present in the Antimicrobial Peptide Database [APD, http://
aps.unmc.edu/AP/main.php; (17)] from decoy peptides with
no reported antimicrobial activity. The SVM generated 12
descriptors from the peptide sequence and output a score
σ specifying the distance of the peptide from the 11-
dimensional hyperplane separating antimicrobial and non-
antimicrobial sequences. Using small-angle X-ray scattering
(SAXS) experiments, the σ scores were found to correlate with the
ability to generate NGC by α-helical test sequences (12). Thus, a
large, positive σ score correlates with the ability to induce NGC
in membranes, whereas a negative σ score indicates a lack of
NGC activity. This membrane curvature feature is characteristic
of antimicrobial peptides that have cell membrane-permeating
functions (12–14). Sequences retrieved from the α-core search
tool were screened using this algorithm, and σ scores calculated.
Spearman correlations were quantified between σ and α-core
metrics using Mathematica software (https://www.wolfram.com/
mathematica/online/).

Synthesis of Prototypic Bacteriocin
Candidates
Select putative bacteriocin sequences were commercially
synthesized (BioMatik, https://www.biomatik.com/) at a 100mg
scale. All sequences were authenticated for mass and amino
acid composition and purified using RP-HPLC to >98%
purity. Lyophilized peptides were reconstituted with double-
distilled and deionized water (ddIH20) and stored in aliquots
at−20◦C.

Antimicrobial Assay
Antimicrobial assays of putative bacteriocins were performed
using a well-established radial diffusion method at pH 5.5 (a
surrogate for contexts of serum or acidic phagolysosomes) or
7.5 [a surrogate for bloodstream context; (18)]. These peptides
were assayed for antimicrobial activity against a panel of
human pathogens paired for susceptibility (S) or resistance
(R) phenotypes: Gram-positive Staphylococcus aureus [ISP479C
[S], ISP479R [R]; (19)]; Gram-negative Salmonella typhimurium
[MS5996s [S], MS14028; (20)], Pseudomonas aeruginosa (PA01
[R]), Acinetobacter baumanni (17,928; [R]) and the fungus
Candida albicans [36082S [S] or 36082R [R]; (21)]. In brief,
logarithmic-phase organisms were inoculated (106 CFU/ml)
into buffered agarose, and poured into plates. Peptides (10
µg) were introduced into wells in the seeded matrix, and
incubated for 3 h at 37 ◦C. Nutrient overlay medium was
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FIGURE 1 | Components and Process of the BACIIα Algorithm.

applied and assays incubated at 37 or 30◦C for bacteria or
fungi, respectively. Zones of inhibition were quantified after 24 h
incubation. Independent experiments were repeated a minimum
of three times, and assessed by parametric analysis for statistical
significance (22).

RESULTS

Defining the BACIIα Probe Sequence
Formula
A consensus formula consistent with the vast majority
of known Class II (a-d) bacteriocins was identified and
used to probe protein databased (Figure 1). Conserved
residues in the signal peptide domain were used to generate
a 12 residue consensus element comprising the formula:

−12 − 11 − 10 − 9 − 8 − 7 − 6 − 5 − 4 − 3 − 2 − 1

[LI]−[KREDNQSTYH]−X−[KREDNQSTYH]−X−[MLV]−X−X−[IVLT]−X−G−G

Notably, several positions within this formula were conserved
predominantly at the level of physicochemical properties
(positions −9 and −11). These positions are represented
by degenerate search terms reflecting the propensity for a
polar residue at these positions. Using this BACIIα probe
sequence formula, a primary computational pattern search
of the UniProtKB/Swiss-Prot and TrEMBL databases yielded
a total of 3,050 sequences. Of the characterized sequences
(706), the following bacteriocin-related classes were represented:

TABLE 1 | Retrieved sequences using BACIIα algorithm by stage of study.

Group Signal peptide

search

% Amphipathic

pattern search

%

Characterized sequences

Bacteriocins 376 53 308 82

Competence enhancing

peptides

129 18 6 2

Pheromones 7 1 1 0.3

Autoinducing peptides 12 2 8 2

Other 182 26 52 14

Total characterized

Sequences

706 – 375 –

bacteriocins (53%); competence enhancing peptides (18%); auto-
inducing peptides (2%); and pheromones (1%) (Table 1).

