UC Davis UC Davis Electronic Theses and Dissertations

Title

Development of Clinical Decision Support Tool for Management of Patients Taking Newer Oral Anticoagulants During Dental Procedures

Permalink https://escholarship.org/uc/item/6cg5p05s

Author Narina, Deepthi

Publication Date 2021

Peer reviewed|Thesis/dissertation

Development of Clinical Decision Support Tool for Management of Patients Taking Newer Oral Anticoagulants During Dental Procedures

Ву

DEEPTHI NARINA THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Health informatics

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Prabhu RV Shankar, Chair

Mark Carroll

Nicholas R Anderson

Committee in Charge

2021

Contents

Abstract	iii
Introduction	1
Background and Theoretical framework	2
Guide to discontinuation of dabigatran before elective surgery:	4
Case scenarios	5
Workflows	8
Dentist office workflow	8
Physician office rule execution workflow	8
Method	9
Clinical Decision Support tool	9
Testing CDS Artifact	16
Results	18
Discussion	19
Summary	21
References	21

Table of figures

Figure 2: Low-risk scenario6Figure 3: High-risk scenario7Figure 4: Dentist office workflow8Figure 5: Physician office workflow8Figure 6: Inclusion Element-Medication request11Figure 7: VSAC authentication11Figure 8: Value set for Medication12Figure 9: Code for Medication12Figure 10: Observation-Creatinine clearance Code13Figure 11: Condition-Chronic Kidney Disease Subpopulation13Figure 12: Dental Procedure Code14Figure 13: Creating Recommendations for Subpopulations15Figure 14: CQL16Figure 15: Synthea JSON file17Figure 16: Patient file uploaded in CDS authoring tool17Figure 18: Results19	Figure 1: Guideline for management	4
Figure 4: Dentist office workflow8Figure 5: Physician office workflow8Figure 6: Inclusion Element-Medication request11Figure 7: VSAC authentication11Figure 8: Value set for Medication12Figure 9: Code for Medication12Figure 10: Observation-Creatinine clearance Code13Figure 11: Condition-Chronic Kidney Disease Subpopulation13Figure 12: Dental Procedure Code14Figure 13: Creating Recommendations for Subpopulations15Figure 14: CQL16Figure 15: Synthea JSON file17Figure 17: CQL Execution18	Figure 2: Low-risk scenario	6
Figure 5: Physician office workflow8Figure 6: Inclusion Element-Medication request11Figure 7: VSAC authentication11Figure 8: Value set for Medication12Figure 9: Code for Medication12Figure 10: Observation-Creatinine clearance Code13Figure 11: Condition-Chronic Kidney Disease Subpopulation13Figure 12: Dental Procedure Code14Figure 13: Creating Recommendations for Subpopulations15Figure 14: CQL16Figure 15: Synthea JSON file17Figure 17: CQL Execution18	Figure 3: High-risk scenario	7
Figure 6: Inclusion Element-Medication request11Figure 7: VSAC authentication11Figure 8: Value set for Medication12Figure 9: Code for Medication12Figure 10: Observation-Creatinine clearance Code13Figure 11: Condition-Chronic Kidney Disease Subpopulation13Figure 12: Dental Procedure Code14Figure 13: Creating Recommendations for Subpopulations15Figure 14: CQL16Figure 15: Synthea JSON file17Figure 16: Patient file uploaded in CDS authoring tool17Figure 17: CQL Execution18	Figure 4: Dentist office workflow	8
Figure 7: VSAC authentication11Figure 8: Value set for Medication12Figure 9: Code for Medication12Figure 10: Observation-Creatinine clearance Code13Figure 11: Condition-Chronic Kidney Disease Subpopulation13Figure 12: Dental Procedure Code14Figure 13: Creating Recommendations for Subpopulations15Figure 14: CQL16Figure 15: Synthea JSON file17Figure 16: Patient file uploaded in CDS authoring tool17Figure 17: CQL Execution18	Figure 5: Physician office workflow	8
Figure 8: Value set for Medication12Figure 9: Code for Medication12Figure 10: Observation-Creatinine clearance Code13Figure 11: Condition-Chronic Kidney Disease Subpopulation13Figure 12: Dental Procedure Code14Figure 13: Creating Recommendations for Subpopulations15Figure 14: CQL16Figure 15: Synthea JSON file17Figure 16: Patient file uploaded in CDS authoring tool17Figure 17: CQL Execution18	Figure 6: Inclusion Element-Medication request	11
Figure 9: Code for Medication12Figure 10: Observation-Creatinine clearance Code13Figure 11: Condition-Chronic Kidney Disease Subpopulation13Figure 12: Dental Procedure Code14Figure 13: Creating Recommendations for Subpopulations15Figure 14: CQL16Figure 15: Synthea JSON file17Figure 16: Patient file uploaded in CDS authoring tool17Figure 17: CQL Execution18	Figure 7: VSAC authentication	11
Figure 10: Observation-Creatinine clearance Code13Figure 11: Condition-Chronic Kidney Disease Subpopulation13Figure 12: Dental Procedure Code14Figure 13: Creating Recommendations for Subpopulations15Figure 14: CQL16Figure 15: Synthea JSON file17Figure 16: Patient file uploaded in CDS authoring tool17Figure 17: CQL Execution18	Figure 8: Value set for Medication	12
Figure 11: Condition-Chronic Kidney Disease Subpopulation13Figure 12: Dental Procedure Code14Figure 13: Creating Recommendations for Subpopulations15Figure 14: CQL16Figure 15: Synthea JSON file17Figure 16: Patient file uploaded in CDS authoring tool17Figure 17: CQL Execution18	Figure 9: Code for Medication	12
Figure 12: Dental Procedure Code14Figure 13: Creating Recommendations for Subpopulations15Figure 14: CQL16Figure 15: Synthea JSON file17Figure 16: Patient file uploaded in CDS authoring tool17Figure 17: CQL Execution18	Figure 10: Observation-Creatinine clearance Code	13
Figure 13: Creating Recommendations for Subpopulations15Figure 14: CQL16Figure 15: Synthea JSON file17Figure 16: Patient file uploaded in CDS authoring tool17Figure 17: CQL Execution18		
Figure 14: CQL16Figure 15: Synthea JSON file17Figure 16: Patient file uploaded in CDS authoring tool17Figure 17: CQL Execution18	Figure 12: Dental Procedure Code	14
Figure 15: Synthea JSON file17Figure 16: Patient file uploaded in CDS authoring tool17Figure 17: CQL Execution18	Figure 13: Creating Recommendations for Subpopulations	15
Figure 16: Patient file uploaded in CDS authoring tool17Figure 17: CQL Execution18	Figure 14: CQL	16
Figure 17: CQL Execution	Figure 15: Synthea JSON file	17
-	Figure 16: Patient file uploaded in CDS authoring tool	17
Figure 18: Results	-	
	Figure 18: Results	19