Collectively, 74% of known characterized sequences were
bacteriocin or bacteriocin-related sequences.

Application of the BACIIα Algorithm
Applying the BACIIα algorithm, the total number of high-
priority sequences was 1,563. Among the characterized sequences
(375), 82% were bacteriocins and 4% included other bacteriocin-
related sequences (Table 1). Hence, application of the BACIIα
algorithm increased specificity for bacteriocins from 53 to 82%.
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TABLE 2 | Bacteriocin peptides retrieved by multi-component formula search.

Class Peptide Organism

IIa Acidocin

Avicin

Carnobacteriocin

Curvacin

Divergicin

Enterocin

Leucocin

Mundticin

PapA

Pediocin

Piscicolin

Plantaricin

Sakacin

8912, LF221B, M

A

A, B2, BM1

A

750

B, 1071A/1B, CRL35, C2, NKR-5-3

A, A-Qu 15, B, C, K, N, Q

KS, L

PA-1, AcH

126

A, F, J, 1.25 beta, NC8, c81F, S

A, D98c, P, T, X

Lactobacillus acidophilus

Enterococcus avium (Streptococcus avium)

Carnobacterium maltaromaticum

Lactobacillus curvatus

Carnobacterium divergens (Lactobacillus divergens)

Enterococcus faecium

Leuconostoc gelidum, Leconostoc carnosum,

Enterococcus pallens ATCC BAA-351

Listeria aquatica FSL S10-1188

Pediococcus acidilactici

Carnobacterium maltaromaticum

Lactobacillus plantarum

Lactobacillus sakei

IIb Amylovorin

Bacteriocin

Brevicin

Gassericin

Lactobin/Cerein

Lactocin

Lactacin F

L alpha, L beta, L471

GatX, BacSJ2-8

925A T A/7B

705 alpha, 705 beta

LafA, LafX

Lactobacillus amylovorus

Streptococcus pneumoniae

Lactobacillus brevis

Lactobacillus gasseri

Streptococcus australis ATCC 700641

Lactobacillus curvatus

Lactobacillus johnsonii

IId Lactococcin

Mesentericin

Weissellicin

A, A1, G beta, Q beta

B105, Y105

L

Clostridium perfringens (strain SM101 / Type A)

Leuconostoc mesenteroides

Weissella hellenica

Inclusion of bacteriocin-related peptides increased specificity to
86% within the subset of proteins having known functions. The
resulting dataset included members from nearly all Class IIa and
IIb bacteriocin families within the UniProtKb database (Table 2).
In particular, the formula identified representatives from ∼90%
of Class IIa families and 88% of Class IIb families. Class
IId (other) structural class bacteriocins were less predominant
(13%). As expected, representatives from the cyclic, Class IIc
bacteriocin group, which do not contain a helical element, were
not retrieved with this search. For many bacteriocins more than
one representative of each family was retrieved; and in some
cases a large number of family members were returned, such as
for the Class IIb Lactobin family where more than 70 members
were identified.

Origin Species Classification
The majority of sequences (bacteriocins and related) retrieved
with the BACIIα formula originated from Gram-positive
Firmicutes (74% [50% Lactobacillus spp.; 14% other
Bacillus spp.; 10% Clostridium spp.]) and other Gram-
positive organisms (Actinobacteria [2%]). Sequences were
also retrieved from a number of Gram-negative organisms
(Table 3). Additionally, a number of putative bacteriocins were
retrieved from organisms for which bacteriocins have yet to
be characterized.

Physicochemical Properties of Known
Bacteriocins
Known bacteriocins retrieved using the BACIIα formula
were analyzed for multiple physicochemical properties. The
amphipathic spans of the 308 identified bacteriocins had
the following average values: charge (Q), +1.1; hydrophobic

TABLE 3 | Source organisms of retrieved dataset proteins.