Abstract

Newer oral anticoagulants (NOAs) such as dabigatran etexilate, rivaroxaban, edoxaban, and apixaban are widely used these days as an alternative to warfarin for anticoagulation. Surgical procedures such as extraction are common during dental treatments and are often associated with bleeding. Hence, when treating patients taking anticoagulants clinicians must have a thorough knowledge of the pharmacology of these drugs for adequate management and prevention of any complications to their patients. Clinicians need to constantly update their knowledge as the NOA drugs have been newly introduced and studies regarding their use during dental procedures are only recently available in the literature and continue to evolve. The objective of this paper is to assist clinicians in providing dental care for patients taking these newer oral anticoagulants and are at risk of bleeding complications during dental procedures. In order to accomplish this, a Clinical Decision Support (CDS) system can be developed to allow clinicians to rely on, for any information on these drugs. Clinical decision rules and recommendations are provided to the clinicians in light of the most recently available knowledge.

Introduction

Anticoagulants are drugs that reduce the ability of blood to form clots and coagulate. These days, as patients using anticoagulants have widely increased, so are the number of newly discovered anticoagulants in the market [10]. Over the last 50 years, vitamin K antagonists such as warfarin were the most widely used anticoagulants and were considered as gold standard prophylaxis for reducing cerebrovascular strokes [9,11]. Recently, use of emerging newer alternatives such as dabigatran etexilate, rivaroxaban and apixaban, and edoxaban have been widely increased because of limitations of parentally administered heparin, no need for constant monitoring as for vitamin k antagonists like warfarin, few drug and food interactions, and a broader therapeutic margin [3,11,14]. While dabigatran etexilate is a direct thrombin inhibitor, rivaroxaban, edoxaban, and apixaban are factor Xa inhibitors [3]. They are widely used for anticoagulation in the management of diseases such as atrial fibrillation and venous thromboembolism [10,11]. Although few studies have documented the bleeding risk of these newer anticoagulants, there is no statistically significant evidence available on the risk of bleeding after dental procedures [1,9]. The mechanism of action, indications, interactions with other medications and food, safety profile, and management of adverse events, such as bleeding, of these newer anticoagulants continue to evolve. Dentists must be cautious while performing surgical procedures on patients taking these NOA medications [10]. Any alterations to the medication regimen must be carefully assessed and must be done after consulting the patient's physician [3].