Organism Phylum % Class Class % Subclass

Gram-Positive

Firmicutes 74

Lactobacilli 50

Other bacilli 14

Clostridiae 10

Other 2

Actinobacteria 2

Gram-Negative Proteobacteria 24

Bacteroides 13

Proteobacteria 9

Cyanobacteria 2

Chlamydiae <1.0

Planctomycetia <1.0

Non-gram staining <1.0

Mollicutes <1.0

Unclassified <1.0 <1.0

moment (µH), 0.33; and mean hydrophobicity (H), 0.46
(Table 4). The lysine to arginine ratio (NK /NK+NR)
indicated lysine was preferred over arginine at an ∼2:1
ratio, particularly at positions 1, 8 and 15, nearer the termini
of helices. Moreover, as the NK /NK+NR ratio increased over
amphipathic spans, so did net hydrophobicity (Figure 2).
This finding suggests that lysine propensity is compensated
by increasing hydrophobicity in bacteriocins or other
HDPs (11, 23).
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TABLE 4 | Biophysical properties of retrieved dataset proteins.

Group n % µH Q NK/NK+NR H PI

Known bacteriocins 308 22 0.33 (±0.2) 1.1 (±1.5) 0.71 (±0.3) 0.46 (±0.1) 6.8 (±2.3)

Bacteriocin-related* 15 1 0.51 (±0.1) 1.9 (±1.9) 0.85 (±0.9) 0.37 (±0.2) 8.5 (±2.3)

Non-bacteriocin 52 4 0.40 (±0.1) 0.4 (±1.5) 0.42 (±0.4) 0.43 (±0.2) 7.1 (±2.4)

Uncharacterized 1038 73 0.39 (±0.2) 0.1 (±1.5) 0.68 (±0.4) 0.41 (±0.4) 6.4 (±2.1)

*Includes pheromones, competence-inducing peptides and others.

µH, hydrophobic moment; Q, charge; NK/NK+NR relative percentage of lysine vs. arginine; H, hydrophobicity; PI, isoelectric point. Values are presented ± standard deviation.

FIGURE 2 | NK/NK+NR Ratio and Mean Hydrophobicity in Study Molecules.

Percentage of lysine (NK ) relative to arginine (NR) expressed as (NK/NK+NR)

vs. hydrophobicity (H) in study αHDPs Preference of lysine as compared to

arginine is reflected in an increased value of H for peptides capable of

generating NGC in membranes as predicted by the saddle-splay rule.

Global Residue Frequencies
Residue frequency analyses of known bacteriocins revealed
an enrichment in certain residues. In particular, residues
glycine and alanine collectively represented more than one
third (35%) of all amino acids (Figure 3A). Of the charged
residues, the basic amino acid lysine (5%) was the most
abundant. Other cationic (R) and anionic (D, E) residues were
represented at a lower frequency overall (∼3%). The aliphatic
(non-polar) hydrophobes, leucine, isoleucine or valine had
equivalent frequencies (6–7%), and occurred nearly twice as
often as the aromatic hydrophobes phenylalanine, tryptophan or
tyrosine (2.4–3.5%).

Positional and Spatial Residue Frequencies
The BACIIα formula identifies hits based on alignment to
its sequence formula. Three-dimensional assessment is also
informative regarding positional and spatial localization of
residues along the identified amphipathic spans (Figure 3B).
Glycine and alanine, the most abundant residues, were
distributed across the amphipathic spans and found on both
hydrophobic and hydrophilic facets with a similar frequency. On
the polar facet, the next most abundant residues were the cationic
residue lysine and neutral hydrophilic residues threonine and
serine. On the non-polar facet, the most abundant residues were
the aliphatic hydrophobes, valine, leucine and isoleucine.

Analysis of Uncharacterized Sequences
Beyond retrieving known bacteriocins, the BACIIα algorithm
identified a large number (1,038) of as yet uncharacterized
sequences. To assess this sequence dataset based on
physicochemial properties of known bacteriocins, we
applied a mathematical scoring system of factors inherent
to membrane permeabilizing, microbicidal sequences (11).
Hydrophobic moment (µH) and net charge (Q), represented by
a combinatorial index µH∗Q (HMQ), were quantified. These
data were binned and values representing the top 25th and 50th
highest HMQ quartiles (HMQ25 and HMQ50) were derived.
Application of these thresholds revealed a significant portion
of the uncharacterized dataset (n = 208, HMQ25; n = 319,
HMQ50) are likely to have antimicrobial properties (Table 5).
Therefore, more than 700 (>74%) of the uncharacterized
molecules retrieved by the BACIIα algorithm are putative
novel bacteriocins.