1

Background and Theoretical framework

The newer orally administered anticoagulants are being used for prophylaxis and treatment of various diseases such as venous thrombosis and pulmonary embolism, thromboembolic complications associated with atrial fibrillation, prosthetic cardiac valve replacements, reduction of the risk of death, re-infarction, and thromboembolic events after myocardial infarction [3,10]. With the increased use of newer oral anticoagulants, dentists come across patients using these drugs almost on a daily basis. In dentistry and oral surgery, attention is required in the treatment of patients taking novel oral anticoagulants (NOAs) due to major concerns such as the risk of hemorrhage and the absence of a specific reversal agent (except for dabigatran etexilate) [1,10]. The patient's individual risk of bleeding, renal functionality, and complexity of surgical procedure is most important factors to be considered during surgical dental treatment of patients taking NOAs [10]. The patient's medical condition as well as other drugs taken by the patient that has significant anticoagulant or antiplatelet action influence the bleeding risk of a patient [11]. As enough data is still not available to establish an evidence base about ideal management of dental patients with NOA's, dentists have to deal with caution when performing procedures on patients using these newer anticoagulants [3,10]. According to the literature available now, for patients requiring simple dental extraction or minor oral surgery procedures, interruption of NOA is not generally necessary, while a higher control of bleeding and discontinuation of the drug (for at least 24 h) would be necessary before invasive surgical procedures, depending on renal functionality [3,10].

Factors that are considered as to be contributing factors for bleeding complications during and after a dental procedure are as follows [11]:

2

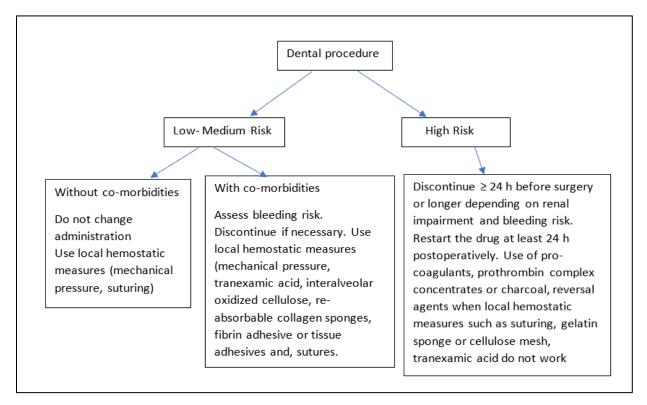
Medical condition	Chronic renal failure, Liver disease, advancing age, major heart problems, use of antiplatelet therapy, uncontrolled hypertension
Coagulation disorders	Hemophilia, Idiopathic thrombocytopenic purpura, Von Willebrand disease, Glanzmann disease, Factor V, VII, X, XI deficiency, Disseminated intravascular coagulation, Congenital platelet dysfunction
Drug usage	Oral anticoagulants and antiplatelet drugs, bone marrow suppressants, NSAIDs such as ibuprofen, aspirin, Drugs acting on nervous systems such as Carbamazepine, Selective serotonin reuptake inhibitors.

Table 1: Contributing factors for bleeding complications

The dental procedures that cause bleeding are classified in the following table as low risk and

higher risk, based on the risk of bleeding complications during and after the procedure is

performed [10,11].


Low to medium risk	High risk
Simple extractions (1-3 teeth)	Complex extractions involving more than 3
	adjacent teeth
Incision and drainage of intraoral cysts	Procedures requiring Flap surgeries and
	ostectomy
Root surface instrumentation and subgingival	Gingival recontouring
scaling	
Direct or indirect restorations with	Osseous biopsy
subgingival margins	
Administration of local anesthesia	Surgery lasting for greater than 45min (head
	and neck cancer, extensive oral and
	maxillofacial surgery in patients with
	comorbidities)
Soft tissue biopsy 1-2.5 cm	Soft tissue biopsy >2.5cm
Ultrasonic scaling	Removal of torus
Placement of a single implant	Placement of multiple implants
One or two quadrants subgingival scaling	Full mouth disinfection with subgingival
	scaling

Localized periodontal surgery involving <5	Periodontal surgery>5 teeth
teeth	

Table 2: Classification of dental procedures based on bleeding risk

Recent guidelines for management during dental procedures in patients taking the newer

anticoagulants can be outlined as follows [2,3]:

Figure 1: Guideline for management

Guide to discontinuation of dabigatran before elective surgery:

The half-life of dabigatran is about 12-14hrs in healthy patients, 14-17hrs in elderly and up to 27hrs in patients with severe renal impairment [10]. Depending on the pharmacokinetics of the drug, patients with liver disease or impaired renal function may have a higher risk of bleeding following invasive dental treatments as they may have an increased plasma concentration of the drug. As dabigatran is excreted from the kidneys, patients with renal impairment may

exhibit elevated concentrations of the drug, it may be beneficial to check serum creatinine prior to elective surgery and calculate the creatinine clearance [2]. The table below, provides guidance for discontinuation of dabigatran etexilate prior to elective surgery based on the risk of bleeding and degree of renal impairment. [10]

Creatinine clearance	Time of discontinuation	Time of discontinuation
(ml/min)	before surgery for standard	before surgery for high risk of
	risk of bleeding	bleeding
>80	24 h	2–4 days
>50 to ≤ 80	24 h	2–4 days
>30 to ≤ 50	≥48 h	4 days
≤30	2–5 days	5 days

Table 3: Guide to discontinue Dabigatran before surgery

Case scenarios

Low risk: For simple procedures with a minor bleeding risk such as scaling, restoration with use of a matrix band, endodontic treatment, or single tooth extraction, the NOA will likely not need to be stopped [11]. For uncomplicated low to medium risk procedures, local hemostatic measures such as mechanical pressure, suturing and topical hemostatic agents such as Gelfoam or Surgicel should be adequate to control the bleeding [11].

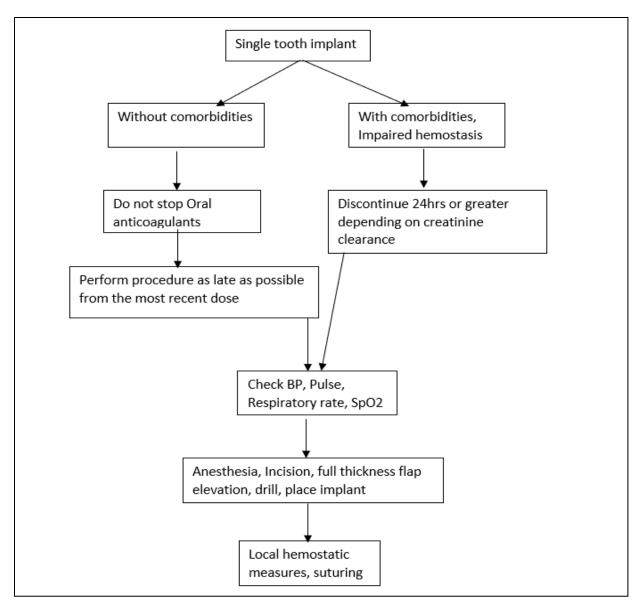


Figure 2: Low risk scenario

High risk: A patients undergoing multiple extractions greater than 3 teeth, alveoloplasty and tuberosity reduction, taking dabigatran 150 mg twice daily with a history of atrial fibrillation, coronary artery disease, hypertension, type 2 diabetes [2]. The dental surgeon will liaise with the patient's physician to consider temporary cessation of the oral anticoagulant drug at least 24 hours (two half-lives) before the procedure [2]. The activated partial thromboplastin time

(aPTT) or thrombin time (TT) should be checked preoperatively (6-12 hrs prior) to ensure the

drug effect is reduced. [2,11]