Membrane Active Propensity
Search hits were assessed for membrane active propensity
characteristic of antimicrobial peptides (Table 5). The sequence
dataset was evaluated using a validated SVM machine-
learning classifier for sequences capable of generating negative
Gaussian curvature in model membranes (12–14). The SVM
algorithm integrates specific physicochemical parameters such
as amphipathicity (µH), charge (Q), and sequence-order. The
output score, σ, quantifies confidence of this classification;
high positive σ values have high probability of NGC which
is characteristic of membrane permeabilizing, antimicrobial
properties. The known bacteriocins retrieved were predicted
to be membrane active, with average σ scores of 0.80
(HMQ25) and 0.58 (HMQ50). Likewise, a high percentage
of the dataset encompassing unknown proteins was also
predicted to have membrane permeabilizing activities with
σ scores of 0.80 (HMQ25) and 0.65 (HMQ50). To test the
accuracy of the BACIIα retrieved datasets relative to the
SVM classifier, Spearman correlations were performed to
assess monotonic ranking. This assessment revealed highly
significant correlations (R = 0.46–0.74; range, P = 2.5 ×

10−9 to 6.0× 10−44) between datasets generated by the two
methods (Figure 4). This strong congruence suggests the BACIIα
algorithm accurately detects unforeseen antimicrobial sequences
(e.g., novel bacteriocins) and converges with the SVM on
attributes conferring microbicidal properties.
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FIGURE 3 | Positional and Spatial Amphipathic Residue Frequency. (A) Relative amino acid percentages are displayed for bacteriocins. (B) Percentages of individual

residues associated with either the polar or non-polar search term group are represented as various color blocks. Residues above the x-axis are associated with the

polar residue group and residues below the axis are found on the.

Selection of Bacteriocin Candidates
Uncharacterized sequences representing putative novel
bacteriocins were selected based on high BACIIα algorithm
scores and genomic analyses. Among these, sequences from
phylogenetically distinct organisms were chosen to assess
correlates of source and target organisms: (SwissProt accession
[species; study name]): A0RKV8 (Bacillus thuringiensis; peptide-
1); D6E338 (Eubacterium rectale; peptide-2); B3ZXE9 (Bacillus
cereus; peptide-3); R2S6C2 (Enterococcus pallens; peptide-4). At a
genome level, peptides 1–4 localized to bacteriocin-like operons
containing bacteriocin-associated genes (Figure 5). All were

localized within 20 kb of an ABC transporter protein and ABC
transporter accessory genes, such as C39 peptidases and ATP
binding proteins. Candidate bacteriocins also localized within
gene loci characteristic of known bacteriocin sequences and/or
pheromones. In some cases, prototypic bacteriocin immunity
peptides also localized to putative bacteriocin operons.

Antimicrobial Activity of Bacteriocin
Candidates
Selected peptides 1–4 (Figure 6) were assessed for antimicrobial
activity against a panel of human pathogens (Figures 7A,B). All
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TABLE 5 | Quartile analysis of dataset protein properties vs. SVM scoring.

Original n Subset n % µH Q NK/NK+NR H PI σ

Category Total µH*Q > 1.0 SVM

Known bacteriocins 308 43 14 0.52 3.2 0.68 0.38 8.68 0.90

Bacteriocin-related 15 9 60 0.56 3.4 0.91 0.29 9.98 0.64

Non-bacteriocin 52 10 19 0.52 2.7 0.27 0.34 8.18 0.72

Uncharacterized 1,038 85 8 0.53 3.2 0.56 0.33 8.67 0.91

Category Total µH*Q > 0.50 SVM

Known bacteriocins 308 79 26 0.46 2.6 0.69 0.42 7.9 0.80

Bacteriocin-related 15 10 66 0.57 3.2 0.92 0.32 9.6 0.63

Non-bacteriocin 52 15 29 0.50 2.4 0.38 0.35 8.1 0.65

Uncharacterized 1,038 208 20 0.49 2.3 0.63 0.36 7.6 0.80

Category Total µH*Q > 0.25 SVM

Bacteriocins 308 161 52 0.36 2.1 0.75 0.42 7.2 0.58

Bacteriocin-related 15 12 80 0.52 2.8 0.76 0.35 9.1 0.54

Non-bacteriocin 52 16 31 0.50 2.3 0.4 0.35 7.9 0.67

Uncharacterized 1,038 319 31 0.44 1.9 0.65 0.38 7.2 0.65

The µH*Q values represent different percentile cutoffs for peptide groups (dark orange, >1.0; middle orange; >0.50; and light orange, >0.25). Definition legend: µH–hydrophobic

moment; Q–charge; NK /NK+NR relative percentage of lysine vs. arginine; H–hydrophobicity; PI–isoelectric point.

A B

C D

FIGURE 4 | Spearman Correlations Multi-Component BACIIα Formula and ML Classifier. Correlations were carried out to assess the predictive accuracy and

monotonic ranking between the BACIα algorithm and the SVM classifier scored peptide sequences. Plots compare HMQ (BACIIα predictive) vs. sigma (classifier

probability) scores for study peptides in the top 25th (HMQ25) and 50th (HMQ50) percentiles. The bacteriocin groups (A,B) display scores for identified bacteriocins.

The uncharacterized groups (C,D) reflect those peptides which are also predicted to be membrane permeabilizing by the two protocols. All comparisons were found

to be significant given a cutoff value of P ≤ 0.05. Correlations were carried out using Mathematica (Wolfram).
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FIGURE 5 | Genomic Environment Surrounding Putative Bacteriocins. Analysis of 20 kb region surrounding putative bacteriocin genes. Red—putative bacteriocin;

gray—hypothetical proteins; dark blue—C39 bacteriocin processing peptidase; medium blue—exinuclease ABC subunit; light blue—ABC transporter, ATP binding

protein; green other enzyme; purple—polymerase related protein.

four putative bacteriocins possessed microbicidal activity against
Gram-positive (S. aureus), Gram-negative (S. typhimurium, P.
aeruginosa, A. baumanni) and a fungus (C. albicans). While
active against all organisms tested, peptides 1–4 had generally
greater activity vs. Gram-negative pathogens. The relative activity
of peptides 1–4 was greater at pH 7.5 than at pH 5.5. Notably,
peptide three lost nearly all activity against the Gram-positive
pathogen S. aureus at pH 5.5. Beyond individual efficacy, cluster
analyses reveal patterns of peptide efficacy against organism

groups and as influenced by pH. For example, at pH 7.5, peptide
one was relatively less active than the other peptides against all
organisms except Ps. aeruginosa (Figures 7C,D).

DISCUSSION

Class II bacteriocins are typically small, cationic peptides
of bacterial origin that often contain a conserved signal
sequence important for downstream processing of the mature
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FIGURE 6 | (A) Sequence Analysis and Antimicrobial Activity of Putative Bacteriocins. Putative bacteriocins synthesized for assessment of antimicrobial activity.

Arrows indicate hydrophobic moment and direction. (A) Peptide 1: A0RKV8 (+4.5), PI−10.7; Bacillus thuringiensis (G+); FKVIVTDAGHYPREWGKQLGKWIGSKIK

(24); (B) Peptide 2: D6E338 (+4), PI 10.3; Eubacterium rectale; KRNYSIEKYVKNYlDFIKKAIDIFRPMPI (25); (C); Peptide 3: B3ZXE9 (+6), PI−10.9; Bacillus cereus;

KTIATNATYYPNKWAKSAGKWIASKIK (26). (D) Peptide 4: R2S6C2 (+4), PI−10.5; Enterococcus pallens, QYDKTGYKIGKTVGTIVRKGFEIWSIFK (24).

peptide. This leader domain is characterized as having a
highly conserved double-glycine motif essential for proper
cleavage of the bacteriocin precursor and maturation of the
active mature peptide (4, 6, 27). Prior reports have made
use of the signal peptide consensus to search for unidentified
bacteriocin sequences in published genomic or proteomic
sequence databases (28). However, these studies largely employed
a very strict formulae [e.g., LSX2ELX2IXGG; (29)], often
selecting only the most abundant residue at a position as a
component of their search term. Hence, results conveyed a
high degree of specificity, but had very limited sensitivity to
identify novel bacteriocin molecules or classes within emerging
proteomic databases.