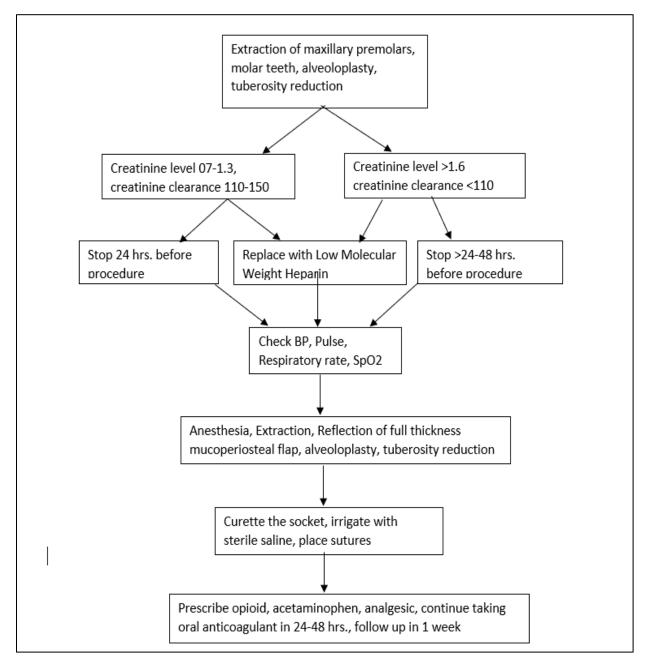


Figure 3: High risk scenario

Workflows

Dentist office workflow

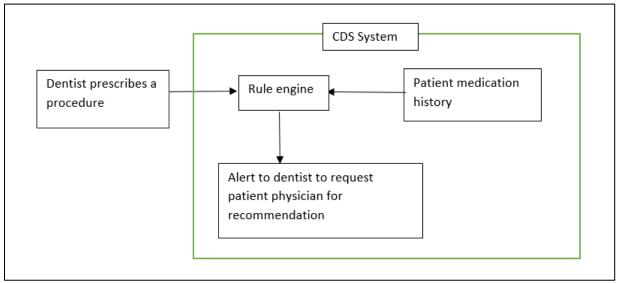


Figure 4: Dentist office workflow

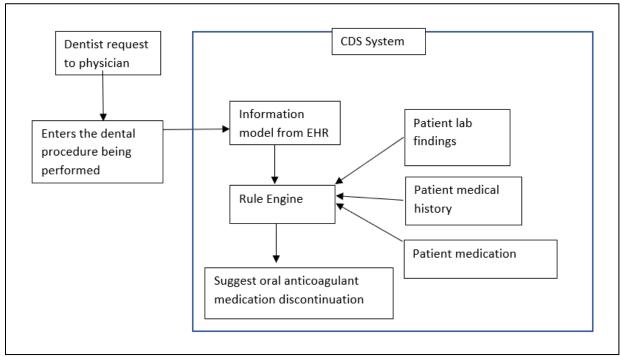


Figure 5: Physician office workflow

Method

A focused review of literature has been performed to identify articles that discussed possible effects and risk associated with bleeding events while taking newer oral anticoagulants, during oral and dental procedures. Articles were reviewed to identify the management protocols that are currently in practice. The concepts used in the search included oral surgery, tooth extraction, bleeding, hemostasis, newer oral anticoagulants, dabigatran, rivaroxaban, edoxaban and apixaban. The literature review was then extended to include case studies that evaluated the risks and benefits of withholding or continuing the novel oral anticoagulant drugs before an invasive dental procedure. It has been observed that very limited evidence is available from these case studies, as not many studies have been performed to identify implications of taking the anticoagulant drug for dental procedures [2]. From the limited evidence obtained from the literature reviews, a management protocol has been designed and implemented in the form of a Clinical Decision Support (CDS) tool in this project.

Clinical Decision Support tool

CDS Authoring tool has been used as an interface to create CDS logic. In order to build CDS logic in CDS authoring tool, 2 accounts were created. One in the CDS authoring tool, and second a UMLS Terminology Services (UTS) account.

UTS accounts are maintained by the National Library of Medicine (NLM) [16]. Once a profile is created, it generates an API key. The API Key generated from UTS account is used within the CDS authoring tool to access services provided by the Value Set Authority Center (VSAC) [16]. "The VSAC is a repository and authoring tool for public value sets created by external programs" [15]. These services enable us to search for value sets, codes and other services provided by VSAC [16]. In order to use these services in the CDS authoring tool, the UMLS API key must be provided. The CDS Authoring tool provides the space to create and manage artifacts [16].

Create and Build CDS artifact: For this project, a new artifact named '001_CDS_Project' was created. It can be done using the '+Create new Artifact' option and it provides access to workspace. The workspace includes components such as Summary, Inclusions, Exclusions, Subpopulations, Base elements, Recommendations, Parameters and External CQL. The CDS artifact is built in the CDS Authoring tool by adding and joining elements in particular contexts [16]. These elements specify the criteria to determine the aspects the patient qualifies to be included for a recommendation [16].

Inclusions: Any person who has an active medication order for the newer oral anticoagulants such as Dabigatran etexilate, rivaroxaban, edoxaban and apixaban can be included in the CDS recommendation. In order to create this, a medication request is selected as the element type. When there exists a medication order which consists of codes of any of these four medications (Dabigatran etexilate, rivaroxaban, edoxaban and apixaban), the patient is included for the CDS recommendation. The code system used for medications for this tool is the RXNorm. The VSAC service enables to search for Value set and codes. In order to use this service, one must authenticate VSAC with the API key, and search for the required codes and value set.

10

Summary Inclusions Exc	clusions Subpopulations	Base Elements	Recommendations	Parameters	Handle Errors	External CQL
pecify criteria to identify a targ render, presence of a certain co				ifact. Examples	might include an	age range,
New element:	Element type Medication Reque	est Or	*			×
AUTHENTICATE VSAC	I					

Figure 6: Inclusion Element-Medication request

	Exclusions Subpopulations Base Elements Recommendations Parameters target population that should receive a recommendation from this artifact. Examples min condition, or lab results within a specific range.	Handle Errors ight include a	EXternal CQL n age range,
	Login to your VSAC account	×	
New element:	Use your UMLS Terminology Services API key to log in to VSAC to access value sets and codes within the CDS Authoring Tool.		×
AUTHENTICATE V	Need an account? Request a UMLS Terminology Services account. Don't know your UMLS API key? Find your UMLS Terminology Services API key.		
	API Key		
CDS Home	CANCEL LOGIN		

Figure 7: VSAC authentication

< Value set Dabigatra	an (2.16.840.1.113883.3.1240.15.2.4006)	
CODE	NAME	CODE SYSTEM
1037044	dabigatran etexilate Oral Capsule	RXNORM
1037045	dabigatran etexilate 150 MG Oral Capsule	RXNORM
1037179	dabigatran etexilate 75 MG Oral Capsule	RXNORM
1156646	dabigatran etexilate Oral Product	RXNORM

Figure 8: Value set for Medication

^{Code} 1037044		Code system RXNORM	- VALIDATE
CODE	CODE SYSTEM	DISPLAY	
1037044	RXNORM	dabigatran etexilate Oral Caps	sule

Figure 9: Code for Medication

Subpopulations: The patients are suggested more specific recommendations based on the elements which can be specified in the subpopulations [16]. In the CDS application, populations are grouped based on the following list of criteria:

- most recent value of creatinine clearance,
- the bleeding risk of dental procedure being performed which can be a
 - o low to medium risk or
 - high-risk procedure,

presence of chronic medical conditions such as chronic kidney disease or a liver disease,
cardiac conditions, and valve replacement procedures.