In the present study, an alignment of more than 200
prototypic class II bacteriocins was carried out to generate
an inclusive consensus formula. A primary component of
this BACIIα formula was a convergent signal sequence. In
addition to the C-terminal double glycine motif in this signal
domain, the consensus formula included a strategic design to

account for specific residues in key positions. For example,
it allowed for inclusion of any polar residue at positions −9
and −11 of the signal peptide backbone. Further, a specific
set of hydrophobic residues was allowed at positions −4 and
−7. These features encompass the class II bacteriocin leader
consensus originally identified by Nes and colleagues (6). The
resulting consensus signature formula, BACIIα, represents an
innovative probe for unforeseen bacteriocins. This formula
retrieved members from nearly all known classes of type II
bacteriocins, and the vast majority (∼90%) of Class IIa and IIb
linear bacteriocins.

The BACIIα formula was used as the first step in the
multifactorial BACIIα search algorithm designed to discover
novel bacteriocins. To improve specificity for membrane-
active sequences characteristic of antimicrobial activity, the
BACIIα algorithm integrated a strategy to probe for α-
helical domains in retrieved peptides (11). The current
results are in concordance with Class IIa and IIb bacteriocin
propensity to adopt α-helical conformation in membrane
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FIGURE 7 | Microbicidal activity of study test peptides vs. a panel of prototypic gram-positive (S. aureus), gram-negative (S. typhimurium, P. aeruginosa, A.

baumannii) and fungal (C. albicans) pathogens at two pH representing: (A)–bloodstream (pH 7.5); or (B)–phagolysosomal/abscess (pH 5.5). Data represent

experiments independently performed a minimum of n = 3 times. Error bars represent the standard error of the mean. All study peptides were found to have

statistically significantly greater activity (P < 0.01) than the dilution vehicle (ddH20) in at least one pH condition. Note the differential pH dependent efficacy of Peptide 3

against S. aureus. The relative efficacies of study peptides against representative organisms at pH 7.5 or pH 5.5 are shown in the cluster analyses in panels (C,D),

respectively (red, relatively greater efficacy; blue, relatively lesser efficacy).
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mimetic environments (4). One notable exception was for
the Class IIa pediocins, which were retrieved by the BACIIα
formula, but not with the α-helix screen. This result would
be expected, as many members of the pediocin-like bacteriocin
group form a hairpin-like structure at the C-terminus (26).
Given the high efficiency and specificity with which it captures
bacteriocins, the BACIIα sequence formula and ensuing BACIIα
algorithm provide a comprehensive strategy to reveal previously
unrecognized bacteriocins. For example, the BACIIα search
algorithm discovered putative bacteriocin sequences that were
not returned using existing bacteriocin identification tools (e.g.,
BAGEL3; data not shown). As BAGEL3 employs an internal
ORF calling component, its limits may reflect a difficulty of
identifying the very small ORFs (≤ 0.5 kb) that are typical of
bacteriocins (24).

To support results of the BACIIα algorithm, retrieved
bacteriocin candidates were analyzed using a validated SVM-
learning classifier to score membrane-active propensity
(12–14). The SVM analyses confirmed that the vast majority
of proteins prioritized by the BACIIα algorithm were likely
to have a propensity for generating NGC in membrane
environments and be antimicrobial in nature. This congruence
was supported by regression analyses that yielded robust
statistical significance. Thus, the BACIIα and SVM protocols,
which derive from highly divergent knowledge-based and
machine-learning strategies, converge on the same set
of bacteriocin candidates. As the SVM was previously
shown to generate high σ values for eukaryotic HDPs, the
current findings further suggest that core features integral to
antimicrobial activity are conserved in HDPs from eukaryotic
and prokaryotic hosts.