For Observation elements such as creatinine clearance LOINC codes were used, and SNOMED codes were used for Condition element. For specifying dental procedures, CDT codes have been used and ICD 10 for medical procedures.

^{Code} 2164-2		LOINC	/ALIDATE
CODE	CODE SYSTEM	DISPLAY	
2164-2	LOINC	Creatinine renal clearance in 24 hour Urine and Serum or Plasma	

Figure 10: Observation-Creatinine clearance Code

Condition:	Chronic Kidney Disease All Stages (1 through 5)	^
There exists an ac	tive condition with a code from	
End stage renal disea	ase due to hypertension (disorder) which is true	
Code:	SNOMED (111411000119103) - End stage renal disease due to hypertension (disorder)	×
Code: Expressions:	(disorder)	×
	(disorder)	~

Figure 11: Condition-Chronic Kidney Disease Subpopulation

	e set ntal Tooth Extraction (2.16.840.1.113883.3.600.2466)			
CODE	NAME	CODE SYSTEM		
D7111	extraction, coronal remnants - primary tooth	http://www.ada.org/cdt		
D7140	extraction, erupted tooth or exposed root (elevation and/or forceps removal)	http://www.ada.org/cdt		
D7210	extraction, erupted tooth requiring removal of bone and/or sectioning of tooth, and	http://www.ada.org/cdt		

Figure 12: Dental Procedure Code

Creating Recommendations: A patient who meets the Inclusion criteria and does not meet the Exclusion criteria is eligible for a recommendation. Once the CDS artifact is triggered, the recommendations are provided as decision support notices to the clinician [16]. Recommendations are created using the 'New Recommendation' button. Patients who do not meet the inclusion criteria will not receive a recommendation. Recommendations are provided corresponding to the subpopulations to which they apply [16]. This is done by selecting the 'Add subpopulation' button.

Subpopulation1		×
Subpopulation Procedure High risk		×
Medical Procedure		×
Add a subpopulation	•	NEW SUBPOPULATION
Recommend		

Figure 13: Creating Recommendations for Subpopulations

CDS Logic: The artifact that was built represent medical knowledge and creates computable, interoperable translations using CQL. "CQL is a data standard governed by Health Level 7 (HL7) that is currently a Standard for Trial Use (STU)" [17]. The CQL logic is expressed in a humanreadable format. The CDS uses a decision tree model consisting of multiple steps of 'if then else' logic to define recommendations. The computer program uses Boolean expressions (true/false) and conditionals (if/then/else) that help respond differently based on different inputs and parameters.

define "InPopulation":
"MeetsInclusionCriteria"
define "Recommendation":
if "Subpopulation1" and "Subpopulation Procedure low risk"
then 'Do not stop oral anticoagulant. Continue with the procedure.'
else if "Subpopulation1" and "Subpopulation Condition" and "Subpopulation Procedure low risk"
then 'Stop oral anticoagulant 24hrs before procedure. Restart the drug at least 24hrs postoperatively '
else if "Subpopulation 2" and "Subpopulation Procedure low risk"
then 'Stop oral anticoagulant 24hrs before procedure. Restart the drug at least 24hrs postoperatively'
else if "Subpopulation 2" and "Subpopulation Procedure High risk"
then 'Stop oral anticoagulant 2-4 days before procedure. Restart the drug at least 24hrs postoperatively'
else if "Subpopulation 3" and "Subpopulation Procedure low risk"
then 'Stop oral anticoagulant >48hrs before procedure. Restart the drug at least 24hrs postoperatively'
else if "Subpopulation 3" and "Subpopulation Procedure High risk"
then 'Stop oral anticoagulant 4-5 days before procedure. Restart the drug at least 24hrs postoperatively'
else if "Subpopulation1" and "Subpopulation Procedure High risk" and "Medical Procedure"
then 'Stop oral anticoagulant 2-4 days before procedure. Consider bridging with low molecular weight Heparin'
else null

Figure 14: CQL

Testing CDS Artifact

Uploading Test patients:

CDS artifacts can be tested in the Testing link, in the CDS authoring tool. In order to test the

artifact, synthetic patient data has been sourced from 'Synthea', which provides synthetic

patient data and associated health records as JSON (JavaScript Object Notation) files

(Conditions, Medications, Care plans, Encounters, Observations, Procedures etc). The patent

records are customized to suit the elements and codes that have been created in the CDS

artifact. It is done by editing the downloaded JSON files using NotePad++ text editor. These files

are uploaded to the CDS authoring tool as DTSU2 FHIR bundle.

Figure 15: Synthea JSON file

View Patient	Details			\times
Θ	Aaron697 Brekke male 75 years	496		
Organizatio	ons (2)		~	
Conditions	(10)		~	
Medication	s (2)		^	
MEDICATIO	Ν	DATE WRITTEN	STATUS	
Ibuprofen 2	00 MG Oral Tablet	2016-05-21T07:22:41-04:00	stopped	
dabigatran	etexilate Oral Capsule	2016-05-21T07:22:41-04:00	active	
			CLOSE	

Figure 16: Patient file uploaded in CDS authoring tool

Test Execution:

The generated CQL can be executed on selected test patients. In order to run the CQL the VSAC must be authenticated. Then, the test patients are selected. CQL is executed on the selected patients by selecting the FHIR compatible CDS artifact that has been created -

'001_CDS_Project'.

Select on	Execute CQL on	Selected Patient	:S				×
VSAC.	FHIR Compatibl						• Ə HELP
					CANCEL	EXECUTE CQ	•
	Aaron697 Brekke496	1945-12-10	male	DSTU2	23 days ago	♥ VIEW	DELETE
	Annemarie794 Heidenreich818	1968-08-22	female	DSTU2	8 days ago	♥ VIEW	DELETE

Figure 17: CQL Execution

Results

Once the CQL is executed, the results appear on the Testing page. It displays the name of the artifact, number of test patients that met the inclusion criteria and exclusion criteria. It also displays if each patient has met the inclusion or exclusion criteria, any recommendation, rationale, and errors, that the CDS indicates to the particular patient, otherwise it displays the phrase 'No Value'.

Artifact:	001_CDS_Project
Meets Inclusion Criteria:	2 of 2 patients
Meets Exclusion Criteria:	0 of 2 patients
Aaron697 Brekke49	6 ^
MeetsInclusionCriteria:	\checkmark
MeetsExclusionCriteria:	No Value
Recommendation:	Stop oral anticoagulant 2-4 days before procedure. Restart the drug at least 24hrs postoperatively
Rationale:	No Value
Errors:	No Value
Annemarie794 Heid	enreich818 ^
MeetsInclusionCriteria:	\checkmark
MeetsExclusionCriteria:	No Value
Recommendation:	Do not stop oral anticoagulant. Continue with the procedure.
Rationale:	No Value
Rationale.	

Figure 18: Results

Discussion

The extensive use of NOAs in recent times have shown to impact various dental surgical procedures. These NOAs have been introduced recently and evidence available on the effects of these drugs during dental procedures is limited [2]. Research studies regarding management of patient taking NOAs during dental procedures are being performed recently and the knowledge continues to expand to help develop new guidelines.

The risk of bleeding complications during and following a dental procedure is usually considered low unless the patient has bleeding disorders, comorbidities, and using anticoagulant and antiplatelet medications [10]. Hence before performing a dental procedure in such patients, the dentist must carefully judge the risk associated with the procedure for each patient and ascertain whether hemostasis can be achieved. Although very limited evidence is available on the risk of bleeding after dental procedures on patient using newer oral anticoagulants, such as NOAs, based on limited evidence as reviewed in the literatures, in most cases, there is no need to alter the anticoagulation regimen prior to most dental interventions [3]. However, in patients considered to be at a higher risk of bleeding, there may be a need to postpose the timing of daily dose or adjust timing of procedures as late as possible after the last dose or stop taking the drug for 24 to 48 hrs. [2,3]. The consideration as to how long the dose many be stopped before and after a procedure may be assessed based on half-life of the drug, age, sex, weight of the patient, renal and liver function. The clinicians may have to carefully assess the risk of stopping or altering the medication that may lead to thromboembolic episodes, to the consequences of bleeding which can be controlled by local hemostatic measures. The dentist must consult the patient's physician for altering the medication, in patients with higher risk of thrombo-embolic events [3].

One way to improve adherence to these evolving guidelines is to develop a clinical decision support system which is integrated into dentist's and clinician's workflows in the electronic health record systems. This provides clinicians with the most recent and updated knowledge for dosing at the point of care, offering support for adherence to guideline recommendations, reduce errors and improve safety of the patients.

The CDS authoring tool used in this project, offers an interface to create a sharable CDS logic, which can be exported as HL7 CQL artifacts. This can be integrated into the EHRs using HL7 FHIR data model. This tool allows easy translation of clinical guidelines into computable CDS logic. The artifacts developed in this tool are interoperable. They can be published through CDS connect which can be tested and implemented in different health IT systems and offer possibilities of improving quality of patient care [17].

20

However, there is still a dearth in the resources available for building CDS for dental procedures in this tool. There were not many value sets and codes available for different dental surgical procedures. For a dental surgical procedure, only 'Extraction of tooth' was found to be available in the tool, limiting the scope of expanding to other major dental procedures with increased bleeding risk. Hence dental extraction with varying complexity have been used to represent both high and low risk procedures for this project.