Residue frequency analysis of the BACIIα dataset revealed that
alanine and glycine are strongly preferred among amphipathic
spans in bacteriocins (>33% of residues). These residues
are distributed to both the polar and non-polar facets
in these proteins. Such findings lend support to a new
hypothesis regarding the mechanism by which α-helical HDPs
may limit self-toxicity. Specifically, an abundance of small,
sterically-unrestrained residues with a high degree of rotational
freedom (e.g., glycine and alanine) may serve to keep α-helical
antimicrobial peptides in an unstructured and thus non-toxic
conformation in aqueous environments. Only when adopting
their amphipathic structure in context of the hydrophobic milieu
of a target membrane do they become cytotoxic. The fact
that HDPs typically have higher affinity for prokaryotic vs.
eukaryotic membrane constituents enhances this antimicrobial
specificity. Support for this hypothesis is provided by: (1) the
abundance of glycine, and to a lesser extent alanine, in α-
helical HDPs of many organisms (11); (2) structural studies
(25, 30–32) finding that α-helical HDPs are often unstructured
in aqueous solutions, and only adopt α-helical conformation in
membrane environments; and (3) propensity for α-helical HDPs
to target cardiolipin or phosphatidylglycerol moieties common
to prokaryotic membranes, with less affinity for phospholipids
or sterols more common to eukaryotic membranes. In the
current study, the abundance of glycine and alanine in retrieved
sequences suggests these peptides may also utilize a similar

mechanism to limit self-toxicity. Prokaryotes also express other
safeguards to protect themselves from the very bacteriocins they
produce. For example, organisms which make bacteriocins also
produce immunity proteins, encoded within the bacteriocin-
producing operon, which help to minimize self-toxicity (4,
8). In this respect, bacteriocins made by one bacterium can
preferentially kill other competitive or pathogenic bacteria or
fungi. Therefore, bacteriocins have a plausible role in host
defense against infection, be it the bacterium producing the
bacteriocin, or the host in which it resides. These concepts form a
fundamental tenet for the protective roles of the beneficial human
microbiome (33, 34).

It was also of interest that neutral serine and threonine
residues were more highly represented than many other
uncharged (Q, N) and/or charged (R, H, D, E) polar
residues. This finding reflects prior observations of a similar
evolutionary preference for these small uncharged residues in
eukaryotic HDPs (35). While the reason for this propensity
is unknown, such residues may act as neutral “spacers” to
aid incorporation of more biochemically reactive polar and
charged residues within amphipathic HDPs. Also, given the
availability of their hydroxyl moiety for H-bonding, serine and
threonine residues may facilitate miscibility in aqueous vs. lipid
environments (35, 36).

The current study also provided information regarding
the global biophysical properties found within amphipathic
bacteriocins. As similar studies have been carried out in
eukaryotes (11), we were interested in whether the bacteriocin
amphipathic domains differed substantively from those found
in higher organisms with phylogenetically advanced immune
systems, or whether key physicochemical parameters are
essentially immutable (37–39). The bacteriocin sequences
identified in the current study exhibited a net cationic charge,
reflecting a property that is nearly universal in microbicidal
HDPs of eukaryotes. Cationicity is thought to be important
mechanism of selective HDP affinity for anionic membrane lipids
(e.g., phosphatidylserine, cardiolipin and phosphatidylglycerol),
which are enriched in prokaryotes, and inward rectifying net
electronegative potential of many bacterial membranes (40–
42). The bacteriocin sequences were moderately cationic with
an average net charge of +1.1 (n = 308). By comparison, a
parallel study using the same amphipathic search tool identified
a somewhat higher net charge in eukaryotic HDPs (Q =

+2.0; n = 907; 11). This difference in net charge was also
reflected in the relative percentage of cationic residues within
bacteriocin amphipathic spans (K+R = 8%) vs. those in
eukaryotic HDPs (K+R = 16%). The biological reasons for the
slightly lower charge density in bacteriocins are not known,
but ostensibly could reflect the potential for a greater degree
of compartmentalization of HDPs in eukaryotic cells, such that
charged and potentially toxic microbicidal sequences are safely
stored until targeted release.

Similarly, charge composition analyses revealed that of
the cationic residues, lysine was preferred over arginine in
the amphipathic spans of prokaryotic bacteriocins in the
current study (K:R = 2:1), and in eukaryotes (K:R = 5:1)
(11). Importantly, lysine and arginine residues interact with
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membrane phospholipid head groups in fundamentally different
ways. The single ε-amino group of lysine can only form a
monovalent hydrogen bond with one membrane phospholipid
headgroup at a time. In contrast, the guanidinium amino
moiety of arginine can form multiple hydrogen bonds with
phospholipid headgroups simultaneously. These differences
lead to alternate membrane perturbation events, with arginine
generating negative Gaussian curvature (NGC) oriented
to achieve both positive and negative curvature along two
perpendicular directions, whereas lysine generates only
negative curvature. These biophysical constraints are supported
by studies that have found that lysine is less efficient at
generating negative Gaussian curvature (NGC), and pore-
like structures, than arginine (12–14, 23). Notably, many
lysine-rich HDPs have a net hydrophobic propensity, a
feature that may compensate for this reduced permeabilizing
efficiency, in a phenomenon known as the “saddle-splay”
rule (23).

The observed preference for lysine over arginine common in
the amphipathic spans of HDPs of prokaryotic and eukaryotic
organisms suggest a crucial biophysical constraint within α-
helical HDPs enabling membrane permeabilization. Several
concepts support this hypothesis, including: (1) lysine-rich
domains may be more energetically favorable for the transition
from random coil to α-helical structures, as is common
among these peptides; (2) reduced arginine frequency may
make amphipathic helices less toxic toward “self ” [relative to
prokaryote (e.g., bacteriocin) or eukaryote (e.g., defensin) host]
membranes; (3) a specific K/R ratio may facilitate a interaction
with a cognate receptor or lipid II/LPS, and avoid off-target
effects on ion channels; and (4) this ratio may confer some
alternate evolutionary advantage.

Lastly, the BACIIα formula and algorithm retrieved a large
number of sequences it classified as bacteriocins, but are as yet
uncharacterized. As a proof-of-concept, several prototypes of
these unknown sequences prioritized based on logical selection
criteria were synthesized and assessed for antimicrobial activity.
Notably, each of these peptides exerted activity against a broad
spectrum of human pathogens, with generally greater activity
vs. Gram-negative pathogens. In addition, each of the peptides
demonstrated differential activity in pH conditions simulation
bloodstream vs. abscess / phagolysosomal contexts. Historically,
bacteriocins have been generally viewed as having relatively
narrow spectrum activity, and greatest potency against closely-
related Gram-positive organisms. However, more recent studies
show that bacteriocins have broad spectra, with microbicidal
activity against Gram-negative and fungal organisms as well
(43, 44). It is interesting that HDPs from a variety of
prokaryotes and eukaryotes can be active against fungi. There
are at least two plausible targets of HDPs in fungi: (1) fungal
envelope and/or cell membrane; and (2) mitochondria, which
in effect are considered ancestral prokaryotic endosymbionts.
With respect to the former, mechanisms for HDP targeting of
fungi are believed to be related to unique components such
as sphingolipids, glycolipids, phosphatidic acid and ceramides

(45, 46). Considerable data suggest HDPs may target specific
proteins integral to the fungal surface (47, 48). With respect
to mitochondria, it is known that certain eukaryotic HPDs
such as Histatin-5 target energized fungal mitochondria (49).
Moreover, our previous work has demonstrated that HDPs
can induce regulated cell death mechanisms leading to fungal
cell death (50). These latter reports are in alignment with our
current findings.

In summary, development of the BACIIα search formula and
algorithm allowed for high-dimensional and rapid screening of
proteomic databases to discover putative new bacteriocin species.
Moreover, this process enabled characterization of essential
features of prokaryotic bacteriocins, revealing fundamental
similarities and differences with respect to analogous eukaryotic
HDPs. These results offer key insights into essential, immutable
features, as well as plasticity of evolution of HDPs from
prokaryotes and eukaryotes. In this regard, such knowledge
should improve our understanding of host defense against
infection, and provide important templates for development of
innovative anti-infectives.
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