Summary

The newer oral anticoagulants were found to have the same bleeding risk as the conventional oral anticoagulants while performing dental procedures according to available literatures. However, there are no specific reversal agents or antidotes available for these drugs, except for dabigatran etexilate. In October 2015, the U.S. Food and Drug Administration approved ldarucizumab, a monoclonal antibody fragment, when reversal of the anticoagulant effects of dabigatran is needed for emergency surgery/urgent procedures, or in life-threatening or uncontrolled bleeding [10]. Antidotes for the other new drugs are not yet available. As evidence base is lacking about the best practices for assessing the risk of bleeding due to these newer anticoagulants, dentists must practice with caution. Providing timely decision support for dental surgical procedures helps to prevent any untoward adverse events, especially in complex dental procedures, in patients taking NOAs and with comorbidities.

References

1. Kumbargere Nagraj, S., Prashanti, E., Aggarwal, H., Lingappa, A., Muthu, M. S., Kiran Kumar Krishanappa, S., & Hassan, H. (2018). Interventions for treating post-extraction bleeding. The Cochrane database of systematic reviews, 3(3), CD011930.

https://doi.org/10.1002/14651858.CD011930.pub3

- Kelli K. Romond, Craig S. Miller, Robert G. Henry, Dental management considerations for a patient taking dabigatran etexilate: a case report, Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, Volume 116, Issue 3,2013, Pages e191-e195, ISSN 2212-4403, https://www.sciencedirect.com/science/article/pii/S2212440313002228
- Oral Anticoagulant and Antiplatelet Medications and Dental Procedures https://www.ada.org/en/member-center/oral-health-topics/oral-anticoagulant-andantiplatelet-medications-and-dental-procedures#
- Davis C, Robertson C, Shivakumar S, Lee M. Implications of Dabigatran, a direct thrombin inhibitor, for oral surgery practice. J Can Dent Assoc. 2013;79:d74. PMID: 23920075. https://pubmed.ncbi.nlm.nih.gov/23920075/
- Clayton Davis et al. Implications of Dabigatran, a Direct Thrombin Inhibitor, for Oral Surgery Practice, J Can Dent Assoc 2013;79:d74 https://jcda.ca/article/d74
- UW Medicine Pharmacy Services https://depts.washington.edu/anticoag/home/content/suggestions-anticoagulationmanagement-and-after-dental-procedures
- Anderson, J., Brewer, A., Creagh, D. et al. Guidance on the dental management of patients with haemophilia and congenital bleeding disorders. Br Dent J 215, 497–504 (2013). https://doi.org/10.1038/sj.bdj.2013.1097

- Natalia de Campos et al.Bleeding in Dental Surgery, Contemporary Applications of Biologic Hemostatic Agents across Surgical Specialties - Volume 2, November 6th 2019, DOI: 10.5772/intechopen.89992 https://www.intechopen.com/online-first/69934
- Mingarro-de-León, A., Chaveli-López, B., & Gavaldá-Esteve, C. (2014). Dental management of patients receiving anticoagulant and/or antiplatelet treatment. Journal of clinical and experimental dentistry, 6(2), e155–e161.

https://doi.org/10.4317/jced.51215

- 10. Costantinides, F., Rizzo, R., Pascazio, L., & Maglione, M. (2016). Managing patients taking novel oral anticoagulants (NOAs) in dentistry: a discussion paper on clinical implications. BMC oral health, 16, 5. https://doi.org/10.1186/s12903-016-0170-7
- Management of Dental Patients taking Anticoagulants and Antiplatelet drugs, Scottish Dental Clinical Effectiveness Programme, August 2015. <u>https://www.sdcep.org.uk/wp-</u> <u>content/uploads/2015/09/SDCEP-Anticoagulants-Guidance.pdf</u>
- 12. van Ryn, Joanne & Stangier, Joachim & Härtter, Sebastian & Liesenfeld, Karl-Heinz & Wienen, Wolfgang & Feuring, Martin & Clemens, Andreas. (2010). Dabigatran etexilate A novel, reversible, oral direct thrombin inhibitor: Interpretation of coagulation assays and reversal of anticoagulant activity. Thrombosis and haemostasis. 103. 1116-27. 10.1160/TH09-11-0758.
- Flores, B., Trivedi, H. D., Robson, S. C., & Bonder, A. (2017). Hemostasis, bleeding and thrombosis in liver disease. Journal of translational science, 3(3), 10.15761/JTS.1000182. https://doi.org/10.15761/JTS.1000182

- Amaraneni A, Chippa V, Rettew AC. Anticoagulation Safety. [Updated 2021 Oct 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK519025/
- 15. Value Set Authority Centre, NIH https://vsac.nlm.nih.gov/
- 16. Agency for Healthcare Research and Quality

https://cds.ahrq.gov/authoring/documentation

- 17. Agency for Healthcare Research and Quality https://cds.ahrq.gov/cdsconnect/faq
- 18. Johnny Chahine, Marwan N. Khoudary, Samer Nasr, "Anticoagulation Use prior to Common Dental Procedures: A Systematic Review", Cardiology Research and Practice, vol. 2019, Article

ID 9308631, 13 pages, 2019. https://doi.org/10.1155/2019/9308631